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Abstract: Topologies for three-phase salient rotor flux-switching machines having 
non-overlap armature and field windings are presented. Salient rotor is used to modulate 
and switch the polarity of the flux linkage in the armature winding and this phenomenon 
represents the basic principle of operation of these types of machines. Non-overlap 
windings and toothed-rotor are the clear advantages of these topologies as the copper 
losses gets reduce and rotor becomes more robust. Finite Element Analysis (FEA) is 
used to examine the three phase topology of proposed Wound-field flux switching 
motor (WFFSM) with non-overlap windings and salient rotor. Coil test analysis, peak 
armature flux linkage, cogging torque, induced emf and average torque are examined. 
On the basis of these analyses, it is confirmed that 24S-10P has high flux linkage, less 
cogging torque and high average torque as compared to other WFFSMs. 
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1. Introduction 
 In the mid 1950s, the first concept of flux switching machine (FSM) has been founded and 
printed. 4 stator slots and 4 rotor poles (4S-4P) permanent magnet FSM i.e. permanent magnet 
single-phase limited angle actuator or more well-known as Laws relay has been developed [1], 
and then single phase generator with 4 stator slots, and 4or 6 rotor poles (4S-4/6P) has been 
invented[2]. 
 Over the last decade, many FSM topologies have been introduced for various application 
i.e. automotive, domestic appliances, aerospace etc. FSM can be classified into three groups 
that are permanent magnet (PM) FSM, Field Excitation (FE) FSM and Hybrid Excitation (HE) 
FSM. PM and field winding are the main sources of flux in PMFSM and FEFSM while in 
HEFSM, both field winding and permanent magnet produces the flux [3-6]. In all these FSMs, 
the armature winding and field winding or PMare located on the stator. When compare with 
other FSMs, the FEFSM motor has advantages of low cost, simple construction, magnet-less 
machine, and variable flux control capabilities suitable for various performances. Furthermore, 
to manufacture the FEFSM motors, the PM on the stator of conventional PMFSMs is replaced 
by DC field excitation coil. In other words, the FEFSM motors having salient-rotor structure is 
a novel topology, merging the principles of the SRMs and inductor generator [7-8]. 
 The performance of FSM is enhanced by using segmental rotor configuration in recent 
research [9]. Segmental rotor is designed in a manner such that to achieve bipolar flux in 
armature winding, which has neither magnets nor winding. To produce bipolar flux linkages in 
this way, a toothed-rotor structure may be used but it requires overlap windings on the stator 
[10]. Non-overlap windings have been used in [11] to increase the efficiency by reducing the 
copper losses and enhanced the speed torque characteristics of FSM.A three-phase FSM using 
a segmental rotor has been proposed in [12] to improve fault tolerance to a reduction in torque 
pulsations and power converter rating per phase. Figure1 [10] and 2 [12] shows FSMs having 
segmented-rotor with non-overlap windings and toothed-rotor with overlap windings at the 
stator.  A single-phase WFFSM machine was comprehensively investigated in [13-15]. In that  
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machine, armature and field windings are fully pitched and hence the end-winding length is 
increased. Two single phase WFFSMs topologies with DC field and AC armature windings 
having the same coil-pitch of 2 slot-pitches and having different coil-pitches of 1 and 3 
slot-pitches respectively are discussed [16]. It is shown that the iron loss and copper loss of 
WFFSM has been reduced and thus increased the efficiency. 
 This paper explains the feasible topologies, flux linkage, cogging torque, induced emf, 
average torque and torque speed characteristics for three-phase proposed WFFSM with 
non-overlap windings and toothed-rotor structure. 
 
2. Topologies for three phase WFFSM 
 The fundamental principle of the flux switching mechanism is that the salient rotor is used 
to modulate and switch the polarity of the flux linkage in the armature winding. All excitation 
sources are on the stator with the armature and field allocated to alternate stator teeth. The 
polarity of each field tooth to change on the alternate field tooth is the requirement for its 
implementation. 

 
Figure 1. WFFSM with toothed-rotor 

 
 

 
Figure 2. WFFSM with segmented-rotor 

  
 For three-phase WFFSM, 6 cannot be the minimum number of stator teeth because if 3 
slots are located for armature teeth, the other 3 slots cannot form alternate pairs for field 
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excitation coil. Thus, under this limitation, the minimum number of stator teeth for three phase 
WFFSM are 12, 24, 36 etc. The primary investigation therefore considers a 24 teeth stator in 
which armature winding are placed in 12 slots with phase each comprising four coils, leaving 
12 slots for field winding. The use of the field and armature teeth on a 24-tooth stator for the 
implementation of flux switching principle by means of a toothed-rotor is shown in Figure 3.   
 Five topologies of 24S-10P, 24S-14P, 24S-16P, 24S-20P, and 24S-22P are evaluated in this 
investigation as shown in Figure. 4 and the initial design specifications are illustrated in Table 
1. All the topologies have non-overlap windings and robust rotor structure. 
 

