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Introduction to Data Analysis:
Rules of Evidence

Preface there is a defining characteristic that

separates data analysis from mathe-

matics:  In data analysis the numbers

carry a message from the real world to

us.  And we look to the data in order to

figure out how that world works.

Every professor wants every student

to believe that the subject being

taught is exciting, beautiful, and the

most worthy calling a human being

could possibly follow.  And I of course,

want students to feel that way about

data analysis.  But, in a sense, I have to

insist — because if you approach data

analysis mechanically, as a matter of

ritual and routine, then you can not do it

well.  A computer, or a human acting

like one, can not be programmed to use

insight, to have hunches, good or bad,

and to track the hunches down.  And

these things are absolutely essential to

data analysis, every bit as necessary as

solid logic and precision.  Data analysis

requires logic and clear thinking, but

also style, intuition, eccentricity,

inspired guesses, and hot pursuit of good

ideas — that may or may not turn out to

be correct.

That’s what’s special about data

analysis:   Put “two of this” and “two of

that” together in a test tube  and —

reality governs:  You’d better check to

see just what it is you’ve got.  Granted

that “two plus two” will always be

“four,” but that is a statement in math-

ematics where “two” and “plus” and

“four” are reasonably well-defined

abstractions dwelling in the human

brain.  By contrast, in data analysis the

“input” is from the real world and the

“output” is tested against the real

world.  However compelling the

assumptions, however logical the

conclusion, however precise the mathe-

matics and convincing the theory, the

results must be tested against the real

world.  It is arguable that there are

more general kinds of data, data that

are not numerical. But, in Rules, we, the

co-authors, are going to talk about the

analysis of data, numerical data, and

basic strategies for deciphering the

message that they carry.

Data analysis is, in part, a body of

techniques for dealing with numbers:

The numbers can be averages — the av-

erage income of a population.  The

numbers can be counts — the number of

protozoa in a drop of pond water.  The

numbers can be temperatures or veloci-

ties — there is no end to the list.  But

i
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Preface to Faculty tion of scientists, not as preparation for

business, not for policy, nor for education

in the liberal arts.

I’m afraid to speculate what this

means for the general public.   I know it

means that when I stand up to argue

about tax rates in the forum of my town

meeting, I’m kidding myself.  I know it

means that public debate about the rate

of increase of U.S. health care costs vis

à vis the rate  of inflation — whatever

that debate is about — will not be won,

lost or, perhaps, even influenced very

much by facts, not in the public domain.

And, for education, the unhappy truth is

that the problem is not going to be

solved by pabulumizing the curriculum.

The worlds we try to understand and

control through data, the worlds, of sci-

ence, and policy, and business, are not

going to simplify themselves in order to

accommodate the deficiencies of the

analyst.  Rather, we are going to have

to bring our students up to the demands

of the data.  To do otherwise is not only

wrong but an act of hubris.  If, for

example, the relation between a per-

son’s years of education and a person’s

income is not linear, then it does no good

to describe it as linear anyway

“because” linear analysis is easier.

That’s not an approximation or simpli-

fication.  That’s wrong.  And, very

likely, all the basic statistical machin-

ery called upon to support that de-

scription and lend to it an air of

I propose a test and a question:

Collect the data that describe the gross

national product of the United States, in

sequence, for the last one hundred years.

Plot the data on graph paper.  And then

ask someone to interpret it.  That’s the

test.  And the question is — How many

people will be able to interpret it?  I am

not sure of the answer to that question,

but I know that most of my colleagues —

who teach undergraduates in both the

natural and social sciences — are none

too sanguine about the probable results

for their own students.

And I submit that this is a serious

problem.  If I were to state that the gross

domestic product of the United States

had increased an average of 3% per year

during the last 100 years, most listeners

would claim to understood what I had

said.  If I were to state that the popula-

tion of the United States had increased

by 2% per year, during the last 200

years, most people would claim to have

understood the meaning of the state-

ment.  But they do not:  If an educated

person can not compute such an average,

3% per year, or 2% per year, directly

from the data then, in truth, that person

does not understand the average — not

what the average means, not really.

And that’s not good — not for the educa-
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Introduction to Data Analysis Preface to Faculty

verisimilitude — invoking Gaussian

probabilities, confidence intervals, sig-

nificance tests, and so forth — will not

set right what was wrong to begin with.

the basics of probability, Gaussian

distributions, significance tests, Chi-

squares and F-ratios which we teach.

So what’s wrong?  The problem is

that students have trouble using the

tools they have acquired, carrying their

abstract knowledge across the line from

abstraction to use:  The problem is con-

necting the math they know to what our

social science colleagues call the

“substance” behind the methods, to

what our physical science colleagues

call the “physical intuition” — connect-

ing the math to the data.

It’s easy enough to offer broad

generalities to explain-away the

difficulties encountered by students —

something about the decline of Western

Civilization, or the decay of the scien-

tific subculture, or, at the least, the

failure of our educational  systems.  But

these generalizations do not hold up.

The problem and the solution lie else-

where:  In college we teach the elite, not

the average.  We speak to students who

have made the cut of standardized

tests.  And we, the faculty, are not

asking these students for technical

skills they do not have:  They all know

what a straight line is.  They all know

how to draw a graph.  Almost every

undergraduate comes equipped with

some knowledge of algebra.  They have

had an encounter with logarithms and

most, or many, of our students have had

an introduction to the calculus.

I offer these comments to prepare

you for what follows:  Rules is neither

more nor less difficult than standard ap-

proaches to “methods.” It is different.

It is based on a different diagnosis

of the problems of teaching and learning

data analysis.  If I am right, or to the

extent that I am right, faculties can not

solve our students’ problem with data

analysis by sending them back to the

mathematics department for additional

preparation in mathematics.  I certainly

encourage additional training in math-

ematics, as much as the students can get,

but it’s not going to solve the problem of

connecting abstractions to reality.

That’s the problem and the way to solve

it is to lead the students back and forth

between the two cultures, between math

and data, between equations and inter-

pretations, passing back and forth,

And, in truth, the mathematics and

interpretative skills we, the faculty,

have come to avoid in introductory data

analysis and statistics classes are tech-

nically simpler than the mathematics

we teach:  For example, logarithmic

relations and their interpretation,

which we usually omit from data

analysis, are technically simpler than

ii
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repeatedly and redundantly, until the

path is well worn.  That is something

we in the sciences must do for our own

students — it is not the business of math-

ematicians.

iii
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Plan of the Course

Rules of Evidence follows a

straightforward outline, beginning , in

Volume I, with the study of single vari-

ables and advancing, in Volume II, to

two variables.  With one variable it

introduces the use of distributions of the

data and the use of summary statistics

for the center and the variation.  With

two variables it introduces the concept

of correlation between variables and

linear relations including regression.

Interpretation

Within the outline, one distinction

of Rules is its emphasis on interpreta-

tion, in English, accompanied by visual

and graphical displays.  It is easy for a

student to become absorbed in technical

details — harder to connect the data to

reality.  But data analysis is without

purpose if it does not connect to reality.

In data analysis technical errors —

dropping a decimal place, or forgetting a

square root — are not mere technical

errors of no consequence.  An error usually

leads to an absurd interpretation — to

estimated growth rates that are

ridiculous, to predictions of wealth that

are impossible, to drug treatments that

kill — and if the analyst does not see

the absurdity introduced by “technical

error” it means that the connection

between the numbers and the data has

been lost. 

For this reason no example pre-

sented to students, and no homework pre-

sented by students, should be considered

complete without an intelligible write

up, in English:  A number, like “3”, is not

the answer to any exercise in data anal-

ysis.   No matter how long the file of

computer output, no matter how pretty

the graphs — the answer has to make

sense.    “3 dollars,” or “3 pounds of pota-

toes per pound of fertilizer,” or “3%

increase in population per year,” or “a

dose of 3 grams of antidote per kilogram

of body weight” — may be an appropri-

ate statement about data.

Homework

This has an important implication

for homework:  For my own classes I

assign nightly homework but, many

decades later, I have accepted the
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prissy doctrine of grade-school English

teachers to the effect that “If you can’t

put it in writing, then you don’t under-

stand it.”  And to “put it in writing,” to

produce an intelligent interpretation of

data rendered in clear technical English

takes time.  It is not clear why good

technical writing is difficult and time

consuming.  But, empirically, it is.  This

means that I assign very few problems —

usually no more than one per night.  This

certainly makes the course easier to

teach but, more important, it is the right

approach:  If I were to assign half a

dozen interesting problems for one

night’s homework, the magnitude of the

assignment would, by itself, tell students

the opposite of what I intend.  The size

of the load would tell students to get the

numbers right and ignore meaning

because it is basically impossible to

work out five or six examples and write

them up in intelligent English — all in

one night.

Exploratory Analysis

Rules of Evidence is heavily influ-

enced by John Tukey’s introductory text

Exploratory Data Analysis in which

there is no mention, nor any need to

mention probability or Gaussian distri-

butions or, for that matter, least squares

or even means and standard deviations

— an introduction that Tukey accom-

plishes without sacrifice of either rigor

or precision. 

Rules will not go that far, but one

reward of reading Tukey’s text is to

discover, or re-discover, how much can

be accomplished well, how much can be

accomplished with both rigor and preci-

sion — if the analyst has a firm and

clear understanding of the basics.  When

a student can “eyeball” numerical esti-

mates of the center and the deviation,

when a student can “read” estimates of

slope and goodness of fit right off of a

well formed graph, when a student can

interpret these things in terms of income,

or education, or time, or temperature —

as appropriate to the data — then the

student is ready for the technology of “r-

squared” and standard errors of

estimate.

There is a line of thought that says

you can not learn the meaning of a thing

unless you’ve got two of them:  It forces

you to abstract from the examples to the

principle.  For this reason, I have tried

to make it a rule that every time I

demonstrate one technical solution to a

problem in data analysis I also demon-

strate a second:  A mean is one

realization of the center of a distribu-

tion, the median is another.  For this

reason too, I have tried to introduce data

analysis with one broad interdisci-

plinary course — to be followed by

courses that adopt the special practices

of the separate disciplines:  If the

student sees only one solution to a
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problem, as is usually the case within a

mature scientific discipline, it is hard to

see that there are others, and then to

understand the choices that have been

made and the trade-offs — choices that

make one solution good or better than

another. 

Prerequisites

I assume a background in mathe-

matics and, equally important, a

willingness to use that background.  I do

not assume that the student is at ease

with that background when it comes to

using it, in the real world.  That is the

business of this course.  For example, I

use logarithms.  I know full well that

students are in varying degree

“uncomfortable” with such things.  Even

those who are perfectly comfortable

with the “math” need to learn to work

with these logarithms when they apply

to the size of real world populations,

“log people”, or when they apply to real

world wealth “log dollars”.  I expect

students to work with what they have

already learned in secondary school

mathematics, and to learn to use it with

data.  Similarly, I make some (optional)

use of calculus, specifically the use of

derivatives to find a minimum or a max-

imum.  And, again, I know full well that

there will be some discomfort.  But the

reward is to see how important problems

are solved, using the derivative, and to

see how calculus invests coherence and

strategy to what is otherwise no more

than a collection of numerical

techniques.

These are reasonable demands of

the “average” student in an above aver-

age university.  It is difficult for faculty

to believe this because the “average”

student of this generation has a stronger

math background than the “average”

student of our own (the faculty’s) genera-

tion. But it is true.  If anything, our

students may have too much f a i t h  in

mathematics.  They have acquired the

lay person’s idea that mathematics is

science and  they have learned, some-

where, that the more mathematical

something looks, the more scientific it

is.  For a lay person, knowing little of

either science or mathematics, that may

be a reasonable approximation.  For a

scientist it is a fatal error.

Technology in The Liberal Arts
Curriculum

The reader will see clear traces of

my own teaching environment embodied

in this text:  I teach at an institution

that sees itself as a liberal arts college.

I do not interpret liberal arts to mean

“artsy”, and I certainly do not interpret

liberal arts to mean “non technical”.  I

interpret it to mean that, at least ini-

tially, a liberal arts education attempts

to do something broader than teach stu-

dents a trade.  I cannot, it would violate
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the “rules” of a liberal arts education for

me to say to my students, “Here are the

symbols and rituals of your trade —

learn them!”  That’s not allowed.  The

use of the tools and the meaning of the

tools go together. 

Moreover, data analysis occupies

an important niche in the culture.  Data

analysis is part of the scientific method:

Humans have many ways, often strange,

for establishing truth.  We may rely on

authority.  We may believe what

“everyone” knows to be true.  We may

find answers in culture and ideology.

We may use pure logic.  By contrast,

science offers, first, skepticism, and then

a way to put questions to reality.  Data

analysis is applied epistemology

wherein the questions “What do we

know?” and “How do we know it?”  be-

come inescapable and must be answered.

In later life the skills of the scientist,

the business analyst, the policy maker

become specialized and differentiated.

But in school, at the undergraduate

level where these skills begin, they

have a common root in the skepticism

and the methods of inquiry summarized

by the phrase “scientific method”.

People like ourselves created these

methods to begin with.  And people like

ourselves have to understand what the

methods are for, and how they were in-

vented, and how they may be re-

invented or modified when that is

what’s called for.  That’s why technical

work, including data analysis, belongs in

the liberal arts curriculum.
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Introduction:
What Is Data Analysis?

hat is the wealth of the United States?  Who’s got it?  And how

is it changing?  What are the consequences of an experimental

drug?  Does it work, or does it not, or does its effect depend on condi-

tions?  What is the direction of the stock market? Is there a pattern?

What is the historical trend of world climate?  Is there evidence of

global warming?  — This is a diverse lot of questions with a common

element:  The answers depend, in part, on data.  Human beings ask

lots of questions and sometimes, particularly in the sciences, facts help.

Data analysis is a body of methods that help to describe facts, detect patterns,

develop explanations, and test hypotheses.  It is used in all of the sciences.  It

is used in business, in administration, and in policy.

The numerical results provided by a data analysis are usually

simple:  It finds the number that describes a typical value and it finds

differences among numbers.  Data analysis finds averages, like the

average income or the average temperature, and it finds differences

like the difference in income from group to group or the differences in

average temperature from year to year. Fundamentally, the numerical

answers provided by data analysis are that simple.

But data analysis is not about numbers — it uses them.  Data

analysis is about the world, asking, always asking, “How does it

work?”  And that’s where data analysis gets tricky.

W
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For example:  Between 1790 and 1990 the population of the United
States increased by 245 million people, from 4 million to 249 million
people.  Those are the facts.  But if I were to interpret those numbers
and report that the population grew at an average rate of 1.2 million
people per year, 245 million people divided by 200 years, the report
would be wrong. The facts would be correct and the arithmetic would
be correct — 245 million people divided by 200 years is approximately
1.2 million people per year.   But the interpretation “grew at an
average rate of 1.2 million people per year” would be wrong, dead
wrong.  The U.S. population did not  grow that way, not  even
approximately

For example:   The average number of students per class at my
university is 16.  That is a fact.  It is also a fact that the average number
of classmates a student will find in his or her classes is 37.  That too is a
fact.  The numerical results are correct in both cases, both 16 and 37 are
correct even though one number is twice the magnitude of the other
— no tricks.  But the two different numbers respond to two subtly dif-
ferent questions about how the world (my university) works, subtly
different questions that lead to large differences in the result.

The tools of the trade for data analysis begin with just two ideas:

Writers begin their trade with their A, B, C’s.  Musicians begin with

their scales.  Data analysts begin with lines and tables.  The first of

these two ideas,  the straight line, is the kind of thing I can construct on

a graph using a pencil and a ruler, the same idea I can represent

algebraically by the equation “y = mx + b”.  So, for example, the line

constructed on the graph in Figure 1 expresses a hypothetical relation

between education, left to right, and income, bottom to top.  It says

that a person with no education has an income of $10,000 and that the

rest of us have an additional $3,000 for each year of education that is

completed (a relation that may or may not be true).
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Income = $10,000 plus $
3,000 per y

ear o
f E

ducatio
n

7 9 0 11 12 3 14 5 6 17 18 19 0

10,000

20,000

30,000

40,000

$50,000

60,000

70,000

Intercept:  b = $10,000

Run of 1 year

Rise of $3,000

Slope:  m = $3,000 per year of education

P
er

so
n

a
l 

In
co

m
e

ears of Education Completed

Figure 1

Hypothetical Linear Relation Between Income and Education

The hypothetical line shows an intercept, b, equal to $10,000 and a slope, which is the rise in dollars

divided by the run in years, that is equal to $3,0000 per year.
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This first idea, the straight line, is the best tool that data analysts

have for figuring out how things work.  The second idea is the table or,

more precisely,  the “additive model”.  The first idea, the line, is

reserved for data we can plot on a graph, while this second idea, the

additive model, is used for data we organize in tables.  For example,

the table in Figure 2 represents daily mean temperatures for two cities

and two dates:  The two rows of the table show mean temperature for

the two cities, the two columns show mean temperatures for the two

dates.

The additive model analyzes each datum, each of the quantities in

the table, into four components — one component applying to the

whole table, a second component specific to the row, a third

component specific to the column, and a fourth component called a

“residual” — a leftover that picks up everything else.  In this example

the additive model  analyzes the temperature in Phoenix in July into

1: 64.5° to establish an average for the whole table, both
cities and both dates,

2: plus 7.5° above average for Phoenix, in the first row,

3: plus 21° above average for July, in the second column,

4: plus 1° as a residual to account for the difference
between the sum of the first three numbers and the
data.

Adding it up,

Observed equals All Effect plus Phoenix Effect plus July Effect plus Residual .

That is,

92°  =  64.5°  +   21°  +    7.5°  +    (-1° )
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Figure 2

Normal Daily Mean Temperatures in Degrees Fahrenheit

From the Statistical Abstract of the United States, 1987, Table 346, from the original by the U.S. National
Oceanic and Atmospheric Administration, Climatography of the United States, No. 81, Sept., 1982.  Also
note John Tukey’s, Exploratory Data Analysis, Addison Wesley, 1970, 0. 333.
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There you are, lines and tables:  That is data analysis, or at least a

good beginning.  So what is it that fills up books and fills up the

careers of data analysts and statisticians?  Things begin to get

“interesting”, that is to say, problematical, because even the best-

behaved data show variance:  Measure a twenty gram weight on a

scale, measure it 100 times, and you will get a variety of answers —

same weight, same scale, but different answers.  Find out the incomes

of people who have completed college and you will get a variety of

answers.  Look at the temperatures in Phoenix in July, and you will get

a variety, day to day, season to season, and year to year.  Variation

forces us to employ considerable care in the use of the linear model

and the additive model.

And life gets worse — or more interesting:  Truth is that lots of

things just are not linear:  Adding one more year of elementary school,

increasing a person’s years of education from five to six, doesn’t really

have the same impact on income as adding one more year of college,

increasing a person’s years of education from fifteen to sixteen —

while completing a college degree.  So the number of dollars gained for

each extra year of education, is not constant — which means that,

often, the linear model doesn’t work in its simplest form, not even

when you allow for variation.  And with tables of numbers, the

additive model doesn’t always add up to something that is useful.

So what do we do with a difficult problem?  This may be the

single most important thing we teach in data analysis:  Common sense

would tell you that what you tackle a difficult problem with a difficult

technique.  Common sense would also tell you that the best data

analyst is the one with the largest collection of difficult “high

powered” techniques.  But common sense is wrong on both points:  In

data analysis the real “trick” is to simplify the problem and the best data

analyst is the one who gets the job done, and done well, with the most

simple methods.

Data analysts do not build more complicated techniques for more

complicated problems — not if we can help it.  For example, what

would we do with the numbers graphed in Figure 3?  Here the

numbers double at each step, doubling from 1, to 2, to 4, to 8, which is

certainly not the pattern of a straight line.  In this example the trick is
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to simplify the problem by using logarithms or the logarithmic graph

paper shown in Figure 4 so that, now, we can get the job done with

simple methods.  Now, on this new graph, the progression, 1, 2, 4, 8,…

is a straight line.

•

•
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• x=4, y=8

Figure 3

Non-Linear Relation Between X and Y

Figure 4

inear Exponential Relation Between X and Y Made

Linear Using a Semi-Logarithmic Graph

“Tricks” like this enormously extend the range of things that an

experienced data analyst can analyze while staying with the basics of

lines and tables.  In sociology, which is my field, this means learning to

use things like “log people”.  In business and economics it means

learning to use things like “log dollars”.  In biology it means learning

to use things like the square root of the number of beasties in a drop of

pond water or the cube root of the weight of an organism.  Learning

what these things mean is perhaps the most time consuming part of an

introduction to data analysis.  And the payoff is that these techniques

extend the ability of simple tools, of the line and the table, to make

sense of a complicated world.
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And what are the Rules of data analysis?  Some of the rules are

clear and easy to state, but these are rather like the clear and easy rules

of writing:  Very specific and not very helpful — the equivalent of

reminders to dot your “i’s” and cross your “t’s”.  The real rules, the

important ones, exist but there is no list — only broad strategies with

respect to which the tactics must be improvised.  Nevertheless it is

possible to at least name some of these “rules.”  I’ll try the list from

different angles.  So:

1. Look At the Data / Think About the Data / Think About the

Problem / Ask what it is you Want to Know

Think about the data.  Think about the problem.  Think about

what it is you are trying to discover.  That would seem obvious,

“Think.”  But, trust me, it is the most important step and often omitted

as if, somehow, human intervention in the processes of science were a

threat to its objectivity and to the solidity of the science.  But, no,

thinking is required:  You have to interpret evidence in terms of your

experience.  You have to evaluate data in terms of your prior

expectations (and you had better have some expectations).  You have to

think about data in terms of concepts and theories, even though the

concepts and theories may turn out to be wrong.

2. Estimate the Central Tendency of the Data.

The “central tendency” can be something as simple as an average:

The average weight of these people is 150 pounds.  Or it can be something

more complicated like a rate:  The rate of growth of the population is two

percent per annum.  Or it can be something sophisticated, something

based on a theory:  The orbit of this planet is an ellipse.  And why would

you have thought to estimate something as specific as a rate of growth

or the trace of an ellipse?  Because you thought about the data, about

the problem, and about where you were going (Rule 1).

3. Look at the Exceptions to the Central Tendency
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If you’ve measured a median, look at the exceptions that lie above

and below the median.  If you’ve estimated a rate, look at the data that

are not described by the rate.  The point is that there is always, or

almost always, variation:  You may have measured the average but,

almost always, some of the cases are not average.  You may have

measured a rate of change but, almost always, some numbers are large

compared to the average rate, some are small.  And these exceptions

are not usually just the result of embarrassingly human error or

regrettable sloppiness:  On the contrary, often the exceptions contain

information about the process that generated the data.  And sometimes

they tell you that the original idea (to which the variations are the

exception) is wrong, or in need of refinement.  So, look at the

exceptions which, as you can see, brings us back to rule 1, except that

this time the data we look at are the exceptions.

That circle of three rules describes one of the constant practices of

analysis, cycling between the central tendencies and the exceptions as

you revise the ideas that are guiding your analysis.  Trying to describe

the Rules from another angle, another theme that organizes the rules of

evidence can be introduced by three key words:  falsifiability, validity,

and parsimony.

1.  Falsifiability

Falsifiability requires that there be some sort of evidence which,

had it been found, your conclusions would have had to be judged

false.  Even though it’s your theory and your evidence, it’s up to

you to go the additional step and formulate your ideas so they

can  be tested — and falsified if they are false.  More,  you

yourself have to look for the counter evidence.  This is another

way to describe one of the previous rules which was “Look at the

Exceptions”.

2. Validity
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Validity in the scientific sense, requires that conclusions be more

than computationally correct.  Conclusions must also be

“sensible” and true statements about the world:  For example, I

noted earlier that it would be wrong to report that the population

of the United States had grown at an average rate of 1.2 million

people per year.  —  Wrong, even though the population grew by

245 million people over an interval of 200 years.  Wrong even

though 245 divided by 200 is (approximately) 1.2.  Wrong because

it is neither sensible nor true that the American population of 4

million people in the United States in 1790 could have increased

to 5.1 million people in just twelve months.  That would have

been a thirty percent increase in one year — which is not likely

(and didn’t happen).  It would be closer to the truth, more valid,

to describe the annual growth using a percentage, stating that the

population increased by an average of 2 percent per year — 2

percent per year when the population was 4 million (as it was in

1790), 2 percent per year when the population was 250 million (as

it was in 1990).   That’s better.

3. Parsimony

Parsimony is the analyst’s version of the phrase “Keep It Simple.”

It means getting the job done with the simplest tools, provided

that they work.  In military terms you might think about weapons

that provide the maximum “bang for the buck”.  In the sciences

our “weapons” are ideas and we favor simple ideas with

maximum effect.  This means that when we choose among

equations that predict something or use them to describe facts, we

choose the simplest equation that will do the job.  When we

construct explanations or theories we choose the most general

principles that can explain the detail of particular events.  That’s

why sociologists are attracted to broad concepts like social class

and why economists are attracted to theories of rational

individual behavior — except that a simple explanation is no

explanation at all unless it is also falsifiable and valid.

I will be specific about the more easily specified rules of data

analysis.  But make no mistake, it is these broad and not-well-specified
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principles that generate the specific rules we follow:  Think about the

data.  Look for the central tendency.  Look for the variation.  Strive for

falsifiability, validity, and parsimony.  Perhaps the most powerful rule

is the first one, “Think”.  The data are telling us something about the

real world, but what?  Think about the world behind the numbers and

let good sense and reason guide the analysis.

Reading:

Stephen D. Berkowitz, Introduction to Structural Analysis, Chapter 1,

“What is Structural Analysis,” Butterworths, Toronto, 1982; revised

edition forthcoming, Westview, Denver, circa 1997.

Stephen J. Gould, “The Median Isn’t the Message,” Discover, June,

1985.

Charles S. Peirce, “The Fixation of Belief”, reprinted in Bronstein,

Krikorian, and Wiener, The Basic Problems of Philosophy, 1955, Prentice

Hall, pp. 40- 50.  Original, Popular Science Monthly, 1877.
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The Median Isn't the
Message

In 1982,1 learned I was suffering from a rare and serious cancer. After
surgery, I asked my doctor what the best technical literature on the
cancer was. She told me, with a touch of diplomacy, that there was
nothing really worth reading. I soon realized why she had offered that
humane advice: my cancer is incurable, with a median mortality of eight
months after discovery.

Stephen Jay Gould teaches biology, geology, and the history of science at Harvard.

M
y life has recently intersected,
in a most personal way, two
of Mark Twain's famous
quips. One I shall defer to the
end of this essay. The other
(sometimes attributed to

trust or contempt for statistics is more trou-
bling. Many people make an unfortunate and
invalid separation between heart and mind,
or feeling and intellect. In some contempo-
rary traditions, abetted by attitudes
stereotypically centered upon Southern
California, feelings are exalted as more
"real" and the only proper basis for action—
if it feels good, do it—while intellect gets
short shrift as a hang-up of outmoded
elitism. Statistics, in this absurd dichotomy,
often become the symbol of the enemy. As
Hilaire Belloc wrote, "Statistics are the
triumph of the quantitative method, and the
quantitative method is the victory of sterility
and death."

Disraeli), identifies three species of mendac-
ity, each worse than the one before, lies,
damned lies, and statistics.

Consider the standard example of stretch-
ing truth with numbers—a case quite
relevant to my story. Statistics recognizes
different measures of an "average," or
central tendency. The mean is our usual
concept of an overall average—add up the
items and divide them by the number of
sharers (100 candy bars collected for five
kids next Halloween will yield 20 for each
in a just world). The median, a different
measure of central tendency, is the halfway
point. If I line up five kids by height, the
median child is shorter than two and taller
than the other two (who might have trouble
getting their mean share of the candy). A
politician in power might say with pride,
"The mean income of our citizens is
$15,000 per year." The leader of the
opposition might retort, "But half our
citizens make less than $10,000 per year."
Both are right, but neither cites a statistic
with impassive objectivity. The first invokes
a mean, the second a median. (Means are
higher than medians in such cases because
one millionaire may outweigh hundreds of
poor people in setting a mean; but he can
balance only one mendicant in calculating a
median).

This is a personal story of statistics,
properly interpreted, as profoundly
nurturant and life-giving.  It declares holy
war on the downgrading of intellect by
telling a small story about the utility of dry,
academic knowledge about science.  Heart
and head are focal points of one body, one
personality.

In July 1982,1 learned that I was suffering
from abdominal mesothelioma, a rare and
serious cancer usually associated with expo-
sure to asbestos. When I revived after
surgery, I asked my first question of my
doctor and chemotherapist: "What is the best
technical literature about mesothelioma?"
She replied, with a touch of diplomacy (the
only departure she has ever made from
direct frankness), that the medical-literature
contained nothing really worth reading.

Of course, trying to keep an intellectual
away from literature works about as well as
recommending chastity to Homo sapiens,The larger issue that creates a common dis-

Discover, June 1985, pp. 42-45.
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the sexiest primate of all. As soon as I could
walk, I made a beeline for Harvard's
Countway medical library and punched
mesothelioma into the computer's biblio-
graphic search program. An hour later,
surrounded by the latest literature on abdom-
inal mesothelioma, I realized with a gulp
why my doctor had offered that humane
advice. The literature couldn't have been
more brutally clear: mesothelioma is incur-
able, with a median mortality of only eight
months after discovery. I sat stunned for
about fifteen minutes, then smiled and said
to myself: so that's why they didn't give me
anything to read. Then my mind started to
work again, thank goodness

would read such a statement as "I will
probably be dead in eight months"—the
very conclusion that must be avoided, since
it isn't so, and since attitude matters so
much.

I was not, of course, overjoyed, but I
didn't read the statement in this vernacular
way either. My technical training enjoined a
different perspective on "eight months
median mortality." The point is a subtle one,
but profound—for it embodies the
distinctive way of thinking in my own field
of evolutionary biology and natural history.

W
e still carry the historical baggage
of a Platonic heritage that seeks
sharp essences and definite
boundaries. (Thus we hope to
find an unambiguous "beginningI

f a little learning could ever be a danger-
ous thing, I had encountered a classic
example. Attitude clearly matters in
fighting cancer. We don't know why
(from my old-style materialistic perspec-

of life" or "definition of death," although
nature often comes to us as irreducible con-
tinua.) This Platonic heritage, with its
emphasis on clear distinctions and separated
immutable entities, leads us to view statisti-
cal measures of central tendency wrongly,
indeed opposite to the appropriate interpreta-
tion in our actual world of variation, shad-
ings, and continua. In short, we view means
and medians as the hard "realities," and the
variation that permits their calculation as a
set of transient and imperfect measurements
of this hidden essence. If the median is the
reality and variation around the median just a
device for its calculation, the "I will
probably be dead in eight months" may pass
as a reasonable interpretation.

tive, I suspect that mental states feed back
upon the immune system). But match people
with the same cancer for age, class, health,
socioeconomic status, and, in general, those
with positive attitudes, with a strong will
and purpose for living, with commitment to
struggle, with an active response to aiding
their own treatment and not just a passive
acceptance of anything doctors say, tend to
live longer. A few months later I asked Sir
Peter Medawar, my personal scientific guru
and a Nobelist in immunology, what the
best prescription for success against cancer
might be. "A sanguine personality," he
replied. Fortunately (since one can't
reconstruct oneself at short notice and for a
definite purpose), I am, if anything, even-
tempered and confident in just this manner.

But all evolutionary biologists know that
variation itself is nature's only irreducible
essence. Variation is the hard reality, not a
set of imperfect measures for a central ten-
dency. Means and medians are the abstrac-
tions. Therefore, I looked at the mesothe-
lioma statistics quite differently—and not
only because I am an optimist who tends to
see the doughnut instead of the hole, but
primarily because I know that variation itself
is the reality.  I had to place myself amidst
the variation.

Hence the dilemma for humane doctors: :
since attitude matters so critically, should
such a sombre conclusion be advertised,
especially since few people have sufficient
understanding of statistics to evaluate what
the statements really mean? From years of
experience with the small-scale evolution of
Bahamian land snails treated quantitatively, I
have developed this technical knowledge—
and I am convinced that it played a major
role in saving my life.  Knowledge is indeed
power, in Bacon's proverb.

When I learned about the eight-month
median, my first intellectual reaction was:
fine, half the people will live longer; now
what are my chances of being in that half. I
read for a furious and nervous hour and
concluded, with relief: damned good. I pos-
sessed every one of the characteristics con-
ferring a probability of longer life: I was

The problem may be briefly stated: What
does "median mortality of eight months"
signify in our vernacular? I suspect that
most people, without training in statistics,

Discover, June 1985, pp. 42-45.
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young; my disease had been recognized in a
relatively early stage; I would receive the
nation's best medical treatment; I had the
world to live for; I knew how to read the
data properly and not despair.

experimental protocol of treatment and, if
fortune holds, will be in the first cohort of a
new distribution with high median and a
right tail extending to death by natural
causes at advanced old age.

Another technical point then added even
more solace. I immediately recognized that
the distribution of variation about the eight-
month median would almost surely be what
statisticians call "right skewed." (In a sym-
metrical distribution, the profile of variation
to the left of the central tendency is a mirror
image of variation to the right. In skewed
distributions, variation to one side of the
central tendency is more stretched out—left
skewed if extended to the left, right skewed
if stretched out to the right.) The distribution
of variation had to be right skewed, I
reasoned. After all, the left of the
distribution contains an irrevocable lower
boundary of zero (since mesothelioma can
only be identified at death or before). Thus
there isn't much room for the distribution's
lower (or left) half—it must be scrunched up
between zero and eight months. But the
upper (or right) half can extend out for years
and years, even if nobody ultimately sur-
vives. The distribution must be right
skewed, and I needed to know how long the
extended tail ran—for I had already con-
cluded that my favorable profile made me a
good candidate for that part of the curve.

It has become, in my view, a bit too trendy
to regard the acceptance of death as some-
thing tantamount to intrinsic dignity. Of
course I agree with the preacher of
Ecclesiastes that there is a time to love and a
time to die—and when my skein runs out I
hope to face the end calmly and in my own
way. For most situations, however, I prefer
the more martial view that death is the ulti-
mate enemy—and I find nothing reproach-
able in those who rage mightily against the
dying of the light.

The swords of battle are numerous, and
none more effective than humor. My death
was announced at a meeting of my col-
leagues in Scotland, and I almost experi-
enced the delicious pleasure of reading my
obituary penned by one of my best friends
(the so-and-so got suspicious and checked;
he too is a statistician, and didn't expect to
find me so far out on the left tail). Still, the
incident provided my first good laugh after
the diagnosis. Just think, I almost got to
repeat Mark Twain's most famous line of
all: the reports of my death are greatly
exaggerated.

The distribution was, indeed, strongly
right skewed, with a long tail (however
small) that extended for several years above
the eight month median. I saw no reason
why I shouldn't be in that small tail, and I
breathed a very long sigh of relief. My
technical knowledge had helped. I had read
the graph correctly. I had asked the right
question and found the answers. I had
obtained, in all probability, that most
precious of all possible gifts in the
circumstances—substantial time. I didn't
have to stop and immediately follow Isaiah's
injunction to Hezekiah—set thine house in
order: for thou shalt die, and not live. I
would have time to think, to plan, and to
fight.

One final point about statistical distribu-
tions. They apply only to a prescribed set of
circumstances—in this case to survival with
mesothelioma under conventional modes of
treatment. If circumstances change, the dis-
tribution may alter. I was placed on an

Discover, June 1985, pp. 42-45.
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Before I analyze data.  Before I try to explain anything.  Before I

compute a single average or look at a single fact:  Who, What, Where,

Why, When, and How?  Which means, establish the context.  Before

you get involved with the detail, ask questions:  Who collected the

data?  What are the data about?  Where, if that is important.  Why

were they collected?  When, if that is important.  How were they

collected?  You don’t need to use a check list  — ask questions.

So, for example, in a later chapter I am going to use U.S. Census

data reporting the populations of states of the United States.  There’s

the who:  The U. S. Census Bureau.  They have a good reputation for

accuracy on total population, which is what’s in these data.  For

some kinds of data, the results have known biases — but for these

population counts, this is the best I can get.  And there’s the what:

The data describe the population of the states of the United States.

Where?  The individual states.  Why?  To determine representation

in the U. S. Congress.  When?  These data were published in 1991,

referring to the populations in 1990.  How?  The census attempts to

count everyone, every last person in the United States, which,

strangely enough, makes the Census less accurate (not more accu-

rate) than it would be if it used a carefully selected sample of the

population.1  I don’t need the whole Who, What, Where, ....  The

point is to be alert and ask questions.

As a mnemonic, think of this as step 0.  In data analysis step two

is two variables (the relation between two variables).  Step one is one

variable — extracting information from a single variable like popu-

lation size or growth rate.  This is step zero, “no variables”, the step

before the analysis.  Step zero is to ask whether the data is worthy of

my time, whether it is trustworthy, whether it is pertinent:  Who,

What, Where, Why, When, and How?

1 Curiously, a carefully drawn sample of a population can give
more accurate results than an attempt to look at the entire
population.  The reason is a matter of cost and realism.  Really, it
costs a lot of money to track down every last person.  So, if I talk to
only one person in one hundred, I can spend one hundred times
more money tracking that person down, making sure that that
person is “representative” and making sure of my results for that one
person.  So the data from a sample can be more carefully examined
at the same, or lower cost, than data  from a complete enumeration.
See ______in Tanur, 1989.
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OPINION:  Which Environmental Problems do We Think are Most

Serious

Extremely Very

Serious Serious

Hazardous and toxic waste 47% 42%

Oil spills 48 36

Air pollution 36 44

Damage to the earth’s atmosphere 39 40

Solid waste disposal 38 41

Nuclear waste 43 35

Contaminated drinking water 38 39

Destruction of forests 39 37

Threats to endangered species 26 41

Use of pesticides 22 38

World population growth 25 32

Global warming 22 34

Inefficient energy use 17 39

Reliance of fuels like coal and oil 29 34

Economic development of natural 17 33

wetlands

Radon gas 11 24

Indoor air pollution 7 20

From The Environmental Almanac, Simon and Schuster, New York,
1992, page 11.

Figure 1

U.S  Attitudes Toward Environmental Problems
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Why do I ask questions?  Because I’m skeptical.  Because

I’m careful.  Why so careful?  Because this is where you learn

that homilies like, “don’t believe everything you read” are all too

valuable.  To make the point, let me show you some data that

failed step zero.  This is data I chose not to analyze — let me

show you why not:  Preparing myself to write, I said to myself,

“What would people be interested in?  What am I interested in?

Ah, let’s get some data on the environment.”

So I went to my local bookstore and looked around, think-

ing “Get some data sources that everyone can get their hands

on.”  I looked through the almanacs, people who teach data

analysis tend to collect almanacs, and there was a new one:  The

1992 Information Please Environmental Almanac, compiled by

World Resources Institute, Houghton Mifflin, 1992.   Ah, I

thought, just the ticket, and I thumbed through it looking for

numbers.

Here’s one set of numbers, reproduced in Figure 1.  This is

the kind of thing I was looking for.  But then I remembered:  “Do

as you teach.  You’re trying to teach them that data analysis is

not about numbers, it uses numbers.  So ask questions.  Where

does this stuff come from? …   Who, What, Where, Why, When,

and How?”

“Do as you teach…”, that slowed me down.  Let’s see, the

Almanac tells me: “Source:  Environmental Opinion Study”.  I

wonder what that is.

Looking through the text for an answer to my question, I

find it is “A 1991 poll conducted for Environmental Opinion

Study, a nonprofit organization established to provide data on

public attitudes on the environment…”  And now I’m in trouble.

Someone is trying to get past me with buzz words and puffery.

The text flashes the phrase “non-profit,” implying something or

other.  It uses the word “data”, and it specifies “public atti-

tudes”.  So far, the text has used a string of words to tell me the

source, but the words have told me nothing.

So now I’m asking questions and I’m on full alert:  When

there is one loose thread in the credibility of a source, look for

others.  And so, looking more carefully at these data, the thing

4
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begins to unravel:  Do they give me enough information so that I

can find the original source and check for myself?  No.  Any sec-

ondary report (a report using information from another source)

must give me enough information so that I can check the pri-

mary report for myself, if I choose to — but this report offers

barely a clue.  And now that I’ve seen the Almanac try to get past

me with evasive terms, like  “public attitudes”, I’m even more

alert.  So I ask “Which public?”, “Who are these people?”  No

answer.

More alert, I look at the numbers.  Oops, the numbers are

percentages.  Percentages of what? … percentages of 100 people

around the office of Environmental Opinion Study, percentages

of a representative sample of 1,000 adults randomly sampled

from the U.S. population?  Percentage of what? Who knows?

And I look again, noting details, noting that the vocabulary is

odd.  These are not the words and rhythm of standard American

speech — too formal.  So I wonder, how were the questions put?

Did the interviewer ask “What problems do you think are seri-

ous?”  Or did the interviewer ask “Do you think hazardous

waste is serious?”  It makes a difference:  If it was the latter, then

the interviewer might as well have asked whether hazardous

waste is hazardous.  Who could say “No” to that?

And now, as I’ve kept testing the credibility of these num-

bers, the whole thing has come apart as I look at the first row of

numbers and wonder about 47% plus 42%, that is, 89% saying

toxic waste is serious?  Really? Eight-nine percent, eighty nine out

of one hundred people …  of what population?  Do I believe that

— for any population?  Frankly, no.  And can I quibble with

these published data?  You bet I can, particularly because the

writers have made it all but impossible for me to re-assure

myself.  So, in truth, these numbers aren’t data, they’re some sort

of numerical decoration — taking up space.  The stuff looks like

data but, really, we’ve been asked to take the numbers on faith.

And that’s not the way to deal with controversial issues.

So, what’s the moral of the story? Before the beginning,

Who, What, Where, Why, When, and How.  You do that to avoid

being fooled.  And when you write you must provide that in-

5
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formation if you yourself want to be taken seriously.  For all I

know this “environmental opinion study” is great stuff.  Maybe,

somewhere in the book, there is even a footnote that answers all

my questions.  But, if it is great stuff, then it’s also a great pity

because the authors have sabotaged their own hard work.  They

didn’t precede their data analysis with a solid foundation, before

the beginning and, so, they might as well not have bothered with

the rest.

Reading:

How to Lie with Statistics,  Darrel Huff, Chapter 1, “The Sample

with the Built-in Bias

 ________________  in Tanur, ~~ Why samples are more accurate

than counts.

6
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Description:
The Picture Worth The Thousand Words
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Now, data analysis:  The data have passed the test of step

zero — the data are worth a look.   We are about to look at the

data for a single variable and to look inside the data for patterns.

The key to the process is to use the best pattern recognizing

device at out command:  the human eyeball, with brain attached.

For this reason a large part of data analysis consists  of

preparing data in such a way that our native equipment can do

its work.  To feed intuition, we prepare graphs, the pictures that

are worth a thousand words.  Then we look at them and think.

Rivet your attention on this business of making pictures

and avoid certain mistakes.  It is a mistake to think of a picture,

which is easy to look at, as less sophisticated than mathematics.

That may or may not be true, depending on context.  And in the

context of data analysis we are looking, literally looking for

patterns.  In the trade, numbers — means, medians, measures of

variation, and so forth — are referred to as “summary statistics”.

And this is what they summarize, the picture, or more precisely,

the pattern of the data which is made visible by a well made

visual representation of the data.

You have to be careful:  The eyeball may, at times, be “too

good,” causing us to see patterns when they aren’t there.  And

the eyeball can, at times, “see” what we expect it to see, instead

of what’s there.  But the fact remains that the eye, the brain, and

human intuition are the best tools we have for finding patterns.

We label graphs because our intuition will be fed by the labels.

To protect ourselves from error, we prepare we charts and

graphs from which errors will stand out visually, as breaks from

a pattern — and be corrected.

So we begin by looking at the data, beginning with one

variable, and using a technique known as the “Stem and Leaf”.2

2 From John Tukey’s Exploratory Data Analysis, Chapter 1, “Scratching Down Numbers”,
Addison Wesley, 1977.

8
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From FOOD VALUES OF PORTIONS COMMONLY USED,  BOWES & CHURCH, 1975, p. 11

Food WT CAL CHO FAT TRP LEU LYS MET Na Ca P THI NIA VIA
Measure PRO FIB FAP PHA ISL VAL THR K Mg Fe RIB ASC VID

gm gm gm gm mg mg mg mg mg mg mg mcg mg iu
4.1 CEREALS (A) - READ TO SERVE

BARLEY CEREAL, GERBER’S 36           128       27.3            .2             54        299        145          62              215        231        260         1015         5.1          (0)
1 cup 4.3 .4 222 183 216 145 149 18 763 0

BRAN, ALL-, KELLOGG’S 28             95       21.4            .7                                                                          370          24        350           110         5.0          (0)
1/2 cup 3.1 2.3 2.9 90 0 400

BRAN FLAKES, 40%, KELLOGG’S 28           101       22.6            .6                                                                          340          16        170           100         2.4          (0)
3/4 cup 2.9 1.0 1.3 50 0

BRAN FLAKES, 40%, POST’S 28           100       22.0            .5                                                                       (340)             -        110           130         1.5          (0)
3/4 cup 2.8 1.0 1.0 - - 0

BRAN, RAISIN, KELLOGG’S 21             73       16.6            .4                                                                          280          13        105             63         1.5             
1/2 cup 1.8 - 1.0 - 0 0

BRAN, RAISIN, POST’S 28             99       22.0            .4                                                                                                         94           100         1.1             
2/3 cup 2.2 - 1.0 - 0 0

CHEERIOS, GENERAL MILLS’ 25           102       17.7          1.8                                                                          275          42        100           302           .5             
1 cup 3.4 .3 1.1 49 0 0

CORN FETTI, POST’S 28           110       25.0            .1                                                                                             -              -           110           .5             
3/4 cup 1.5 .4 - 0 0

CORN FLAKES (b) 25             95       21.0            .1             14        272           40          35              165            6           16           100           .5          (0)
1 cup 2.1 .2 92 80 100 72 40 .5 20 0

CORN SOYA SHREDS 28           103       21.0            .1                                                                          310          24           52           190           .6          (0)
3/4 cup 5.1 .3 1.2 40 0 0

GRAPE NUTS (c) 28           110       24.0            .2                -        196           45          39                17             -              -           130         1.5          (0)
1/4 cup 2.8 137 137 137 90 1.0 - 0 0

GRAPE NUT FLAKES 28           110       23.0            .4                                                                                             -              -           130         1.6          (0)
3/4 cup 2.7 1.2 - - -

HIGH PROTEIN CEREAL, GERBER’S 29           102       14.5            .3                                                                          226        213        241           818         4.1             
3/4 cup 10.2 .4 313 14. 615

HI PRO, GENERAL MILLS’ 21             80       14.1            .3                                                                          294          65           84           345         3.1             
1cup 4.8 .1 3.9 432

KIX, GENERAL MILLS’ 25             99       20.2          1.0                                                                          275            5           22           214           .7          (0)
1 cup 2.0 .1 1.5 46 0

KRUMBLES, KELLOGG’S 28           103       23.8            .3                                                                          170          11        110             10         2.0          (0)
3/4 cup 2.6 1.0 30 0 0

MIXED CEREAL, GERBER’S 21             76       15.4            .3                                                                          126        111        133           592         3.0             
1/2 cup 3.0 .2 72 10.5 445

MUFFETS, QUAKER 23             80       18.2            .3                                                                           1.0          10           87             50         1.0          (0)
1 biscuit 2.2 .6 .9 20 0 0

OATMEAL (d) 27             98       18.6            .6             58        337        165          66              135        153        169           761         3.8          (0)
3/4 cup 4.5 .4 240 232 267 149 101 13.5 572 0

POST TOASTIES 28           100       24.0            .1                                                                                             -              -           110           .5          (0)
1 1/4 cup 2.1 .2 .4 - - 0

RICE CEREAL, GERBER’S 27             97       21.9            .4                                                                          205        179        171           761         3.8             
3/4 cup 1.5 .1 56 13.5 572

RICE FLAKES 32           123       27.4            .1             16             -           20             -              311          11           53           110         1.4          (0)
1 cup 2.1 .3 102 - - - .6 20 0

RICE KRISPIES, KELLOGG’S 28           107       25.1            .1                                                                          280            7           33           110         2.0          (0)
1 cup 1.6 .5 10 0 0

RICE, PUFFED, QUAKER 13             51       11.5            .1                                                                             .3            2           13             60           .6          (0)
1 cup .8 .1 .2 10 0 0

SPECIAL K CEREAL, KELLOGGS’ 16             60       12.5            .1                                                                          193          17           41           228         2.9             
1 cup 3.2 2.5 285 6 228

WHEAT FLAKES, QUAKER 36           125       28.0            .4             49        363        147          52              403          17        108           160         1.9          (0)
1 cup 4.4 .5 195 202 233 145 1.3 60 0 0

WHEATIES, GENERAL MILLS’ 28           104       22.5            .6                                                                          392          11           78           167         1.6          (0)
1 cup 2.8 .5 1.7 47 0 0

WHEAT, PUFFED, QUAKER 12             43         9.5            .2                                                                              1            3           40             70           .9          (0)
1 cup 1.6 .2 .5 30 0 0

WHEAT, SHREDDED 22             84       18.3            .3             18        149           72          30                 .5          11           93             65         1.0          (0)
1 biscuit 2.2 .5 105 98 126 88 .8 23 0 0

WHEAT CHEX, RALSTON 28           102       23.4            .3                                                                          225          11        105             40         1.5             
1/2 cup, 47 biscuits 2.8 .6 .9 60

(a)  All the cereals listed on this page may be served from the
package without further prepartion.  When served with milk or
cream and/or sugar the addenda should be consulted.
(b)  The amino acid values are from reference 15.  Sodium and
potassium figures are calculated from reference 14 aned 14a.

(c) These values for amino acids are derived from reference 15.
(d)  The ready-to-serve product is indicated here.  Amino acid
data is from refeence 15.
NOTE:  A serving of cereal varies with individual taste, age,
and activity level.  A common size serving is 1 ounce.

22
Macintosh HD:DA:DA IX:Volume I:011 Cereals Data in Word Thursday, June 13, 1996



Levine 1 Stem and Leaf

Stem and Leaf

Technique

What’s for breakfast?  I’m in one of my fitness moods, it’s 5 A.M.

and the first question of the day is “What’s for breakfast?”  I want a

high protein breakfast.  And, more generally, I want to know what it is

that makes one breakfast cereal different from another.  My data are

from Food Values of Portions Commonly Used, by Bowes and Church, a

dietitian’s handbook whose introduction is chock full of references that

tell me where the data come from should I want to check for myself.1

Here is their table of data on cereals, ready to serve, describing nutri-

ents found in a standard portion, Figure .1

Reproduce page from Bowes and Church, page 11, on facing page.

Reading the top pair of lines, the table indicates that Gerber’s

barley cereal is usually served in a one cup portion weighing thirty-six

grams.  It provides 128 calories, 4.3 grams of protein, 27.3 grams of

carbohydrates, .4 grams of fiber, .2 grams of fat, and negligible grams of

polyunsaturated fat (FAP).  Reading across, the data indicate the

amounts of eight amino acids, in milligrams, of six minerals, in

milligrams, and of six vitamins, in various units.

Focus on the grams of protein:  I want to know how much protein

these breakfast cereals tend to provide,  what’s high, what’s low, and

more generally what it is about “breakfast” cereal that leads some to

1 The frequently updated edition is by Pennington and Church,
published by Harper & Row.  I’m using an out-of-date, 1975, edition,
page 11, because it was less complete than more-current editions and
therefore easier to use as an exercise.  The up-to-date edition includes
more information on more products.
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be high in protein while others are low?  What is the “mechanism”

behind the facts?

O.K., that’s the agenda, but first some technique — the real

agenda for this chapter.  And the first technique, not my breakfast, is

called the “Stem and Leaf.”

This is a technique that is both extremely useful and extremely

modest — hard to take seriously until it “works” for you, time after

time — too simple to pay off, but it does.  It is also one of those tech-

niques that falls on the unseen side of the data analysis — rarely seen

in a final report, but  often found on the scratch pad of the data analyst,

usually in pencil, usually with notes and scratchings all over it:  It is

informal and extremely useful.

Let me begin simply and mechanically, without context, by simply

extracting the protein numbers from Figure 1 and illustrating the

technique.

4.3, 3.1, 2.9, 2.8, 1.8, 2.2, 3.4, 1.5, 2.1, 5.1, 2.8, 2.7, 10.2, 4.8, 2.0, 2.6, 3.0,
2.2, 4.5, 2.1, 1.5, 2.1, 1.6, .8, 3.2, 4.4, 2.8, 1.6, 2.2, 2.8

Figure 2

Numbers, for Practice, Extracted from Protein Values of Figure 1.

 Mechanically, beginning with these numbers, a Stem  and leaf is a

new copy of the same numbers — but re-grouped by size and presented in

a way that shows the “shape” of the data.  It’s a first step in engaging

your intuition and experience as allies in the process of data analysis.

Working just with the numbers, Figure 2 is a stem  and leaf for the

numbers in Figure 1.
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0
1
2
3
4
5

8
85566
98218706211828
1402
3854
1

0.8

10 2

← Stem for numbers greater than or equal to 0 but less than 1
← Stem for numbers greater than or equal to 1 but less than 2

Figure 2

Stem and Leaf, Integer Stems

The “stems” identify ranges, dividing the numbers into major

divisions.  The “leaves” identify each of the numbers within the

division:  Leaves are the numbers attached to the stems.  Here, in this

first example, stems divide the data using digits to the left of the

decimal,  with stems 0 through 10.  The leaves mark each datum on the

stem with an additional digit.   So, the number 0.8 is represented in

stem 0, identified by the leaf “8”.  And the number 10.2 is represented in

stem “10”, identified by the leaf “2”.    All of the numbers greater than

or equal to 0, but less than 1, are represented in the first stem.  All of the

numbers greater than or equal to 1, but less than 2, are represented in the

second stem.  The leading digits, “0”, “1”, “2”, and up to “10” label the

stems.  The final digits identify the leaves.

Altogether, the effect of the stem  and leaf, when it is completed,

is to put the data in rank order, roughly, and to show the shape of the

distribution of the numbers.  Much of the value of the stem and leaf lies

in the process as much as the result:  In the process you almost literally

f e e l  which numbers are typical as you record the leaves one by one,

putting them in place.  By the time you are done you “know” your data

— which numbers are small, which numbers are large compared to the

rest, which ones stand out from the others flagging that, for these few
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numbers something is different — they don’t belong with the rest.  In

the process, you begin to get a feel for the numbers.

When you are done you have a picture.  And what you do with the

picture is stand back and look at it for a moment:  Here, for these thirty

numbers, the shape is symmetrical with many numbers in the middle,

and few at either end.  Separately, one of the thirty numbers is out on

its own.  That symmetrical shape, many numbers in the middle and a

few at either end, is what’s known as a bell-shaped distribution —

some data show it, some data don’t.  And the one suspicious case at the

end is what’s known as an outlier.

That’s a stem  and leaf for these numbers.  But usually it’s not quite

that simple.  Usually you have to try a couple of different stem  and

leaf drawings before you get one that looks right.  What does it mean to

“get one that looks right?”  To show you what I mean, let me practice

with these numbers.

For practice, I can use different stems that expand the stem  and

leaf as in Figure 3.  Here I’ve expanded the whole thing twice as far

physically:  I’ve used 0.0 through 0.4 for the first stem, 0.5 through 0.9

for the second stem, and so forth, giving me twice as many stems.
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10

8

85566
2102112
9887688
1402

34
85

2

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

0.8

Figure 3

Stem and Leaf, Expanded

Or, I can compress the stem and leaf by dividing at 0, 2, 4, 6, 8 and

10, as in Figure 4.

0
2
4
6
8

10

8:85566
98218706211828:1402
3854:1

2

0.
8

1.8

Figure 4

Stem and Leaf, Compressed
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If you expand the data too much, then the shape gets irregular—

showing gaps as in Figure 3.  Alternatively I can try a third set of stems

that compress the data.  And if you compress the data too much then

the shape disappears into a lump.  How many stems should you use?

Try for 5 to 10 but there is no fixed answer.  Look for a shape that is

fairly compact, like Figure 2.  If you expand it and the shape begins to

break up, as in Figure 3, then you’ve gone to far.  Here, Figure 2 is good

enough.

One not-so-minor detail of the stem and leaf that should be made

explicit is the labeling.  Labels are as much a part of the technique as

the numbers.  And the rule for labeling is:  Make it Clear.  Labels need

to identify the stems, they need to identify the leaves, and— when we

get to real data—they have to describe the unit of analysis (e.g., kilo-

grams of protein or grams of protein or milligrams of protein).  Briefly,

the labels are an echo of the “Who, What, Where, Why, When, and

How”  The specify  what the data are about.

For the stems there are at least three styles I could have used to

label the expanded stems in Figure 3.  In Figure 4 I used digits.

Alternatively, as in Figure 5, I could have simply repeated the leading

digit, clear enough in context, or repeated the leading digit and marked

the second case with a “*”, to distinguish it from the other.
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0
0
1
1
2
2
3
3
4
4
5
5

0
0*
1
1*
2
2*
3
3*
4
4*
5
5*

Figure 5

Stem and Leaf, Alternative Labels for Stems

Which style should you use?  Actually I myself used all three of

these styles as I worked with these data.  First I used the labels on the

left of Figure 5 — they’re the easiest — using each label twice.  But

then, as I worked with this style, I didn’t like it:  For some reason, I

found these stems easy to write down but hard to use:  Using these stems

I kept making errors by attaching the leaves to the wrong stems.  So I

changed to the “*” version in order to differentiate the stems.  But then,

as I used it, I kept making errors — still putting the leaves on the wrong

stems.  So I changed again, settling on the labels 0, 0.5, … of Figure 2.

With the limits of the stem visible on the page, built-in to the labels

for the stems, I was able to work faster and with fewer errors.

And I give you this blow by blow summary of my thinking — first I

did this and then I did that — just to make it clear how you decide, and

how I decide, to do the stem  and leaf:  Don’t look for the “one true way”

of doing it.  There is none.  Instead, think of what you are trying to

accomplish and feel free to change technique until it works.

Also note that I put a label on each of the completed stem and leaf

diagrams. a “0.8” with an arrow attached.  That was for my benefit, to

help me read the stem  and leaf when I have to go back to make sense of

my own work — an hour, or a day or a month later.  And you should use
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it yourself so that your own stem  and leaf drawings can be read:  Labels

are not an after-thought.  They are part of good technique.

Exercises

1. Practice several forms of the stem and leaf on the numbers for fat

content in grams

.2, .7, .6, .5, .4, .4, 1.8, .1, .1, .1, .2, .4, .3, .3, 1, .3, .3, .3, .6, .1, .4,.1, .1,.1, .1,

.4, .6, .2, .3, .3

and, again, on the numbers of  calories for the same breakfast cereals

128, 95, 101, 100, 73, 99, 102, 110, 95, 103, 110, 110, 102, 80, 99, 103, 76, 80,

98, 100, 97, 123, 107, 51, 60, 125, 104, 43, 84, 102

2. Use a pair of dice and construct the stem and leaf drawing for one

hundred passes with the dice.  Before you begin, ask questions:  What

do expect the diagram to look like?  Why ?  Now, throw the dice.

What do you get and why?

Application:  Protein Content of Breakfast Cereals

Now , what’s for breakfast?   For data  analysis — with emphasis

on the word data  — I have to place these numbers back in context:   The

numbers record the grams of protein in “commonly used portions” of

breakfast cereals.  Now, in context, there is a difference:  Here is where
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I get to assert the advantages of my human brain as compared to the

mechanical “brain” of a computer.  In context  this human brain has

expectations, and a little experience with breakfast, and I intend to use

those advantages in the course of my analysis.  I, the analyst with

expectations, expect the quality of the food to depend on the

ingredients and also upon the manufacturer and the process.  In context I

expect these cereals to divide into two batches, good stuff and bad stuff,

or, health foods and junk foods.

Having thought about what I expect, I’m ready to begin my stem

and leaf.  What kind of stems?  Well, as before, when I looked at the

numbers, I see numbers like 4.3, 3.1, and 2.9, reading down.  So, again,

I’ll start with stems indicating grams of protein in one gram intervals.

0

1

2

3

4

5

6

Protein in Grams

O.K., now what about the leaves?  You’ve seen these numbers

before, as numbers.  Now, in context, these are data:  They have been

identified with something real and that makes a difference.  Bearing

in mind that I’m using the numbers to get at something else, something

about breakfast cereals, I’m going to use leaves that advance my

purpose:  I’m expecting the ingredients to tell part of the story so, some-

how, the ingredients should be marked, in the leaves.  And again, I’m

expecting that some manufacturers make a better product.   So, I want to

keep track of manufacturers.  And then, for bookkeeping purposes, I note

that the data come in alphabetical order.  That’s useful:  I want to use

that alphabetical order in order to be able to connect my summary of

the data, in the stem and leaf, back to the full data that it comes from.

All together, there’s a lot of information here, waiting to be organized.

So, I’m going to use labels for the leaves, not numbers.  And I’m going to
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build into those labels whatever useful information I can manage (in

addition to the grams of protein).   So I begin

0

1

2 Bran Fl Kell; Stem and Leaf

3 Bran Kell; First Three Leaves

4 Barley Gerb;

5

6

Protein in Grams

Those are the first three leaves and, pausing for the moment, let

me note a few things:  For one, the physical lengths of these three stems

are not quite equal, so the visual shape of the stem and leaf will be a

little distorted.  True, but that’s not too important.  For another, note

that I changed my stem labels a little, on the fly.  The second cereal

was “Bran, All-, Kellogg’s,” in the data, and I wrote down “Bran Kell,”

in the leaf.  But then the third cereal entry was also “Bran Kell”, like

the second, except that this third food is a flake and the second was

not.  Ah, that’s new information, at no extra cost — something about the

process.  So I’ll put that information into the third leaf, even though I

didn’t  use it in the second leaf:  Consistency is nice, but not when it gets

in the way.  (And if this becomes important, the textual stems, unlike

numerical stems, will make it easy to go back to the data for more

detail.)  Continuing

0

1 Bran Rais Kell;

2 Bran Fl Kell; Bran Fl Post;Bran Rais Post; Stem and Leaf

3 Bran Kell; Cheerios GM First Six Leaves

4 Barley Gerb;

5

6

Protein in Grams
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Those are the first seven leaves and I’ve got trouble again:  the

data themselves are not always labeled the same way and my seventh

datum, for “Cheerios,” doesn’t specify ingredients.  What do I do?  I use

it anyway.  I use what I’ve got.  And if the missing information becomes

important, I can find out later.  Continuing:

0

1 Bran Rais Kell; Corn F Post;

2 Bran Fl Kell; Bran Fl Post; Bran Rais Post; Corn Fl; Grape Nuts; 

Grape Nut Fl

3 Bran Kell; Cheerios GM

4 Barley Gerb; Stem and Leaf

5 Corn Soya; First Eleven Leaves

6

7

8

9

10 High Pro Gerb;

Protein in Grams for Commonly Used Portions of Breakfast Cereal

Example:  High Protein Gerbers 10.2 grams

Thirteen items into the procedure, and now there’s a big one, out of

line with the rest:  High Pro Gerbers has several times more protein

than the competition.  I could stop now and think about it, but there’s

not much more data, so I’ll continue.
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0 Rice Puff Q;

1 Bran Rais Kell; Corn F Post; Rice Gerb; Rice Kr Kell; Wheat Puff Q

2 Bran Fl Kell; Bran Fl Post; Bran Rais Post; Corn Fl; Grape Nuts; Grape Nut Fl; Kix GM; Krumb 

Kell; Muff Quak; Post T; Rice Fl; Wheats GM; Whet Shred; Wheat Chex Ralst

3 Bran Kell; Cheerios GM; Mixed Gerb; Spec K Kell

4 Barley Gerb; High Pro GM; Oatml; Wheat Fl Quak

5 Corn Soya;

6

7 Stem and Leaf

8 Breakfast Cereals

9

10 High Pro Gerb;

Protein in Grams for Commonly Used Portions of Breakfast Cereal

Example:  High Protein Gerbers 10.2 grams

O.K., that’s it for the moment:  I ran out of room and ruined the

shape on stem “2”.  I’ve still got one real stand out, “High Pro Gerb”.

And I’ve been a little inconsistent, paying more attention to the process:

flaked, puffed, or shredded, than I had intended.  This is probably

good enough.  But I probably could have figured out pretty early that I

should have been using different stems:  I used eleven stems because

eleven gave me a convenient division of the range between zero and ten.

But with these stems things are bunching up in part of the range, while

almost half of the stems, between five and ten are nearly empty.  I

might have been better off expanding the stem and leaf within the

range from zero to five, just leaving the one very high protein cereal,

Gerbers High Pro, out there on its own.
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0

0.5 Rice Puff Q;

1

1.5 Bran Rais Kell; Corn F Post; Rice Gerb; Rice Kr Kell; Wheat Puff Q

2 Bran Rais Post; Corn Fl; Kix GM; Muff Quak; Post T; Rice Fl; Whet Shred;

2.5 Bran Fl Kell; Bran Fl Post; Grape Nuts; Grape Nut Fl;Krumb Kell; Wheats GM; Wheat Chex ; Ralst

3 Bran Kell; Cheerios GM; Mixed Gerb; Spec K Kell

3.5

4 Barley Gerb; Wheat Fl Quak

4.5 High Pro GM; Oatml;

5 Corn Soya; Stem and Leaf

4.5 Expanded

10 High Pro Gerb;

Protein in Grams for Commonly Used Portions of Breakfast Cereal

Example:  High Protein Gerbers 10.2 grams

Trying out the expanded stem and leaf, there’s not much differ-

ence.  Either way, by grams or expanded to half-gram intervals, it’s

clear that the most frequent values are in the neighborhood of 2.5 grams

of protein.  And, still, the prominent event is the outlier, High Pro

Gerber’s, with protein that is four times the typical value.

Now, stepping back to look at these things, looking at either one of

the stem and leaf diagrams, what can I learn about cereal?  For one

thing, I learn that one of my expectation was wrong:  I expected

something simple, good food versus bad food.  Wrong:  It’s not that

simple. With the exception of Gerber’s, most of the foods form one nice

batch, one nice distribution not two batches, good and bad, but one.  And

while “bran cereals” get lots of good public relations as “health foods”,

they are not notably high in protein.   “Good” versus “bad” is too

simple.

However, while the twenty-nine cereals (other than Gerbers) are

not divided into two types, good versus bad, the range of values shown

Macintosh HD:DA:DA IX:Volume I:012Breakfast- Stem and Leaf March 26, 1999



Rules of Evidence 14

in the stem and leaf diagram shows that there is a very large variation

within this group.  How large?  The protein values range from one

cereal in the 0-gram stem to one cereal in the 5-gram stem.  Precisely,

how large?  Using the alphabetical cues in the stem and leaf, I can

quickly fill-in this detail by going back to the data for more

information:  The stem and leaf diagram displays extremes “Rice Puff

Q”  and “Corn Soya”,  which allows me to glance back to the data for

the full numbers, which are 0.8 and 5.1.  So, how large is the variation?

With the exception of one outlier, the protein values range from 0.8 to

5.1 grams of protein per serving, with the high protein cereals (at the

end of the range) providing six times the protein content of the lowest

value — a big contrast.

Now, I wanted to know “Why?”  Why do some cereals have high

protein.  What about High Pro Gerbers?  If I’m looking for high protein

this is the first place to begin.  It has unusually high protein, extremely

high.  Why?  Perhaps it is the manufacturer. Is there something about

Gerber that I should favor, as a brand?  That’s one hypothesis — it’s

the manufacturer.  And I can check that hypothesis by going back

through the leaves, marking the manufacturer’s names:   (Here I’ve

marked off Gerber with bolding.  Ordinarily, I’d circle the Gerber’s in

my existing stem and leaf, or mark them with a bright color.)  Looking

at the marked-up stem and leaf,  I see Gerber all over, low, medium,

and high.  So, it’s not that simple.  Cross-off that hypothesis.
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0

0.5 Rice Puff Q;

1

1.5 Bran Rais Kell; Corn F Post; Rice Gerb; Rice Kr Kell; Wheat Puff Q

2 Bran Rais Post; Corn Fl; Kix GM; Muff Quak; Post T; Rice Fl; Whet Shred;

2.5 Bran Fl Kell; Bran Fl Post; Grape Nuts; Grape Nut Fl; Krumb Kell; Wheats GM; Wheat Chex Ralst

3 Bran Kell; Cheerios GM; Mixed Gerb; Spec K Kell

3.5

4 Barley Gerb; Wheat Fl Quak

4.5 High Pro GM; Oatml;

5 Corn Soya;

4.5 Stem and Leaf

Highlighting Gerber

10 High Pro Gerb;

Protein in Grams for Commonly Used Portions of Breakfast Cereal

Example:  High Protein Gerbers 10.2 grams

Let me try again.  Maybe it is Gerber, but complicated by the

choice of ingredients:.  Maybe Gerber’s Rice is higher protein than

other people’s rice.  Highlighting again, to check my hunch:  No,

Gerber’s rice is right in there among the other rice cereals.  But note,

before I go on, how easy it was to do these checks of my hunches, or

“hypotheses”, and how hard it would have been if I had just recorded

the digits (of Figure __).  And note the rudiments of scientific reason

built in to these last few steps:  I used my expectations to form  testable

hypotheses.  I formulated the display in order to test the hypotheses.  I

tested them. And, so far at least, both appear to be false.
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0

0.5 Rice Puff Q;

1

1.5 Bran Rais Kell; Corn F Post; Rice Gerb; Rice Kr Kell; Wheat Puff Q

2 Bran Rais Post; Corn Fl; Kix GM; Muff Quak; Post T; Rice Fl; Whet Shred;

2.5 Bran Fl Kell; Bran Fl Post; Grape Nuts; Grape Nut Fl; Krumb Kell; Wheats GM; Wheat Chex Ralst

3 Bran Kell; Cheerios GM; Mixed Gerb; Spec K Kell

3.5

4 Barley Gerb; Wheat Fl Quak

4.5 High Pro GM; Oatml;

5 Corn Soya;

4.5 Stem and Leaf

Highlighting Rice

10 High Pro Gerb;

Protein in Grams for Commonly Used Portions of Breakfast Cereal

Example:  High Protein Gerbers 10.2 grams

Now I’ve used up everything I know about Gerbers High Pro, the

extreme case, trying to figure out the “mechanism” that makes it

special.  No luck.  So, having used up what I know about Gerbers, I’ll

have to look elsewhere.  I’ll go to the next largest value and see what

this one might tell me:  It says “Corn Soya”, labeled by ingredients.

Does this tell me anything?  Comparing this second highest protein

cereal to the lowest protein cereal my leaves show me “Corn Soya”

versus  “Rice Puff”.  That suggests a possibility, perhaps the important

feature is the combination of ingredients,  corn and soy, at one extreme

versus rice at the other?  To check that out I’ll go back to the stem and

leaf, making it up again.  (Ordinarily I’d go back through the same

stem and leaf with more colored pens or mark it with some fancy

symbol, marking each ingredient where it is known.  Here, I’ll use

different type fonts.)
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0

0.5 Rice Puff Q;

1

1.5 Bran Rais Kell; Corn F Post; Rice Gerb; Rice Kr Kell; W h e a t  Puff Q

2 Bran Rais Post; Corn Fl; Kix GM; Muff Quak; Post T; Rice Fl; W h e a t  Shred;

2.5 Bran Fl Kell; Bran Fl Post; Grape Nuts; Grape Nut Fl; Krumb Kell; W h e a t s  GM; W h e a t  Chex Ralst

3 Bran Kell; Cheerios GM; Mixed Gerb; Spec K Kell

3.5

4 Barley Gerb; W h e a t  Fl Quak

4.5 High Pro GM; Oatml;

5 Corn Soya;

4.5 Stem and Leaf

Highlighting Ingredient

10 High Pro Gerb;

Protein in Grams for Commonly Used Portions of Breakfast Cereal

Example:  High Protein Gerbers 10.2 grams

That wasn’t what I expected.  Generalizing from two cases,  I

expected, or hoped to find that corn (underlined) is high in protein and

notably separate from rice (bold).  But the corn and rice are roughly in

the same range — except in the one case where the corn was mixed with

soy.  Other  contrasts, other than corn versus rice do look promising:

There is a suggestion that the wheat cereals are higher protein than

rice cereals.  So I’ll follow up on the “ingredients hypothesis”, with a

new set of stem and leaf drawings.  For this hypothesis I can use a pair

of stem and leaf drawings, back to back, separated by ingredient.  For

example, wheat versus rice:
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0

0.5 Rice Puff Q;

1

W h e a t  Puff Q 1.5 Rice Gerb; Rice Kr Kell

W h e t  Shred 2 Rice Fl;

W h e a t s  GM; W h e a t  Chex Ralst 2.5

3

3.5

W h e a t  Fl Quak 4

4.5 Stem and Leaf

5 Wheat Versus Rice

4.5

That looks good and I’m feeling more certain of my hypothesis.

I’ll venture a guess now:  Watch the ingredient.  Guess that wheat cere-

als are higher protein than rice cereals.  And, noting that corn cereal is

pretty much like rice cereal except  for the one case in which the corn is

mixed with soy  — I’ll guess that soy beans are the key to the high

protein content of corn soya.  And that in turn leads me to a guess about

Gerbers High Protein.

O.K. now, stepping aside from the data analysis, using the stem

and leaf drawings, what have I got:   I have a hunch that the main

ingredient is the best predictor of protein content  (not the manufac-

turer), plus a reasonable hypothesis explaining the anomalous Corn

Soya (it has too much protein for a corn cereal), plus a guess that could

explain Gerber’s with its remarkably high protein.  Have I proven any-

thing?  Have I proved, statistically, that the wheat distribution is

different from the rice distribution — beyond a statistical doubt?  No,

nor do I need to.  I’ve combed these data for ideas, detective style.  I’ve

eliminated some bright ideas that turned out to be poor and I’ve moved

toward one idea that looks good, so far.  That’s my data analysis.  And,

since I’m squeezing these data to learn something about the breakfast

cereals — remembering my goal — there’s an easy way to check my

hunch:  Find Gerbers in the store and read the box.  Sure enough, moving
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my data analysis laboratory to the nearest grocery store, the only

ingredient in High Protein Gerbers is  finely sliced soybeans.  Q.E.D.

Suggested reading:  “They Should have Used A Shovel”, David

Freedman, Sociological Methodology??, __________

Exercises

1. Using the examination of protein content as a model, examine the

distribution of fat content and calories for these cereals.

2. The “Dow Jones Industrial Average” is a weighted average of the

prices for shares of stock for thirty companies.  The data below show

the change in price for each of the thirty companies.  Construct a stem

and leaf diagram for the change in price during the week March 18 to

March 25 (column 5).  Discuss.  (Check your hand outs for more recent

prices)

Dates: March 18,
1994

March 25,
1994

Change Change as
Per Cent
of March

18th
Value

Dow Jones Average of

Thirty Industrials
3,895.65 3,774.73 -

120.92

-3.10%

Price per
Share of Stock

Price per
Share of Stock

1 Alcoa Aluminum $77.13 $76.25 – $0.88 -1.13%

2 Allied Signal $77.00 $76.50 – $0.50 -0.65%

3 American Express $30.13 $29.63 – $0.50 -1.66%

4 AT&T $53.50 $52.63 – $0.88 -1.64%
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5 Bethlehem Steel $21.50 $20.88 – $0.63 -2.91%

6 Boeing $47.00 $45.75 – $1.25 -2.66%

7 Caterpillar $119.13 $116.63 – $2.50 -2.10%

8 Chevron $92.75 $89.50 – $3.25 -3.50%

9 Coca Cola $41.88 $41.75 - $0.13 -0.31%

10 Disney $47.00 $45.00 – $2.00 -4.26%

11 duPont $58.75 $56.25 – $2.50 -4.26%

12 Kodak $45.13 $44.75 – $0.38 -0.83%

13 Exxon $65.88 $65.50 – $0.38 -0.57%

14 General Electric $104.50 $102.13 – $2.38 -2.27%

15 General Motors $59.88 $56.88 – $3.00 -5.01%

16 Goodyear $45.25 $41.75 – $3.50 -7.73%

17 IBM $57.13 $54.00 – $3.13 -5.48%

18 International Paper $70.25 $66.38 – $3.88 -5.52%

19 MacDonalds $60.88 $58.38 – $2.50 -4.11%

20 Merck $31.75 $30.13 – $1.63 -5.12%

21 MMM $103.00 $100.00 – $3.00 -2.91%

22 Morgan $64.75 $63.88 – $0.88 -1.35%

23 Philip Morris $55.00 $51.50 – $3.50 -6.36%

24 Proctor & Gamble $56.63 $53.75 – $2.88 -5.08%

25 Sears $48.13 $46.00 – $2.13 -4.42%

26 Texaco $66.25 $65.88 – $0.38 -0.57%

27 Union Carbide $25.88 $25.00 – $0.88 -3.38%

28 United Technologies $68.25 $66.50 – $1.75 -2.56%

29 Woolworth $19.88 $19.13 – $0.75 -3.77%

30 Westinghouse $13.25 $13.00 – $0.25 -1.89%

Dates: March 3,
1995

March 10,
1995

Change Change as a
Per Cent of

the March3rd
Value

Dow Jones Average of

Thirty Industrials
3989.61 4035.61 46 1.15%

Price per
Share of Stock

Price per
Share of Stock

1 Alcoa Aluminum $78.50 $76.50 -2.00 -2.55%
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2 Allied Signal  $37.75 $38.00 0.25 0.66%

3 American Express $33.38 $32.63 -0.75 -2.25%

4 AT&T $51.25 $52.13 0.88 1.72%

5 Bethlehem Steel $15.38 $15.13 -0.25 -1.63%

6 Boeing $46.25 $46.88 0.63 1.36%

7 Caterpillar $49.00 $49.88 0.88 1.80%

8 Chevron $46.88 $48.00 1.12 2.39%

9 Coca Cola $55.13 $56.75 1.62 2.94%

10 Disney $53.75 $56.13 2.38 4.43%

11 duPont $55.38 $55.38 0.00 0.00%

12 Kodak $51.38 $51.88 0.50 0.97%

13 Exxon $63.25 $65.00 1.75 2.77%

14 General Electric $53.00 $54.75 1.75 3.30%

15 General Motors $39.88 $41.63 1.75 4.39%

16 Goodyear $37.13 $36.00 -1.13 -3.04%

17 IBM $79.88 $81.13 1.25 1.56%

18 International Paper $73.50 $73.00 -0.50 -0.68%

19 MacDonalds $33.00 $33.88 0.88 2.67%

20 Merck $41.63 $41.88 0.25 0.60%

21 MMM $54.38 $56.13 1.75 3.22%

22 Morgan $65.38 $63.25 -2.13 -3.26%

23 Philip Morris $62.00 $63.38 1.38 2.23%

24 Proctor & Gamble $66.13 $67.25 1.12 1.69%

25 Sears $50.38 $50.75 0.37 0.73%

26 Texaco $63.75 $65.13 1.38 2.16%

27 Union Carbide $28.00 $27.75 -0.25 -0.89%

28 United Technologies $66.00 $66.13 0.13 0.20%

29 Woolworth $15.63 $15.88 0.25 1.60%

30 Westinghouse $14.75 $14.63 -0.12 -0.81%

3. Ditto for 1995,  March 3 to March 10 (column 5).
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4. Ditto for change during the one year, approximately, between

March 18, 1994 and March 10, 1995.  Before you begin:  What do you

expect?  Why.  And then when you see the Stem and Leaf:  What did

you find?  What questions did it raise?  Why?  Explain — “What’s

going on here?”