FEC

Rotor

Stator

Armature coil

 
Figure 3. 24Slots-10Poles WFFSM with non-overlap winding and salient rotor 

 
 
 

24S-10P 24S-14P

24S-16P

24S-20P 24S-22P  
 

Figure 4. Various topologies of WFFSM 
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Table 1.WFFSM Design Specification 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
3. Design Methodology 
 The designs are examined using FEA simulations, conducted via JMAG-Designer ver. 13 
released by Japan Research Institute (JRI) and the characteristics of each topology are 
discussed, based on the flux linkages, EMF production, flux distribution and cogging torque. 
Firstly, JMAG Editor is used to draw the rotor, stator, armature coil and DC Field excitation 
coil. Then, the materials, conditions, circuits and properties of the machine are set in JMAG 
Designer. The electromagnetic steel, 35H210 is used for the rotor and the stator core. Moreover, 
coil arrangement tests are examined to validate the operating principle of WFFSM and to set 
the position of each armature coil phase. 
 There are several concepts in designing the three phase configuration using salient rotor. 
This paper focuses on two main parameters, non-overlap windings and different number of 
salient rotor poles to design low cost, high efficiency and robust rotor configuration motor.  
 
4.  FEA Based Performance Analysis 
A. Coil arrangement test 
 In order to set the position of each armature coil phase and to confirm the operation 
principle of WFFSM, coil arrangement test are performed for each armature coil separately, 
where the FEC are wounded in alternate direction and armature coil are wounded in 
anti-clockwise direction as shown in Figure. 5. DC current of 141.185 A is applied to field 
winding and the flux linkage at each coil is observed. By comparing the flux linkages of 
different coils, the armature coil phases are defined according to conventional three phase 
system. Figure 6 illustrates the three-phase flux linkage defined as U, V, and W, respectively. 
The same procedure is employed for other topologies. The operating principle of WFFSM to 
get 3-phase flux linkage of the machine has been effectively achieved. Flux linkage waveform 
of 24S-14P WFFSM has small distortion due to odd harmonics 5, 7 etc. From figure7, it is 
obvious that 24S-10P has high flux linkage as compare to other WFFSM topologies. This 
means that the 24S-10P configuration has possibility to provide higher torque and power. For 
the rest of rotor pole numbers, less amplitude of flux linkage is due to some flux leakage occurs 
when higher rotor pole number used in the design and will further investigate in the future. 
 
B. Induced voltage at open circuit condition 
 At open circuit condition, the induced voltage generated from FEC with the speed of 1200 
r/min for different rotor pole numbers are illustrated in Figure.8.WFFSM with 24S-10P 
configuration has highest amplitude of approximately 138 V while 24S-14P configuration has 
less amplitude of 17 V approximately and the waveform is distorted due to odd harmonics 5, 7 
etc. Back emf at no load condition of all topologies is less than applied voltage which makes it 

Outside diameter of stator 300 mm 
Width of stator tooth and rotor tooth 13 mm 
Back iron depth of stator 11 mm 
Motor stack length 80 mm 
Length of air gap 0.3 mm 
Diameter of rotor 180 mm 
Number of turns per FE Coil slot 44 
Number of turns per armature coil slot 44 
Maximum armature current density, Ja 30 Arms/mm2 

Maximum field current density, Je 30 A/mm2 
Total armature slot area, Sa 414.14 mm2 
Total field slot area, Sf 414.14 mm2 
Filling factor 0.5 
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easy to provide protection when the inverter is in off state due to some faults. 
 
C. Cogging Torque Analysis 

The cogging torque analyses for different rotor pole numbers are shown in Figure. 9. 
WFFSM with 24S-20P configuration has highest peak to peak cogging torque followed by 
24S-16P with 64 Nm and 38.0 Nm, respectively while WFFSM with 24S-22P has least peak to 
peak cogging torque approximately 2Nm. As high cogging torque causes vibration in machine 
and makes it noisy therefore, further design refinement and optimization will be conducted in 
future to reduce the cogging torque to an acceptable condition. 

 

 
                        (a)                       (b) 
Figure 5. WFFSM coil arrangement test (a) armature coil in anti-clockwise direction (b) FEC 

in alternate direction 
 

 
Figure 6. Flux linkages of 24S-10P in terms of U, V, W 
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Figure 7. Flux linkage of U-phase 

 
 

 
Figure 8. Induced voltages at 1200 rpm 

 
 