5. Construct a stem and leaf diagram for the states of the United

States with respect to their rates of infant mortality.

Division and State Region

Total Infant
Mortality
Rate, 1988

1 U.S. 10.0

2 N.E. 8.1

3 Maine N.E. 7.9

4 New Hampshire N.E. 8.3

5 Vermont N.E. 6.8

6 Massachusetts N.E. 7.9

7 Rhode Island N.E. 8.2

8 Connecticut N.E. 8.9

9 M.A. 10.3

10 New York M.A. 10.8

11 New Jersey M.A. 9.9

12 Pennsylvania M.A. 9.9

13 E.N.C. 10.5

14 Ohio E.N.C. 9.7

15 Indiana E.N.C. 11.0

16 Illinois E.N.C. 11.3

17 Michigan E.N.C. 11.1

18 Wisconsin E.N.C. 8.4

19 W.N.C. 8.9

20 Minnesota W.N.C. 7.8
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21 Iowa W.N.C. 8.7

22 Missouri W.N.C. 10.1

23 North Dakota W.N.C. 10.5

24 South Dakota W.N.C. 10.1

25 Nebraska W.N.C. 9.0

26 Kansas W.N.C. 8.0

27 S.A. 11.6

28 Delaware S.A. 11.8

29 Maryland S.A. 11.3

30 Dist Columbia S.A. 23.2

31 Virginia S.A. 10.4

32 West Virginia S.A. 9.0

33 North Carolina S.A. 12.5

34 South Carolina S.A. 12.3

35 Georgia S.A. 12.6

36 Florida S.A. 10.6

37 E.S.C. 11.4

38 Kentucky E.S.C. 10.7

39 Tennessee E.S.C. 10.8

40 Alabama E.S.C. 12.1

41 Mississippi E.S.C. 12.3

42 W.S.C. 9.4

43 Arkansas W.S.C. 10.7

44 Louisiana W.S.C. 11.0

45 Oklahoma W.S.C. 9.0

46 Texas W.S.C. 9.0

47 Mt. 9.2

48 Montana Mt. 8.7

49 Idaho Mt. 8.8

50 Wyoming Mt. 8.9

51 Colorado Mt. 9.6

52 New Mexico Mt. 10.0
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53 Arizona Mt. 9.7

54 Utah Mt. 8.0

55 Nevada Mt. 8.4

56 Pac 8.6

57 Washington Pac 9.0

58 Oregon Pac 8.6

59 California Pac 8.6

60 Alaska Pac 11.6

61 Hawaii Pac 7.2

Total Infant Mortality Rate, 1988, Measured in Deaths of infants

under 1 year old per 1,000 Live Births (Excluding fetal mortality).

Source:  Statistical Abstract of the United States, 1993, p. 81 Table 112)



The Report:  Protein Content of Breakfast Cereals

Common sense would expect data analysis to be cool and logical —

with a clear plan and a clear execution.  And, indeed, making data

analysis look that way, at the end, shows good style:  It leads to

writing that is clear and to the point.  But the straight forward logic of

the public report you see in the evening news or read in a scientific

journal has, often, little to do with the erratic and roundabout path by

which “simple” truth is actually discovered.  Data analysis has two

phases — doing the analysis is one phase, presenting the analysis is

another.  And it would be hard to reverse engineer the rules of data

analysis, hard to figure out how it was done, if all you were allowed to

see were the final presentation.  If nothing else, the presentation, slick,

simple, and compelling, usually hides the number of hours of thinking

that can lie behind a single graph, not to speak of hiding the bright

ideas that the analyst followed to a conclusion only to find, at the

conclusion, that the ideas led nowhere.  I’m told that John von

Neumann, an innovator in mathematics and computer science, once

compared the discovery of a mathematical proof to the construction of a

great cathedral:  Like a cathedral, a mathematical proof is not

complete until the scaffolding has been removed.  So too with data

analysis.

Even the methods I present, in a report, may be different from the

methods I used in the act.  For example, consider the simple “method”

of computing an average:  “Everyone knows” what an average is.  And it

is hard to present a report without writing down a few averages —

average income, average age, and so forth.  People feel comfortable

with this sort of thing and, since you want them to understand your

work, you have to accommodate their expectations.  But the truth is

that the median (the middle value in terms of size) and simple math-

ematics, which are rarely used in a presentation, are often used during

the analysis — we often use one kind of technique when we are doing an

analysis, and use other techniques when we are trying to get the idea
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across — one kind of technique when we are in the act, another when we

communicate..

There is also a difference in attitude toward error, during and after

—treating it one way in the report, but treating it another way, and

much more aggressively during the pursuit.  In the report, error is error,

the luck of the draw, random deviation — a real world event subject to

the mathematical uncertainties of probability.  But in the act, during

the pursuit, there is no such thing as error:  Every strange event is

searched for meaning:  Why is this number low while that number is

high — and neither of them is average?  Is there information here?  Is

there pattern to the these events?

For homework, give me the “works”.  We want to see how you

handle the messy process of data analysis.  And we want you to clean it

up for a report.
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Protein Content of Breakfast Cereals

The protein component of common breakfast cereals varies widely

from essentially negligible quantities of protein to a large fraction of

an adult’s entire daily requirement.  The purpose of this analysis was

to document this variation and to examine the source of this variation.

Results from examination of thirty common breakfast cereals confirm

that protein content varies from negligible amounts of protein to a

substantial fraction of the daily requirement for protein (30 40??

grams).

The analysis examined protein content among thirty common

breakfast cereals in portions as they are commonly consumed, using

data from Bowes and Church, Food Values of Portions Commonly Used,

Harper and Row, 1975.  The figure below demonstrates the range and

variation of the portions:  Typically these cereals provide two to

three grams of protein per serving, about 5 to 10 percent??? of the

minimum daily requirement.  And careful selection of the cereal can

find protein content that is two fold, three fold, or even greater than

that of low protein cereals.  At 10.2 grams of protein per serving one

cereal, Gerber’s High Protein Cereal, is in a class by itself while

Quaker Puffed Rice, at 0.8 grams of protein provided only a negligible

fraction of the daily requirement.

Context:  Who, What, Where, ...

Newspaper style:  Telegraph im-

portant results in the first para-

graph.  In professional papers,

this would be an “abstract”

I looked up the minimum daily

requirement to add context.

Source

Brief description:  Typical,

Extreme High, and Low
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Grams of Protein
per Serving

Number of
Cereals

0 to 0.99 grams 1

1 to 1.99 grams 5 Brief Pictorial

2 to 2.99 grams 14 Overview of the Data

3 to 3.99 grams 4 (Less detail than the Stem

4 to 4.99 grams 4 Leaf, but appropriate for this

5 to 5.99 grams 1 report

10 grams plus 1

Change style to mark the

break in the distribution of

protein.

Figure 1

Range and Distribution of Grams of Protein per Serving for 29 Common
Breakfast Cereals

While the data do not clearly indicate the principle ingredient

for all of these cereals, fragmentary evidence suggests that the

principle ingredient is the most reliable predictor of protein content.

With considerable variation within groups, the averages range from

1.5 grams of protein for the four rice cereals to approximately 4 grams

per serving for the oat and barley cereals, to 5.1 for the mixed corn/soy

cereal, to a high of 10 grams of protein for the Gerbers soy cereal,

summarizing the data shown in Figure 2.



Levine 29 Stem and Leaf

Rice

Rice, Puffed, Quaker .8
Rice Cereal, Gerbers 1.5
Rice Krispies, Kellogg’s 1.6
Rice Flakes 2.1

Average Grams per Serving

1.52

Corn

Corn Fetti, Post’s 1.5
Corn Flakes 2.1

Average Grams per Serving

1.8

Bran (Grain not Specified)

Bran Raisin, Kellogg’s 1.8
Bran, Raisin, Post’s 2.2
Bran Flakes, 40%, Post’s 2.8
Bran Flakes 40% Kellogg’s 2.9
Bran, All-Kellogg’s 3.1

Average Grams per Serving

2.54

Wheat

Wheat, Puffed Quaker 1.6
Wheat, Shredded 2.2
Wheaties, General Mills’ 2.8
Wheat Chex, Ralston 2.8
Wheat Flakes, Quaker4.4

Average Grams per Serving

2.76

Oats

Cheerios, General Mills’ 3.4
Oatmeal 4.5

Average Grams per Serving

3.95

Barley

Barley Cereal, Gerbers

4.3

Corn Soya

Corn Soya Shreds

5.1

Soy

High Protein Cereal, Gerber’s

5.1

Figure 2

Grams of Protein per Serving and Average Grams of Protein per Serving, organized by Principal Ingredient

Exercise:

Expand your analysis of fat in breakfast cereal, or the stem and

leaf of the Dow industrials, or of U.S. infant mortality rates to a

complete write up.
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Dates: 3/15/96 3/22/96 Change

Dow Jones Industrial
Average

5,584.97 5636.64 51.67

Price per
Share of

Stock

Price per
Share of

Stock

Alcoa Aluminum $61.00 $62.38 $1.38
Allied Signal $56.25 $57.13 $.88
American Express $48.38 $48.75 $.37
AT&T $61.38 $61.25 (-$0.13)
Bethlehem Steel $13.75 $13.75 $0.00
Boeing $80.88 $88.88 $0.00
Caterpillar $72.00 $69.25 (-$2.75)
Chevron $54.88 $55.25 $.37
Disney $69.25 $64.88 ($4.38)
duPont $81.25 $83.00 $1.75
Kodak $73.13 $73.13 $0.00
Exxon $79.00 $81.38 $2.38
General Electric $75.63 $78.38 $2.63
General Motors $52.25 $53.38 $1.12
Goodyear $51.25 $52.00 $ .75
IBM $119.88 $114.25 (-$5.62)
International Paper $39.25 $38.38 (-$0.88)
MacDonalds $51.25 $50.75 (-$0.50)
Merck $62.13 $63.50 $1.38
Minnesota Mining &  Mfg $63.50 $64.50 $1.00
Morgan $80.00 $83.63 $3.63
Philip Morris $95.38 $86.25 ($9.25)
Proctor & Gamble $83.13 $87.88 $4.75
Sears $50.13 $51.00 $ .87
Texaco $82.88 $84.75 $1.88
Union Carbide $47.63 $48.25 $ .63
United Technologies $111.00 $115.38 $4.38
Woolworth $15.88 $15.75 (-$0.13)
Westinghouse $19.00 $19.00 $0.00

Prices of “Dow Jones 30 Industrials”, March 15 – March 22, 1996

Macintosh HD:DA:DA VIII:L1 with L0:Public:14Dow Set March 25, 1996



Division and State Region

Total Infant
Mortality
Rate, 1988

1 U.S. 10.0

2 N.E. 8.1

3 Maine N.E. 7.9

4 New Hampshire N.E. 8.3

5 Vermont N.E. 6.8

6 Massachusetts N.E. 7.9

7 Rhode Island N.E. 8.2

8 Connecticut N.E. 8.9

9 M.A. 10.3

10 New York M.A. 10.8

11 New Jersey M.A. 9.9

12 Pennsylvania M.A. 9.9

13 E.N.C. 10.5

14 Ohio E.N.C. 9.7

15 Indiana E.N.C. 11.0

16 Illinois E.N.C. 11.3

17 Michigan E.N.C. 11.1

18 Wisconsin E.N.C. 8.4

19 W.N.C. 8.9

20 Minnesota W.N.C. 7.8

21 Iowa W.N.C. 8.7

22 Missouri W.N.C. 10.1

23 North Dakota W.N.C. 10.5

24 South Dakota W.N.C. 10.1

25 Nebraska W.N.C. 9.0

26 Kansas W.N.C. 8.0

27 S.A. 11.6

28 Delaware S.A. 11.8

29 Maryland S.A. 11.3

30 Dist Columbia S.A. 23.2

31 Virginia S.A. 10.4

32 West Virginia S.A. 9.0

33 North Carolina S.A. 12.5
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24  Infant Mortality, U.S., by State, 1988e

34 South Carolina S.A. 12.3

35 Georgia S.A. 12.6

36 Florida S.A. 10.6

37 E.S.C. 11.4

38 Kentucky E.S.C. 10.7

39 Tennessee E.S.C. 10.8

40 Alabama E.S.C. 12.1

41 Mississippi E.S.C. 12.3

42 W.S.C. 9.4

43 Arkansas W.S.C. 10.7

44 Louisiana W.S.C. 11.0

45 Oklahoma W.S.C. 9.0

46 Texas W.S.C. 9.0

47 Mt. 9.2

48 Montana Mt. 8.7

49 Idaho Mt. 8.8

50 Wyoming Mt. 8.9

51 Colorado Mt. 9.6

52 New Mexico Mt. 10.0

53 Arizona Mt. 9.7

54 Utah Mt. 8.0

55 Nevada Mt. 8.4

56 Pac 8.6

57 Washington Pac 9.0

58 Oregon Pac 8.6

59 California Pac 8.6

60 Alaska Pac 11.6

61 Hawaii Pac 7.2

Total Infant Mortality Rate, 1988, Measured in Deaths of infants

under 1 year old per 1,000 Live Births (Excluding fetal mortality).

Source:  Statistical Abstract of the United States, 1993, p. 81 Table 112)
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F6 Data London1

Death in London
The Diseases, and Casualties this year being 1632.

Abortive, and Stilborn . . 445
Affrighted 1
Aged 628
Ague 43
Apoplex, and Meagrom 17
Bit with a mad dog 1
Bleeding 3
Bloody flux, scowring, and flux 348
Brused, Issues, sores, and ulcers 28
Burnt, and Scalded 5
Burst, and Rupture 9
Cancer, and Wolf 10
Canker 1
Childbed 171
Chrisomes, and Infants 2268
Cold, and Cough 55
Colick, Stone, and Strangury 56
Consumption 1797
Convulsion 241
Cut of the Stone 5
Dead in the street, and starved 6
Dropsie, and Swelling 267
Drowned 34
Executed, and prest to death 18
Falling Sickness 7
Fever 1108
Fistula 13
Flocks, and small Pox 531
French Pox 12
Gangrene 5
Gout 4

Grief 11

Jaundies 43
Jawfaln 8
Impostume 74
Kil’d by several accidents 46
King’sEvil 38
Lethargie 2
Livergrown 87
Lunatique 5
Made away themselves 15
Measles 80
Murthered 7
Over-laid, and staved at nurse 7
Palsie 25
Piles 1
Plague 8
Planet 13
Pleurisie, and Spleen 36
Purples, and spotted Feaver 38
Quinsie 7
Rising of the Lights 98
Sciatica 1
Scurvey, and Itch 9
Suddenly 62
Surfet 86
Swine Pox 6
Teeth 470
Thrush, and Sore mouth 40
Tympany 13
Tissick 34
Vomiting 34
Worms 27

Christened {
Males 4994

Females4590

In all 9584
}Buried {

Males 4932

Females
4603

In all 9535

}Whereof,
of the
Plague 8

Increased in the Burials in the 122 Parishes, and at the Pest-



2  Rules of Evidence

File 01 Intro to Data Analysis:  Levine 3/26/99

     house this year 993

Decreased of the Plague in the 122 Parishes, and at the Pest-
     house this year 266

(From Newman, The World of Mathematics, Page 1425)
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“Moreover, if all these things were clearly, and truly
known (which I have but guessed at) it would appear, how
small a part of the People work upon necessary Labours, and
Callings, viz. how many Women, and Children do just noth-
ing, onely learning to spend what others get? how many …
live by puzling poor people with unintelligible Notions in
Divinity, and Philosophie, how many by perswading credu-
lous, delicate, and Litigious Persons, that their Bodies, or
Estates are out of Tune, and in danger.  And on the other side,
how few are employed in raising, and working necessary food
and covering? and of the speculative men, how few do truly
studie Nature, and Things?  The more ingenious not advancing
much further than to write, and speak wittily about these
matters.

— John Graunt, Natural and Political Observations, London, 1662

Death in London:
Establishing Credibility — Who,

What, Where, Why, When, and How?

More data:  Figure 1 (facing) presents data on the causes of death in

London, in 1632.  That’s the target of my next data analysis and what I

want to extract from the facts is information:  I want to “know” what

people died of in London three to four hundred years ago.  And now

let’s take it through the steps:  For these data I need orientation, Who,

What, Where, … and I need technique — this is more difficult than the

data for breakfast cereals.

So, death in London, Who, What, Where:  The number one question

is probably “Why London, and why 1632?”  I chose it because, according

to The World of Mathematics” where I found these data, the original work



2  Death in London:  Establishing Credibility
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by John Graunt, was one of the original uses of statistics for data

analysis1  It seemed appropriate to begin a discussion of data analysis by

presenting one of the true beginnings of the profession.  Even such

“obvious” techniques as these began somewhere and had to be invented

by a human mind like our own, like the mind of John Graunt.

Continuing, before the numbers, what are these data about and

what’s the context?  I’ve already given you that:  I’ve told you the data

are about death and I’ve warned you that the data are very old, from an-

other time.  Still, I want to call attention to the obvious in order to warn

you again:  These are not numbers, these are data.  Don’t think about

them as numbers, two plus two equals four.  Think about life and death

and old London — long before the invention of drugs that have kept me,

for one, alive, before Pasteur with his understanding of bacteria, and

only slightly after the invention of the microscope.

We also need to know what John Graunt was up to, it may have

affected his results:  Graunt seems to have known that he was an

innovator, for whom the tabulation of diseases and casualties was just

the beginning.  His interest was in the state, England.  He seems to have

been interested in the efficient and balanced functioning of the state:

I conclude, That a knowledge of all these particulars, and
many more, whereat I have shot but at rovers, is necessary in
order to good, certain, and easie Government, and even to
balance Parties, and factions both in Church and State.

— John Graunt, op. cit.

O.K., now — the numbers for death in London.

                                                                        
1 From “Foundations of Vital Statistics”, by John Graunt, reprinted in
“The World of Mathematics”, Volume 3, page 1421, published by Simon
and Schuster, New York, 1956.



F6 Data London1

Death in London
The Diseases, and Casualties this year being 1632.

Abortive, and Stilborn . . 445
Affrighted 1
Aged 628
Ague 43
Apoplex, and Meagrom 17
Bit with a mad dog 1
Bleeding 3
Bloody flux, scowring, and 348
     flux
Brused, Issues, sores, and 28
    ulcers,
Burnt, and Scalded 5
Burst, and Rupture 9
Cancer, and Wolf 10
Canker 1
Childbed 171
Chrisomes, and Infants 2268
Cold, and Cough 55
Colick, Stone, and Strangury 56
Consumption 1797
Convulsion 241
Cut of the Stone 5
Dead in the street, and
     starved 6
Dropsie, and Swelling 267
Drowned 34
Executed, and prest to death 18
Falling Sickness 7
Fever 1108
Fistula 13
Flocks, and small Pox 531
French Pox 12
Gangrene 5
Gout 4

Grief 11
Jaundies 43
Jawfaln 8
Impostume 74
Kil’d by several accidents 46
King’sEvil 38
Lethargie 2
Livergrown 87
Lunatique 5
Made away themselves 15
Measles 80
Murthered 7
Over-laid, and staved at
    nurse 7
Palsie 25
Piles 1
Plague 8
Planet 13
Pleurisie, and Spleen 36
Purples, and spotted Feaver 38
Quinsie 7
Rising of the Lights 98
Sciatica 1
Scurvey, and Itch 9
Suddenly 62
Surfet 86
Swine Pox 6
Teeth 470
Thrush, and Sore mouth 40
Tympany 13
Tissick 34
Vomiting 34
Worms 27

Christened {
Males 4994

Females4590

In all 9584
}Buried {

Males 4932

Females4603

In all 9535
}Whereof,

of the
Plague 8

Increased in the Burials in the 122 Parishes, and at the Pest-
     house this year 993

Decreased of the Plague in the 122 Parishes, and at the Pest-
     house this year 266

(From Newman, The World of Mathematics, Page 1425)
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Death in London:
Stem and Leaf — More Technique

The stem and leaf drawings used for the breakfast cereals required a

little bit of experimentation with the stems and a lot of experimentation

with the leaves, choosing the form that squeezed the most information

out of the data.  These new data present a pattern that is very common

highly resistant to this stem and leaf technique.  With these data  no

simple expansion or compression of the stems, or simple

experimentation with the labels is going to get it really “right”.  Instead,

they require the use of several different scales, combined together in one

drawing.  As before, let me demonstrate the technique (and the problem)

with raw numbers, plucked out of context, in order to work with

technique.  Here is the new set of numbers, shown in Figure 1.

445, 1, 628, 43, 17, 1, 3, 348, 28, 5, 9, 10, 1, 171, 2268, 55, 56, 1797, 241,

5, 6, 267, 34, 18, 7, 1108, 13, 531, 12, 5, 4, 11, 43, 8, 74, 46, 38, 2, 87, 5, 15, 80,

7, 7, 25, 8, 13, 36, 38, 7,98, 1, 9, 62, 86, 6, 470, 40, 13, 34, 1, 27.

Figure 1

More Numbers, for Practice

Suppose I try a straightforward approach, using 10’s for my stems:

0, 10, 20, 30, ...., Figure __.
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00
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

…

11359156754325771871961
708321533
857
48764
3360
56
2
4
06
3

1

93

Figure 2

Stem and Leaf, by 10’s

No, that’s not going to work, I’ve got to extend the graph all the

way up to 2268, which would fill up a couple of pages with this kind of

stem.

Well, suppose I try 100’s for my stems, compressing the graph, as in

Figure 3.  That’s still going to have too many stems.  Worse, it’s still too

big and it’s bunching up a lot of data in a pile, undifferentiated.
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000
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

1,43,17,1,3,28,5,9,10,1,55,56,5,6,34,18,7,12,5,4,11,43,8,74,46,…………
71
41,67,83
48
45,70
31
28

8

1

1108

Figure 3

Stem and Leaf, by 100’s

Stems of 200 would give me about the right number of stems, but

most of the data would be in a pile:  In fact, using 200’s in Figure 3, and

giving each leaf about the same amount of room on the page, I’ve only

been able to squeeze about a quarter of the first set of leaves onto the

page.  Stems of 500 or 1000 would be worse.
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0
200
400
600

1000
1200
1400
1600
1800
2000
2200
2400

    1,  43,  17,    1,    3,  28,    5,    9,1  0,    1,171,  55,  56,    5,    6,………
348,241,267,283
445,531,470
628
1108

1797

2268

Figure 3

Stem and Leaf, by 200’s

There’s the problem.  And the solution for such a problem is not a

great one, but it will do:  The solution is to change scale one or more

times, right in the middle of the graph.  Here in Figure 4, for example,

I’ve counted by 2’s up to 10, then by 10’s up to 100, then by 100’s up to

1000, changing the values.



5
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  1,  1,  1,  1,  1
  3,  4
  5,  5,  5,  4,  5
  6,  7,  7,  7,  7,  6
  9,  8,  8,  9
 17, 10, 18, 13, 12, 11, 15, 13, 13
 28, 34, 38, 25, 36, 38, 34, 27
 43, 55, 56, 43, 46, 40
 74, 62
 80, 98, 86
171
348,241,267
445,531,470
628

1797,1108
2268,2837

0
2
4
6
8

10
20
40
60
80

100
200
400
600
800

1000
2000

Figure 4

Stem and Leaf, Variable Stems

Again I’ll get a pile up — where I’ve changed the intervals.  And

I’ve actually used seven different scales:  By 2’s between 0 and 10, by 10’s

between 10 and 20, by 20’s between 20 and 100, by 100’s between 100 and

200, by 200’s between 200 and 1,000, and by 1,000’s between 1,000 and

2,000.  That’s a rather unpleasant and unsatisfactory solution.  And what

you’ll see later, is that the unpleasant and unsatisfactory feeling you

should be getting from these data is itself a clue — to a better solution,

later.  But for now —
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Death In London:  The Work

Back to the data — in context.  Back to death in London.  Now I, for

one, am unfamiliar with the diseases listed, including “Rising of the

Lights” and “Kings Evil”, and there is a tendency to chuckle a little at the

peculiarity of these causes of death. I want you to use that chuckle and

the peculiarity of the stem and leaf — and every other clue you can

muster to make sense of these data:  Observe yourself and your reactions

to the data. What’s going on?  Keeping that in mind, let’s begin getting a

feel for the data.

The first thing I do is simply look at the page.  I read some of the

labels.  Ah, this is unfamiliar turf.  I look at the labels on the whole page,

“Diseases and Casualties this year being 1632”.  Ah, mortality statistics

filtered through the lens of another culture, before the biology and

medicine of our own era.  These are not “our” categories, nor our

definition of disease.  What do I expect from these data?  I expect to be

mystified, confused by descriptions of disease from a “pre-scientific” era.

If anything, I remember something about the plague.  Is that relevant?

No, only 8 deaths from plague.  So I’m expecting confusion, causes as

meaningless to me, three hundred years later, as arterial sclerosis would

have been to them, three hundred years ago.

Looking at the numbers:  They start  out with a “445” and continue

with a “1” — some of these categories are big, some are small.  In fact,

they range from over 2,000 down to 1.  Looking at the bottom of the page

there is some special attention to the plague, but the number dying from

it is small.  How big is the population experiencing this death.  I don’t

know, but I can guess:  The number of people Christened is about ten

thousand as is the number buried.  If a modern birth or death rate is

about 1 or 2 %, then I can guess that London of 1632 already had a
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population somewhere between one hundred thousand  and one million.

That’s a rough estimate of the order of magnitude for this population.

Let’s look at  more numbers — and now put some order into the search.

Looking at the detail, I’ll use the Stem and Leaf to re-arrange these

“diseases” according to size, rare to frequent, and take a look.  Even if I

had a computer available, one that would “do it right” the first time, I

would begin with the stem and leaf, by hand, because it will force me to

read labels like “Abortive and Stilborn” and the names of each of these

other categories:  Doing the stem and leaf, by hand, will rivet my

attention on these data.   I want about ten stems, I want the definitions of

these stems to be easy (so my attention does not get diverted), and so I’ll

try “stems” beginning at 0, and going up, beginning at 100, and going

up, beginning at 200, and going up, .....

0

100

200

300

400

500

600

700

800

. . .

No, that’s getting me a lot of categories (as I observed earlier when I

treated these numbers as raw numbers).  I’ve got a long way to go before

I get to 2,000 (for Chrisomes and Infants).  Observing this little numerical

difficulty, deciding for myself (without the aid of a computer) how to

organize these stems, and finding some difficulty, — I observe my diffi-

culty and learn something about the data:  Some of these things are

really big, really “off scale” as compared to others.  Note this:  The “data

analysis” lies in observing and learning, not in finishing another “stem

and leaf”.
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So, I’m going to use two scales, perhaps 0 to 1,000 plus a stem for

and “Other.” So I begin to write

0 Affright, ague, apoplex, bit, bleeding, brused

100

200

300 Bloody

400 Abort

500

600 Aged

700

800

. . .

Pausing, with nine leaves, “everything” (six of the first nine) is

going in to the first category, failing to differentiate among these things.

Let me try again, expanding the stem and leaf.
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0 Affright, bit with mad dog, bleeding

10 Apoplex, and Meagrom

20

30

40 Ague

50

60

70

80

. . . _________________

100

200

300 Bloody flux

400 Abort

500

600 Aged

700

800

. . . _________________

1000

2000

O.K., good enough for now.  I’ll continue using three ranges.  And

of course the breaks in ranges were chosen for convenience, not because

the data break at precisely those points.  Continuing:
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0 Affright; bit with mad dog; bleeding; burnt and Scalded; 

Burst & Rupture;

Canker;

10 Apoplex, and Meagrom; Cancer and Wolf

20 Brused issues

30

40 Ague

50 Cold and Cough; Colick Stone

60

70

80

. . . _________________

100 Childbed

200 Convulsion

300 Bloody flux

400 Abort

500

600 Aged

700

800

. . . _________________

1000 Consumption

2000 Chrisomes and Infants;

Nineteen leaves — getting messy:  The data are piling up in the

smallest stem.  I’m thinking, “Perhaps I could clean up my technique by

introducing yet another range.”  But for now, I’ll just let them pile up

and get on with it — I want to look at the data.  Beside which, my mind

is beginning to focus on these things — which means that the stem and

leaf is doing its job:  I’m more interested in “Chrisomes”, than I am in

“bit with mad dog”, and I don’t want to spend too much time holding

myself back with technicalities:  I’m trying to learn something:   I’m

thinking  “What are ‘chrisomes’ ?” and the stem and leaf has me building

up a list of names to check as soon as I can find a dictionary that’s likely
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to include such things.  In fact, I’m thinking,  “I’m not going to go on

automatic and finish this thing, as if I were a computer:  I’m going to

focus on the big stuff, like Chrisomes.  That’s where I’ll learn

something,” So, continuing again, but limiting myself to the big stuff:

. . . _________________

100 Childbed

200 Convulsion; Dropsie and Swelling

300 Bloody flux

400 Abort; teeth

500 Flocks and small pox

600 Aged

700

800

. . . _________________

1000 Consumption; Fever

2000 Chrisomes and Infants;

That’s simple.  Call it “selective” — having ignored most of the

data.  But that’s just being focused.  I’ve decided that the information lies

in the big stuff and that’s what I’ll look at.  And what do I see?  Well, in

reverse order, I still don’t know what Chrisomes are, but they have

something to do with infants.  “Consumption?”  Ah, I remember that

one:  tuberculosis, associated with crowded conditions in the absence of

things like clean air and clean water, a public health problem.  “Fever?”,

too general.  “Abortive”, let’s look back for the full label:  “Abortive and

Stilborn”.  Ah, we’re dealing with childbirth again.  “Bloody flux”,

well— considering that I’ve already got two categories related to

childbirth, I can guess about that one ... and there’s “childbed” in a

nearby stem.  “Teeth”?  I’m beginning to guess.  I’ll bet we’re talking

about infections, (using a modern definition).  And I’m beginning to get

a picture:  The people at risk are newborns, fertile and child bearing

women, and people with some sort of susceptibility to infection:  And,
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more generally, I’m thinking that this London was a filthy mess in

which, if you got an infection, you died.

Now, to the dictionary:  I still want to know about “Chrisomes”  [

], O.E.D, — consistent with what I guessed and my hunches about

London in 1632:  Expose your blood to the environment, expose your

mucus membranes to the environment (colick, consumption, pleurisie,

sore mouth,) and you die, or you get sick (fever) and then you die.

That is what data analysis is about:  Wringing the data for

information about the world behind the data, for reasonable hunches

and a direction that guides the next step in my study.  Right or wrong, so

far, it’s got me thinking and building hypotheses about this London of

1632.
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Death in London:
The Report

Use photo copy

The Diseases, and Casualties this year being 1632.

Tabulation by John Graunt, reproduced from James R. Newman’s The
World of Mathematics, Volume 3, page 1421, published by Simon and
Schuster, New York 1956.

Figure 1

Causes of Death in London, 1632

Life in London, three hundred years ago, was dirty and short.

That was the picture disclosed in one of the first compilations of

vital statistics, published by John Graunt in 1662.

 His data described 10,000 deaths from many causes, most of

them unknown to the modern vocabulary.  But a few causes

account for the vast majority of mortality.  Most striking, comparing

the number of christenings to the number of deaths among the

young, infant mortality probably exceeded twenty-five percent

(comparing 2,300 deaths from “Chrisomes and Infants” to 9,600

christenings).

Exotic causes that are popular in the current image of historical

London accounted for very few of the actual deaths. In this year, for
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example, plague accounted for only 8 deaths, By contrast, the major

causes of death are appalling familiar to us, even three hundred and

fifty years later:  Adults die from infections and communicable

diseases of which one example, tuberculosis (consumption),

accounted for approximately 20% of the mortality.  Other categories

suggesting infection or contagious disease account for another third

of all deaths — including “Fever”, “Flocks and Small Pox”,  “Brused

…”, “Cold…”, “Dropsie …”, “Convulsion”, “Childbed”, “Bloody

flux ...”, and “Teeth”. Adding it up, death related to childbirth,

infections,  and communicable diseases accounted for

approximately eighty percent of mortality.

The data were tabulated by John Graunt from weekly Bills of

Mortality and published in 1662. Causes of death were report by

attending physicians and bystanders.  The report includes detail

with respect to sources of data and comments on likely sources of

error.  Excerpts from Graunt’s report are available in reprint as

“Foundations of Vital Statistics”, in James Newman’s The World of

Mathematics,, noted above.  Graunt’s stated purpose was to

distinguish fact from fiction, to compare true causes of death to

those, such as plague, that commanded public attention and for the

general purpose of increasing the welfare of the state.  Grant’s

report included extended comments on the quality of the data and

likely sources of error.

There’s my report, less than five hundred words — probably a bit

longer than I would ordinarily write because I have students looking

over my shoulder.  Now, how did I go from Graunt’s table to my

summary?  The key, and the focus of this discussion of method was the

“Stem and Leaf” diagram worked-out earlier.  But I haven’t even

presented it here in my report.  It was essential to the process, but once I

focused on the few causes of the overwhelming number of deaths, I left it

behind.  Little would have been added to the reader’s knowledge of
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death in London if I had recapitulated my steps in the final report.

That’s hard for a writer: All that work — hidden.  No one will know to

applaud my diligence.  But that’ the difference between writing a report

about London and writing a report about yourself — showing your reader

how much hard work went into the report.  The reader is interested in

London.  So, spare the reader — and keep the focus.

Exercise:  Prepare a report on causes of death in the United States,

1990, using these U.S. Census data.
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From the Statistical Abstract of the United States, 1992, Table Number
114:  Deaths and Death Rates, by Selected Causes, 1990  (1990 estimates
are preliminary data from a 10 percent sample including deaths of non-
residents.

Cause of Death Deaths (1,000), 1990

All Causes 2,162.0

Major cariovascular diseases 920.4
Diseases of heart 725.0

Percent of total 33.5
Rheumatic fever and rheumatic heart disease 6.3
Hypertensive heart disease1 23.6
Ischemic heart disease 489.3
Other diseases of endocardium 12.3
All other forms of heart disease 193.5

Hypertension1 9.2
Cerebrovascular diseases 145.3
Atherosclerosis 16.5
Other 24.4

Malignancies2 506.0
Percent of total 23.4

Of respiratory and intrathoracic organs 143.8
Of digestive organs and peritoneum 121.3
Of genital organs 58.0
Of breast 45.1
Of urinary organs 20.4
Leukemia 18.7

Accidents and adverse effects 93.6
Motor vehicle 47.9
All other 45.7

Chronic obstructive pulmonary diseases and allied conditions 89.0
Bronchitis, chronic and unspecified 3.4
Emphysema 16.5
Asthma 4.6

1 With or without renal desease
2 Includes other types of malignancies not shown separately

Macintosh HD:DA:DA IX:Volume I:038 D in America1990 p. 107
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Other 64.6
Pneumonia and influenza 78.6

Pneumonia 76.7
Influenza 1.9

Diabetes melitus 48.8
Suicide 30.8
Chronic liver disease and cirrhosis 25.6
Other infective and parasitic diseases 32.2

Human immunodeficiency virus (HIV) infections (AIDS) 24.1
Homicide and legal intervention 25.7
Nephritis, nephrotic syndrome, and nephrosis 20.9

Septicemia 19.8
Certain conditions originating in the  perinatal period 17.5
Congenital anomalies 13.4
Benign neoplasms3 7.0
Ulcer of stomach and duodenum 6.2

Hernia of abdominal cavity and intestinal obstruction4 5.6
Anemias 4.2
Cholelithiasis and other disorders of gall bladder 3.0
Nutritional deficiencies 3.1
Tuberculosis 1.8
Infectionss of kidney 1.1
Viral hepatitis 1.7
Menengitis 1.2
Acute bronchitis and bronciolitis 0.6
Hyperplasia of prostate 0.3

Symptoms, signs, and ill-defined conditions 26.3
All other causes 174.1

Deaths classified according to ningth revision of International
Classification of Diseases.  Original source:  U.S. National Center fo
Health Statistics, Vital Statistics of the United States , annual;
Monthly Vital Statistics Report and unpublished data.

3  Includes neoplasms of unspecified nature and carcinoma in situ.
4  Without mention of hernia

Macintosh HD:DA:DA IX:Volume I:038 D in America1990 p. 108



There are blanks in here, presumably histograms that need to be computed
and drawn

Also extract each data set into a separate file (duplicating what is in the text).
Put into the folder of data.
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Histograms

The most widely used graphical device for the formal  display of a

distribution the histogram.  For example, Figure 1 is a histogram of

distribution of protein count from breakfast cereals.

Histogram:  Distribution of Breakfast Cereals 
with respect to Grams of Protein per 

Commonly Served Portion

Grams of Protein

0

1

2

3

4

5

Gerber's High Protein
(soybean cereal)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 10

The histogram is a stylized version of the stem and leaf —

cleaned-up for public inspection, with much of the information

removed.  It’s the kind of thing you might use after the analysis is

completed — when you are constructing  a “pretty” final report — or use

when the number of objects involved is massive as, for example, the

distribution of family incomes for 100-million families, or when you use

a computer program that takes some care with its graphics.
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My only objection to these things is that, because they are “clean,”

and often computer drawn, the impression is created that they are

somehow better or, at least, more scientific than the stem and leaf —

when exactly the opposite is the case:  That “mess” in the stem and leaf

is information, information that is not available in the histogram.  And

for that reason, the histogram is not the kind of thing that a real

human being does early, as a first resort — when you are in hot pursuit

of information.  For that, by hand, most people would use tallies,  ////,

or digits or labels, as I’ve done in the stem and leaf drawings.

  That being said, and the warning having been sounded,

histograms are often used for income distributions; they play an

important role in numerical work on ecology,1 and they are useful for

visually contrasting two different distributions — where they serve

much the same function as a stem and leaf diagram.

I want to examine the construction of a histogram in painful detail

because there are a few tricks to it, a few places where its construction

is different from the construction of the stem and leaf.  In particular,

you should focus on two questions:   First, what is the vertical axis of

the histogram, the “height?”  The height is not always proportional to

the simple count (as it was in the stem and leaf).  And, second, what is

the area of the histogram, the “area” under the curve?  (Usually, these

things are simply unlabelled — the computer doesn’t know what they

are.  But you have to know what they are in order to build a histogram

for yourself, and you have to be able to build one for yourself in order to

be sure you understand it.)

  For inspection, here is a set of histograms:  A histogram of gross

national products (by nation), a histogram of numbers of animals per

species within a ____, and a pair of histograms showing the family

income by “race” in the United States.

                                                                        
1  See Ecological Diversity and Its Measurement by Anne E. Magurran,
Princeton University Press, 1988.
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Use the SocPol data for Gross National Products or new data from

the World Bank.

Use the biodiversity data from Magurran

Use the U.S. census, family incomes

Histograms look simple, and are  simple for data like the

distribution of protein content of breakfast cereals.  But when you get to

data like the income distributions, you have to be clear about the

construction rules.  The problem is that the widths of the categories,

$1,000 at one end (e.g., from $1,000 to $1,999) and $4,000 at the other

(from 10,000 to 14,999).  To get it right, let me look at the construction of

this histogram in painful detail. 

The key point to remember in constructing a histogram is that the

shaded area is proportional to the number of “things” whose

distribution is  being described.  Knowing the meaning of the area,

answers both questions at once:  If the “things” are thirty breakfast

cereals, then the shaded area is proportional to thirty breakfast

cereals.  If the “things” are 100 percent of the income earning families,

then the shaded area is proportional to 100 percent. 

For the first detailed example, I’m going to build the histogram

for U.S. family income.  Figure _, the first two columns on the left,
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shows the data exactly as they come from the book  (The U. S. Book of

Facts Statistics, and Information, 1972, page 316.)

Note:  All I have handy is old data, for some reason. Revise to

something more recent.

Money Income Percent Distribution of Families by Income Level,

Table 500, page 316, U.S. Book of Facts Statistics and Information, 1972.

Income

Level

Population

in Percent

%

Income

Interval in

dollars

$

Height in

percent per

dollar

%/$

Height in

simple num-

bers

(without

units) used

for drawing

the

histogram

Under

$1,000

1.6% ~$1,000 ~.0016 %/$ 16

$1,000 to

$1,999

3.1% $1,000 .0031 %/$ 31

$2,000 to

$2,999

4.6% $1,000 .0046 %/$ 46

$3,000 to

$3,999

5.3% $1,000 .0053 %/$ 53

$4,000 to

$4,999

5.4% $1,000 .0054 %/$ 54

$5,000 to

$5,999

5.9% $1,000 .0059 %/$ 59

$6,000 to

$6,999

6.4% $1,000 .0064 %/$ 64

$7,000 to

$9,999

21.7% $3,000 .0072 %/$ 72
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$10,000 to

$14,999

26.7% $5,000 .0053 %/$ 53

$15,000 or

over

19.2% Ill-defined

guess

$100,000

Ill-defined

guess

.00019 %/$

02

Now, to construct the histogram.  First I get out my graph paper

and mark off the income levels, left to right, marking $1,000, $2,000,

and so forth.  These marks give me the left and right boundaries of each

piece of the histogram.  But note, the intervals are not equal in size.

supply graph in progress.

Now, all I have to do is supply a height for the shaded area over

each of the intervals, a height for the area between 0 and $1,000, a

height for the area between $1,000 and $2,000, and so forth.  Here’s

where I fill in the last three columns of the table:

For the first area, here’s what I know:  I know that the area is

1.6% and I know that the width of the interval is approximately

$1,000.  And I also know, from simple geometry that

Area = Width times Height

So, what’s the height?  Simple:  If area equals width times

height then height equals area divided by width

Height = Area / Width

Using the equation for this particular problem, the first equation,

area equals width times height means



Histograms Joel H. Levine

 Macintosh HD:DA:DA IX:Volume I:042 Histograms

Thursday, June 13, 1996 p. 6

1.6% = $1,000 times Height

And so, the height is

Height =
1.6%

$1,000

which is

.0016 percent per dollar

That is the height of this first part of the histogram, and those

are the units on the vertical axis:  The height measures percent of the

population per dollar of family income.

Incomplete graph, with one piece of the histogram, and the

vertical axis labeled in units from 0 to 100 percent of the population per

dollar of family income.

The thing you have to compute in order to draw the histogram is

the height even though the data that you get describe the base and the

area.  So you have to compute the height which is, in this case, percent

of the population per dollar of family income.  The thing that you have

to get right is the height, while the data describe the base and the

area.  So we compute the height that makes the area right.

Having computed the height, I get out my graph paper and

translate the numbers onto a grid.
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And, then I begin to clean things up.  At the low end, I’m not really

sure that $0 is really the bottom on income — you can do worse than

break even.  But I’ll assume that “0” is the left end of the first interval.

At the high end,  for the interval above $15,000, I have a more difficult

problem.  In fact, it is an insoluble problem and there’s not much I can do

about it:  Fact is, I don’t know what to use for the highest income,

which makes the width of the last piece of the graph entirely

arbitrary.  And since the width is arbitrary, the height of this piece of

the histogram is also arbitrary.  You could reasonably ask for better

data:  Lumping everyone above $15,000 dollars is wiping out an awful

lot of detail.  But even with better data, there’s always going to be a

last category and often, with income data, there’s no answer.  I’ve

arbitrarily chosen $100,000 as my top, and forged ahead with my

arbitrary choice.  And here is the result

(fix the label on the vertical axis -- in fact, do the whole thing

over again on more recent data)
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To take a look at a more “classical” shape, consider this histogram

of total population of nations, using 1975 data from the World

Handbook of Social and Political Indicators

 (check World Bank for more recent data.  Show both the chart and

the histogram.)
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Homework:

Family Income 1991, General Social Survey, National Opinion

Research Center, University of Chicago

Income

Level

Number of

Families

(Sample

size = 1517)

families

Income

Interval in

dollars

$

Height in

number per

dollar

families/$

Height (for

use on

graph)

Under

$1,000

11

$1,000 to

$2,999

26

$3,000 to

$3,999

31

$4,000 to

$4,999

35

$5,000 to

$5,999

39

$6,000 to

$6,999

29

$7,000 to

$7,999

23

$8,000 to

$9,999

38

$10,000 to

$12,499

76

$12,500 to

$14,999

82

$15,000 to

$17,499

97

$17,500 to

$19,999

60
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$20,000 to

$22,499

60

$$22,500 to

$24,999

68

$25,000 to

$29,999

112

$30,000 to

$34,999

94

$35,000 to

$39,999

86

$40,000 to

$49,999

149

$50,000 to

$59,999

86

$60,000 to

$74,999

86

$75,000 and

higher

80

Refused 85

Don’t Know 47

No Answer 17
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Household size:  Number of Household Members (General Social

Survey, 1991, Var “HOMPOP, #33”

Household Number of
Size Respondents

(n=1517)
1 377
2 476
3 275
4 241
5 98
6 29
7 14
8 2
9 2

10 2
No Answer 1
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Respondent’s Education General Social Survey, 190, Variable “EDUC”,
#15

Grade Number of
or Years Respondents

(n=1517)
Schooling 2
1st grade 0
2nd grade 0
3rd grade 5
4th grade 5
5th grade 6
6th grade 12
7th grade 25
8th grade 68
9th grade 56
10th grade 73
11th grade 85
12th grade 461
1 year of Coll 130
2 years 175
3 years 73
4 years 194
5 years 43
6 years 45
7 years 22
8 years 30
Don’t Know 0
No Answer 0

Respondents Age VARIABLE:  AGE  #12
Age Number of

Respondents
(n=1517)

10 - 19 12
20 - 29 293
30 - 39 382
40 - 49 280
50 - 59 165
60 - 69 171
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70 - 79 148
80 or over 63
No answer,
Don’t know 3

Variable SIBS  #10:  How many brother and sisters did you have?
Please count those born alive, but no longer living, as well as those
alive now.  Also include stepbrothers and stepsisters, and children
adopted by your parents.

Number of Number of
Siblings Respondents

(n=1517)
0 74
1 236
2 276
3 236
4 209
5 118
6 80
7 81
8 58
9 47

10 34
11 22
12 11
13 9
14 5
15 3
16 1
17 2
18 1
19 0
20 0
21 1
22 0
23 0
24 0
26 1

Don’t know 4
No Answer 8
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VARIABLE:  HRS1, If working, full or part time:  How many hours did
you work last week, at alljobs
Number Number of
of Hours Respondents

(n=1517)

0 - 09 hours 25
10 - 19 hours 55
20 - 29 hours 75
30 - 39 hours 117
40 - 49 hours 397
50 - 59 hours 114
60 - 69 hours 65
70 - 79 hours 17
80 or more 18
No ans, don’t
know 1
Not
Applicable 633

Ed:  Get each of the above separated on “race”, gender, and perhaps, as
a table, age, educ, income.

The SRC data for education is better, showing military, trade school,
etc.



Description:

Numbers for the Variation,
Numbers for the Average

Data analysis is cumulative:  If the data pass the first test that establishes whether or not it is

worthwhile to continue, and if the stem and leaf begins to make sense of the data then it may be

time to introduce numbers that summarize what has been observed in the stem and leaf.

The arithmetic by which we summarize data is very simple:  It takes no more than a few

minutes to master the arithmetic of an average.  If anything, the arithmetic is too simple, causing

analysts to compute the numbers, report them, and quickly move forward to something more

mathematically difficulty and, presumably, more sophisticated.  But my real job in these pages is

to teach data analysis, not arithmetic, and to accomplish that I have to rivet your attention on two

issues.

The first issue is variation:  The whole idea of “average,” assumes variation.  If the income of

the American family is $30,000, every family, that means one thing.  If the average income of

American families is $30,000, that means something else:  It means some families have less than

$30,000, some families have more than $30,000.  And, in the middle, very few families will have

exactly $30,000.00 — to the penny.  Incomes vary.   Do “typical” incomes vary between $29,995

and $30,005, or do typical incomes vary between $10,000 and $100,000:  As data, as a message, the

variation makes a big difference for any analysis of family incomes in the United States.

The second issue is strategy.  I could simply list a couple of formulas with instructions for

their use.  And, in fact, I will do just that after I have established a context.  But why use one

technique or another?  Is there a logic?  Is there a consistency that logically binds one technique to

another.  There is, of course.  And that, the ;underlying logic of the statistical tools is based on

strategy.
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One’s bed is “unreal.”  The Idea of the bed, existing eternally in
some distant empyrean, is the true reality. …… Any bright
Athenian could have made the obvious objection to this
stratospheric nonsense.

I. F. Stone, The Trial of Socrates, p. 73.

deviate:  … to turn aside (from a course direction, standard,
doctrine, etc.) …

Webster’s New World Dictionary of the American
Language.

Things Vary

The moral of the story that follows is simple.  The moral

is “Things vary.”  There is a pleasant feeling of certainty to

wrapping up your data with one definitive number:  “The

average income is $50,000.”  “The average number of people per

physician is 512.”   That’s it, a neat clean description of reality.

But, reality is not that neat.  Numbers vary.  Data vary.  It is

almost guaranteed that the data are a lot messier than

anything that could be reported by a single number.  Look at the

stem and leaf for a set of data and you will see a shape:

Generally, you will see something with a central “hump” that

we can think of, roughly, as the center of the distribution.  

Schematically, which is to say smoothing over the roughness of

real data, the hump may be in the middle of the range or closer

to one end, like
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or like

                       

The average, either the median or the mean, puts a number

on the location of the center:  “The median income of this

population is $50,000.”  “The mean income of this population is

$60,000.”    But we can do better by thinking of the “center” as a

range of data, a hump that may be tightly wrapped around the

average, or loosely spread.  Generically, this tightness of

looseness around the center is called “variation” and it makes a

great difference to your analysis of data.

Measure your height, measure your weight, measure these

things again and again, and the answers will vary.   This is not

because you used a bad yardstick or a cheap scale.  It is because

things vary.

I don’t understand just why variation, not constants, are

the reality of our experience, but the idea that there is such a

thing as the answer is just that:  an idea.  By contrast, what we

know for sure, the evidence before our eyes, our experience, is

variation. 

For example, consider the weight of the standard 10 gram

weight that resides at the United States Bureau of Standards.

What does it weigh?   That should be simple enough, a question

shorn of the usual subtleties plaguing measurement in the social

and physical sciences.  Or is it?
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The US 10 gram weight is not “the” 10 gram weight.  The

U.S. standard is a copy of the International standard 10 gram

weight in France.  It is an imperfect copy, a little bit lighter

than the original.  But what does it weight?

Table 1 records observations made by the U.S. Bureau of

Standards itself (presented by David Freedman in Statistics1 ).

Imagine the resources of the Bureau of Standards — fully

capable of commanding whatever resources it takes to do the job

— which in this case is to measure the weight of this little

piece of metal.2  And the answer?  It varies.  The figure shows

one hundred observations (and nine different answers).

How much does it weigh?  The measurements exhibit the

distribution of values shown in Figure 1.  It is about 0.4 milli-

grams light.  Most  of the measurement lie in a range between

9.99950 and 9.99960 grams, a range of uncertainty equivalent in

weight to the weight of about half a centimeter (about three-

sixteenths of an inch) of human hair. 

                                                                        
1 Statistics, Second Edition, by Freedman, Pisani, Purves, and Adhikari, Norton, 1991,
page 93.
2 The US 10 gram weight is not “the” 10 gram weight.  The U.S. standard is a copy of
the International standard 10 gram weight in France.  It is an imperfect copy, a little bit
lighter than the original.  But what does it weight?
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Item Weight in
Grams

Difference:
Weight in

Grams Minus
10 Grams

1 9.999591 -0.000409
2 9.999600 -0.000400
3 9.999594 -0.000406
4 9.999601 -0.000399
5 9.999598 -0.000402
6 9.999594 -0.000406
7 9.999599 -0.000401
8 9.999597 -0.000403
9 9.999599 -0.000401

10 9.999597 -0.000403
11 9.999602 -0.000398
12 9.999597 -0.000403
13 9.999593 -0.000407
14 9.999598 -0.000402
15 9.999599 -0.000401
16 9.999601 -0.000399
17 9.999600 -0.000400
18 9.999599 -0.000401
19 9.999595 -0.000405
20 9.999598 -0.000402
21 9.999592 -0.000408
22 9.999601 -0.000399
23 9.999601 -0.000399
24 9.999598 -0.000402
25 9.999601 -0.000399
26 9.999603 -0.000397
27 9.999593 -0.000407
28 9.999599 -0.000401
29 9.999601 -0.000399
30 9.999599 -0.000401
31 9.999597 -0.000403
32 9.999600 -0.000400
33 9.999590 -0.000410
34 9.999599 -0.000401
35 9.999593 -0.000407
36 9.999577 -0.000423
37 9.999594 -0.000406
38 9.999594 -0.000406
39 9.999598 -0.000402
40 9.999595 -0.000405
41 9.999595 -0.000405
42 9.999591 -0.000409
43 9.999601 -0.000399
44 9.999598 -0.000402
45 9.999593 -0.000407
46 9.999594 -0.000406
47 9.999587 -0.000413
48 9.999591 -0.000409
49 9.999596 -0.000404
50 9.999598 -0.000402

Item Weight in
Grams

Difference:
Weight in

Grams Minus
10 Grams

51 9.999596 -0.000404
52 9.999594 -0.000406
53 9.999593 -0.000407
54 9.999595 -0.000405
55 9.999589 -0.000411
56 9.999590 -0.000410
57 9.999590 -0.000410
58 9.999590 -0.000410
59 9.999599 -0.000401
60 9.999598 -0.000402
61 9.999596 -0.000404
62 9.999595 -0.000405
63 9.999608 -0.000392
64 9.999593 -0.000407
65 9.999594 -0.000406
66 9.999596 -0.000404
67 9.999597 -0.000403
68 9.999592 -0.000408
69 9.999596 -0.000404
70 9.999593 -0.000407
71 9.999588 -0.000412
72 9.999594 -0.000406
73 9.999591 -0.000409
74 9.999600 -0.000400
75 9.999592 -0.000408
76 9.999596 -0.000404
77 9.999599 -0.000401
78 9.999596 -0.000404
79 9.999592 -0.000408
80 9.999594 -0.000406
81 9.999592 -0.000408
82 9.999594 -0.000406
83 9.999599 -0.000401
84 9.999588 -0.000412
85 9.999607 -0.000393
86 9.999563 -0.000437
87 9.999582 -0.000418
88 9.999585 -0.000415
89 9.999596 -0.000404
90 9.999599 -0.000401
91 9.999599 -0.000401
92 9.999593 -0.000407
93 9.999588 -0.000412
94 9.999625 -0.000375
95 9.999591 -0.000409
96 9.999594 -0.000406
97 9.999602 -0.000398
98 9.999594 -0.000406
99 9.999597 -0.000403

100 9.999596 -0.000404
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Figure 1  (Facing)

One hundred measurements of the weight of the U.S. Ten Gram

Weight.  (Statistics, Second Edition, by Freedman, Pisani,

Purves, and Adhikari, 1991, Norton, page 93.)

Weight Interval Distribution

in Grams
9.999625 |

9.999620

9.999615

9.999610

9.999605 ||

9.999600 ||||||||||||||

9.999595 ||||||||||||||||||||||||||||||||||||||||

9.999590 ||||||||||||||||||||||||||||||||||

9.999585 ||||||

9.999580 |

9.999575 |

9.999570

>=9.999565 to <9.999570

>=9.999560 to <9.999565 |

Table 1

Histogram of One Hundred Measurements of the 10 Gram Weight.



6  Rules of Evidence

So here is our task:  To summarize the facts displayed by a

Stem and Leaf, or by a histogram, we need a number to represent

the center of the variation, and we need a number (or numbers)

to represent the variation.

Implicitly, you are already paying attention to variation:

For example, if you had found that the variation of protein

content among breakfast cereals was small, with protein content

lying between a low of 2.3 grams of protein and a high of 2.4

grams of protein, tightly wrapped around the average (which

it is not) then you would have concluded (from the lack  of

variation) that there was no need to pursue the data — it

doesn’t matter:   If the variance were this small then the

content of your cereal would not depend on your choice of cereal

and the protein content of your breakfast cereal would depend

more on the size of the bowl than on the choice of the cereal. 

By contrast, in fact, you found that the variation of protein

content was large, with protein content ranging from a low of 0.8

grams of protein to a high of 10.2 grams of protein — which led

us forward in search of an explanation.

If I were comparing the personal incomes of two groups of

people, then again I would have to pay attention to the

variation.  For example suppose, without real data, that the

average income of college graduates from private universities

exceeded the average income of graduates from public

universities.  Even assuming that that is a fact, my evaluation

of that fact would depend on the variation:  If the variation of

incomes in each of the two groups is small, corresponding to the

two drawings in Figure 1a,  then the difference between public

schools and private schools is worthy of examination:  Because

the variation is small, most of the people in the second group

have higher incomes than most of the people in the first group,

which would force you to conclude that the difference between

the two groups is to be taken seriously.  By contrast, if the

variation of incomes in each of the two groups is large,

corresponding to the two drawings in Figure 1b, then you would
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conclude that the difference between public schools and private

schools is real, but small compared to the overall variation of

income.  In each case, Figure 1a and Figure 1b, the contrast

between the two averages is the same, but your evaluation of

these averages depends on the variation.

Income Distribution for
Graduates of Public Universities

Comparing Hypothetical Income Distributions with 
Small Variance

Income Distribution for
Graduates of Private Universities

INCOME

High
Income

Low
Income

INCOME

High
Income

Low
Income

     

Income Distribution for
Graduates of Public Universities

Income Distribution for
Graduates of Private Universities

Comparing Hypothetical Income Distributions with 
Large  Variance

INCOME

High
Income

Low
Income

INCOME

High
Income

Low
Income

To get this information out of the picture and put it into

numbers, we think of the center as a range of data tightly or

loosely spread around the average.  What remains to be said is

exactly what range of data we will report as the “center”.

The Median and the Mean as Centers

I would like you to pretend, for the moment, that you had

never heard of a mean or a median and were facing, as if for the

first time, the problem of coming up with a number to that

represents the center of a collection of numbers.  How do you do

it?  Statisticians have created not so much an answer to this

question as they have created a strategy capable of producing

answers — sometimes different answers for different occasions.

So I ask — what is the best measure for the center of a

distribution of measurements.  Specifically, very specifically,

what do I mean by “best”?
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Well, crudely, the best measure of the center should be

close to all of the values in the data.  And, of course, that

leaves me with the problem of defining close:  I’ll say that the

center, c, is close to the data if the difference between each

data point and the center at c, “xi – c”, is consistently small.

Actually, this is a bad definition, but I’ll follow it out because I

want you to see the process of inventing (or re-inventing) the

average.  So, I define the total deviation from the center c,

V(c), by summing up these differences between the data and the

center and I write the total variation around each possible

value of the center, c,  as

    

V c( ) = xi − c( )
i=1

n

∑
First definition of deviation as a function of c.

Total Variation

There is one immediate objection to this measure of

deviation:  Using this measure a data set with many

observations (large “n”) will always look worse than a data set

with a small number of observations — because n is larger and

more deviations get added together into this V.

So, I’ll do better, this time correcting for different sizes of

“n”.

    

V c( ) =
1

n
xi − c( )

i =1

n

∑
Second definition of deviation as a function of c.

n-adjusted Variation

Is this a good definition?  I’ll test it by example.  Suppose I

have three numbers x1=10, x2=11, and x3=12.  And suppose I

choose 10 as the center.  “10” is not the center of 10, 11, and 12,

but let me suppose that it is and check out its effect on V.  Here,

if c=10, V(c)=1
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Center, c,
Equal 10

i x i

Difference
Between
 xi and c

1 10 10-10=  0
2 11 11-10=  1
3 12 12-10=  2

V(c) = 1

Can I find a better center, a center about which there is less

variation?  Certainly.  Choosing 11 as the center the variation

around this center, V(c), is zero.   Better.  That looks promising.

Is there any other “center” around which the variation would

be even less?

Center, c,
Equal 11

i x i

Difference
Between
 xi and c

1 10 10-11=-1
2 11 11-11=  0
3 12 12-11=  1

E(c) = 0

 Unfortunately, yes, there is.  Suppose I had tried c =12.

That is obviously a bad choice, 12 is not the center of these

data, but what does the measure of variation around this center

have to say?  It says “-1” which may be  ridiculous but it is

certainly smaller than zero.  So, this definition of “error”, of

the error that results from choosing c as the center, produces
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ridiculous results — implying that 12 is more central than 11.

So — out with the definition.  I need a better one.

Center, c,
Equal 12

i x i

Difference
Between
 xi and c

1 10 10 –12= –2
2 11 11 –12= –1
3 12 12 –12=   0

V(c) =  –1
There are several ways of fixing up the definition, using

alternative expressions of what it means for data to be “close”

to their center.   Suppose I fix up what I did above by saying

“No, close is a matter of distance not difference .  I should have

used the distance between xi  and the center, not the difference.”

That places “10” a distance of one unit away from 11 and it also

places “12” a distance of one unit away from 11.  Using this new

working definition of variation

    

V c( ) =
1

n
xi −c

i =1

n

∑ Third definition of deviation as a function of c:

Absolute Deviation
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c = 10 c=11 c=12

i x i

Distance Between
x i and c

Distance
Between
x i  and c

Distance Between
x i and c

1 10 |10 –10|=0 |10  –11|=1 |10 –12|=2
2 11 |11 –10|=1 |11  –11|=0 |11 –12|=1
3 12 |12 –10|=2 |12  –11|=1 |12 –12|=0

V(c)=1 V(c)=2/3 V(c)=1

Sure enough, among these three choices, c=10, c=11, and

c=12, 11 is the center with respect to which the variation is

smallest.  Among these three choices, 11 is the best center. 

Minimum Absolute Deviation

In the jargon of the trade, I have found the center “in the

sense of minimum absolute deviation” (sometimes abbreviated

MAD, Minimum Absolute Deviation).    And the result is, I

think, exquisite:  I have just defined the median.  What’s

beautiful about it is that I  haven’t said anything about rank

ordering the data, or splitting it in half.  I haven’t said

anything about the median itself.  I just defined a measure of

“goodness of fit”, specifically, minimum absolute deviation,

and I said “find the number that is close to the data, close in

the sense of minimum absolute deviation.”  That turns out to be

the median.  It takes a little bit of calculation to prove that,

but it is true and it places the median in context:  The median is

the “best” measure of the center, “best” in the sense of MAD.

Least Squares
That is not the end of it:  The same strategy is able to

create other results when it is combined with another

definition of “close”.  The most widely used measure fixes up

the difference (definition 1 and 2) by using squares to get rid of

the negatives.
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V c( ) =
1

n
xi − c( )2

i =1

n

∑ Fourth definition of deviation as a function of c:

Squared Deviation

c=10 c=11 c=12
i x i Squared Distance

Between
x i and c

Squared
Distance
Between
x i  and c

Squared Distance
Between
x i and c

1 10 (10 –10)2=0 (10  –11 ) 2=1 (10 –12)2=4
2 11 (11 –10)2=1 (11  –11 ) 2=0 (11 –12)2=1
3 12 (12 –10)2=4 (12  –11 ) 2=1 (12 –12)2=0

V(c)=2.5 V(c)= .667 V(c)=2.5

This too implies that 11 is the center for these

hypothetical data.  In the jargon of the trade I have found the

center “in the sense of least squares”.  And this logic leads to

the mean.  The mean is the central value of a distribution “in

the sense of least squares”. 
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Homework:

In order of increasing difficulty:

1 I have asserted that i f  variation is defined in the sense of

least squares then  the best number for the center of the

variation is the mean.  Given the general statement that the

variation around a center is minimized when that center is the

mean, how small is that minimum variation.  That is, what is

the value of V(c), V as a function of c, when c is equal to the

mean?

    

V c( ) = 1

n
xi − c( )2

i =1

n

∑
To see the answer (to see the reason for the question) more

clearly, the better question is ‘what is the mean value of the

variation around c when c is the mean?’  (Substitute   x  into the

equation for V and solve for 
    
1

nV .  To see the answer more

clearly, when c is the best value (when c is equal to the mean)

what is the square root of the mean value of V

2 Using calculus, prove that variance in the sense of least

squares, V, is minimized when c =   x   (Differentiate V(c) as a

function of c.  Set the derivative equal to zero.  Solve for c.)

3 Using whatever you can improvise, prove  that minimum

absolute deviation is achieved when c equals the median.

Measuring The Variation
What you have seen is an example of the way

statisticians have to be explicit:  You can’t just say what is the

“best”?  Not “what is the best way to represent these data?”  

That’s not enough.  You have to specify in what sense it is the

best. 

Once that is done, the rest is “easy”:  The best average for

the data, best in the sense of minimum absolute deviation, is

the median.  The best average for the data, best in the sense of

least squares, is the mean.  You will see this strategy at work

throughout statistics — when you need the “best” estimate of

something.
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And how large is the variation?   We know that the data

varies, but how much?   The answer, or answers, to that question

are already ordained since the definition of the center used a

definition of variation.  

So, in the sense of minimum absolute deviation, MAD:

What is the typical variation around the center?  We

represent it by average variation around the average

or, more specifically, by median of deviations above

and below the median.    These are the quartiles.   

Again — I haven’t defined this procedurally, telling

you how to rank order your data and find quartiles

(that will follow).  I’ve given you a strategy whose

logical consequence is the quartiles.

And, in the sense of least squares:

What is the typical variation around the center?  We

represent it by average variation around the average

or, more specifically, by mean deviation around the

mean.  This is defined as the variance.     Unfortunately,

squared deviation is a little rough on the human

intuition, squared grams of protein for example.  So we

also define the “standard deviation” as the square root

of the variance — putting the deviation in terms that

the human intuition can handle.

Variance:

    

V c( ) =
1

n
xi − c( )2

i =1

n

∑
Standard Deviation:

     

sx c( ) =
1

n
xi −c( )2

i=1

n

∑
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Average:

…5. transf.  The distribution of the aggregate inequalities (in
quantity, quality, intensity, etc.) of a series of things among all the
members of the series, so as to equalize them, and ascertain their
common or mean quantity, etc., when so treated; the determination or
statement of an arithmetical mean; a medial estimate. …

     6. a. The arithmetical mean so obtained; the medium amount, the
generally prevailing, or ruling, quantity, rate, or degree; the `common
run.'…

Excerpt from Oxford English Dictionary 2  reference  ……

Description:  Numbers for the
Average

What is a typical income?  What’s the height of a typical person?

What do I mean by “typical”?  There are two different numbers in

common use as the “typical” values:   These are the “median” and the

“mean,” both of which are sometimes referred to as the “average” (or

typical) value. 1   We have looked at the strategy that makes the median

and the mean important.  The definition of these two typical values is

                                                                        
1The language for these things is a little imprecise:  Some sources will
insist that “average” is the generic term, classifying the median and the
mean as two different kinds of average.  Other sources will use
“average” as the specific term (for the mean).   And, of course, it does no
good to insist on one definition or the other — because you will
encounter both usages in reputable sources.  I describe this ambiguity to
warn you.  For myself, and when necessary, I will use average, the
longer word, as the generic term  and mean, the shorter word as the
specific:  The generic  term average, will include the median, the mean,
and in later chapters a host of additional representations for the central
value of a set of data.  When possible, I will simply dodge this ambiguity
by using generic terms such as “typical value” or “central value,” and I
will attempt to rely on careful language, in context, to make it clear what
is being done.
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easy, and generally well known, but for completeness let me now define

them and use them.

The Median

Assuming that people come with different incomes, with different

heights and weights, assuming that anything we may measure offers a

certain amount of variety, what is the typical value? The most useful

number for this purpose is the median.  (The mean is the number that

everyone knows as the “average,” but we’ll get to that later.)  The

median of a set of numbers is the one in the middle:  If you put numbers

in rank order, from low to high, then the median is the number in the

middle:  There as many values above the median as there are below it.

Specifically, when the number of elements is odd, the median is the

number in the middle.  When the number of elements is even, the

median is the average of the two numbers in the middle.

For example, in the set of three numbers 1, 2, 3, the median is 2, the

number in the middle:  There is one number less than 2 and there is one

number greater than 2.  In the set of four numbers 1, 2, 3, 4, the median is

2.5, the average of 2 and 3:  In this set of four numbers there are two

numbers less than 2.5 and there are two numbers greater than 2.5.

The only trick, and it’s a small one, is to find the middle.  Assuming

that the numbers are in rank order, we count in to a certain “depth”, and

that’s the median (or the two numbers whose average is the median).

For a set of three numbers in rank order we count in to a “depth” of 2 —

there’s the median.  For a set of four numbers we count in to a depth of

2.5, and take the average of the second number and the third.

The formula for the depth is simple:  Where “n” is the number of

things in the set, the arithmetic is to compute the number (n+1)/2.  If the

result is a whole number, it identifies the median:  If the result is a

fraction, then it identifies two numbers whose average is the median.

Working it out, with three things
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n = 3   implies the arithmetic   (n+1)/2 = 2   So, the depth of the

median is 2 and, in rank order, the median is the second

number.

With four things

n = 4  implies the arithmetic   (n+1)/2 = 2.5   So, the depth of

the median is 2.5 and,  using the rank order, the median is the

mean of the second number and the third.

Going back to breakfast, there are 30 breakfast cereals listed in

Figure __.  So

n = 30  implies   (n+1)/2 = 15.5  The depth of the median is 15.5

and therefore, in rank order, the median is the average of the

fifteenth number and the sixteenth.  The median number of

grams of protein is _____ .

Among the four rice cereals

n = 4  implies   (n+1)/2 = 2.5  The depth of the median is 2.5.

In rank order, the median is the mean of the second number

and the third.  The median grams of protein among the rice

cereals is _____ .

 Among the ___ corn cereals

n = ?  implies   (n+1)/2 = ??  In rank order, the median is the

average of the _____ number and the _____.  The median

grams of protein among the rice cereals is _____ .

 Looking back at those cereals and computing the median protein

content you see one important property of the median:  For the whole

group of cereals, the one lone very high value has little effect on the

median; the median lies pretty close to the middle as you see it.



Introduction to Data Analysis:  The Rules of Evidence  4

Macintosh HD:DA:DA XI:Volume I:058 Centering 4 March 26, 1999

Similarly, for the group of corn cereals, the one odd case, has little effect

on the median as a typical value for the group.

There are times when it is possible to be overly precise, and such is

the case with the median.  Let me use a somewhat more labored

definition of the median and then note that a precise definition is not

always a specific definition.  More precisely, the median is a number

such that 50% or more of the data are less than or equal to the median

while, at the same time, 50% or more of the data are greater than or equal

to the median.

That is more precise, but the nasty fact is that it does not necessarily

come up with a single number:  In the set of four values, 1, 2, 3, and 4,

any number between two and three satisfies the definition of the median.

Now, in truth, that’s reality:  Any number between two and three is

equally acceptable as the median of these four numbers.  However,

convention and simple expectation,  “What is the median?” seem to be

comfortable with a single number, so we improvise to pick one.

Unfortunately, even here there is a choice of conventions, none of which

is absolutely defensible (and none of which is unreasonable) because, in

truth, the median is not always a single number.  However, to see the

kind of thing you will find, in use, consider the question:  What is the

median size of a household in the United States?  From the U. S. Census

Bureau, Current Population Survey, here are the numbers for 1991.

{Need two examples:  The first one should have the median

fall between two values — that’s not what I’ve got here.  Here I

have the median category interpreted as an interval, requiring

interpolation in the interval.}
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Size of

Household

Number

(in millions)

1991

Percentage

Distributio

n

1991

Cumulative

Percentage

Distribution

(Low to High)

Cumulative

Percentage

Distribution

(High to Low)

1 Person 23.6 25 25 100

2 People 30.2 32 57 75
3 People 16.1 17 74 43
4 People 14.6 15 89 26
5 People 6.2 7 96 11
6 People 2.2 2 98 4
7 or more 1.5 2 100 2

Table ___

Households, by Size of Household:  1991

From the Statistical Abstract of the United States, 1992, p. 47, No. 56.  On the left, data
as presented in the source.  On the right, work sheet of cumulative percentages
from low to high and from high to low.

The numbers on the left indicate the size of the household and the

number of millions of households of that size:  There were 23.6 million

one-person households, which accounted for twenty-five percent of all

households.  On the right, you see my work sheet the numbers I need in

order to talk about the median.

O.K., now:  The median is a number such that 50% or more of the

data are less than or equal to the median while, at the same time, 50% or

more of the data are greater than or equal to the median.

The cumulative percentages show that the size of 57 percent of

households is less than or equal to two while, at the same time, the size



Introduction to Data Analysis:  The Rules of Evidence  6

Macintosh HD:DA:DA XI:Volume I:058 Centering 6 March 26, 1999

of 75 percent of households is greater than or equal to two.  So the

median size of a household is two.

But if you want to worry about “something better” for this median,

you can note it takes almost all of the 30.2 million households to add up

to fifty percent (counting up from low to high).  That has a feel to it,

suggesting that the number is “almost” 3.  Looking at it the other way,

from high to low, it takes only a few of the 30.2 million households  to

add up to fifty percent.  So, I may choose to interpolate a fraction that

will give me a median that is greater than 2, and close to 3.  Recognizing

that we are dealing with fictions here, useful fictions, but fictions

nonetheless:  Let me act as if household sizes came in intervals, up to 1.5,

1.5 to 2.5, 2.5 to 3.5, 3.5 to 4.5, and so forth — Acting as if there were

some continuous tendency toward small or large households that works

itself out in the world as a simple integer, 1, 2, 3, or more.

So now, in this useful fiction, twenty-five percent of households

have 1.5 or fewer members.  And now, to get up to fifty percent, I need

to take most of the next interval:  I need another twenty-five percent of

the population and the interval contains thirty-two percent of the

population, so I need almost all of the population in this group (in order

to add up to fifty percent).

So, what do I need?  I need 25/32 of the people in the this group.  So

I will go 25/32 of the way from 1.5 to 2.5 — and call that the median:
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Interpolated median (work sheet):

“Interval” Below the Median:  0 to 1.5

End of Interval:  1.5

Percent of Population in Interval Below the Median:  25%

Percent of Population Needed to Add Up to 50%:  25%

“Interval” Including the Median:  1.5 to 2.5

Width of Interval: 1

Percent of Population in Interval Including the Median:  32%

Fraction of this Population needed to Add Up to 50%:  25/32

Interpolated Median:

End of lower Interval  plus Interpolated Fraction of Width of Next Interval

=  1.5  plus  (25/32) times 1

= 1.5 + (.78)*1

= 2.28
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For the sake of increasing my own security with this answer, I check from the

other direction:  Do I get the same answer?

Interpolated median (work sheet) checking:

“Interval” Above the Median: 2.5 to 7 or more

End of Interval:  2.5

Percent of Population in Interval Above the Median:  43%

Percent of Population Needed to Add Up to 50%:  7%

“Interval” Including the Median:  1.5 to 2.5

Width of Interval: 1

Percent of Population in Interval Including the Median:  32%

Fraction of this Population needed to Add Up to 50%:  7/32

Interpolated Median:

End of Higher Interval  Minus Interpolated Fraction of Width of Next Interval

=  2.5  minus  (7/32) times 1

= 2.5 + (.22)*1

= 2.28   check!

Result:  The interpolated median size of household was 2.3 people.



Page 9

Macintosh HD:DA:DA XI:Volume I:058 Centering    9     March 26,

1999

And now, finally, a word of advice:  Don’t attempt to memorize

these formulas — that’s the hard way.  Instead, think the problem

through from first principles, asking yourself what it is that you are

trying to accomplish.  And then, just to be careful, check by doing it

another way:  Here I reasoned from low to high, got an answer, and then

did it another way to check:  Same answer.  If there is any doubt about

your method, because there are other acceptable methods, then briefly

write it out so your reader will know what you’ve done.  You can’t just

appeal to authority, saying:  “Here it is!  This is right.”  You can’t do that

because there are different authorities you could appeal to.  Each one

makes a slightly different interpretation of the problem and it’s up to

you to choose among them.  So, you might as well take the responsibility

from the beginning:  Think clearly.  It’s up to you.
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Exercise:

Return to the data for the Dow Industrials, showing change as a

percentage of the earlier price.  Use a stem and leaf diagram to place the

industrials in rank order by amount of change and then use that rank

ordering to determine the median.  Report the “n” (how many

industrials are there.?)  Report the location for the median.  And report

the median.

As above, apply the same technique to the rates of infant mortality

among states of the United States.  Write a brief report of your results.

Exercise:  Table _ includes a collection of UNESCO data describing

nations of the world, already rank ordered on each of the variables:  For

gross national product, what is the “n”?  For population, what is the “n”.

Noting that these “n’s” are unequal, prepare a very short report stating

the median gross national product for nations.  Begin at the beginning

(although that may not be the first line in your report):  Do you trust the

data?  Are these data complete?  What’s missing?  Do you trust your

report of the median?



Country Expectat
ion of
Life at
Birth
(years)
1991

Infant
Mortality
Rate 1991
(Number
of deaths
of
children
under 1
year of
age per
1,000 live
births in a
calendar
year.)

Health
Expenditur
es 1990:
per capita
on basis of
GDP
purchasing
power
parities

Health
Expendit
ures 1990:
% of gross
Domestic
product
(prelimin
ary
estimates
)

Health
Expendi
tures -
Public
Health
as % of
gross
domestic
product

Health
Expenditu
res -
Public
Health
as % of
total
health
expenditu
res

1 Australia 77.0 7.9 1,151 7.5 5.2 69.6
2 Austria 77.3 5.4 1,192 8.4 5.6 66.5
3 Belgium 77.1 5.5 1,087 7.4 6.1 82.5
4 Canada 77.5 7.2 1,795 9.0 6.7 74.1
5 Denmark 75.9 6.1 963 6.2 5.2 84.2
6 Finland 75.8 6.0 1,156 7.4 6.2 83.3
7 France 77.8 6.1 1,379 8.9 6.6 74.2
8 Germany 75.8 7.1 1,287 8.1 5.9 72.7
9 Greece 77.7 10.0 406 5.3 4.0 76.0

10 Ireland 75.5 6.2 693 7.1 5.8 82.0
11 Italy 78.1 6.0 1,138 7.7 5.9 75.9
12 Japan 79.2 4.4 1,145 6.5 4.6 71.4
13 Netherlands 77.8 6.9 1,182 8.0 5.8 72.6
14 New Zealand 75.5 9.5 853 7.2 5.9 81.7
15 Norway 77.1 6.7 1,281 7.2 6.9 95.7
16 Portugal 74.7 13.3 529 6.7 4.1 61.7
17 Spain 78.3 6.2 730 6.6 5.2 78.4
18 Sweden 77.8 5.9 1,421 8.7 7.8 89.3
19 Switzerland 79.1 4.7 1,436 7.7 5.2 68.1
20 Turkey 69.8 54.3 197 4.0 1.4 35.6
21 United

Kingdom
76.5 7.2 932 6.2 5.2 84.5

22 USA 75.7 10.3 2,566 12.4 5.2 42.4



Sources:
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Source:
Stat
Abstact of
The
United
States,
1992,
Table
1361, p.
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"Soviet
Union" as
former S U
"without"
Independe
nt Rep

Table
1361 p.
824
Original
:  U.S.
Bureau
of the
Census,
World
Populati
on
Profile:
1991.

Original:
U.S.
Bureau of
the Census,
World
Population
Profile:
1991.

Original:
U.S.
Bureau of
the
Census,
World
Populati
on
Profile:
1991.

Original
:  U.S.
Bureau
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Census,
World
Populati
on
Profile:
1991.

Original:
U.S.
Bureau of
the
Census,
World
Populatio
n Profile:
1991.

Table 1368
p. 830

Table
1368 p.
829

Table
1368 p.
831

Table
1368 p.
832



Originl
Source
Organizati
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Cooperatio
n and
Developme
nt, Paris,
France,
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Health
Data 1991,
and OECD
Health
Systems:
Factgs and
Trends,
1993

Originl
Source
Organiza
tion of
Economic
Cooperat
ion and
Develop
ment,
Paris,
France,
OECD
Health
Data
1991, and
OECD
Health
Systems:
Factgs
and
Trends,
1992

Originl
Source
Organiz
ation of
Economic
Coopera
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ment,
Paris,
France,
OECD
Health
Data
1991,
and
OECD
Health
Systems:
Factgs
and
Trends,
1994
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Source
Organizat
ion of
Economic
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on and
Developm
ent, Paris,
France,
OECD
Health
Data
1991, and
OECD
Health
Systems:
Factgs
and
Trends,
1995



0 Country Expect
ation of
Life at
Birth
(years)
1991

51 Syria 69.4 111 Nigeria 48.9
52 Korea North 69.0 112 Mozambique 47.4
53 Thailand 68.5 113 Central

African
Republic

47.1
54 Lebanon 68.4
55 Libya 68.1
56 Malaysia 68.1 114 Mali 46.1

1 Japan 79.2 57 Dominican
Republic

67.2 115 Sierra Leone 44.8
2 Switzerland 79.1 116 Angola 44.3
3 Spain 78.3 58 Iraq 67.0 117 Afghanistan 43.5
4 Italy 78.1 59 Algeria 66.7 118 Guinea 42.8
5 France 77.8 60 Ecuador 66.2 119 Chad 39.8
6 Netherlands 77.8 61 Honduras 66.0 120 Andorra
7 Sweden 77.8 62 Saudi Arabia 65.9 121 Antigua and

Barbuda8 Greece 77.7 63 El Salvador 65.5
9 Canada 77.5 64 Brazil 65.2 122 Armenia

10 Austria 77.3 65 Mongolia 65.1 123 Aruba
11 Belgium 77.1 66 Vietnam 64.7 124 Bahamas
12 Norway 77.1 67 Morocco 64.6 125 Bahrain
13 Australia 77.0 68 Philippines 64.6 126 Barabados
14 Israel 77.0 69 Iran 64.5 127 Belize
15 Costa Rica 76.8 70 Peru 64.3 128 Bhutan
16 United

Kingdom
76.5 71 South Africa 64.2 129 Bosnia

Herzogovina72 Guatemala 63.2
17 Denmark 75.9 73 Nicaragua 62.5 130 Botswana
18 Finland 75.8 74 Zimbabwe 61.7 131 Brunei
19 Germany 75.8 75 Bolivia 61.5 132 Byelarus
20 USA 75.7 76 Kenya 61.5 133 Cambodia-cf.

Campuchia21 Cuba 75.6 77 Indonesia 61.0
22 Ireland 75.5 78 Egypt 60.8 134 Cape Verde
23 New Zealand 75.5 79 India 57.2 135 Comoros
24 Albania 75.1 80 Oman 56.6 136 Croatia
25 Singapore 74.8 81 Pakistan 56.6 137 Cyprus
26 Portugal 74.7 82 Liberia 56.4 138 Djibouti
27 Venezuala 74.2 83 Zambia 56.4 139 Dominica
28 Panama 74.0 84 Somalia 55.9 140 Equatorial

Guinea29 Jamaica 73.6 85 Togo 55.6
30 Kuwait 73.6 86 Papua New

Guinea
55.4 141 Estonia

31 Chile 73.4 142 Fiji
32 Yugoslavia 73.0 87 Senegal 55.1 143 Gabon
33 Czechoslovak

ia
72.9 88 Burma 54.9 144 Gambia

89 Ghana 54.6 145 Georgia
34 Poland 72.9 90 Ivory Coast /

Cote d'Ivoire
54.3 146 Germany East

35 Bulgaria 72.7 147 Germany West
36 Uruguay 72.6 91 Congo 54.2 148 Grenada
37 Mexico 72.2 92 Zaire 53.9 149 Guinea-Bissau
38 Romania 71.9 93 Haiti 53.6 150 Guyana
39 Tunisia 71.9 94 Bangladesh 53.0 151 Hong Kong
40 Hungary 71.6 95 Sudan 53.0 152 Iceland
41 Jordan 71.2 96 Madagascar 52.6 153 Kiribati
42 Sri Lanka 71.1 97 Burkina 52.5 154 Kyrgystan
43 Colombia 71.0 98 Rwanda 52.5 155 Lesotho
44 Argentina 70.9 99 Burundi 52.4 156 Liechtenstein
45 UAR United

Arab Emirates
70.9 100 Tanzania 52.0 157 Lithuania

101 Ethiopia 51.3 158 lLatvia
46 China /

People's
Republic of
China /
Mainland

70.0 102 Cameroon 51.0 159 Luxembourg
103 Niger 51.0 160 Maldives
104 Uganda 51.0 161 Malta
105 Nepal 50.6 162 Mauritania
106 Benin 50.5 163 Mauritius

47 Soviet Union
frmr

69.8 107 Laos 50.2 164 Moldova
108 Yemen 49.9 165 Namibia

48 Turkey 69.8 109 Kampuchia /
Cambodia

49.3 166 Puerto Rico
49 Korea South 69.7 167 Qatar
50 Paraguay 69.7 110 Malawi 49.2 168 Russia
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169 Saint Kits and
Nevis

170 Saint Vincent
and the
Grenadines

171 San Marino
172 Santa Lucia
173 Sao Tome and

Principe
174 Serbia
175 Seychelles
176 Suriname
177 Swaziland
178 Taiwan /

Republic of
China

179 Tajikistan
180 Trinidad and

Tobago
181 Turkmenistan
182 Tuvalu
183 Ukraine
184 Upper Volta
185 USSR
186 Uzbekistan
187 Venuatu
188 Vietnam

North
189 Vietnam

South
190 Western

Somoa
191 Yemen (Aden)
192 Yemen (Sana)

Statis
tical
Abstra
ct of
the
Unite
d
States
1991
Table
1361 p.
824
Origin
al:
U.S.
Burea
u of
the
Census
,
World
Popul
ation
Profil
e:
1991.
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Mean:  

… 8. a. Math.  [= F. moyenne, ellipt. for quantité moyenne.]  The term
(or, in plural, the terms) intermediate between the first and last
terms(called the extremes) of a progression of any kind (distinctively,
arithmetic(al, geometric(al, harmonic(al mean).  Also, in a wider
sense, a quantity so related to a set of n quantities that the result of
operating with it in a certain manner n times is the same as that of
operating similarly with each of the set.  In this sense the
arithmetic(al mean (commonly called simply the mean) of a set of n
quantities is the quotient of their sum divided by n; the geometric(al
mean is the nth root of their product.  …

(Excerpt from Oxford English Dictionary 2 -- CD -- exact
reference??)

The Mean

What is a typical income?  What is the size of a typical family?

The second number commonly used to answer that question is the mean. 

Assuming that people come with different incomes, with different

heights and weights, the mean is the sum of a set of numbers divided by

number of elements in the set.

It may be that the simplicity of the mean and the ease of

computation (when you are working without a computer) is what makes

it the most commonly used measure of the center:  What is the mean of  1

and 2?  Add them up, the sum is 3, and divide by 2.  The mean of 1 and 2

is 1.5.  That’s it.  There is nothing more to the arithmetic:  Compute the

sum of the numbers and then divide the sum into equal parts.  Going

back to the data reporting protein content of 30 breakfast cereals, listed

in Figure __:   The sum of the 30 numbers reporting protein content is 89.1

grams of protein.  Dividing the sum into 30 equal parts, the average is

89.1 grams of protein divided by 30:  The mean is 2.97 grams of protein

per serving.



2  012 Rules of Evidence

2

Macintosh HD:DA:DA IX:Volume I:066  mean    March 26, 1999

Cereal
Number

Grams of
Protein

1 4.3

2 3.1

3 2.9

4 2.8

5 1.8

6 2.2

7 3.4

8 1.5

9 2.1

10 5.1

11 2.8

12 2.7

13 10.2

14 4.8

15 2

16 2.6

17 3

18 2.2

19 4.5

20 2.1

21 1.5

22 2.1

23 1.6

24 0.8

25 3.2

26 4.4

27 2.8

28 1.6

29 2.2

30 2.8

Sum: 89.1

Mean of 30: 2.97
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You can think of the mean as the answer to a “What if?” question:

What  i f  the total protein content were divided equally among cereals.

W h a t  i f  the total income of families were equally divided among

families? What  i f  the total number of children were divided equally

among families?  I f  the total were divided into equal parts, the result

would be the mean.

Exercises --- as for the median, substituting the mean.
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Which Average, The Median or the Mean?

You now have two answers to the question, “What’s typical?,

What’s the average?”.   You have the median and the mean.  And you

may suspect, correctly, that there are more answers — which raises the

question, “Which one?”  When do you use the median?  When do you use

the mean? 

In most cases there is no right answer, no right answer in the sense

that you can look up the answer in the back of a book and be correct.

There is no clear answer because, usually, the question itself is not clear:

“What’s typical?  What’s average?”  What the person asking the

question wants is a general description:  How much money do these peo-

ple have?  How large is an average family?  Does the average break-

fast cereal provide much protein? Is the rate of infant mortality high

or low?  When you think about what you want from these data, that

you want a description, the answer becomes clear:  Either number will

answer the request for an average that describes the data, as long as

you attend to two concerns that will make the description useful:  First,

be specific about what you’ve done.  Say “the median is 2” or “the mean

is 3”.  (Do not say “the average is 3” or “the average is 2” — that’s not

specific.)  Second, be consistent:  If you or the person reading your work

is going to compare the average to some other average, then use the

same average.  I ask you the average income of families in order to

know whether it is higher or lower than it was ten years ago.  What

average did we use ten years ago?  Use the same average now.  I ask you

the average protein content of rice-based cereals in order to compare

rice-based cereals to wheat-based cereals.  Use the same average for

both.

Sometimes there is an easy answer to that question:  What is the

average life expectancy of people diagnosed to have a certain disease?

Almost certainly, for this case, the correct average is the median

because you would have to wait too long to get an answer for the mean:

If the disease is detected in 100 people, then when the 51st person has

died you will know the median.  Happily for your people, but
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unhappily for your research, you may have to wait much longer to

collect all the data you need for the mean. 

Sometimes the answer to the question is easy because the median

and the average are almost the same.  When you find that the stem and

leaf diagram gives you a symmetrical result — with the low side of the

distribution looking like a mirror image of the high side of the

distribution, the median and the average will be almost the same.  For

example, here is the stem and leaf for infant mortality rates, by state,

in the United States.  Here, the median, at 9.7 deaths per thousand

live births, and the average, at 9.75 deaths per thousand live births,

are visually indistinguishable — implying that the difference between

the median and the average is small compared to the overall range.

6.0 to 6.499
6.5 to 6.999 Verm
7 Haw
7.5 Minn, Main, Mass
8 Kans, Utah, RhIsl, NewHam,Wisc, Nev
8.5 Oregn, Calif, Iowa, Mont, Idah, Conn, Wyo
9 Neb, WVirg, Okla, Tex, Wash — —Median 9.7
9.5 Colo, Ohio, Ariz, NJersy, Penn <==/— —Average 9.75
10 NMex, Miss, SDak, Virg
10.5 NDak, Flor, Kent, Ark, NYork, Tenn
11 Indian, Louis, Mich
11.5 Alask, Dela
12 Alab, SCaro, Miss
12.5 NCaro, Georg

Figure _

Stem and Leaf of 1988 Infant Mortality Rates, Showing the Median and

the Average.

Numbers shown are in deaths per 1,000 Live Births, see Figure __ of
Chapter __. 

(Draw the stuff on the right as two arrows pointing from separate labels

into one stem.)
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But most of the time the best answer is to begin at the beginning:

At this stage of your data analysis you are creating a description, so

begin with a picture of the thing that is going to be described by the

average:  Show the stem and leaf (or the histogram, section __).  Then

compute both averages, both the median and the mean, because the

difference between the two, when they are different, improves a better

description of the data, better than either one alone.

The result for your “rules” is that I have changed the initial

question.  The question was “should I use the median or the mean”.  I’ve

answered by saying, “use both” — because it serves your real purpose,

which is to describe the data.  And now the new question is “what do I

learn by comparing the median to the mean?”

The median is, by definition, the middle value.  Therefore, one

special feature of the median is that it “ignores” the actual numbers

that are above it or below it, as long as they preserve the order so that

the same number is in the middle.  Thus, for the thirty, breakfast

cereals,  the median is 2.75 grams of protein, the number in the middle.

And if, by chance, by error, by whatever accident, the number for

Gerber’s had shown up as 5.2 instead of 10.2?  The number in the middle

is still 2.75.  And if the number for Gerber’s had been 20.2 instead of 5.2?

The number in the middle is still 2.75.  And if the number for Gerber’s

had been 100 times larger than it already is?  The number in the middle

is still 2.75.  That is one property of the median:  The median is

“robust”, with respect to changes in the extreme values.
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Rank
(Low to
High)

Cereal
Number

(Referring
to original
alphabetic

al order)

Grams of
Protein
(Rank

Ordered)

Grams of
Protein

(Altering
the Extreme

Value)

Grams of
Protein

(Altering
the Extreme

Value)

Grams of
Protein

(Altering
the Extreme

Value)

1 24 0.8
2 8 1.5
3 21 1.5
4 23 1.6
5 28 1.6
6 5 1.8
7 15 2.0
8 9 2.1
9 20 2.1

10 22 2.1
11 6 2.2
12 18 2.2
13 29 2.2
14 16 2.6
15 12 2.7
16 4 2.8
17 11 2.8
18 27 2.8
19 30 2.8
20 3 2.9
21 17 3.0
22 2 3.1
23 25 3.2
24 7 3.4
25 1 4.3
26 26 4.4
27 19 4.5
28 14 4.8
29 10 5.1
30 13 10.2 5.1 20.4 1,020.0

@ rank
15.5

Median of
30

2.75 2.75 2.75 2.75

Mean of 30 2.97 2.80 3.31 36.63

And thus, when the median is different  from the mean that’s a

clue:  The median “ignores” the extreme value; the mean uses al l

values.  When they are different, look for extreme values on one side

(either above or below) the average.  In the case of the breakfast

cereals the fact that the median is different from the mean, 2.75 versus
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2.97, is a numerical match to what we saw in the stem and leaf — that

there is one extreme value, much larger than all the others.

Showing exactly the same properties from a different perspective,

consider the data for the gross national products of 150? states.

0 to 24,999
25,000 to 49,000

50,000
75,000

100,000
125,000
150,000

175,000
200,000

225,000
250,000
275,000

300,000
325,000
350,000

375,000
400,000

425,000
450,000
475,000

500,000
525,000

550,000
575,000
600,000

625,000
750,000

800,000
825,000
850,000

875,000
900,000
925,000

950,000
975,000

1,000,000
1,025,000
1,050,000

1,075,000
1,100,000

1,125,000
1,150,000 China

India

U.S.

Indonesia
Brazil
Russia
Bangladesh, Pakistan, Nigeria, Japan
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Rank by Population
(Low to High)

Country Total Population 1990 in thousands (From the Statistical
Abstract of the United States, 1991 Table 1359)

1 Tuvalu 9
2 San Marino 23
3 Liechtenstein 28
4 Saint Kits and Nevis 40
5 Andorra 52
6 Antigua and Barbuda 64
7 Aruba 64
8 Seychelles 68
9 Kiribati 70

10 Grenada 84
11 Dominica 85
12 Saint Vincent and the

Grenadines
113

13 Sao Tome and Principe 125
14 Santa Lucia 150
15 Venuatu 165
16 Western Somoa 186
17 Maldives 218
18 Belize 220
19 Bahamas 249
20 Barabados 254
21 Iceland 257
22 Djibouti 337
23 Malta 353
24 Equatorial Guinea 369
25 Brunei 372
26 Cape Verde 375
27 Luxembourg 384
28 Suriname 397
29 Comoros 460
30 Qatar 491
31 Bahrain 520
32 Cyprus 702
33 Fiji 738
34 Guyana 753
35 Swaziland 837
36 Gambia 848
37 Guinea-Bissau 999
38 Gabon 1,068
39 Mauritius 1,072
40 Botswana 1,224
41 Trinidad and Tobago 1,271
42 Namibia 1,453
43 Oman 1,481
44 Bhutan 1,566
45 Estonia 1,584
46 Lesotho 1,755

47 Mauritania 1,935
48 Kuwait 2,124
49 Mongolia 2,187
50 Congo 2,242
51 UAR United Arab

Emirates
2,254

52 Panama 2,425
53 Jamaica 2,469
54 Liberia 2,640
55 lLatvia 2,695
56 Singapore 2,721
57 Central African

Republic
2,877

58 Costa Rica 3,033
59 Uruguay 3,102
60 Albania 3,273
61 Jordan 3,273
62 New Zealand 3,296
63 Lebanon 3,339
64 Armenia 3,357
65 Ireland 3,500
66 Nicaragua 3,602
67 Turkmenistan 3,658
68 Togo 3,674
69 Lithuania 3,726
70 Papua New Guinea 3,823
71 Laos 4,024
72 Sierra Leone 4,166
73 Libya 4,223
74 Norway 4,253
75 Moldova 4,393
76 Kyrgystan 4,394
77 Israel 4,436
78 Bosnia Herzogovina 4,517
79 Paraguay 4,660
80 Benin 4,674
81 Croatia 4,686
82 Honduras 4,804
83 Finland 4,977
84 Chad 5,017
85 Denmark 5,131
86 El Salvador 5,310
87 Tajikistan 5,342
88 Georgia 5,479
89 Burundi 5,646
90 Haiti 6,142
91 Somalia 6,654
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92 Switzerland 6,742
93 Bolivia 6,989
94 Kampuchia /

Cambodia
6,991

95 Dominican Republic 7,241
96 Guinea 7,269
97 Rwanda 7,609
98 Austria 7,644
99 Senegal 7,714

100 Niger 7,879
101 Tunisia 8,104
102 Mali 8,142
103 Zambia 8,154
104 Angola 8,449
105 Sweden 8,526
106 Bulgaria 8,934
107 Guatemala 9,038
108 Burkina 9,078
109 Malawi 9,197
110 Yemen 9,746
111 Serbia 9,883
112 Belgium 9,909
113 Greece 10,028
114 Byelarus 10,257
115 Portugal 10,354
116 Zimbabwe 10,394
117 Ecuador 10,507
118 Hungary 10,569
119 Cuba 10,620
120 Cameroon 11,092
121 Madagascar 11,801
122 Ivory Coast / Cote

d'Ivoire
12,478

123 Syria 12,483
124 Chile 13,083
125 Mozambique 14,539
126 Netherlands 14,936
127 Ghana 15,130
128 Afghanistan 15,564
129 Czechoslovakia 15,683
130 Australia 17,037
131 Saudi Arabia 17,116
132 Sri Lanka 17,198
133 Malaysia 17,556
134 Uganda 18,016
135 Iraq 18,782
136 Nepal 19,146
137 Venezuala 19,698
138 Taiwan / Republic of

China
20,435

139 Uzbekistan 20,569
140 Korea North 21,412
141 Peru 21,906
142 Romania 23,273
143 Kenya 24,342
144 Algeria 25,337
145 Morocco 25,630
146 Tanzania 25,971
147 Sudan 26,245
148 Canada 26,538
149 ARgentina 32,291
150 Colombia 33,076
151 Zaire 36,613
152 Poland 37,777
153 SPAN 39,269
154 South Africa 39,539
155 Burma 41,277
156 Korea South 42,792
157 Ethiopia 51,407
158 Ukraine 51,711
159 Egypt 53,212
160 Thailand 56,002
161 France 56,358
162 Iran 57,003
163 Turkey 57,285
164 United Kingdom 57,366
165 Italy 57,664
166 Germany West 63,232
167 Philippines 64,404
168 Vietnam 66,171
169 Germany 79,123
170 Mexico 88,010
171 Bangladesh 113,930
172 Pakistan 114,649
173 Nigeria 118,819
174 Japan 123,567
175 Russia 148,254
176 Brazil 152,505
177 Indonesia 190,136
178 USA 250,410
179 India 852,667
180 China / People's

Republic of China /
Mainland

1,133,683

Median 6,398
Mean 29,707
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For these data the median country has 6 million people

(6,398,000), like Haiti and Somalia.  The mean is 29,707,000, like

Argentina.  The difference between this median of 6 million and this

mean of 30 million is very large.  The descriptive solution is to provide

both, noting that the difference between the two corresponds to the

picture in which we see than  there is a “tail” at one end of the

distribution.  Technically, this is called a “skewed” distribution.  And

the difference between the median and the mean corresponds to the

visual evidence that the population of the world  is concentrated in a

small number of heavily populated countries

Exercise: 

--- Review of previous data, using the stem and leaf, as well as

both the median and the mean.  Note the differences between the

median and the mean.  Note the relation between the difference (or the

absence of a difference) and the shape of the stem and leaf.  Write it

up, clearly.
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Description:  Numbers for the
Variation

The Median and The Quartiles

Just as there are several ways of computing the average, there are

several ways to compute the variation.  But the situation is somewhat

simplified because these measures for variation come in pairs.  

Remember:  The median is the center with respect to which variation is

minimum in the sense of minimum absolute deviation.  So, logically, the

median  must be paired off with an indicator of absolute deviation.   By

convention the indicator (or indicators) are the quartiles.  (Or, more

precisely, by the distances between the medians and the two quartiles.)

The two quartiles are average deviations matched to the median:  The

low quartile is the median of that fifty percent of the data which is

below the median.  The high quartile is the median of the data that

are above the median.)   And remember that the mean is the center

with respect to which variation is minimum in the sense of least

squares.  So, logically, if you measure the average as the mean,

following the criterion of least squares, then consistency requires that

you measure variation by the “variance” which is the mean squared

deviation from the mean.  (And, in addition, the need to interpret the

result in intuition-friendly form will  require you to use the standard

deviation — which is the square root of the variance -- the square root

of the mean squared deviation.)  Both these things need to be defined,

beginning with the quartiles.

Recall that the median is the middle value.  Half of the data are

greater than or equal to the median.  Half of the data are less than or

equal to the median.  And now to assess this variation we ask two

questions:  Among those values that are greater than or equal to the



2  Rules of Evidence

median, what is the average value?  And among those values that are

less than or equal to the median, what is the average value?  And when

we have computed those numbers, then the average of the high values

and the average of the low values helps us visualize the spread of the

data.  So we compute the median of those values that are greater than

or equal to the median of all values and call it the high quartile.  And

we compute the median of those values that are less than or equal to

the median of all values and call it the low quartile, using the word

“quartile” because these three numbers, the low quartile, the median,

and the high quartile divide the data into four ranges of values.  We

use these quartiles to visualize the central “hump” of the data.

Hypothetical Income Distribution Divided Into Quartiles 
Showing the Middle Fifty Percent of the Data

 Lowest 
Twenty-Five 

Percent

Highest
Twenty-Five 

Percent

Middle 
Fifty Percent

Median

High Quartile

Low Quartil
e

The range of values between these two quartiles describes the

central range of the data: 

The median protein content of breakfast cereals is __ grams of

protein, with the typical breakfast cereal providing between ___

and ___ grams of protein (specifying the quartiles). 
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The median personal income of these college graduates is ___

(specifying the median), with typical incomes ranging between

___ and ___ (specifying the quartiles).

That’s what we’re after, something to express the “middle” of the

data, although typically, in print, you will find this information in

abbreviated form, simply naming the values:  “The median is __, with

quartiles at __ and __.”  That tight little statement, little more than

three numbers, presumes that you know what to do with the numbers

when you’ve got them.  And what you do with the numbers is to build a

mental picture of the center: 

The median protein content is 2.3 grams, with quartiles at 2.2

grams and 2.4 grams.

That message gives me a picture of a distribution wrapped tightly

around its central value.

The median protein content is 2.3 grams, with quartiles at 1.5

grams and 4 .5 grams.

This message gives me a picture of a distribution that is spread

out, and spread more in one direction (toward the high end) than the

other.
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Customarily we go one step further, adding two more numbers, five

in all, to specify the extremes.  Thus, completing the description,

The median protein content is 2.3 grams, with typical values

lying between the low quartile at 1.5 grams and the high quartile

at 4.5 grams.  In a few instances the values differ considerably from

these typical numbers, ranging as low as 0.8 grams, for rice cereals,

and as high as 10.2 grams of protein for Gerbers high protein.

Computing the Quartiles

That’s the idea, the rest is detail, important detail, to make sure

that we agree on the computation that specifies these quartiles.  I will

specify a procedure but the important point is the definition:  The

median divides the data into two sets, high and low.  And then the

high quartile is the median of the subset of values that are greater

than or equal to the median.  The low quartile is the median of the

subset of values that are less than or equal to the median. 

So to compute these quartiles, we begin as we did with the median,

by putting the data in rank order, low to high.  Then where “n” is the

number of values, the arithmetic is to compute the number (n+1)/2.  If

the result is a whole number, it identifies the location of the median.  If

the result is a fraction, then it identifies two numbers whose average is

the median

n = number of values in the data

m = location of median = (n+1)/2

If the result is a whole number then the number of values that are

greater than or equal to the median is m.   And if the result is a fraction,
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then the number of values that are greater than or equal to the median

is the integer part of m, m.   (If m is 10.5, then its integer part is 10,

lopping off the fraction.)  And thus the location of the quartile is found

by computing the number (m+1)/2.  If the result is a whole number, it

identifies the location of the quartile.  If the result is a fraction, then it

identifies two numbers whose average is the quartile.

m = number of values greater than or equal to the median

q = location of quartile = (m+1)/2

Exactly the same computation works for the remaining quartile

except that you count to q starting at the other end of the distribution.

Thus,

m = number of values less than or equal to the median

q = location of quartile = (m+1)/2

Working it out with eight things:   n =  8 implies  the arithmetic

(n+1)/2 = 4.5.  So, the depth of the median is 4.5 and, using the rank

order, the median is the mean of the fourth number and the fifth.  The

integer part of 4.5 is 4, telling me that the number of values less than or

equal to the median is 4. 

That gives me m = 4.  And m = 4 implies the arithmetic (m+1)/2 =

2.5.  So, the depth of the quartile is 2.5 and, using the rank order, the

high quartile is the mean of the second and third largest values (in

order from large to small) while the low quartile is the mean of the

second and third smallest values (in order from small to large).

n = 8

m = 4.5

m = 4

q = 2.5
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Working it out with nine things:   n = 9 implies  the arithmetic

(n+1)/2 = 5.  So, the depth of the median is 5 and, using the rank order,

the median value is the fifth value.  The number of values less than or

equal to the median is 5. 

That gives me m = 5.  And m = 5 implies the arithmetic (m+1)/2 =

3.  So, the depth of the quartile is 3 and, using the rank order, the high

quartile is the third largest values while the low quartile is the third

smallest value (in order from small to large).

n = 9

m = 5

m = 5

q = 3

Working it out with ten things:    n =  10 implies  the arithmetic

(n+1)/2 = 5.5.  So, the depth of the median is 5.5 and, using the rank

order, the median is the mean of the fifth number and the sixth.  The

integer part of 5.5 is 5, telling me that the number of values less than or

equal to the median is 5. 

That gives me m = 5.  And m = 5 implies the arithmetic (m+1)/2 =

3.  So, the depth of the quartile is 3 and, using the rank order, the high

quartile is the third largest value (in order from large to small) while

the low quartile is the third smallest value (in order from small to

large).

n =10

m = 5.5

m = 5

q = 3
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The Mean and the Standard Deviation

The second way to compute variation is paired with the mean.  If

you measure the average as the mean, then you measure the variation

by computing the standard deviation.  The idea for the standard

deviation begins by defining deviation, any deviation, as the

difference between a value found in the data and the mean of all the

values found in the data.   If I have an income of $60,000 and the

average income is $50,000, then my deviation is $10,000.

    

Variance = Mean Squared Deviation =
1

n
xi − x( )2

i =1

n

∑ Deviation =

Observed Value – Mean Value

Then the basic idea for the standard deviation is to compute the

mean of the deviations — except that the basic idea doesn’t work out.

The trouble is that the simple mean of the deviations is a useless

number, in fact it is always zero.   You  can work out this result by

simply adding up all the deviations algebraically and dividing by n,

computing their mean:

    

Mean Deviation =
1

n
xi − x( )

i =1

n

∑

Following the algebra in steps:  Distributing the summation

expands the expression for the average to

    

Mean Deviation =
1

n
xi − x( )

i =1

n

∑ =
1

n
xi( )

i =1

n

∑ −
1

n
x( )

i = 1

n

∑

Evaluating the two expressions on the right, the first is x-bar

itself, the mean

    

Mean Deviation =
1

n
x i − x( )

i =1

n

∑ = x −
1

n
x( )

i =1

n

∑
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Evaluating the second expression on the right shows that it too is equal

to the mean

    

Mean Deviation =
1

n
x i − x( )

i =1

n

∑ = x −
1

n
nx

    

Mean Deviation =
1

n
x i − x( )

i =1

n

∑ = x − x

which reduces to zero

    

Mean Deviation =
1

n
x i − x( )

i =1

n

∑ = 0

which shows that the average deviation is zero, always zero — so it

doesn’t tell us anything useful about the data.

The conventional solution is to keep the idea, we are still looking

for some sort of average deviation, but modify it by squaring the

deviation, computing the mean squared deviation, known as the

“variance.” 

    

Variance = Mean Squared Deviation =
1

n
xi − x( )2

i =1

n

∑

That is the basic answer, for a measure of the variation, but we’re

not quite done with it.  There is one more problem:  As soon as you try to

compute a variance, and then interpret it, you will find that it

measures things in squared units:  If the data are measured in grams of

protein, then the mean squared deviation will give you a result in

square grams of protein.  That’s not usable.  I can’t say “the variance of

the protein content of breakfast cereals is 3 square grams of protein.”  It

makes no sense.  So, what we do is take the square root and apply the

name “standard deviation” written as sx.  Describing the standard

deviation in the jargon of the trade, we use the “root mean squared

deviation” as the measure of variation with respect to the mean.  You



subtitle 9

  9

Macintosh HD:DA:DA IX:Volume I:074 Description  Numb for March 26, 1999

can see each of the terms, the root, the mean, and the square, at work in

the formula:

    

Standard Deviation of X = sx =
1

n
xi − x( )2

i =1

n

∑

Computing the Quartiles

In practice, the way you compute this thing is in stages.  Showing

the steps for the data on protein content of wheat cereals, Figure __,

the first step is to compute the mean:  For these five cereals, the sum is

13.8 grams of protein which, when divided into five equal parts gives

the mean of 2.76 grams of protein.

Then computing the deviations from the mean, the first datum, 1.6,

deviates from the mean by -1.16, for a squared deviation of 1.35.  The

sum of these squared deviations is 4.35 grams of protein.  The variance

(the mean squared deviation) is .87 squared grams of protein.  And the

standard deviation (the root mean squared deviation) is .93 grams of

protein.

Wheat Cereals Protein in

Grams

Deviations Squared

Deviations

Quaker Puffed Wheat 1.6 -1.16 1.35

Shredded Wheat 2.2 -0.56 0.31

Wheaties 2.8 0.04 0.00

Wheat Chex 2.8 0.04 0.00

Wheat Flakes 4.4 1.64 2.69

Sum 13.8 4.35

Mean/Variance 2.76 0.87

Standard Deviation 0.93
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The rendering of this information into English is traditionally a

little opaque:

The mean protein content of wheat breakfast cereals is 2.76

grams of protein with a standard deviation of .93 grams.

The mean personal income of these college graduates is ___

specifying the mean, with a standard deviation of __ (specifying

the standard deviation.)

What you are supposed to “see” in that statement is a schematic

version of what you actually have.  You are supposed to see a

distribution of data that is symmetrical and bell shaped:  The mean

marks the center point.  The standard deviation marks off a central

region which, schematically, corresponds to the inflection points in the

curve of the bell:

Mean plus 1 standard Deviation

Mean

Mean minus 1 standard Deviation

Typically, in writing, one standard deviation is used as a

yardstick to mark off small variations while two standard deviations

are used to mark off large variations:  If the difference between the

mean incomes of two different populations is less than one standard

deviation, that is taken to suggest that the difference between the

means is small (which is not to say that it is unimportant).  Two

standard deviations are used as a yardstick to mark off large
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variations:  If the difference between the mean incomes of two different

populations is more than two standard deviations, that is taken to

suggest that the difference  between the means is large. 

But the real cue to writing and using these things is to keep it

simple:  You are using the mean and the standard deviation to describe

a picture of the data.  So, provide the picture, your stem and leaf

drawing or a histogram, and accompany it with the numbers.  Use them

all:  Use the median, the quartiles, the mean, and the standard

deviation.  You will learn, with experience, to match the numbers to

the picture, matching the numbers to the peculiar things that are

likely to show up in real data.  But there is no need to speak in code:

Speak, and write clearly.  Show the picture.  Add the numbers.
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Well-Behaved Variables

The Unit of Measure

The Stem and Leaf procedure and its cousin the histogram

are powerful devices for making sense out of data:  You look at

the picture, you construct mental hypotheses by examining first

the shape and then the positions of the different units — soy

bean cereal is high protein, rice cereal is low protein.  Much of

the numerical technology invented for the purpose of data anal-

ysis provides ways to summarize what you see in these pictures,

ways to test the hypotheses you construct, and ways of adding

precision to what you have inferred from these pictures.  Yet the

picture is primary and that is why such a technique as simple as

the Stem and Leaf, with little technological challenge, is

nevertheless an extremely powerful device in the hands of a

data analyst. 

However, even here there is a challenge.  There are choices

to be made.  You, the analyst, can not just take the data as given,

build a few pictures, report a few numbers, and be done with it —

claiming you have analyzed the data.  Would that it were that

easy.

There are too many pictures that you could draw, too many

numbers that you could compute.  So the analyst has to acquire

skills that go beyond the routine pictures and mechanical

computation of numbers.  Which pictures?  Which numbers?

Why these?  And what are their implications.  For example,

suppose I had set up the breakfast cereal data in terms of grams

of protein per calorie as the unit of measure instead of setting it

up in terms of protein alone..  Using protein per calorie , the idea

would be to look for high protein qualified by the number of

calories that have to be consumed to obtain the measure of



protein.  Using the ratio of protein to calories would affect the

analysis by building-in some compensation for sugar-filled foods

as well as air-filled foods that provide neither protein nor

anything else in each air-filled serving. 

If the idea is to protein to calories, the idea allows at least

two implementations.  There is a choice:  I could compare protein

to calories by computing grams of protein per calorie .  Or, I could

compare one to the other by computing calories per gram of

protein.

On the face of it, it should make no difference:  Whether it

is protein per calorie or calories per protein it is the same

information — or is it?



1
2
3
4
5
6
7
8
9

10

Rice Krisp Kell; Rice Cerl Gerb;Rice puffed Quak;Rice Flak
KixGM; PostToast; BranRaisPost; BranRaisKel; KrumbKell; WheatShred;WheatiesGM; Wheat Chex; MuffetsQuak; BranFlk40%Post; BranFlk40%Kell
BranKel; CheerioGM;BarleyGerb;WheatFlkQuak;WheatPuffQuak;Mixed Gerb
Oatmeal
Special KKell
Hi Pro GM

HighProGerb

Figure 1a
Grams of Protein per 100 Calories

Stems:  1 gram per 100 calories, 2 grams per
100 calories, ... 10 grams per 100 calories.

10
20
30
40
50
60

HighProGerb;HiProGM;SpecialKKell
Oatmeal;MixedGerb;WheatPuffQuak;WheatFlkQuak;BarleyGerb
Cheerio; BranKel; BranFlk40%Kell; BranFlk40%Post; MuffetsQuak; WheatChex; WheatiesGM; WheatShred; KrumbKell
BranRaisKel; BranRaisPost; PostToast; KixGM
RiceFlak
RicepuffedQuak; RiceCerlGerb; RiceKrispKell

Figure 1b
Calories per gram of Protein

Stems:  10 Calories per gram, 20 calories per gram,
... 60 calories per gram.
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The two figures display the two Stem and Leaf Procedures

using, in the first case, grams of protein per 100 calories and, in

the second case, calories per gram of protein   The first S & L,

Figure 1a is similar to what we saw earlier with four cases

standing out on the high side, one of which, Gerber’s High

Protein is extreme.  

The second S & L is a different shape.  There is a dip at 50

followed by a bump at 60, and together these two stems identify

four extreme cases.  But these are not the same cases — these are

all rice cereals.  The Gerber’s High Protein has migrated to the

other end of the distribution.  And it no longer stands out,

demanding attention.  In this picture of the data it is just one

leaf on a stem with two other leaves.

This is, for me, “distressing”.  When I analyzed the

breakfast cereal data my intuition and the course of my

investigation leaned heavily on what I saw.  Here I “see” two

different pictures.  I have to assume that in the long run

whichever picture I use I will end up with the same

understanding of the underlying nature of these data — there is

one reality behind these data and I had better find it.  But it is

also clear that the intuitions and the course of my investigation

will start off in different directions depending on which picture

I use at the beginning of my research. 

What’s going on?  The two different procedures alter the

unit of measure.  In the first case, one unit, two units, three units,

1, 2, 3, .... counts grams of protein associated with 100 calories.

In the second case, one unit, two units, three units counts calories

associated with a gram of protein.  This has changed the units

and, most important, it has changed the intervals between the

values.



1 2 3 4 5 6 7 8 9 10
Grams of protein per 100 calories

100

50

33.3

25
20
16.714.3 12.511.1 10
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1 gram per 100 calories  ↔ 100 calories per gram

2 grams per 100 calories  ↔ 50 calories per gram

3 grams per 100 calories  ↔ 33.3 calories per gram

4 grams per 100 calories  ↔ 25 calories per gram

5 grams per 100 calories  ↔ 20 calories per gram

6 grams per 100 calories  ↔ 16.7 calories per gram

7 grams per 100 calories  ↔ 14.3 calories per gram

8 grams per 100 calories  ↔ 12.5 calories per gram

9 grams per 100 calories  ↔ 11.1 calories per gram

10 grams per 100 calories↔ 10 calories per gram

The change in the unit of measure changes the intervals.

That is why Gerber’s High Pro has one third of the S&L to

itself, in one picture, while Gerber’s shares its stem with two

other cereals in the other picture of the same data. 

In one picture I may say that Gerber’s High Pro has

approximately double the protein per calorie of its nearest

competitor.  In the other picture I say that Gerber’s High Pro

has approximately the same number of calories per gram of

protein as General Mills Hi Pro and Kellogg’s Special K.  Both

statements are correct.  But they steer your intuition in different

directions. 
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This is the proverbial “tip of the iceberg”.  Consider, for

example, the data comparing the number of physicians to the

number of doctors in a collection of countries.  (1975 data). 

In physicians per 1,000 people, the median among

these 137 countries is 0.385 physicians per thousand

people, the number for Mauritania.  There is a small

number of countries with relatively large numbers of

physicians per person among which the USSR and the

United Arab Emirates are so extreme as to warrant

consideration as special cases.  The inner fences

establish a “normal” range of variation from -1.5

physicians per 1,000 to 2.8 physicians per thousand. 

0

.2
5

.5
0

.7
5

1
.0

0

1
.2

5

1
.5

0

1
.7

5

2
.0

0

2
.2

5

2
.5

0

2
.7

5

3
.0

0

56

22

13

6
9 7 8 7 5

1 1 1 1

N
um

be
r 

of
 C

ou
nt

ri
es

10

20

30

40

50
E.g., there are 56 Countries for which the number of Physicians
per Thousand is Greater than or equal to 0 and less than .25.
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USSR

Inner Fence 
2.787

Mean 
.681

Median 
.385

Mean + Two Standard Deviations 
2.139

Figure 2

Distribution of 137 Countries with Respect to Physicians per Thousand Population, 1975 Data.

(In physicians per thousand, the median is .385 and the lower and upper quartiles are .077 and 1.161.  The mean
is .681 and the standard deviation is .729.



That’s what the numbers say:  They establish a reasonable

range from -1.5 to 2.8 physicians per thousand, directing us that

nothing within this range is so unusual as to warrant attention

as an exception.  I have my trouble with any method that

directs me not to worry about a negative number of physicians

per thousand, that’s silly.  But ignoring that, they direct my

attention to the physician-intensive end for two unusual cases. 

That’s what the numbers say, or maybe it isn’t.
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In people per physician, the median among these137 countries is 2,600

people, the number for Mauritania.  The inner fences establish a “normal” range

of variation from 861 physicians per person to 13,000 physicians per person.

The only unusual cases are at the population-intensive end.  On the physician-

intensive end seven countries exceeding the inner fence and four more countries

exceeding the outer fence.  Together, the USSR and the United Arab Emirates

show the smallest number of people per physician, but neither of these ratios is

sufficiently different from adjacent values in the distribution to warrant

attention as being different in kind from other countries.

56
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E.g., there are 86 Countries for which the number of Peopleper 
Physician is Greater than or equal to 0 and less than 5,000.

Outer Fence 
49,351

Mean 
9,189

Median 
2,598

Mean + Two Standard Deviations 
37,637

86

10
15
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3 2 2 2 1 3 2 1 1

60
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80

Inner Fence 
31,167

Figure 3

Distribution of 137 Countries with Respect to People per Physician, 1975 Data.

In physicians per person, the median is 2,598 and the lower and upper quartiles are 861 and 12,984.
The mean is 9,189 and the standard deviation is 14,224.



This is the kind of now-you-see-it / now-you-don’t stuff

that gives statistics a bad name — it appears that if I don’t

like one picture of the data, then I am free to create another.

Do I want to use school enrollment data to show that certain

schools have excessively large classes — never mind the facts?

Then I would use enrollment data organized to count students

per class.  In that form the data will tend to show a “tail” at

the high end of the distribution, suggesting that something is

wrong or out of line among the largest entries.  Do I want to use

school enrollment data to show that certain schools have

extremely favorable  faculty student ratios?  Then I would

organize the same enrollment data to count faculty per student.

In that form the data will tend to produce a tail at the opposite

end of the distribution where there are large faculty to student

ratios.

But this kind of cheating is not data analysis, this is bad

data analysis or, perhaps, clever propaganda using numbers

and data to create a pretense that its conclusions are objective.

This kind of manipulation may be done intentionally, in order

to create a picture which is as favorable as possible with

respect to the interests of the analyst or the client of the

analyst. It may be done unintentionally — because the data

were presented in one form and the computations were made on

the data as given,  without thought for the consequences or the

alternatives.  Whatever the reason, in the trade we have

standards that go a long way toward preventing this kind of

lying with statistics, and a long way toward detecting it when

it is committed by others.  In a phrase, the solution is the “well

behaved variable.”



090 Phy/Cap people/Phy

1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A B C D E F G H

Country

Doctors Total Population 
'75

Doctors/Person Doctors 
Per 1,000 
People

People per 
Doctor

UAR United Arab 
Emirates 681 220,000 0.003095455 3.095 323
USSR 733,744 255,038,000 0.002876999 2.877 348
Israel 9,144 3,417,000 0.002676032 2.676 374
Czechoslovakia 35,385 14,793,000 0.00239201 2.392 418
Bulgaria 18,773 8,793,000 0.002134994 2.135 468
Austria 15,702 7,538,000 0.002083046 2.083 480
Italy 114,228 55,023,000 0.002076005 2.076 482
Greece 18,423 8,930,000 0.002063046 2.063 485
Hungary 21,131 10,534,000 0.002005981 2.006 499
Germany West 122,069 61,682,000 0.001979005 1.979 505
Denmark 9,896 5,026,000 0.001968961 1.969 508
Argentina 48,687 25,384,000 0.001918019 1.918 521
Belgium 18,510 9,846,000 0.001879951 1.880 532
Germany East 31,308 17,127,000 0.001827991 1.828 547
Mongolia 2,604 1,446,000 0.00180083 1.801 555
Switzerland 11,469 6,535,000 0.001755011 1.755 570
Iceland 372 216,000 0.001722222 1.722 581
Poland 58,240 33,841,000 0.001720989 1.721 581
Norway 6,884 4,007,000 0.001717994 1.718 582
Canada 39,104 22,801,000 0.001715012 1.715 583
Sweden 14,045 8,291,000 0.001694006 1.694 590
USA  348,484 213,925,000 0.001629001 1.629 614
Netherlands 21,826 13,599,000 0.001604971 1.605 623
SPAN 54,992 35,433,000 0.001552 1.552 644
France 77,888 52,913,000 0.001472001 1.472 679
Finland 6,699 4,652,000 0.001440026 1.440 694
New Zealand 4,110 3,031,000 0.001355988 1.356 737
Romania 28,548 21,178,000 0.001348003 1.348 742
United Kingdom 75,612 56,427,000 0.001339997 1.340 746
Yugoslavia 27,143 21,322,000 0.001273004 1.273 786
Portugal 11,101 8,762,000 0.001266948 1.267 789
Ireland 3,773 3,131,000 0.001205046 1.205 830
Japan 133,344 111,120,000 0.0012 1.200 833
Puerto Rico 3,479 2,902,000 0.001198828 1.199 834
Malta 382 329,000 0.001161094 1.161 861
Libya 2,586 2,255,000 0.001146785 1.147 872
Luxembourg 368 342,000 0.001076023 1.076 929
Venezuala 13,105 12,213,000 0.001073037 1.073 932
Qatar 96 90,000 0.001066667 1.067 938
Kuwait 1,089 1,085,000 0.001003687 1.004 996
Cuba 8,201 9,481,000 0.000864993 0.865 1,156

Page 1



090 Phy/Cap people/Phy

43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

A B C D E F G H
Paraguay 2,229 2,647,000 0.000842085 0.842 1,188
Panama 1,404 1,678,000 0.00083671 0.837 1,195
Cyprus 547 673,000 0.000812779 0.813 1,230
Bahamas 161 200,000 0.000805 0.805 1,242
Lebanon 2,301 2,869,000 0.000802022 0.802 1,247
Togo 1,623 2,248,000 0.000721975 0.722 1,385
Peru 10,514 15,326,000 0.000686024 0.686 1,458
Hong Kong 2,881 4,225,000 0.000681893 0.682 1,467
Bahrain 177 260,000 0.000680769 0.681 1,469
Barabados 166 245,000 0.000677551 0.678 1,476
Costa Rica 1,292 1,994,000 0.000647944 0.648 1,543
Nicaragua 1,400 2,318,000 0.000603969 0.604 1,656
Brazil 62,656 109,730,000 0.000571002 0.571 1,751

Trinidad and 
Tobago 550 1,009,000 0.000545094 0.545 1,835
Turkey 21,696 39,882,000 0.000544005 0.544 1,838
Mexico 31,556 59,204,000 0.000533005 0.533 1,876
Korea South 17,851 34,663,000 0.000514987 0.515 1,942
Colombia 12,997 25,890,000 0.000502008 0.502 1,992
Ecuador 3,517 7,090,000 0.000496051 0.496 2,016
South Africa 12,060 24,663,000 0.000488992 0.489 2,045
Suriname 202 422,000 0.000478673 0.479 2,089
Bolivia 2,581 5,410,000 0.000477079 0.477 2,096

Dominican 
Republic 2,375 5,118,000 0.000464048 0.464 2,155
Vietnam South 9,000 19,650,000 0.000458015 0.458 2,183
Chile 4,419 10,253,000 0.000430996 0.431 2,320
Iraq 4,504 11,067,000 0.000406976 0.407 2,457
Saudi Arabia 3,613 8,966,000 0.000402967 0.403 2,482
Mauritius 346 899,000 0.000384872 0.385 2,598
Seychelles 21 60,000 0.00035 0.350 2,857
Iran 11,358 32,923,000 0.000344987 0.345 2,899
Western Somoa 55 160,000 0.00034375 0.344 2,909
Syria 2,403 7,259,000 0.000331037 0.331 3,021
Philippines 13,464 44,437,000 0.000302991 0.303 3,300
Honduras 920 3,037,000 0.000302931 0.303 3,301
Guyana 237 791,000 0.000299621 0.300 3,338
Jamaica 570 2,029,000 0.000280927 0.281 3,560
Jordan 745 2,688,000 0.000277158 0.277 3,608
El Salvador 1,117 4,108,000 0.000271908 0.272 3,678
Pakistan 17,922 70,560,000 0.000253997 0.254 3,937
Grenada 25 100,000 0.00025 0.250 4,000
India 145,946 613,217,000 0.000238001 0.238 4,202
Sri Lanka 3,245 13,986,000 0.000232018 0.232 4,310
Egypt 8,034 37,543,000 0.000213995 0.214 4,673
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090 Phy/Cap people/Phy

86
87
88
89
90
91
92

93
94
95
96
97
98
99

100
101
102
103
104
105
106
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108
109
110
111

112
113
114
115
116
117
118
119
120

121
122
123
124
125
126
127

A B C D E F G H
Tunisia 1,213 5,747,000 0.000211067 0.211 4,738
Oman 153 770,000 0.000198701 0.199 5,033
Guatemala 1,207 6,129,000 0.000196933 0.197 5,078
Gabon 96 521,000 0.000184261 0.184 5,427
Burma 5,561 31,240,000 0.000178009 0.178 5,618
Malaysia 2,007 12,093,000 0.000165964 0.166 6,025
Congo 213 1,345,000 0.000158364 0.158 6,315

Sao Tome and 
Principe 12 80,000 0.00015 0.150 6,667
Zimbabwe 916 6,272,000 0.000146046 0.146 6,847
Swaziland 65 469,000 0.000138593 0.139 7,215
Thailand 5,009 42,093,000 0.000118998 0.119 8,403
Ghana 938 9,873,000 9.50066E-05 0.095 10,526
Kenya 1,246 13,251,000 9.40306E-05 0.094 10,635
Madagascar 754 8,020,000 9.4015E-05 0.094 10,637
Zambia 470 5,004,000 9.39249E-05 0.094 10,647
Botswana 63 691,000 9.11722E-05 0.091 10,968
Haiti 396 4,552,000 8.69947E-05 0.087 11,495
Liberia 142 1,708,000 8.31382E-05 0.083 12,028
Sudan 1,407 18,268,000 7.70199E-05 0.077 12,984
Maldives 9 120,000 0.000075 0.075 13,333
Morocco 1,243 17,504,000 7.10123E-05 0.071 14,082
Senegal 305 4,418,000 6.90358E-05 0.069 14,485
Bangladesh 5,088 73,746,000 6.89936E-05 0.069 14,494
Comoros 21 306,000 6.86275E-05 0.069 14,571
Mauritania 87 1,283,000 6.78098E-05 0.068 14,747
Nigeria 4,224 63,049,000 6.69955E-05 0.067 14,926

Ivory Coast / Cote 
d'Ivoire 322 4,885,000 6.59161E-05 0.066 15,171
Guinea 278 4,416,000 6.29529E-05 0.063 15,885
Indonesia 8,299 136,044,000 6.10023E-05 0.061 16,393
Somalia 193 3,170,000 6.08833E-05 0.061 16,425
Angola 384 6,394,000 6.00563E-05 0.060 16,651
Yemen (Sana) 367 6,668,000 5.5039E-05 0.055 18,169
Cameroon 354 6,433,000 5.50288E-05 0.055 18,172
Tanzania 846 15,388,000 5.49779E-05 0.055 18,189
Mozambique 507 9,223,000 5.49713E-05 0.055 18,191

Central African 
Republic 97 1,790,000 5.41899E-05 0.054 18,454
Singapore 106 2,248,000 4.7153E-05 0.047 21,208
Laos 155 3,303,000 4.6927E-05 0.047 21,310
Lesotho 49 1,148,000 4.26829E-05 0.043 23,429
Uganda 431 11,353,000 3.79635E-05 0.038 26,341
Afghanistan 656 19,280,000 3.40249E-05 0.034 29,390
Zaire 807 24,450,000 3.30061E-05 0.033 30,297
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090 Phy/Cap people/Phy

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

A B C D E F G H
Benin 95 3,074,000 3.09044E-05 0.031 32,358
Nepal 339 12,572,000 2.69647E-05 0.027 37,086
Rwanda 106 4,233,000 2.50413E-05 0.025 39,934
Mali 142 5,697,000 2.49254E-05 0.025 40,120
Burundi 83 3,765,000 2.20452E-05 0.022 45,361
Chad 83 3,947,000 2.10286E-05 0.021 47,554
Malawi 103 4,909,000 2.09819E-05 0.021 47,660
Upper Volta 109 6,032,000 1.80703E-05 0.018 55,339
Niger 83 4,600,000 1.80435E-05 0.018 55,422
Equatorial Guinea 5 313,000 1.59744E-05 0.016 62,600
Ethiopia 338 28,134,000 1.20139E-05 0.012 83,237

Median 0.385 2,598
Low Q 0.077 861
High Q 1.161 12,984

Spread 1.084 12,122
Step Size 1.626 18,184

Low inner fence -1.549 -17,322
High inner fence 2.787 31,167

Low Outer Fence -3.175 -35,506
High Outer Fence 4.413 49,351

Mean 0.681 9,189
Standard Dev 0.729 14,224
Mean-2sd -0.777 -19,260
Mean-2sd 2.139 37,637
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Rules of Evidence Levine

objective …determined by and emphasizing the features and
characteristics  of the object, or thing dealt with, rather than the
thoughts, feelings, etc., or the artist, writer, or speaker.

subjective …of or resulting from the feelings or temperament of the
subject, or person thinking, rather than the attributes of the object
thought of …

Webster’s New World Dictionary, College Edition1956.

Transforming the Complex into the Simple:
Well-Behaved Variables

Data analysts attempt to reach objective conclusions.  But the path

to objective results is full of seeming contradictions one of which is that

the path itself is not objective, only the conclusion.  If there is one way

of assigning a unit of measure to the unit of analysis, then there is

always  a second, and a third and infinitely many way of assigning units

of measure.  And the analyst must choose among them.  The choice will

have consequences.  It will affect the path of the research.  Yet the

choice must be made before the result is known.  So — among the many

ways to proceed with one set of data — which one is right?

The answer depends on the concept of a well-behaved variable.

Eventually I will provide reasons why this concept “should” be as

useful as it is.  Eventually, I will philosophize with respect to its

meaning.  But make no mistake:  The “proof of the pudding” is that this

thing — the concept of a well-behaved variable — works.  Logical

argument as to why this concept should work may or may not be

convincing.  My explanation of the reason why this concept works may

or may not even be correct.    No matter.  It works.
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Five properties identify “well-behaved” variables.  A well-

behaved variable is:

1.  Symmetrical
2.  Homeoscedastic
3.  Linear
4.  Additive
and
5.  It makes sense.

1.  Symmetrical

The distribution of a well-behaved variable is symmetrical

around the center of the distribution:  The upper quartile is as far above

the median as the lower quartile is below the median.  Often a well

behaved variable is both symmetrical and bell-shaped, suggesting an

idealized form known by several names as a “bell shaped curved”, or

“normal distribution” or “Gaussian distribution”.

2.   Homeoscedastic

The variation of a well-behaved variable is constant from case to

case.  For example, if individual wealth is a well-behaved variable,

then the variation of wealth in the United States in 1960 and the

variation of wealth in the United States in 1990,  must be (more or less)

constant from 1960 to 1990 — even though the average income will have

increased considerably during those thirty years.  I f  individual wealth

Volume I edit99:094 Well-Behaved 1_Symmetry, March 26, 1999
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is well-behaved, then although the average income will have changed

between 1960 and 1990, the variation will not.

Similarly, if individual wealth is a well-behaved variable, then

the variation in wealth among those who have completed high school

and the variation in wealth among those who have completed college

must be (more or less) the same.  The average income of the college

graduate will exceed the average income of the high school graduate,

but the variation of income within each educational group will be the

same.

3. Linear

If two well-behaved variables are related at all, then the

relation between two well-behaved variables is likely to be linear —

This becomes important later when we look for relations and

correlations between variables.
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4. Additive

If a variable is well-behaved then effects that serve to increase or

decrease its value will decrease it or increase it additively.  Perhaps

the most commonly used examples of non-additive variables are

related to health where it is often suggested that risk factors (e.g.,

smoking, lack of exercise, overweight, poor diet, heredity as risk

factors associated with cardiovascular disease) are spoken of as

multiplicative in their consequences for disease.  This too becomes

important later.

5.  Makes Sense

If the logarithm  of personal income is well-behaved, then the

logarithm will have an interpretation and it will make sense.

If the cube root of the weight of organisms is well-behaved, while

the weight itself is not, then the cube root of weight is a correct unit of

measure.  The cube root will have an interpretation and there will be

good reason why the cube root makes sense.
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Memorize this list:  Symmetrical, homeoscedastic, linear , add i -

t ive , and correct.  Much of the magic an experienced data analysis can

perform, much of our ability to go beyond common sense, to find order in

data, and then to make sense of it, depends on the use of variables that

are symmetrical, homeoscedastic, linear , addi t ive , and correct . That is

to say, much of the power that a data analyst and exercise depends on

well-behaved variables .

Exercises

1. Compute  means and standard deviations from useful subsets of

the data for breakfast cereals.  Does protein content appear to be

homeoscedastic?

2. Ditto -- the ten gram weight

3. Tukey  Viscosity.  Tukey, Exploratory Data Analysis, page 25,

quoting

In 1963, McGlanery and Harban gave the values in panel A,
showing how well they could measure the viscosity of liquids with a
device called a capillary rheometer.  Make appropriate stem-and-leaf
displays for each of the three samples;  comment on the appearance of
each.
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Run (for) Viscosity in 100,000’s of poises
each sample Sample I Sample II Sample III

1 .384 .661 3.54
2 .376 .671 3.66
3 .376 .688 3.42
4 .371 .644 4.10
5 .385 .668 4.09
6 .377 .648 3.77
7 .365 .706 4.17
8 .384 .715 3.91
9 .365 .647 4.61

10 .384 .682 3.87
11 .378 .692
12 .729

(Original source:  R. M. McGlanery and A. A. Harban 1963,  “Two
instruments for measuring the low-sheer viscosity of polymer melts,”
Materials Research and Standards 3:  1003-1007.  Table 2 on page 1004.)

4.   Get the income data referred to in the text.
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Transformation

Whenever possible data analysts do not fit their tools to the data,

we fit the data to our tools.  Data analysts could develop tools for

variables that are not well behaved, for variables whose distribution

is not symmetrical, for relations that are not linear, and so forth, but we

do not.  Instead we transform the data to make it well behaved.

Mathematicians do something similar and it gives them great

power:  When you have a relatively “difficult” problem like a

multiplication problem, a transformation changes a multiplication

problem to an addition problem (applied to the logarithms).  When you

have a difficult problem like the analysis of the sound wave of a

musical instrument, a transformation changes combinations of sine

waves and cosine waves into linear combinations (of their Fourier

transforms).

It is a general strategy for handling complicated problems.

Instead of tackling them head on, the genius of the mathematics is to

figure how to transform the problem into something simple.  The rest is

(relatively) easy.  Data analysts uses the same strategy —

transforming the unit of measure in order to create a well-behaved

variable.  After that the rest of the analysis is easier.

For example, here is a preview of coming attractions:  Figure _

shows five transformations of people per physician, transforms ranging

from the identity transformation (identical to the variable as given) to

the inverse transformation.  Between the two extremes you see three

intermediate results corresponding to a square root transformation, a

logarithmic transformation, and an inverse square root transformation,

five in all.  (Remember — we don’t have to make sense out of all of

these things, only the one that is well behaved.  I don’t have to make

sense out of the square root or the inverse square root of people per

physician — unless it is well-behaved.)
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Look at the shapes of these five pictures of the data.  In sequence

the histograms show a systematic change in the behavior of the

distributions.  The first, the identity transformation is asymmetrical

with four physician poor countries, Ethiopia, Equatorial Guinea,

Niger, and Upper Volta in extreme positions, out on the tail, away from

the main body of the data (without a corresponding tail at the other

end of the distribution.
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The next transformation, using the 1/2 power instead of the first

power is less extreme.  The behavior has grown a tail on the left while

the tail on the right is less extreme.

The next transformation using the logarithm instead of the .5

power is (relatively) symmetrical.

The next transformation, using the -.5 power of the variable,

shows a long tail on the left and a short tail on the right.  For example,

the two countries that were previously extreme are now packed in close

to the center.

And finally the inverse transformation shows extreme behavior.

It is decidedly asymmetrical, but here the tail is tacked to the opposite

end as compared to the behavior of the original unit of measure.
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That is a demonstration of the power of transformation to change

the picture.  From these the data analyst chooses how the data will be

and how the data should be transformed.

For another preview, consider physicians per person, the same

variable, compared to GNP per capita for the same countries.  Figure _

shows the graph of the relation between these two variables.  Neither

variable is well behaved.  Neither is symmetrical (first criterion).

And their relation is not well behaved — not linear (third criterion).  I

would not care to go forward with an analysis of the relation displayed

in this graph — too complicated:  The picture suggests a chevron

shaped distribution with two distinct wings.
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Now, transforming both variables, here is the new picture of the

relation (using the same data):
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Log (GNP/person)

Log (People/Physician)

This picture gives me a place to begin.  Both figures “describe”

exactly the same reality, but in the second figure provides my intuition

and my sense with ample cues with which to interpret the relation.

The second picture is approximately linear.  Moreover, the slope is

close to being negative one — not some relatively complicated number

like 2 or 3, but negative 1.   I can begin to make sense of that.  (It tells me

that to a first approximation the number of physicians in the country is

proportional to the wealth of the country.

The most common choices among transformations are organized

according to the power of the transformation, where power refers to the

exponent of the transformation.  Here we have considered five, where

the “0” power is considered the log.  The five transformations had a

progressive effect.  An increase of power decrease the appearances of

tails on the right and increases the appearances of a tail on the left.  A
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Rules of Evidence Levine

decrease in power increases the appearances of tails on the left and

decreases the appearances of a tail on the right.

Power                 Transformation                                                                                        May Indicate       

… …

1 x1 Identity transformation (no change)

1/2 x1/2 Square Root Counts / Waiting times

0 log(x) Logarithm Amounts. Wealth, Counts

-1/2 x-1/2 Inverse square root

-1 x-1 Inverse Rates

… …

Common Transformations and Their Indication

For p=1 the picture shows a highly asymmetrical distribution

with the United Arab Emirates and USSR out on the tail away from

the main body of the data.  By contrast, for p=-1 the behavior is highly

asymmetrical in the opposite direction,  with Ethiopia, Equatorial

Guinea, Niger, and Upper Volta solidly close to the main body of the

data — the tail is at the other end.  In between there is a transition

from one extreme shape to the other.    And we narrow the choice among

alternative units of measure by choosing the one that is well-behaved.
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Interpreting The Data

For people per physician, the well-behaved choice requires a

compromise between the first criterion, symmetry, and the fifth

criterion, sense.  By itself, the first criterion would lead to something

like the negative one tenth power, p = -.1.  But the fifth criterion

leaves me in trouble attempting to interpret the -.1 power whereas the

logarithm, which is close, is easy to interpret.  So I will use the

logarithm of physicians per capita as my unit of measure.  The sense of

the logarithm is that adding and subtracting to the logarithm

corresponds to multiplying or dividing the original.  Well behaved

logarithms imply that two or more values of the original variable

should be compared using ratios or percentages.

To actually write it up I have to speak to two audiences.  One is

me.  For me I have to keep it simple — well behaved variables, well-

behaved relations between variables when we get to relations.  The

other audience is a “general public” that will be none to pleased by a

statement like “the median number of people per physician is

approximately 3.4 in logs base 10”.

So, in order:

1.  Transform the data to a well behaved variable.

2.  Analyze the transformed data.

3.  Translate the analysis into units of measure that are “friendly”

to a non-technical consumer of the data.

For example, using physicians per persons, using logarithms and

the rank order statistics here is a brief description of the facts.
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Using the logarithm of the

number of people per physician,

in 1970 the typical country

showed a median of 3.41.  For

example, Mauritania, Saudi

Arabia, and Iraq were all close to

the median value.  The shape of

the distribution, Figure __, shows

a large range of values but no

clear evidence of polarization

into two distinct groups, as for

example, rich and poor, with

nothing in between.  Nevertheless

the middle fifty per cent of the

distribution shows a large range

from 2.94 to 4.11.  While the full

range extends from 2.51 to 4.92,

even at the extremes, none are so

low or so high as to suggest a

sharp differentiation making

some of the countries radically

different from the rest.

Transform the data

Central value

Examples

Implicit recognition of the shape.

Range of typical values

Full Range

And now translating
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In 1970 the typical country

showed a median of

approximately 2,600 people per

physician.  For example,

Mauritania, Saudi Arabia, and

Iraq were all close to the median

value.  The shape of the

distribution, Figure __, shows a

large range of values but no clear

evidence of polarization into two

distinct groups, as for example,

rich and poor, with nothing in

between.  Nevertheless the

middle fifty per cent of the

distribution includes more than

ten fold contrasts, from fewer

than 100 people per physician to

more than 1,000 people per

physician.

  The full range extends from an

extreme of only 300 people per

physician (United Arab

Emirates) to an extreme of 80,000

people per physician (Ethiopia),

a 300 fold contrast from the most

physician intensive to the least

physician intensive society.

Even at the extremes, none are so

low or so high as to suggest a

sharp differentiation making

some of the countries radically

different from the rest.

Invert the transform and translate.

The median and quartiles are easy to translate, because the

median country is the median country regardless of the unit of

measure.

The Figure should be translated by re-labelling the x axis in

physicians per person even while the shape is computed using log

physicians per person.

Use words suggesting multiplication (ten fold) because “plus and

minus” in terms of logs (original analysis), corresponds to

multiplication in terms of people per physician.
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And in least square statistics:
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Using the logarithm of the

number of people per physician,

in 1970 the typical country

showed a mean of 3.52.  For

example, the Philippines, Syria,

and Honduras were all close to

the median value.  The shape of

the distribution, Figure __, shows

a large range of values but no

clear evidence of polarization

into two distinct groups, as for

example, rich and poor, with

nothing in between.  Nevertheless

the variation is large with a

standard deviation of .64.

The full range extends from 2.51 to

4.92, with physician-poor

Equatorial Guinea and Ethiopia

standing approximately two

standard deviations away from

the mean at one end of the

distribution at the extremes, none

are so low or so high as to suggest

a sharp differentiation making

some of the countries radically

different from the rest.

Central Value

Interpretation of the shape

Reporting and interpreting the standard deviation

Range

Marking the extremes using two standard deviations

And now translating
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In 1970 the data for 138 countries

showed a geometric mean of 3,300

people per physician.  For

example, the Philippines, Syria,

and Honduras were all close to

the mean value.  The shape of the

distribution, Figure __, shows a

large range of values but no clear

evidence of polarization into two

distinct groups, as for example,

rich and poor, with nothing in

between.  Nevertheless the

variation is large with a

standard deviation around the

central value that corresponds to

a factor of 4.4.

The full range extends from 300

people per physician to 80,000

people per physician, with

physician-poor Equatorial

Guinea and Ethiopia at extreme

values showing more than twenty

times the mean value of people

per physician.

In order:  first transform the data, using logs.  Then compute

the mean of the logarithms.  Then compute the anti-log of the

mean.  The result is called the geometric mean

The Figure should be translated by re-labelling the x axis in

physicians per person even while the shape is computed using log

physicians per person.

Use words suggesting multiplication (ten fold) because “plus

and minus” in terms of logs (original analysis), corresponds to

multiplication in terms of people per physician.

Dodging on my use of plus or minus two standard deviations.

The problem is that there is no term in general use for the anti-log

of the standard deviation of the log.  You would expect it to be

called the “geometric standard deviation, but it just does not get

named.  So, I use it to make an interpretive statement.
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Exercise:  Consider the data for nations.  Using population as the unit of

measure, write a brief report summarizing the report, including what is

large (and very large).  Then, by contrast, use the logarithm of popula-

tion as the unit of measure and write another brief report.  Compare the

two?  Is China is certainly the largest, by population.  But how large?

Is it an outlier — so large as to be unrelated to the rest?  Or is it merely

the largest and not otherwise remarkable?

Exercise:  Consider the population data for nations, two different years,

and compute the change in population:

First, using the nation as the unit of analysis and millions of

people as the unit of measure, apply one variable technique,

shape of the distribution, measures, and examples, to obtain a

brief report of change.

Then, second, using the nation as the unit of analysis and

percent of population (first year) as the unit of measure, apply

one variable technique, shape of the distribution, measures,

and examples, to obtain a brief report of change.

Exercise:  As above for GNP  (or immigration, or imports v/s imports as

a percentage of GNP).
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Is it Symmetrical?

Whether or not a variable has a symmetrical distribution is

exceedingly important both for descriptive analysis and for more

advanced statistical methods.  In a simple case there is no need for “high

tech” to judge symmetry.  Looking back at the people per physician data

I feel perfectly competent, on the authority of my eyeball, to look at the

picture and assert that the distribution, using people, is not symmetrical.

And I feel perfectly competent to  look at the second distribution, using

logs, is more symmetrical than the first.  But for less blatant cases of

asymmetry I need a procedure.  How should I decide whether data are

or are not symmetrical?

The trick is to return to the picture of symmetry and put some

numbers on what the eyeball “sees” and identifies as symmetry.

M
ed

ia
n

Low Quartile High Quartile

M
ea

n
 Q

u
a

rt
il

e

Low Eighth High Eighth

M
e

a
n

 E
ig

h
th

25% 12.5% 12.5%25%12.5% 12.5%

1

Macintosh HD:DA:DA IX:Volume I:102 Is it symmetrical  March 26, 1999



If the distribution is symmetrical, then the quartiles will be located,

symmetrically, at equal distances from the median.  And, therefore, if the

distribution is symmetrical then the point exactly half way between the

two quartiles will be equal to the median.

If symmetry, then mid-quartile = median

That’s easy enough to test:  You simply compute the mean quartile

and compare it to the median.  But generally, two numbers computed

from data are rarely equal, they do not match precisely and out to

infinite numbers of decimal digits.  So we need a test that is a little more

clever.  For that purpose, following Tukey’s Exploratory Data Analysis,

compute two more numbers, the two “eighths” and compute the “mid-

eighth”.  Defining terms:  As the two quartiles mark the two outer

quarters of the distribution, the two eighths mark the two outer eighths

of the distribution.  And the mid eighth is the point midway between the

two eighths.  And again, if the distribution is symmetrical then the mid

eighth will be equal to the median.

If symmetry, then mid-eighth = median

Now I can get a practical test of symmetry, referring to the

asymmetrical distribution in Figure 2:  In practice, if there is a trend

among the three numbers, from the median to the mid-quartile to the

mid eighth, then there is evidence of asymmetry.  If the mid-eighth is

greater than the mid quartile and the mid quartile is greater than the

median, then the distribution is asymmetrical with a tail to the right.  If

the mid-eighth is less than the mid quartile and the mid quartile is less

than the median, then the distribution is asymmetrical with a tail to the

left.  And if there is no trend, then the distribution is symmetrical.  Or —

to be very precise (using a double negative):  If there is no trend, then

there is no evidence of asymmetry.
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If you want greater certainty, then you continue the investigation:

Adding the mid-sixteenth, the mid-thirty-second … as much as your

data will allow.

Defining the “eighths”

To be sure that there is no ambiguity let me specify the step by step

computation for the eighths:  We find them by mimicking the

procedures that have already been used to define the median and the

quartiles.  Recall that for the fifty-fifty split,

n = number of values in the data

3
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m = location of median =(n+1)/2

And, to repeat, if the result is a whole number then the number of

values that are greater than or equal to the median is m  If the result is a

whole number, then the mth value, in rank order, is the median.  If the

result is a fraction, then m lies between two values whose mean is the

median.

For the quartiles, splitting off twenty-five percent at each end, we

compute m which is the integer part of m (lopping off the fraction if

there is one) and use it to compute the locations of the quartiles

m = number of values greater than or equal to the median

q = location of quartiles = (m+1)/2

Mimicking the logic for the median:  if the result, q, is a whole

number then the two q-th values, in order from each end of the

distribution, are the quartiles.  If the result is a fraction then the m-th

value at each end lies between two values whose mean is the quartile

  are found by counting in q values from each end of the data

 identifies the location, then the number of values that are greater

than or equal to the median is the integer part of m, m.

And now for the eighths, splitting off twelve and one-half percent

at each end, we compute q which is the integer part of q (lopping off the

fraction if there is one) and use it to compute the locations of the eighths.

q = number of values greater than or equal to the quartile

e = location of the eighths = (q+1)/2

If the result, e, is a whole number then the two e-th values, in order

from each end of the distribution, are the eighths.  If the result is a



fraction then the e-th value at each end lies between two values whose

mean is the eighths.

Working with the 100 observations of the 10 gram weight, shown in

rank order in Table 1,  n = 100.  So

n =  100

m = (n+1)/2 = (100+1)/2 = 50.5

The median is the mean of the 50-th and 51-st values, median =

(9.999596+9.999596)/2 = 9.999596

Then m is the integer part of m:

m = 50

q = (m+1)/2 = (50+1)/2 =25.5

The high quartile is the mean of the 25th and 26th values in rank

order from the high end, Q+ = (9.999599+9.999599)/2 = 9.999599.  And

the low quartile is the mean of the 25th and 26th values in rank order

from the low end, Q- = (9.999593+9.999593)/2 = 9.999593.

Then q is the integer part of q:

q = 25

e = (q+1)/2 = (25+1)/2 =13

The high eighth is the 13th value in rank order from the high end,

E+ = 9.999601.  And the low eight is the 13 value in rank from the low

end, Q- = 9.999590.

5
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Rank

High

to Low

Rank

Low to

High

Item Weight in

Grams

Rank

High

to Low

Rank

Low to

High

Item Weight in

Grams

1 100 94 9.999625 51 50 89 9.999596
2 99 63 9.999608 52 49 100 9.999596
3 98 85 9.999607 53 48 19 9.999595
4 97 26 9.999603 54 47 40 9.999595
5 96 11 9.999602 55 46 41 9.999595
6 95 97 9.999602 56 45 54 9.999595
7 94 4 9.999601 57 44 62 9.999595
8 93 16 9.999601 58 43 3 9.999594
9 92 22 9.999601 59 42 6 9.999594

10 91 23 9.999601 60 41 37 9.999594
11 90 25 9.999601 61 40 38 9.999594
12 89 29 9.999601 62 39 46 9.999594
13 88 43 9.999601 63 38 52 9.999594
14 87 2 9.999600 64 37 65 9.999594
15 86 17 9.999600 65 36 72 9.999594
16 85 32 9.999600 66 35 80 9.999594
17 84 74 9.999600 67 34 82 9.999594
18 83 7 9.999599 68 33 96 9.999594
19 82 9 9.999599 69 32 98 9.999594
20 81 15 9.999599 70 31 13 9.999593
21 80 18 9.999599 71 30 27 9.999593
22 79 28 9.999599 72 29 35 9.999593
23 78 30 9.999599 73 28 45 9.999593
24 77 34 9.999599 74 27 53 9.999593
25 76 59 9.999599 75 26 64 9.999593
26 75 77 9.999599 76 25 70 9.999593
27 74 83 9.999599 77 24 92 9.999593
28 73 90 9.999599 78 23 21 9.999592
29 72 91 9.999599 79 22 68 9.999592
30 71 5 9.999598 80 21 75 9.999592
31 70 14 9.999598 81 20 79 9.999592
32 69 20 9.999598 82 19 81 9.999592
33 68 24 9.999598 83 18 1 9.999591
34 67 39 9.999598 84 17 42 9.999591
35 66 44 9.999598 85 16 48 9.999591
36 65 50 9.999598 86 15 73 9.999591
37 64 60 9.999598 87 14 95 9.999591
38 63 8 9.999597 88 13 33 9.999590
39 62 10 9.999597 89 12 56 9.999590
40 61 12 9.999597 90 11 57 9.999590
41 60 31 9.999597 91 10 58 9.999590
42 59 67 9.999597 92 9 55 9.999589
43 58 99 9.999597 93 8 71 9.999588
44 57 49 9.999596 94 7 84 9.999588
45 56 51 9.999596 95 6 93 9.999588
46 55 61 9.999596 96 5 47 9.999587
47 54 66 9.999596 97 4 88 9.999585
48 53 69 9.999596 98 3 87 9.999582
49 52 76 9.999596 99 2 36 9.999577
50 51 78 9.999596 100 1 86 9.999563



Now back to the point, which is to estimate whether or not these

data are symmetrical. What we would like is equality:  with the median

having exactly the same value as the mean quartile and the mean eighth

but with real data that is unlikely.  What we settle for is a comparison of

the median, the mean quartile, and the mean eighth that shows no trend.