 
Figure 9. Cogging Torque 
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D. Flux Characteristics at Various DC FEC Current Densities, Je and Flux Distribution     
 Two WFFSM topologies 24S-22P and 24S-10P are chosen to examine their flux 
characteristics due to less cogging torque and high flux linkage. The flux characteristics for 
24S-22P and 24S-10P at various DC FEC current densities, Je are illustrated in Figure. 10. It is 
obvious from both Figures that flux pattern increase linearly by increasing field current density, 
Je until value of 10 A/mm2. Then the flux of 24S-22P starts to reduce when high field current 
density is injected while flux pattern of 24S-10P has increasing value till 30A/mm2. It is 
anticipated that this phenomena happens due to flux cancellation and flux leakage that will be 
investigated in future. Additionally, 24S-22P WFFSM has 12 more poles than 24S-10P, thus it 
provide much larger area and more flux distributed. The flux generated by 24S-22P has much 
less value when compared with 24S-10P WFFSM, as can be seen from Figure. 10. The flux 
distribution of 24S-22P and 24S-10P WFFSMs at Je of 30 A/mm2 and Ja of 30 Arms/mm2 are 
illustrated in Figure.11. More regions of 24S-22P gets saturated when compared with 24S-10P 
as shown in red circle and the saturation effect can also be confirmed from Figure. 10 that flux 
line of 24S-22P becomes constant by increasing value of Je beyond 15 A/mm2.In Figure. 10, 
there is maximum point for 24S-10P WFFSM at Je of 30A/mm2and 24S-22P WFFSM at Je of 
10A/mm2which shows the maximum value of flux.From both Figures, it is confirmed that 
24S-10P WFFSM has the tendency to generate more flux and less saturation effect. 
 
 

 
Figure 10. Comparisons of maximum flux vs. Je for 24S-10P and 24S-22P WFFSM 

 
E. Torque Vs. Armature Current Density and Field Current Density Curves 
 The torque vs. armature current density,Ja curves for various field current density Je is 
shown in Figure12 and Figure13. The torque achieved for 24S-10P is approximately 72 Nm at 
maximum Ja and Je of 30 A/mm2 , 4.67 times greater than 24S-22Pwhich is 15.42 Nm. At low 
armature coil current density of 5Arms/mm2, both machines have same characteristics such that  
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Figure 11. Flux Distribution of WFFSMs (a) 24S-22P (b) 24S-10P 
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Figure 12. Torque Vs. Ja at various Je for 24S-10P 

 
 
torque is increased linearly by increasing field excitation coil current density. Then, the torque 
of 24S-10P WFFSM increases as the load increases and finally reaches a constant value even if 
the armature coil current density Ja further increases while the torque of 24S-22P first increases 
and then decreases by increasing the load. From the comparison of both Figures, it is obvious 
that 24S-10P design has high torque values. 
 The instantaneous torque characteristics at maximum field excitation coil and armature coil 
current densities of 30A/mm2 and 30Arms/mm2 for both 24S-10P and 24S-22P WFFSMs are 
depicted in Figure. 14. The peak-to-peak torques generated are approximately 10 Nm and 35 
Nm for both machines. Although 24S-10P has high torque ripples but it can be minimized by 
following the technique discussed in [17]. 
 
 

 
Figure 13. Torque Vs. Ja at various Je for 24S-22P 
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Figure 14. Instantaneous torque characteristics of both WFFSMs 

 
F. Torque and Power versus Speed Characteristics of 24S-10P WFFSM   
 The torque and power versus speed curve of 24S-10P WFFSM is plotted in Figure. 15. At 
base speed of 965.55 rev/min, the maximum torque of 72.36Nm is obtained for 24S-10P 
WFFSM. From the figure, it is clear that torque starts to decrease if the machine is operated 
beyond the base speed. Moreover, 24S-10P WFFSM has high speed at light load condition and 
the speed reduces by increasing the load. Various speed control methods discussed in [18] can be 
used in future to operate this motor at variable load conditions and can be adopted to smooth the 
torque speed characteristic curve. From figure 15, it is obvious that at maximum torque, the 
power accomplished by 24S-10P WFFSM is 7.31 kW, at the speed of about 965.55 rev/min and 
reduced at high speed to 5.52kW due to increase in iron loss. 
 

 
Figure 15.Torque and Power vs. Speed characteristics for 24S-10P 

 
5.  Conclusion 
 Five topologies having different pole numbers for three phase wound field flux switching 
machine have been presented. In comparison with permanent magnet AC machines, it has low 
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cost due to no permanent magnet and the field flux can be easily controlled. The proposed 
machine has robust rotor construction and non-overlap windings and thus, it can be defined as 
simple configuration, low cost and high efficiency machine. Due to replacement of segmental 
rotor by salient rotor, the mechanical strength of the WFFSM is improved and becomes more 
suitable for high speed applications. Based on 2D FEA, WFFSMs with 24S-10P and 24S-22P 
configuration has achieved better performances and can be further improved in future in terms 
of cogging torque, flux linkage and average torque by design refinement and optimization. 
With all the analytical investigations, the proposed WFFSMs will definitely give the best result 
when tested with a prototype model as compared with the previous work did by many 
researchers. 
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