For the ten gram weight, what is the evidence:

The median is 9.999596 grams

The mean quartile is (9.999593 + 9.999599)/2 = 9.999596 grams

The mean eighth is (9.999590 + 9.999601)/2 = 9.9995955 grams

Reasoning negatively:  The numbers do not show clear evidence of

asymmetry, so I do not have convincing reason to reject the hypothesis

that the measurement errors are described by the hypothesis.

Homework:

1. Pick some easily measured number such as your own pulse

(counting for a full 60 seconds to gain precision), or your own blood

pressure, or the weight of a coin or the diameter of a coin if you have the

equipment.  Get at least ten estimates.  What is the shape of the

distribution for your ten or more estimates?

2. There is a certain ambiguity about the numbers for the ten gram

weight:  The mean quartile is indistinguishable from the median; the

mean eighth is a bit less than the mean quartile.  Having more data here,

100 observations,  pursue this a fit further:  Compute the mean sixteenth

and the mean thirty-second.  Interpret the whole set of mean value

numbers

7
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3. Return to the data for People per Physician, using the logarithm

as the unit of measure.   Is it symmetrical?  Push to the mid sixteenth or

further.  Is it symmetrical?



Rules of Evidence Levine

p. 1
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Stretching and Shrinking:  The Construction of an Interval Scale

One way to understand the concept of a well behaved variable is

by the use of another concept employed by data analysts and

mathematical modelers.  Roughly defined, numerical interval scale

must have a correct relation to comparisons among the objects the scale

is supposed to represent:  If you have measured an object with numbers

1,2,3, then the substance of the differences among the objects must

correspond to the differences among the numbers that represent them. 

This is a hidden assumption in virtually any numerical procedure

applied to data.  Consider the mean for example.  The mean is so

transparent an object that it might seem strange to say that the use of

the mean requires certain usually unstated assumptions.  That’s why I

choose it.  Recall what a mean is:  The mean of a set of numbers is a

center that is close to all of the numbers.  It is close to them in the sense

that it minimizes the squared deviations between the center and the

numbers for which it is the center. 

There is the key:  the deviations.  The deviations are a set of

intervals:  For the first number in the set of data, the deviation is

    x1 − x .  That is an interval.  For the second number in the set of data, the

deviation is     x2 −x .  So when I use the mean, I am assuming that the

meanings of these intervals are appropriately represented by the

numbers. 

When you use the fences to mark out the limits of reasonable

variation, you add a number to the high quartile and you subtract a

number from the low quartile — which assumes that being so many units

above the quartile has a meaning directly comparable to being so many

units below the quartile.  When you use the standard deviation to mark

out limits, again there is an assumption of symmetry, that it is as

normal to be one standard deviation above the mean as it is to be one

stand deviation below the mean.



Very often these symmetries are not realized as you saw in blatant

terms where the boundary for the number of physicians two standard

deviations below the mean number of physicians (or below the lower

fence) was a negative count — negative physicians — which is

ridiculous.  That is to say, the moral of the story is that the arithmetic

of most data analysis requires interval scales.  Without an interval

scale even so low tech a computation as the mean is not a valid

operation on the numbers.  And sometimes the result is not only wrong

but obviously wrong as, for example, when it puts the data analyst in

the embarrassing position of using numbers that refer to negative people

or perhaps negative age or negative income.

In data — as they are presented to the analyst — meaningful

numbers are far from guaranteed:  For me, counting money as money in

hand, the differences between ten dollars in my wallet and twenty

dollars and the between ten thousand dollars in my wallet and ten

thousand are not the same.  From ten to twenty is doubling.  From ten

thousand to ten thousand and ten the difference is lost in the small

change. 

But, I have to admit that this statement about unequal intervals is

not guaranteed.  It depends on context:  To an accountant ten dollars is

ten dollars.  Ten dollars has the same effect on the total (the bottom

line) whether it is contributed by an account with little more than ten

dollars or one with a great deal more.  In this context ten contributes ten

to the total wherever it comes from.

  If I am measuring traces of a chemical compound, the difference

between no trace of the element and one molecule may be extremely

important while the difference between one hundred grams of the

compound and one hundred and one may have relatively little effect on

the conclusions or direction of my research.

For mathematics the differences between numbers may be

established by mathematical definition.  For the scientist using math

to process of assignment of numbers requires some care and depends on

context.  The use of transformations speaks to the problem of changing



Rules of Evidence Levine

p. 3

Macintosh HD:DA:DA IX:Volume I:106 stretching      March 26, 1999

the intervals of the scale.  The mathematics of these transformations

stretches some parts of a scale relative to others, with the consequence

that the change of unit can change the behavior of the variable.  For

example, comparing dollars as the unit of measure to the logarithm of

the number of dollars as the unit of measures, note how the logarithm

stretches the equal dollar scale at the left in Figure _.   Using the

dollar as the unit of measure, the four different incomes, $25,000,

$50,000, $75,000, and $100,000 are separated by three equal intervals,

in dollars.  

Re-expressed in logs at the right, the intervals change, stretching

the distance between log(25,000) and log(50,000) as compared to the

distance between log(50,000) and log(100,000).



0

25,000

50,000

75,000

100,000 5

4.88

4.70

4.40

Figure __

Re-Expression of Dollar Values as Logarithmic Values, Using

Logarithms Base 10.

Note that the re-expression using logs stretches intervals among small
values relative to intervals among the large values.

This “stretching” changes everything:  It changes the shape of the

distribution, it changes the variation, it changes the relation between
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one variable and another, and it changes the meaning of the variable.

And, in particular, it is capable of transforming a poorly-behaved

variable into a well-behaved variable.  Here for example is the

histogram of the wealth of nations for 19__, first in dollars, and then in

log dollars.

Figure:  Histograms of gross national products, in dollars and in log

dollars.

Exercise

Describe the distribution of gross national products of states of the

Western Hemisphere, without logarithms, and with logarithms, in

19__ and 19__  Get the data

Exercise:  Consider the data for nations.  Using population as the unit of

measure, write a brief report summarizing the report, including what is

large (and very large).  Then, by contrast, use the logarithm of popula-

tion as the unit of measure and write another brief report.  Compare the



two?  Is China is certainly the largest, by population.  But how large?

Is it an outlier — so large as to be unrelated to the rest?  Or is it merely

the largest and not otherwise remarkable?

Exercise:  Consider the population data for nations, two different years,

and compute the change in population: 

First, using the nation as the unit of analysis and millions of

people as the unit of measure, apply one variable technique,

shape of the distribution, measures, and examples, to obtain a

brief report of change. 

Then, second, using the nation as the unit of analysis and

percent of population (first year) as the unit of measure, apply

one variable technique, shape of the distribution, measures,

and examples, to obtain a brief report of change.

Exercise:  As above for GNP  (or immigration, or imports v/s imports as

a percentage of GNP).
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Transformations

I have tried to convince you by logical argument that things, things

out there in the real world, “should” have symmetrical bell-shaped

distributions whereas, on the other hand, truth is they do not — not even

close.  Why?  Well, to give you an explanation that tries to salvage both

the argument and the reality, consider two hypothetical models of

personal income.

Let me imagine a group of 1,000 people, all of whom have an

income of $50,000, and watch what happens to them over time.  Life can

be good and life can be bad:  At the end of a year, half of them get a

$10,000 increase, half get a $10,000 decrease, half get a $10,000 increase.

Now I’ve got 500 people with $40,000 incomes, 500 people with $60,000

incomes.

$50,000

*

° °

$40,000 $60,000

(500 people) (500 people)

Life goes on and again, half get a $10,000 increase and half get a

$10,000 decrease.  That gives me 250 people with $30,000, 250 people

who dropped to $40,000 and then bounced back to $50,000, 250 more

people who rose to $60,000 and then went down to $50,000, and 250

people at $70,000.
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$50,000

*

° °

$40,000 $60,000

° ° °

$30,000 $50,000 $70,000

(250 people) (500 people) (250people)

Let life run on run again, again suppose half go up $10,000 and half

go down $10,000

 The process seems perfectly ordinary:  A few people will got to the

top.  Some will get to the bottom.  The result of their performance, their

income distribution, will be the symmetrical result of a symmetrical

process.

That’s one look at a hypothetical income process.  Here’s another.

This time let me start with a group of 1,000 people, all of whom have an

income of $50,000, and watch what happens to them over time and then,

at the end of a year, half of them get a $10,000 increase, half get a 10%

decrease, half get a 10% increase.  Now I’ve got 500 people with $40,000

incomes, 500 people with $55,000 incomes.

$50,000

*

° °

$45,000 $55,000

(500 people) (500 people)

Life goes on and again, half get a 10% increase and half get a 10%

decrease.  That gives me 250 people with $44,500, 250 people who

dropped to $45,000 and then bounced back to $49,500, 250 more people
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who rose to $55,000 and then went down to $49,500, and 250 people at

$60,500.

$50,000

*

° °

$45,000 $55,000

° ° °

$40,500 $49,500 $60,500

(250 people) (500 people) (250people)
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Again, let life continue for these people, again suppose half go up

10% and half go down 10%.  This second process also seems perfectly

ordinary:  A few people will get to the top,.  Some will go to the bottom.

If anything this is probably more realistic — these people had income

changes that were proportional to the income they already had, some

percent up or some percent down.  And the second process too has a feel

of symmetry about it.  But look at the result:  These things aren’t equally

spaced:  The gap between the 250 people at the left and the 500 people in

the center is $9,000.  But the gap between the 500 people at the center and

the one at the right is $11,000.  

As a result, if we collected these hypothetical data and organized

them into a histogram, the histogram would be asymmetrical, skewed to

the right.

$50,000

*

° °

$45,000 $55,000

° ° °

$40,500 $49,500 $60,500

|__    250 people    _|___    500 people    _|___    250 people    _|

$36,450 to $45,000 to $55,000 to $66,550
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This histogram is only a little bit “off” of symmetry, but it would

get worse if I followed it out to allow more and more “bounces” to affect

this population, some up and some down.  So how do I reconcile this

with the privileged place of bell-shaped symmetrical distributions?

The answer is to transform the data.  And the reason that that

answer is right is because the process itself is not equally spaced in

dollars,  The process is being performed in percentages.  And when you

transform the data to a unit of measure that is consonant with the unit in

terms of which the process itself is behaving, the result is symmetry.

Data analysts will go one step further, transforming the data using

logs rather than percentages.  The reason for this is that percentages

don’t add up:  On an interval scale you want an interval of 1 added to an

interval of 1 to add up to an interval of 2, one plus one (should be) equal

to 2.  But for percentages a 1% increase followed by a second 1% increase

does not add up to a 2% increase, not quite. (They combine to a 2.01%

increase.)  Percentages do not add up.   So if you try to draw percentages

as an interval scale you get into trouble, more trouble with larger

percentages.   Percentages are good summary measures because people

accept their intuitive meaning.  But they get you into trouble if you try to

use them in an analysis, even so simple an analysis as a histogram or a

stem and leaf.

Logarithms, as compared to percentages “add up”.  So we use them

where common sense would have us use percentages — because we

know that the idea is right but that percentages do not quite do the job.

So for this problem the symmetry of the problem makes itself

visible in the picture of the data — using logarithms.  My people start at

log $50,000.  Those whose money increases go up from log 50,000 to log

50,000 plus log (1.1):  That corresponds to multiplying the $50,000 by 1.1

(increasing it by 10%), except that, using logs, I simply add the logarithm

of 1.1.

Those whose money decrease below $50,000 go down from log

50,000 to log 50,000 minus log (1.1):  Transformed using logs that is
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log($50,000)

*

° °

log($50,000)-log(1.1) log($50,000)+log(1.1)

° ° °

log($50,000)-2log(1.1) log($50,000)log($50,000)+2log(1.1)

250 500 250

people people people

And now, both the symmetry of the values (in logs) and the

symmetry of the counts (in people) are restored.

So, back to the question:  How do I reconcile the argument with the

facts, the argument that says data should be symmetrical with the fact

that data usually are not symmetrical?  I reconcile the two by asserting

that the data usually are symmetrical.     But to see the symmetry you

have to express the data in units compatible with the process.

If the process is multiplying people incomes or dividing them, then

represent the process in logarithms:  In logarithms, equal intervals in

terms of the logs will correctly represent equal multipliers in terms of the

process.  And, more interesting:  If  a process looks symmetrical when it

is examined in terms of logs, then I infer that the process was

symmetrical with respect to multiples.

(Tukey, Chapter 3.)  Homework:  Look at the distribution of gross

national products per capita, by nation.  You have the data.  And you

have the methods for checking for symmetry.  So, I ask you,  are these

data symmetrical in terms of dollars?  Are these data symmetrical in

terms of log dollars?

And, going further, do the numbers, Tukey style:  Using dollars,

does the Tukey analysis suggest that some of these nations are not just

wealthier than others but different in kind (i.e., beyond the fences)?
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Using log dollars, does the Tukey analysis suggests that some of these

nations are not just wealthier than others but different in kind (i.e.,

beyond the fences)?  Using different scales — calibrating the Galton

board that sorted these nations, but calibrating it in the two different

scales, you get two different answers to the last question.  Show the two

answers.  Discuss the discrepancy.  And then, practice looking at the

world the way I look at it:  Argue why someone should take the second

interpretation (based on logs) as the correct interpretation.  Convince a

skeptic.

_________________
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Thinking About Intervals Using the Tools of Elementary Calculus

One way to understand the transformations is to state a simple

question and then use the calculus to derive the answer — which is a

transformation. 

Here’s the question:   I have a variable, x, which changes from

case to case.  I imagine some cause, c, though I do not assume that I

actually know what this cause might be.  And I want to look at changes

in x related to changes in c. 

If I want simple changes in x, there is no problem.  I just look at

    

x( ′ c )− x(c)

′ c − c

And you should recognize from definitions used in elementary

calculus, if I look for the limiting form of the relation between x and c as

c’ approach c, then this thing becomes the simple derivative for x as a

function of c.

     

dx(c)

dc
=

c'→c
lim

x( ′ c ) −x(c)

′ c −c

Thus the derivative, of the calculus, is a device for expressing

simple comparisons.

Now suppose I want to qualify the changes in x by referring them

to some other value.  For example, suppose I wish to qualify changes in

x by comparing them to the size of x itself.  Can I find a new variable y

such that simple changes in y act like these qualified changes in x?



I can state that question as an equation:  Is there a y such that

simple changes in y correspond to qualified changes in x?

    

dy (c)

dc
=

dx(c)

dc
x(c)

Fortunately, the equation has a solution.  So the answer is “Yes”.  

The answer uses one of the first differential equations in introductory

calculus:  Simplifying the equation, it says.

  
dy =

dx

x

 And this differential equation has the solution

    y = ln(x)

So the answer is, “Yes, use the logarithm of x instead of x itself.”

For the data analyst this has two tactical applications.  First, if

you want a variable that acts like another variable — but weighted

according to the size of the values that are changing, then switch from

the original variable to the logarithm of the original variable.

(Exercise to the reader:  It does not matter which base you use for your

logarithms, as long as you are consistent.  Prove it.)

Second, the same logic works in reverse:  In reverse, suppose I know

empirically that the logarithm of a variable is well behaved.  I have

to ask why:  What does it mean when the logarithm of a variable is

well-behaved?  I answer this question by reverse engineering problem:

Knowing that the logarithm is well behaved, what does this tell me

about the original variable whose logarithm is well behaved?  It tells

me that I should be looking at weighted changes, weighted in

proportion to size, not simple change.
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Generalizing to Other Transformations

Square Root

Empirically, counts of objects, tend to have a predictable behavior.

Suppose that we are counting the number of people who have incomes

between $50,000 and $100,000.   Let me suppose that in the general

population the number of people in this income category is unknown —

some percent of the total.  And let me suppose that the data available

provides a sample of 1,500 people from the general population.  In that

sample the number of people with incomes between $50,000 and

$100,000 is probably not exactly  10%.  It is usually a little bit high or a

little bit low.

Suppose that another sample of 1,500 becomes available.  Again

the number of people with incomes between $50,000 and $100,000 will

probably not be exactly 10%.  It is usually a little bit high or low.

And suppose that yet another sample becomes available.

Eventually, with more and more samples, the count will trace a

distribution.  There will be an average count and there will be a

standard deviation for the counts.

So what is the true percentage of the population within this

income category?  We still don’t know.  But we can use the mean of the

counts computed in these separate samples to estimate the percentage of

the general population within this income category?

Both experience and statistical theory tell us certain things about

the distribution of counts.  Experience tells us that it is likely to have a

long tail.  And statistical theory tell us that the shape is likely to

follow what is called a Poisson distribution.  Schematically, it will

look something like this.



0 1 2 3 4 5 6 7 8 9 10

This is predictable, but it is not “well-behaved” in the specific

meaning of that phrase.  (It is not symmetrical.)

Now suppose I want to compare two counts:  Perhaps I have the

count of people in this income category in one year and I want to

compare it to the count of people in this income category in another

year.  Or, perhaps I have the count of people in this income category

who are also college educated and I want to compare it to the count of

people in this income category who have only a high school degree. 

How do I compare the counts?  The first cut at a comparison is

simple:  Subtract.  That will tell you pretty quickly whether one count

is greater than another and how much?

But how big a difference between two counts is a big difference?

This is not so simple.  Suppose that the difference is 2?  In the sketch,

I’ve assumed that the mean was three for the counts, and sketched-in

three vertical lines for the median and the two quartiles.  How big is a

difference of  “2” ?  If it is 2 above (if the count was 5), then this is a

moderately big difference, slightly more than a quartile away.  If it is

2 below (if the count was 1), then this is a big difference, much more

than a quartile away. 

So is “2” a big difference?  It depends, 2 going up is less impressive

than 2 going down.  “2” at one part of the scale is not the same as “2” at

another.  That means for us, for those of us who have to interpret these

numbers the intervals we are interested are not the intervals in which

the data are being measured.    That is one of the penalties for trying to
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work with a variable that is not well-behaved, specifically the

penalty for working with a variable that is not symmetrical.

It gets worse.  Suppose we have a couple of samples, each of which

gives us a number for the second count.  Suppose that the mean for these

counts for the second group is five.  The distribution in this case would

look approximately like this

0 1 2 3 4 5 6 7 8 9 10

Now, how big is a difference of “2”?  The answer is different when

this second distribution is used as a reference.  So how big is “2”?  Well

it depends on whether you are going up or going down (asymmetry) and

it depends on which distribution you are comparing it to because the

variation is different in the two distributions (heteroscedasticity).

That is another penalty we pay for failing to work with a well-

behaved variable.

So, I want a transformation that is well-behaved.  I also know,

both empirically and from statistical theory that the standard

deviation of a count (or a Poisson distribution) is equal to the square root

of its mean.  Let me look for a new unit of measure whose simple changes

act like changes of counts qualified by comparison to their square roots.

  
dy =

dx

x



Solving the equation it tells me to use y as negative two times the

square root of x and since the proportionality will not affect the

behavior of the result I will use simply y equals the square root of x.

  y ∝ x

So, with counts, try the square root transformation.  If you want a

variable that acts like another variable — but weighted according to

the square root of the values that are changing, then switch from the

original variable to the square root of the original variable.  (Exercise

to the reader:  It does not matter whether you use     y = −2 x which is the

solution to the equation or change the constant of proportionality to use

  y = x , as long as you are consistent.  Prove that if the transformation

that is proportional to the square root gives you a unit of measure that

is well behaved, then the simple square root itself will also be well

behaved of these square root transformations is well-behaved.)

And in reverse, what does it mean when the square root of a

variable is well-behaved?  I answer this question by reverse

engineering problem:  Knowing that the square root is well behaved,  I

should be think that changes of the original variable had to be

weighted in proportion to their square roots.  So, the original variable

is acting like a count.
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Postscript on More General Transformations

The logic of this equation can lead to less commonly used

transformations.   The logic can lead to the inverse, but it is simpler to

think of the inverse directly:  The inverse of physicians per person is

persons per physician.  The inverse of time to completion(e.g., the time

it takes a runner to complete a mile) is velocity:  The inverse of 4

minutes per mile is 15 miles per hour.

The cases we have looked at have had a meaningful minimum at

one end:  zero people, zero doctors, zero counts, zero velocity.  Another

type of variable has a meaningful boundary at both ends.  For example,

what percent of a population is literate?  The number is guaranteed to

be bounded by 0 at one end and by 100 at the other.  So you might wish to

count a change from 1 percent literate to 2 percent literate to be a big

change, doubling the literacy.  By comparison changing the literacy

from 50 percent literate to 51 percent literate is probably of little

(relatively little) importance.  By comparison again, changing the

literacy rate from 98 percent to 99 percent is a difficult step, halving

the number of illiterates. 

By analogy, the equation for logs is comparing x to its lower bound.

    
dy =

dx

x − lower bound

Where there are two bounds, the equation becomes

    

dy =
dx

x − lower bound( ) upper bound − x( )



and the solution becomes

    
y = log(x − lower bound)− log(upper bound − x)

with percentages

    y = log(x) − log(100− x)

and with probabilities

    y = log(x) − log(1− x)

This is useful for data which have either mathematical limits,

like percentages and probabilities or systemic limits where “no”

production establishes a lower bound and the capacity of a system

determines an upper bound.
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Why Symmetry?

For a few pages I would like to step aside from the direct business

of analyzing data to address the question, “Why symmetry?”  Well

behaved variables are the key to data analysis that is likely to pay

off, as compared to data analysis that churns the numbers a bit without

much hope of getting beyond the obvious of means and variation.    More

sophisticated statistical techniques often condition their results on a

premise that the data were well behaved to begin with.  Picking the

first criterion, what look for symmetry?

Here I will offer two answers to that question.  It is abundantly

clear that almost all data will show variation.  But why?  Two of the

possible reasons for variation are error and complexity.  I’m going to

show you two analogies, one for error, one for complexity.  And you will

note that each of them leads me to expect symmetry.  So beginning with

error:  Why symmetry?

Error

(The  Galton Board)

I want you to consider a mechanical model for measurement error:

Even the simple process of determining the weight of an object requires

a process.  And that leads to error.  Objects have to be weighed.  If the

scale is a balance beam then the balance beam has counter weights, and

the counter weights themselves have to be measured.  A balance beam

has a pivot, and the pivot has to be perfectly shaped, which it never
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is.  And the pivot has to be perfectly placed, which it never is.  We

have to be careful that there is no dirt in the scale, no dust in the pans,

and so forth — scales make errors.  If a scale has springs in it, then

springs have slight irregularities.  They are influenced by temperature,

and corrosion, not to speak of the fact that we have to know a few laws

or a few practical tricks for translating the length of the springs in the

scale into numbers that describe the weight of objects. 

So measurement introduces errors.  The interesting question is not

whether or not measurements will include error — the question is, what

will the distribution of estimates look like, including the error?  To

answer that question I need a hypothesis.  The usual hypothesis is to

suppose that error, however it is introduced, is unbiased:  The error has

a 50/50 chance of increasing the apparent value by some amount and an

equal chance of decreasing it by the same amount. 

We can duplicate this hypothesis mechanically by imaging  that

we drop a ball in the direction of a slot that represents the right

answer.  But, before the ball can fall into the slot it encounters an

obstacle that gives the ball a bounce, displacing the ball to the left or

to the right of the direction that represents the right answer. 
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-1 0 +1 -1 0 +1

  If we make several estimates of the quantity, then the process

will repeat itself, making errors, some of the estimates will be less

than the correct value, some will be larger than the correct value, and

the result will be a distribution of estimates that is “more or less”

symmetrical with respect to the correct value — “more or less” because

the estimates will tend toward a fifty/fifty split but may not come out

exactly fifty/fifty.  

The hypothesis further states that a measurement process may

include not one but several small errors, each of which has the same

effect on the estimate — deflecting the estimate in a direction that

makes it high, or deflecting the estimate in a direction which would

make it low by the same amount.  I can duplicate this process
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mechanically by imagining a sequence of obstacles standing in the way

of my bouncing ball, each one displacing the estimate, each one making

the value a little smaller or a little larger.

-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5

And if we make several estimates of the quantity, the process will

repeat its self, some of the estimates will be small, some will be large,



Introduction to Data Analysis 0 Variables= Levine

Page 5

Macintosh HD:DA:DA IX:Volume I Combined:Volume I:110 Why symmetry I 3/26/99

and the result will approximate a symmetrical bell shaped

distribution (called the “binomial distribution”).

  1  1   4  4  17 44 16  49  93  79 92

-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5

Count Equal:

n = 400
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This is the standard hypothesis for errors introduced in the

process of measurement.  The exact specification of the model might be

carried further — how large are the “bounces”, what is the width of

the slots, how many layers of obstacles are there, and so forth.  But for

most purposes we are more interested in the moral of this story.  The

moral of the story is that if the variation of values is due to unbiased

measurement error, then the distribution of values should be

symmetrical and bell shaped. 

As is frequent in data analysis, the application of this principle is

requires that we use it backward:  When your data is not symmetrical

and bell shaped, then you can not explain the variation as noise.  When

the data is not symmetrical and bell shaped, you’ve got some work to

do to explain why not.
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rewrite to match 25b

Shape & Number II:  Complex Processes

Starting again with the observation that there is something very

important about the shape of a distribution, let me introduce another

very powerful hypothesis that explains why you should expect bell

shaped distributions, and why, therefore, it is interesting when that is

not what you get.  When it is presented mathematically, the principle at

work here is known as the Central Limit Theorem, a real mathematical

theorem here in the heart of data analysis.  What is says, when it is

interpreted is that complicated processes will tend to produce bell

shaped results.

The central limit theorem is built on the difference between complex

events and simple events.  Suppose our simple event is analogous to the

“process” of throwing a single six-sided die many times.  If I threw a

single die 6 times or, better, 600 times, I would expect to get something

close to an even result, something close to

1 2 3 4 5 6

Theoretical Shape of distribution:  One Die, Six Possible Outcomes, 1 through 6, Equal Probabilities
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That’s my simple event, and there is the distribution of its results,

symmetrical to be sure, but not bell shaped.  Now suppose I look at the

result of a complicated event, the result of throwing two dice and

recording their sum.  As is well known, with two dice the results will be

uneven:  some numbers will be common, others will be rare, specifically,

sevens will be relatively common while twos and twelves will be

relatively rare.  The reason for this is straightforward:  There are thirty-

six ways that the pair of dice can land and among these six of the thirty-

six possibilities will add up to seven (while only one of the thirty six

possibilities adds up to two and only one of the thirty six possibilities

adds up to twelve).  There is 1 way to get a 2, there are 2 ways to get a 3,

3 to get a 4, 4 to get a 5, 5 to get a 6, 6 to get a 7, 5 to get an 8, 4 to get a 9,

3 to get a 10, 2 to get an 11, and 1 to get a 12.  So, in 360 throws of the dice

or 3,600 throws of the dice I expect a distribution of results something

like

2 3 4 5 6

Theoretical Shape of distribution:  Sum of Two Dice, Eleven Possible Outcomes, 2 through 12, 
"Triangular" Probabilities

7 8 9 10 11 12

Because most people are familiar with dice there is nothing startling

about this behavior of the dice.  But it is actually quite remarkable in one

way: Specifically, the shape for the composite is not the shape of the

things of which it is composed:  One die has a flat distribution.  But the

two dice, together, have a “triangular” distribution.
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And with three dice you’ll see a little flaring out, changing shape

again toward what is called a bell-shaped or “normal” or “Gaussian”

distribution.

3 4 5 6

Theoretical Shape of distribution:  Sum of Three Dice, Eleven Possible Outcomes, 3 through 18, 
"Bell-Shaped" Probabilities (Rounded Concave Sides, Rounded Convex Peak)

7 8 9 10 11 12 13 14 15 16 17 18

Dice are so familiar that this little demonstration may fail to

convince, so let me try something more extreme.  I’m going to change the

simple event by taking a marker pen to my set of dice and writing my

own numbers on their faces.  I’m going to use one 1, two 2’s, and three

3’s.  So for 6 or six hundred throws of this simple altered die I expect to

get something that is neither symmetrical, nor bell shaped.  For one die I

should get
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1 2 3 4 5 6

Theoretical Shape of Distribution:  One Altered Die with One 1, Two 2’s,
and Three 3’s  (Three possible outcomes, 1, 2, or 3 — peak to the right)

There is my simple event, neither bell shaped nor symmetrical.

What the Central Limit Theorem says is that the shape of the simple

event doesn’t matter:  The compound event, adding the results of many

simple events will always tend to be bell shaped and symmetrical.  No

matter how weird the simple distribution:  combine such events and the

result will acquire properties of the Gaussian.  Let me put it into action.

Throwing two such dice with their individually triangular distributions,

what do I get?

2 3 4 5 6 7 8 9 10 11 12

Theoretical Shape of Distribution:  Sum of Two Altered Dice, Five
Possible Outcomes, 2 through 6 — Peak displaced Toward Center.
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Again, the composite shape is not the same as the simple shape.

Why?  For the same reason that ordinary dice tend to get sevens:  With

these two dice there are only nine ways of getting the extreme value on

the right, while there are twelve ways of getting the peak that is

displaced toward the center.  Throwing three weird dice, I get.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Theoretical Shape of Distribution:  Sum of Three Altered Dice, Seven
Possible Outcomes, 3 through 9, More Symmetrical (More Bell Shaped:

Symmetrical, Rounded Concave Sides, Rounded Convex Peak.

And for four dice and five dice I get
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3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Theoretical Shape of distribution:  Sum of Four Altered Dice, Nine
Possible Outcomes, 4 through 12, More Symmetrical (More Bell Shaped:

Symmetrical, Rounded Concave Sides, Rounded Convex Peak)
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4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Theoretical Shape of distribution:  Sum of Five Altered Dice, Eleven
Possible Outcomes, 5 through 15, More Symmetrical (More Bell Shaped:

Symmetrical, Rounded Concave Sides, Rounded Convex Peak)

The shape is still not bell shaped and symmetrical, but it bears little

resemblance to the shape shown by the simple event and it is definitely

changing. With more dice, compounding more simple events, the

Central Limit Proves that the result will get ever closer to being bell

shaped and symmetrical.  The Central Limit Theorem as mathematics is

more precise than that, defining exactly which properties of these

distributions become like the properties of the Gaussian distribution.

But the point is that even under extreme circumstances there is good
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reason to expect symmetrical bell-shaped distributions and to find it

interesting when they don’t happen.
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Description Using Logs

Now, using the concept of a well-behaved variable, and using the

strategy of re-expression, it’s back to the basics of description.  But this

time we have more tools that can be used for the job, and thus more

alternatives that require more thinking.  The example will be the size

of nations, by population, asking for a brief description of the sizes of

nations and how their populations have changed between 1975 and

1990.

Country Pop in 1,000’s
1975 1990

Afghanistan 19,280 15,564
Albania 2,482 3,273
Algeria 16,792 25,337
Andorra 52
Angola 6,394 8,449
Antigua and Barbuda 64
Argentina 25,384 32,291
Armenia 3,357
Aruba 64
Australia 13,809 17,037

Austria 7,538 7,644
Bahamas 200 249
Bahrain 260 520
Bangladesh 113,930
Bangladesh 73,746
Barbados 245 254
Belgium 9,846 9,909
Belize 220
Benin 3,074 4,674
Bhutan 1,173 1,566

Bolivia 5,410 6,989
Bosnia Herzegovina 4,517
Botswana 691 1,224
Brazil 109,730 152,505
Brunei 372
Bulgaria 8,793 8,934
Burkina 9,078
Burkina
Burma 31,240 41,277
Burundi 3,765 5,646

Belarus 10,257
Cameroon 6,433 11,092
Canada 22,801 26,538

Cape Verde 292 375
Central African Republ1,790 2,877
Chad 3,947 5,017
Chile 10,253 13,083
China / People's Republic of
China / Mainland 838,803 1,133,683
Colombia 25,890 33,076
Comoros 306 460

Congo 1,345 2,242
Costa Rica 1,994 3,033
Croatia 4,686
Cuba 9,481 10,620
Cyprus 673 702
Czechoslovakia 14,793 15,683
Denmark 5,026 5,131
Djibouti 337
Dominica 85
Dominican Republic 5,118 7,241

Ecuador 7,090 10,507
Egypt 37,543 53,212
El Salvador 4,108 5,310
Equatorial Guinea 313 369
Estonia 1,584
Ethiopia 28,134 51,407
Fiji 577 738
Finland 4,652 4,977
France 52,913 56,358
Gabon 521 1,068

Gambia 509 848
Georgia 5,479
Germany 79,123
Germany East 17,127
Germany West 61,682 63,232
Ghana 9,873 15,130
Greece 8,930 10,028
Grenada 100 84



Guatemala 6,129 9,038
Guinea 4,416 7,269

Guinea-Bissau 525 999
Guyana 791 753
Haiti 4,552 6,142
Honduras 3,037 4,804
Hong Kong 4,225
Hungary 10,534 10,569
Iceland 216 257
India 613,217 852,667
Indonesia 136,044 190,136
Iran 32,923 57,003

Iraq 11,067 18,782
Ireland 3,131 3,500
Israel 3,417 4,436
Italy 55,023 57,664
Ivory Coast
Cote d'Ivoire 4,885 12,478
Jamaica 2,029 2,469
Japan 111,120 123,567
Jordan 2,688 3,273
Kampuchea / Cambodi 8,110 6,991

Kenya 13,251 24,342
Kiribati 70
Korea North 15,852 21,412
Korea South 34,663 42,792
Kuwait 1,085 2,124
Kyrgystan 4,394
Laos 3,303 4,024
Latvia 2,695
Lebanon 2,869 3,339
Lesotho 1,148 1,755

Liberia 1,708 2,640
Libya 2,255 4,223
Liechtenstein 28
Lithuania 3,726
Luxembourg 342 384
Madagascar 8,020 11,801
Malawi 4,909 9,197
Malaysia 12,093 17,556
Maldives 120 218
Mali 5,697 8,142

Malta 329 353
Mauritania 1,283 1,935
Mauritius 899 1,072
Mexico 59,204 88,010
Moldova 4,393
Mongolia 1,446 2,187
Morocco 17,504 25,630
Mozambique 9,223 14,539
Namibia 1,453
Nepal 12,572 19,146

Netherlands 13,599 14,936
New Zealand 3,031 3,296
Nicaragua 2,318 3,602
Niger 4,600 7,879
Nigeria 63,049 118,819
Norway 4,007 4,253
Oman 770 1,481
Pakistan 70,560 114,649
Panama 1,678 2,425
Papua New Guinea 2,716 3,823

Paraguay 2,647 4,660
Peru 15,326 21,906
Philippines 44,437 64,404
Poland 33,841 37,777
Portugal 8,762 10,354
Puerto Rico 2,902
Qatar 90 491
Romania 21,178 23,273
Russia 148,254
Rwanda 4,233 7,609

Saint Kits and Nevis 40
Santa Lucia 150
Saint Vincent and
the Grenadines 80 113
San Marino 23
Sao Tome and Principe 125
Saudi Arabia 8,966 17,116
Senegal 4,418 7,714
Serbia 9,883
Seychelles 60 68
Sierra Leone 2,983 4,166

Singapore 2,248 2,721
Somalia 3,170 6,654
South Africa 24,663 39,539
Soviet Union frmr
Spain 35,433 39,269
Sri Lanka 13,986 17,198
Sudan 18,268 26,245
Suriname 422 397
Swaziland 469 837
Sweden 8,291 8,526

Switzerland 6,535 6,742
Syria 7,259 12,483
Tajikistan 5,342
Taiwan /
Republic of China 16,453 20,435
Tanzania 15,388 25,971
Thailand 42,093 56,002
Togo 2,248 3,674
Trinidad and Tobago 1,009 1,271
Tunisia 5,747 8,104
Turkey 39,882 57,285

Turkmenistan 3,658
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Tuvalu 9
UAR United Arab
Emirates 220 2,254
Uganda 11,353 18,016
Ukraine 51,711
United Kingdom 56,427 57,366
Upper Volta 6,032
Uruguay 3,108 3,102
USA  213,925 250,410
USSR 255,038

Uzbekistan 20,569
Vanuatu 165

Venezuela 12,213 19,698
Vietnam 43,451 66,171
Vietnam North 23,800
Vietnam South 19,650
Western Somoa 160 186
Yemen 9,746
Yemen (Aden) 1,660
Yemen (Sana) 6,668

Yugoslavia 21,322
Zaire 24,450 36,613
Zambia 5,004 8,154
Zimbabwe 6,272 10,394

Table 1

Countries of the World:  1975 and 1990 Population

Source, 1975:  World Handbook of Political and Social Indicators,
Volume I, Taylor and Jodice.  Original source Labour Force Estimates
and Projections, 1950-2000, ILO,  Geneva, 1977, and Demographic
Yearbook, 1977.. Source, 1990:   Statistical Abstract of the United
States , 1991 Table 1,359, compiled by the U.S. Census Bureau from
various original sources.

World Population:  The Work

So now, from the beginning:  Who, What, Where, …: The data are

from the United Nations and in turn from national sources.  How good

are the data?  Well, the text in the secondary sources I am using, from

World Handbook of Political and Social Indicators and the Statistical

Abstract of the United States  warns me that standards differ from

country to country.  For example, some do and some do not count aborig-

ines, nomadic peoples, displaced persons, or refugees.  The separate

counts are based on varying methods including attempts at complete

counts, including samples, including registration censuses based on

voting or tax registers.  So, the data are a mixed lot.  But, the data are

also the best I can get — the United Nations sources have attempted to

adjust for these inconsistencies.  And were I reject these data on popula-

tion, notwithstanding their blemishes, I would be acting as if there



were no data on populations — because I would have rejected the best.

So, I’ll accept the data, with caution.

Now for a first look at the data, stem and leaf.  The national

populations range from a low of “9”, which is nine thousand, to a high

of 1,133,683, which is one billion.  If I attempt to break this range into

approximately ten equal stems, dividing the range into intervals of

100,000 each (one hundred million each), I will get a mess — I can see

that coming by just looking at the counts, without completing the stem

and leaf:

Stems Leaves

0- 100,000 ||||||||||||||||||||||||||||||| .....   170 countries

100,000 - 199,999 ||||||| 7 countries

200,000 - 299,999 | 1 country

-------

800,000 - 899999 | 1 country

-------

1,000,000 - |  1 country.

No point in completing this stem and leaf, I already know what it

looks like:  Most of the countries are “piled up” at the low end of the

scale.  There are a few very large countries forming a “tail” at the high

end of the distribution.

I could persist with the stem and leaf, changing scales, omitting

very large nations, and doing it again.  But I’m in a hurry, I’m always in

a hurry, so I’ll compromise by simply putting the countries in order by

size.  The printed page, ranked by size, gives me much of what I need

from the stem and leaf and, since this is an extremely “skewed” distri-

bution, (very asymmetrical, with a few very large values) it avoids the

work of the stem and leaf — which (I already know) is unlikely to pay

off with  a good-looking stem and leaf.
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Country Pop in 1,000’s
1975 1990

1 Tuvalu 9
2 San Marino 23
3 Liechtenstein 28
4 Saint Kits and Nev 40
5 Andorra 52
6 Antigua and Barbuda 64
7 Aruba 64
8 Seychelles 60 68
9 Kiribati 70
10 Grenada 100 84
11 Dominica 85
12 Saint Vincent and 80 113
13 Sao Tome and Princi 125
14 Santa Lucia 150
15 Vanuatu 165
16 Western Somoa 160 186
17 Maldives 120 218
18 Belize 220
19 Bahamas 200 249
20 Barbados 245 254
21 Iceland 216 257
22 Djibouti 337
23 Malta 329 353
24 Equatorial Guine313 369
25 Brunei 372
26 Cape Verde 292 375
27 Luxembourg 342 384
28 Suriname 422 397
29 Comoros 306 460
30 Qatar 90 491
31 Bahrain 260 520
32 Cyprus 673 702
33 Fiji 577 738
34 Guyana 791 753
35 Swaziland 469 837
36 Gambia 509 848
37 Guinea-Bissau 525 999
38 Gabon 521 1,068
39 Mauritius 899 1,072
40 Botswana 691 1,224
41 Trinidad and T 1,009 1,271
42 Namibia 1,453
43 Oman 770 1,481
44 Bhutan 1,173 1,566
45 Estonia 1,584
46 Lesotho 1,148 1,755
47 Mauritania 1,283 1,935
48 Kuwait 1,085 2,124
49 Mongolia 1,446 2,187
50 Congo 1,345 2,242
51 UAR United Arab220 2,254
52 Panama 1,678 2,425
53 Jamaica 2,029 2,469

54 Liberia 1,708 2,640
55 Latvia 2,695
56 Singapore 2,248 2,721
57 Central African 1,790 2,877
58 Costa Rica 1,994 3,033
59 Uruguay 3,108 3,102
60 Albania 2,482 3,273
61 Jordan 2,688 3,273
62 New Zealand 3,031 3,296
63 Lebanon 2,869 3,339
64 Armenia 3,357
65 Ireland 3,131 3,500
66 Nicaragua 2,318 3,602
67 Turkmenistan 3,658
68 Togo 2,248 3,674
69 Lithuania 3,726
70 Papua New Guinea2,716 3,823
71 Laos 3,303 4,024
72 Sierra Leone 2,983 4,166
73 Libya 2,255 4,223
74 Norway 4,007 4,253
75 Moldova 4,393
76 Kyrgystan 4,394
77 Israel 3,417 4,436
78 Bosnia Herzegovina 4,517
79 Paraguay 2,647 4,660
80 Benin 3,074 4,674
81 Croatia 4,686
82 Honduras 3,037 4,804
83 Finland 4,652 4,977
84 Chad 3,947 5,017
85 Denmark 5,026 5,131
86 El Salvador 4,108 5,310
87 Tajikistan 5,342
88 Georgia 5,479
89 Burundi 3,765 5,646
90 Haiti 4,552 6,142
91 Somalia 3,170 6,654
92 Switzerland 6,535 6,742
93 Bolivia 5,410 6,989
94 Kampuchea / C8,110 6,991
95 Dominican Rep 5,118 7,241
96 Guinea 4,416 7,269
97 Rwanda 4,233 7,609
98 Austria 7,538 7,644
99 Senegal 4,418 7,714
100 Niger 4,600 7,879
101 Tunisia 5,747 8,104
102 Mali 5,697 8,142
103 Zambia 5,004 8,154
104 Angola 6,394 8,449
105 Sweden 8,291 8,526
106 Bulgaria 8,793 8,934
107 Guatemala 6,129 9,038
108 Burkina 9,078
109 Malawi 4,909 9,197
110 Yemen 9,746



111 Serbia 9,883
112 Belgium 9,846 9,909
113 Greece 8,930 10,028
114 Belarus 10,257
115 Portugal 8,762 10,354
116 Zimbabwe 6,272 10,394
117 Ecuador 7,090 10,507
118 Hungary 10,534 10,569
119 Cuba 9,481 10,620
120 Cameroon 6,433 11,092
121 Madagascar 8,020 11,801
122 Ivory Coast / C4,885 12,478
123 Syria 7,259 12,483
124 Chile 10,253 13,083
125 Mozambique 9,223 14,539
126 Netherlands 13,599 14,936
127 Ghana 9,873 15,130
128 Afghanistan 19,280 15,564
129 Czechoslovakia14,793 15,683
130 Australia 13,809 17,037
131 Saudi Arabia 8,966 17,116
132 Sri Lanka 13,986 17,198
133 Malaysia 12,093 17,556
134 Uganda 11,353 18,016
135 Iraq 11,067 18,782
136 Nepal 12,572 19,146
137 Venezuela 12,213 19,698
138 Taiwan / Rep16,453 20,435
139 Uzbekistan 20,569
140 Korea North 15,852 21,412
141 Peru 15,326 21,906
142 Romania 21,178 23,273
143 Kenya 13,251 24,342
144 Algeria 16,792 25,337
145 Morocco 17,504 25,630
146 Tanzania 15,388 25,971
147 Sudan 18,268 26,245
148 Canada 22,801 26,538
149 Argentina 25,384 32,291
150 Colombia 25,890 33,076
151 Zaire 24,450 36,613
152 Poland 33,841 37,777

153 SPAN 35,433 39,269
154 South Africa 24,663 39,539
155 Burma 31,240 41,277
156 Korea South 34,663 42,792
157 Ethiopia 28,134 51,407
158 Ukraine 51,711
159 Egypt 37,543 53,212
160 Thailand 42,093 56,002
161 France 52,913 56,358
162 Iran 32,923 57,003
163 Turkey 39,882 57,285
164 United Kingdom56,427 57,366
165 Italy 55,023 57,664
166 Germany West61,682 63,232
167 Philippines 44,437 64,404
168 Vietnam 43,451 66,171
169 Germany 79,123
170 Mexico 59,204 88,010
171 Bangladesh 113,930
172 Pakistan 70,560 114,649
173 Nigeria 63,049 118,819
174 Japan 111,120 123,567
175 Russia 148,254
176 Brazil 109,730 152,505
177 Indonesia 136,044 190,136
178 USA  213,925 250,410
179 India 613,217 852,667
180 China / Peop838,803 1,133,683
181 Bangladesh 73,746
182 Burkina
183 Germany East 17,127
184 Hong Kong 4,225
185 Puerto Rico 2,902
186 Soviet Union frmr
187 Upper Volta 6,032
188 USSR 255,038
189 Vietnam North23,800
190 Vietnam South19,650
191 Yemen (Aden) 1,660
192 Yemen (Sana) 6,668
193 Yugoslavia 21,322

Ah, I notice immediately from the rank order on 1990 population,

that I don’t have a 1990 population for all of theses countries — the list

of nations varies from year to year.  Checking the names, I see that the

change in nations is a result of fusion and fission.  Do I attempt to

compensate for this, changing the units of the 1975 list to correspond to

the units of the 1990 list, standardizing my list?  No, at some point that

may be called for, but to decide on the “correct” standardization I
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would have to have a clear purpose in mind (with respect to which I

could decide what was “right”.)  Having no particularly subtle purpose

in mind, beyond description, changing the list now would simply

change the data — to no apparent end.  So, I’ll continue, acknowledging

that it may be difficult to compare the 1975 data to the 1990.

Now, I’m going to stop for a moment:  Why?  Because I was about to

yield to a mindless reflex:  I was about to compute averages and

measures of variation on everything in sight.  That kind of mindless

reflex is to be treated with great caution.  So, thinking about these

data, before I commit to a lot of computation, what do I already know

and what do I suspect:  Invoking the list of 4 properties for well-

behaved variables, I know that population fails criterion #1 and

therefore I suspect that population will fail on criterion #4.  I know

that the distribution is not symmetrical, criterion #1.  And therefore, I

suspect that the unit of measure is the wrong unit, criterion #4.

1990 population surely fails the first property of a well behaved

variable — it is anything but symmetrical.  And, ordinarily that would

be enough to stop me, but for pedagogical purposes, let me show you the

kind of trouble I would get in to if I yielded to mindless reflex.

[Check how Excel defines median and how it uses missing data:  I

got a different value for the median, using the median built in function,

than I got by picking the median out of the rank order.]

1975 1990
Sum 4,021,291 5,347,251 Added because I didn’t trust the  difference

between the means and wanted, therefore, 
look at the difference between the sums

Mean 25,944 29,707 Verify directly
Standard Deviation
(Excel function stdevp)

87,477 111,616 Verify directly

Median 5,722 6,398 Verify
Low Quartile 1,994 1,699.5 Verify
High Quartile 17,127 17,786 Verify
Quartile Spread 15,133 16,119.5



[Looking that over, first look at the means: increasing from 26

million to 30 million, about 16 percent.  That seems a little odd, 16

percent increase during fifteen years is approximately one percent a

year.  That seems low — my memory tells me that the growth rate for

world population is about 2 percent per year.  Shouldn’t the average

also be growing by about 2 percent?  

Well, still thinking, maybe and maybe not:  This is not world

population, it is average size of nations, which is different.  So, maybe.

Let me re-assure myself by checking world population, adding up the

populations:    Ah, 4 billion in 1975 up to 5.3 billion, up about 33%.  So,

yes, the total seems in line with what I expect, approximately 2

percent per year.  That warns me to be careful about the unit:  these are

nations (actually states).  The means may be showing the trace of the

breakup of the Soviet Union into smaller countries.  O.K. I’m ready to

continue.]

First, look at those standard deviations:  In both cases they exceed

the means, substantially — the standard deviations are more than

three times greater than their respective mean.  That’s strange:  If

those are the numbers, then those are the numbers, barring numerical

error.  But still, think of what those numbers are supposed to mean:

They are supposed to represent — and put a number on — what you saw

in the picture.  The “standard deviation”  is supposed to describe stan-

dard or typical average variation around the mean but these numbers

are much too large for that purpose:  For 1975, 150 of the 155 countries

are less than one standard deviation away from the mean. 

Putting it another way, remember that we will use a standard

deviation to describe the middle range of data.  But it just doesn’t do

the job with this picture:  By the numbers, the middle range of data

would be between – 61,533 (minus 62 million) and + 113,421 (plus 113

million) — calculating the mean minus one standard deviation and the

mean plus one standard deviation.  And, intuitively, that’s just silly as

a description of “typical” population:  What is a negative population? 

These numbers are fail to do their job, which is to represent what

the facts in the picture — I can do better than that without even
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looking at the data (because I know full well that there are no countries

with negative populations).  And so, in these standard deviations I see

both the second criterion of well-behaved variables being violated —

the standard deviations change sharply between 1975 and 1990 — and I

see the fourth criterion beginning to get shaky — the standard

deviation does not describe the picture of the data and its values are

difficult to interpret.

The medians and the quartiles, of course, give me interpretable

numbers — they have to because they always refer to particular cases.

That is one reason why medians and quartiles are used, often, in the

process of research (although means and standard deviations are more

often what is shown in a final report.)  But I also note, somewhat

uncomfortably, that there is a substantial difference between the

“average” I get from one method versus the average I get from the

other, between the mean and the median — two very different reports

about the middle of the distribution:  The median says the average is 6

million people while the mean says the average is 26 million people

(for 1975).  The median says the average is 6 million people while the

mean says the average is 30 million people (for 1990).  Now, its not that

I can’t cope with these numbers and their oddities.  Such peculiarities

are typical of badly-behaved variables and I can cope with them if I

must.  But I don’t need to.

Now, let’s look at the logarithms of these numbers, changing the

unit of measure to the logarithm of population, using logarithms base

10.

Nation Population in 1,000’s logarithms Base 10
1975 1990 1975 1990

1 Tuvalu 9 0.954
2 San Marino 23 1.362
3 Liechtenstein 28 1.447
4 Saint Kits and Nevis 40 1.602
5 Andorra 52 1.716
6 Antigua and Barbuda 64 1.806
7 Aruba 64 1.806
8 Seychelles 60 68 1.778 1.833
9 Kiribati 70 1.845



10 Grenada 100 84 2.000 1.924

11 Dominica 85 1.929
12 Saint Vincent and the Gren 80 113 1.903 2.053
13 Sao Tome and Principe 125 2.097
14 Santa Lucia 150 2.176
15 Vanuatu 165 2.217
16 Western Somoa 160 186 2.204 2.270
17 Maldives 120 218 2.079 2.338
18 Belize 220 2.342
19 Bahamas 200 249 2.301 2.396
20 Barbados 245 254 2.389 2.405

21 Iceland 216 257 2.334 2.410
22 Djibouti 337 2.528
23 Malta 329 353 2.517 2.548
24 Equatorial Guinea 313 369 2.496 2.567
25 Brunei 372 2.571
26 Cape Verde 292 375 2.465 2.574
27 Luxembourg 342 384 2.534 2.584
28 Suriname 422 397 2.625 2.599
29 Comoros 306 460 2.486 2.663
30 Qatar 90 491 1.954 2.691

31 Bahrain 260 520 2.415 2.716
32 Cyprus 673 702 2.828 2.846
33 Fiji 577 738 2.761 2.868
34 Guyana 791 753 2.898 2.877
35 Swaziland 469 837 2.671 2.923
36 Gambia 509 848 2.707 2.928
37 Guinea-Bissau 525 999 2.720 3.000
38 Gabon 521 1,068 2.717 3.029
39 Mauritius 899 1,072 2.954 3.030
40 Botswana 691 1,224 2.839 3.088

41 Trinidad and Tobago 1,009 1,271 3.004 3.104
42 Namibia 1,453 3.162
43 Oman 770 1,481 2.886 3.171
44 Bhutan 1,173 1,566 3.069 3.195
45 Estonia 1,584 3.200
46 Lesotho 1,148 1,755 3.060 3.244
47 Mauritania 1,283 1,935 3.108 3.287
48 Kuwait 1,085 2,124 3.035 3.327
49 Mongolia 1,446 2,187 3.160 3.340
50 Congo 1,345 2,242 3.129 3.351

51 UAR United Arab Emirates 220 2,254 2.342 3.353
52 Panama 1,678 2,425 3.225 3.385
53 Jamaica 2,029 2,469 3.307 3.393
54 Liberia 1,708 2,640 3.232 3.422
55 Latvia 2,695 3.431
56 Singapore 2,248 2,721 3.352 3.435
57 Central African Republic 1,790 2,877 3.253 3.459
58 Costa Rica 1,994 3,033 3.300 3.482
59 Uruguay 3,108 3,102 3.492 3.492

60 Albania 2,482 3,273 3.395 3.515
61 Jordan 2,688 3,273 3.429 3.515
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62 New Zealand 3,031 3,296 3.482 3.518
63 Lebanon 2,869 3,339 3.458 3.524
64 Armenia 3,357 3.526
65 Ireland 3,131 3,500 3.496 3.544
66 Nicaragua 2,318 3,602 3.365 3.557
67 Turkmenistan 3,658 3.563
68 Togo 2,248 3,674 3.352 3.565
69 Lithuania 3,726 3.571
70 Papua New Guinea 2,716 3,823 3.434 3.582

71 Laos 3,303 4,024 3.519 3.605
72 Sierra Leone 2,983 4,166 3.475 3.620
73 Libya 2,255 4,223 3.353 3.626
74 Norway 4,007 4,253 3.603 3.629
75 Moldova 4,393 3.643
76 Kyrgystan 4,394 3.643
77 Israel 3,417 4,436 3.534 3.647
78 Bosnia Herzegovina 4,517 3.655
79 Paraguay 2,647 4,660 3.423 3.668
80 Benin 3,074 4,674 3.488 3.670

81 Croatia 4,686 3.671
82 Honduras 3,037 4,804 3.482 3.682
83 Finland 4,652 4,977 3.668 3.697
84 Chad 3,947 5,017 3.596 3.700
85 Denmark 5,026 5,131 3.701 3.710
86 El Salvador 4,108 5,310 3.614 3.725
87 Tajikistan 5,342 3.728
88 Georgia 5,479 3.739
89 Burundi 3,765 5,646 3.576 3.752
90 Haiti 4,552 6,142 3.658 3.788

91 Somalia 3,170 6,654 3.501 3.823
92 Switzerland 6,535 6,742 3.815 3.829
93 Bolivia 5,410 6,989 3.733 3.844
94 Kampuchea / Cambodia 8,110 6,991 3.909 3.845
95 Dominican Republic 5,118 7,241 3.709 3.860
96 Guinea 4,416 7,269 3.645 3.861
97 Rwanda 4,233 7,609 3.627 3.881
98 Austria 7,538 7,644 3.877 3.883
99 Senegal 4,418 7,714 3.645 3.887

100 Niger 4,600 7,879 3.663 3.896

101 Tunisia 5,747 8,104 3.759 3.909
102 Mali 5,697 8,142 3.756 3.911
103 Zambia 5,004 8,154 3.699 3.911
104 Angola 6,394 8,449 3.806 3.927
105 Sweden 8,291 8,526 3.919 3.931
106 Bulgaria 8,793 8,934 3.944 3.951
107 Guatemala 6,129 9,038 3.787 3.956
108 Burkina 9,078 3.958
109 Malawi 4,909 9,197 3.691 3.964
110 Yemen 9,746 3.989

111 Serbia 9,883 3.995
112 Belgium 9,846 9,909 3.993 3.996
113 Greece 8,930 10,028 3.951 4.001
114 Belarus 10,257 4.011



115 Portugal 8,762 10,354 3.943 4.015
116 Zimbabwe 6,272 10,394 3.797 4.017
117 Ecuador 7,090 10,507 3.851 4.021
118 Hungary 10,534 10,569 4.023 4.024
119 Cuba 9,481 10,620 3.977 4.026
120 Cameroon 6,433 11,092 3.808 4.045

121 Madagascar 8,020 11,801 3.904 4.072
122 Ivory Coast / Cote d'Ivoire 4,885 12,478 3.689 4.096
123 Syria 7,259 12,483 3.861 4.096
124 Chile 10,253 13,083 4.011 4.117
125 Mozambique 9,223 14,539 3.965 4.163
126 Netherlands 13,599 14,936 4.134 4.174
127 Ghana 9,873 15,130 3.994 4.180
128 Afghanistan 19,280 15,564 4.285 4.192
129 Czechoslovakia 14,793 15,683 4.170 4.195
130 Australia 13,809 17,037 4.140 4.231

131 Saudi Arabia 8,966 17,116 3.953 4.233
132 Sri Lanka 13,986 17,198 4.146 4.235
133 Malaysia 12,093 17,556 4.083 4.244
134 Uganda 11,353 18,016 4.055 4.256
135 Iraq 11,067 18,782 4.044 4.274
136 Nepal 12,572 19,146 4.099 4.282
137 Venezuela 12,213 19,698 4.087 4.294
138 Taiwan / Republic of China 16,453 20,435 4.216 4.310
139 Uzbekistan 20,569 4.313
140 Korea North 15,852 21,412 4.200 4.331

141 Peru 15,326 21,906 4.185 4.341
142 Romania 21,178 23,273 4.326 4.367
143 Kenya 13,251 24,342 4.122 4.386
144 Algeria 16,792 25,337 4.225 4.404
145 Morocco 17,504 25,630 4.243 4.409
146 Tanzania 15,388 25,971 4.187 4.414
147 Sudan 18,268 26,245 4.262 4.419
148 Canada 22,801 26,538 4.358 4.424
149 Argentina 25,384 32,291 4.405 4.509
150 Colombia 25,890 33,076 4.413 4.520

151 Zaire 24,450 36,613 4.388 4.564
152 Poland 33,841 37,777 4.529 4.577
153 SPAN 35,433 39,269 4.549 4.594
154 South Africa 24,663 39,539 4.392 4.597
155 Burma 31,240 41,277 4.495 4.616
156 Korea South 34,663 42,792 4.540 4.631
157 Ethiopia 28,134 51,407 4.449 4.711
158 Ukraine 51,711 4.714
159 Egypt 37,543 53,212 4.575 4.726
160 Thailand 42,093 56,002 4.624 4.748

161 France 52,913 56,358 4.724 4.751
162 Iran 32,923 57,003 4.517 4.756
163 Turkey 39,882 57,285 4.601 4.758
164 United Kingdom 56,427 57,366 4.751 4.759
165 Italy 55,023 57,664 4.741 4.761
166 Germany West 61,682 63,232 4.790 4.801
167 Philippines 44,437 64,404 4.648 4.809
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168 Vietnam 43,451 66,171 4.638 4.821
169 Germany 79,123 4.898
170 Mexico 59,204 88,010 4.772 4.945

171 Bangladesh 113,930 5.057
172 Pakistan 70,560 114,649 4.849 5.059
173 Nigeria 63,049 118,819 4.800 5.075
174 Japan 111,120 123,567 5.046 5.092
175 Russia 148,254 5.171
176 Brazil 109,730 152,505 5.040 5.183
177 Indonesia 136,044 190,136 5.134 5.279
178 USA 213,925 250,410 5.330 5.399
179 India 613,217 852,667 5.788 5.931

180 China / People's Repu 838,803 1,133,683 5.924 6.054
181 Yemen (Aden) 1,660 3.220
182 Puerto Rico 2,902 3.463
183 Hong Kong 4,225 3.626
184 Upper Volta 6,032 3.780
185 Yemen (Sana) 6,668 3.824
186 Germany East 17,127 4.234
187 Vietnam South 19,650 4.293
188 Yugoslavia 21,322 4.329
189 Vietnam North 23,800 4.377
190 Bangladesh 73,746 4.868

191 USSR 255,038 5.407
192 Burkina
193 Soviet Union frmr

Beginning again, the first thing you “see” using logs is that the

numbers are unfamiliar.  That’s not good, it leads to error, so I’ve intro-

duced a few bench marks by using logs base 10.  Using logs base 10, a “2”

in logs, corresponds to 100 without logs.  So, St. Vincent with approxi-

mately 100 (approximately one hundred thousand people) will have a

log, base 10, of approximately 2.  Using logs base 10, a “3” in logs corre-

sponds to 1,000 without logs.  So Guinea-Bissau with approximately

1,000 (approximately one million people) will have a log, base 10, of

approximately 3. Belgium with approximately 10,000 (approximately

ten million people) will have a log, base 10, of approximately 4.  And,

while you will become accustomed to these numbers, there is no harm

done by keeping the original values in the table, for backup.

Now  for the picture, the shape of the stem and leaf.  Preparing to

select boundaries for the stems, I check the range, finding a range

between .954 and 6.05.  Using convenient boundaries to get about ten



stems, and just checking the counts I would get for these stems, I get

Figure _.  I will not actually construct the stem and leaf because with

the rank ordering in Figure _, including the names, and the shape

shown in Figure _, I have what I need.

0.5- .999 | 1 country

1.0 - 1.499 || 2 countries

1.5 - 1.999 |||||||| 8countries

2.0 - 2.499 |||||||||| 10 countries

2.5 - 2.999 ||||||||||||||| 15 countries

3.0 - 3.499 ||||||||||||||||||||||| 23 countries

3.5 - 3.999 ||||||||||||||||||||||||||||||||||||||||||||||||||||| 53 countries

4.0 - 4.499 |||||||||||||||||||||||||||||||||||| 36 countries

4.5 - 4.999 |||||||||||||||||||||| 22 countries

5.0 - 5.499 |||||||| 8 countries

5.5 - 5.999 | 1 country

6.0 - + | 1 country

That’s good — decidedly closer to symmetry than the original and

suggesting that log population may be a well-behaved (or relatively

well-behaved) variable.   Let’s find the numbers that are supposed to

describe the picture.

1975 1990

Mean 3.724 3.688 Verify
Standard Deviation
(Excel function stdevp)

.787 .911 Verify

Median 3.759 3.8055 Verify
Low Quartile 3.3035 3.222 Verify
High Quartile 4.2295 4.278 Verify
Quartile Spread .926 1.056
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Looking at the averages:

This is certainly different.  Let’s take it apart.  The mean is

approximately 3.7 to 3.8 and so is the median.  Whichever average I

choose, I get approximately the same result.  That’s another sign of

symmetry (Symmetry will place the both the median and the mean in

the middle, near the peak.  So this is another suggestion that the vari-

able is well-behaved.)  And keeping myself grounded in the units for

which I have intuition, 3.7 is the log, base 10, of a number slightly less

than 10,000 (with 4 zeroes), implying approximately 10 million people

as the central value for the distribution of populations —  approxi-

mately the size of Denmark, the Dominican Republic, or Guatemala

and probably a bit of a jolt to the intuition of an American living in a

nation of 250 million).

Between 1975 and 1990, the mean has actually decreased a little,

that’s a little unsettling.  Is this some weird result of using a weird unit

of measure, the logs?  No, but let’s check:  My intuition expects an

increase of about two percent per annum, for world population, approx-

imately 30% over the fifteen years between 1975 and 1990.  (I got 30%

for fifteen years by multiplying 2% per year, my personal expectation,

times 15 years.  That’s a crude approximation because it ignores

compound interest but then I pulled 2% out of my head anyway.  For

now, for the sake of a quick look and a quick think about the data, I can

tolerate the crudeness of these approximations.)

But the mean population (in logs) hasn’t increased at all and the

median population (in logs) has increased by .0465.  What is .0465?

That is the difference between the logs so it corresponds to a ratio of

populations, 10.0465 = 1.11.  So it says that the 1990 figure is 1.11 times

the 1975 figure, an increase of 11%, not 30%.  So both figures for the 1975

to 1990 change are too low — compared to what I am expecting.  Again,

is this just a peculiar punishment for using peculiar numbers, the logs?

No, it can’t be because the median country is the same country, regard-

less of the choice between population and log population.  So there is

something real here.



Unless — maybe my figure of 2% per annum for world population is

wrong.  I don’t know how that number got into my head.  And since my

intuition is not matching the facts, I’d better check.  And, I have the

data:  Adding up the 1975 populations, I get about 4 billion people.

Adding up the 1990 populations, I get 5.3 billion.  That’s an increase of

about 33% in total  population — right on target for my intuition.  So I

still have to explain the difference between the increase for total  popu-

lation and the increase for average  population.  Ah — this begins to

sound like a problem of units:  For total population the unit is the

world.  For average population the unit is the nation.  So, I’ve got a clue

but I’ve still  got something to worry about as I continue.

Looking at the variations:

What have I got for the variation?  First, what am I expecting?

I’m expecting or, to be more precise, I am hoping that the variation is a

nice reasonable number — unlike the variation that including a nega-

tive range of populations (for population without logs).   Taking the

measures of variation one at a time (without comparing them), this

part looks good.  Using the standard deviations, the central range of

the distribution is the range between the mean minus one standard

deviation and the mean plus one standard deviation — for 1990 that’s

between 2.777 and 4.599. Unlike the measures of variation on popula-

tion, which was comparatively poorly behaved, these numbers match

the picture, including a range from about one and a half stems less than

the stem with the largest number of leaves to about one and one half

stems greater than the stem with the largest number of leaves.

Bringing my intuition along, what is .911?  It is the log of 8.15, (10^.911

= 8.15).  That tells me that the central range of the distribution lies

between the center divided by 8.15 and the center multiplied by 8.15. 

To make that a little easier, in plain English, I can introduce the

term “geometric mean”:  The geometric mean is the anti-log of the mean

of the logs, i.e., the anti log of 3.688 in this case.  So, I can build this

information into a sentence by saying that “the central range of popula-
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tions lies within a factor of 8 on either side of the geometric mean of the

populations.”

The quartile spreads, used as alternative way to specify the

central range of the distribution, pick out a narrower definition of the

center, between 3.222 and 4.278.  I would put that in words by using anti-

logs and saying “the middle fifty percent of the distribution marks a

range between 1.7 million and 19 million around a median of 6.4 million

people.

What have I got for the comparison between variations?  First,

again, what am I expecting?  I’m expecting, or hoping, that the varia-

tion is constant, more evidence of a well-behaved variable.  Checking

the facts, no.  Both the standard deviations and the quartile spreads

increase, 1975 to 1990.  The standard deviation increases by .125.  The

quartile spread increases by .130.  Again, how large are these loga-

rithms?  Checking, .125 is the log of   1.33, (10^.125 = 1.33).  .130 is the

log of 1.35.  Those ratios seem like large increases, thirty-three to

thirty-five percent.  I don’t like that — not well-behaved.   It may be

that these are the facts and there is nothing to do but report them.  But

that’s just deferring the thinking — somebody, probably me, is going to

have to figure out what’s going on here.  One strong cue I have is my

knowledge that the computation of quartiles doesn’t even use the data

beyond the quartiles ,while the computation for the standard devia-

tion, uses all of the data.  That suggests I keep my eye on the small end

or the large end of the distribution of nations.  I’ll put this on the stack

of questions I have to worry about as I continue.

Looking at the Limits:

Checking the upper and lower ends of the 1990 distribution: The

difference between results based on the given unit of measure, popula-

tion, as compared to the well-behaved unit of measure, log population,

will differ most at the low end:  Where the mean minus one standard

deviation extended to negative populations, using people; the mean

minus one standard deviation is still a credible number, using logs.



Doing the computations:  Using two criteria, first using the crite-

rion that builds on the standard deviation.  Using straight population,

no logs, the mean minus three standard deviations and the mean plus

three standard deviations set the bounds of reasonable data at

–305,141, that’s negative 305 million, and +364,555, that’s plus 365

million.  Aside from the fact that there is no country with a negative

population, whatever that means, there are three countries, the United

States, India, and China, with unusually large populations.  But, such

measures don’t make sense for a variable, population, that is not well-

behaved. 

Applying the same computations using logs as the unit of measure,

three standard deviations sets the bounds of reasonable data at 1.855

and 5.521, corresponding to populations below 71.6 (below 72 thousand)

and above 331,894.5 (above 339 million), marking one country,

Seychelles, as atypically small and two countries, India and China, as

atypically.

Using the criteria based on quartiles, suggested by Tukey, the inner

fences are at 2.2215 and 5.3895, corresponding to 166.5 (167 thousand)

and 245,188 (two hundred and forty five million).  And the outer fences

are at .6375 and 6.9735, corresponding to 4.34 (four thousand) and

9,408,058 (9.4 billion).  Using the inner fences, they classify 15 countries

as very small and three as very large.  Using the outer fences, no coun-

tries are “beyond the fence”. 

Summing it up and thinking:

So now, what have I got:  The mean has become smaller while the

median has become larger.  This too may have something to do with

using only the middle values, for the median, while using all the

values for the mean.  And now I also remember that there was a

substantial difference between the list of nations for 1975 and the list

for 1990.  Looking at that list again, in rank order, I see one very big

country has disappeared, replaced by ?? smaller ones.  So I bet that the

anomalies I need to deal with, one average increasing while the other
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decreases, variations that get larger when, for I was looking for a

constant, that these anomalies can depend on something that occurred

among the extreme values, suggesting that this is the numerical

indicator of the breakup of the Soviet Union.

I’ll check.  Removing the Soviet Union from the 1975 data produces
1975 1990

Mean 3.713 3.683 Verify ??
Standard Deviation
(Excel function stdevp)

.777 .936 Verify

Median 3.7575 3.8445 Verify
Low Quartile 3.3000 3.1665 Verify
High Quartile 4.225 4.289 Verify
Quartile Spread .925 1.056

So much for that explanation, it doesn’t work.   — I’ve removed the

USSR from the 1975 data and Estonia, Latvia, Armenia, Turkmenistan,

Lithuania, Moldova, Kurqustan, Tajikistan, Georgia, Belarus,

Uzbekistan, and the Ukraine from the 1990 data — but the effects I

hoped to explain have persisted.

I’d better be more extreme:  I’ll use only those countries presenting

data for both time periods:  At 144 countries, this is a restricted subset,

but it gives me a subset whose change, 1975 to 1990, depend more

(though not exclusively) on population growth than political change

(though not exclusively)  — excluded other nations for the purpose of

checking whether the curious changes of values are attributable to

fission and fusion.

1975 1990

Mean 3.693 3.839 Verify
Standard Deviation
(Excel function stdevp)

.790 .777 Verify



Median 3.721 3.892 Verify
Low Quartile 3.2425 3.4075 Verify
High Quartile 4.1935 4.336 Verify
Quartile Spread .9510 .9285

All right — somewhere between the full data set, which is

different for the two dates, and the restricted data set, which is more

similar for the two dates (though less complete for either date) some of

the directions of change have reversed.   With full data the mean

decreases, with restricted data, the mean increases.  With full data

the standard deviations increase; with restricted data the standard

deviations decrease.  With the full data as well as the restricted data

the medians increase.  With full data the quartile spread increases;

with restricted data the quartile spread decreases. 

I’m now a little more at ease about the logarithm.  It was supposed

to give me a well-behaved variable.  And it did gain symmetry and

reasonable spreads.  But it bothered me when my two measures of

spread, the standard deviations and the quartile spreads of the logs

increased.  Now they decrease.  That tells me I’m close:  The size of the

changes in the variation are within a range that can be influenced by

changes in the set of countries.  So the variations do not necessarily

indicate that the measure is poorly-behaved.  Phrasing that with a

double negative:  I have no clear evidence that log population is not

homeoscedastic.  (Try these tests with the original numbers — in people

as the unit the variable.  The heteroscedasticity  there are/ is /should

be  [check] much larger than might be explained by heteroscedastic

with or without the adjustments in the set of nations. )

The Write Up

And now, wanting you to know how hard I’ve worked at this, but

admitting, that you really don’t care — except for the results:  The

write up:
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The Size of Nations

What is the size of a country?  United Nations data for

1990 show that the median population of countries is about 5

million, matching the population of Somalia and Haiti.

Those of us who live in the United States naturally think of

ourselves as “normal” and countries such as Somalia and Haiti

as quite small, but in fact the middle fifty percent of national

populations runs between 1.7 million, e.g., Estonia, and 19

million, Iraq.  At the extremes, China and India stand out,

including between themselves, 2 billion people,  about half of

the world’s population while, at the other end a few nations

count populations of approximately 100,000 or less.

Curiously, even while the population of the world has

increased by about 35%, approximately 2% per year, the popu-

lation of the average nations shows no clear trend.  Even the

direction of change, up or down, depending on the precise

measure that is used to compute the average .  (The size of the

median population has increased from 5.7 million to 6.4

million, a 12% increase.)  In effect, as the total population has

increased, the division of people into states has increased the

fragmentation so that the 1990 average is close to the 1975

average and smaller than the 1975 average as a fraction of the

total population of the world.  This fragmentation appears to

be the net result of changes in definitions and borders,

including  the breakup of the Soviet Union and Yugoslavia,

the fusion of the Germanys, Vietnams, and Adens. 

Who, What, Where …

I’ve chosen the median because I can identify

it with a country.  That makes it easy to communi-

cate.  It also avoids the need to discuss the units

because the median is the median (the middle is

the middle) whether I use the logs or the original

numbers.

I’m using bench marks to keep my reader

oriented, using the size of the U.S.  the names  of

well known countries, and rounded numbers.

These were convenient cutting points, using

either the ratio of the size of a country to the size

of the next smallest country, 3.4 for India as

compared to China, 1.3 for China as compared to

India, or easily remembered values, like 100,000.

I’ve chosen to make a virtue out of ambiguity

with respect to the direction of change, acknowl-

edging different results from different indicators. 

I’m giving up on the distinction between

nation and state — important professionally but

not necessarily to my audience (depending on the

audience)/
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The Unit of Analysis:
Facts About What?

O.K., if you didn’t already know how, then now you know how to

compute a median and a mean.  Those are the centers.  Corresponding to

each of these concepts of the center there is an associated concept of the

variation:  Corresponding to the median, the hinges provide  a way to

specify, verbally, where the central half (not just the center) of the data

lies.  In words, using the median and the hinges:  “The middle 50% lie

between ___ (lower hinge) and ___ (the upper hinge).  Corresponding to

the mean, the standard deviation estimates the mean deviation:  “The

mean is ___ with a standard deviation of ___.”  The verbal summary

provides the mean and the standard deviation from which the reader of

the summary is supposed to construct a mental image a bell-shaped dis-

tribution with the central peak at the mean and the center of the distribu-

tion lying between values which are one standard deviation below the

mean and one standard deviation above the mean.

Corresponding to each of these concepts of variation there is also a

concept of too much variation:  Corresponding to the median and the

quartiles, too much variation is marked by the fences:  The inner and

outer fences mark the limits of routine variation.  Value beyond the

fences are sufficiently unusual to be suspicious — not just different from

the central values of the data, but different in kind  — or, at the least, that

is a possibility to be investigated.  Corresponding to the mean and the

standard deviation, too much variation is marked by the value of the

mean plus or minus two standard deviations or three standard devia-

tions (or, sometimes, more precisely plus or minus 1.96 and 2.81 stan-

dard deviations). In either system “too much variation” designates

variation so large and unexpected that the analyst may either leave it out

entirely, applying the name “outlier”, or do just the opposite by focusing

in on these special cases as extreme examples of the general principles at

work in the data (Gerber’s High Protein).
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In addition to learning the concepts for the center, for the variation,

and for too much variation, you have taken steps toward sorting all of

this out computationally, and you’ve begun to get Excel and the Mac to

do your bidding.

With these “mechanics” under control, it is time to delve in to the

art of using these things, time to think.  The first question is “Facts about

what?”  A datum is an attribute of something:  A number of grams of

protein is an attribute of a cereal.  A cause of death is an attribute of a

person.  A literacy rate is an attribute of a country.  I want to draw your

attention to that thing:  What is this thing to which the numbers are at-

tached or, in the language of the trade “What is the correct unit of analy-

sis?”

The routine answer to that question is usually easy enough to an-

swer.  The deeper answer is more interesting:  I asked “What is the correct

unit of analysis?”  There are choices.  And there is no compelling reason

why the data analyst should automatically accept the unit of measure

that was convenient to the person who organized the data.  That is up to

us — analyst’s choice.  And the choice may make a difference.   For ex-

ample, beginning with the breakfast cereal, the original data show grams

of protein as an attribute of a commonly used portion of breakfast cereal

.  But grams of protein could be recomputed as an attribute 100 grams of

breakfast cereal — changing the unit of analysis by standardizing the

data to a common weight of cereal.  Analyst’s choice.

To emphasize the importance of the unit of analysis and to encour-

age active choice of the unit of analysis on the part of the data analyst, I

am going to take you through five sets of mental gymnastics.  The job of

these gymnastics is to create doubt, doubt with respect to passive accep-

tance of the data as given, and then to improve the focus of the analysis

by asking “What is the ‘correct’ unit of analysis?”
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On the Average I:
  Physicians per Capita

Data gymnastics, exercise #1:   In Figure 1  (attached Excel file 1

Phy/Cap Rdcd Cols) you have data for 137 countries:  Column 1 names

the country.  Column 2 gives you an estimate of the number of physicians

in that country.  Column 3 gives you the estimate of the population for

that country.  Question:  What is the average rate of physicians per

capita?

As a problem in arithmetic, that’s easy:  For each nation I construct

the ratio of doctors to people.  That gives me a new number describing

each nation, computed and shown in columns 4 and 5.  So, for the United

States (in 1975), row 130, the data show 348-thousand doctors and 213-

million people, which works out to .001629 doctors per person, 1.6 doc-

tors per thousand people.  I repeat that computation for each row, get-

ting a number that describes each nation.  And then I compute the aver-

age:  The average of these national statistics is .000681 physicians per

capita.  That’s 0.7 physicians per thousand, approximately two thirds

of a doctor for each one thousand people.

That’s it — or is it?  It’s good to do things, even easy things, two or

more ways, just to be sure that everything” is right, just to be sure that

everything is clear.  So looking at these data for a second time, surely

there’s an easier way than the one I used above:  If I want the number of

physicians per person in the world (that part of the world for which I

have data), then why not just add up the number of doctors, add up the

number of people, and then divide the number of doctors by the number

of people?  Why not?

Adding-up the number of doctors:  The sum is approximately three

million doctors   (reported as 2,622,088 doctors at the bottom of Column

2).  Adding-up the number of people:  The sum is approximately three

billion, (reported as 3,028,196,000 noted at the bottom of Column 3).  So,

dividing the number of doctors by the number of people, the answer is
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.000866  doctors per capita, which is approximately .001 doctors per

capita or, approximately 0.9 doctors per thousand people. 

And, now, as you see, I have a problem:  The first time through, I

got 0.7 doctors per thousand people.  The second time through I got 0.9

doctors per thousand people.  And, of course, 0.9 just is not the same an-

swer as 0.7.  If you accepted what I did, and found both procedures

straight forward (and numerically correct), then why are the two an-

swers different?

Should I worry about such a thing?  I could get out by talking

quickly, flashing a few extra digits and then concluding that I have

two estimates showing between one-half and one doctor per thousand

people, across the world in 1975.  Or I could dismiss the whole thing,

saying that the two numbers are almost the same.  But that’s just

whistling in the dark and hoping no one will notice that I’m in trouble.  

If you accepted both arguments and if both arguments were correct, then

the numbers should be exactly the same.  Something is wrong.

I could take another out:  Surely all of these data are rough

approximations at best.  Possibly some of them are as much bravado as

fact establishing a nation’s standing in the pecking order of nations —

my country is better than yours , when the United Nations compares one

nation to another.  And the data are suspect:  If you do your homework,

beginning with one variable checks for each of the two variables, and

continue with your one variable check on the column of numbers for

doctors per capita, then you will have some serious questions about this

stuff.  But that’s just another verbal dodge:  confusing my reader by

arguing that fuzzy data allow fuzzy conclusions, even for something as

simple as the average.  That’s a dodge:  Whether or not I believe the

detailed numbers, my problem is that I have what appear to be two

different estimates of doctors per person both based on the same numbers

— that’s not acceptable because it shows that something is wrong — it

is a loose thread in my web of credibility and I’ve got to fix it. 

Well, there’s another possibility here that may rescue me from

confusion:  There is an awful lot of estimation going on in these numbers,
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some of them are large numbers, some of them are small — and that’s

the kind of thing that leads computers into rounding error.  That’s a

possibility to be considered.  It’s not the real problem here but it leads

to an important suggestion:  We’ve got two confusing things going on

here:  We’ve got data that we’re trying to understand and, as it turns

out, we’ve got a method that we’ve got to work on before the method

itself is understand.  And, for the moment, both of them are confusing.

So,  let’s simplify the problem, simplify the data, in order to focus on

the complexity of the method. 
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Country Doctors Total Population
'75

Doctors Per
Person

Doctors
Per
1,000
People

Bahamas 161 200,000 0.000805 0.805
Barbados 166 245,000 0.000677551 0.678
Canada 39,104 22,801,000 0.001715012 1.715
Costa Rica 1,292 1,994,000 0.000647944 0.648
Cuba 8,201 9,481,000 0.000864993 0.865
El Salvador 1,117 4,108,000 0.000271908 0.272
Grenada 25 100,000 0.00025 0.250
Guatemala 1,207 6,129,000 0.000196933 0.197
Guyana 237 791,000 0.000299621 0.300
Haiti 396 4,552,000 8.69947E-05 0.087
Honduras 920 3,037,000 0.000302931 0.303
Jamaica 570 2,029,000 0.000280927 0.281
Mexico 31,556 59,204,000 0.000533005 0.533
Nicaragua 1,400 2,318,000 0.000603969 0.604
Panama 1,404 1,678,000 0.00083671 0.837
Puerto Rico 3,479 2,902,000 0.001198828 1.199
Trinidad and
Tobago

550 1,009,000 0.000545094 0.545

USA  348,484 213,925,000 0.001629001 1.629

Sums (for Doctors &
Population)

440,269 336,503,000A
v
e
r
a
g
e
s:

0.653
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Doctors/Person = 0.001308366
Doctors/Thousand
Persons =

1.308 Compare as
Doctors per
1,000 People

Figure _ (Excel file Phy/Cap Rdcd Cols 18 Rows) shows the same

kind of data, restricted to North American and Caribbean nations.  The

problem is still there:  The two different “averages” remain unequal,

shown in the same locations as Figure 1.  But there’s no reason to stop

here:  For the moment,  I don’t need a set of nations that represents any-

thing, my immediate problem is to understand the method — then and

only then will I try to use it.  So simplifying, here is a “sample” of the

U.S. and Mexico.  Let’s take a look at the data for these two.

Country Doctors
'75

Population
'75

Doctors Per
Person

Doctors Per
1,000
People

Mexico 31,556 59,204,000 0.000533 0.533
USA  348,484 213,925,000 0.001629 1.629

Averages:

Sums
(for Doctors & Population)

380,041 273,129,000 0.001081 1.081
925 people
per doctor

Doctors/Person = 0.00139143
Doctors/Thousand Persons = 1.391

719 people
per doctor

Derived from:  World Handbook of Political and Social Indicators, Third Edition, by Charles 
Taylor and David A. Jodice, Yale University Press, New Haven and London, 1983
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The first point is that the inequality is still there:  With only two

countries left in the table the two different estimates of the “average”

are still different, 1.081 versus 1.391.  And there is nothing much left

that can be dismissed as detail or “complication”.  Whatever is going

on, whatever it is that makes these two computations represent

different things not just different computations.   Do I care about this 20

to 25% discrepancy.  You bet:  Unless I understand what’s going on here,

all I know is that I’ve got a problem and I don’t even know how large it

is, or how large it would be in other data — the discrepancy tells me I

don’t know what I’m doing — and I’m responsible for that.  And if this

were not an exercise but the beginning of a research project, then work

would stop right here, or should stop, until the principles are un-

derstood:  If my research required me to estimate how much the ratio of

doctors to people had changed in twenty-five years, if my research

needed to ask whether socialized medical systems were different from

others, if my inquiry were to ask how physicians per capita was

related to nations wealth and, perhaps, how physicians per capita was

inversely related to other government expenditures — whatever it is

that I need to know for research or policy — I’m surely not ready for

subtle comparisons among nations when I can’t even zero-in on the first

estimate for the first set of data.  I need an answer.

The answer, or at least the route to an answer, lies in looking very

closely at the unit of analysis:  What is it that is described by each of

the numbers?  So let’s add some units and then carry the units into the

arithmetic:  Here are the “data”, the basic four numbers with labels.

31,556 doctors 59,204,000 people
348,484 doctors 213,925,000 people
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Country Doctors Population Doctors
per

Person

Doctors
per 1,000

People
Mexico 31,556 59,204,000 0.000533 0.533
USA  348,484 213,925,00

0
0.001629 1.629

When I compute the first ratio, .533 doctors per thousand people,

that ratio describes the unit Mexico:  It had half a doctor per thousand

people.  When I compute the second ratio, 1.629 doctors per thousand,

the ratio describes the unit United States:  At one and one half doctors

per thousand people, the United States has approximately three times

as many doctors per capita as Mexico.  Each of the two numbers

measures the attribute of a country.  And the average with respect to

these two countries is the average of doctors per person per country.   1.1

doctors per thousand people is the single number that comes closest to

describing these two data points

By contrast, the second computation adds up the numbers of doctors

to estimate the number of doctors in the world (in the two country

example, it is the “world” comprised of these two countries).  It adds up

the number of people  to estimate the number of people in the world.

And then, dividing the number of doctors in the world by the number by

the number of people in the world it describes the  average number of

doctor per person in the world at large — ignoring countries.

At risk of going past clarity to something that is “painfully” clear,

the more precise description of these data requires, and uses, two levels

of aggregation, each of which corresponds to a unit of analysis.  At the

first level of aggregation the unit of analysis is the person.  It shows

the number of doctors per person.  

One of the two descriptions ascends to a second level of aggrega-

tion, the country.  Here doctors per person is an attribute of the country

which is the unit of analysis.  In Mexico, there are .0005 doctors per per-
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son, 0.5 doctors per thousand.  In the United States, there are  1.6 doctors

per thousand.  And the average of the two numbers is the doctors per

person of an average country. 

By contrast, the other computation continues to compute doctors per

person assembling one datum (not really an average) that describes the

world.  It is equally correct to say that in this second analysis the unit

of analysis is the person.  In the world (the “world” of the United

States and Mexico) there are about 1.4 doctors per thousand people. 



Rules of Evidence The Unit of Analysis:  Facts About What

9

Volume I:122 On the Average I P per C March 26, 1999

Aside on homework:

When you try to explain the difference between these two averages there is at least

one very sophisticated way of explaining it which is both sophisticated and wrong. 

Here’s the wrong way:

“The average that adds up the two numbers and divides by two treats both

countries equally.  But they are not equal.  The United States has a larger population

than Mexico.  So the average computed by adding two numbers and divides by two

gives less weight to the average American than it does to the average Mexican.  By

contrast, summing the populations, summing the doctors and then dividing one sum

by the other gives all people equal weight.”

That explanation is wrong. It discusses the weight given to each person in one computa-

tion versus the weight given to each person in the other population.  And therefore, subtly,

it implies that the person is the correct unit of analysis. 

That explanation is wrong because it misses the point.  Sure enough, we can use weights

to convert the data into results that describe one unit of analysis or another unit of analysis.

But the important point is that unit of analysis.   The country as a unit of analysis has an

economy, a health care system which includes medical education, an economy of medical

care,  and a distribution system:  The average system delivers 1.1 doctors per thousand peo-

ple.  By contrast, the person as a unit of analysis, shorn of politics, shorn of the wealth of

the country in which a person lives, experiences 0.9  doctors per thousand.  That’s the

experience of the average person.
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So, back to the data with which I began.  What can I say about

doctor per person:

UNESCO data for 1975 estimate 2.6 million doctors and 3.0 billion

people in the world, leaving a world wide average of .866  doctors per

thousand people, less than one doctor per thousand people.  But nations

are unequal in size and unequal in their ability to deliver these

services, so that the average nation-based health system achieves only

.681 doctors per thousand — which implies that some of the larger

nations have relatively inferior delivery of services, inferior as

compared to the average nation.

In this regard it should be noted that data for China are missing

from these numbers. With 20% of the world’s population excluded from

the data, the estimate of the resources available to the average person

must be treated with caution.  However as China is but one nation

among many, the description of estimate of results achieved by the

average health care system is not seriously affected by the absence of

data for China. 
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Homework:  You will receive an Excel sheet describing, one, the

population, and, two, the Gross National Products of nations.  First,

compute the gross national product per capita  for each nation and com-

pute the average of the gross national products.  Second, add-up the

gross national products and add up the populations and compute the

product per person.  That’s the easy part.  Now:  Write a short essay

clearly describing the two results and what each of them means.

I give you a target audience for your essay:  I like to try to write for

my ten year old niece.  What is a ten year old?  A ten year old has all

the operating mental equipment of an adult, but none of the experience,

and a very short attention span.  The ten year old is not easily

impressed or intimidated — efforts to do so usually just lose the

attention of such an audience:  You have to get to the point.  Your

“story” has to connect the numbers and it has to make a point.  And you

have to make it short.

And also:  Be very careful with the units.  I’ve given them to you as

they come from the data base I am using:  thousands of people and mil-

lions of dollars, not people and dollars.  Above, I hid my clean up of the

data base, not showing you the numbers until after I had put them in

terms of people and doctors.   I don’t mind if you work with data tabu-

lated in thousands and millions, but be very careful about the units on

your results:  When you report dollars per person, in either of the two

ways you will use, make sure you really have dollars per person.
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Country Doctors Total Population
'75

Doctors/Per
son

Doctors
Per
1,000
People

Afghanistan 656 19,280,000 3.40249E-05 0.034
Angola 384 6,394,000 6.00563E-05 0.060
Argentina 48,687 25,384,000 0.001918019 1.918
Austria 15,702 7,538,000 0.002083046 2.083
Bahamas 161 200,000 0.000805 0.805
Bahrain 177 260,000 0.000680769 0.681
Bangladesh 5,088 73,746,000 6.89936E-05 0.069
Barbados 166 245,000 0.000677551 0.678
Belgium 18,510 9,846,000 0.001879951 1.880
Benin 95 3,074,000 3.09044E-05 0.031
Bolivia 2,581 5,410,000 0.000477079 0.477
Botswana 63 691,000 9.11722E-05 0.091
Brazil 62,656 109,730,000 0.000571002 0.571
Bulgaria 18,773 8,793,000 0.002134994 2.135
Burma 5,561 31,240,000 0.000178009 0.178
Burundi 83 3,765,000 2.20452E-05 0.022
Cameroon 354 6,433,000 5.50288E-05 0.055
Canada 39,104 22,801,000 0.001715012 1.715
Central African
Republic

97 1,790,000 5.41899E-05 0.054

Chad 83 3,947,000 2.10286E-05 0.021
Chile 4,419 10,253,000 0.000430996 0.431
Colombia 12,997 25,890,000 0.000502008 0.502
Comoros 21 306,000 6.86275E-05 0.069
Congo 213 1,345,000 0.000158364 0.158
Costa Rica 1,292 1,994,000 0.000647944 0.648
Cuba 8,201 9,481,000 0.000864993 0.865
Cyprus 547 673,000 0.000812779 0.813
Czechoslovakia 35,385 14,793,000 0.00239201 2.392
Denmark 9,896 5,026,000 0.001968961 1.969
Dominican
Republic

2,375 5,118,000 0.000464048 0.464

Ecuador 3,517 7,090,000 0.000496051 0.496
Egypt 8,034 37,543,000 0.000213995 0.214
El Salvador 1,117 4,108,000 0.000271908 0.272
Equatorial Guinea 5 313,000 1.59744E-05 0.016
Ethiopia 338 28,134,000 1.20139E-05 0.012
Finland 6,699 4,652,000 0.001440026 1.440
France 77,888 52,913,000 0.001472001 1.472
Gabon 96 521,000 0.000184261 0.184
Germany East 31,308 17,127,000 0.001827991 1.828
Germany West 122,069 61,682,000 0.001979005 1.979
Ghana 938 9,873,000 9.50066E-05 0.095
Greece 18,423 8,930,000 0.002063046 2.063
Grenada 25 100,000 0.00025 0.250
Guatemala 1,207 6,129,000 0.000196933 0.197
Guinea 278 4,416,000 6.29529E-05 0.063
Guyana 237 791,000 0.000299621 0.300
Haiti 396 4,552,000 8.69947E-05 0.087
Honduras 920 3,037,000 0.000302931 0.303
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Hong Kong 2,881 4,225,000 0.000681893 0.682
Hungary 21,131 10,534,000 0.002005981 2.006
Iceland 372 216,000 0.001722222 1.722
India 145,946 613,217,000 0.000238001 0.238
Indonesia 8,299 136,044,000 6.10023E-05 0.061
Iran 11,358 32,923,000 0.000344987 0.345
Iraq 4,504 11,067,000 0.000406976 0.407
Ireland 3,773 3,131,000 0.001205046 1.205
Israel 9,144 3,417,000 0.002676032 2.676
Italy 114,228 55,023,000 0.002076005 2.076
Ivory Coast / Cote
d'Ivoire

322 4,885,000 6.59161E-05 0.066

Jamaica 570 2,029,000 0.000280927 0.281
Japan 133,344 111,120,000 0.0012 1.200
Jordan 745 2,688,000 0.000277158 0.277
Kenya 1,246 13,251,000 9.40306E-05 0.094
Korea South 17,851 34,663,000 0.000514987 0.515
Kuwait 1,089 1,085,000 0.001003687 1.004
Laos 155 3,303,000 4.69270E-05 0.047
Lebanon 2,301 2,869,000 0.000802022 0.802
Lesotho 49 1,148,000 4.26829E-05 0.043
Liberia 142 1,708,000 8.31382E-05 0.083
Libya 2,586 2,255,000 0.001146785 1.147
Luxembourg 368 342,000 0.001076023 1.076
Madagascar 754 8,020,000 9.40150E-05 0.094
Malawi 103 4,909,000 2.09819E-05 0.021
Malaysia 2,007 12,093,000 0.000165964 0.166
Maldives 9 120,000 0.000075 0.075
Mali 142 5,697,000 2.49254E-05 0.025
Malta 382 329,000 0.001161094 1.161
Mauritania 87 1,283,000 6.78098E-05 0.068
Mauritius 346 899,000 0.000384872 0.385
Mexico 31,556 59,204,000 0.000533005 0.533
Mongolia 2,604 1,446,000 0.00180083 1.801
Morocco 1,243 17,504,000 7.10123E-05 0.071
Mozambique 507 9,223,000 5.49713E-05 0.055
Nepal 339 12,572,000 2.69647E-05 0.027
Netherlands 21,826 13,599,000 0.001604971 1.605
New Zealand 4,110 3,031,000 0.001355988 1.356
Nicaragua 1,400 2,318,000 0.000603969 0.604
Niger 83 4,600,000 1.80435E-05 0.018
Nigeria 4,224 63,049,000 6.69955E-05 0.067
Norway 6,884 4,007,000 0.001717994 1.718
Oman 153 770,000 0.000198701 0.199
Pakistan 17,922 70,560,000 0.000253997 0.254
Panama 1,404 1,678,000 0.00083671 0.837
Paraguay 2,229 2,647,000 0.000842085 0.842
Peru 10,514 15,326,000 0.000686024 0.686
Philippines 13,464 44,437,000 0.000302991 0.303
Poland 58,240 33,841,000 0.001720989 1.721
Portugal 11,101 8,762,000 0.001266948 1.267
Puerto Rico 3,479 2,902,000 0.001198828 1.199
Qatar 96 90,000 0.001066667 1.067
Romania 28,548 21,178,000 0.001348003 1.348
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Rwanda 106 4,233,000 2.50413E-05 0.025
Sao Tome and
Principe

12 80,000 0.00015 0.150

Saudi Arabia 3,613 8,966,000 0.000402967 0.403
Senegal 305 4,418,000 6.90358E-05 0.069
Seychelles 21 60,000 0.00035 0.350
Singapore 106 2,248,000 4.71530E-05 0.047
Somalia 193 3,170,000 6.08833E-05 0.061
South Africa 12,060 24,663,000 0.000488992 0.489
SPAN 54,992 35,433,000 0.001552 1.552
Sri Lanka 3,245 13,986,000 0.000232018 0.232
Sudan 1,407 18,268,000 7.70199E-05 0.077
Suriname 202 422,000 0.000478673 0.479
Swaziland 65 469,000 0.000138593 0.139
Sweden 14,045 8,291,000 0.001694006 1.694
Switzerland 11,469 6,535,000 0.001755011 1.755
Syria 2,403 7,259,000 0.000331037 0.331
Tanzania 846 15,388,000 5.49779E-05 0.055
Thailand 5,009 42,093,000 0.000118998 0.119
Togo 1,623 2,248,000 0.000721975 0.722
Trinidad and
Tobago

550 1,009,000 0.000545094 0.545

Tunisia 1,213 5,747,000 0.000211067 0.211
Turkey 21,696 39,882,000 0.000544005 0.544
UAR United Arab
Emirates

681 220,000 0.003095455 3.095

Uganda 431 11,353,000 3.79635E-05 0.038
United Kingdom 75,612 56,427,000 0.001339997 1.340
Upper Volta 109 6,032,000 1.80703E-05 0.018

USA 348,484 213,925,00
0

0.001629001 1.629

USSR 733,744 255,038,000 0.002876999 2.877
Venezuela 13,105 12,213,000 0.001073037 1.073
Vietnam South 9,000 19,650,000 0.000458015 0.458
Western Somoa 55 160,000 0.00034375 0.344
Yemen (Sana) 367 6,668,000 5.50390E-05 0.055
Yugoslavia 27,143 21,322,000 0.001273004 1.273
Zaire 807 24,450,000 3.30061E-05 0.033
Zambia 470 5,004,000 9.39249E-05 0.094
Zimbabwe 916 6,272,000 0.000146046 0.146

Sum Sum Aver-
age

Sums (for Doctors &
Population)

2,622,087 3,028,196,000 0.681

2.6 million Doctors/
3.0 billion Persons=

0.000865891

Doctors/ Persons in
Thousands=

0.866 Compare
as Doctors
per 1,000
People
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Country Doctors Total Population
'75

Doctors/Per
son

Doctors
Per
1,000
People

Bahamas 161 200,000 0.000805 0.805
Barbados 166 245,000 0.000677551 0.678
Canada 39,104 22,801,000 0.001715012 1.715
Costa Rica 1,292 1,994,000 0.000647944 0.648
Cuba 8,201 9,481,000 0.000864993 0.865
El Salvador 1,117 4,108,000 0.000271908 0.272
Grenada 25 100,000 0.00025 0.250
Guatemala 1,207 6,129,000 0.000196933 0.197
Guyana 237 791,000 0.000299621 0.300
Haiti 396 4,552,000 8.69947E-05 0.087
Honduras 920 3,037,000 0.000302931 0.303
Jamaica 570 2,029,000 0.000280927 0.281
Mexico 31,556 59,204,000 0.000533005 0.533
Nicaragua 1,400 2,318,000 0.000603969 0.604
Panama 1,404 1,678,000 0.00083671 0.837
Puerto Rico 3,479 2,902,000 0.001198828 1.199
Trinidad and
Tobago

550 1,009,000 0.000545094 0.545

USA 348,484 213,925,000 0.001629001 1.629

Sums (for Doctors &
Population)

440,269 336,503,000A
v
e
r
a
g
e
s:

0.653

Doctors/Person= 0.001308366
Doctors/Thousand
Persons=

1.308 Compare as
Doctors per
1,000 People



Country Doctors Total Population
'75

Doctors/Per
son

Doctors
Per
1,000
People

Mexico 31,556 59,204,000 0.000533005 0.533
USA 348,484 213,925,00

0
0.001629001 1.629

Sums (for Doctors &
Population)

380,040 273,129,000A
v
e
r
a
g
e
s:

1.081

Doctors/Person= 0.00139143
Doctors/Thousand
Persons=

1.391 Compare as
Doctors per
1,000 People
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Country  Total
Population

'75 (in
thousands)

 Gross Nat'l
Product '78
(In Millions

of U.S.
Dollars)

Total
Population

'90 (in
thousands)
(Statistical
Abstract
of the
United
States,

1991 Table
1359)

GNP '90

1 Afghanistan 19,280 $2,290 15,564
2 Albania 2,482 $1,930 3,273
3 Algeria 16,792 $25,730 25,337 $52,194,220,000
4 Andorra 52
5 Angola 6,394 $2,810 8,449
6 Antigua and

Barbuda
64

7 Argentina 25,384 $53,430 32,291 $76,529,670,000
8 Armenia 3,357
9 Aruba 64

10 Australia 13,809 $114,780 17,037 $289,629,000,000
11 Austria 7,538 $56,450 7,644 $145,694,640,000
12 Bahamas 200 $520 249
13 Bahrain 260 $1,500 520
14 Bangladesh 73,746 $7,280 113,930 $23,925,300,000
15 Barbados 245 $520 254
16 Belgium 9,846 $95,450 9,909 $153,985,860,000
17 Belize 220
18 Benin 3,074 $740 4,674 $1,682,640,000
19 Bhutan 1,173 $90 1,566 $297,540,000
20 Bolivia 5,410 $2,700 6,989 $4,403,070,000
21 Bosnia

Herzegovina
4,517

22 Botswana 691 $490 1,224 $2,496,960,000
23 Brazil 109,730 $180,020 152,505 $408,713,400,000
24 Brunei 372
25 Bulgaria 8,793 $28,310 8,934 $20,101,500,000
26 Burkina Faso 9,078 $2,995,740,000
27 Burma 31,240 $4,480 41,277
28 Burundi 3,765 $650 5,646 $1,185,660,000
29 Belarus 10,257
30 Cambodia-cf.

Kampuchea
31 Cameroon 6,433 $3,950 11,092 $10,648,320,000
32 Canada 22,801 $203,980 26,538 $543,232,860,000
33 Cape Verde 292 $80 375
34 Central

African
Republic

1,790 $510 2,877 $1,122,030,000
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35 Chad 3,947 $650 5,017 $953,230,000
36 Chile 10,253 $15,770 13,083 $25,381,020,000
37 China /

People's
Republic of
China /
Mainland

838,803 $219,010 1,133,683 $419,462,710,000

38 Colombia 25,890 $22,990 33,076 $41,675,760,000
39 Comoros 306 $80 460
40 Congo 1,345 $850 2,242 $2,264,420,000
41 Costa Rica 1,994 $3,390 3,033 $5,762,700,000
42 Croatia 4,686
43 Cuba 9,481 $12,330 10,620
44 Cyprus 673 $1,670 702
45 Czechoslovak

ia
14,793 $71,640 15,683 $49,244,620,000

46 Denmark 5,026 $54,000 5,131 $113,292,480,000
47 Djibouti 337
48 Dominica 85
49 Dominican

Republic
5,118 $4,600 7,241 $6,010,030,000

50 Ecuador 7,090 $7,400 10,507 $10,296,860,000
51 Egypt 37,543 $16,890 53,212 $31,927,200,000
52 El Salvador 4,108 $2,760 5,310 $5,894,100,000
53 Equatorial

Guinea
313 $100 369

54 Estonia 1,584
55 Ethiopia 28,134 $3,470 51,407 $6,168,840,000
56 Fiji 577 $900 738
57 Finland 4,652 $34,020 4,977 $129,601,080,000
58 France 52,913 $473,030 56,358 $1,098,417,420,000
59 Gabon 521 $2,130 1,068 $3,556,440,000
60 Gambia 509 $100 848
61 Georgia 5,479
62 Germany 79,123 $1,766,025,360,000
63 Germany East 17,127 $94,960
64 Germany

West
61,682 $631,590 63,232

65 Ghana 9,873 $4,160 15,130 $5,900,700,000
66 Greece 8,930 $32,430 10,028 $60,067,720,000
67 Grenada 100 $60 84
68 Guatemala 6,129 $6,130 9,038 $8,134,200,000
69 Guinea 4,416 $1,350 7,269 $3,198,360,000
70 Guinea-

Bissau
525 $120 999

71 Guyana 791 $460 753
72 Haiti 4,552 $1,150 6,142 $2,272,540,000
73 Honduras 3,037 $1,630 4,804 $2,834,360,000
74 Hong Kong 4,225 $15,400 $0
75 Hungary 10,534 $37,150 10,569 $29,381,820,000
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76 Iceland 216 $2,130 257
77 India 613,217 $117,520 852,667 $298,433,450,000
78 Indonesia 136,044 $45,780 190,136 $108,377,520,000
79 Iran 32,923 $55,510 57,003 $141,937,470,000
80 Iraq 11,067 $22,540 18,782
81 Ireland 3,131 $12,280 3,500 $33,425,000,000
82 Israel 3,417 $13,760 4,436 $48,441,120,000
83 Italy 55,023 $260,940 57,664 $970,485,120,000
84 Ivory Coast /

Cote d'Ivoire
4,885 $7,460 12,478 $9,358,500,000

85 Jamaica 2,029 $2,540 2,469 $3,703,500,000
86 Japan 111,120 $884,500 123,567 $3,142,308,810,000
87 Jordan 2,688 $2,370 3,273 $4,058,520,000
88 Kampuchea /

Cambodia
8,110 6,991

89 Kenya 13,251 $5,180 24,342 $9,006,540,000
90 Kiribati 70
91 Korea $0
92 Korea North 15,852 $17,040 21,412
93 Korea South 34,663 $48,000 42,792
94 Kuwait 1,085 $19,410 2,124
95 Kyrgystan 4,394
96 Laos 3,303 $300 4,024 $804,800,000
97 Latvia 2,695
98 Lebanon 2,869 $3,290 3,339
99 Lesotho 1,148 $390 1,755 $930,150,000

100 Liberia 1,708 $790 2,640
101 Libya 2,255 $19,820 4,223
102 Liechtenstein 28
103 Lithuania 3,726
104 Luxembourg 342 $4,010 384
105 Madagascar 8,020 $2,100 11,801 $2,714,230,000
106 Malawi 4,909 $1,040 9,197 $1,839,400,000
107 Malaysia 12,093 $15,270 17,556 $40,729,920,000
108 Maldives 120 $30 218
109 Mali 5,697 $810 8,142 $2,198,340,000
110 Malta 329 $770 353
111 Mauritania 1,283 $420 1,935 $967,500,000
112 Mauritius 899 $850 1,072 $2,412,000,000
113 Mexico 59,204 $91,910 88,010 $219,144,900,000
114 Moldova 4,393
115 Mongolia 1,446 $1,100 2,187
116 Morocco 17,504 $12,890 25,630 $24,348,500,000
117 Mozambique 9,223 $2,380 14,539 $1,163,120,000
118 Myanmar
119 Namibia 1,453
120 Nepal 12,572 $1,580 19,146 $3,254,820,000
121 Netherlands 13,599 $128,270 14,936 $258,691,520,000
122 New Zealand 3,031 $17,700 3,296 $41,793,280,000
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123 Nicaragua 2,318 $2,090 3,602
124 Niger 4,600 $1,180 7,879 $2,442,490,000
125 Nigeria 63,049 $48,100 118,819 $34,457,510,000
126 Norway 4,007 $38,790 4,253 $98,329,360,000
127 Oman 770 $2,340 1,481
128 Pakistan 70,560 $18,250 114,649 $43,566,620,000
129 Panama 1,678 $2,280 2,425 $4,437,750,000
130 Papua New

Guinea
2,716 $1,820 3,823 $3,287,780,000

131 Paraguay 2,647 $2,660 4,660 $5,172,600,000
132 Peru 15,326 $11,440 21,906 $25,410,960,000
133 Philippines 44,437 $24,410 64,404 $47,014,920,000
134 Poland 33,841 $127,560 37,777 $63,843,130,000
135 Portugal 8,762 $19,000 10,354 $50,734,600,000
136 Puerto Rico 2,902 $8,910
137 Qatar 90 $3,310 491
138 Romania 21,178 $36,190 23,273 $38,167,720,000
139 Russia 148,254
140 Rwanda 4,233 $870 7,609 $2,358,790,000
141 Saint Kits

and Nevis
40

142 Saint Vincent
and the
Grenadines

80 $43 113

143 San Marino 23
144 Santa Lucia 150
145 Sao Tome and

Principe
125

146 Saudi Arabia 8,966 $54,200 17,116 $120,667,800,000
147 Senegal 4,418 $1,930 7,714 $5,476,940,000
148 Serbia 9,883
149 Seychelles 60 $80 68
150 Sierra Leone 2,983 $740 4,166 $999,840,000
151 Singapore 2,248 $7,600 2,721 $30,366,360,000
152 Somalia 3,170 $340 6,654 $798,480,000
153 South Africa 24,663 $43,760 39,539 $100,033,670,000
154 Soviet Union

frmr
155 Spain 35,433 $146,940 39,269 $432,744,380,000
156 Sri Lanka 13,986 $2,870 17,198 $8,083,060,000
157 Sudan 18,268 $5,900 26,245
158 Suriname 422 $850 397
159 Swaziland 469 $310 837
160 Sweden 8,291 $87,260 8,526 $201,725,160,000
161 Switzerland 6,535 $81,930 6,742 $220,328,560,000
162 Syria 7,259 $7,820 12,483 $12,483,000,000
163 Taiwan /

Republic of
China

16,453 $14,890 20,435

164 Tajikistan 5,342
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165 Tanzania 15,388 $4,130 25,971 $2,856,810,000
166 Thailand 42,093 $23,390 56,002 $79,522,840,000
167 Togo 2,248 $770 3,674 $1,506,340,000
168 Trinidad and

Tobago
1,009 $3,410 1,271 $4,588,310,000

169 Tunisia 5,747 $6,010 8,104 $11,669,760,000
170 Turkey 39,882 $53,890 57,285 $93,374,550,000
171 Turkmenista

n
3,658

172 Tuvalu 9
173 UAR United

Arab
Emirates

220 $12,180 2,254 $44,764,440,000

174 Uganda 11,353 $3,470 18,016 $3,963,520,000
175 Ukraine 51,711
176 United

Kingdom
56,427 $319,480 57,366 $923,592,600,000

177 Upper Volta 6,032 $880
178 Uruguay 3,108 $5,170 3,102 $7,941,120,000
179 USA 213,925 $2,135,010 250,410 $5,456,433,900,000
180 USSR 255,038 $967,820
181 Uzbekistan 20,569
182 Venezuela 12,213 $39,880 19,698 $50,426,880,000
183 Vanuatu 165
184 Vietnam 43,451 66,171
185 Vietnam

North
23,800

186 Vietnam
South

19,650

187 Western
Somoa

160 $50 186

188 Yemen 9,746
189 Yemen

(Aden)
1,660 $780

190 Yemen (Sana) 6,668 $2,301
191 Yugoslavia 21,322 $46,140 $0
192 Zaire 24,450 $6,480 36,613 $8,054,860,000
193 Zambia 5,004 $2,720 8,154 $3,424,680,000
194 Zimbabwe 6,272 $3,330 10,394 $6,652,160,000
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Source:
World
Handbook of
Political and
Social
Indicators,
Third
Edition, by
Charles L.
Taylor and
David A.
Jodice, Yale
University
Press, New
Haven and
London, 1983

Source:
World
Handbook of
Political and
Social
Indicators,
Third
Edition, by
Charles L.
Taylor and
David A.
Jodice, Yale
University
Press, New
Haven and
London, 1983

Computed from
Population and GNP
per capita
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Exercise Life Expectancy

Average by nation

Average by person
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On The Average II:
Weighted Averages and The Unit of Analysis

or:

If
A Chicken and a Half
Lays an Egg and a Half
In a Day and a Half,

Then
How Many Eggs Does a Chicken
Lay in a Day?

That title was once a common riddle among kids, designed to

sound silly, confuse the mind, and otherwise pass the time.  It seems to

have fallen out of the common “kids culture”, which is no great loss, but

its solution actually makes a point:  If you can get through things like

that with your mind still intact, then maybe you can get through real-

world problems, deal with data in their naturally bizarre state of

arrangement, and still keep your mind intact.

I actually intend to answer the question stated by the title, but I’m

going to have to work up to it.  Once again the moral of the story is going

to be — be careful of the units and, as far as possible, build the units into

your equation.

So far, for the mean, I’ve been using the simple equation
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x =

x 1 + x 2 +…+xn

n

abbreviated

    

x = 1

n
xi

i =1

n

∑

where “x-bar” is the mean, and where x1, x2, and all the little xi’s up to

xn  are the n values whose average is being computed.

Properly amended, building-in the unit, that becomes

    
x units =

x
1
units + x

2
units+…+ x

n
units

n

or

    

x units = 1

n
xiunits

i =1

n

∑

And now the equation preserves the idea that whatever units are

used for “x”, the thing being averaged, the average value of x is mea-

sured in the same units.   If the units are people, the mean is in people.  If

the unit is dollars, then the mean is in dollars.

    

x people = 1

n
x ipeople

i=1

n

∑

    

$ x = 1

n
$xi

i =1

n

∑

Now I need something called the “weighted average”.  The

weighted introduces another set of numbers, the weights, and associates

each of the x’s with a weight.  Then, for the weighted average you

computed the weighted sum and divide by the sum of the weights.
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x =
x 1 w 1 + x 2 w 2 +… + x n w n

w 1 + w 2 +… + w n

One use of weights is to keep count:  If I throw a pair of dice, and

they come up 3, 4, 10, 4, and 3, in successive throws of the dice, then I

can compute the average giving each toss of the dice a weight of one:

x =
3*1+ 4*1 +10*1+ 4*1+ 3*1

5

which, is, of course, identical to adding up the successive values of

the dice and dividing by 5.  or I can use weights to keep track of the

number of 3’s and 4’s and 10’s that came up, giving 3 and 4 a weight of

two as compared to a weight of one for the 10 (because 3 and 4 each

came up twice):

x =
3*2+ 4* 2 +10* 1

2 + 2 +1

It adds a little bit to the formula for the average, but ultimately it is

more compact:  I can throw the dice 1,000 times, but the average for dice

is always going to be 2 times a weight,  plus 3 times a weight, plus 4

times a weight, and so forth, divided by the sum of the weights:

x =

12

∑
i =2

i w i

12

∑
i=2

w i

That’s the weighted average — as arithmetic.  But I want you to use

the weighted average as a kind of debater’s trick — I’m not trying to

debate with you or trick you:  The debate is the one I carry on in my

head, debating with myself to see if I know what I’m doing — tricking

myself with devices that get me to see a problem from unfamiliar angles.

Now back to physicians per capita.  I think/hope you understand it.

Now let me try to use close attention to the units, and use the weighted
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average to straighten the whole thing out.  But one warning:  Even if this

looks automatic, a “method”, a procedure — use it right and it will pay

you back with the right answer — even if it looks that way don’t believe

it.  I’m using this as a debater’s trick, Levine v/s Levine:  The formulas

do not know the answer.

So now, quickly, back to doctors and the world

Unit:
Country

Attribute:
Number of
Doctors,
1975

Attribute:  Total
Population, 1975

Attribute:
Doctors
Per Person

Attribute:
Doctors
Per 1,000
People

Afghanistan 656 19,280,000 0.000034 0.034

Angola 384 6,394,000 0.000060 0.060

Argentina 48,687 25,384,000 0.001918 1.918

Austria 15,702 7,538,000 0.002083 2.083

Bahamas 161 200,000 0.000805 0.805

Bahrain 177 260,000 0.000681 0.681

Bangladesh 5,088 73,746,000 0.000069 0.069

Barbados 166 245,000 0.000678 0.678

Belgium 18,510 9,846,000 0.001880 1.880

Benin 95 3,074,000 0.000031 0.031

Now, what’s the question and what’s the answer:  If the question is

a question about a typical country or nation, conceived as a unit, with its

population, with a national medical system, with a national medical

education system, a national public health system, hospital system and

payments system.  If the question is about the results for countries and

for the typical county — then you want the country as the unit of

analysis and you want to average the data with respect to the country.

What have we got in the table?  We have a list of units, the countries, and

a list of attributes in each row that describe that unit.    So, using a

“sample” of one country, using the “.000034” (in row one) — what  is the
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unit?  It is “Doctors per person per country”  This datum provides

evidence for one country, Afghanistan. That last “per ____”, at the

bottom of the stack names the unit.  And the unit in the weight matches

the unit of analysis.  When I take the weighted average it gets the weight

“1 country”.  In the second row I have attributes of another unit, another

country, Angola.  The .000060 in the second row is “Doctors per person

per country” (for this second country).  Now, using the unit of analysis

as the unit of weight,

x =

12

∑
i =2

i w i

12

∑
i=2

w i

x =

0.000034
do ctors
pe rson

country
*1country + 0.000060

do ctors
pe rson

country
*1country + 0.001918

do ctors
pe rson

country
*1country + …

138countries

I get the average of _____ 
do ctors
pe rson

country   
  And what does this thing,.

this average, describe:  Look at the units on the average, and there it is, at

the bottom of the stack:  the country, the average country.

Now, by contrast, suppose I had done it the other way — adding up

the numbers in the column for doctors:  At the bottom of the data sheet I

show a sum of 2,622,088 doctors, two-point-six million doctors.  And, this

way, what is the unit?  What do these doctors belong to?  What unit has

two-point-six million doctors?  The unit is the world itself (or the

reporting nations).  In the next column the table shows 3,028,196,000

people.  And what do these people belong to?  The same world.  And

their ratio describes the world:  In the world there is a ratio of .000865891

doctors per person.
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And now, I have to deal with a “chicken and a half”  So, what is my

unit?  What does an egg and a half in a day and a half describe?  An egg

and a half in a day in a half is an attribute describing 1.5 chickens.  — my

unit is the chicken, (although I’m given data about a chicken and a half).

So the attribute that describes the chicken and a half is

1.5 eggs
1.5 day s

And, putting the rate in the proper relation to the unit it describes,

as the rate for a chicken and a half:  1here is the “formula” in eggs per

day per chicken:

1.5 e ggs
1.5 d a ys

1.5 ch icke n s

The units and the unit of analysis are clear:  eggs per day per chicken.

So I just clean up the pesky fractions and get one egg per day for 1.5

chickens:

1
egg
d a y

1.5 ch icke n s

or two-thirds of an egg per day per chicken

2

3

eggs
d a y

ch icke n

That is:  One chicken, the unit, lays two-thirds of an egg per day.  Watch

the unit of analysis, watch the chicken, not the egg (or the day).

                                                                        
1 Exercise for the reader:  How many days does it take for a chicken
to lay an egg?  (Solve for x, whose unit will turn out to be a number of

days, in the equation 
2

3

eggs
d a y

ch icke n
* x = 1

egg
ch ick en
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On the Average III:
Racing

O.K., you have the principle:  Watch the unit of analysis.  You
have the principle under control, but let me put your control to another
test with Data Gymnastics exercise #2:

Consider a foot race on a 4 mile square track, 1 mile on an edge.  I’m
racing against myself, going for a personal record — and then some. 
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15 miles/hr.

1
 m

il
es

/
h

r.

1
5
 m

iles/
h

r.
15 miles/hr.

1 m

1 m

1
 m

1
 m

Here’s my performance:  I managed 15 miles per hour for the first
mile (a four minute mile), I repeated at 15 miles per hour for the second
mile, repeated again at 15 miles per hour for the third mile.  And then I
paid for the first three miles with heat stroke, plus a heart attack and
sore feet — leaving me able to crawl the last mile in exactly one hour.
What’s was my average?

Well, it was

(15 + 15 + 15 + 1)/4 = 11.5

If that looks reasonable to you, if 11.5 miles per hour seems like a
reasonable estimate for the average, then explain this:  I ran and
crawled for a little more than an hour, for exactly one hour and twelve
minutes.  So how is it that I covered a distance of only four miles, which



Racing                                                                                                                                                  3

3

Macintosh HD:DA:DA IX:Volume I:144 On The Average II Racing    Page 3   March 26, 1999

is considerably less than the 11.5 miles that I am supposed to have
traveled in an average hour?   That makes no sense.  So, the answer, 11.5
miles per hour,  must be wrong.

The way out of this anomaly is, again, to watch the unit of
analysis.  Does your average, 11.5,  describe the typical mile:  What I
accomplished during the first mile averaged with what I accom-
plished in the second mile, and the third, and the fourth.  Or does your
average describe the typical hour or minute:  Averaging what I did in
the first four minutes with what I did in the next four minutes — with
what I did in the next four minutes, and what I did in the next sixty
minutes?  What is the unit of analysis?  Is it a mile, or is it a minute?  It
matters.

That is the nature of the puzzle for this bit of mental gymnastics,
but let me tell you how I really figure out the solution to a problem like
this:  The rule for problem solving in this situation is another one of
those strategies that you never admit to in a final report.  The rule is
work backward. Create a simple thought experiment:  Figure out the
answer for a hypothetical example, then  figure out the method that
works for the hypothetical example, and then go back to the data
where you can solve the problem.  What you do not want to do is just
forge ahead, however bravely, with “2 unknowns”: Trying to use an
unknown method in search of an unknown answer.  So you do a thought
experiment.  You think up a problem for which the answer is known.
You work on this problem until the method becomes clear, and then you
go back to the data.

So, working backward, what do I know about this problem?
Actually, working backward, I can begin with the answer:  I know that
the total mileage was four miles and that the total time was 1 hour and
12 minutes, or 1.2 hours.  So the answer is going to be 4 miles per 1.2
hours, which is 3.33 miles per hour.  I have the answer.  Now, what’s
the method?  What type of average would have given me the right
result?

Well, the method is not what I did above, not (15 + 15 + 15 + 1)/4 =
11.5,  but let’s take a look at it using the units and using the weighted
mean.  What went wrong?
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mean =
15

miles
hour

* 1 mile + 15
miles
hour

* 1 mile + 15
miles
hour

* 1 mile + 1
mile
hour

* 1 m

4 miles

If you look at that in detail, it makes no sense: the units used as
the units of analysis are inconsistent (and that’s what got me the wrong
answer):  When I wrote 15 miles per hour,  I have a unit of time where I
should expect the unit of analysis.  But when I wrote 1 mile  for the
weight I said that I was organizing the analysis in miles.  I can’t do
both (not at the same time).  I have to pick one.  In fact, I can organize
the problem in terms of time, or I can organize it in terms of distance —
but which ever I do I have to do it consistently.

Lets try it in terms of hours:  I started out at 15 miles/hour.  Hours
are in the denominator so I’ll give this speed a weight in hours.
Thinking it through, I kept up this speed for four minutes in order to
complete the first file.  Four minutes is one-fifteenth of an hour —
there’s the weight.  I did it again, same speed, for the next one-
fifteenth of an hour, completing the second mile.  I did it again, same
speed, for the next one-fifteenth of an hour, completing the third mile.
And then I completed my circuit at one mile per hour, continuing at that
rate for an entire hour until I was finished.  Using the hour as the unit,
here is a consistent weighted average:

mean =
15

miles
hour

*
1

15
hour + 15

miles
hour

*
1

15
hour + 15

miles
hour

*
1

15
hour + 1

1
3

15
hours

which simplifies to

mean =
1 mile + 1 mile + 1 mile + 1 mile

1.2 hours

and to
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mean =
4 miles

1.2 hours

which gives

mean = 3.33
miles
hour

which is correct.

There’s my reward for thinking clearly.  Now I’ve got the formula
for the right answer.  I’ve thought it through.  I’ve been very careful to
keep the unit of analysis simple and in the right place, and I got the
right answer.   The moral:  Watch the unit of analysis.  Check, with a
simple problem — just to be sure.  And understand that averages, in the
real world, require patience and careful thinking, — even for “easy”
problems.

------------------

Exercise:  I picked one unit, the hour.  But suppose I had picked the
mile as the unit, re-expressing my first mile as 4 minutes per mile  (and
my fourth mile as 60 minutes per mile)?  Now I am organizing the anal-
ysis in miles and I need a weight in miles.  Will it work?   (Partial
answer: It can’t give me exactly the same answer because the first
answer was in miles per hour and the second answer will be in hours per
mile (or minutes per mile).  Keeping that in mind, keeping in mind that
the correct answer in hours per mile is exactly the inverse of the correct
answer in miles per hour — the answer will be  almost the same and it
will be correct.  Do it and explain.)

Homework.  Most of the hard work of data analysis is undertaken
flat on your back, staring at the ceiling, with your eyes closed — at
least for me.  Whatever your equivalent posture, assume it:  You won’t
need much computing for this one, except to write down your answers:
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#1:  I’ve seen versions of this in magazines for people who get a
little nuts about precise measurements of aerobic performance and
measures of improvement (or change) from day to day: 

Question:  Dear Dr. C.:  I understand the rules for measuring my
aerobic capacity.  But living in hill country, far from a track, how do I
measure my performance when my route takes me up hills and down?

Answer:  Run a circular route.  For every mile you have to run
uphill you will be treated to a mile downhill and so the effort and
time, on a flat route, are equivalent to average effort and average time
on a circular route — no adjustments necessary. 

Problem:   Obviously Dr. C. lives in flat country, otherwise his
heart would long ago have punished his brain for a nice simple logical
idea — that is wrong.  Explain to the poor man why his averaging
doesn’t work, lest his mind kill his body on their first trip to the moun-
tains.  Create a simple numerical example, using a weighted average to
illustrate the problem.
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On the Average IV:
Money — How am I Doing?

This one puzzles me too.  But it’s real.:

The immodest truth is that data analysts can solve any problem

involving numbers.  And, to prove the point, a few months ago I decided

to solve one of the outstanding problems of the world — getting rich. I

analyzed the situation thoroughly, spending several hours of my time on

it.  And I figured it out.  However, I realized that some people might be

skeptical of my solution, were I to settle for the intellectual satisfaction of

being right:  After all, on paper it’s one thing, but show me your track

record.  So to prove my point, I invested $4,000 three months ago.  Now,

three months later, I’ve got a track record.  So send all your money to my

mutual fund and I’ll take care of it for you.

The track record?  Oh, here it is:  My strategy is to buy stocks in an

industry that has a small probability of a very large gain:  I won’t win

often, but when I get the right industry I’ll win big — or at least enough

to offset the losses suffered when I guess wrong.  My theory of the eco-

nomic cycle narrowed the selection down to four industries, but I didn’t

know which one of the four would be the winner.  I knew it would be

high tech, banking, gold, or transport, but I didn’t know which one.  So I

sampled from each of the four industries:  I bought shares of 10 stocks in

each industry, forty stocks in all.  And I waited to see what happened.

What happened was — it worked:  I invested $1,000 in high tech,

risking $100 in each of ten companies.  And the high tech stocks went up:
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The average high tech company gained 25% in the first quarter.   That

gave me

$1,000 + 25% of $1,000 = $1,250 after the first quarter (+25%)

So, extrapolating forward, I project that by the end of the year I will

have $1,464.10 of high tech stocks.  That’s,

$1,000 + 25% of $1,000 = $1,250.00 after the first quarter (+25%)

$1,250 + 25% of $1,250 = $1,562.50 after the second quarter (+56%)

$1,562.50 + 25% of $1,563 = $1,953.13 third quarter (+95%)

$1,953.13 + 25% of $1,953 = $2,441.41 fourth quarter (+144%)

My three other industries are lagging but, as I said, I was after one

big winner that would carry the rest.  I didn’t know which industry it

would be — it turns out to have been high tech.  By contrast, the $1,000

in banking lost 10 percent in each of the first two quarters.  That brought

the $1,000 invested in banking down to $900 by the end of the first quar-

ter and down to $810 by the end of the second

$1,000 – 10% of $1,000 = $900 after the first quarter (-10%)

And by the end of the year it will be

$1,000 – 10% of $1,000 = $900 after the first quarter (-10%)

$900 – 10% of $900 = $810 after the second quarter (-19%)

$810 – 10% of $810 = $729 third quarter (-27%)

$729 – 10% of $729 = $656.10 fourth quarter (-34%)
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The same relatively small losses happened to the gold and the

transports.  So by the end of the year my $4,000 investment will be worth

$4,409.40, which is a handsome performance, up 10.2%

That’s

$2,441.10 High Tech

plus 656.10 Banking

plus 656.10 Gold

plus 656.10 Transportation

—————————————————————

equals $4,409.40 Total

Summarizing these computations in tabular form:

Industry: Initial First

Quarter

Second

Quarter

(projected)

Third

Quarter

(projected)

Fourth

Quarter

(projected)

Gain/Loss

High Tech $1,000 $1,250 $1,563 $1,953 2441 $1441

Banking $1,000 $900 $810 $729 $656 -$344

Gold $1,000 $900 $810 $729 $656 -$344

Transport $1,000 $900 $810 $729 $656 -$344

Average

Gain: $102 (10%)

So, send me your money:  Ten percent return, almost guaranteed.
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Further Correspondence

I have received a letter of complaint — somebody who doesn’t

understand what I’ve done.  He works at something called “SEC”, what-

ever that is.  Here’s what he said:

Dear Jail bait:

You don’t know how to compute an average.  Here

is your real track record:  During the first quarter you

didn’t gain money, you lost.  And your average stock

lost $12.50.  Here are the numbers

High Tech:    Plus $250

Banking: Minus $100

Gold: Minus $100

Transportation: Minus $100

————————————--

Average Gain: Minus $12.50 (negative 1.25%)

Your average stock lost $12.50 in the first quarter.

That’s not good.  With $1,000 invested in each stock,

you lost an average of 1.25%    So, roughly speaking

(ignoring the compounding of the interest), your port-

folio is down 1.25% for the first quarter.  It will be down

about 2.5% for your first six months.  And you can

anticipate loosing 5% for the year.
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That was the letter.  Clearly this person understands a lot less than

meets the eye.  Good thing he works at SEC instead of handling money.

So as an educator, always eager to spread truth and reason, I respond.

Reply

Dear Sound and Fury:

Thank you for your letter.  You are dead wrong,

but I appreciate your comment and the opportunity to

explain.  And, more practically, you have pointed out

how I can make substantially more money than I had

proposed.

The problem with your dismal forecast is that you

failed to use the right unit of analysis. You used the

company as the unit of analysis and averaged with

respect to all stocks.  I used the industry as the unit of

analysis because my theory predicts industries and

that’s the theory I’m testing.  I analyzed my data by

industry, using four separate samples of corporations to

compute my four separate averages for four separate

industries.  Remember:  I knew from my theory that one

or more of the four industries, either high tech, banking,

gold, or automobiles, would be a winner.  But I didn’t

know which one.  So I selected a sample of companies

in each industry and waited.  And after three months

my best estimate of each industry’s performance is

based on the average performance of my high tech

stocks, representing the industry.   Then, six months

later, data in hand, my estimates for high tech was

“Up”, while my estimates for each of the other

industries was “Down”.
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And the good part, for which I thank you, is that

now that I know which industry is going up I can sell

my shares in the other three — the other shares have

served their purpose.  I can put all that money into high

tech industry, which is going up.  If present trends con-

tinue, I’ll make a bundle.  I hope you will join me.

Your error, if I need to explain further, was to

compute the average across the portfolio.  That’s

wrong.  That’s like averaging apples and oranges (or, in

this case, like averaging high tech and banks) and is just

plain wrong.  By contrast, using the procedure specified

by my theory, I have four separate problems and four

separate averages:  And now, by industry, I know that

the average high tech company is going up.  Based on

my four carefully separated analyses of these four sepa-

rate industries:  High tech is going up, banking, gold,

and transport are going down.  I urge you to join me,

while the moment lasts.

To the Student:

Exercise:  “Discuss.”  As far as I can tell either explanation could be

correct — or made correct with a little more polish.  I doubt that the

Securities and Exchange Commission would pursue either line of reason-

ing as fraudulent.  And that’s distressing because these two opposite

evaluations are based on one set of facts.  Don’t send your money, but be

sure you understand the arguments.
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On The Average V:
Class Size

For my fourth data gymnastic, it’s time to be practical.  This is one

that touches the experience of every college student:   You are a college

student, or a prospective college student.  And one of the things that’s

important to you in evaluating a college is the average class size. I sup-

pose you could always ask the college about its class size, or look it up in

a published ranking of colleges, or read the number in the catalogue.  But

let’s suppose you had to compute the number yourself — just to leave

nothing to chance and to eliminate confusion.  That’s the way to

understand it — do it yourself, at least on a hypothetical example.

O.K., let’s start with another thought experiment — something too

simple for reality, but clear enough for practice.  Suppose my college has

exactly two hundred students and one class — everybody takes it.  With

once class and no variation, that’s easy, at least for the average:  There is

exactly one class, everyone has the same class, and the average class size

is 200.

That’s the simplest example.  Now for something one step up in

difficulty:  My college just decided that some of the seniors need special

treatment, perhaps some lab. work.  Now there are two classes, one of

size 190, one of size 10.  What’s the average class size?    Obviously, the

arithmetic is (190 + 10)/2 = 100.  The average class size is 100.

1
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Class 1 190

Class 2 10

Sum 200

Average 100

Let me push this a little further, trying to create something more

interesting:   It also turns out that we have two students with really spe-

cial needs, and we have a faculty willing to accommodate.  So, now there

are four classes, one of size 190, one of size 8, and two of size 1. What’s

the average?  Obviously, the arithmetic is (190 + 8 + 1 + 1)/4 = 50.

Class 1 190

Class 2 8

Class 3 1

Class 4 1

Sum 200

Average 50

Now, I ask you a question:  Do you “believe” that answer, “50”?

I’m not asking whether or not my arithmetic is correct.  It is.  I’m asking

whether or not you would feel you had been cheated if this college had

advertised:  “Our average class size is 50.”  and you had chosen to

attend?  If you believe this answer, then let me give you an example that

is more extreme:  This time I’m going to give those ten seniors individual

treatment, one on one with their professors.  Again, what’s the average?

The arithmetic would seem to be (190 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +

1)/11 = 18.18, or 18 (approximately).

Class  1 190

Class  2 1

Class  3 1

2
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Class  4 1

Class  5 1

Class  6 1

Class  7 1

Class  8 1

Class  9 1

Class 10 1

Class 11 1

Sum 200

Average 18.18

Still satisfied?  If you find that number acceptable, then consider:

Suppose you went to this college, with an advertised average class size

of 18.  And suppose that, somehow, now that you’re there, the experi-

ence isn’t exactly living up to your expectations.  So one day at lunch you

decide to check for yourself and you starting asking the other students:

“My class has 190 students in it.  How large is yours?”  And sure enough,

nearly all of the other students at the lunch table report that their class

too has 190 students in it  (in fact, you’re all in the same class).

Suitably alarmed, but recognizing that your lunch table crowd may

not represent the whole college, you decide to check further:  You decide

that it’s time for a survey and so you send a questionnaire to every stu-

dent:  You want the facts.  What’s the size of your class?

And here’s how the numbers come back:

Ten students report classes of size one. and one hundred and ninety

students report classes of size 190.  So, using your own data, what’s the

average?  Well, you got two hundred responses to your questionnaire

and so the arithmetic requires you to add up the numbers and divide by

200.  That’s

3

Macintosh HD:DA:DA IX:Volume I:152 Class size March 26, 1999



On The Average IV:  Class Size 4

Student #1 1

Student #2 1

Student #3 1

...

Student #10 1

} 10 students

Student #11 190

Student #12 190

Student #13 190

...

Student #200 190

Sum 36,110

Average 180.5

} 190 students

200 students

According to your survey, the average class size is 181 !  The college

says the average class size is 18.  But you asked the students and your

data say that the average class size is 181 — ten times larger than

advertised.

The Unit of Analysis (Again)

What’s the problem?  Don’t say the problem is that, “Statistics lie,”

or that “The average (one of them) isn’t the right number.”  Neither of

these epithets is an intelligent response to a confusing situation — These

are just different ways of re-stating the fact that there’s a problem.  But

what is the problem? How can there be two radically different answers,

both 18 and 181, as answers to the question “What’s the average?”

4
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Actually, both answers are correct.  And both the college, that

reports 18, and you, with your survey that reports 181, are using the

same facts.

In this case, again, you straighten out the mess by asking yourself

what is the unit you are interested in?  What is the unit of analysis?   If I

were a prospective college student, looking out for my own best interest

(defined as small classes), then I would take the student as the unit of

analysis.  I would look at the data that describe each unit, as you did in

your survey, and then I would average them.  And, just to be sure I got

the thing right I would identify the units, as well as the numbers, when I

wrote down the equation.

So, unit number one, that is student number one, reported 190

classmates in class.  So, with respect to the student as the unit of analysis

(look at the denominator), the first report is

190  
classmates

student

Read that as “190 classmates per student”.  And, to repeat, note the

denominator and note the use of labels, “classmates” and “students”

Student number two came up with the same report, and now I have

two instances of 190 classmates per student.   And that would repeat for

190 of the 200 reports.

5
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190 
classmates

student

190 
classmates

student
....

190 
classmates

student}190 reports

And then for ten more students the report would be one classmate

per student.

1   
classmate

student

1   
classmate

student
....

1   
classmate

student }10 reports

So, altogether, with 200 reports I have 190 reports of “190 classmates

per student” and 10 reports of “1 classmate per student.”  So adding up

the 200 reports and dividing by 200:  the average number of classmates,

averaged over the 200 units, is 180.55 classmates per student.

And that is the correct answer — for the student as the unit of analysis.

So where did the college’s advertisement of 18 students per class come

from?  The answer is in the denominator:  students per class?  The college

used a different unit:  Trust me as a faculty member — students are not

6
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the only constituents of a college:  There is an administration that sweeps

the floors and there are faculty that teach the classes. And, like you, both

of them ask:  “How big are the classes?  But they get a different answer.

And there’s the problem:  We’re not all asking the same question of these

data.  The English is sloppy enough to make it look the same.  But you

have to look very closely at the question:  As a faculty member, or taking

the faculty as the unit of analysis, there are exactly eleven units in these

data, eleven classes.

Attaching the units to the numbers, and spelling it out in detail, I

have one faculty member who reports 190 students.  That is

190 
students
faculty

And I have ten happy faculty reporting one student per faculty
member.  So my data are

190 
students
faculty

1 report

1   
student
faculty

1   
student
faculty

....
1 }

10 reports

7
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And now, applying my arithmetic to these eleven numbers, one

datum for each unit of analysis, I add up the numbers and divide by

eleven, getting the answer eighteen, approximately, eighteen, not one

hundred and eighty one.

And the moral is:  Keep your eye on the unit of analysis that shows

up, in this example, as the unit of the denominator — as something per

something, where that last something is the unit of analysis.  There are two

answers here, referring to two different questions, and to two different

units of analysis.   Both answers are numerically correct, but that is not to

say that both of the answers are correct:  It all depends on the question

you asked (or intended to ask — now that you are being more careful).

Writing it as a weighted mean, as

mean =
number * weight +num ber * weight + ... +num ber * weight

sum of weights

in this example, using the class as the unit of analysis, each report had an

implicit weight of 1, each class was given equal weight.  But I can sim-

plify the arithmetic by using the weight to represent the frequency of

each value that was reported — using a weight that represents a number

of the units of analysis.  Thus, more efficiently

mean =
190

students
class

* 1class + 1
student

class
* 10 classes

11classes

8
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giving me the 18.18 students per class.

Exercise:  For practice, using weight for the average of

classmates per student, …

Exercise:  Consider the same problem, using medians

Exercise:  It would be reasonable to assume that either one of these

numbers will do:  That which ever average you use, you will still get the

same rank order of “best” colleges, that the best, measured in terms of

classmates per student will still be the best in terms of students per class

— even though the numbers will be different.  Question:  Is this assump-

tion correct?  When you compare two colleges, is it necessarily true that

the college with the smallest number of students per class is also the

college with the smallest number of classmates per student?  Prove that

this is not true by creating a counter example.  Construct hypothetical

data for two colleges such that one of the two has the smaller number of

students per class while the other has the smaller number of classmates

per student.

Homework:

I am enclosing three Excel files:  These are enrollments during one

quarter for all classes at Dartmouth.  For your joy/curiosity/whatever I

have included the entire data set, by class, as one file.  These were the

enrollments for Winter of 1991.  For your homework, I have extracted the

data for two departments.  Practicing on something small — make up

something even simpler until you’re sure of your self.  A hypothetical

department with only two classes.  Then, and only then, work yourself

up to data:  Take a look at Physics and take a look at Government.  In

9
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each case compute an average with the class as the unit of analysis —

computing the average number of students per class — and compute an

average with the student as the unit of analysis — computing the aver-

age number of classmates per student.  Which department, Physics of

Government, has the “best” average.  If you’ve got the numbers right,

then it will not be easy to answer that question.  Explain, briefly, in

English — pass the room mate test for clarity and succinctness.  (And

what did the college tell you about class size?)  (Feel free to compute the

averages for the college as a whole.  You have the data, at least for one

term.)  (Hint:  You can check your computations, or mine:  For Physics I

get an average of 18.84 students per class and an average of 86.29 class-

mates per student.  Get that right, or correct me, and you are ready to

tackle Government — and the whole.)  Do you think that the rank order

of departments by class size would change, depending upon the measure

used to report “size”? Could the rank order of colleges change,

depending upon the measure used to report “size”?

10
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Class
Depart
ment

Num
ber

Sect
ion

Ty
pe

Tim
e

Prof. Limit Enroll
ment

GOVT 5 1 LEC 11 Masters, Roger D 105 91
GOVT 6 1 LEC 9S Arseneau, Robert B 105 89
GOVT 7 1 LEC 11 Becker, David G 40 45
GOVT 32 1 LEC 11 Winters, Richard F 50 42
GOVT 42 1 LEC 12 Kopstein, Jeffrey S 50 63
GOVT 48 1 LEC 2A Lustick, Ian S 999 21
GOVT 57 1 LEC 10 Becker, David G 999 69
GOVT 62 1 LEC 11 Mather, Lynn M 60 60
GOVT 64 1 LEC 9L Masters, Roger D 999 32
GOVT 70 1 LEC 10 Sullivan, Denis G 999 23
GOVT 80 1 LEC AR

R
Winters, Richard F 999 16

GOVT 84 1 LEC 3A Mather, Lynn M 999 17
GOVT 86 1 LEC 2A Sa'adah, M Anne 999 11
GOVT 99 1 LEC 3A Becker, David G 999 10



(((Clas
s)))
Depart
ment

Num
ber

Secti
on

Ty
pe

Tim
e

Prof. Lim
it

Enro
llme
nt

PHYS 4 1 LEC 11 Thorstensen, John R 999 128
PHYS 13 1 LEC 10 Mook II, Delo E 999 113
PHYS 16 1 LEC 9L Montgomery, David C 999 30
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analyze … to separate or break up (any whole) into its parts
so as to find out their nature, proportion, function,
relationship, etc.

— Webster’s New World Dictionary of the American
Language, College Edition

Lines

The prima donna of models in the social sciences is the simple

straight line.  Everyone knows what a line is:  In a sketch it is just a

trace on a graph — it has a direction and a certain height on the page.

In geometry you learn that a straight line is determined by two points.

In algebra you learn to match the geometry with an equation for the

line, y = mx + b.  In data analysis it says that the value of a variable,

“y”, is proportional to the value of a variable “x”, with a constant “b”

added to the result.  And here it is:  a straight line, drawn on graph

paper and described with algebra.

10 20 30 40

10

20

Origin
x

y

Figure __

A “mathematical” line, y = mx+b, b =4, m = .5
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Introduction to Data Analysis:  TheRules of Evidence Lines

The slope of the line is “m”, meaning that if the interval between

two values of “x” is one, drawn horizontally, then the interval between

the two corresponding values of “y” is m, drawn vertically.  The

intercept is “b”, meaning that if the value of x is 0 then the

corresponding value of y is b.  b is the height at which the line

intercepts the vertical axis.

Using data, outside of mathematics, the line is our most-used way

of fleshing out the detail by which one thing is related to another.  If I

describe the economic consequences of education by saying, “Comparing

adult Americans, every year of formal education corresponds to an

addition of three thousand dollars to the average income,” that

description is a line with a slope of three thousand dollars per year.

The intercept is unspecified by this description, but if it were zero it

would mean that no education implied no money.

In much of the sciences, for descriptive work where theory is lack-

ing, we have nothing comparable to the decidedly non-linear ellipses

of planetary motion, the quadratics of acceleration, or oscillations of

springs found in elementary theoretical physics.  But that’s it  — we use

lines.  On the other hand, using logs, and any other transformation that

can help, we interpret “lines” so broadly that even the quadratic equa-

tions of velocity and acceleration can be handled indirectly by “linear”

technique.

In data analysis it is rarely the case that we even have a continu-

ous trace on a graph, straight or otherwise.  In fact it is useful to amend

one of the rules that mathematicians use for lines:  In math, two things,

the intercept and the slope, tell you everything there is to know about a

line.  By contrast, in data analysis, you need the intercept, the slope,

and the scatter.  Usually the best we have is a series of observations

that line up (more or less)
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10 20 30 40

10

20

30

0

.
.

.
.

Figure A

And often what we have on the graph is less like a mathematically fine trace

and more like an ambiguous cloud within which we may try to detect a pattern

whose general shape may, possibly, and to some degree, be described by a line.
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It gets worse, much worse — the intercept, the slope and the

“scatter”, usually a lot of scatter — leading to such aphorisms as “You

only need strong statistics when you’ve got weak data.”  If you are going

to draw a graph describing 10,000 people, recording their numbers of

years of education and their dollar incomes, then the folk wisdom —

that there are people who never went to school, and got rich, while

there are others who spent their lives in school, and made no money —

will become a reality on your graph.  You will have “points”

(representing people) spread across all possible combinations of

education and income.  And it does no good to protest that the

millionaire dropout and the impoverished Ph.D. don’t count.  It does no

good to protest that these are errors, or exceptions, or deviations.  Such

protests are like the complaints of biology students doing their first

dissection of a frog:  “Things aren’t where they are ‘supposed to be’”.

No, things are .  There is no supposed to be — there is nothing

“defective” about the real world.  Abstractions and averages are

extremely valuable, indispensable really.  But, no, sorry, the data are

the reality.  Reality is sovereign, not ideas.  —  This is what makes the

line of the data analyst different from the line of the mathematician.

Beginning at the Beginning

Data analysis can get very complicated, at least as complicated as

the world we try to discover through the analysis.  That means you

must proceed with caution.  Simply launching into the data, drawing

graphs, estimating lines, looking for correlations, letting your computer

show off all the options of which your software is capable is no way to

begin.  You will simply overwhelm yourself with the possibilities,

generate a mess, and quite possible deceive yourself — either by

thinking you have found things that are not there or, more likely, by

failing to find things that are.

So for “multivariate analysis”, begin at the beginning or, as

suggested for one variable analysis, begin before the beginning with

“Who, What, Where, Why, When, and How?”.
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Data = Signal +  Noise

Then the beginning for two variable is one variable analysis.

These variables are the building blocks for two variable analysis with

and they’ve got to be right — if they’re not right you needn’t bother

with the rest.  So, patience:  Stem and leaf, looking for tell-tale

patterns, looking for outliers and above all, looking for well-behaved

variables.

Then, and only then, two variable analysis.  And two variable

analysis begins with a well-labeled graph.  Very few computer soft-

ware packages will give you a well-labeled graph.  By well-labeled

graph I mean something more than neat and pretty.  By a well-labeled

graph for two variables I am suggesting something comparable to the

stem and leaf diagram for a single variable.  It should organize the

data so that my eyeball can look and so that my intuition can see.  And

what I am looking for is patterns.  The graphs are so important that if I

had to bet on results from two different analysts, one with a computer

and conventional but inadequate software, the other tackling the data

with graph paper, a pen, a ruler, and hand computation — I would bet

on the second analyst.
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Graphs

Figure 1 shows a two variable relation extracted from the breakfast

cereal data.  Beginning with each of the two variables, for a one variable

analysis, each is close enough to being symmetrical.  For Fat the median

is 0.3 grams, the mid quartile is lower at 0.25 grams, and the mid-eighth

is higher at 0.35 grams.  For Protein the median is 2.75 grams, the mid

quartile is lower at 2.65 grams, and the mid eighth is higher at 3.025

grams.

So, having completed the preliminaries I can proceed to the graph,

What I see is outliers that are immediately apparent.  I recognize the

high protein cereal from previous work.  I see Cheerios and Kix which

sets me thinking about the bran component of cereals.  I will forego the

pleasures of another detailed analysis of breakfast cereals, except for two

points.

The first point is the labels:  The labels on the points are the ones I

think of when I refer to a well-labeled graph.  As they did in a stem and

leaf, these labels feed my intuition by allowing me to connect the data to

other knowledge, other knowledge carried by the label itself, other

knowledge that I have in my own experience and can connect to those

labels.  It is, I’ll admit, a “pain” to draw such labels and even here I had

to draw a second graph, a close-up, to get it done.  It is difficult here

with only 30 points.  It is very difficult with more data points.  But I have

no need to be mechanical or fair to these data — I’m preparing the data

to feed my intuition — so I will label outliers, I will label a few familiar

points, I will label points that correspond to my hunches — pursuing the

possibilities as is my purpose at the beginning of the analysis.

The second point is the relation itself:  This pattern, overall, is

hardly what I would call a line and that is an interesting result.  It may

be a weak correlation but that is very useful information.  It is useful to

know that the two nutrients occur relatively independent of one another.
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Foregoing a deep and detailed analysis of breakfast cereals, in this

case the initial two variable picture tells me little that is not present in

the one variable information.  The two variable picture tells me to go

back to the one variable analyses:  Learn what is to be learned about

protein.  Learn what is to be learned about fat  (perhaps related to bran).

The two discussions can be conducted independently, at least until they

are better understood.



D = S + N
Data = Signal + Noise

Working up to a linear analysis:  Before the beginning, Who, What,

Where, Why, When, and How?  At the beginning, Stem and Leaf, well-

behaved variables.  Now I’m ready for a two variable linear analysis.  I

will start simple  by making up some hypothetical data, graphing it, and

looking at the graph.  Here are my data.  Here is my graph, Figure A.

Data

Observation x y
______________________________________________________________________________

#1 10 10

#2 20 14

#3 30 20

#4 40 24

.
.

.
.20

10 20 30 40

y

x   

30

10

0

Figure A
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Introduction to Data Analysis:  The Rules of Evidence Lines

Most of what you are ever going to know about these pseudo data you

already know — it is apparent in the graph.  The relation between x and y

is positive, “large x corresponds to large y”.  The relation looks linear.  The

relation between x and y has a slope of about one half, with values of y

appearing to be directly proportional to the corresponding values of x.

If these were real data, I would probably stop here:  Adding the

numbers of formalized statistics would be a way of abstracting from reality,

summarizing it, and describing its basic regularities.  But these are not real

data and they allow me to demonstrate the process of adding the

formalized numbers.  So I will proceed with the obvious in order to show

you what is not obvious about the rules for obtaining evidence from such

data.

Data = Signal + Noise

Think about a problem in two variable analysis in these terms:  Think

of the pseudo-equation

Data  = Signal + Noise (1)

It says that data,  the stuff we see and describe has, within it, two

parts.  One is the signal.  That’s the message.  That’s what we are trying to

figure out.  The other part is noise.  Noise may be measurement error,

meaningless variation, or a level of complexity which, for the moment, we

can not penetrate — so, for lack of understanding it looks like noise.

Now, and this is one of the classical strategies of data analysis, to get

at the signal, we direct out attention to the noise:  First we rewrite the

pseudo-equation, isolating noise by itself, on the right.

Data – Signal  = Noise (2)

 Then we form a hypothesis about the data and a specific hypothesis

about the signal.  And then we write a real equation, not a pseudo equation:

Data – Hypothesis  = Residual (3)
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Data = Signal +  Noise

The hypothesis specifies  what the data would look like if the

hypothesis were correct.  And, of course, they do not.   Data rarely do.  .

And so we subtract the hypothesis from the data and see what’s left.

What’s left is called the “residual” and  it should look like noise.  If it

doesn’t then we reject the hypothesis.

The logic is a bit twisted, I’ll admit it.  We are interested in the sig-

nal; we look at the noise.  The reason is that signals do all sorts of

interesting things — too interesting, too varied.  But noise — we understand

noise.  We know what noise is supposed to look like.  We can recognize

noise.  When the residuals, equation 3, look like noise, equation 2, it means

that when we subtracted our hypothesis about the signal from the data, all

that remained was noise:  So it was a good hypothesis.

Well-Behaved Noise

This strategy becomes critical for organizing the attack on two

variable relations but it is the strategy you have already used to identify

well-behaved variables, the same strategy with a different name.  With

one variable the hypothesis and the signal are pretty rudimentary, hardly

deserving of the portentous terms “hypothesis” and “signal”.  With one

variable the “formal” hypothesis is the mean or central value and the

implicit hypotheses are embedded in the choice of the unit of measure and

the unit of analysis.

With one variable, the pseudo equation

Data – Signal  = Noise (Repeating Equation 1)

becomes the real equation

Data – Hypothesis  = Residual (Repeating Equation 3)

and very specifically

Data - Mean = Residual (4)

In words, the “residual” is the distribution of data on either side of

the mean.   If that residual looks like noise:  If it is without pattern.  If the
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Introduction to Data Analysis:  The Rules of Evidence Lines

size of the residuals is small.  If the average of this noise is zero and if the

distribution of the noise is symmetrical — then the rudimentary one

variable hypothesis is correct.

For one variable, in Volume I, this pseudo equation and its

interpretation are overkill — an unnecessarily difficult re-statement of the

first property of a well-behaved variable.  For two variables, this pseudo

equation is standard operating procedure.

In simple unsophisticated terms the principle is “Look at the

exceptions.”  You are interested in the pattern, in the signal, but you detect

it by looking at the residuals.  Returning to the pseudo-equation, you can

hypothesize a linear signal,

Data  –  Signal   =   Residual.

Hypothesis:  Signal is a Linear Relation

But you check the hypothesis by looking at the residuals.  Adding it up,

there are the three things that a data analyst associates with a line:  The

intercept, the slope and the residuals.  If your residuals look like noise, if

the residuals are without pattern, if the residuals are small, and if the

mean residual is near zero and the distribution of the residuals is well

behaved, then your hypothesis is consistent with the data.

For example, here is standard operating procedure (for lines) in action:

Suppose I look at the four points of “data” graphed in Figure A and come up

with the hypothesis that these data are approximately constant:  The

signal is “y is constant.”  That’s wrong:  It is a poor hypothesis.  But let me

pursue it to show how a poor hypothesis leads to poor residuals (residuals

that look like they still contain a signal).  So continuing, foolishly, I

hypothesize that the signal is  “y = 5, constant”, Figure B.

Because my hypothesis is that “5” is the signal I subtract “5” from the

data and look at what’s left.  (Note, that I have blown up the scale of the

graph, to increase the resolution.)
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Data = Signal +  Noise

Data Hypothesis Residuals

Observation x y      ̂  y =5 y -    ̂  y 
________________________________________________________________________________________________________________________________________

#1 10 10 5 5

#2 20 14 5 9

#3 30 20 5 15

#4 40 24 5 19

.
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15
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Figure B

Clearly, that’s wrong:  The residuals show a clear pattern and the

residuals are positive, not zero.  That is a crude but obvious signal, not noise.

So even if the idea is right (which it isn’t), the value specified by the

hypothesis is wrong.  O.K., I can do better.  Now I hypothesize:  These data

are approximately constant with an average value of 17.  Now, for the

second time, I subtract the hypothetical signal from the data, the signal as

it would be if the hypothesis were correct.  What do I get (Figure C)?
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Data Hypothesis Residuals

Observation x y      ̂  y =17 y -    ̂  y 
________________________________________________________________________________________________________________________________________

#1 10 10 17 –7

#2 20 14 17 –3

#3 30 20 17 3

#4 40 24 17 7
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Figure C

Better:  The residuals now have an average of zero.  But what was

omitted from the hypothesis is now painfully obvious in the residuals:  The

residuals increase quite regularly.  So, the data were not constant — back to

hypothesis construction.

Now, I’m going to hypothesize that the signal increases with y as a

straight line function of x:  Simply looking at the graph, between x=10 and

x=40, I see a run of 30 in the x variable.  And over the same interval I see a

rise of 14 in the x variable.  Strictly by the numbers, that suggests a  trial
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Data = Signal +  Noise

value of “rise/run” = 14/30 = .467 for the slope.  I will round that to .5

because I can be relaxed about this first estimate of the slope.  I can relax

because I would have found slightly different estimates if I had used

different points, and because the graph of the residuals will make it

apparent that I need to refine the slope — if I need to.  So, my new

hypothesis is  y  = .5x+4.  Testing this hypothesis I subtract the

hypothetical signal from the data — I subtract the signal as it would be if

my hypothesis were correct — and I get Figure D.

Data Hypothesis Residuals

Observation x y      ̂  y = mx+b y -    ̂  y 

b = 4, m = .5
_______________________________________________________________________________________________________________________________________

#1 10 10 9 1

#2 20 14 14 0

#3 30 20 19 1

#4 40 24 24 0

.
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.
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Figure D
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Introduction to Data Analysis:  The Rules of Evidence Lines

That’s more like it:  The average of the residuals is small:  The

magnitudes of the residuals that are not explained bhy this hypothesis are

between 0 and 1.  And compared to the range of y between 10 and 24, the

hypothesis has greatly reduced my uncertainty about y .

Looking closely at what remains in the variation of y, it appears that

the residuals are a bit more positive than negative — which suggests that

there is a little bit of signal left in these residuals.  So I can increase

precision by add another 0.5 to the constant (the intercept) in my

hypothesis.  The residuals show no trace of slope, so I will leave that part

of the hypothesis alone.  With this added refinement, with the

hypothesis y =.5x + 4.5, the linear hypothesis is good, leaving residuals

that look like noise (average of zero, no slope), Figure E.  It is a good

hypothesis.
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Data Hypothesis Residuals

Observation x y      ̂  y =mx + b y -    ̂  y 

b = 4.5, m = .5
________________________________________________________________________________________________________________________________________

#1 10 10 9.5 .5

#2 20 14 14.5 –.5

#3 30 20 19.5 .5

#4 40 24 24.5 –.5

.
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Figure E

Or is it?  Is there really no signal left among these residuals?  After a l l

of my arithmetic is complete, I am back to the need for human judgment.

When I look at what’s left, I can’t help but observe that the residuals seem

to oscillate, up, down, up, and down.  Is this a pattern?  If there is a pattern

in the residuals, then the residuals are not noise and my hypothesis is

incomplete.  Is this oscillation more signal or is it noise?  In truth I can’t

tell.  To build a most-likely answer to that question I would have to place

the numbers in context as data:  I would have to treat those residuals/noise
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as a variable, two values are positive, two values are negative and I would

have to explore the variable, beginning with the stem and leaf and con-

tinuing with the average and variation.  I couldn’t “prove” anything by

such exploration, but then I’m not trying to.  I’m looking for ideas.

Similarly,  if I were not thinking of these residuals as oscillating, up, down,

up, down, I might get suspicious of a downward trend among the residuals,

noting that the first residual is positive while the last is negative.  Is it

there?  Is this signal or is it noise?  Again, I can not tell and no analysis of

these four data points will be able to extract an answer from these numbers

by mathematical force.  Is there a pattern among these residuals?  There is

certainly no compelling evidence of a pattern.  But that will not stop me

from harboring suspicions and from using those suspicions to hone my

questions when I go back to my data source for more exploration.

And are these residuals really small enough to ignore?  In truth, I can’t

answer that question either.  Again I would have to place the numbers in

context as data:  If residuals of this size were errors in the prediction of the

domestic products of the United States, year after year, and if the size of

the residual corresponded to a one percent deviation between the

hypothesis and the data, then I might say “forget it — one percent error in

gross domestic product is too small to be taken seriously.”  But even then I

would look for pattern as well as size:  If those numbers were gross domestic

products for the United States, and the high numbers turned out to be war

years, that would give me something to think about — nothing more (no

proof, just something to think about — and something to direct my focus at

the next stage of my research on GDP), nothing more, but nothing less

either.
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Introduction to Data Analysis:  The Rules of Evidence Spread Sheets

Doing it with Excel

The one thing I do not want you to do with your spreadsheet

software on your computer is to have it solve problems for you:

Spreadsheet programs are perfectly capable of finding lines for data

directly but don’t do it.  Instead I want you to use the work sheet

capacity to carry you through the work step by step — so I know that

you know how.  (And, because there are choices involved in any data

analysis, your program won’t get exactly the answer you are looking

for.)

So, #1, get your data into the spreadsheet.  And be sure to get the

units in there among the labels, bags of concrete, 1,000’s of people,

whatever.  Then what?  stem and leaf, medians, descriptions, as

appropriate for each variable.  Each analysis begins at step 0.

Then I’d suggest something like this

1
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intercept = Value (You enter

this and change

it yourself.  The

formula for the

expected value

uses this.)

slope = Value (You enter

this and change

it yourself.  The

formula for the

expected value

uses this.)

Unit Variable 1

Units

Variable 2

Units

Expected (under

the assumptions

that the linear

hypothesis, with

the slope and

intercept

specified above,

is correct

Residual/noise:

Observed value

of Variable 2

Minus Expected

value of

Variable 2 under

the assumption

that the

hypothesis is

correct

Here you get Excel to do 

Graph:  Across is x, Up is Y.  

you play around with Excel you

can get it to do something

visually better:  Up is Y and

also up is “Expected” _

graphing both sequences of

numbers on one graph

datum datum Formula:

= $d$2 + $d$1*A3

Formula

=B3-C3

Here you get Excel to do another

graph, lined up below the first:

On this graph Across is still x.

But now “up” shows the

residuals

datum datum Corresponding to

previous

2
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Introduction to Data Analysis:  The Rules of Evidence Spread Sheets

For example

intercept is: 4.5
slope is: 0.5

Unit Variable x Variable y expected=
intercept +
slope *
Variable x

Residuals=
y-expected

#1 10 10 9.5 0.5
#2 20 14 14.5 -0.5
#3 30 20 19.5 0.5
#4 40 24 24.5 -0.5

Variable y

0

20

40

0 20 40

Residuals=  y-expected

-0.5

0

0.5

0 20 40

That may take a little bit of doing to set it up.  But I want you to

set it up and then have Excel do for you what I did in the text:  You pick

an Intercept, leaving the slope as 0, and then Excel will draw the

3
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residuals.  You add a non-zero slope, and then Excel will draw the

residuals.  As you get closer, the residuals should get less interesting —

that’s what noise is supposed to do.  You should also be able to keep

track of it numerically by watching the average size of the residual go

down.

Warning,  Excel has a friendly habit of trying to choose a good

scale on which to display your graphs.  It also has a nasty habit of

making a bad choice.  Since the scale has a lot to do with what you are

going to be able to see, as noted in the text, be careful.  If you get

something ridiculous in your graph — check the scale.  You can

intervene, or at least you can intervene on the older version of Excel.  I

trust I will get advised in class on a variety of different ways to do this.

But keep your eye on the purpose of the exercise and choose the scale

accordingly.
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Introduction to Data Analysis:  The Rules of Evidence

Beyond Facts

In some of the sciences there is an unstated understanding that facts

and theory are separate:  According to this idea, numbers are “done” by

technicians grappling with the messy stuff of data and reality.

Meanwhile, theory is done by theorists, preferably pure theorists, apply-

ing their mind to pure ideas and general principles.   The idea that such a

division works is destructive and dead wrong.  It probably grew up as an

attempt to make the best of incomplete and divided training among (my

generation) of scientists, converting the unhappy fact of division into a

virtue:  People who work with words are presumed to be theoreticians;

people who work with data are presumed to be methodologists.

But verbiage does not make the speaker a theoretician any more

than numbers make their user a methodologist.   There simply is no such

division among active scientists:  We construct and develop our ideas by

working with the facts; we shape our analysis of the facts in order to

shape and test our ideas — there is no division.  You will still find a few

grand theorists who disdain data.  You may ignore them.  You will still

find a few data crunchers who think that science is a pile of facts, and

that greater science is a greater pile.  You may ignore them.

The second of the two concepts is a strategy of reverse logic.  Non

scientists tend to think that scientists “prove” their theories, that we

“prove” the laws of physics and “prove” the theory of evolution.  We

don’t.  The trouble is that we can never “prove” anything about the

world:  The very best we can say is that a theory is consistent with the

data — that we have no counter-evidence, not yet. In contrast, disproof

can be clear and definitive — just once instance of an event, of something

that can’t happen, according to the theory and the theory has been dis-

proved. (or is in need of modification).  That’s all it takes.  So since dis-

proof can be relatively easy to spot (and proof is impossible) we tend to

work by a reverse logic that makes the most of our errors.

And then, bringing the two concepts to together, one of the things

we learn the most from is badly behaved data — because surprises force

us to rethink what’s going on.
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The Potato Hypothesis

The place where the ideas and the data merge is in the equations of

the hypothesis.  Recapitulating, I refereed to the pseudo equation

Data = Signal + Noise

which allowed me to isolate noise as noise = data - signal

Data - Signal = Noise

Then I suggested that the analyst construct a hypotheses about the

signal and evaluate the hypothesis by looking at the residuals:  if the

residuals look like the noise, then the hypotheses captured the signal

Data - Hypothesis = Residual

There is the hypothesis.  In the example, the hypothesis was a rather

dry statement using a linear equation for y and x as well as estimates of

the values for the intercept and the slope.  That was about all I could say

about a hypothesis when I was using only letters and numbers, x, y, 10,

20, and so forth.  But when the hypothesis is about a phenomenon —

about some process for which you have gathered the data, then things

get much more interesting.

Here are some data.  The data are meant to describe the response of

crops of potatoes to the application of fertilizer.

The data come from a controlled experiment (Rothamsted Experimental Station

Report, 1933) on the effects of increasing amounts of a mixture of the standard crop fertil-

izers on the yields of potatoes that was  carried out in 1933 at the Midland Agricultural

College in En gland.  the mixture contained 1 part of sulfate of ammonia, 3 parts of su-

perphosphate, and 1 part of sulfate of potash.  The amounts were 0, 4, 8, and 12 cwt per

acre, the cwt unit, called hundredweight, being actually 112 lb.  Owing to natural vari-

ability, the yields of potatoes under a given amount of the mixture vary from plot to plot.

the yield figures shown for each amount in table 9.2.1 are the means of random samples

of four plots.
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Introduction to Data Analysis:  The Rules of Evidence

From Statistical Methods, Seventh Edition, Snedecor and Cochran, Iowa State

University Press, 1980, pp. 149-150:

YIELD OF POTATOES IN RESPONSE TO FERTILIZER

Fertilizer Potatoes

in cwt per acre in tonnes per acre

Xi Yi

0 8.34

4 8.89

8 9.16

12 9.50

Now — think!  What do I expect and why?  That is the half of hy-

pothesis construction that was missing when I used only numbers.  What

do I expect?  Crudely, I expect a positive response to fertilizer, more fer-

tilizer, more potatoes.

Less crudely, I don’t know enough about crops to offer a very clever

hypothesis.  I think of plants as grabbing up nutrients from the soil.  The

more the nutrient available, the more that will be assimilated by the

plant, and the greater the yield — up to a point when the growth ap-

proaches the limits of the organism itself.

Those are my initial thoughts.  Now I crystallize these thoughts into

a picture of my expectation, and, if I can, into an equation that will join

the thought to the fact.  My words suggest a sketch of a linear response,

for a part of the range, followed by a bend approaching an asymptote.

3

DA IX:Volume II:228 The Potato Hypothesis Wednesday, July 31, 1996



What specific equation would I attach to my sketch?  I’ll have to do

it in two parts:  Direct proportionality to the fertilizer initially.  That

would be a line.  Later?  I would expect something like each additional

unit of fertilizer having an equal effect on the distance between the yield

and the asymptote.  Likely, however, I will not have enough data to track

this down very precisely.

Now, I’m ready to look at the data.

intercept is: 0
slope is: 0

Unit fertilizer
in cwt per
acre

Potatoes in
tonnes per
acre

expected=
intercept +
slope *
Variable x

Residuals=
y-expected

#1 0 8.34 0 8.34
#2 4 8.89 0 8.89
#3 8 9.16 0 9.16
#4 12 9.50 0 9.50

Potatoes in tonnes per acre

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12
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Introduction to Data Analysis:  The Rules of Evidence

Let me look at this.  Before the beginning:  Who, what where...? I

probably have enough in that descriptive paragraph.  Now, are these

variables well-behaved?  If I evaluate them in terms of their one variable

distributions, then I can’t tell:  The data are from a controlled experiment.

That means that I can’t really think about the distribution of the applica-

tions of fertilizer.  The experimenter chose the distribution that, so there

is nothing “natural” to be discovered from looking at this distribution to

see how it behaved — although it is likely that the experimenter consid-

ered the zero, (no fertilizer), and the three applications to be equally

spaced.  So, I’m unable to consider either the first or the second criterion

for a well behaved variable.  But the third criterion, linearity, looks use-

ful:  The graph suggests that the relation is approximately linear, sug-

gesting that each variable is approximately well behaved.  There is more

data on the variation of the yield per acre, these are average yields and

that average must refer to some distribution.  But I don’t have it.   The

fifth criterion is sense.  And that is a problem.  Whether the data come in

pounds, or ounces , or cwt, I can do the arithmetic.  But the purpose of

the first steps of a data analysis is to feed the intuition of the analyst.  So

let me tell you about the analyst.  I’m an American.  My intuition knows

pounds and tons, not cwt.  What does a cwt of fertilizer look like?  Is it a

shovel full, or a truckload?  I can figure it out.  But if I use these units of

measure then I am going to slow down my work because every stage

will need to be translated until it makes sense.  That means I’m not really

able to think about this.  I don’t know what 4 cwt of fertilizer is, nor for

that matter do I understand a tonne of potatoes.  In this primitive sense, I

need a change of the unit of measure —so that I can “think” about these

without burdening my intuition with translations.

So — to the dictionary.  A cwt is a hundredweight.  So much for

word origins: cent (hundred) weight, cwt.  And what is a hundred

weight?  It says, “a unit of weight, equal to 100 pounds in the United

States and 112 pounds in England”.  The data are British, and I should

take note of that spelling “tonne”, also British.  So I have 112 pounds of

fertilizer for each hundredweight; .056 tons (American) of fertilizer for

each hundredweight.  Changing the unit measure, the three applications

are .22 tons, .45 tons and .67 tons  per acre.

My dictionary does not include “tonne”, but it has two definitions

of “ton”, one British.  That should be it.  A ton, it tells me is “a unit of

weight equal to 2,240 pounds avoirdupois (1,016.06 kilograms)

commonly used in Great Britain:  in full long ton, shipping ton .”  Also,

“a unit of weight equal to 2,000 pounds avoirdupois (or 907.20
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kilograms), commonly used in the United States, Canada, South Africa,

etc.:  in full short ton.”  So multiplying 8.34 by 2,240 pounds and

dividing by 2,000 pounds, the yield of an unfertilized acre is 9.3 tons.

And successive yields are 10.0 tons, 10.3 tons, and 10.6 tons per acre.
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Introduction to Data Analysis:  The Rules of Evidence

Converting to these units of measure, I’ll start again

intercept is: 0
slope is: 0

intercept is: 0.0

slope is: 0.0
Unit fertilizer

in tons
per acre

Potatoes in
tons per
acre

expected=
intercept +
slope *
Variable x

Residuals=
y-expected

#1 0 9.3408 0.0
#2 0.224 9.9568 0.0
#3 0.448 10.2592 0.0
#4 0.672 10.6400 0.0

Potatoes in tonnes per acre

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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Now, using these units of measure, I’m willing to look.  And what

do I get from this integration of ideas and number?  I get the message

that my first ideas were an exhibit of sloppy thinking.  I said that yield

would be proportional to fertilizer.  Note that I drew my sketch pointed

toward zero.  I was thinking proportionality and built it in to my sketch

(although my words were more ambiguous).  Drawing the line through

zero is what “proportionality” means:   y is proportional to x, i.e.,

y = mx

(not y - mx + b)

But that is not the relation shown in the picture.  The picture clearly

shows that soil is perfectly capable of producing potatoes without the as-

sistance of fertilizer.  My thinking was too narrow.  I was thinking about

fertilizer and yield and human intervention, as if fertilizer were neces-

sary to induce nature to grow crops.  And so I simply failed to step back

far enough to take into account the very hefty yield that nature can de-

liver when there is no fertilizer at all.

So, chastised by the data, let me revise my hypothesis by stating it

more precisely.  I expect the increase in yield to be proportional to the in-

crease in fertilizer.  That idea is matched by a linear equation with an in-

tercept.

I know this revised hypothesis will be in the “ball park” of the data,

because I’ve looked at the data.  But I can still test the idea by a straight

forward application of reverse logic:  Is this hypothesis a fair description

of the signal?  If it is, then the residuals will look like noise.  So, with re-

verse logic, I direct my attention to the residuals — to evaluate the ac-

ceptability of the hypothesis.  As for the specific values of slope and in-

tercept, I don’t have enough experience to have an expectation or a hy-

pothesis.  I’ll take these from the data.

From the data, a first guess for the intercept is obvious, 9.34 tons per

acre because that is the observed value of the yield when the fertilizer is

0.  A first guess for the slope is also obvious, the vertical rise on the graph

is  from 9.3 to 10.6.  The  horizontal run on the graph is from 0 to .67.

And the slope is the rise divided by run.  That gives me a first guess of

approximately 1.93 tons of potatoes per ton of fertilizer.

Even without a graph, that is very interesting:  1.9 tons of potatoes per

ton of fertilizer.  That surprises me:  To increase the yield of potatoes by

8
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Introduction to Data Analysis:  The Rules of Evidence

1.9tons I have to apply 1 ton of fertilizer to the soil!. (And the 1.9 tons of

potatoes are 95% water.)  Non agriculturist that I am, non-biologist that I

am, I’m astonished, one ton of fertilizer spread on the field to get 2

additional tons of potatoes.

Husbanding my three pieces of information, intercept, slope, and

residuals, I’ll try placing these estimates for the intercept and the slope

into the hypothesis.  Then I will look at the pattern of the residuals,

asking do these residuals look like noise?

.

intercept is: 9.34
slope is: 1.93

Unit fertilizer
in tons
per acre

Potatoes in
tons per
acre

expected=
intercept +
slope *
Variable x

Residuals=
y-expected

#1 0 9.3408 9.340 0.0008
#2 0.224 9.9568 9.772 0.18448
#3 0.448 10.2592 10.205 0.05456
#4 0.672 10.6400 10.637 0.00304

Potatoes in tons per
acre

0

20

0 0.5 1

Residuals=  y-expected

0
0.05

0.1
0.15

0.2

0 0.5 1

Residuals with respect to the line with
intercept = 9.34, slope = 1.93.
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No, these residuals certainly suggest a pattern among the residuals,

not noise.  So, by reverse logic, my hypothesis doesn’t represent the sig-

nal.  My equation was wrong.  And what is important is not just that my

equation was wrong.  What is important is that my thinking was wrong.

Writing my thoughts into the equation allowed me to test the ideas with

data.  My ideas were  wrong again.

I’ll keep going with these data but from here forward I am not going

to be able to test my subsequent .  I’ll call the next idea a hypothesis.  But

by now I’ve seen so much of the data that I am really just writing a hy-

pothesis to fit the facts — to test it I would need other data.

With that proviso, I think that what I see in these data is that the soil

alone (without fertilizer) was capable of a yield of approximately 9.3

tonnes per acre.  The first addition of 0.2 tons of fertilizer to the untreated

soil added about 0.6  tons to the yield, .2 tons in, .6 tons out.  And each

additional .2 tons produced an increase of .33 tons, .2 tons in .3 tons out.

In words, the untreated soil, without fertilizer, comes within  88% of the

maximum yield achieved with the heaviest application of fertilizer

(calculating 9.34/10.64 = 88%).  The first application of fertilizer to the

untreated soil has a disproportionately large gain as compared to subse-

quent applications.  Perhaps the effect of the fertilizer is catalytic as well

as directly nutritive so that the initial application enables the organism to

use nutrients that were already present.  This is a one-shot effect.  As a

result further increments of fertilizer will add only the nutritional effect.

For my graph, the only thing to be “tested” after all this handling of

the data is that the last two increments are approximately equal.

Limiting my graph to the last two increments (the last three data points):
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Introduction to Data Analysis:  The Rules of Evidence

intercept is: 9.34
slope is: 1.93

Unit fertilizer
in tons
per acre

Potatoes in
tons per
acre

expected=
intercept +
slope *
Variable x

Residuals=
y-expected

#1
#2 0.224 9.9568 9.772 0.18448
#3 0.448 10.2592 10.205 0.05456
#4 0.672 10.64 10.637 0.00304

Residuals=  y-expected

0
0.05

0.1
0.15

0.2

0 0.5 1

Residuals with respect to the line with
intercept = 9.34, slope = 0.097.

From that, I can bring the first residual down to zero by treating its

value, .184, as a positive signal.  I remove this positive signal from the

residuals by adding it to the hypothesis.
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intercept is: 9.524
slope is: 1.93

Unit fertilizer
in tons
per acre

Potatoes in
tons per
acre

expected=
intercept +
slope *
Variable x

Residuals=
y-expected

#1
#2 0.224 9.9568 9.956 0.00048
#3 0.448 10.2592 10.389 -0.12944
#4 0.672 10.64 10.821 -0.18096

Residuals=  y-expected

-0.2
-0.15

-0.1
-0.05

0
0.05

0 0.5 1

Residuals with respect to the line with
intercept = 9.524, slope = 1.93.

Then I can work on the slope suggested by the residuals:  The resid-

uals show a vertical descent of -.181 over a horizontal run of .448.

Calculating -.181/.448 = -.405, that is a signal of -.405 in the residuals.  I

take it out of the residuals by adding negative -.405  to the hypothesis.
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Introduction to Data Analysis:  The Rules of Evidence

intercept is: 9.524
slope is: 1.525

Unit fertilizer
in tons
per acre

Potatoes in
tons per
acre

expected=
intercept +
slope *
Variable x

Residuals=
y-expected

#1
#2 0.224 9.9568 9.866 0.0912
#3 0.448 10.2592 10.207 0.052
#4 0.672 10.64 10.549 0.0912

Residuals=  y-expected

0

0.05

0.1

0 0.5 1

Residuals with respect to the line with
intercept = 9.524, slope = 1.525.

In turn, I can go back to the intercept for fine tuning.  Note that it is

fine tuning, because the size of these residuals is small. It now shows an

intercept of about .07 in the residuals.  I take this .07 out of the residuals

by adding it to the hypothesis, getting:
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intercept is: 9.594
slope is: 1.525

Unit fertilizer
in tons
per acre

Potatoes in
tons per
acre

expected=
intercept +
slope *
Variable x

Residuals=
y-expected

#1
#2 0.224 9.9568 9.936 0.0212
#3 0.448 10.2592 10.277 -0.018
#4 0.672 10.64 10.619 0.0212

Residuals=  y-expected

-0.02
-0.01

0
0.01
0.02
0.03

0 0.5 1

Residuals with respect to the line with
intercept = 9.594, slope = 1.525.

Those are about as harmless a set of residuals as I can imagine but,

again, these residuals aren’t really a test of anything because, now that I

am down to three data points, if there is any error at all (which there al-

ways is), this is what it has to look like, down/up or up/down.

(Anything else, for example, up/up would have been interpreted as a

slope and then removed from the residuals.)

So, what do I know?  Let’s put it in order, noting that the most ob-

vious things were obvious, once there was a picture.

I know that the untreated fields averaged ____ tons of potatoes per

acre.  (I know that by converting the data to common units and reading

the data.)
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Introduction to Data Analysis:  The Rules of Evidence

I know that the lightest application of fertilizer received the greatest

return in terms of additional tons of potatoes per ton of fertilizer, about

2.75 tons of potatoes per ton of fertilizer.  (I know the effect from looking

at the residuals.  I know the number by simple calculation directly from

the data.)

I know that additional fertilizer had a lower marginal return of

potatoes about 1.525 tons of potatoes per son of fertilizer.  (I know this by

examination of secondary residuals and by fitting a line to the last three

of the four data points.)

I also know that my initial ideas had very little to do with what was

found.  Certainly it is not true that growth is proportional to fertilizer.  It

is not even true that additional growth is proportional to additional

fertilizer.  Instead additional growth is realized at one rate for the first

application of fertilizer and at a lower rate for greater applications of fer-

tilizer.  And, finally, these data provide no evidence of a diminishing rate

of return.

In case you hadn’t noticed, there is an almost inverse relation be-

tween the utility of each piece of information gained from various

aspects of these data and the amount of work that was necessary to

extract that information.  Most of what was learned:  By learning that my

hypothesis was sloppy (and wrong), and then by getting a description of

the actual behavior of the data — these things can be read directly from

the data and the second graph.  The less obvious things, uncovered with

page after page of technical virtuosity, added detail:  Before I went

through this detailed procedure I knew that the slope for  the last three

data points was about 1.5 (in the phrase “.2 tons in, .3 tons out”).  Now I

know it is more like 1.525 than 1.5 — which is to say the largest technical

display in this analysis was attached to the smallest gain of real

information, increasing the precision of the estimate from approximately

1.5 to approximately 1.525.

That is a hard blow to the ego of the data analyst.  By the end of an

analysis you are focused on your most technically sophisticated efforts.

But very often, the technological sophistication added little to what was

known when you graphed two well-behaved variables, one against the

other.  That was your real act of sophistication:  The real act of

sophistication is getting the initial display right so that the most
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important results become the most visible features of the graph.  Once

the initial display is under control, the obvious results became obvious.

The next blow to the analyst comes in the write up.  Truth is,

nobody cares how hard you worked.  “Heh!  I’ve got 14 pages of work

here (in manuscript).”  Tough.  That’s how much work it takes, but no

one cares.  They want to know, in this case, about fertilizer and potatoes.

Ontogony may recapitulate phyologeny (in biology), but in data analysis,

the report does not recapitulate the research — except to leave some

evidence for the cognoscenti:  The cognoscenti (other analysts) need

assurance that you actually did the research and they need sufficient

information to allow them to reproduce the work for themselves if they

care to.
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Data from the Rothamsted

research station present a picture of

the increases in crop yield that may

be obtained through the application

of fertilizer.  The data show that the

lightest application of fertilizer

brought a return of 3 tons of pota-

toes per ton of fertilizer, approxi-

mately a seven percent increase

compared to the untreated fields.

Additional applications of fertilizer

at rates that were double and tripe

the initial application achieved a

smaller increase of approximately

1.5 additional tons of potatoes per

additional ton of fertilizer

College in England.  The fertilizer

contained 1 part of sulfate of am-

monia, 3 parts of superphosphate,

and 1 part of sulfate of potash, with

applications and average crop

yields as shown in the table below.

Yields of Potatoes

Corresponding to Different

Amounts of Fertilizer

Fertilizer Average Yield

(cwt per acre)(tonnes per acre)

0 8.34

4 8.89

8 9.16
The data come from a con-

trolled experiment (Rothamsted

Experimental Station Report, 1933)

on the effects of increasing

amounts of a mixture of the stan-

dard crop fertilizers on the yields of

potatoes that was  carried out in

1933 at the Midland Agricultural

12 9.50

Secondary source:   Statistical
Methods, Seventh Edition,

Snedecor and Cochran, Iowa State
University Press, 1980, p 152.

17

DA IX:Volume II:228 The Potato Hypothesis Wednesday, July 31, 1996



Initial and Incremental yield of Potatoes in response to
Fertilizer

0

2

4

6

8

10

0 0.224 0.448 0.672
Tons of Fertilizer per Acre

Initially, 9.3 tons of Potatoes per Acre

Low treatment: 
Yield increased

by 3 tons per ton
of fertilizer

Additional treatments: 
Yield increased by 1.5 tons
per ton of fertilizer.

Yield shown in tonnes per acre.
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Exercise:  From Statistical Methods, Snedecor and Cochran, Iowa

State University Press, 1980, p. 153:

Two problems:

In a controlled experiment on the effects of increasing amounts of

mixed fertilizers on sugar beets conducted at Redbourne, Lincs, England,

in 1933, the mean yields of sugar beet roots and tops (n=5) for each

amount X are as follows:

X (cwt/acre) 0 4 8 12 16

Roots (T/acre) 14.42 15.31 15.62 15.94 15.76

Tops (T/acre) 7.48 8.65 9.74 11.00 11.65

Problem 1:  Analyze the data for roots.

Problem 2:  Analyze the data for tops.
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In a controlled experiment on the effects of increasing amounts of mixed
fertilizers on sugar beets conducted at Redbourne, Lincs, England, in 1933 the
mean yields of sugar beet roots and tops for each amount X are as follows

X (cwt/acre) 0 4 8 12 16
Roots (T/acre) 14.41 15.31 15.62 15.94 15.76
Tops (T/acre) 7.48 8.65 9.74 11.00 11.65

Analyze and describe the yield in Roots as a function of fertilizer.

From Snedecor, p. 153.  (Original source not fully specified.)



Rules of Evidence:  The Soybean Hypothesis Levine

The Soybean Hypothesis:
Growth of an Organism v/s Growth of a Population

For a second example, let me escalate from four data points to

seven — same basic numerical technique, but different data and,

therefore, different hypotheses, and a different deployment of the

numerical technique in pursuit of the hypotheses.

Again from Snedecor and Cochran:

From Statistical Methods, Seventh Edition, Snedecor and Cochran, Iowa State University

Press, 1980, p 152:

Example 9.2.1-- The following are measurement of heights of soybean plants in a field — a

different random selection each week (Wentz, J. b. and Steward, R.T., J. Am. Soc. Agron 16

(1924):534.

Age. X (wk) 1 2 3 4 5 6 7

Height, Y (cm) 5 13 16 23 33 38 40
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Before the beginning, “Who, What, Where, ....?”  As usual these

preliminary questions must co-exist with pedagogical duplicity, by

which I mean it is necessary to act as if I were subjecting these data to

the same close scrutiny that I would exercise were I doing research

whose quality and outcome depended on the quality of the data.  The

textbook is excellent.  The data are often classics of the trade.

Examining the data I am a little wary after my previous

experience:  When data come in a series, as did the fertilizer data, look

for trouble at one end or the other:  Boundary points are more likely to

be “different” than middle points.  Here, the initial boundary (age 0,

height ?) is just missing.

O.K., let me think about growth.   My reflexive expectation about

growth is that things grow exponentially:  Little things grow slowly,

big things grow rapidly — both little things and big things grow in

proportion to their existing size:  A tiny thing can not sustain a rapid

growth.  But then, at the other end, there are limits as growth

approaches the limit of the resources or the capacity of the organism.

So I expect accelerating growth at the beginning, decelerating

growth near the end.  The accelerating growth should be

approximately exponential and, therefore, it should be linear when

the unit of analysis is the logarithm of the height.  But then — on

second thought I’m not so sure:  What is it that increases?  Is it the

height of the plant, as given?  Or is it the weight of the plant, the

“biomass” .  If it is the latter then  I should be looking at the cube root of

the height (the relation between volume and extension where form is

constant).  But then the log of the cube root of the height the result

would be linear, or non-linear, as the log of the height itself is linear or

non-linear.  So, I am still looking for something like a linear relation

between the logarithm of the height and the age of the plant.
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Pattern in Centimeters Pattern in Logs

As for one-variable analysis, once again this is a controlled

experiment.  That implies that values of age were controlled by the

experimenter and there is nothing to be learned about nature from the

examination of the numbers for age.   But I will be able to use a two-

variable criterion, looking for linearity (in the log of the height).

Hypothesis in hand, I am committed.  Let me see what the data

have to teach me.
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intercept is:
slope is:

Unit Age of
Soybean
(In
Weeks)

Mean
Height of
Soybean
Plants ( in
centimeter
s)

expected=
intercept +
slope *
Variable x

Residuals=
y-expected

#1 1 5
#2 2 13
#3 3 16
#4 4 23
#5 5 33
#6 6 38
#7 7 40

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7

Age (in Weeks)

Height (In Centimeters)
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This is discouraging.  It looks nearly linear — although it will

take a look at the residuals to test that appearance.  But my thinking

led me to expect an increasing rate of growth as the plant became large

enough to support more growth.  My thinking is wrong.  That is the way

to use data:  It is very good at disproving hypotheses while it can never

really prove a hypothesis.  So we set up the data analysis in order to

get the maximum mileage from what data analysis is good at —

rejecting hypotheses.  This hypothesis, and the line of reasoning

behind it, is wrong.

Is it really linear?  Let me look at the residuals.  I will try an

intercept of 0, 0 weeks, 0 centimeters.  I will try a slope of 6.33

centimeters per week, calculating a rise of 35 centimeters, and a run of 6

weeks, 35/6 = 5.83

intercept is: 0
slope is: 5.833333

Unit Age of
Soybean
(In
Weeks)

Mean
Height of
Soybean
Plants ( in
centimeter
s)

expected=
intercept +
slope *
Variable x

Residuals=
y-expected

#1 1 5 5.833 -0.833
#2 2 13 11.667 1.333
#3 3 16 17.500 -1.500
#4 4 23 23.333 -0.333
#5 5 33 29.167 3.833
#6 6 38 35.000 3.000
#7 7 40 40.833 -0.833

Macintosh HD:DA:DA X:Volume II:244 The Soybean Hypothesis p. 330



Rules of Evidence:  The Soybean Hypothesis Levine

0
10
20
30
40

0 2 4 6 8

Age (in Weeks)

Height (In Centimeters)

Residuals=  y-expected

-2.000

0.000

2.000

4.000

0 2 4 6 8

 Confirmed, there is little evidence of an exponential curve

departing from my linear hypothesis.  Confirmed, my hypothesis is not

supported by the data.    It appears that there is a remaining slope in

these residuals.  The original picture suggests that the boundary point,

7 weeks, may be different — which fits at least a little of my

hypothesis.  If I were to remove that last point from the residuals,

there would be a definite upward slope.  If I am to leave it in, then the

residuals suggest a little increase of the variance of the residuals

toward the end.  I am going to ignore that last data point to see what

parameters I get for the best line.

The most important characteristic of residuals is their pattern, not

their size.  Here the “pattern’ is an absence of an upward curve.  That

being accepted, I can attend to the size of the residuals, apart from

their pattern.  That makes the “fitting” process easier.  Here I will
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compute the squared residuals and the mean of the squared residuals,

and then select a slope and an intercept for six of the seven data points

that gives me a good fit in the sense of least squares.

Starting with the first estimate of the intercept and the slope

intercept is: 0
slope is: 5.833333

Unit Age of
Soybean
(In
Weeks)

Mean
Height of
Soybean
Plants ( in
centimeter
s)

expected=
intercept +
slope *
Variable x

Residuals=
y-expected

Squared
Residuals

#1 1 5 5.833 -0.833 0.69444444
#2 2 13 11.667 1.333 1.77777778
#3 3 16 17.500 -1.500 2.25
#4 4 23 23.333 -0.333 0.11111111
#5 5 33 29.167 3.833 14.6944444
#6 6 38 35.000 3.000 9
#7 7 40 40.833 xxxx xxxx

Mean
Residual

Mean Squared
Residual

0.916667 4.75462963

The mean residuals (without squares) are slightly positive on the

average.  Likely then I can improve the fit by transferring the average

from the residuals to the hypothesis.

intercept is: 0.92
slope is: 5.833333
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Unit Age of
Soybean
(In
Weeks)

Mean
Height of
Soybean
Plants ( in
centimeter
s)

expected=
intercept +
slope *
Variable x

Residuals=
y-expected

Squared
Residuals

#1 1 5 6.753 -1.753 3.07417778
#2 2 13 12.587 0.413 0.17084444
#3 3 16 18.420 -2.420 5.8564
#4 4 23 24.253 -1.253 1.57084444
#5 5 33 30.087 2.913 8.48751111
#6 6 38 35.920 2.080 4.3264
#7 7 40 41.753 xxxx xxxx

Mean
Residual

Mean Squared
Residual

-0.00333 3.91436296

Yes, that reduces the squared residual by about 15 per cent, from

4.75 to 3.91.   With more work, my best is:

intercept is: -1.86667
slope is: 6.628571

Unit Age of
Soybean
(In
Weeks)

Mean
Height of
Soybean
Plants ( in
centimeter
s)

expected=
intercept +
slope *
Variable x

Residuals=
y-expected

Squared
Residuals

#1 1 5 4.762 0.238 0.05668934
#2 2 13 11.390 1.610 2.59056689
#3 3 16 18.019 -2.019 4.07655329
#4 4 23 24.648 -1.648 2.71464853
#5 5 33 31.276 1.724 2.97151927
#6 6 38 37.905 0.095 0.00907029
#7 7 40 44.533 -4.533 xxxx
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Mean
Residual

Mean Squared
Residual

3.4E-15 2.07
Square Root of
the Mean
Squared
Residual

1.44

0
10
20
30
40

0 2 4 6 8

Age (in Weeks)

Height (In Centimeters)

Residuals=  y-expected

-6.000

-4.000

-2.000

0.000

2.000

0 2 4 6 8

That gets rid of about half of the squared residuals.  To represent

this by a number, think of an analogy to the mean, the variance, and

the standard deviation:  In the analogy, the mean is the number closest

to the data in the sense of least squares.  The variance reports the mean

of those (least) squares.  And the standard deviation reports an average

error converted (by the square root) to a unit of measure that matches

the unit of measure of the variable.  Here, by analogy, the square root
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of the squared deviation reports the size of the residuals as a standard

error, which is, in this case, 1.4 centimeters (computed for data points

one through six).

Looking at these residuals, there is no simple pattern among the

residuals. (Allowing that the human eye always sees something, I can

imagine an inverted “W” here.  But I don’t take it seriously:  Failing

any simple  connection between such a pattern and the substance of the

data I will describe the residuals as patternless.)

The last data point was not used in this computation because it

looked suspicious.  The graph supports the exceptional nature of this

last point by comparing the observed value to the hypothetical value

extrapolated from the six preceding points.  Although this is only one

data point, it suggests a declining rate of growth for the seven week old

plant.

The slope suggests a growth of 6.6 centimeters per week, including

a hypothetical week 0, when the bean would have been 2 centimeters

below the surface of the ground (the intercept).

The data certainly look simple, the data are linear to a

reasonable approximation, for the data preceding the last observation.

But this is a negative result:  Remember I hypothesized an exponential

growth, and I told you why.  I was wrong.  So the numbers of this linear

description are not the end of my work.  On the contrary, they tell me I

have some explaining to do.  There is something wrong with my

thinking that needs to be discovered, uprooted, and replaced.

My research process for this dilemma is straight forward — a

phone call to my nearest biologist.  He advises me that I am thinking

like a sociologist.  Sociologists look at populations that increase and

reasonably well you might expect the rate of growth of a population to

be proportional to the number of potential parents.  Sociologists look at

wealth, which tends to grow in proportion to investment.
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Wrong model:  Plants don’t grow that way.  They don’t get born

looking like a plant, grow up looking like the same plant, but larger,

and mature looking like the same plant, but larger.

Wrong model.  Plants don’t grow that way (nor for that matter do

people, although people do, on the average, tend to maintain the same

number of arms and legs and heads as they grow older.)  Plants like

soybeans and trees (and long bones of people), grow at their growing

tips.  These specialized cells appear to do their work at an

approximately constant rate (for a while).  The growth of single

organisms obeys different laws as compared to the growth of

populations.

So — the work is almost complete.  But not yet.  My friend’s story

hasn’t really explained it.  His is a new hypothesis.  And you know

what to do with a new hypothesis:  Test it.  No fair doing all that work

to test the old hypothesis, and destroy the old hypothesis — and then

fail to subject the new explanation to equal scrutiny.  The new

hypothesis says “constant growth” — at least for a while.  So let me do

a simple graph of the amount of growth, each week.
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Difference Between Mean Height and
Mean Height for the Previous Week

0
2
4
6
8

10

1 2 3 4 5 6 7

This is very confusing.  I look at this and I see pattern:  Infancy (of

a soybean) large initial growth.  Then youth, steady growth increasing

to a spurt of growth (week 5 has three times the growth of week 3),

finished off with a period of declining growth.

This is a problem:  I have a story here.  I like it.  It seems to fit the

data.  But how did this regularity escape me earlier?  What I was

trying to do here was create a picture that would be a compelling

exhibit of constant growth (if the growth were constant).

But actually I had already constructed a picture of residuals from

constant growth — those were the residuals from the straight line (and

a straight line is a model of constant growth).  What is the difference?

There are two differences.  The first major difference was my mind set:

When I looked at residuals from the straight line I was looking for a

rising curve that would encourage me to go forward to test the initial

hypothesis (exponential growth).  I didn’t find it.  My mind was set to

evaluate the first hypothesis.  I did and I rejected it.  The second major

difference is that in this graph I reflexively left out the first week

because the first week could not be compared to an earlier week — it is

different.

Now with the new hypothesis I have a different mind set.  I’m

evaluating this new hypothesis and ready to be critical of the new
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hypothesis.  And because I am focusing on differences, I reflexively use

less data — I only examined the data for which there was a difference

to be examined.   As a result, subjecting the new hypothesis to the same

degree of skepticism as I applied to the original hypothesis, I suspect

that I see a pattern (where previously I saw an inverted “W” which I

took to be meaningless.

So what is the truth about soybeans?  What is going on here?  I

have lots of stories now.  What is going on?  This is embarrassing —

seven data points are keeping me fully occupied.  So, I need to think:  I

leave my desk, watch a movie, go for a run, stare at the ceiling — all

the time thinking about soybeans.

By now I’ve looked at these seven data points so carefully that it

should be no wonder that I can come up with a story that will fit the

data — but that doesn’t mean that the new story is wrong.  Here is

what I’ve learned from these data:

This is a report that will never become a finished report on its

own.  For me, or for a research group, it is an internal memo — a step in

the research.  It definitely ends my first hypothesis.  But does it allow

me to say that growth follows 2 or 3 phases:  Rapid initial growth,

then a longer period of initially slow but increasing growth, climaxed

by a peak, followed by a decline?  If I were to pursue that description

solely on the numbers, I would need more numbers.  For example, if I had

daily data, 49 data points, and the pattern persisted, then I would

know that the ups and downs were real.  7 data points can do a lot of

bouncing.  49 data points following the same broad trends are more

credible.

But that’s a numerical fix that avoids getting into the real

research, out to the soybean fields, in to the biology of plants.  What I

would really do, were this 1924 (when the work was published), or

were this Spring and I had a few soybeans, is to look  at the plants:   If I

withdraw from the numbers and my computer I do know a little bit

about plants.  They start with one or two seed leaves that are basically
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collapsed but present in the seed — ready to catch some sun very

quickly.  Seeds germinate, doing nothing visible for a few days, then

pulling these cotyledons from the seed cover and out into the sun.  What

is the germination period for a soybean plant?  I don’t know.  I would

watch and look for parallels between the “stages” of growth and the

phases I suspect I see in the data:  Growth from the seed in the first

week or two.  Then I watch the plant and watch the data:  Is there a

pause as the plant switches over to a new structure (as compared to the

seed growth).   Is there a spurt followed in a few weeks by the end of

new growth and change to favor other  functions — reproduction, or root

growth.  I would look at the phasing in my data and attempt to match

it to structural changes in the plant itself.  For the moment, these seven

data points, and the techniques of data analysis have done their job

which is to lead me (much more deeply than I had intended) into

questions about the physiology of soybeans.
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Data from Wentz and Stuart

(J Am Soc. Agron 16, 1924) p. 534)

demonstrate the pattern of growth

in the soybean plant.  Starting from

a seed beneath the soil, the plants

achieved an average length of 40

centimeters 7 weeks later.  While

the length of the average plant

increased by an average of 5.7

centimeters per week, the change

per week is irregular, showing a

maximum of 10 centimeters growth

in the fifth week which is three

times larger than growth in the third

week but almost matched by

growth in the second week.

growth of the plant may explain its

initial growth, 5 centimeters in the

first week, 8 centimeters of

additional growth in the second

week, plummeting to 3 centimeters

growth in the third week.  After the

third week there is an gradual rise,

with maximum growth in the fifth

week, diminishing to the slowest

growth exhibited at any time in the

seventh week of the plants’ lives.

Average Height of Soybean
Plants Compared to the Age of

the Plant

Age Length
(weeks) (centimeters)

Further research should look

for physical changes in the plant

which may explain these

differences in the growth rates.  For

example:  What is the germination

period?  At what time are the seed

leaves followed by the growth of

stem and new leaves.  When does

the plant cease to grow?  When

does it flower?  These stages in the

1 5

2 13

3 16

4 23

5 33

6 38

7 40

Secondary source:   Statistical
Methods, Seventh Edition,

Snedecor and Cochran, Iowa State
University Press, 1980, p 152.

Initial Growth and Weekly Increase (In Centimeters)
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From Snedecor, Statistical Methods, page 153

In a controlled experiment on the effects of increasing amounts of mixed
fertilizers on sugar beets conducted at Redbourne, Lincs, England, in 1933, the
mean yields of sugar beet roots and tops (=5) for each amount X are as follows

X (cwt/acre) 0 4 8 12 16
Roots (T/acre) 14.42 15.31 15.62 15.94 15.76
Tops (T/acre) 7.48 8.65 9.74 11.00 11.65

Describe the response of the root crop of sugar beets to applications of
fertilizer.



Height and height

From Snedecor, op. cit., p. 175.

Stature (inches) of Brother and Sister
(illustration taken from Pearson and Lee’s sample of 1401 families)

Family Number 1 2 3 4 5 6 7 8 9 10 11
Brother 71 68 66 67 70 71 70 73 72 65 66
Sister 69 64 65 63 65 62 65 64 66 59 62

Original:  Pearson, K. and Lees, A.  Biometrika  2 (1902-3):357.



Big(ger) Data Sets

Height and Weight

I think that a reasonable person has to be stunned by the

amount of detail that can be found in as few as 4 data points

(fertilizer and potatoes data), or as few as 7 data points

(soybean growth data).   It surprises me, and it surprises me

again every time it happens.  Nevertheless, the world often

presents us with data involving many data points, considerably

more than 8, or 80, or 800.  There is no simple answer about what

you do because the effect of large data sets usually can be

counted on to produce two opposite effects on the self assurance

and equanimity of the data analyst.  Large data sets can fill in

the blanks where you think you see a pattern, but need more

data to be sure that the overall pattern is obeyed:  In the soy-

bean growth data it is possible that the inverted “W” is

nothing but noise.  If daily data traced the lines of the “W”,

conforming to it and filling in the spaces, it would be reassuring

that the pattern (whatever its meaning) is not noise.  In this

regard data sets can be re-assuring — when the details agree

with the overview I have more confidence that the overview is

“real”.

Large data sets can also have the opposite effect,

confirming that patterns that could not possibly be correct, are

correct.  And then leaving us with the daunting task of

explaining them.

For example take a very close look at the relation between

heights and weights of adult (5,000 adult British women), as

shown in Table __.  I consider it obvious that taller people will

tend to be heavier:  Certainly there will be tall but thin people

who weigh less than short but heavy people.  But there will

also be tall heavy people and short thin people so that, on the

average, taller people will tend to be heavier.

This supposedly obvious statement must stand or fall by

the facts.  “Obvious” or not an assertion about fact has to be

tested.  And unfortunately, there are some very strong

exceptions in these data.  Is it true that taller women are

heavier?  On the average, yes, but there are some curious

exceptions even “on the average”.  For example, what are the

odds that a 5’2” woman will weigh 140 pounds as compared to

134 pounds?  Answer:  The odds are just about even.  At 5’2”

1
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there are 95 woman weighing in at 134 pounds, 101 weighing in

at 140.5 pounds.

Now , for comparison, what are the odds that a women of

5’4”  will weigh 140 pounds as compared to 134 pounds?  These

woman are 2 inches taller.  Presumably they are likely to be

heavier than the first set of women at 5’2”.  So the odds

favoring 140 pounds as compared to 134 pounds should be

greater.  Obvious.  And false:  Among the shorter woman there

are about as many woman at the heavier weight as at the

lighter weight. By comparison, among these taller woman

there are 25% fewer  woman at the heavier weight than at the

lighter weight, 138 versus 175.

How do I explain that?  Well, first off, I hope I can

explain it away as a quirk, as something weird, as something

that doesn’t need to be explained.  But I can’t get away with

that one.  There are at least eight instances of this effect in

these data and the frequencies involved are very large and,

therefore, among the most believable numbers in the data.

2
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Column Sums  Totals

5 33 254 813 1340 1454 750 275 56 11 4 4995
278.5 lbs 1 1
272.5 lbs 0
266.5 lbs 1 1
260.5 lbs 1 1
254.5 lbs 0
248.5 lbs 1 1 2
242.5 lbs 1 1
236.5 lbs 1 1
230.5 lbs 2 1 3
224.5 lbs 1 2 1 4
218.5 lbs 1 2 1 1 5
212.5 lbs 2 1 6 1 1 11
206.5 lbs 2 2 3 2 1 10
200.5 lbs 4 2 6 2 14
194.5 lbs 1 3 7 7 4 1 23
188.5 lbs 1 5 14 8 12 3 1 2 46
182.5 lbs 1 7 12  26 9 5 1 2 63
176.5 lbs 5 8 18 21 15 11 7 2 87
170.5 lbs 2 11 17 44 21 13 3 1 112
164.5 lbs 1 3 12 35 48 30 15 5 3 152
158.5 lbs 8 17 52 42 36 21 9 185
152.5 lbs 1 7 30 81 71 58 21 2 2 273
146.5 lbs 2 13 36 76 91 82 36 8 1 345
140.5 lbs 1 6 55 101 138 89 50 8 448
134.5 lbs 15 64 95 175 122 45 5 521
128.5 lbs 1 19 73 155 207 101 25 3 584
122.5 lbs 3 34 91 168 200 81 12 1 1 591
116.5 lbs 3 24 108 184 184  50 8 561
110.5 lbs 5 33 119 165 124 22 4 472
104.5 lbs 1 3 33 87 95 35 6 260
98.5 lbs 2 5 29 59 45 16 3 159
92.5 lbs 6 10 21 9 46
86.5 lbs 1 5 3 9
80.5 lbs 2 1 1 4

Weight

54in 56in 58in 60in 62in 64in 66in 68in 70in 72in74in Height

Reproduced from Kendall and Stuart, op. cit., p. 300.

Figure 6.1

Distribution of Height and Weight for 4,995 Women, Great Britain, 1951.

3
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152.5 lbs 81 71 58 21
146.5 lbs 76 91 82 36
140.5 lbs 101 138 89 50
134.5 lbs 64 95 175
128.5 lbs 73 155
122.5 lbs 34 91
116.5 lbs 24 108

Weight 

58in 60in 62in 64in 66in 68in

Reproduced from Kendall and Stuart, op. cit., p. 300.

Figure 6.1

Anomalous Subsets of the Data for the Distribution

of Height and Weight, Great Britain, 1951.

So, how do I explain these anomalous facts of height and

weight?  For now, I do not explain it.  (See Levine, 1993,

Chapter 6, for at attempt at an explanation.)   The reason I

present it, without presenting the methodological trick that

makes everything clear, is to make the point that data

analysts work at different levels of detail for different

purposes.    Very often, data analysts are working toward a

fairly modest degree of description:  Does an increase in x

correspond to an increase in y?  When possible, we will put a

number on it:  For a unit increase in x what is the average

increase in y?   In that context the word “model” is applied to

the straight line, y = mx + b.

Sometimes we want to get into the detail of the data

because we want to get into the detail of the mechanism.  Then

the word “model” is applied to a theory of the mechanism at

work behind the data.  Most of the time we are not prepared to

work with that level of commitment to the work of explaining

the mechanism behind the data.

So,  satisfying myself with simple description, what is the

approximate relation between height and weight:

 y = mx+b,

    
y pounds= m

pounds
inch

 
 

 
 ∗x inches+ b pounds

4
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Even with this modest, though fairly typical goal, there

is no line that is going to “fit” these data:  We know that

immediately.  Among the woman at 5’2”, for example, the

weights range from 92.5 pounds (9 women) to 248.5 pounds (1

woman).  The equation y = mx+b is simply not capable or

predicting 92.5 pounds for one woman at 5’2” and 248.5 pounds

for another woman at 5’2”.

What we try to do is to predict the mean.  For women at

5’2”, the mean is 130.22 pounds.  For women at 5’4”, the mean is

134.59 pounds.   We ask for the “line of means”:  the best line for

predicting the means, y = mx+b?  (It would be entirely valid to

predict medians.  Probably because of the historical difficulty

of numerical computation without computers, the line of means

became the most often used procedure and survives as the more

common procedure.)

In a later chapter I will introduce formulas that make it

easy to work with the entire data set when computing the line

of means, known also as the “regression line”.  But for now, begin

with the mean weight at each height and describe the relation

between (mean) weight and height:

5
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Homework:

DATA
Height
(inches)

Mean weight
(pounds)

54 92.50
56 111.41
58 122.05
60 124.43
62 130.22
64 134.59
66 140.48
68 146.37
70 157.32
72 163.41
74 179.50

6
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The Relation Between Height and

Weight12

distinctly “S-shaped” pattern, observed

weight is lower than predicted among the

shortest women, observed weight is higher

than predicted among the tallest women,

and observed weight the doubly-bent “S-

pattern” in the middle.  Were we to exclude

both ends of the data, then the average

pounds per inch would be estimated at

approximately 2.6 pounds per inch.  While

restricting the range of variation, excluding

the very short and the very tall, would

improve estimates and change the ratio, to

about 2.6 pounds per inch, nevertheless it

would not describe the phenomenon because

even within this restricted range the

deviations show a distinctly non-linear

pattern, shown in Figure 3.

A report on the heights and weights of

approximately 5,000 British women

published in 1951, indicated that at that

time women who were five feet tall

weighed 125 pounds, on the average.  The

relation between height and weight

indicated taller women weighed more than

shorter women at an average of

approximately 3.4 pounds per inch.3

The detail of the data, graphed in

Figure 1, show the average weights at each

height and a reference line sketching the

approximately linear relation.

The linear relation is a reasonably

good predictor of the average weight:  The

median error, predicting the average, is

approximately five pounds — although the

average error for predicting the weight of

particular women, instead of the average,

may be presumed to have been much

greater.

While it is clear that there is a non-

linearity to these data it is clear that

single-bend transformations, like the cube

root, would be incapable of explaining the

pattern of these deviations.  It is also true

that the end points of the data are based on

relatively few women, 5 women at 54

inches, 4 women at 74 inches, but the

regularity, albeit an unexplained

regularity of the deviations suggests that

the deviations are not the result of random

error due to the small number of

observations.

However, even with these small errors

with respect to the average, the pattern of

the errors, shown in Figure 2 indicates a

distinct non-linearity.  The errors follow a

1 Excel spread sheet attached.
2 Note:  If this seems to bear a distinct
resemblance to the previous write-up,
there’s a reason.  Presentation takes time,
always more than I expect.  The first one
took a considerable amount of time, but the
second one began by pasting the new data
and the new graphs into the old write-up,
and then changing what needed to be
changed.
3 The data are reproduced in detail in
Kendall's The Advanced Theory of
Statistics, Volume II, pp. 300 and 319.  The
detailed data show not only the average
weight for each height but the detailed
numbers of women counted at weight
ranging from 80.5 pounds to 278.5 pounds.

1
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DATA COMPUTED VALUES

Height

(inches)

Mean

weight

(pounds)

Expected

Values

(in

centimeters)

—————

(Expected

values under

the hypothesis

that a 60 inch

woman weighs

124 pound and

that weights

deviate from

124 pounds at

the rate of 3.4

pounds per

inch.)

Error

(in

centimeters)

———

——

(Error

defined as

yield minus

expected

yield.)

Number

of Women

54 92.5 103.6 -11 5

56 111.41 110.4 1.01 33

58 122.05 117.2 4.85 254

60 124.43 124 0.43 813

62 130.22 130.8 -0.6 1,340

64 134.59 137.6 -3 1,454

66 140.48 144.4 -3.9 750

68 146.37 151.2 -4.8 275

70 157.32 158 -0.7 56

72 163.41 164.8 -1.4 11

74 179.5 171.6 7.9 4

Average magnitude (absolute value) of error in centimeters:  3,609 pounds

Table 1

Heights and Average Weights for 4,995 British Women

Source:   Reproduced from Kendall's The Advanced Theory of

Statistics, Volume II, pp. 319, reproduced, in turn, from Women’s

Measurements and Sizes, London, H.M.S.P., 1957.

2
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Figure 1

Height and Average Weight for 1495 British Women, circa 1951.
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Figure 2

Errors of Prediction, Comparing Observed Weight to Predicted Weight
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Figure 3

Errors of Prediction, Within the Restricted Middle Range of Heights  Demonstrating

Persistent  Non-Linearity.
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subtitle 1

Log Lines
(Changes, of Logs)

Logs:  Once again, as with averages and lines, you know the

math. of what we are about to discuss.  Using the math is another

matter and that is my subject.

What is a logarithm?  There are several ways of defining it

that come to the same thing.  Let’s take the secondary school

approach (as compared to the calculus/college approach)

because it is probably the useful one for data analysis.  The story

of logarithms begins with the story of exponents.  We know for

example that in some cases the multiplication of two numbers in

exponential form can be seen as addition, addition applied to the

exponents.  Thus, if one number is 23, two cubed, and another is

24, two to the fourth power, then the multiplication of these two

numbers can be expressed, equally well as multiplication,

multiplication of the numbers themselves, or as addition,

addition of their exponents.  That is = 8

Exponential Standard

Form Form

First number:   22 = 4

Second number: 23 = 8

Third number:  25 = 32

Product, written as a multiplication problem:

 4 * 8 =  32

Product, written as  addition problem (adding exponents):

(22)*(23) = 22 + 3  =  25  =  32

1
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2  Rules of Evidence

Or, in symbols

bp*bq = bp+q

That is a quick review of “high school” mathematics of

exponents, with perhaps one more useful fact that should be

remembered:  What you have, above, is that multiplication,

applied to the original numbers, can (as above) be re-expressed

as addition, applied to the exponents.  This basic correspondence

between multiplication of simple numbers and addition of

exponents implies another correspondence between

exponentiation, of the simple numbers and multiplication of the

exponents

Operation applied to Operation applied to

the simple numbers the exponents

Multiplication  —————> Addition bp*bq———> bp+q

Exponentiation —————> Multiplication (bp)
r
  ———>( brp)

These properties of exponents depend on an implicit

assumption, specifically, that the “thing” being exponentiated

stays the same from number to number:  Above, when I worked

with numbers, the “thing” was always 2, I always used

exponents of 2.  Here, symbolically, the thing is b, I have used

exponents of “b”.  It doesn’t matter what number I exponentiate

as long as I am consistent.  The number I use is called the base.

and its exponent is the logarithm of x base b.

b
log bx = x

2

Macintosh HD:DA:DA IX:Volume II:264 Lines Logs Thursday, August 8, 1996



subtitle 3

You are accustomed to seeing these things in two forms:  In

logs base 10, called “common logs”,  and particularly in the

sciences and mathematics in logs base “e”, where it is useful to

use a special constant e, approximately equal to 2.71828.  A third

relatively rarely-used base is simply 2 (often used in information

theory and related areas of computer science).  Thus

Numb
er

Log Base 10
“Common

Logs”

Log Base e
“Natural

Logs”

Log Base 2

1     .0     .0     .0
1.01     .0043     .01     .014355
1.02     .0086     .02     .028569
1.03     .0128     .03     .042644
2     .3010     .69    1.
4     .6021    1.39    2.
8     .9031    2.08    3.

10    1.    2.30    3.321928
100    2.    4.61    6.643856

1000    3.    6.91    9.965784

Before we use these things in data analysis, let me dwell a

little on the actual values.  Why, for example, would you prefer

one base to another?  Mathematically,  it makes no difference.

Mathematically, these are just three different ways of doing the

same thing — three ways of taking advantage of the properties

of exponents.  But if not mathematically, then practically it

makes a difference for the usual reason:  Appropriate numbers

serve to direct attention to regularities in the data.  Note, for

example, that each of these bases for the logarithm gives you

easily remembered numbers in some range, less easily

remembered numbers in other ranges.  So, if you are using data

3
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4  Rules of Evidence

in which binary arithmetic is important (as for computers), use

logs base 2:  It takes log2(x) bits (rounded up), to record the

value of an integer.

If you are using data in which items vary by orders of

magnitude (i.e., by powers of 10), then use logs base 10:  In 1990

the population of the United States was approximately 250

million (250,000,000), or “two times ten to the eighth”.

(Counting digits to the left of the decimal point minus one.)  This

is sometimes referred to as “scientific notation”, “2.5 x 108” —

where you recognize “8” as the logarithm, base 10

(approximately).  t  The population of Canada was “two times

ten to the seventh”.  Ah, I know immediately that the United

States population is an order of magnitude larger than the

population of Canada.  Base 10 helps.  Using the raw number,

“26,538,000”, it is mentally clumsy to compare it to other

numbers.  Remember it as approximately 107 and you know

immediately that it was an order of magnitude smaller than the

size of the United States.

Base e, is very convenient when you are working with small

percent increases, as in economics and in population data for

which an economy, or a bank account, or a population is likely to

grow at a rate of between 1 and 10 percent per year.  It is

convenient because of a transparent correspondence between

ratios and their logarithms when the ratios are in this range.  In

this range I have need for log tables, I can do it “in my head”.

For ratios close to 1

Ln of the Ratio
Ratio (Logarithm, base

e)
(Two digits)

(Four Digits)

4
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subtitle 5

1 0 0
1.01 0.01 0.0100
1.02 0.02 0.0198
1.03 0.03 0.0296
1.04 0.04 0.0392
1.05 0.05 0.0488
1.06 0.06 0.0583
1.07 0.07 0.0677
1.08 0.08 0.0770
1.09 0.09 0.0862
1.10 0.10 0.0953
1.11 0.10 0.1044
1.12 0.11 0.1133
1.13 0.12 0.1222
1.14 0.13 0.1310

Within this range, computing logarithms, base e, is easy.   In turn this makes it simple to work with
compound interest on interest rates within this range.  For example, let me do some compound interest “in my
head” asking how long it takes for the principle to double at various rates of interest.  The rough answer is
what accountants call “The rule of 70.”  Which means take the interest rate, divide 70 by the interesting rate.
That is the doubling time.  Or, you can ask the question, if I know the doubling time, then what is the interest.
The logic is straightforward:

Suppose I start with a principal of $100.  At one percent growth per year, how long will it take to double?
At the end of one year I will have $100*1.01.  At the end of two years I will have $100*1.01*1.01.   How many
years in a row do I have to apply the multiplier 1.01 before I get $200?

$100*1.01*1.01*1.01* ……… •1.01  =  $200

If I use logs base e, and if commit to memory that the log of 2 is approximately .70, then the “trick” is to
convert this multiplication problem to an addition problem:

In logs, How many years in a row do I have to add .01 before it adds up to ln 2.

ln(100) + ln(1.01) + ln(1.01) + ln(1.01) ………+ln(1.01) = ln(100) + ln(2)

5
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6  Rules of Evidence

combining terms

ln(100) + n(ln(1.01)) = ln(100) + ln(2)

This is the logarithmic equivalent of asking how many multiplications by 1.01 (how many additions of ln 1.01)
do I need to achieve doubling.  How do I solve it?  I remove the troublesome log(100), no need for it

n(ln(1.01)) =  ln(2)

I pluck the logarithms from my memory.  Substituting the values of the logarithms into the equation:

n(0.01) = .70

And now I know:

n = 70 (approximately)

At 1% per year, the principal will take approximately 70 years to double.  How long will it take for my money
to double at 2% per annum?  In detail:

n(ln(1.02)) = ln(2)

Inserting the logarithms, base 3:

n(0.02) = .70

And therefore, approximately,

n = 35 (approximately)

At 2% per year, the principal will double in approximately 35 years.

How many years will it take for my money to double at 10% per annum?  In detail:

n(ln(1.10)) = ln(2)

Inserting the logarithms, from memory:

6
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subtitle 7

n(0.10) = .70

And now I know

n = 7 (approximately)

At 10% per year, the principal will double in approximately 7 years.

When would I use such things, other than to impress my

bank by doing compound interest in my head?  Frequently.  For

example, we are about to analyze the rate of growth of the

population of the United States.  In two hundred years, from

1790 to 1990, it grew from approximately 3 million people ???? to

approximately 250 million people ????.  So:  What was the

average annual rate of increase?  As usual, I can do a good

approximation to the full data analysis quickly, and in my head:

  Here’s the logic:  I focus on doubling.  How many times

has the U.S. population doubled?  That’s, 3 million, 6 million, 12

million, 24 million, 48 million, 96 million, 192 million, 384

million:  It doubled a little more than 6 times in 200 years.  So,

roughly, it doubled every 33 years.  Ah:  If it doubled in 33 years,

then the average annual rate must have been approximately 2%.

I’ve barely begun to analyze these data, but I’ve got a

baseline.  The population increase was approximately 2% per

year.

I put it to you:

In 1945 the U. S. federal government took in $45 billion dollars in revenue.  In 1992 the federal revenue was $1.075
trillion dollars.  What was the average annual rate of increase?

In 1945 the U.S. federal outlays for national defense were 82 billion dollars.  In 1992 the outlay was 307 billion.
What was the average annual rate of increase?

7
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8  Rules of Evidence

In 1945 the U.S. federal outlays for human resources were 2 billion dollars.  In 1992 the outlay was 777 billion.
What was the average annual rate of increase?  (Source, Statistical Abstract of the United States, 1992, Table 491, page
315.)

In 1960 U. S. national health expenditures added up to 27.1 billion dollars.  In 1990 the total was 666 billion.  What
was the average annual rate of increase?

In 1960 U. S. national health expenditures added up to 143 dollars per capita.  In 1990 the figure was 2,566 dollars
per capita.  What was the average annual rate of increase? (Source, same. Table 135, page 97)

In 1959-60 U. S. personal income per capita was approximately $2,200.  In 1990 the figure was 18,720 dollars .
What was the average annual rate of increase? (Source, same. Table 678, page 431)

8

Macintosh HD:DA:DA IX:Volume II:264 Lines Logs Thursday, August 8, 1996



subtitle 9

The Slide Rule

For about 300 years most scientists had an intuitive grasp of

logarithms as an indirect consequence of using something called

the slide rule.  So, as a curiosity and, to aid your intuition, let’s

discuss the slide rule.

I assume that the original reason for their use was the

computational simplicity they introduced for multiplication —

when you haven’t yet invented the computer you care very

much about such computational simplicity.  I’m guessing, but I’d

make a small bet that this device goes back to at least the

fifteenth century, Regiomantanus, and stayed in very heavy use

until at least the 1970’s.  Today there is no need for them  But we

do need the intuitive comfort with logarithms that the slide rule

created.  Assuming that they are not even manufactured any

more,  offer you as a paper cut out slide rule — serviceable but

somewhat fragile.

The slide rule is a machine that adds logarithms physically

by adding-up physical lengths.  Starting with the obvious, start

with 4 times 8.  Multiplying 4 times 8 is simple.  Multiplying 4

times 8 using logarithms, you add log 4 to log 8 and get an

answer which is equal to log 32.

On the slide rule you do the same thing by adding the

length corresponding to 4 to the length corresponding to 8 and

reading that the result is the length corresponding to 32:

Find the “4” on the first scale.

Place the “1” on the second scale next to the “4” on the first scale

Find the “8” on the second scale,

And then read the answer on the first scale  (finding “32” opposite the “4”

9
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10  Rules of Evidence

1-----------------------------4-------------------------------------------------32 32--------------
1---------------------------------------------------8

<Magnitude corresponding to 4>

<Mag nitude  corresponding  to 8                                                                >

< M a g n i t u d e _  c o r r e s p o n d i n g _  t o  3 2                                                                                                            >

10

Macintosh HD:DA:DA IX:Volume II:264 Lines Logs Thursday, August 8, 1996



subtitle 11
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12  Rules of Evidence

The slide rule creates intervals for 1, 2, 3 that are the correct

intervals when numbers are related by multiplication.  Check it:

Use a ruler to measure the distance between 1 and 4 on the slide

rule and then measure the distance between 1 and 8 on the slide

rule.  You will find that the physical distance from 1 to 8 is 50%

larger than the physical distance from 1 to 4 just as, in the

exponents above, the exponent for 8  (as in   23 = 8)  is 50 percent

larger than the exponent for 4 (as in 22 = 4).

12
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subtitle 13

Linear Relations Using Logs

Interpreting Log y = mx+b

And now, finally, what happens if well-behaved form of a

variable is its logarithm and you actually have to logarithms

with data?  You’ve got a variable:  It’s asymmetrical in its

original form.  But when you transform it, using logs, it is

symmetrical.  You look at the variable:  It’s dollars (an amount in

Tukey’s language) — you expect it to need logs.  You plot the

variable with respect to another variable and the result is

definitely not linear — but when you plot its logarithm with

respect to the other variable the result is definitely (close to)

linear.  So, the message is — “use logs”, but how do you

interpret such things?

To discuss the “meaning” of something whose logarithm

appears to be a linear function of another variable — called a

semi-log (or semi-logarithmic) relation — there is no trick:  You

have all of the mathematical tools, it’s just a matter of using

them.

So, here’s what you’ve got, a semi-logarithmic linear

relation

ln Y  =   m   X     +     b

I know from simple math that if the semi-log relation is

true, in nature, then an exponential relation is also true in nature.

The second equation helps to interpret the first:

13
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14  Rules of Evidence

If    ln y = mx + b  

then  y= e
mx+b

Intercept

First, what is b?  In the semi log equation, b is the intercept.

Taking the algebra a step further, the form of the equation in

dollars is

y= B e
mx

, where B = e
b

This demonstrates that the addition of b in the semilog

relation implies a proportionality to anti-log b in the second

equation.  It  says that y is proportional to an exponential function

of x, where the proportionality, upper-case B, is the anti-log of

lower-case b in the linear equation.

Slope

Now, second, what is m?  In the linear form, of course, it

means that ln y increase up by m units for each unit increase in x

— that’s what a slope says in a linear relation.  If that is what

happens in the logarithmic equation,, what happens in the

second equation for plain dollars — without logs?  There is no

secret to answering the question.  You just add 1 to x and see

what happens.

So, in simple terms I ask again, what happens as x goes up

by one unit?.  I add one and look at the results

14
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subtitle 15

    

y = Bemx

′ y = Bem( x +1)

That express the new value of y as y’, corresponding to an x

that is increased by 1.  Simplifying the second equation, I get

y' = B e
mx+m

Breaking the exponential factor into two factors instead of

just one, that is equivalent to

y' = B e
mx

e
m

And now I recognize that the first part of the stuff on the

right matches the original equation.  So comparing y’ to y the

result depends on m.  That tells me how to interpret m.

    

′ y 

y
=

Bem( x+1)

Bemx

′ y 

y
= em

Ah, the effect of a unit increase in x is to multiply y by the

value of em.

So suppose that m is a number like .03?  I just pull out my

calculator and figure out the value of the anti-log of .03.  Or, if I

am using logs base e, then I can remember the logs without

computing them, remembering  that exp(m) is equal to 1.03.

Which means — here’s the payoff, that y gets multiplied by 1.03

every time x adds 1 to its value.

And finally, we wipe out the traces of what we’ve done and

the way we actually analyzed the data, by using percentages —

15
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16  Rules of Evidence

because people feel comfortable with percentages — even

though they aren’t much use when you’re doing the real work —

and I announce:  “Y increases at 3% per annum.)

Scatter

Finally, because this is data analysis, there is the third

property of a data analyst’s line:  The scatter.

The residuals are departures from the semi-log equation,

log (y) = mx + b.

The trick is to put the residuals into a form that uses the

words “plus or minus”.  If the residuals represent error, and

nothing more, then the distribution of the residuals will be

symmetrical around a mean of zero.  So, for example, we can

compute the standard deviation of the residuals and say, that the

residuals have an average of zero “plus or minus” two standard

deviations.  Or, we can make the corresponding statement with

medians and quartiles, saying that the residuals have an average

of zero, “plus or minus” the number corresponding to the

distance between the median and the quartiles (either quartile,

since the distribution is symmetrical).

Then the corresponding statement in y (rather than log y) is

straightforward (except that the standard deviation in units of

log y is not the same as the standard deviation in units of y — so

we avoid the word standard deviation.  So:  The residuals show

deviation within a factor of ___,   where you fill in the blank with

the antilog of two standard deviations of y.  Or, using quartiles:

Fifty percent of the predicted values lie within a factor of  ___

above the predicted values of y and a factor of ___ below the

predicted values, where you fill in the first blank with the anti-

16
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subtitle 17

log of the high quartile of the residuals and you fill in the second

blank with the anti-log of the low quartile of the residuals.  Or,

using the inner fences:  With few exceptions the predictions lie

within a factor of __ above the predicted values and a factor of __

below them, where the blanks are filled in with anti-logs of the

corresponding values of the fences of the residuals for log y.
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U.S. Population:
Not the Work, Not the Report, but

the Thinking
I

My target for the day is the data describing the growth of the

population of the United States.  I want to derive a summary of the

growth rate.  I want to get an overview of the processes that generate it.

Here are the data, Figure 1,

Census Date Resident Population

Conterminous U.S.  (Note 1)
1790 Aug-02 3,929,214 1920 Jan-01 105,710,620
1800 Aug-04 5,308,483 1930 Apr-01 122,755,046
1810 Aug-06 7,239,881 1940 Apr-01 131,669,275
1820 Aug-07 9,638,453 1950 Apr-01 150,697,361
1830 Jun-01 12,866,020 1960 Apr-01 178,464,236
1840 Jun-01 17,069,453
1850 Jun-01 23,191,876 United States
1860 Jun-01 31,443,321 1950 Apr-01 151,325,798
1870 Jun-01 39,818,449 Note 2 1960 Apr-01 179,823,175
1880 Jun-01 50,155,783 1970 Apr-01 203,302,231 Note 3
1890 Jun-01 62,947,714 1980 Apr-01 226,545,805
1900 Jun-01 75,994,575 1990 Apr-01 248,709,873
1910 Apr-15 91,972,266

Figure 1

United States Population:  1790 to 1990

Note 1:  Excludes Alaska and Hawaii.  Note 2: Revised to include adjustments for

under numeration in southern states; unrevised number is 38558371.  Note 3:

Figures corrected after 1970 final reports were issued. From Statistical Abstract of
the United States , 1992, No. 1. Original:  U.S. Bureau of the Census, U.S. Census of

Population: 1920 to 1990, vol. 1; and other reports.
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I am thinking:  Populations grow exponentially, which means that

each year’s growth is proportional to the preceding year’s population.

How do I know that?  Truth is, I don’t.  But that is what all sorts of

Malthusian folklore babbles about, so when I look at a population, I

think growth rate (percentage) and think of the summary as the average

growth rate.   It takes people to make people, so at any time the growth

of a population “should be” proportional to the size of the population.

Do I believe that?  No. I’m skeptical.  If it were really obvious, if data

behaved as data are “supposed to behave”, there would be no need to

analyze it.  That’s my thinking about “process” — a rudimentary

hypothesis:  growth in proportion to size.

That being said, I can make the first rough estimate in my head:

The population doubled about six times in two hundred years.  Doubling

six times in two hundred years implies doubling one time in about 33

years, if the process was constant.  And doubling in 33 years implies an

annualized rate of increase of about 2% per annum.  There is my first

description, untested, of the growth process and growth rate for the

United States.  (“Rule of 70:” Divide 70 by the rate to estimate doubling

time.  Or, divide 70 by the number of years to get the rate.  So,

  70 33 ≈ 2.1 ≈ 2 : the population is doubling at about 2% per annum).

That’s my first estimate.  It gives me an order of magnitude to think

about for all the rest:  The annual rate of increase is about 2% per annum.

Next, I’ll graph it.

What kind of a graph?  Because I’m thinking “grows by the same

percentage each year”, I want a kind of graph that is capable of falsifying

this hypothesis if the hypothesis is false.  I want a kind of graph that will

look linear if that hypothesis is correct — but that will look non-linear if

the hypothesis is false.  If it is false, that will lead me back to re-examine

the hypothesis “grows by the same percentage each year”.  Note:  I’m not

graphing because I like graphs, nor because that’s “the next step”.  I’m

graphing in order to see the actual rate (percentage growth) and I’m

graphing so that if it is not behaving that way, then the graph will make

it obvious.
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So, again, what kind of a graph?  Graphing it on ordinary graph

paper (graphing the population counts) would be irrelevant — that kind

of graph has nothing much to do with what I just said:  On ordinary

graph paper the growth of the U.S. population is surely going to be non-

linear — whether or not my simple hypothesis is correct.  So plotting the

graph of U.S. population on ordinary graph would not advance my

knowledge relative to my hypothesis — an ordinary graph would show

that I was not thinking or not thinking clearly. — Waste of time.)

Ah, by contrast:  Graphing it on semi-log graph paper, a straight

line in the semi-log graph would show that my idea was consistent with

the data — and failure to find a straight line would show inconsistency

—  I could learn something from that.  So, using semi-log paper, and

looking for a line will teach me something relative to my hypothesis.

So, semi-log:  And  truth is, I can learn most of what I want to know

by graphing exactly three points:  One data point at the left.  One data

point at the right.  And one data point in the middle.  The data point in

the middle provides the quickest way to test whether or not the data

follow a straight line in their course between the first data point and the

last.  So
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Oops:  Those three points are not co-linear, not even close.  The

straight line tells me that my idea, constant proportional growth, would

lead to a population of 30 million in 1890.  But the data show 60 million

in 1890— off by a factor of 2.  So the idea is wrong — and I’ve learned

something.   Thomas Malthus can tell us that population grows

exponentially while resources grow linearly, meaning that human

populations will outrun the resources that feed us — with disastrous

results.  And lots of people can think about the great end-of-the-world

implications that follow from Malthus’ proposition.  Meanwhile — we’ve

checked the first part of his proposition against the U.S. data And?  Its

not true:  I had an idea, a hypothesis.  I framed it in a falsifiable way.

And it was false.

One hypothesis — gone.  Now, back to thinking.  Idea:  Could I be

making too much out of a single point? No, implausible:  The

hypothetical value, assuming a constant rate of exponential growth

missed the true value by a factor of 2, I can’t rescue that idea by invoking

“variability”.  Idea:  Real human populations grow and shrink by

immigration and emigration, as well as by biological reproduction.  I

might want to find separate data on these processes. The immigration

idea sounds good, although it would require more data — easily

obtained.  Idea:  Forsaking Malthus, I remember something about

“demographic transition”.  That’s what is supposed to separate the “first

world” from the “third world”:  After industrialization, and a little taste

of prosperity (like eating regularly and seeing health of children improve

so that they can survive to become adults), people reduce their family

size and increase the age at which they begin to bear children.  After

industrialization there is “supposed to be” a transition.  Birth rates are

“supposed to” drop — presumably because children get re-classified.

Children change from being an asset (as a source of free labor to parents

who live off the land) to being a drag on their parents’ income (which is

derived from employment away from the household).

That gives me a few ideas to work with, too many perhaps, and for

now I’m going to just look at the  graph: This time I am just “fishing” to

see if it gives me ideas.
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Well, it looks “sort of” linear through the first half.  It bends.  And

then it looks “sort of” linear in the second half at a lower rate (with a dip

in 1940).  Was there a “demographic transition” between the first half

and the second?  Could be:  U. S. industrialization is really supposed to

have “taken off” in the 1870’s to 1890’s — transcontinental railroads,

unified markets, telegraph, steel, oil, cartels, ...  Let me start easy:  Does

the first half show a constant annual rate, disrupted in the late 19th

century?  That will not give me a falsifiable statement about  the

relatively sophisticated idea of a “demographic transition.”  But I needn’t

jump that far this quickly:  I can put that off while I check the simpler

statement “constant annual rate, disrupted in the late 19th century”.

So let me try 1790 through 1870.  I want to graph it again.  First I’ll

do the semi-log graph.  Why? to get a close-up”  looking for non-

linearity.  If it is still plausible that the relation is linear, then I’ll look at

the graph of logs to get an estimate of the slope and intercept.  And then
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I’ll switch from the logs to the residuals.  That’s what I really want to see:

the residuals, asking:  “Do the residuals (for the early years) show a

serious departure from linearity (on the semi-log graph)?”

So, I’ll get the easy close-up traced on 2 cycle semi-log paper.

1,000,000

10,000,000

100,000,000

1790 1800 1810 1820 1830 1840 1850 1860 1870

Looks good enough.  Now, I’ll invest the time to compute the

logarithms numerically, computing the logarithms that were done

automatically, or implicitly, by the semi-log graph paper.  Why use the

numbers?  Because I want to see the residuals and to “see” them I have

to compute them.  And since I am going to put numbers on the logs,

which logs?  I’ll use natural logs, logarithms base e, because, with base e,

it is easy to recognize annual rates like 1 and 2 percent — which come

out as .01 and .02 in logs base e..

So, setting-up my computation
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slope 0.028948637

intercept 15.1839

Linear

Prediction

Residual Absolute

Resid

1790 15.1839 15.1839 0.0000 0.0000

1800 15.4848 15.4734 0.0114 0.0114

1810 15.7951 15.7629 0.0322 0.0322

1820 16.0813 16.0524 0.0289 0.0289

1830 16.3701 16.3418 0.0283 0.0283

1840 16.6528 16.6313 0.0215 0.0215

1850 16.9593 16.9208 0.0385 0.0385

1860 17.2637 17.2103 0.0534 0.0534

1870 17.4998 17.4998 0.0000 0.0000

Average Average:

How to estimate slope and intercept?  No problem:  I just need a

rough sketch.  So, for a first estimate:

Slope:  Last value minus first value,  divided by 80.

Intercept:  I recalibrate “x” to be year since 1790.  So  “Year 0”

corresponds to 1790.  Then my estimate for the intercept is First value.

There’s the graph.  Strange:  all the residuals are positive, and they

are zero at both ends.  That’s a warning of curvature, but I’d better look

more closely.
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It surely isn’t simple curvature.  Maybe  the last point, for 1870, is

already out of the range for the early years and entering the range of

industrialization.  So let me drop the 1870 data point, and commit myself

to the work involved in getting a more a serious attempt to get the slope

and the intercept.  I zero-in on it by looking at both the average residual

and the average absolute residual:  I fix the intercept so that the average

residual is close to zero.  Then I fix the slope to make the average absolute

residual small.  Then I fix the intercept so that the average residual is

close to zero.    Then I fix the slope to make the average absolute residual

small.  Then I fix the intercept so that the average residual is close to

zero. ....
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Year Observed

(In natural

logarithms.)

Linear

Prediction

Residual Absolute

Residual

Rank of

Absolute

Residuals

1790 15.1839 15.1990 -0.0151 0.0151 8

1800 15.4848 15.4924 -0.0076 0.0076 4

1810 15.7951 15.7858 0.0093 0.0093 5

1820 16.0813 16.0792 0.0021 0.0021 2

1830 16.3701 16.3726 -0.0025 0.0025 3

1840 16.6528 16.6660 -0.0132 0.0132 7

1850 16.9593 16.9594 -0.0001 0.0001 1

1860 17.2637 17.2528 0.0109 0.0109 6

1870 17.4998 17.5462 -0.0464 0.0464 9

slope 0.02934

intercept 15.19900 Average
Residual:

Average
Absolute
Residual:

Median
Absolute
Residual

–0.002016972 0.007587886 .0093

exptl of slope 1.02977 Exponentiated: 1.0076 1.0093

exptl of inter 3,988,796
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Oops, that bothers me:  That kind of cycling is exactly what you get

when you are thinking about something wrong.  (Although it can also be

what you get from random numbers.  I’m worried that while I have

chosen to think about it in logs, my choice of this log form may not be

valid.  And why logs?  Which is to say, why proportions?  Do I really

believe that populations grow in proportion to the number of people in

the population?  On second and third though, prompted by the facts, I’m

not so sure about that.  Proportional to the number of women is probably

closer to the mark, but just barely:  The point being that people are not

yeast, one indistinguishable from another, all happily reproducing in the

presence of nourishment and warmth.  Human populations don’t grow

like that.  A large part of the human population is not even “at risk” for

reproduction, indeed the most rapidly increasing age cohorts of the

population (the older cohorts), are little involved in reproduction.  Got to

think more carefully, about “proportional growth”.  Actually, now that I

think about it, I’ll bet that if we imagine that humans could live forever,

our numbers  would not increase out exponentially at all — the

population growth is more likely to look linear,  as the child bearing

population size becomes stable in size (and a steadily decreasing part of
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the total population.  So, “populations grow in proportion to their

present size” is sloppy thinking.   More accurate to say, we customarily

measure the growth of populations by reporting the growth in proportion

to previous size.  Whether or not that growth rate is constant, or whether

the growth is proportional to size — those are empirical questions.

For the moment, O.K., whatever that is, whether it is a cycling of

some sort, or just an up and down — I have stripped the signal present

in these data so that what’s left, the residuals, is small — perhaps too

small to support my complicated theories that might have been built on

them:  How large are the residuals?  The magnitudes of the residuals are,

at worst,  about 1.5 percent compared for these 10th year observations.

With an annual growth rate of approximately 2.9% per year — that

means my 10th year observations are off by a fraction of a single year’s

growth.  That seems small.  So, summing it up:  1790 to 1860, the average

annual growth rate is about 2.98 percent   Applied to the seventy year

period of these data, this growth rate predicts the population with a

median error of less than 1%  (using the median absolute residual, .0093,

exponentiating it to 1.0093, converting it to a percent at 0.9%, and

reporting it as approximately 1%).  There is a suggestion of cycling,

relative rapid growth, 1790 to 1820, relative slow, 1820 to 1870, then up.

(Editing myself again:  I’d Better get some number on those ups and

downs.  What numbers?  People think in terms of annualized rates, so I

want the annualized rates corresponding to these ten year periods.  So, I

compute the ten-year ratios, later to earlier, e.g., the ratio, 5,308,483 to

3929,214 for 1790 to 1800.  That’s the multiplier for those 10 years.  Then I

estimate the annual ratio from the 10 year ratio by computing the 1/10 th

power of the ten year ratio.  And that’s the multiplier for the average

single year, among the 10.  That’s 1.0305.
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1790 3,929,214

1800 5,308,483 1.0305

1810 7,239,881 1.0315

1820 9,638,453 1.0290

1830 12,866,020 1.0293

1840 17,069,453 1.0287

1850 23,191,876 1.0311

1860 31,443,321 1.0309

So, 1790 to 1820, about 3.0%.  1820 to 1840, about 2.9%  Those are

the top and the bottom of one of the “cycles” I was seeing on the graph

of the residuals  That’s small stuff (small difference)  Maybe it is a

pattern, it “looks” that way, but the difference between the rapid, 1790 to

1820, and the slow, 1820 to 1840, is too small for me to worry about, a

difference of maybe one tenth of one percent, about 10,000 people on the

1820 population of 10 million.

That’s my thinking.  Without the thinking there is no reason for me

to choose one graph or one set of numbers in preference to some other

graphs and numbers.  Without the thinking there is no reason for logs or

not logs, for residuals, or something else.

Exercise:

Complete the Analysis:

Analyze the U.S. Population data for 1870-1890.

Write it up for 1790 - forward.



How Things Go Wrong

Data is equal to signal plus noise.  That is the key.  We use the key

by examining the residuals, hoping that they will look like noise.  If the

residuals look like noise then, indirectly, they confirm that the

hypothesis was a true representation of the signal.

In most examples even where a linear hypothesis is good, the first

look at the residuals shows some straight forward evidence of a pattern.

Until the intercept is right (in the hypothesis) the average residual is not

zero.  Until the slope is right (in the hypothesis) the residuals show a

slope.

But suppose that the linear hypothesis is dead wrong.  Then no

patching of the intercept or the slope that will render the residuals

patternless.  If the linear hypothesis is wrong, what will the residuals

look like?  Logically the question would not seem to allow a general

answer:  There is no logical limit to the theoretical equations by which

nature may choose to govern the relations among variables.  And so it

would seem that there is no end to the theoretical patterns which may

show up in the residuals when the hypothesis is wrong.

But, in practice, things are not so bad.  There may be no

mathematical limit to the theoretical equation which nature may use, but,

in practice, nature is rarely as perverse as is mathematically possible.  I

am going to demonstrate what can happen by committing a willful act of

stupidity.  Watch the residuals.

I’m going to ask you to work with me in a little exercise in curve

fitting “by the book”.  All perfectly straightforward.  Here are my data.

You and I can see that these numbers are quite orderly.  There is a clear

system to the sequence 1, 1.1, 1.21, 1.331, etc.  And they are a perfect

candidate first for logarithmic transformation and then for a linear fit.
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You know that but I’m going to forget it.  And I’m going to forget

the clever things I know about transformations.  I’m just going to go at it

as numbers, without complicating things by thinking too much.  O.K.

Here are the numbers, and here is their graph.

X Y
1 1.0000

2 1.1000

3 1.2100

4 1.3310

Y

0.0000

1.0000

2.0000

3.0000

0 5 10

5 1.4641

6 1.6105

7 1.7716

8 1.9487

9 2.1436

10 2.3579

I’m not sure what you see in this

graph, or think you see in this graph, but let’s suppose I come up with

the observation that these numbers seem to be positive, and seem to

exhibit a slope.

So here’s the routine.  I’m thinking of the schematic relation

Data = Signal  +  Noise

And practically I am matching it with the statement

Data - Hypothesis = Residual.

Then I’m going to subtract the hypothesis from the data, and “look”

at the residuals  — asking whether the residuals look like noise.  If it does

then my hypothesis, in the second equation, is a good approximation to

the signal, in the first.

2
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So I’ll start simple, very simple, with a hypothesis that says nothing

at all.  So, my “residuals are everything that was in the data, I’ve

explained nothing.

Slope 0
Intercept 0

X Y Y
predicted

Residuals:
observed Y
-expected Y

Absolute
Values of
Residuals:
|obs-exp|

1 1.0000 0 1.0000 1.0000
2 1.1000 0 1.1000 1.1000
3 1.2100 0 1.2100 1.2100
4 1.3310 0 1.3310 1.3310
5 1.4641 0 1.4641 1.4641
6 1.6105 0 1.6105 1.6105
7 1.7716 0 1.7716 1.7716
8 1.9487 0 1.9487 1.9487
9 2.1436 0 2.1436 2.1436

10 2.3579 0 2.3579 2.3579
Average 1.5937 1.5937

What I see in these residuals is that they are all positive.  So I want

to transfer the information “this is positive” out of the residuals and into

the hypothesis.  It looks positive by about 1.59, (the average value of the

“Other”) .  I’ll add this to my hypothesis:

X Y Y
predicted

Other:
observed Y-
expected Y

Absolute
Value:
|obs-exp|

1 1.0000 0 -0.5900 0.5900
2 1.1000 0 -0.4900 0.4900
3 1.2100 0 -0.3800 0.3800
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4 1.3310 0 -0.2590 0.2590
5 1.4641 0 -0.1259 0.1259
6 1.6105 0 0.0205 0.0205
7 1.7716 0 0.1816 0.1816
8 1.9487 0 0.3587 0.3587
9 2.1436 0 0.5536 0.5536

10 2.3579 0 0.7679 0.7679

Average 0.0037 0.3727
Slope 0
Intercept 1.59

-3.0000

-2.0000

-1.0000

0.0000

1.0000

2.0000

3.0000

0 5 10

That’s progress:  The residuals are smaller.

Checking both the average residual and the

mean absolute size of the residuals, the

residuals are smaller.   But, visibly, there is a

positive slope to these residuals:  They go from

about -.6 to about +.8 as x goes from 1 to 10.  So

a good estimate of the slope in the residuals

would be approximately about  ( .8 + .6)/9 or

approximately 1.4/9, or approximately .16.  So

I’ll add this slope to the hypothesis (thereby

subtracting the slope from the residuals).

Moving the slope into my hypothesis:

X Y Y
predicted

Other:
observed Y-
expected Y

Absolute
Value:
|obs-exp|

1 1.0000 1.75 -0.7500 0.7500
2 1.1000 1.91 -0.8100 0.8100
3 1.2100 2.07 -0.8600 0.8600
4 1.3310 2.23 -0.8990 0.8990
5 1.4641 2.39 -0.9259 0.9259
6 1.6105 2.55 -0.9395 0.9395
7 1.7716 2.71 -0.9384 0.9384
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8 1.9487 2.87 -0.9213 0.9213
9 2.1436 3.03 -0.8864 0.8864

-3.0000

-2.0000

-1.0000

0.0000

1.0000

2.0000

3.0000

0 5 10

10 2.3579 3.19 -0.8321 0.8321

Average -0.8763 0.8763
Slope 0.16

Intercep
t

1.59

Ah, I got rid of the slope.   But now I

can see that my hypothesis about the signal

is a little to large, too high, leaving negative

residuals, about -.88.  So I will move this too

from the residuals to the hypothesis.

-3.0000

-2.0000

-1.0000

0.0000

1.0000

2.0000

3.0000

0 5 10

X Y Y
predicted

Residuals:
observed Y-
expected Y

Absolute
Value:
|obs-exp|

1 1.0000 0.87 0.1300 0.1300
2 1.1000 1.03 0.0700 0.0700
3 1.2100 1.19 0.0200 0.0200
4 1.3310 1.35 -0.0190 0.0190
5 1.4641 1.51 -0.0459 0.0459
6 1.6105 1.67 -0.0595 0.0595
7 1.7716 1.83 -0.0584 0.0584
8 1.9487 1.99 -0.0413 0.0413
9 2.1436 2.15 -0.0064 0.0064

10 2.3579 2.31 0.0479 0.0479

Average 0.0037 0.0498
Slope 0.16

Intercept 0.71

There:  tiny residuals.  The average deviation, using absolute values

to check variation in either direction, is about .05.  That’s small compared
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to the original 1.59, one thirtieth of the original residuals and small

compared to the values I am trying to predict (which range from 1 to

2.36).  So, is my work complete?  Well, not quite.  I can’t really “see”

what’s left in this graph precisely because the stuff that’s left is so small

compared to the original scale.  So, just to get a good luck at the

residuals, let me change the scale of the graph and look again — just to

be sure.  And ...
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Same numbers,

expanded scale on their

graph

.  

-0.3000

-0.2000

-0.1000

0.0000

0.1000

0.2000

0.3000

0 5 10

That’s trouble.  The

residuals show a clear

pattern.  And thus,

unraveling my verbal

equations, the residuals in

equation 2 do not look like

“noise” as specified in

equation 1.  And that implies

that my hypothesis in

equation 2 does not look like

the unknown “signal” in

equation 1.

Pausing for the moment to emphasize the moral to this story, the

pattern in this graph is lesson #1:  When the hypothesis is wrong, dead

wrong, the residuals often fall into one of two patterns, a simple curve,

concave up or concave down.

The errors may be tiny, but no matter.  It is quite clear that the linear

hypothesis does not describe the process.    If this is the pattern of the

residuals, then the linear hypothesis is wrong, numerically accurate, but

dead wrong.

That’s lesson #1.  Now, back to the analysis.  What am I to do with

this curving residual?  What I should do is step back and think.  But

instead of flexing my intellectual muscle I am going to flex my

arithmetical muscle and use the power of my (decidedly unintellectual)

computer.  Thinking about the arithmetic, the “obvious” answer is:  Add

something curvy to the hypothesis, matching or attempting to match the

curviness in the residuals.  All right, suppose I add a “quadratic” term,

an x-squared term in addition to the existing linear term and the

constant.  If the linear equation
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y = mx + b

did not work, then I will up the ante by adding

another term.  Switching notation, I will try
obs-expected

-0.3000

-0.1000

0.1000

0.3000

0 5 10

y = a0 + a1x + a2x2

That is the new and more sophisticated

equation (falsely sophisticated).  I test it by

looking at the residuals, the same way I test any

hypothesis.  Starting with a small estimate for

the quadratic term, using  .01x2.

X Y Y
predicted

Other:
observed Y-
expected Y

Absolute
Value:
|obs-exp|

1 1.0000 0.88 0.1200 0.1200
2 1.1000 1.07 0.0300 0.0300
3 1.2100 1.28 -0.0700 0.0700
4 1.3310 1.51 -0.1790 0.1790
5 1.4641 1.76 -0.2959 0.2959
6 1.6105 2.03 -0.4195 0.4195
7 1.7716 2.32 -0.5484 0.5484
8 1.9487 2.63 -0.6813 0.6813
9 2.1436 2.96 -0.8164 0.8164

10 2.3579 3.31 -0.9521 0.9521

Average -0.3813 0.4113
Slope 0.16

Intercep
t

0.71

Quad term 0.01

Small as it was it has messed up the residuals, not simplified them.

So, I’ll try something smaller:

8
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X Y Y
predicted

Other:
observed Y-
expected Y

Absolute
Value:
|obs-exp|

obs-expected

-0.3000

-0.2000

-0.1000

0.0000

0.1000

0.2000

0.3000

0 5 10

1 1.0000 0.871 0.1290 0.1290
2 1.1000 1.034 0.0660 0.0660
3 1.2100 1.199 0.0110 0.0110
4 1.3310 1.366 -0.0350 0.0350
5 1.4641 1.535 -0.0709 0.0709
6 1.6105 1.706 -0.0955 0.0955
7 1.7716 1.879 -0.1074 0.1074
8 1.9487 2.054 -0.1053 0.1053
9 2.1436 2.231 -0.0874 0.0874

10 2.3579 2.41 -0.0521 0.0521

Average -0.0348 0.0760
Slope 0.16

Intercep
t

0.71

Quad term 0.001

Better.  Right direction.  But there is still a curve in the residuals.  So

let me put more curve into my hypothesis, subtracting it from these

residuals.

X Y Y
predicted

Other:
observed Y-
expected Y

Absolute
Value:
|obs-exp|

1 1.0000 0.875 0.1250 0.1250
2 1.1000 1.05 0.0500 0.0500
3 1.2100 1.235 -0.0250 0.0250
4 1.3310 1.43 -0.0990 0.0990
5 1.4641 1.635 -0.1709 0.1709
6 1.6105 1.85 -0.2395 0.2395
7 1.7716 2.075 -0.3034 0.3034

9

Macintosh HD:DA:DA IX:Volume II:270 Lec 8 DA III log curveMarch 26, 1999



8 1.9487 2.31 -0.3613 0.3613
9 2.1436 2.555 -0.4114 0.4114

obs-expected

-0.3000

-0.2000

-0.1000

0.0000

0.1000

0.2000

0.3000

0 5 10

10 2.3579 2.81 -0.4521 0.4521

Average -0.1888 0.2238
Slope 0.16

Intercep
t

0.71

Quad term 0.005

That’s looking straight.  So I have to fix up

the slope:  I’ve got a negative slope to my

residuals, so I have to make the hypothetical

slope more negative.  And then I will have to fix

up the intercept, and then the quadratic term

again, and then the slope again, and then the intercept again, and .... I

get:

X Y Y
predicted

Other:
observed Y-
expected Y

Absolute
Value:
|obs-exp|

1 1.0000 1.002 -0.0020 0.0020
2 1.1000 1.0973 0.0027 0.0027
3 1.2100 1.2062 0.0038 0.0038
4 1.3310 1.3287 0.0023 0.0023
5 1.4641 1.4647 -0.0006 0.0006
6 1.6105 1.6143 -0.0038 0.0038
7 1.7716 1.7774 -0.0059 0.0059
8 1.9487 1.9541 -0.0054 0.0054
9 2.1436 2.1444 -0.0008 0.0008

10 2.3579 2.3482 0.0097 0.0097

Average 0.0000 0.0037
Slope 0.075

10

Macintosh HD:DA:DA IX:Volume II:270 Lec 8 DA III log curveMarch 26, 1999



Intercep
t

0.9202

obs-expected

-0.3000

-0.2000

-0.1000

0.0000

0.1000

0.2000

0.3000

0 5 10

Quad term 0.0068

Now, look at that!  Depending on how

broadly those lines come out on the printed

page, I’ve reduced my error to something

that practically disappears within the

breadth of the line I’ve used for the

horizontal axis.  Now, I’ve got it.  Right?

Well, … let’s look at the residuals.

They are small, an order of magnitude

smaller than they were in my best effort

using the straight line (without the

quadratic term).  But then let me also improve the scale of my graph.

Resid =Obs'd Y -exp'd Y

-0.008

-0.006
-0.004

-0.002
0

0.002
0.004

0.006

0.008

0 2 4 6 8 10
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The residuals are tiny, plus or minus .005, give or take.  No matter.

The residuals show a pattern.  The hypothesis is wrong (no matter how

small the errors).

And suppose I’m a slow learner, perfectly capable of fitting a

(supposedly) more sophisticated model

y = a0 + a1x + a2x2 + a3x3

Then nature will oblige by punishing my error with an even more

interesting pattern among the residuals.

slope 0.08875 Intercept 0.90742 Quadratic: 0.00338765
X Y Expected Y(X) Resid =Obs'd Y

-exp'd Y
Squared Residual Cubic 0.00022400

1 1.000000 0.999784 0.000216 4.6592E-08
2 1.100000 1.100268 -0.000268 7.1601E-08
3 1.210000 1.210214 -0.000214 4.5923E-08
4 1.331000 1.330968 0.000032 1.0067E-09
5 1.464100 1.463874 0.000227 5.1302E-08
6 1.610510 1.610274 0.000236 5.5711E-08
7 1.771561 1.771514 0.000047 2.2407E-09
8 1.948717 1.948937 -0.000219 4.817E-08
9 2.143589 2.143887 -0.000298 8.8734E-08

10 2.357948 2.357708 0.000240 5.7452E-08
mean 0.00 0.00000

0.00021650

12

Macintosh HD:DA:DA IX:Volume II:270 Lec 8 DA III log curveMarch 26, 1999



Resid =Obs'd Y -exp'd Y

-0.000400

-0.000200

0.000000

0.000200

0.000400

0 2 4 6 8 10

Some people will tell you that the sine qua non of science is

prediction.  But that is too simple a dictum to follow blindly.  Here, with

my cubic equation I have used the equation to predict or match the

values of y, matching these data with precision that is so good that the

remaining errors are beginning to get lost in the normal rounding errors

made by my computer.  I started with a “y” that ranged from 1 to 2.38.

I’ve matched those numbers subject to errors which are less than 0.003 in

absolute value.  I’ve fit the data without attempting to understood it —

which is a waste of time.  I would rank this data analysis as overly

mathematical, unnecessarily precise, technically difficult, totally lacking

in insight, and dead wrong.

The Meaning of the Pattern

I have demonstrated this nonsense in such detail because this

particular sequence of patterns among residuals will haunt you as you

proceed in data analysis.  This is what you get when there is an answer

— but you are not approaching it correctly.  In this case there is an

answer:  This is an exponential growth curve.  It is linear in log y.  But I

approached it incorrectly when I chose to stay with y (without

considering a transformation) and when I attempted to force a

polynomial to fit the data.
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What you are seeing at work in these residuals is a part of

mathematics known to every student of the calculus:  You are seeing

certain aspects of “power series” at work.  Power series and related

methods are able to fit a polynomial equation to any sequence of

numbers (preferable finite) to any standard of precision — provided you

can accept a polynomial of sufficiently high degree.

For example, here is one power series for ln(1+x) in the range of this

problem:

    
ln 1+ x( ) = x − 1

2
x

2 + 1

3
x

3 − 1

4
x

4+ ...( −1 < x < 1)

The point is simply that when you get it wrong, “thinking” the

expression on the right instead of the simple expression on the left then

what can happen is that when you fit a line, what remains may be

dominated by missing terms in the 2nd power, 3rd power, and more.

When you fit a quadratic, what remains may be dominated by missing

terms in the 3rd power, 4th power, and more.  And so on, until you run

out of data.   So when you see systematic variation among the residuals,

stop, look to your hypothesis, not your computer.

Exercise

Lest you think that residuals of the sort I’ve described are a

mathematical possibility but not a realistic concern, with data:

Plasticity of Wool -- from Tukey ***

14
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U.S. Population:
A Second Analysis

Again, my target for the day is the data describing the growth of the

population of the United States.  I want to derive a summary of the growth rate.  I

want to get an overview of the processes that generate it.  This time I am going to

construct a distinctly different analysis, as compared to the first.

How is it that I can construct two seriously different analyses of one set of

data?  I can do that because there is something detached about a text or a course on

data analysis — it is detached from the actual research.  Limited to these numbers,

without recourse (for the moment) to other data (data on birth rates, death rates,

life expectancy, age distribution, occupational statistics, immigration rates,

emigration rates, ...) I can follow divergent thoughts from one set of data without

the commitment and the resources by which serious research would formulate

hypotheses and choose among them.  Once again, here are the data, Figure 1,

Census Date Resident Population

Conterminous U.S.  (Note 1)
1790 Aug-02 3,929,214 1920 Jan-01 105,710,620
1800 Aug-04 5,308,483 1930 Apr-01 122,755,046
1810 Aug-06 7,239,881 1940 Apr-01 131,669,275
1820 Aug-07 9,638,453 1950 Apr-01 150,697,361
1830 Jun-01 12,866,020 1960 Apr-01 178,464,236
1840 Jun-01 17,069,453
1850 Jun-01 23,191,876 United States
1860 Jun-01 31,443,321 1950 Apr-01 151,325,798
1870 Jun-01 39,818,449 Note 2 1960 Apr-01 179,823,175
1880 Jun-01 50,155,783 1970 Apr-01 203,302,231 Note 3
1890 Jun-01 62,947,714 1980 Apr-01 226,545,805
1900 Jun-01 75,994,575 1990 Apr-01 248,709,873
1910 Apr-15 91,972,266

Figure 1

United States Population:  1790 to 1990
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Note 1:  Excludes Alaska and Hawaii.  Note 2: Revised to include adjustments for under

numeration in southern states; unrevised number is 38558371.  Note 3:  Figures corrected

after 1970 final reports were issued. From Statistical Abstract of the United States, 1992, No. 1.

Original:  U.S. Bureau of the Census, U.S. Census of Population: 1920 to 1990, vol. 1; and

other reports.

This time I am thinking simply that populations grow exponentially.  Maybe,

so let me test that.  To test that I follow the usual procedure:  I set up a graph such

that if the hypothesis is correct then the graph will be linear and the residuals will

be noise.  For exponential growth that means computing the logarithms, fitting a

line to the logarithms of population, and looking at the residuals.  Because I expect

growth rates on the order of 2 to 3 percent and residuals on the same scale, I will

use logarithms base e.  (For 1950 and 1960, the two estimates, with and without

Alaska and Hawaii, differ by about half of one percent, a small but non-trivial

difference.  For the moment, I will use their mean.)

For calculation purposes I will count 1790 as year “0”.  That allows me to use

the log of the population in 1790 ad a first estimate of the intercept.  Then for an

estimate of the slope I compute a “rise” from the difference between the logarithm

of the 1990 population  and the logarithm of the 1790 and I compute a “run” of 200

years, estimating a slope of

Intercept 15.184
slope 0.02073924

Year Years after 1790 ln(Pop) Expected Residual Sqd Residual
1790 0 3,929,214 15.184 15.184 0.000 0.000
1800 10 5,308,483 15.485 15.391 0.093 0.009
1810 20 7,239,881 15.795 15.599 0.196 0.039
1820 30 9,638,453 16.081 15.806 0.275 0.076
1830 40 12,866,020 16.370 16.014 0.357 0.127
1840 50 17,069,453 16.653 16.221 0.432 0.186
1850 60 23,191,876 16.959 16.428 0.531 0.282
1860 70 31,443,321 17.264 16.636 0.628 0.394
1870 80 39,818,449 17.500 16.843 0.657 0.431
1880 90 50,155,783 17.731 17.051 0.680 0.463
1890 100 62,947,714 17.958 17.258 0.700 0.490
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1900 110 75,994,575 18.146 17.465 0.681 0.464
1910 120 91,972,266 18.337 17.673 0.664 0.441
1920 130 105,710,620 18.476 17.880 0.596 0.355
1930 140 122,755,046 18.626 18.087 0.538 0.290
1940 150 131,669,275 18.696 18.295 0.401 0.161
1950 160 151,011,580 18.833 18.502 0.331 0.109
1960 170 179,143,706 19.004 18.710 0.294 0.086
1970 180 203,302,231 19.130 18.917 0.213 0.045
1980 190 226,545,805 19.238 19.124 0.114 0.013
1990 200 248,709,873 19.332 19.332 0.000 0.000

Mean Sqd
Resid

0.21243886

-0.100

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

1780 1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

Residual (using logs base e)
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There is an obvious problem with this first intercept.  So revising the

hypothesis by adding 0.35 to the intercept:

Intercept 15.534
slope 0.02073924

0
Year Years after 1790 ln(Pop) Expected Residual Sqd Residual

1790 0 3,929,214 15.184 15.534 -0.350 0.123
1800 10 5,308,483 15.485 15.741 -0.257 0.066
1810 20 7,239,881 15.795 15.949 -0.154 0.024
1820 30 9,638,453 16.081 16.156 -0.075 0.006
1830 40 12,866,020 16.370 16.364 0.007 0.000
1840 50 17,069,453 16.653 16.571 0.082 0.007
1850 60 23,191,876 16.959 16.778 0.181 0.033
1860 70 31,443,321 17.264 16.986 0.278 0.077
1870 80 39,818,449 17.500 17.193 0.307 0.094
1880 90 50,155,783 17.731 17.401 0.330 0.109
1890 100 62,947,714 17.958 17.608 0.350 0.122
1900 110 75,994,575 18.146 17.815 0.331 0.109
1910 120 91,972,266 18.337 18.023 0.314 0.099
1920 130 105,710,620 18.476 18.230 0.246 0.061
1930 140 122,755,046 18.626 18.437 0.188 0.035
1940 150 131,669,275 18.696 18.645 0.051 0.003
1950 160 151,011,580 18.833 18.852 -0.019 0.000
1960 170 179,143,706 19.004 19.060 -0.056 0.003
1970 180 203,302,231 19.130 19.267 -0.137 0.019
1980 190 226,545,805 19.238 19.474 -0.236 0.056
1990 200 248,709,873 19.332 19.682 -0.350 0.123

Mean Sqd
Resid

0.05557615

401

Macintosh HD:DA:DA IX:Volume II:272 Pop Redoux    March 26, 1999



-0.400

-0.300

-0.200

-0.100

0.000

0.100

0.200

0.300

0.400

1780 1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

Residual (using logs base e)

Clearly, these residuals show a pattern and, therefore, the hypothesis is

wrong.  The fit of this line to the logs yields residuals ranging from -.35 to +.35,

meaning that the ratio between the true populations and the populations that

would be expected (were the hypothesis correct) range as high as the exponential

of .35, which is 1.41, errors of 41% at the extremes.

But, look at the graph.  It looks “sort of” quadratic.  It looks like an almost

straight line, rising.  It bends.  And then it looks almost straight, falling away.   My

mathematical repertoire tells me that quadratic equations can look like that.  For

example, here is a graph of the function y = -x2, , graphed between x = -10 and

x=10.
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Is that mathematical pattern the pattern I’ve seen in these residuals?  Let me

hypothesize that it is, and then test it.

But first, never mind the mathematics, what would it mean if the hypothesis

were correct?  How would I interpret a quadratic equation and what would it tell

me?  My reflex is to search my memory for something analogous.  And what I

come up with is something from simple physics:  The equation for the position of a

particle moving in a straight line.  If the particle begins at x0 with velocity v (at

time 0), and accelerates with acceleration a, then the descriptive equation is

    
x t( ) = x0 + vt + 1

2
at

2

That feeds my intuition:  If a quadratic equation fits these data, thenthe

coefficient of the quadratic term would be desribing acceleration or deceleration in

the growth rate.  That’s good.  I know already that the growth rate in 1790 is about

one percent larger than the growth rate in 1990.  The quadratic equation would

express a hypothesis that the growth declined smoothly over the two hundred

perios (not suddenly, circa 1890).  So, I will be able to interpret it, if I need to.

So, back to my spread sheet, I keep adjusting my estimates of the coefficients,

reducing the mean squared residual and I get:
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Intercept 15.1411
slope 0.0346704
Quadratic -6.96E-05

Year Years after 1790 ln(Pop) Expected Residual Sqd Residual
1790 0 3,929,214 15.184 15.141 0.043 0.002
1800 10 5,308,483 15.485 15.481 0.004 0.000
1810 20 7,239,881 15.795 15.807 -0.012 0.000
1820 30 9,638,453 16.081 16.119 -0.037 0.001
1830 40 12,866,020 16.370 16.417 -0.046 0.002
1840 50 17,069,453 16.653 16.701 -0.048 0.002
1850 60 23,191,876 16.959 16.971 -0.011 0.000
1860 70 31,443,321 17.264 17.227 0.037 0.001
1870 80 39,818,449 17.500 17.469 0.031 0.001
1880 90 50,155,783 17.731 17.698 0.033 0.001
1890 100 62,947,714 17.958 17.912 0.046 0.002
1900 110 75,994,575 18.146 18.113 0.033 0.001
1910 120 91,972,266 18.337 18.299 0.038 0.001
1920 130 105,710,620 18.476 18.472 0.004 0.000
1930 140 122,755,046 18.626 18.631 -0.005 0.000
1940 150 131,669,275 18.696 18.776 -0.080 0.006
1950 160 151,011,580 18.833 18.907 -0.074 0.005
1960 170 179,143,706 19.004 19.024 -0.020 0.000
1970 180 203,302,231 19.130 19.127 0.003 0.000
1980 190 226,545,805 19.238 19.216 0.022 0.001
1990 200 248,709,873 19.332 19.291 0.040 0.002

Mean Sqd
Resid

0.00144635
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That is interesting.  My first inspection sees two things:  The residuals range

from -.08 to +.04, which means that the population estimates are off by a maximum

of 4 to 8 percent.  Second, the residuals are flat circa 1890 — which is the point at

which the earlier analysis hypothesized a break in the pattern.

In more detail, I see that the errors are, many of them, on the order of 4%,

slightly larger but not dramatically larger thanthe errors visible in the earlier

analysis.   So, this description is “competitive” with the earlier analysis.

Second, I am worried by the appearance of “cycling” in these residuals.  Is this

the signal I have just warned myself about?  If fitting a line leaves residuals that are

quadratic, if fitting a quadratic leaves residuals that are quartic — then you

probably should stop and think rather than proceeding ever further through an

infinite regress.  But that is not what happened here.  Here, I fit a quadratic and got

residuals with one peak (the middle) and two valleys,  thats one more than I would

have gotten if I were locked into a polynomial regress.  That doesn’t prove that I’m
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not in trouble.  But it is re-assuring.  These residuals may, in fact, be real — not the

product of a misguided analysis.

You should also note that the comparison between these two analyses shows

an example of a general rule that appears to be completely counter-intuitive:  You

look at a graph and see various bumps and curves.  The mind seizes on these

features, and the scientist within says:  “How can I explain that?”  The bumps and

patterns look real.  They are the “that” that needs to be explained.  But it isn’t that

simple.  In most cases the pubps and patterns are bumps and patterns as compared

to some base-line expectation.  And if you change the base line expectation, this

thing in your head which you make appear on the graph, then you

changethebumps and patterns.  The mind seizes on these alternative feature and

the scientist within goes off in another direction.

With these data the first analysis seized on a bend in the curve, circa 1870.  On

the graph of residuals for the first 100 years, this point for 1870 was approximately

6% below the residual for 1860.  It attempted to “explain” that by breaking the data

into two batches — corresponding to an idea that the process itself had changed

circa 1870.  So the analysis said “explain” — wrap a story around — exponential

growth at one rate during the first 100 years, a change in the process, and then

exponential growth  during the remaining years.  The raw material calling for this

explanation was the bump.   The explanation will focus on some relatively sudden

shift, circa 1870.

The second analysis compared the whole (not the parts) to a process in which

an initial growth rate of about 3% tapered off slowly and smoothly during the

ensuing 200 years, down to a growth rate of about 2%.  That reference shifts the

attention.  Now the interesting remaining reatures are the descents into two valleys

and the climbs out of them, two valleys separated by about 100 years.  The least

interesting part of the graph is the middle: the residuals for 1860 through 1910 are

all up about 4%, with nothing remarkable demanding attention to 1870.

Compared to a basically constant growth rate, modified by a very slow decline

(from 3% to 2% in 200 years), the middle of the curve is flat and uninteresting. The

hypothesis handles the middle years very nicely, shifting attention to the two

valleys, circa 1840 and circa 1940.   The point is that the very phenomenon that we

think we have to explain is already, in part, a product of the analysis.  How do you

reduce the subjectivity that is buiklt into what appear to be facts?  By extreme

skepticism, by constant testing, by enlarging the research to data that can show
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themselves to be consistent with a hypothesis, thus supporting it, or inconsistent

with a hypothesis, thus rejecting it.  We also have rules, like choosing parsimony:

In this case, the first description requires two straight lines separated by a break

while the second description requires one qudratic equation, with no break.  The

second is a more parsimonious description.  I also have a rule of skepticism when I

see things that are too regular.  In this case the residuals are too symmetrical,

displaying mirror symmetry around the middle.  That suggests that there may be a

better single equation, that the one I’ve used is wrong, and that these residuals are

a mathematical result of the difference between the better equation and the one I’ve

used.

So, what have I established and what can I speculate

The population of the United States increased from 3.9 million to 250

million during the 200 years from 1790 to 1990.

  Fact

The rate of increase has declined from about 3 percent per annum to

about 1 percent per annum.

Change (in logs) compared to previous census
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Relative to these long term trends there have been two short term

increases in the rate of increase, one following 1840, the other following

1940.

- Relative statement, true in stated

context.

The first increase may be due to massive immigration following the

brailroad expansion into farm land of the “West” and the post World

War II baby boom.

 ?  Speculation.  Really unacceptable

speculation, were this a final report,

because both statements point to other

data that could have been presented

but have not been.  In the first case,

immigration data can be checked to see

whether or not it changes circa 1840

and whether or not its magnitude is

sufficient to account for the bump in

the residuals.  In the second case, birth

rates can be checked to see whether

these birth rates can acccount for the

bump and whether changes in the birth

rate were sufficient to create the

observed change in the rate of increase

for the total population (of all ages).
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Log Log

“Log log graphs”, as they are called are simple, in principle, but

they have a strange reputation — among those people with whom such

things have any reputation at all.

I think what happens is that people who use statistical tools, and

whose control over the techniques they depend on is tenuous, suddenly

realize that things have gotten beyond them with log log analysis.  It is

too many steps beyond control, and they get scared.  The discomfort is

expressed as skepticism, but there is actually an event that triggers the

expression of:  It seems to be a common experience that many kinds of

things look linear — when you are looking at them on a log log graph.

So people, the same people with whom these things have any reputation

at all, say “everything” looks linear on a log log graph, and back off.

They dismiss what they see — the idea being that if everything looks

linear on a log log graph, then nothing is learned in any particular case.

Such stuff somehow passes for sophistication, but really it is a kind

of belief in magic.  It comes from statistics as magic, that then gets out of

control.    But if we stay calm and rational, if we use fairly simple math

— and believe in it as the tool by which to interpret what you’ve found,

there is nothing out of control when logs begin to pop up on both sides

of an equation.  Would that it were true that “everything” looks linear on

a log log graph.  That has not been my experience.  And if many things

do look linear with this analysis then there is something to be learned

here about nature.

First let’s take a look:  Here, for example is Heart Weight (as “Y” —

shown vertically) and Body Weight.  The data are from ___ describing

the average weights of bodies and of the various organs of vertebrates (a

very peculiar collection of data).  You might thing about lines on such a

graph, and then think about slopes — looking for the weight of the heart

as a fraction of the weight of the body, the larger the body the larger the

heart.  That’s what I expect.  But all bets are off when you look at the

graph of these weights.  Looking at the graph, and speaking non-

technically, it’s a mess.
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Now, what you should do if somebody offers you such a graph, as I

have offered it to you is either a), walk away because this person doesn’t

know how to analyze data, or b) gently walk toward such a person to

explain that data analysis begins “at the beginning”.  And the beginning

is one variable analyses — always accompanied by good labels  (not a

dot at the upper left, but “elephant”  (In fact, I would go so far as to say

that labels are so important with such things that you will get further

faster with these data doing them by hand, given the unlikeliness of

getting current software to label properly, by machine.)  And there you

will discover, or guess, or hypothesize, because you’ve dealt with such

things before, that the intelligent start, for this, would have been logs, not

pounds.

But here’s what would be done by the pseudo sophisticated.

Actually, this person is starting out wrong and then patching and filling

— trying to make the patching and filling look like sophistication.

Patching and filling, we observe that that point (“Elephant”, were it



labeled) is an outlier — exclude it from the analysis (or analyze it

separately).  O.K., excluding the “outlier”
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That looks better, until you realize that seeing about 15 points

clearly may look better, but that “15” is 15 out of about 150 points, and

most of the stuff is still down there at the lower left.

How about excluding just those 15 or so points that are the most

visible, concentrating on the main body of the data — in effect declaring

these 15 as outliers too.
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Well — better.  But I’d venture to say that if this were not already

the third graph in the sequence, if we were starting fresh with it, then we

would observe that the 20 or so points that are visible at the upper right

seem to be on a different scale from the bulk of the data, about 120 point,

at the lower left.  And we would proceed to remove them from the data,

just as we have already removed 16 points in order to get at the heart of

the data.

When you find yourself getting into this kind of dissatisfying loop,

cutting out data, cutting out more data, and still not really solving the

problem, then it is time to drop back and think.  And thinking, or

guessing, or starting with the logs in the first place, gets this (using logs

base e).
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There you see a line, or at least a sort-of-linear cloud.  And, you can

understand why someone starting with the first figure (which they

should not have) would be in awe of this log log picture derived from

the same data:  Junk has become orderly and, if you have let the

mathematics get the better of you, then the conversion of the chaos in the

first figure into the order of the second figure, might seem like magic.

Magic had nothing to do with it.

Below it, observing the line and then looking at residuals, I’ve

computed residuals using the numbers

    ln Heart( ) =.9845∗ln Body( ) − 5.15925

So, if we’re so smart, what does this log log equation mean?  I find

out by trusting the math and using it to decode the meaning.  First

exponentiate



    
ln Heart( )

e = e
.9845∗ln Body( )− 5.15925

    e
ln Heart( )

= e
.9845∗ln Body( ) − 5.15925( )

and then simplify

    Heart = e
−5.15925∗Body

.9845

    Heart = e
−5.15925( )e

.9845∗ln Body( )( )
and

H eart = .005746 • W eigh t
.9845

    Heart =.005746∗Weight.9845

It says:  The weight of the heart, on the left, is proportional to the

.98th power of the weight of the organism.  Observing that .9845 is close

to one, the equation says that the weight of the heart is proportional to

the weight of the body.

    Heart≈.005746∗Body

So the equation implies that the weight of the heart is to the weight

of the body as .005746.

    

Heart

Body
≈.005746

 That is, weight of the heart is approximately one half of one percent

of the weight of the body (0.57 %).  That is the decoding of the slope and

the intercept of this log log linear relation.

Thinking about this relation, I find the relation surprising:  It says

that the weight of the heart is directly proportional to the weight of the

body.  I’m not sure exactly what I expected (so much for falsifiable

hypotheses), but I was thinking that big animals tend to be warm



blooded, that should make a difference in demands on heart.  Or, there

should be some efficiencies of size when a heart muscle has to push

blood around.  Too bad:  what differences there are in the residuals, they

are not a function of total weight.

How big are the residuals?

You can read that right off of the graph of the residuals:  The

observed values are within plus or minus one of the predicted values.

(Imagine trying to estimate the size of the residuals using the first graph,

without logs).  And errors of plus or minus one in logs, base e,

correspond to factors of 2.7 above or below the predicted weight of the

heart.  So

The weight of the heart is proportional the weight of the body,

averaging about one half of one percent of body weight.  However, there

is a large variation around that average, amounting to a factor of nearly

three in either direction, meaning that heart weight typically falls within

a range of  0.2 percent to 1.6 percent of body weight (multiplying and

dividing .005746 by 2.7).



Efficiencies and Inefficiencies of
Scale

Those of you with an unbreakable tendency to stay up late, with the

television talking to itself in the other room, have seen the monster films

of the ‘50’s.  Well, whatever your concerns over monster bugs, worms

grown large enough to devour cities, and earth pounding giants, I can

assure you there is no need to worry.  It’s not just that I’ve looked around

and found no footprints in the mud, it is that some things really are

impossible.

Consider the case of the giant worm.  Now worms, even those with

aggressive tendencies have certain base line tasks to handle, like eating

and breathing.  If you are a worm then the way you breath is through

that nice moist skin.  This is where oxygen is absorbed from the outside

and where other gases are released.

Now suppose that a giant film director takes charge of your wormly

fate and finds some way of making you twice as large, not by moving the

camera in to half the distance, but really making you twice as large.

Here’s what happens:  You become twice as long.  You are twice as wide,

you are twice as high.  That means that you weight two times two times

two times as much as you did before.   Twice as big implies eight times

as much meat on the body.  That means you have to take in about eight

times the oxygen and release eight times the waste.

So, you’ve got to process about eight times as much air as before

and, being a worm, you are going to do it through your skin.  How much

skin have you got to work with?  Well, allowing that the cross section of

a worm is roughly circular, your diameter increased by a factor of 2 so

your circumference has increased by a factor of 2.  Allowing that you are

now twice as long, your skin surface will have increased four fold:  Your

mass (in need of oxygen) has increased eight times fold but your skin has

increased only four fold.



Now, of course, increasing the diameter of an earth worm from one

eighth of an inch to one quarter of an inch would be quite an event in the

life of the worm, but it would still be nothing in the competition among

midnight film monsters.  So, suppose the worm is be ten times larger

than normal:  A one meter long earth worm should create at least a little

alarm.  This worm, is now ten times wider, ten times higher, and ten

times longer.  He has 1,000 times the meat, but only 100 times the skin.

The ratio of meat to air exchanging skin has diminished ten fold.

“Breathing” is going to be a problem.

Do that to the worm in one generation, by a horror induced

mutation and it will die, literally, of its own weight long before it has

terrified too many citizens.  However, given a few tens of millions of

years to accommodate to this transition, the worm might evolve a more

convoluted skin, increasing its surface.  It might protect all that

convoluted moist skin by some sort of protective structure.  And it might

develop a mechanism for drawing the outside air over this protected

convoluted moist skin — which might end up looking pretty much like a

lung.

The film of this evening features a giant ant, born in the Nevada

deserts (near the test sites) which, according to the film’s scientist (he’s

wearing the white coat) is “two meters in length, that’s more than nine

feet”.  Bad start.  Whatever:  He is roughly 400 times the length of your

garden variety ant.  That’s 64,000,000 times the weight and he’s got to

carry that weight on legs that are probably still a bit spindly at about an

inch.  Since the carrying capacity of a column (his leg) is proportional to

its cross section, this guy is going to need leg splints, or some leg

transplants from a hippopotamus.

The constraints by which form and function become related are

referred to as “allometry”, the study of form.  (D’Arcy Wentworth

Thompson citation ***)   In  biology (and engineering) there are

compelling laws by which the extension of an object, the surface of the

object, and the mass of the object are necessarily closely related in non-

linear relations.



In the more social of the sciences, the principles of form create

questions.  If the dense population centers of San Francisco were to

spread over more of the ground (in two dimensions) and perhaps go

high rise (in a third dimension), and if the flow through traffic arteries

had to keep pace by creating wider and wider freeways (in one

dimension), then you would have to pave the peninsula to supply

transportation.  Maybe.

Or consider, what is the ratio (or, perhaps, the optimal ratio) of

administrators to students or administrators to faculty in a University?

How is it related to size?  I would think that if you took one well run

university of 5,000 students and ran it up to 10,000 students then, at the

worst, the ratio of administrators to students would remain constant:

After all, the worst case would be simply running the 10,000 student

entity as two 5,000 student universities, doubling everything and leaving

t he ratios intact.  Anything better would be an economy of scale.

Anything less would be a pathology of scale.

Consider:  Does a ten fold difference in the size of two steel

companies correspond to a ten fold increase in the number of employees

or a ten fold increase in its capital assets?  (Is there a change in the

production function related to size?)  Does a ten fold difference in the

size of two cities correspond to a ten fold difference in the

cost/taxes/police force/roads ?  Is it more or less than ten fold?  Does a

ten fold difference in the size of two nations correspond to a ten fold

increase in the sizes of their military forces?  More or less?

When you hear a question framed in the form does an a-fold

increase in this correspond to a b-fold increase in that, you have entered

the domain of log log graphs.

Where log(y) = m log(x)+b the easy case is m=1 (at least

approximately).  Then y is directly proportional to x.  At m=1, the slope

in the log log curve establishes the direct proportionality.  The intercept

establishes the proportion.  And the size of the residuals works exactly

the way it did in the semi-log graph:  The residuals are residuals with

respect to log y and they specify the factors by which the residuals lie

above or below the predicted values.



Where log(y) = m log(x)+b with m>1, comparing one case to

another differences in y variable are proportionately greater than

differences in the x variable.  The slope establishes the relation.  E.g., m=2

implies that differences in y correspond to differences in the square of x.

The intercept establishes the comparison at one reference point, log x = 0,

x  =1.  And the residuals again specify the factors by which the residuals

lie above or below the predicted values.

Where log(y) = m log (x)+b with m<1, differe3nces in the y variable
are proportionately less than differences in the x variable.  For example,
if you were comparing the number of employees to the dollar assets of a
steel company, for a wide range of steel companies, then with y = assets,
m>1 would tell you that large steel companies are more asset/capital
intensive than small steel companies.  m<1 would tell you that large steel
companies are more labor intensive than small steel companies.  And
m=1 would tell you that the production function governing the mix
between capital and labor was unrelated to size.

Logarithm of x

Slope, m=1:  y is proportional to x.



 Exercises:

Describe the relation between the weight of the body and the weight

of the lungs as implied by Spector’s data.



 Exercises:

Describe the relation between the weight of the body and the weight of the lungs as implied by Spector’s

data.

# Species Sex &
Numbe
r

Body
Wt.
KG

ln(Body
Wt)

Brain
grams

Ln(Brain
)

Heart
Grams

LN(Heart
grams)

Liver
Grams

LN(Live
r )

Lungs
Grams

Ln(Lung
s)

Weight
(pounds
@2.2046
pounds per
kilogram)

1 Man (Homo
sapiens)
Australian
aborigine

M1 76 4.331 1345.2 7.204 0 ???? 0 ???? 0 ???? 167.55

2 Man (Homo
sapiens)
Chinese

M1 84 4.431 1478.4 7.299 554.4 6.318 2041.2 7.621 0 ???? 185.19

3 Man (Homo
sapiens)
Filipino

M1 43 3.761 1105.1 7.008 197.8 5.287 0 ???? 0 ???? 94.80

4 Man (Homo
sapiens)
Indian, Maya
Quiche

M1 42 3.738 1268.4 7.146 218.4 5.386 1041.6 6.949 1314.6 7.181 92.59



5 Man (Homo
sapiens)
Indian, Maya
Quiche

F1 46 3.829 1002.8 6.911 225.4 5.418 0 ???? 0 ???? 101.41

6 Man (Homo
sapiens)
Negro

F7 47 3.850 1283.1 7.157 380.7 5.942 1320.7 7.186 0 ???? 103.62

7 Man (Homo
sapiens)
White,
American

F4 49 3.892 1239.7 7.123 313.6 5.748 1127 7.027 357.7 5.880 108.03

8 Man (Homo
sapiens)
White,
European

F4 49 3.892 1239.7 7.123 313.6 5.748 0 ???? 0 ???? 108.03

9 Agouti
(Dasyprocta
punctata)

FM5 2.6 0.956 15.08 2.713 13.26 2.585 73.84 4.302 5.72 1.744 5.73

10 Antbear
(Cyclops
didactylus)

?1 0.09 -2.408 4.293 1.457 0 ???? 0 ???? 0 ???? 0.20

11 Anteater
(tamanduas
tetradactyla)

MF4 2.2 0.788 23.98 3.177 0.66 -0.416 58.08 4.062 23.1 3.140 4.85



12 Armadillo
(Dasypus
novemcinctu
s)

MF12 3.3 1.194 8.25 2.110 9.24 2.224 0 ???? 23.1 3.140 7.28

13 Ass (Equus
asinus)

F1 150 5.011 405 6.004 825 6.715 1260 7.139 1245 7.127 330.69

14 Bat. vampire
(Desmodus
rotundus)

MF5 0.028 -3.576 0.9352 -0.067 0 ???? 0 ???? 0 ???? 0.06

15 Bear, brown
(Ursus
americanus)

F1 550 6.310 0 ???? 0 ???? 0 ???? 0 ???? 1,212.53

16 Bear,
grizzly (U.
horr ibi l is)

F1 140 4.942 224 5.412 1106 7.009 0 ???? 0 ???? 308.64

17 Beaver
(Castor
canadensis)

M1F1 5 1.609 22.5 3.114 21.5 3.068 151.5 5.021 48.5 3.882 11.02

18 Bison,
American
(Bison
bison)

F1 55 4.007 335.5 5.816 363 5.894 698.5 6.549 1193.5 7.085 121.25

19 Buffalo,
African
(Syncerus
caffer)

M3F1 700 6.551 630 6.446 3290 8.099 6860 8.833 6580 8.792 1,543.22



20 Bushbok
(Tragelaphu
s scriptus)

M1F1 44 3.784 162.8 5.093 334.4 5.812 858 6.755 721.6 6.581 97.00

21 Camel,
bactrian
(Camelus
bactrianus)

M1 450 6.109 540 6.292 0 ???? 0 ???? 0 ???? 992.07

22 Caribou,
ground
(Rangifer
arcticus)

M3F1 98 4.585 294 5.684 882 6.782 1793.4 7.492 2058 7.629 216.05

23 Cat, domestic
(Felis catus)

M7F3 3.3 1.194 25.41 3.235 14.85 2.698 118.47 4.775 34.32 3.536 7.28

24 Cattle,
Holstein
(Bos taurus)

M5 900 6.802 450 6.109 3330 8.111 8280 9.022 6210 8.734 1,984.14

25 Cattle,
Holstein (B.
taurus)

F198 600 6.397 420 6.040 2220 7.705 7200 8.882 4320 8.371 1,322.76

26 Cheetah
(Acinonyx
jubatus)

F2 21 3.045 81.9 4.405 107.1 4.674 676.2 6.516 243.6 5.496 46.30

27 Chimpanzee
(Pan
troglodytes)

M1 52 3.951 436.8 6.079 249.6 5.520 0 ???? 0 ???? 114.64



28 Chimpanzee
(P.
troglogytes)

F1 44 3.784 325.6 5.786 220 5.394 1210 7.098 598.4 6.394 97.00

29 Chipmunk
(Tamias
striatus)

F2 0.07 -2.659 2.072 0.729 5.572 1.718 5.18 1.645 0.672 -0.397 0.15

30 Coati (Nasua
nasua)

M2 5.1 1.629 33.66 3.516 19.38 2.964 83.13 4.420 23.97 3.177 11.24

31 Coyote
(Canis
latrans)

F2 8.5 2.140 0 ???? 72.25 4.280 292.4 5.678 61.2 4.114 18.74

32 Deer, white-
tailed
(Odocoileus
viginianus)

M1 65 4.174 208 5.338 630.5 6.447 1020.5 6.928 0 ???? 143.30

33 Dog (Canis
familiaris)

M2F2 13 2.565 76.7 4.340 110.5 4.705 382.2 5.946 122.2 4.806 28.66

34 Elephant
(Loxondonta
africana)

M1 6600 8.795 5280 8.572 25740 10.156 106920 11.580 137280 11.830 14,550.36

35 Fox, gray
(Urocyon
cineroargene
us)

M1 3.8 1.335 37.62 3.628 22.04 3.093 51.3 3.938 19.38 2.964 8.38

36 Fox, red
(Vulpes
fulva)

F1 4.6 1.526 52.9 3.968 41.4 3.723 0 ???? 0 ???? 10.14



37 Gazelle
(Gazella
thomsoni)

M2 24 3.178 91.2 4.513 240 5.481 516 6.246 276 5.620 52.91

38 Giraffe
(Giraffa
camelopardal
is)

F1 1200 7.090 720 6.579 4920 8.501 18720 9.837 11880 9.383 2,645.52

39 Goat (Capra
hircus)

F1 28 3.332 114.8 4.743 0 ???? 532 6.277 0 ???? 61.73

40 Gorilla
(Gorilla
gorilla)

M1 180 5.193 0 ???? 0 ???? 0 ???? 0 ???? 396.83

41 Guinea pig
(Cavia
porcellus)

M58 0.26 -1.347 3.458 1.241 1.378 0.321 13.364 2.593 3.068 1.121 0.57

42 Guinea pig
(C.
porcellus)

F10 0.43 -0.844 3.956 1.375 1.677 0.517 16.598 2.809 4.601 1.526 0.95

43 Hamster,
golden
(Mesocricet
us auratus)

M2F2 0.12 -2.120 1.056 0.054 0.564 -0.573 6.192 1.823 0.552 -0.594 0.26

44 Hare,
African
(Lepus
capensis)

F1 2.9 1.065 10.15 2.317 29.58 3.387 51.33 3.938 17.69 2.873 6.39



45 Hippopotamu
s
(Hippopotam
us
amphibius)

F1 1350 7.208 675 6.515 4590 8.432 23625 10.070 11340 9.336 2,976.21

46 Horse,
Percheron
(Equus
caballus)

M1 635 6.454 635 6.454 5588 8.628 8509 9.049 5715 8.651 1,399.92

47 Horse,
Percheron
(E. caballus)

F1 770 6.646 616 6.423 4697 8.455 6699 8.810 5390 8.592 1,697.54

48 Hyena,
spotted
(Crocuta
crocuta)

M2 62 4.127 173.6 5.157 446.4 6.101 3174.4 8.063 6770.4 8.820 136.69

49 Hyrax
(Heterohyra
x brucei)

M1 0.75 -0.288 12.3 2.510 3.6 1.281 31.5 3.450 5.55 1.714 1.65

50 Jackal
(Canis
mesomelas)

M2 2.8 1.030 45.08 3.808 21 3.045 120.4 4.791 29.4 3.381 6.17

51 Jaguar
(Felis onca)

F1 34 3.526 146.2 4.985 183.6 5.213 880.6 6.781 567.8 6.342 74.96

52 Kinkajou
(Potos
flavus)

F1 2.6 0.956 30.68 3.424 14.04 2.642 97.76 4.583 77.74 4.353 5.73



53 Lemming,
rock
(Dicrostony
x
rubricatus)

M4 0.05 -2.996 0.085 -2.465 0.295 -1.221 2.525 0.926 0.795 -0.229 0.11

54 Leopard
(Panthera
pardus)

M1 48 3.871 134.4 4.901 201.6 5.306 897.6 6.800 499.2 6.213 105.82

55 Lion (P. leo) M4 125 4.828 237.5 5.470 1062.5 6.968 0 ???? 2650 7.882 275.58

56 Lion (P. leo) F3 97 4.575 194 5.268 523.8 6.261 3142.8 8.053 1998.2 7.600 213.85

57 Lynx (Lynx
baileyi)

M1 7.4 2.001 0 ???? 0 ???? 0 ???? 0 ???? 16.31

58 Manatee
(Trichechus
manatus)

M1 425 6.052 340 5.829 1232.5 7.117 5525 8.617 3060 8.026 936.96

59 Manatee (T.
manatus)

F1 560 6.328 0 ???? 1232 7.116 6272 8.744 3752 8.230 1,234.58

60 Mole
(Scalopus
aquaticus)

M1 0.04 -3.219 1.172 0.159 0.276 -1.287 1.564 0.447 0.744 -0.296 0.09

61 Mongoose
(Ichneumia
albicauda)

M1 4.4 1.482 28.16 3.338 28.16 3.338 61.16 4.113 58.08 4.062 9.70



62 Monkey,
blackhowler
(Alouatta
palliata)

MF28 6.2 1.825 50.22 3.916 20.46 3.018 201.5 5.306 39.06 3.665 13.67

63 Monkey,
rhesus
(Macaca
mulatta)

M4 3.3 1.194 91.74 4.519 12.54 2.529 68.97 4.234 0 ???? 7.28

64 Monkey,
rhesus (M.
mulatta)

F7 3.6 1.281 92.52 4.527 12.24 2.505 0 ???? 68.04 4.220 7.94

65 Mouse,
jumping
(Zapus
hudsonicus)

M1F3 0.018 -4.017 0.6426 -0.442 0.1854 -1.685 1.0134 0.013 0.2412 -1.422 0.04

66 Mouse,
meadow
(Microtus
drummondi)

MF67 0.023 -3.772 0.0667 -2.708 0.1564 -1.855 1.0488 0.048 0.391 -0.939 0.05

67 Muskrat
(Ondatra
zibethica)

M1 0.9 -0.105 5.31 1.670 3.24 1.176 21.96 3.089 4.32 1.463 1.98

68 Opossum,
woolly
(Philander
laniger)

M1F1 190 5.247 0 ???? 3002 8.007 9006 9.106 3002 8.007 418.87



69 Porcupine
(Erethizon
dorsatum)

M1F3 2.9 1.065 22.62 3.119 15.95 2.769 116 4.754 28.42 3.347 6.39

70 Porpoise
(Phocaena
phocaena)

M1 140 4.942 1708 7.443 728 6.590 2912 7.977 5166 8.550 308.64

71 Rabbit, giant
Flemish
(Lepus spp)

M2 3.7 1.308 10.73 2.373 10.73 2.373 98.42 4.589 0 ???? 8.16

72 Rabbit, giant
Flemish
(Lepus app)

F22 2.5 0.916 10 2.303 8.75 2.169 79.75 4.379 13.25 2.584 5.51

73 Raccoon
(Procyon
lotor)

M1 5.2 1.649 42.64 3.753 42.12 3.741 186.16 5.227 186.16 5.227 11.46

74 Raccoon (P.
lotor)

F1 2.2 0.788 33.22 3.503 19.58 2.975 138.38 4.930 19.14 2.952 4.85

75 Rat, Norway
(Rattus
norvegicus)

M2F1 0.25 -1.386 3.05 1.115 1.3 0.262 8.375 2.125 1.975 0.681 0.55

76 Reedbuck
(Redunca
redunca)

M2 31 3.434 105.4 4.658 235.6 5.462 511.5 6.237 415.4 6.029 68.34

77 Seal, ringed
(Phoca
hispida)

M3F2 39 3.664 245.7 5.504 284.7 5.651 1095.9 6.999 721.5 6.581 85.98



78 Shrew
(Blarina
brevicauda)

M29 0.02 -3.912 0.374 -0.983 0.204 -1.590 1.162 0.150 0.448 -0.803 0.04

79 Shrew
(Blarina
brevicauda)

F39 0.017 -4.075 0.3587 -1.025 0.1785 -1.723 0.9265 -0.076 0.3723 -0.988 0.04

80 Skunk
(Mephitis
mephitis)

M1F2 2.1 0.742 6.93 1.936 12.18 2.500 56.49 4.034 33.39 3.508 4.63

81 Sloth
(three-toed
(Bradypus
tridactylus)

MF6 1.8 0.588 13.5 2.603 0 ???? 0 ???? 0 ???? 3.97

82 Squirrel,
red (sciurus
hudsonicus)

M4 0.18 -1.715 4.626 1.532 1.548 0.437 3.924 1.367 2.61 0.959 0.40

83 Squirrel,
red (s.
husdonicus)

F4 0.25 -1.386 5.05 1.619 1.825 0.602 6.7 1.902 3.2 1.163 0.55

84 Steinbok
(Raphicerus
campestris)

M2 8.6 2.152 49.02 3.892 72.24 4.280 174.58 5.162 149.64 5.008 18.96

85 Swine (Sus
scrofa)

F36 102 4.625 0 ???? 326.4 5.788 1540.2 7.340 0 ???? 224.87

86 Tapir
(Tapirella
bairdii)

M1F1 11.4 2.434 0 ???? 96.9 4.574 349.98 5.858 239.4 5.478 25.13



87 Tiger
(Panthera
tigris)

F1 160 5.075 224 5.412 432 6.068 1824 7.509 1024 6.931 352.74

88 Walrus
(Odobenus
rosmarus)

M1F3 600 6.397 1020 6.928 4080 8.314 17520 9.771 8160 9.007 1,322.76

89 Warthog
(Phacochoer
us
aethiopicus)

M1 65 4.174 123.5 4.816 325 5.784 1495 7.310 546 6.303 143.30

90 Weasel,
arctic
(Mustela
arctica)

M3F1 0.18 -1.715 5.04 1.617 3.078 1.124 8.532 2.144 3.744 1.320 0.40

91 Whale, white
(Delphiapter
us leucas)

M4 447 6.103 2324.4 7.751 2458.5 7.807 6794.4 8.824 12069 9.398 985.46

92 Whale, white
(Delphiapter
us leucas)

F2 300 5.704 2340 7.758 1710 7.444 4770 8.470 7860 8.970 661.38

93 Wildebeest
(Connochaete
s taurinus)

M2 210 5.347 441 6.089 1302 7.172 2247 7.717 2814 7.942 462.97

94 Wolf (Canis
lupus)

M1 22 3.091 114.4 4.740 237.6 5.471 607.2 6.409 783.2 6.663 48.50



95 Zebra
(Equus
quagga)

M3F1 280 5.635 560 6.328 3976 8.288 4676 8.450 2240 7.714 617.29

96 Blackbird
(Quiscalus
quiscala)

F1 0.08 -2.526 2.848 1.047 0.112 -2.189 2.568 0.943 0.168 -1.784 0.18

97 Bluebird
(Sialia
sialis)

M1F1 0.03 -3.507 1.272 0.241 0.417 -0.875 0 ???? 0 ???? 0.07

98 Buzzard,
steppe
(Buteo
vulpinus)

M1 0.56 -0.580 7.896 2.066 4.592 1.524 10.864 2.385 4.648 1.536 1.23

99 Catbird
(Dumatella
carolinensis
)

F1 0.03 -3.507 0.129 -2.048 0.297 -1.214 0 ???? 0.552 -0.594 0.07

100 Canary
(Serinus
canarius)

M1F1 0.016 -4.135 0.7552 -0.281 0.2064 -1.578 0.8624 -0.148 0.024 -3.730 0.04

101 Cowbird
(Molothrus
ater)

F1 0.07 -2.659 2.856 1.049 1.127 0.120 0 ???? 0 ???? 0.15

102 Crane, gray
(Grus
canadensis)

M1 1.6 0.470 8.32 2.119 18.4 2.912 28.48 3.349 14.88 2.700 3.53



103 Crow
(Corvus
brachyrhync
os)

M1 0.33 -1.109 9.108 2.209 3.135 1.143 0 ???? 9.768 2.279 0.73

104 Duck, pintail
(Anas acuta)

F1 0.67 -0.400 4.958 1.601 8.308 2.117 30.351 3.413 17.152 2.842 1.48

105 Eagle, tawny
(Aguila
rapax)

M2F3 2.4 0.875 14.16 2.650 15.12 2.716 43.68 3.777 24.96 3.217 5.29

106 Egret, great
white
(Casmerodiu
s albus)

F1 10 2.303 59 4.078 90 4.500 320 5.768 321 5.771 22.05

107 Flamingo
(Phoeniconai
as minor)

M3F2 15 2.708 73.5 4.297 141 4.949 402 5.996 220.5 5.396 33.07

108 Fowl,
domestic
(Gallus
domesticus)

M8 0.73 -0.315 2.92 1.072 4.161 1.426 16.133 2.781 4.38 1.477 1.61

109 Fowl,
domestic
(Gallus
domesticus)

F16 0.61 -0.494 2.684 0.987 3.843 1.346 14.396 2.667 3.721 1.314 1.34



110 Fowl, white
leghorn,
"germ-free"

? .9-
1.2

#VALUE
!

#VALUE
!

#VALUE! #VALUE! #VALUE! #VALUE! #VALUE
!

#VALUE
!

#VALUE
!

#VALUE!

111 Goose,
Egyptian
(Alopochen
aegypticus)

F1 1.9 0.642 7.41 2.003 18.24 2.904 33.63 3.515 34.2 3.532 4.19

112 Guineafowl
(Numida
meleagris)

M1 1.6 0.470 4.16 1.426 14.08 2.645 28.16 3.338 28.64 3.355 3.53

113 Gull,
herring
(Larus
argentatus)

F2 0.53 -0.635 5.035 1.616 5.194 1.648 27.136 3.301 0 ???? 1.17

114 Hawk, red-
tailed (Buteo
borealis)

F3 1 0.000 9.7 2.272 6.7 1.902 13.7 2.617 9 2.197 2.20

115 Hummingbir
d (Amazilia
tzacatl)

F1 0.005 -5.298 0.208 -1.570 0.1185 -2.133 0.2615 -1.341 0.01 -4.605 0.01

116 Ostrich,
masai
(Struthio
camelus)

M1 125 4.828 37.5 3.624 1225 7.111 2075 7.638 2950 7.990 275.58



117 Owl, honed
(Buteo
viginianus)

M1 1.2 0.182 13.92 2.633 8.76 2.170 0 ???? 10.92 2.391 2.65

118 Partridge
(Francolinus
sephaena)

M1 0.21 -1.561 1.512 0.413 1.47 0.385 8.736 2.167 0 ???? 0.46

119 Pelican
(Pelecanus
occidentalis)

F2 3.3 1.194 17.82 2.880 22.11 3.096 73.26 4.294 30.03 3.402 7.28

120 Pheasant
(Phasianus
cochicus)

M1 0.62 -0.478 3.286 1.190 5.58 1.719 9.052 2.203 0 ???? 1.37

121 Pigeon
(Columba
l iv ia)

M3F1 0.27 -1.309 2.565 0.942 4.725 1.553 4.752 1.559 0 ???? 0.60

122 Raven
(Corvus
corax)

F1 1.25 0.223 35.125 3.559 10.625 2.363 0 ???? 0 ???? 2.76

123 Robin
(Turdus
migratorius
)

M2 0.07 -2.659 2.107 0.745 1.022 0.022 0 ???? 1.694 0.527 0.15

124 Sparrow
(Passer
domesticus)

M75 0.024 -3.730 1.0464 0.045 0.4152 -0.879 1.2288 0.206 0.3744 -0.982 0.05



125 Sparrow
(Passer
domesticus)

F11 0.023 -3.772 1.0074 0.007 0.3887 -0.945 1.0741 0.071 0.3956 -0.927 0.05

126 Starling
(Sturnus
vulgaris)

M15 0.06 -2.813 1.956 0.671 0.972 -0.028 2.076 0.730 1.122 0.115 0.13

127 Starling
(Sturnus
vulgaris)

F10 0.06 -2.813 1.878 0.630 0.894 -0.112 2.256 0.814 1.122 0.115 0.13

128 Stork,
European
(Ciconia
ciconia)

M2F1 3.3 1.194 15.51 2.741 30.36 3.413 63.36 4.149 36.63 3.601 7.28

129 Alligator
(Alligator
mississipien
sis)

M2 190 5.247 13.3 2.588 285 5.652 722 6.582 1026 6.933 418.87

130 Crocodile
(Crocodylus
acutus)

M1F1 110 4.700 11 2.398 132 4.883 1122 7.023 1100 7.003 242.51

131 Iguana lizard
(Iguana
iguana)

F1 1.3 0.262 0 ???? 2.47 0.904 32.37 3.477 3.64 1.292 2.87

132 Lizard
(Lacerta
vir idis)

MF15 0.05 -2.996 0.12 -2.120 0.06 -2.813 2.5 0.916 0 ???? 0.11



133 Snake, black
(Coluber
constrictor)

M1F2 0.43 -0.844 0.301 -1.201 0.946 -0.056 2.58 0.948 3.44 1.235 0.95

134 Snake, boa
(Boa
imperator)

F1 1.8 0.588 0.36 -1.022 5.58 1.719 29.88 3.397 13.68 2.616 3.97

135 Snake, green
(Zamenis
vir idis)

M3F3 0.022 -3.817 0.209 -1.565 0 ???? 0.4818 -0.730 0 ???? 0.05

136 Snake,
python
(Python
molurus)

M1 6.1 1.808 1.22 0.199 18.3 2.907 0 ???? 0 ???? 13.45

137 Snake,
watermoccas
in
(Ancistrodod
on pisci)

F1 0.73 -0.315 0.657 -0.420 4.745 1.557 64.605 4.168 22.776 3.126 1.61

138 Toad, horned
(Phrynosom
a cornutum)

M2F3 0.025 -3.689 0.13 -2.040 0.11 -2.207 0 ???? 0 ???? 0.06

139 Turtle
(Aromochely
s tristycha)

M1 0.12 -2.120 0 ???? 0.516 -0.662 3.36 1.212 1.02 0.020 0.26



140 Turtle
(Aromochely
s tristycha)

F2 0.09 -2.408 0 ???? 0.432 -0.839 2.61 0.959 0.684 -0.380 0.20

141 Turtle
(Testudo
graeca)

MF30 0.32 -1.139 0.288 -1.245 0 ???? 8.512 2.141 0 ???? 0.71

142 Turtle,
cumberland
(Chrysemys
elegans)

M21 0.84 -0.174 0 ???? 2.688 0.989 45.612 3.820 8.988 2.196 1.85

143 Turtle,
cumberland
(Chrysemys
elegans)

F1 0.86 -0.151 0 ???? 2.666 0.981 50.912 3.930 7.224 1.977 1.90

144 Frog, bull
(Rana
catesbiana)

M7 0.49 -0.713 4.557 1.517 1.568 0.450 13.475 2.601 2.597 0.954 1.08

145 Frog,
leopard (R.
pipiens)

M10 0.036 -3.324 0 ???? 0.1548 -1.866 1.0116 0.012 0.306 -1.184 0.08

146 Frog,
leopard (R.
pipiens)

F19 0.038 -3.270 0 ???? 0.1824 -1.702 1.0944 0.090 0.2888 -1.242 0.08

147 Barracuda
(Sphyraena
barracuda)

M3F3 8.8 2.175 3.52 1.258 21.12 3.050 60.72 4.106 0 ???? 19.40



148 Carp
(Cyprinus
carpio)

M2F4 1.05 0.049 1.26 0.231 1.575 0.454 0 ???? 0 ???? 2.31

149 Codfish
(Gadus
morrhua)

F1 10.6 2.361 5.3 1.668 15.9 2.766 161.12 5.082 0 ???? 23.37

150 Haddock (G.
aeglefinus)

F6 3.3 1.194 1.98 0.683 5.61 1.725 133.65 4.895 0 ???? 7.28

151 Mackerel
(Scomber
vernalis)

M1 0.76 -0.274 0.608 -0.498 0 ???? 0 ???? 0 ???? 1.68

152 Mackerel
(Scomber
vernalis)

F2 1.5 0.405 1.65 0.501 3 1.099 6.45 1.864 0 ???? 3.31

153 Perch
(Perca
flavescens)

M6 0.17 -1.772 0.255 -1.366 0.391 -0.939 1.496 0.403 0 ???? 0.37

154 Perch
(Perca
flavescens)

F1 0.19 -1.661 0.323 -1.130 1.463 0.380 2.926 1.074 0 ???? 0.42

155 Pike (Esox
lucius)

M4F3 0.42 -0.868 0.504 -0.685 0.63 -0.462 3.612 1.284 0 ???? 0.93

156 Salmon
(Salmo
salar)

M3 3.4 1.224 1.02 0.020 12.24 2.505 68.68 4.229 0 ???? 7.50



157 Salmon
(Salmo
salar)

F5 5.4 1.686 1.08 0.077 10.26 2.328 93.42 4.537 0 ???? 11.90

158 Trout,
rainbow
(Salmo
irideus)

M2 0.26 -1.347 0.442 -0.816 0.442 -0.816 2.574 0.945 0 ???? 0.57

159 Trout,
rainbow
(Salmo
irideus)

F4 0.22 -1.514 0.418 -0.872 0.286 -1.252 2.178 0.778 0 ???? 0.49

Describe the relation between gross national product and military expenditures (1975 data). (World

Handbook of Social and Political Indicaqtors.***)

 "COUNTRY
NAME"

 "TOT DEFENSE
EXP,75"

 "GROSS NATL
PRODUCT,75"

ln(GNP) ln(Defense)

AFGN 37 2060 7.630 3.611
ALBN 131 1220 7.107 4.875
ALGR 302 13680 9.524 5.710
ANGL 97 2030 7.616 4.575
ARGN 860 39330 10.580 6.757
AUSL 2480 77010 11.252 7.816
AUST 357 36650 10.509 5.878



BHMS 630
BHRN 14 580 6.363 2.639
BHTN 80
BLGM 1720 61470 11.026 7.450
BLGR 1680 18420 9.821 7.427
BNGL 76 7280 8.893 4.331
BNIN 6 390 5.966 1.792
BOLV 59 2040 7.621 4.078
BRBD 1 350 5.858 0.000
BRMA 171 3320 8.108 5.142
BRND 9 410 6.016 2.197
BRZL 2440 110130 11.609 7.800
BTSN 0 230
CAFR 8 390 5.966 2.079
CHAD 23 460 6.131 3.135
CHLE 331 10130 9.223 5.802
CHNA 32800 315250 12.661 10.398
CLMB 165 13630 9.520 5.106
CMRN 34 2050 7.626 3.526
CMRS 70
CNDA 3160 158100 11.971 8.058
CNGO 26 670 6.507 3.258
CRCA 0 1890
CUBA 393 7460 8.917 5.974



CVRD 80
CYPR 21 780 6.659 3.045
CZCH 3180 53450 10.887 8.065
DMNR 46 3390 8.129 3.829
DNMK 858 34450 10.447 6.755
ECDR 75 4180 8.338 4.317
EGPT 1340 9540 9.163 7.200
ELSL 21 1830 7.512 3.045
EQGN 5 100 4.605 1.609
ETHP 110 2730 7.912 4.700
FIJI 1 620 6.430 0.000
FNLD 348 25520 10.147 5.852
FRG 14700 412480 12.930 9.596
FRNC 11400 314080 12.657 9.341
GBON 14 1360 7.215 2.639
GDR 3890 65830 11.095 8.266
GHNA 71 5860 8.676 4.263
GMBA 0 90
GNBS 0 70
GNEA 21 750 6.620 3.045
GRCE 1430 21320 9.967 7.265
GRND 40
GTML 44 3590 8.186 3.784
GYNA 11 400 5.991 2.398



HATI 9 850 6.745 2.197
HGKG 7700
HNDS 18 1050 6.957 2.890
HNGR 1420 22690 10.030 7.258
ICLD 0 1320
INDA 3310 85960 11.362 8.105
INDS 1050 29120 10.279 6.957
IRAN 7760 55510 10.924 8.957
IRAQ 1850 13880 9.538 7.523
IRLD 102 7470 8.919 4.625
ISRL 4160 13160 9.485 8.333
ITLY 4440 156590 11.961 8.398
IVCT 53 3630 8.197 3.970
JMCA 16 2270 7.728 2.773
JPAN 4780 496260 13.115 8.472
JRDN 144 1240 7.123 4.970
KMPC 68
KNYA 51 2970 7.996 3.932
KORN 729 7100 8.868 6.592
KORS 991 19850 9.896 6.899
KWAT 235 15270 9.634 5.460
LAOS 19 300 5.704 2.944
LBNN 136 3290 8.099 4.913
LBRA 4 640 6.461 1.386



LBYA 201 13510 9.511 5.303
LSTO 0 190
LXBG 23 2150 7.673 3.135
MALI 14 530 6.273 2.639
MDGS 28 1720 7.450 3.332
MLDV 10
MLTA 2 460 6.131 0.693
MLWI 5 660 6.492 1.609
MLYS 515 9340 9.142 6.244
MNGL 74 1250 7.131 4.304
MRCO 253 7860 8.970 5.533
MRTN 8 420 6.040 2.079
MRTS 1 540 6.292 0.000
MXCO 528 63200 11.054 6.269
MZBQ 0 1640
NCRG 32 1580 7.365 3.466
NGER 4 590 6.380 1.386
NGRA 1070 25600 10.150 6.975
NPAL 9 1340 7.200 2.197
NRWY 847 27110 10.208 6.742
NTHL 2660 78550 11.271 7.886
NZLD 262 13130 9.483 5.568
OMAN 655 1790 7.490 6.485
PERU 621 11670 9.365 6.431



PHLP 402 15930 9.676 5.996
PKST 622 11270 9.330 6.433
PLND 5090 88320 11.389 8.535
PNMA 15 2150 7.673 2.708
PPNG 1290
PRGY 23 1470 7.293 3.135
PRTG 1000 15060 9.620 6.908
PRTR 7120
QTAR 106 2200 7.696 4.663
RMNA 2230 26450 10.183 7.710
RWND 7 430 6.064 1.946
SAFR 1520 32270 10.382 7.326
SDAN 121 4140 8.328 4.796
SDAR 1750 33240 10.412 7.467
SMLA 21 340 5.829 3.045
SNGL 29 1800 7.496 3.367
SNGP 305 5510 8.614 5.720
SPAN 2820 97140 11.484 7.944
SRLE 5 610 6.413 1.609
SRLK 23 2540 7.840 3.135
SRNM 0 500
STPR 40
SWAZ 0 220
SWDN 1980 66830 11.110 7.591



SWTZ 964 53840 10.894 6.871
SYCH 30
SYRA 837 5330 8.581 6.730
TLND 398 14600 9.589 5.986
TNSA 65 4090 8.316 4.174
TNZN 65 2440 7.800 4.174
TOGO 8 560 6.328 2.079
TRKY 1600 36030 10.492 7.378
TRNT 6 2170 7.682 1.792
TWAN 1410 14890 9.608 7.251
UAR 59 8880 9.092 4.078
UGND 78 2680 7.894 4.357
UK 10200 211700 12.263 9.230
UPVL 13 640 6.461 2.565
URGY 73 3600 8.189 4.290
USA 91000 1519890 14.234 11.419
USSR 119000 649470 13.384 11.687
VNM
VNMN 310
VNMS 465
VNZL 539 27320 10.215 6.290
WSMA 50
YGSL 1600 33080 10.407 7.378
YMNA 37 410 6.016 3.611



YMNS 52 1210 7.098 3.951
ZAIR 143 3450 8.146 4.963
ZIMB 81 3460 8.149 4.394
ZMBA 94 2090 7.645 4.543



What is the correspondence between the quantity of labor (number of employees) and the quantity of capital

(assets) among petroleum refiining companies?

From:  1996 FORTUNE 500.
Copyright 1996 Time, Inc.
All Rights Reserved.
Fortune is a registered mark of Time, Inc.

 COMPANY REVENUES  PROFITS  ASSETS  EMPLOYEES  INDUSTRY
Name $ millions $ millions $ millions

Exxon 110,009.0 6,470.0 91,296.0 82,000 Petroleum refining
Mobil 66,724.0 2,376.0 42,138.0 50,400 Petroleum refining
Texaco 36,787.0 607.0 24,937.0 28,247 Petroleum refining
Chevron 32,094.0 930.0 34,330.0 43,019 Petroleum refining
Amoco 27,665.0 1,862.0 29,845.0 42,689 Petroleum refining
USX 18,214.0 214.0 16,743.0 42,774 Petroleum refining
Atlantic
Richfield

16,739.0 1,376.0 23,999.0 22,000 Petroleum refining

Phi l l ips
Petroleum

13,521.0 469.0 11,978.0 17,400 Petroleum refining

Ashland 11,251.1 23.9 6,991.6 32,800 Petroleum refining
Coastal 10,223.4 270.4 10,658.8 15,500 Petroleum refining



Sun 8,370.0 140.0 5,184.0 11,995 Petroleum refining
Unocal 7,527.0 260.3 9,891.0 12,509 Petroleum refining
Amerada Hess 7,524.8 (394.4) 7,756.4 9,574 Petroleum refining
Tosco 7,284.1 77.1 2,003.2 3,750 Petroleum refining
MAPCO 3,310.0 74.7 2,293.3 6,204 Petroleum refining
Valero Energy 3,019.8 59.8 2,876.7 1,658 Petroleum refining
Diamond
Shamrock

2,956.7 47.3 2,245.4 11,250 Petroleum refining

Kerr-McGee 2,928.0 (31.2) 3,232.0 3,976 Petroleum refining
Ultramar 2,714.4 69.6 1,971.3 2,800 Petroleum refining
Pennzoil 2,490.0 (305.1) 4,307.8 9,758 Petroleum refining





“r”:

 The Measure of Correlation

When a data analysis has been accomplished, and when the result

is worth communicating, it becomes necessary to write a report.  Reports

are not as detailed as the work.  And your reader may not be

particularly fascinated by the details of the real work of hypothesis

construction, examination of residuals for their pattern, revisions of

hypotheses, and so forth that led to the result that merits a report.

Creativity is a wonderful and peculiar process, but ultimately work

will be judged by the result not than the process.  At this point

convention has greater value than it does in the creative process itself.

And, where it is appropriate this is the time to use a conventional

measure of the strength of the correlation between two variables.  It is

not as useful, as powerful, or as subtle as the examination of residuals,

but it is conventional to summarize linear correlation between two

variables with a number “r”.

“r” is something of a magic number in statistics because r shows up

in at least three contexts, three contexts where the same number makes

sense for three different purposes.  Here, I will introduce r as a measure

of correlation, taking the pedagogical path of introducing r as if for the

first time — as an answer to the question “How strong is the

correlation?”

1
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2  Rules of Evidence

Just about the only kind of correlation that statistical technique is

well prepared to talk about is a straight line correlation.  And there

are three things to be said about any straight line.  In statistics, as in

geometry, a line has an intercept and it has a slope.  What’s left, in

data analysis, is the strength of the correlation or, to use one of the

conventional terms, the “goodness of fit”.  A single number representing

correlation is a clumsy weapon as compared to the human eyeball

inspecting a pattern of residuals, but it is conventional, and no

conventional journal article that uses linear correlation will be without

conventional numbers.  (With luck, you can use the residuals, and show

the residuals, especially if there is a pattern — the serious reader will

appreciate the fact that you have to satisfy two audiences, the reader

who looks for convention as well as the serious reader.)

The basic intuition is that this collection of data points

Y

X

1

2

3

- 1

- 2

- 3

- 3 - 2 - 1 1 2 3

Second Quadrant
Product of 
Coordinates
is Negative

First Quadrant
Product of 

Coordinates
is Positive

Third Quadrant
Product of 

Coordinates
is Positive

Fourth Quadrant
Product of 

Coordinates
is Positive

is not a line.  While this collection of data points

2
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Y

X

1

2

3

- 1

- 2

- 3

- 3 - 2 - 1 1 2 3

Second Quadrant
Product of 

Coordinates
is Negative

First Quadrant
Product of 

Coordinates
is Positive

Third Quadrant
Product of 

Coordinates
is Positive

Fourth Quadrant
Product of 

Coordinates
is Positive

is  a line (shown with six data points and a line.  The data points are
supposed to represent reality, while the line is supposed to represent
what our fertile human imaginations would to “see” in those data).

That is  what I am thinking about as some sort of ideal of linear

data.  But this is the kind of stuff we actually look at:

3
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4  Rules of Evidence

U.S. Population

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

1750 1800 1850 1900 1950 2000

The first thing you do with such data is pay some attention to their

behavior.  A reasonable guess for a transformation of population to a

well behaved variables is the logarithm,  getting us something

initially more linear looking, like

4

Macintosh HD:DA:DA IX:Volume II:300 Correlation March 26, 1999



Correlation 5

Ln(U.S. Population)

0.00

5.00

10.00

15.00

20.00

1750 1800 1850 1900 1950 2000

Now,  after you’ve done all the real work of hypothesis

construction, examining the residuals for pattern, revising hypotheses,

and so forth, it comes time to write a report.   Reports are not nearly as

detailed as the work and, for the report, it is useful to put forth a

summary statistic that answers the question “How linear?”

  To invent a number that will answer that question, “How strong is

the linear correlation?”,  I think, “What property of Figure __ (the

simple line) can I summarize in a number.  When I look at something

truly linear, the number should say “good”; when I look at something

truly  non-linear (such as a circle) the computed number should say bad

(bad meaning -- not at all like the number I get for a line).

The property I am going to work with, the basic intuition, is that a

positively-sloped line will have lots of data points in quadrants I and

III, while it will have very few data points in Quadrants II and IV.

Fortunately, quadrants I and III have a common property that allows

me to detect dominance of these two quadrants.  Specifically, the

product of two coordinates in these quadrants is positive while, in the

opposite quadrants, in II and IV, the product of two coordinates is

negative.  So I can invent a number that adds up the dominance of I and

5
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6  Rules of Evidence

III as compared to II and IV by adding up the products of coordinates.  .

This is not yet the right answer,  not yet, but it is the right start.

Rough intuition for correlation:   

n

∑
i=1

x iy i

Standardizing for number of data points:

That is the basic intuition.  But this would-be index of correlation

has serious flaws that need cleaning up to make it useful.  For example,

data sets come in different sizes, they have different “n’s”.  This index

would misjudge them:  Using this index twelve data points with

exactly the same pattern as six data points would, nevertheless, get

twice the value for correlation.  So, the index is better if it is modified

to present an average instead of a sum.

Rough intuition for correlation:   
1
n

n

∑
i=1

x iy i

Standardizing for the “origin”:

Another problem with this index is that data and even perfectly

linear without ever passing through the origin.  Like the population

data above, the data could all lie in the first quadrant and still show

correlation.   Surely that’s a problem — unless we care to conclude that

all positive numbers are correlated.  So the index of correlation can be

improved by revising the data — moving the origin to the center of the

data.  Within the “least squares” framework, that center  should be at

the mean of x and the mean of y, leading to a modified index

Better intuition for goodness of fit:   
1
n

n

∑
i=1

x i - x y i - y

Example with log population, translating the origin to the mean

puts most of the data into proper quadrants (for the translated data).

6
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Ln(U.S. Population) - Average Ln(U.S. Population)

Year-Average Year

-2.5
- 2

-1.5
- 1

-0.5
0

0.5
1

1.5

2

-100 -50 0 50 100

Standardizing for Scale of the Variables:

Finally there is a problem of scale.  When you simply look at that

graph you see a strong relation.  But when you examine the numbers

themselves, there is an enormous difference in scale between these two

variables, +- 2.5 for one, +- 100 for the other.  That doesn’t affect the

picture but it strongly affects this candidate for the index of

correlation.

The index can be improved again by standardizing the scale:  We

standardize the “scale” of x by computing its standard deviation and

then dividing by its standard deviation.  The standard deviation for

these numbers from 1790 to 1990 is 62.  The standard deviation for these

numbers from 15 to 19 is 1.309.  But in standardized form, subtracting the

mean and dividing by the standard deviation, both standardized

variables have mean 0 and both standardized variables have

7
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8  Rules of Evidence

standard deviation 1 — standardizing both variables to approximately

the same scale.  So, rewriting the numbers by subtracting the mean and

dividing by the standard deviation I get

Better intuition for correlation:    
1
n

n

∑
i=1

x i - x
s x

y i - y
s y

In graphical form for the population data:

(Ln Pop-Average Ln Pop)/Standard Deviation of Ln
Pop

- 2

-1.5

- 1

-0.5

0

0.5

1

1.5

- 2 - 1 0 1 2

(fix graph, It is right, but make the point be making  both scales have
the same ticks and numbers on them -- Excel shrunk one scale ***)

There you see the relation (re-expressed) in what is called

“standard form”.  This example is typical of standard form graphs in

that the graph is centered on zero, the ranges are much the same and, in

8
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Correlation 9

fact, they will usually run in a range of plus or minus two standard

deviations of the mean.  The “imperfection” of this particular

correlation (which is not linear) has expressed itself by a little bit of

“leakage” into the second and fourth quadrants — affecting the xy

products (these will be negative) and numerically diminishing the

overall measure of correlation.

Conventionally we call

  

Xi ≡
x

i
− x 

sx

 

 
 

 

 
  and 

  

Yi ≡
y

i
− y 

sy

 

 
 

 

 
 

standardized variables

With these standardizations, that’s it:  We use the average

cross product of these standardized forms of the original variables as

the measure of linear correlation, naming it “r”:

r =
1

n

n
∑
i=1

X iY i

This “r” is very very important in the standard least squares

approach.  Enjoy the simplicity of the concept and the simplicity of the

equation (in standard form)  — but remember the thread that got us

through the data, in this case through years and log populations, to the

simple “X” and “Y” and r.  Remember the thread because when we get to

the next step in the standard “least squares” approach you have to do

two things:  You have to use these standardized forms, and you also

have to remember how to follow the thread back to the data.  The

number “r” is an abstraction.  And, as always, the numbers must come

back to the data.

9
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10  Rules of Evidence

Exercises

Most statistical programs will compute “r” for you.  Don’t do

that.  For now, compute r by working through the detail:  Compute the

mean for each variable.  Compute the standard deviation for each

variable.  Compute the standardized form for each variable.  And

compute the mean cross product for the pair of variables, that’s the

correlation coefficient, r.

Consider the correlation between U.S. population and year.

Compute the correlation coefficient, r, with and without the use of the

logarithm of population.  What do the correlation coefficients report?

Consider the correlation between body weight and brain

weight.  Compute the correlation coefficient, r, with and without the

use of the logarithms of each variable.  What do the correlation

coefficients report?

10
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1  r:  Regression

r:
Regression

The term “regression” refers to one particular way of estimating a

summary line to fit a cloud of data.  Let me defer the origin of the term

“regression” itself:  There is a solid reason for the connotation of

regressing or moving backward, but the immediate problem is to intro-

duce this particular way of estimating a good line to represent a cloud

of data.  So far, here’s what you know — and this part does not change:

When you have a hypothesis stating that one variable is a linear func-

tion of another variable, at least approximately, you generated

expected values, the values that your “y” variable would have if the

linear hypothesis were correct.  Then you examine the exceptions, the

residuals, looking at both the size of the residuals and their pattern.

You use the size of the residuals both to keep score, how well does the

linear hypothesis fit the data, and as a practical device to be used for

finding the best slope and the best intercept.

The practical operation for finding the best fit is tedious in the

extreme.  I’ve used this tedious procedure for two reasons.  Primarily, it

absolutely forces you to look at the data.  And that, in turn, leads to

hypothesis construction, to treating a first data point or a last data

point as an exception not related to the linear hypothesis, to breaking

the curve into pieces, … to all sorts of intelligent but customized

approaches responsive to the problem at hand.  Looking at the data,

very closely, instead of just committing the data to the computer,

programming a set of predetermined questions, and writing up the

results, simply leads to better data analysis.

The other reason for the tedious procedure is so that now, when I

am prepared to drop the tedium, you will know, nevertheless, exactly

what is going on.  In most of the examples the procedure was to estimate

an intercept and a slope and then compute the mean squared residual

1
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2  Rules of Evidence

determined by this intercept and slope.  Then I re-estimated the

intercept and re-estimated the slope and re-examined the mean squared

residual, accepting new estimates of the slope where the new estimates

reduced this mean squared residual.  That procedure is “regression”

analysis in everything except name.  However it benefits greatly for a

straightforward application of the calculus.  One thing that the calcu-

lus can be very good at is “optimizing”.   Instead of the correct but

tedious procedure you have been using, we can try to set up a measure of

error which is suitable grist for the optimizing devices of the calculus

and say, to our calculus, “optimize:  find the particular slope and the

particular intercept for which the size of the typical residual is

reduced to a minimum.”  This does not treat the important question of

the pattern of the residuals — that remains the proper work for the

human eye, and that is why you must look at the graphs even where

the calculus can be relied upon to remove the tedium.

The calculus can not optimize just any measure of the residuals but

it is excellent at optimizing with respect to the mean squared residual,

working in the context of least squares.  Here we call upon the calculus

to solve a two variable problem, finding a line at the center of a cloud of

data.  And the procedure is exactly analogous to what we did earlier,

finding the center for the values of one variable.  Recall that for one

variable, the “center” is a point to which the data are close.  Using

“close” in the sense of least squares implied that the mean was the

center of the distribution.  Using “close” in the sense of minimum abso-

lute deviation implied that the median was the center of the

distribution.

, using close in  that is close to the stuff of which it is a center.

“Close” can mean different things and the meaning that is historically

easiest to work with — when computers are non existent and calculus is

well developed — is “close in the sense of least squares”.

More formally, for one variable the average size of the variation

around the center (when it is minimized) is called the variance of x:

2
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3  r:  Regression

So the measure of the center that is close to the data in the sense of

least squares is the average.

V [$x ] =
1
n

n

∑ $x –$x
2

i=1

and the center, defined as the point of minimum variance was the

mean.

$x =
1
n

n

∑$x
i=1

For interpretive work, when we need a number  for spread around

the mean that uses the same units as x, we use the standard deviation

s x =
1
n

n

∑ $x –$x
2

i=1

which is also called by the name “root mean squared error”, specifying

the root, the average, and the squares that are visible in the formula.

I am going to use exactly the same logic to find a line which is the

best line in the sense of least squares:  I will define variation around the

line and then choose the line with respect to which that variation is

optimized.  It is absolutely straightforward.  But to make it look abso-

lutely straightforward, I have to return to the use of standardized

variables

X i=
x i – x

s x     and 

Y i=
y i – y

s y

In terms of these standardized forms for x and y it was easy to

construct the argument for measuring  correlation as

3
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4  Rules of Evidence

r xy =
1
n

n

∑
i =1

X iY i

Continuing with these standardized forms of x and y it is straight-

forward to estimate  the best linear summary of the relation between x

and y.   But remember the trail that leads back from the standardized

variable to the original variables:   If, for example I learn something

about X (upper case “X”, the standardized variable), then I have

learned something  about x (lower case “x”, the original variable) with

a little algebra to connect one to the other showing that

X i=
x i – x

s x
⇔ x = s x X +x

which gets us back.

To find the best line, and to let the calculus eliminate the tedium,

I construct the linear hypothesis

Y i= M X i +B

using a caret, “^” over the Yi to indicate that this is not the true value

of Yi .  It is the value that Yi would have if it were truly predicted from

the value of Xi. (with no residual).  And now, just as I did for one vari-

able, I create a measure of variation around the center (variation of the

Y’s around the line), and prepare to have the calculus find the best line.

E M ,B =
1
n

n

∑
i=1

Y i – Y i

2

The error variation depends on the choice of the line, which means

that error is a function of the intercept B and the slope M.  So, I need the

4
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5  r:  Regression

value of B and the value of M for which E is smallest — the best fit line

in the sense of least squares.

The details are a combination of algebra and basic calculus.  Using

the algebra, I want the M and B visible in the equation for error.

E M ,B =
1
n

n

∑
i=1

Y i – M X i + B
2

And now I use the calculus:  The minima of functions occur where

their derivatives are equal to zero (or at an end point).  So, noting that

we are in a peculiar case where M and B are variables (while X and Y

are constants -- they are whatever the data make them) — I will dif-

ferentiate E with respect to B.  I differentiate E with respect to M.  I

will set the two derivatives equal to zero and then solve these two

equation as two simultaneous equations in two unknowns, M and B).

—— But first, let me establish a few things, “lemmas”, that will

make the calculation simple:  First I need to establish the average of a

standardized variable.  If that sounds peculiar to you, if it sounds pecu-

liar to ask for the average of a thing for which I have no data, that’s

good.  It means you are thinking like a data analyst, which is what I

wanted.  But one of the mathematically pleasant (and useful) proper-

ties of standardized variables is that they have an average, always

the same average, as a mathematical fact.

I could tell you the answer, but you should have the habit of prov-

ing these things for yourself, there is no need to look them up in the

learned text of some expert.  How do you get the answer to the question:

What is the average of a standardized variable?  You simply make the

algebraic substitutions and simplify the result.   So, starting with the

definition of the average, here is the average, for any variable, stan-

dardized or not:

X =
1
n

n

∑
i=1

X i

5
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6  Rules of Evidence

Now I make the algebraic substitution, using the definition of the

standardized variable.

X =
1
n

n

∑
i=1

x i– x

s x

The rest is simplification:  I “pull out the common factor” sx

X =
1
s x

1
n

n

∑
i=1

x i– x

and then distribute the summation in order to add up the two terms

separately

X =
1
s x

1
n

n

∑
i=1

x i —

n
1
n

∑
i=1

x

And now, things are just about reduced:  Inside the parentheses, the
term on the left is, by definition, the mean of the original variable x .

X =
1
s x

x —

n
1
n

∑
i=1

x

Inside the parentheses, the expression on the right is adding a constant

to itself  n times, which means it is equal to

X =
1
s x

x —
1

n
nx

which simplifies to

6
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7  r:  Regression

X =
1
s x

x — x

which simplifies further to the answer

X =0

There is the result I need now in order to make subsequent computa-

tions simple.  It tells me that any time I see   X  in an equation I can

substitute the value 0.

That is peculiar if you are thinking about data:  Here is a variable

whose mean is always zero.  But, of course, it is a standardized variable

that was created expressly for the purpose of having a variable that

was centered on its own average.  All I’ve done with the mathematics is

recover this fact about standardized variables  by “proving” that the

average (of a standardized variable) is 0.

In the same spirit, what is the variance of a standardized vari-

able?  If there is any doubt about the answer, I figure it out, as before, by

making substitutions and simplifying the result.  I begin with the

definition.  The variance of any variable, standardized or not, is

    
sX

2 =
1

n
Xi − X ( )2

i=1

n

∑

 Using what I have just established about the mean of X, I use

what I established to simplify the present equation.

    
sX

2 =
1

n
Xi( )2

i=1

n

∑

Now I am ready for substitution, using the definition of X.

    

sX

2 =
1

n

x
i
− x 

sx

 

 
 

 

 
 

2

i=1

n

∑

7
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8  Rules of Evidence

This invites simplification by factoring-out the denominator

within the parentheses

    
sX

2 =
1

sx
2

1

n
xi − x ( )2

i =1

n

∑
 

  
 

  

And now if you will check your definitions, you will recognize the

thing within the square brackets on the right.  By definition, it is the

variance.  So:

    
sX

2 =
1

sx
2

sx

2[ ]

From which it follows

    sX

2 = 1

There is the second result I need now in order to make subsequent

computations simple.  It tells me that any time I see     sX

2
 in an equation I

can substitute the value 1.  (

With these two lemmas in hand, I am ready to work on the partial

derivatives of E(M,B), to find the best fit line in the sense of least

squared error with respect to the variable Y.

 I will differentiate E with respect to B and E with respect to M,

producing two expressions.  Eventually I will set both expressions equal

to 0 creating two simultaneous equations that I will solve for B and M.

But first, I simplify.  Substituting the formula for E, I write

8
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9  r:  Regression

    

∂

∂B
E M,B( ) =

∂

∂B

1

n
Yi − MXi + B[ ]( )

i =1

n

∑
2 

 
  

 
 

∂

∂M
E M,B( ) =

∂

∂M

1

n
Y

i
− MX

i
+ B[ ]( )

i= 1

n

∑
2 

 
  

 
 

 

 
  

 
 
 

Knowing that the derivative of the sum is the sum of the

derivatives, the pair of expressions becomes

    

∂

∂B
E M,B( ) =

1

n

∂

∂B
Yi − MXi + B[ ]( )

i =1

n

∑
2 

 
  

 
 

∂

∂M
E M,B( ) =

1

n

∂

∂M
Y

i
− MX

i
+ B[ ]( )

i =1

n

∑
2 

 
  

 
 

 

 
  

 
 
 

 Using the chain rule to deal with the squares,

    

∂

∂B
E M,B( ) =

1

n
2 Y

i
− MX

i
+ B[ ]( ) ∂

∂B
Y

i
− MX

i
+ B[ ]( )

i =1

n

∑
 

 
  

 
 

∂
∂M

E M,B( ) =
1

n
2 Y i − MX i + B[ ]( ) ∂

∂M
Y i − MX i +B[ ]( )

i =1

n

∑
 

 
  

 
 

 

 
 

 
 

Only one of the expressions inside the nested parentheses at the
right has the variable B in it, and only one has an M, so the
derivatives simple again, leaving

9
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10  Rules of Evidence

    

∂

∂B
E M,B( ) = −2

1

n
Y

i
− MX

i
+ B[ ]( )

i=1

n

∑
 

 
  

 
 

∂
∂M

E M,B( ) =−2
1

n
Yi − MXi + B[ ]( ) Xi( )

i =1

n

∑
 

 
  

 
 

 

 
 

 
 

Eventually, I have to set both of these expressions equal to zero

and solve the simultaneous equations for B and M.  But first, I use the

lemmas to simplify these expressions.

Recalling that the derivative of the sum (within the parentheses)

is the sum of the derivatives And noting that differentiating with

respect to B is particularly simple I get

    

∂

∂B
E M,B( ) = −2

1

n
Y

i
i =1

n

∑
 

 
  

 
 −

1

n
MX

i
i=1

n

∑
 

 
  

 
 −

1

n
B

i=1

n

∑
 

 
  

 
 

 

 
 

 

 
 

∂
∂M

E M,B( ) =−2
1

n
XiYi

i =1

n

∑
 

 
  

 
 −

1

n
MXi

2

i =1

n

∑
 

 
  

 
 −

1

n
BX i

i=1

n

∑
 

 
  

 
 

 

 
 

 

 
 

 

 
 

 
 

factoring out some the M’s and the B’s

    

∂

∂B
E M,B( ) =−2

1

n
Y

i
i =1

n

∑
 

 
  

 
 − M

1

n
X

i
i=1

n

∑
 

 
  

 
 − B

1

n
1

i =1

n

∑
 

 
  

 
 

 

 
 

 

 
 

∂
∂M

E M,B( ) =−2
1

n
XiYi

i =1

n

∑
 

 
  

 
 − M

1

n
Xi

2

i= 1

n

∑
 

 
  

 
 − B

1

n
Xi

i=1

n

∑
 

 
  

 
 

 

 
 

 

 
 

 

 
 

 
 

That shows recognizable terms which are means and variances of

standardized variables
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11  r:  Regression

    

∂

∂B
E M ,B( ) =−2 Y ( ) − M X ( ) −B

1

n
n

 
 
  

 
 
 
  

 
 

∂

∂M
E M,B( ) =−2

1

n
X

i
Y

i
i =1

n

∑
 

 
  

 
 − M s

X

2( ) −B X ( )
 

 
 

 

 
 

 

 
 

 
 

That allows a sharp simplification to

    

∂
∂B

E M, B( ) = 2B

∂
∂M

E M,B( ) =−2
1

n
XiYi

i =1

n

∑
 

 
  

 
 − M

 

 
 

 

 
 

 

 
 

 
 

And the one complicated looking term is also recognizable.  The

context is different, but this is the “r” that has been used, earlier, as a

measure of correlation.

    

∂

∂B
E M, B( ) = 2B

∂

∂M
E M,B( ) =−2 r − M( )

 

 
 

 
 

Now I go back to the game plan:   I set these two partial

derivatives equal to zero.

    

2B = 0
−2 r − M( ) = 0

   

Now, finally, I am rarely going to find a pair of simultaneous

equations more easily solved than these.  The first tells me B=0.  The

second tells me M=r.

11
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12  Rules of Evidence

    

B = 0
M = r{

(*** Figure out how to get the Equation editor to align those

equations to the left.)

Don’t miss the simplicity of these statements:  They say that B is

always 0.  The intercept of the best line for standardized X and

standardized Y is always  0 — as you saw it in the graph where the line

passed at least close to zero.

And while the slope is not simple, it shouldn’t be:  Something in

this equation ought to depend on data.  It is the slope.  And while it

isn’t simple it is very nice to see “r” recurring.   Previously r was intro-

duced as a measure of correlation.  Here, the same r is the slope of the

best fit line in the sense of least squares for predicting Y as a linear

function of X:

The fruit of all the standardization and all the math is that, in

this form, it is simple.  In standardized form the best line (best in the

sense of least squares) is always

Y = rX

And now, back to data:  What does this statement about X and Y

say about the data variables, x and y, with which I began this odyssey

into the optimization of a straight line.  The formula for the best line

for x and y is more complicated, but I don’t have to remember it.  I just

remember the standardized equation and make the substitutions.  \

Starting with the basic equation:

Y i = r X i

12
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13  r:  Regression

and undoing the standardization

y i - y

s y
= r

x i - x

s x

Or

ˆ y i − y ( ) = r
sy

sx

xi − x ( )

Cleaning it up, to show x multiplied by a slope and to show what

is added (the intercept) at the end (enclosing the slope and the

intercept in parentheses

ˆ y i = r
sy

sx

 
 
  

 
 xi + y − r

sy

sx

x 
 
 
  

 
 

That gives you the best slope and the best intercept, best in the

sense of least squares.  Take your choice, tedious minimization on the

spread sheet or one shot, here’s the answer, using the calculus to tell

you how to convert the means, standard deviations, and the correlation

coefficient r into the best answer.

13
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14  Rules of Evidence

Variance of Data
= Variance of Signal + Variance of Noise:

How good is the best?

We’re not quite done:  When I asked for the center of the data,

center in the sense of least squares, I asked two questions.  First I asked

which center was the best.  Then I asked, “How good?” and got the

variance and the standard deviation as the answers.  Here, first I

asked what was the best line, best in the sense of least squares.  Now I

ask “How good?”  And I will get the variance and standard deviation

of the residuals (whose average is zero).  In addition, there is a fringe

benefit:  The answer to that question is so “nice” in a mathematical

sense that it leads to certain conventional presentations.  It is not

obvious that the mathematical “niceness” of the least squares method

should way heavily among the priorities of the data analyst choosing

a method but, in use, it does.

So,  resuming the discussion.  In order to choose a best fit line, best

in the sense of least squares, here is what I minimized:

E M ,B =
1
n

n

∑
i=1

Y i – Y i

2

How big is it, at its minimum?  To answer the question, I just

substitute what I know

E M ,B =
1
n

n

∑
i=1

Y i – rX i
2

14
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15  r:  Regression

and I simplify it — continuing to known attributes of standard variables

(mean 0, variance 1).

Squaring

E M ,B =
1
n

n

∑
i=1

Y i
2
– 2rX iY i + rX i

2

Distributing the summation through the terms

E M ,B =
1
n

n

∑
i=1

Y i
2
– 2r

1
n

n

∑
i=1

X iY i + r
21
n

n

∑
i=1

X i
2

And in this form I see the now-familiar terms.  The term on the left

uses the variance of a standardized variable.  That’s one.  The term on

the right uses the variance of a standardized variable.  That’s one.

And the term in the center uses the mean product, for which we have

the symbol r.  So

E M ,B = 1 – 2rr + r
2

And that is the size of the error:  It is always

E M ,B = 1 – r
2

Once again, the story is told by r.  r is the measure of correlation.  r

is the slope of the regression line in standard form.  And, now, r is the

key quantity in assessing the size of the error.

The fringe benefits of this equation lead to mathematical nice

results.  For example, from this equation for the size of the error, it

follows that r has absolute limits of minus one and plus one.  This

follows because I  know one thing for sure about the squared error:

Squared error can not be negative.    Therefore zero is less than or equal

to the error

15
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16  Rules of Evidence

0 ≤ 1 – r
2

And that equation tells me about the limits of correlation:  Because

zero is less than or equal to one minus r-squared,

r
2
≤ 1

And as a consequence r itself is bounded by the interval plus-or-

minus 1

–1 ≤ r ≤ 1

I can also figure out the limits of a bad correlation.   How weak can

a correlation be?  You would like the English, “no correlation” to corre-

spond to a mathematics that says “zero correlation”.  But if it is true, it

has to be proved.  So, suppose that X doesn’t help at all as a predictor

of Y?  Suppose that I always predict   Y  regardless of X.  Suppose that

whatever the value of X, I always predict that Y will be equal to its

mean — the number that is close to all the y’s, but gets no help from x?

In this sad case the error is

E M ,B =
1
n

n

∑
i=1

Y i – Y
2

This formula is recognizable:  Assuming that the prediction is

always   Y , this formula for the error is identical to the variance of the

standardized variable Y.  The error is .   And since the error is 1, I

substitute this value into the equation and it determines a value for r.

Thus, in the case that X is useless for predicting Y,

1 = 1 – r
2

And

16
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 r = 0

That gives me the value of r for no correlation.  I can also ask for

the value of r when the line is a perfect fit to the data (no non-zero

residuals).  The value of r had better be plus or minus 1, but again I have

to prove it.  So, suppose that the error vanishes

0 = 1 – r
2

Sure enough, solving that equation for r,  r must be plus or minus 1.

And finally, one more piece of the puzzle that leads to the stan-

dard jargon:  Finally, I want to look at the three pieces:  Data, Signal,

and Noise and show that the pieces add up.  I already know

Data = Signal + Noise

That was an assumption.  Now I am going to demonstrate something

that is not an assumption.  I am going to demonstrate that the variance

of the data is equal to the variance of the signal plus the variance of

the noise.   When I can demonstrate that I will be able to phrase sen-

tences that sound very good to the data analyst.  I will be able to say

how much of the data is explained by the hypothesis about the signal

— which means “How much of the variance of the data is the variance

of the hypothetical signal?” or letting the language drift into conven-

tional form “What percent of the variance is explained  by the

hypothesis?”

The first step is to demonstrate the equation

Variance of the Data = Variance of the Signal  + Variance of the Noise

(where “variance of the signal” means variance of the values that

would be predicted using a linear equation for y as a function of x).

17
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18  Rules of Evidence

The variance of the data is simply the variance of Y, the variable

we are trying to describe as a function of X.  So

Variance of Data   =   

1
n

n

∑
i=1

Y i
2

Now let me add and subtract a useful term that leaves the sum

unchanged:

Variance of D ata =
1
n

n

∑
i=1

Y i - rX i + rX i
2

Regrouping

Variance of D ata =
1
n

n

∑
i=1

Y i - rX i + rX i
2

and then squaring, I get three pieces

Variance of D ata =
1

n

n

∑
i=1

Y i - rX i
2
+2r

1

n

n

∑X i
i=1

Y i - rX i +
1

n

n

∑
i=1

rX i
2

Now two of these three pieces look familiar:  The term on the left

is the variance of the residuals.  The term on the right, with compo-

nents rXi , is the variance of the predicted values of Y (around an aver-

age prediction of zero).  That leaves “stuff” in the middle which, we

hope, is zero.

Variance of Data = Variance of Error  +  stuff  +  Variance of Signal

But it must be checked.  So, starting at 1/n

18
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19  r:  Regression

    

1

n
Xi Yi − rX i( )

i=1

n

∑ =
1

n
XiYi −

i=1

n

∑ 1

n
rX i

2

i=1

n

∑
I recognize both of these expressions, factoring r from the second

term

    

1

n
Xi Yi − rX i( )

i=1

n

∑ = r − r
1

n
Xi

2

i =1

n

∑

from which it follows

    

1

n
Xi Yi − rX i( )

i=1

n

∑ = r − r

and

    

1

n
Xi Yi − rX i( )

i=1

n

∑ = 0

This gets rid of the middle term, its value is zero, and leaves the target

equation

Variance of Data = Variance of Error  +  Variance of Signal

or

1 = (1-r2) + r2

where

the Variance of Data is  1

the Variance of Error is (1-r2)

and

the Variance of Signal is r2

19
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20  Rules of Evidence

or in another technical expression for the same thing

Total Variance = Unexplained Variance + Explained Variance1

This leads to phrases that you will read over and over again in

statistical reports, phrases like “The correlation explains 40% of the

variance.”   The phrase refers to the fact that the total variance is 1

and that the unexplained variance and the explained variance add up

to one.  so if the variance of the predicted values is .40 and the variance

of the residuals is .60, you may say (with somewhat dubious linguistic

precision), 60 percent of the variation is unexplained.  Or, the

prediction explains 40 percent of the variance.

1 Over and over again here I am on thin ice referring to these things
as variances:  After all, variances are variations around a mean, and I
am not showing a mean in this formula.  To clean it up, I have to show
that the missing mean is zero.

20
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21  r:  Regression

Exercises

1. Look at the data for Brain Weight and Body Weight.   Write a

short statement describing the quality of the prediction in conventional

terms, using r and  r2.

Now explore the limits of the conventional claims that one

variable “explains” another:

2. Repeat the first problem using brain weight and body weight,

without logs.  Compare this to the first answer (using logs).  The

answers are different.  Reconcile them.

3. Compute some hypothetical data where your x goes from 1 to 10

and your y increases multiplicatively (below).  You know for certain

that these y’s are not a linear function of these x’s — in this case y =

1.1(x-1) .  But, as a thought experiment, be dumb:  Use a linear equation,

use regression, to predict y from x.  Use r and r2 to report how well x

explains y.  Reconcile the superficial implications of the r and r2 with

the fact that anyone claiming that this y is a linear function of this x

has clearly failed to explain the relation at all.  (The word “explain”

is rich with ambiguity.  It has many meanings.)

X Y
1 1
2 1.1
3 1.21
4 1.331
5 1.4641
6 1.61051
7 1.771561
8 1.9487171
9 2.14358881

10 2.35794769
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Choices:
The  Line?  Which  Line?

The term “regression” refers to one particular way of estimating a

summary line to fit a cloud of data.   There are others.  In fact, while

persons beginning the study of data analysis sometimes think of it as an

intellectual rock:  “here is how it’s done”, the truth is that the methods

themselves remain the subject of active research — particularly with

regard to methods of matching summary lines to clouds of data.  There is

no way that a person can be a responsible data analyst without realizing

that there are alternative methods on the menu and that there are choices

to be made — responsibilities that can not be ducked by delegating the

choice to the computer, or by adopting the choices of a previous writer,

or by referring to a text book,.  Choice should also teach the humility to

avoid overstating what the data have “told” you:  It is difficult to believe

results to two or three decimal digits, and perhaps to base policy

decisions on fine comparisons among results — if you know full well

that different methods would have given somewhat different numbers

and if you know full well that there is no clear and obvious argument

proving that one is right and the other is wrong.

Among the options available for fitting lines to the data, the first

and most obvious option is “none of the above”.  Very few real world

examples, allow a routine application of any line fitting technique. In

earlier chapters the relation between fertilizer and crop yield (four data

points), the relation between time and soy bean plant length (seven data

points), and the relation between time and the size of the population of

the United States (twenty-one data points) — were all routine prosaic

examples.  Yet none of the analyses would have been well served by

dumping all of the data into the computer and waiting for regression

procedures to come up with a description.

Another option is created by the choice between least squares

statistics and minimum absolute deviation statistics.  Minimum absolute

1
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2  Rules of Evidence

deviation statistics are rarely used, as compared to least squares

statistics, probably for reasons of custom and mathematical ease.

OLS versus OLS versus OLS :

Ordinary Least Squared Error for Y

Versus Ordinary Least Squared Error for X

Versus Orthogonal Least Squared Error

Another option is both more subtle and more drastic in its effect on

data analysis.  I used least squares to minimize the residuals of one of the

variables, always “y”, always represented vertically on the graph.  For

the moment I acted as if that were the obvious and only thing to do.

Now, let me demonstrate alternatives to the fitting of “y”.

To demonstrate let me use these stylized hypothetical data

describing combinations of income and education for seven individuals.

Person Years of

Education

Income

1 12 $20,000

2 12 $30,000

3 16 $20,000

4 16 $30,000

5 16 $40,000

6 20 $30,000

7 20 $40,000

Alright:  The one variable distribution is symmetrical in each case —

likely I need no re-expression (Real data on income and education would

not be so well-behaved — I am simplifying, as before, to make the point

transparent.)

So, the means are _____;  the standard deviations are _____.  Then

computing the standardized variables, and then computing the mean

“cross product” of the standardized variables, I get r = .43.

2
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Person Years

 of

Edu-

cation

Income Predicted

Income

(Observed
–

Predicted)

Standardized

Education

Standardized

Income

Product of

Standardized

Variables

1 12 $20,000 $25,000 –$5,000 -1.3228757 -1.3228757 1.75

2 12 $30,000 $25,000 $5,000 -1.3228757 0 0

3 16 $20,000 $30,000 –$10,000 0 -1.3228757 0

4 16 $30,000 $30,000 $0 0 0 0

5 16 $40,000 $30,000 $10,000 0 1.3228757 0

6 20 $30,000 $35,000 –$5,000 1.3228757 0 0

7 20 $40,000 $35,000 $5,000 1.3228757 1.3228757 1.75

Average 16 $30,000
0.43

Stand

dev.

3.024 $7,559.289

Remembering that, in standardized form, the regression equation

(best fit, predicting Y from X, best in the sense of least squares) is

Y = r X

And then substituting to unstandardize:

  
y = r

sy
sx( )( )x + y − r

s y
sx( )( )x ( )

So the regression equation for income as a function of education is:

Income = ($1,250 / year) * (Years of Education) + $10,000.

3
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The regression equation says that a hypothetical person with zero

years of formal education would have had an income of $10,000.  Other

people would have that $10,000 plus $1,250 for each year of formal

education.  The graph is as shown below.

Income

$20,000

$30,000

$40,000

12 16 20

But now I want to show you a problem:  Not so much a problem as

it is a requirement that you understand exactly what you are doing when

you use a regression line.  The analysis I have just completed tells you

how much money you can expect (on the average) for another year in

school.  Answer $1,250.

But now, let me ask a different question of the same data.  Now you

are a consultant to an advertising agency.  Your agency is working on

different products, targeted to people with different levels of income.

And so they ask you, if  we are targeting consumers whose income is in

the neighborhood of $20,000 range, what level of education should we

expect of these consumers?   And if, by contrast,  we am targeting

consumers with incomes in the neighborhood of $40,000 group how

many years of formal education should we expect, on the average.  Here

it is

X = r Y

And then substituting to unstandardize:

  
x = r sx

sy( )( )y + x − r sx
s y( )( )y ( ) So:

4
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Years of Education = (.0002 years / dollar) * (Income) + 10.

Or, making a concession to my intuition, which has trouble with

values like .0002 years per dollar, I’ll write the equation in thousands of

dollars:

Years of education

= (.2  years of education per thousand dollars) * income (in thousands) + 10,85 years.

or in tens of thousands of dollars,

Years of education

= ( 2  years of education per ten thousand dollars) * income (in tens of thousands) + 10.85 years.

Years of Education

0

2

4

6

8

10

12

14

16

18

20

$0 $5,000 $10,000 $15,000 $20,000 $25,000 $30,000 $35,000 $40,000

Now, I want to point out one not too minor detail:  As you can see, I

have switched axes:  In one graph I have education left to right, used to

5
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6  Rules of Evidence

predict income, bottom to top.  In the last graph I have income left to

right, used to predict education, bottom to top.  Let me combine the two

of these in one graph, superimposing one upon th other:

Income

$0

$10,000

$20,000

$30,000

$40,000

0 4 8 12 16 20

These are two different lines:  Same data, different lines.  When I

posed two different questions of the one set of data I got two different

answers.

That is very important because it means that neither of these

regression lines is an objective description of the data.  Neither

regression line can claim to be “the facts and nothing but the facts —

don’t argue with the numbers.”  No, depending on the question that I,

the analyst, chose to ask one of these answers, or the other of these

answers (or neither of these answers) is correct.

Does it matter?  Yes, a great deal.  Expressing these two slopes in a

common unit, one slope says $1,250 per year.  The other says $5,000 per

year of education — separated by a factor of four.

6
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There is nothing wrong with either of these equations.  Each is the

right answer to the question that was asked.  Discuss:  If you want to

predict Income from education, then you should minimize errors with

respect to predictions of income.  You will get the line with slope $1,250

per year.  If you want to predict Education from Income, then you

should minimize errors with respect to predictions of Education.  You

will get the line with slope 2 years per $10,000 (corresponds to $5,000 per

year).   But you have to be clear that prediction is not the same as

objective description.  (Again, neither is an objective description of the

data.)

To make the point by reducing it to a possible absurdity, consider

that we have data reporting the physical heights for pairs of brothers.

Randomly, I will assign the height of one of the two brothers as “x” and

assign the height of the other brother as y.  Now, I ask you to use the

height of one brother, which I will tell you, to predict the height of the

other brother.  Here is the pattern.  If I tell you that one brother is 5’10”,

about average for these hypothetical data, you can reasonable expect his

brother to be about average, about 5’10”.  If I tell you that one brother is

4’10” considerably below average, you can reasonably expect his brother

to be considerably below average, but not so extreme.  You might expect

something like 5”.   And if I tell you that one brother is 6’10”,

considerably above average, you can reasonably expect his brother to be

considerably above average, but not so extreme.  You might expect

something like 6’8”.

This is the logic of “regression”:  If you have somebody who is

above average, you expect a result that is above average — but a little

closer to the mean:  “regression toward the mean of the population”.

Now, let me try to confuse you while you try to resist:  Suppose I

report to you that one brother is 6’8”.  You can reasonably expect this tall

man to have a tall brother — but not quite so extreme:  Perhaps 6’6”.

7
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That means that men who are  6’10” would be predicted to have brothers

who are, on the average 6’8”.  And men who are 6’8” would be expected

to have brother who are, on the average, 6’6”.

That sounds strange:  It sounds like I am saying that a man who is

6’10” will have a brother who is 6’8”.  But a man who is  6’8” will have a

brother who is 6’6”.  That  is impossible, but that is not what I am saying:

I am saying that the average in one case is 6’8” and the average in the

other case is  6’6”.  That is possible and that is regression analysis.

There is a third demand I can make of these data and it leads to a

third answer.  Suppose that these data are part of a larger data set, pairs

of persons different by birth order, sex, nutrition, whatever.  Then in this

one case where the persons being compared are, in fact, the same except

for random assignment to group “x” or group “y”, I want the data

analysis to give me the numerical equivalent of the English statement

that they are the same except for random variation.

The answer to this question come by thinking about “the line that is

closest to the data”.  This line is descriptive.  It contains no built in

assumption about predicting y from x or x from y.  It is the line that is

closest to the data.  As in ordinary Euclidean geometry,  the distance

between a point and a line is the length of the perpendicular from the

point to the line.  This is the Orthogonal Least Squares Line and it has the

equation

Y = X             (the r has vanished).

That looks too simple in standardized form, but restoring reality by

unstandardizing, the descriptive (orthogonal least squares best line is)

y =
sy

sx
x + y –

sy

sx
x

When you do not, yourself, wish to impose order on the variables,

when you are not trying to predict one from the other. choose the

orthogonal least squares line to treat the variables symmetrically.  It is

8
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entirely possible to use several procedures on the same data — you

protect yourself and your reader by saying what you have done and

providing sufficient data and numbers to allow the reader both to

reproduce what you have done and to complete alternative analysis.

This is not simply a matter of courtesy.  It is a necessity because in

perfectly ordinary data different estimates of slope, for example, will

differ from each other by factors of three or ten or more — depending on

the choice of method.  You maintain integrity, first, by making it

absolutely clear what you have done and, second, by equipping your

reader to explore the paths you have not taken.

9
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Education and Income 1993:
Stream of Evidence

One of the truisms of modern life is that higher education is

associated with higher economic return to the individual.  It is, of course,

a complicated relation:  Even the averages will be affected by age, sex,

occupation, parents’ backgrounds and other variables.  And within each

group defined by age, sex, occupation, and so forth, there will be

considerable variation around the average.  But the general nature of the

relation, more education more money, is so widely understood and,

presumably, so strong that it is worth beginning with the unadorned

data:  Education by Income.  These data are from the 1993 General Social

Survey from the National Opinion Research Center.  The data for 1607

adults indicate education and income (plus about 400 other indicators),

where “education” is defined as years of school completed, and the

income indicator used here is the respondent’s personal income (not

household income or wealth).  The responses for education range from

zero years of education to  20 while income is presented in twenty-one

categories ranging from zero income to $75,000 per year-plus.

Here are the first 10 rows of my spread sheet.  It demonstrates some

of the idiosyncrasies of the culture of data analysis.  (Data analysts, like

another other profession have a culture, and like any culture it develops

lags, which are holdovers from older technologies and just plain un-

thought-out practices that have become customary.)

Note, for example, the names of the variables “EDUC” and

“RINCOM91”.  Not very long ago the costs of most things involved with

computers were so high that it was the practice to cut corners.  Little

things, like exclusive use of upper case letters, saved money.

Conventionally names were cut to a maximum of 8 characters, hence

“EDUC”, rather than the English “Education”, and “RINCOM91”, which

is the Respondent’s Income in 1991.  Add to that the advantage of giving

variables the same name this year as you they were given last year and

1
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the year before, and the result is the chopped English commonly used for

the names of variables.

Item EDUC RINCOM91 Lookup Income Ln of Income
(base e)

1 16 18 $45,000 10.71
2 12 14 $23,750 10.08
3 12 16 $32,500 10.39
4 14 21 $100,000 11.51
5 14 21 $100,000 11.51
6 15 17 $37,500 10.53
7 15 13 $21,250 9.96
8 12 13 $21,250 9.96
9 17 3 $3,500 8.16

10 12 15 $27,500 10.22

For the same reasons of practical necessity, necessity in an earlier

era of computing, you didn’t write $45,000.  That would take seven

characters, including the comma.  Instead, you wrote “18”.  The meaning

of “18” offers nothing to the intuition of the data analyst, but “18” as

compared to “$45,000” saves five characters.  So it was the practice to

write “18” in the data set and create a look up table (in a “codebook”)

that decoded the symbols into data.  Here for example, the lookup table

was:

              0 M  NAP              13    $20000-22499
              1    LT $1000              14    $22500-24999
              2    $1000-2999              15    $25000-29999
              3    $3000-3999              16    $30000-34999
              4    $4000-4999              17    $35000-39999
              5    $5000-5999              18    $40000-49999
              6    $6000-6999              19    $50000-59999
              7    $7000-7999              20    $60000-74999
              8    $8000-9999              21    $75000+
              9    $10000-12499              22    REFUSED
             10    $12500-14999              98 M  DK
             11    $15000-17499              99 M  NA
             12    $17500-19999

2
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Note the intentional lack of correspondence between the symbol “0”

and an income of zero or between the symbol “0” and the lowest

category of income.  This custom dates back to a time when the absence

of data might leave no mark on the data sheet.  It is absolutely routine for

respondents to refuse one or more questions (and, for that matter, to

refuse the whole questionnaire).  So you have to be prepared to

distinguish between no datum and no income and you have to be

prepared to catch mistakes when the distinction breaks down.  So, it

seemed wise to minimize errors by not using 0’s as data.  Combine this

confusion with an equally careful practice of intentionally attaching

nonsense symbols to nonsense data and you have a mess.  (Introducing

“99” for No Answer means that if, somehow, that symbol “99” were used

as data it would stand out in a stem and leaf or in a two-variable graph.

The data analyst will see the steam and leaf, or the graph, know that

something is very wrong, and quickly track down the error.)

There is no obvious convention for these symbols, so each study

requires you to “look up” the symbols in the codebook and find out what

they stand for.  Here the symbol “0” stands for “M NAP”, that is,

“Missing - Not Applicable.”  Here “22” stands for “Refused”,  “98”

stands for “Missing - Don’t Know”, and “99” stands for “Missing  - No

Answer.”

You want all of this detail about “non-responses” for three reasons.

First, you want to know how many people responded.  The question

may have been asked of 1,500 people.  That does not mean that 1,500

people responded.  Second, non-responses are very likely be associated

with particular values (usually extreme values) which would mean, in

this case, that very low incomes and very high incomes are less likely to

be recorded).  And third, the reasons for non response are likely be

associated with other variables.  So you have to be alert to the possible

divergence between observed correlations (using the data) and true but

unknown correlations  that you would have seen if everyone had

responded.

You also see the custom of placing numbers like income in

categories.  There are arguments for and against the use of categories

3
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rather than raw income numbers.  But whatever the argument, the use of

categories, rather than income numbers, has consequences.  In this case it

means that all people with incomes above or equal to $75,000 dollars are

the same for purposes of analysis:  $75,000, $100,000, $1,000,000 — all

equal.  We can argue whether or not that is an appropriate decision (a

debate sometimes described as the “One person, one vote” versus the

“One dollar, one vote” debate), but with these data the decision has been

made, the detail is gone, and it can not be restored.

Now, on to the analysis or, at least to the preparations for the

analysis.  Using my spread sheet program’s “lookup” function I have re-

expressed income with approximate values appropriate to each category.

I have substituted a nonsensical -999999 for all forms of missing data,

and then removed all missing data to the bottom of the spread sheet by

sorting the data.  For income that removes 539 of the 1607 respondents,

about one-third missing.  For education that removes 8 respondents.

These deletions are certainly disconcerting and hard to check

without analyzing the attributes of these people with respect to other

variables  (Are they disproportionately men or women?  Are they

disproportionately young, old, or in some other age group?  Are they

simply unemployed or unemployed outside the household?)  The

briefest check, within these data shows that the 539 missing income

population has a mean education of 12.0 years of education as compared

to 13.1 years for the whole 1607 population.  Their standard deviation for

education is 3.1 as compared to 3.0.  That tells me that the histograms of

the two distributions could look very similar, with the distribution of

incomes offset to lower education.  And although the difference is small,

it is probably real, not the luck of the draw.1

1 I find that I am resorting to statistical knowledge that I have not
included in the text.  So, let me explain, or at least start to explain the
difference between the standard deviation of the values of education and
the standard deviation of means of the values of education.  The mean
education in this population is 13.1 years.  That is a fact resulting from
the obvious computation.  The standard deviation of values around this
mean is 3.0 years.  Again, this is a fact resulting from the obvious
computation.

4
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For analysis of the data using both education and income, this

reduces the number of adults from 1607 to 1017, removing 40% of the

data.  Presuming that these “missing” respondents are not a random

sample of all respondents I am worried.  But I have no effective way of

But consider:  Suppose that I went out and collected new data for
another 1607 people.  I would get another mean and it would almost
certainly be close to but slightly different from the mean I found in the
first sample of 1607.  If I did this again and again, getting a new sample
and computing the mean in each sample I would get a lot of means, most
of them close to the original but slightly different.

These means themselves would have a mean and a standard deviation.
And if I were comparing one sample to another, asking whether one of
these samples has a mean that is too much larger than the others, or too
much smaller than the others to be ignored, then I would also need to
know the standard deviation of the mean.

That is close to what we are doing here.  We are comparing one group of
1607 with a mean of  13.1 years of education to a subset of 539 people
who have a mean of 12.0 years of education.  Are these two means close?
I narrow the question by asking whether or not these two means are
close as compared to the standard deviation of the mean.

 Fortunately, statistics is able to estimate the standard deviation of the
mean without the need to actually perform the experiment, without
actually collecting new data and computing the mean, again and again
and again.  We know that the standard deviation of the mean is
approximately the standard deviation of the values divided by the
square root of the number of values.   Here the standard deviation of the
subset is 3.1.  The number of values in the subset is 539.  The square root
of 1599 is 23.2.  So the standard deviation of the mean is 3.1/23.2 = .13.
That is my estimate for the standard deviation of the mean itself.

The difference between these two means is 1.1 year of education which is
more than 8 times greater than the standard deviation of the mean.  So,
the difference in education between the subset and the whole is small, 1.1
year of education.  But it is almost certainly a real difference, the
difference is small but greater than I would expect  just by the luck of the
draw.

5
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worrying about these numbers here.  The correct way to check what is

special about the missing people is to considering other variables

available in the study — which is well beyond the scope of this exercise.)

6
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The education variable (for the 1017 people) has decidedly non-bell-

shaped exceptions:
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These bumps are characteristic of education distributions, with

bumps at the numbers of years that correspond to degrees.  A bump at

completion of grade school is no longer apparent in 1993.  But there is a

bump at 12, usually completing a high school degree in the U.S.  and

there is a bump again at 16, a college degree.

Is it symmetrical?  That is a bit tricky because I don’t really know

how I want to qualify this question in order to accommodate these

perfectly reasonable bumps.  Let me take a look

7
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Mid Values, Years of Education
Count,
n=1015

From
bottom

From Top MidValue

508 13 13 13 Median

254.5 12 16 14 Mid Quartile

127.5 12 17 14.5 Mid Eighth

64 10 18 14 Mid Sixteenth

32.5 7.5 19 13.25 Mid Thirty-Second

Mid Values, Square Root of Years of Education
Count,
n=1015

From
bottom

From Top MidValue

508 3.61 3.61 3.61 Median

254.5 3.46 4 3.73 Mid Quartile

127.5 3.46 4.12 3.79 Mid Eighth

64 3.16 4.24 3.57 Mid Sixteenth

32.5 2.73 4.36 3.54 Mid Thirty-Second

Mid Values, Natural Log of Years of Education
Count,
n=1015

From
bottom

From Top MidValue

508 2.56 2.56 2.56 Median

254.5 2.48 2.77 2.63 Mid Quartile

127.5 2.48 2.83 2.66 Mid Eighth

64 2.30 2.89 2.60 Mid Sixteenth

32.5 2.06 2.94 2.50 Mid Thirty-Second

There are enough values here to allow me to pursue quite a number

of mid values without running out of data.  The median, mid quartile

and mid eighth do show a trend.  But the mid sixteenth and mid thirty-

second show the reverse.

I know that this is a bit of a mess, and I don’t trust the top number

— there are more than a few of us with greater than 20 years of

education but we seem to have been left out or lumped in with our

relatively uneducated friends with merely 20 years of education.  So I

think that the distribution has more of a tail than it is able to show with

8
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these categories.  Checking to see whether a re-expression would fix up

the trend among the first three mid values, the curious result is that all

three sets of mid values show the same thing.   So the test for symmetry

is beautifully indeterminate, quite willing to accept the original numbers,

or the square roots, or the logs, or more.  That is no help at all.  I will start

simply, using years of education.

The same procedure applied to the income distribution of this

limited population yields

Mid Values, Respondent’s Income
Count,
n=1015

From
bottom

From Top MidValue

508 $21,250 $21,250 $21,250 Median

254.5 $11,250 $32,500 $21,875 Mid Quartile

127.5 $5,500 $45,000 $25,250 Mid Eighth

64 $2,000 $67,500 $34,750 Mid Sixteenth

32.5 $2,000 $100,000 $51,000 Mid Thirty-Second

Mid Values, Square Root of Respondent’s Income
Count,
n=1015

From
bottom

From Top MidValue

508 145.77 145.77 145.77 Median

254.5 106.07 180.28 143.18 Mid Quartile

127.5 74.16 212.13 143.15 Mid Eighth

64 44.72 259.81 152.27 Mid Sixteenth

32.5 44.72 316.23 180.48 Mid Thirty-Second

Mid Values, Natural Log of Respondent’s Income
Count,
n=1015

From
bottom

From Top MidValue

508 9.96 9.96 9.96 Median

254.5 9.33 10.39 9.86 Mid Quartile

127.5 8.61 10.71 9.66 Mid Eighth

64 8.16 11.12 9.74 Mid Sixteenth

32.5 7.60 11.51 9.56 Mid Thirty-Second

9
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These numbers are strange:  The distribution of incomes is not

symmetrical.  It has a tail toward the high values.  That is reasonable.

But the square roots of income lead to ambiguous indicators:  The

median, the mid quartile and the mid eighth drift slightly toward low

values.  The mid sixteenth and mid thirty-second move strongly toward

the high values.  Worse, the distribution of the logarithm of income

indicates a tale to the left, if any.  This is surprising:  I have it in my head

that income distributions will not be symmetrical measured in units of

dollars but will be symmetrical measured in units of log dollars.  That is

what I expect.  That is not what these data show.  What’s more, I am so

sure of this that I question the data.

A close look at the data tells me that the unit of analysis in these

data is the family, not the individual — it is a representative sample of

family units from which the individual who is actually interviewed is

chosen by ???? I don’t know what.  Either I am wrong about the shape of

the U.S. income distribution or else there is something in these data that

systematically under-represents high income individuals.

That tells me I am not going to reach a “final report” with these

data:  I will have to check both the income distributions and the

educational distribution against other sources before I trust either

distribution or their correlation.  I’m also going to have to re-examine my

own expectation about income distributions.  When I think about income

carefully, as I am now forced to do, I’m not sure what I should expect.

After all, a very large part of the population has no cash income at all,

and my intuition didn’t cover that very realistic contingency. For the

moment, if there is a bias I suspect that it is reducing the high income

end of the distribution.

Proceeding rather tentatively, I am ready to look at the two variable

distribution.

A graph of the relation between the two variables provides only a

slight insight into the relation because of the grouping of the income data

into categories.  The grouping hides visual differences between the

numbers of “dots” at each point on the graph.  But the graph suffices to

10
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bring home the fact that there is a wide range of incomes across the

entire range of educational achievement, particularly among those who

have completed high school, Figure 1.
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Two obvious ideas would be expressed by “linear” relations in

these data.  One would be the idea that each additional year of education

corresponds to a certain increase in average income, with the number of

dollars per year appearing as the slope of the linear relation.  The other

idea would apply to a linear relation between education and the

logarithm of income.  In this case each additional year of education

would correspond to a multiplication of the average income, a multiple

that could also be expressed as a percentage.

While, in principle, it is not logically possible for  both of these

equations to be correct, the “noise” represented by the vertical scatter in

either graph (either income by education or log income by education), is

so great that it is not possible to choose between the two possibilities

with these data.

11
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I’m also still worrying about the well-behaved or not-well-behaved

nature of these variables because it will affect the validity of using any

linear technique.  So I am going to pull out another property of well-

behaved variables, namely that two well-behaved variables should be

linearly related (if they are related at all).  I’m going to use r to measure

the strength of the linear correlation and see whether any combination of

transformations has a useful effect on linearity (from which I will infer

that I have found the well-behaved transformation).

Correlations educ sqrt educ ln educ
inc 0.38 0.36 0.34
sqrt inc 0.38 0.37 0.35
ln inc 0.34 0.33 0.32

Squared
Correlations educ sqrt educ ln educ

inc 0.14 0.13 0.11
sqrt inc 0.15 0.14 0.12
ln inc 0.12 0.11 0.10

That tells me very little:  Correlations with sqrt of income are

slightly larger than others.  Correlations with education are slightly

larger than others.  But in terms of “variance explained”, the range is

from 10 percent to 15 percent.  And the most interesting fact is that all of

them are low:  Step away from the methodology:  Using these data, at

most “15 percent of the variation in income is predictable from

education”.   This is an approximation to one of those facts of life that

“everyone” knows to be true.  Well,  “approximately 15 percent of the

variation in income is predictable from education”

Getting ready for an interim report, I will collect various  means,

and standard deviations, and then write what I can

Income Ln Income Sqrt
Income

Education Ln
Education

Sqrt
Education

Mean $26,473 149.14 9.78 13.69 3.68 2.59

12
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Standard
Deviation

$22,295 65.05 1.05 2.75 0.38 0.22

13
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So tentatively, I write what I can — definitely not ready for an

external report.  Definitely not ready to be the basis of any policy

recommendations.

The NORC General Social Survey for 1993 interviewed

1607 individuals selected from a national sample of households

Who, what, where, but

also discretely noting my

discomfort:  I want to talk

about individuals but I know

that I can’t.  Yet I am not sure

how to translate the findings

for this sample, based on

households, to a correct

statement about individuals.

Respondents showed a mean education of __ years and a

mean income of ___ .

Safe, but qualified

because I said respondents.  (I

did not say that the mean

education in the US was __ or

that the mean income in the

US was ___.

While there is a clear correlation between education and

income, it is not strong.  Estimating the regression line for

income as a function of education, the line shows estimates that

individuals with no formal education will have __ income

while, on the average, each additional year of education

corresponds to ___

Using the regression line

In these data, while there is a correlation for the population

as a whole, it is not a relation that individuals can count on.

Trying to give some idea

of the strength of the

correlation

14
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For example, the median income of individuals completing

high school was $18,750 in these data , indicating that 50% of

these individuals have incomes at or exceeding this amount,

50% have incomes below $18,750  By comparison, individuals

with four more years of education, usually college graduates,

have a median income of $27,500 but 25 percent of these college

graduates had incomes below the median for high school

graduates, while 30 percent of the high school graduates had

incomes exceeding the median for college graduates.   That is,

while higher education corresponds to higher income, on the

average, there is no guarantee that a specific individual with

higher education will have an income exceeding that of another

individual with less education.

First try at an illustration.

A pair of histograms, one for

the income of high school

graduates, one for the income

of college graduates — both

drawn to the same scale —

should make this clear.

If we treat income and education together as indicators of

social status, the high quartiles of these status variables pair off

__ years of education with __ years of income, while the low

quartiles of the status distribution pair off __ years of education

with __ years of income, approximately __ dollars per year

Implicit use of the

orthogonal  least squares line.

I am showing the

correspondence between

income and education without

using words that imply that

one variable depends on the

other.

15

Macintosh HD:DA:DA IX:Volume II:320 Income by Education March 26, 1999



Levine Income by Educatione

The indications from these data are suspect, requiring

some verification before they are used as the basis for other

work.  First the income and education distributions need to be

checked against US Census data, with a clear definition of just

who’s incomes we are talking about.  (Are people who were

unemployed and had no other income excluded from the data

or were they recorded as zero income.)

The fact that this income distribution did not respond to a

logarithmic transformation, by becoming bell shaped and

symmetrical, leaves some suspicion of bias such that higher

income individuals are less likely to be represented in these

data.  If so, it will have thrown off all the estimates of

correspondence between income and education, probably

reducing the income numbers below their true values.

Clear doubts, plus

specific reason for the doubts,

and anticipation of specific

consequences.

The best fit regression equation in dollars and years of

education predicts about $3,000 dollars per year of education

completed, while the regression equation in log dollars predicts

a 14% increase in income per year of education completed.

The fact that these two numbers are not consistent points to the

large variance of income in all educational groups, making it

impossible to be more precise reasoning solely from these data.

$3,000 is a little under 14% of the average of $26,500   For a non

average education or income it is difficult to be more precise

from these data.  To give a bench mark to the size of these

errors:  If a forecaster were to predict an average income,

predicting the same income for all persons, ignoring education,

the standard deviation of the errors would be $22,000.  Using

education to improve the prediction of income, the standard

deviation of the regression errors would remain at about

$20,500.

Nevertheless, the sense of the log equation is a more

credible result.  It predicts $3,000 as the average income of

persons with no education.  By contrast, the equation in dollars

predicts negative income, $-14,742 for that same person.

Similarly, the implications of the error statistics also favor

logarithms.   The correlation of __ indicates that the variance of

the residuals of income is __ percent of __ the variance of

income.  Where the variance of income is ___, this implies that

the standard deviation of the residuals would be ___.  Such a

number gets us deeper into nonsense:  Predicting a standard

deviation of ___ among persons with education of 0 and

predicted income of ___, a standard deviation of ___ among

persons with twelve years of education and predicted income of

___, and the same standard deviation of ___ among persons

with twenty years of education and predicted income of ___.

By contrast, using logs, the equation predicts a geometric

standard deviation of __% among persons with 0 years of

Trying to get comfortable

with the results.

16
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In summary, on the average each year of education

corresponds to about $3,000 or 14% greater income.  But the

ranges of income at all educational levels requires a warning

that there will be extremely large differences, both positive and

negative among individuals with the same education and,

therefore, between individuals with different educational

backgrounds.

I would not want to leave

the reader with the previous

paragraph as a final comment.

17
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Re-work the spread sheet:  First show
the sorting of the data such that
identical cases lie in adjacent rows.
Then count these cases, displaying the
result as a cross-tab.  Then modify the
spread sheet to compute mean squared
error using frequencies.  That should get
the same job done as r and r-squared
which I used in the previous draft.  In
this draft I can’t use r-squared because I
haven’t prepared the background.

18
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Modify after the work described
above:

For the relation in dollars, the coefficient of linear correlation is .38

; for the relation in log dollars, the coefficient of linear correlation is .34,

“explaining” respectively, 14% or 12% of the variation in income.

Where the equation in dollars predicts $3,013 dollars per year of

education completed while the equation in log dollars predicts a 14%

increase in income per year of education completed.   While the log

equation produces a more obviously sensible intercept, $3,000 as the

average income of persons with no education, it is not altogether obvious

that the negative intercept for the dollar equation, $-14,742, is altogether

foolish, producing a “deficit” of $15,000.  Which should I use?  The data

are not strong enough to choose for me:  I have a prejudice for using logs

when I’ve got income data.  that would lead me to the log equation.  But,

I also have a prejudice for sticking with common units if the data do not

compel me to do otherwise.  That would lead to dollars.  But, then again,

using dollars only starts out by looking like common sense, and then it

presents me with the need to talk about negative income, which is

possible but no longer consistent with my prejudice to keep it simple.  So

I will have to conclude that the data show about $3,000 per year of

education and about 14% per year of education.  The fact that these two

numbers are not consistent points to the large variance of income in all

educational groups making it impossible to be more precise reasoning

solely from these data.  $3,000 is a little under 14% of the average of

$26,500   For a non average education or income it is difficult to be more

precise from these data.  To give a bench mark to the size of these errors:

If a forecaster were to predict an average income, predicting the same

income for all persons regardless of education, the standard deviation of

the errors would be $22,000.  Using education, the standard deviation of

the regression errors would remain about $20,500.
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Return on Investment

Revenues  (Rank in 1995 and 1994)

The name of the company,

Revenues (In millions of dollars and as the
percent by which revenues changed as
compared to 1994.Data analysis is fully capable of

solving all problems.  It is incum-
Profit (in millions of dollars) and as change

compared to 1994
bent, therefore, that the skilled analyst

choose problems of the highest moral,

ethical and scientific value.  You can not

squander your skills on anything less.

Occasionally, however, it is necessary to

teach the stuff and demonstrate its power

by tackling showy, if less important

matters — like getting fabulously rich.

I’ll start the exercise.  Completion is an

exercise for the reader.

Assets (in millions of dollars for 1996 and as an
annualized (***?of increase***) during the
preceding decade.

Total Stockholders’ Equity (in millions of
dollars)

Market Value  (in millions of dollars)

Profits, shown as

The data are provided in Fortune’s

annual report of statistics for the “Fortune

500”.  I intend to find the variables that

predicted the return I can get from invest-

ing my money.  I will invest my money

accordingly and then relax for a few years

while my money multiplies.  Then I will

relax a great deal more.

percent of sales
percent of assets
and as Percent of Stockholders’ Equity

Earnings per share
in dollars
as percent increase compared to 1994
and as an annualized rate of increase for
the decade.

Total Return to Investors as

First, a look at the variables.  General

Motors’ data is shown but for each

company the data include

percentage for 1995 and as
annualized percentage for the decade

The number of employees

The Industry

And, finally, the address, and the name of
the CEO.

1
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First, to preview the wealth I am

about to attain:  How well could I have

done in 1995?  To take a look,, I rank

order everything according to percentage

return for 1995 and I see .... and I see that

10% of the data are outright missing,

with no value at all for this variable.

So I begin my checklist of things that

have to be checked before I can know

what to make of any patterns I may find

in the 90% of the data that are present.

Now, looking at the numbers, in

rank order:

 COMPANY  TOTAL RETURN TO INVESTORS

1985-95

1995 annual rate

Name % FN % FN

Continental Airlines 353.3 —
Northwest Airlines 223.8 —
USAir Group 211.8 (8.9)
Sun Microsystems 157.0 —
Case 114.3 —
Student Loan Marketing Assn. 109.5 7.7
First Interstate Bancorp 108.5 15.6
CompUSA 107.5 —
UAL 104.3 13.9
Seagate Technology 97.9 20.7

2
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Kmart (42.3) (0.8)
Jefferson Smurfit (44.1) —
Merisel (45.3) —
Yellow (46.9) (5.5)
Best Buy (48.0) 17.6
Payless Cashways (54.1) —
Flagstar (55.4) —
Penn Traffic (60.5) —
Morrison Knudsen (64.2) (12.5)
Caldor (85.4) —

I see 353.3 percent for Continental

Airlines, not bad, I can accept that rate

of return.  The top ten takes me down to a

mere 97.9 percent, still not bad.  And I

notice a very promising regularity in the

names:  Continental Airlines, Northwest

Airlines, USAir Group, and UAL.

Unfortunately, in the cases where there

is comparable data for the decade, the

rates are not at all this high.  Some (in

parentheses) are negative.  I also note

that there is another end to this distri-

bution, Caldor at the extreme (negative

85.4%).  Perhaps some caution is in

order.

This will have its own problems,

but for the beginning of this project I

think I will switch to returns annualized

over the decade.

Now I see a lot more missing data, 119 of

the “500”, and looking at the top and

3
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bottom of the list (of those for which

there are data)

 COMPANY  TOTAL RETURN TO
INVESTORS

 INDUSTRY

1985-95

1995 annual rate

Name % %

Home Depot 4.3 44.5 Specialist retailers
Conseco 45.8 42.6 Ins: life & health (stock)
Applied Materials 86.4 40.7 Electronics, electrical equipment
United HealthCare 45.0 38.3 Health care
Micron Technology 80.3 37.2 Electronics, electrical equipment
Nike 88.8 36.8 Wholesalers
Compaq Computer 21.5 36.1 Computers, office equipment
Computer Associates Intl. 76.5 35.1 Computer and data services
Fed. Natl. Mortgage Assn. 75.0 33.1 Diversified financials
Gillette 41.1 31.2 Metal products

Beverly Enterprises (26.1) (4.9) Health care
Yellow (46.9) (5.5) Trucking
Advanced Micro Devices (33.6) (5.5) Electronics, electrical equipment
AST Research (41.9) (5.8) Computers, office equipment
Turner Corp. 1.5 (7.3) Engineering, construction
PriceCostco 11 18.4 (7.6) Specialist retailers
USAir Group 211.8 (8.9) Airlines
Unisys (36.2) (10.9) Computer and data services
Morrison Knudsen 39 (64.2) (12.5) Engineering, construction
Navistar International 6 (29.8) (18.8) Motor vehicles and parts

4

Macintosh HD:DA:DA IX:Volume II:330 Rates of Return Monday, September 9, 1996



Introduction to Data Analysis Return on Investmente

That is more believable, 30 to 40%

per year, slightly more than two years

to double (excluding taxes).  Still not

bad.  There is also some greater reliabil-

ity of prediction from decade statistics

to year statistics, more than the other

way around:  The top 10 for the decade

did well for the year (but not the other

way around) — among those companies

that survived the decade (and made it

to the list).  The list shows computing or

electronics and health care among both

the big winners and big losers.

Now, is the annualized rate of

return a well behaved variable?  This is

a little troublesome.  First I’m worried

because this is certainly not a random

sample of corporations,  this is the

Fortune “500”, the largest (by assets).

Moreover, the worst of the lot have

probably disappeared, at least from the

Fortune 500 and some of the worst and

some of the best will have been acquired

by others on the list.  Whatever that

did to the companies, it might well

have affected the statistics.  In addi-

tion, , just dealing with percentages is

troublesome.  The intervals of a percent-

age imply that -20%, -10%, 0%, +10%,

+20%, +30%, etc. are equal intervals.

But percentages stand for simplified

ratios.  And as ratios, the ratio of .8 to .9

is the same as the ratio of  .9 is to 1.01.

As ratios, the equal steps are .8, .9, 1.01,

1.14, 1.28, 1.44.

5
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Equal steps as percentages

.8 .9 1.0 1.1 1.2 1.3

Equal steps as ratios

.8 .9 1.01 1.14 .128 1.44

So what are the equal steps, even

among percentages?  This is a mess, par-

ticularly when I know that these par-

ticular ratios are annualized ratios out

of a ten year span, which means that

they have been treated as ratios and

then, only for presentation, converted to

percentages.  So, if what I want is to rep-

resent data computed as ratios, and to

represent them in a form that represents

equal ratios as equal intervals, then I

will use the logs of the ratios.

I like that argument and, with con-

fidence I was about to show off by

“discovering” that these numbers were

well-behaved once converted to logs.

Trouble is,  they are not.  In logs these

returns have a skewed distribution with

a tail to the left.  (The sequence of mid

values, from the median value to the

mid thirty-second value, decreases.)

Count Value Value Mid Value
n=381

191 0.130 0.130 0.130 Median
96 0.159 0.094 0.127 Mid Quartile

49.5 0.188 0.057 0.123 Mid Eighth
25 0.225 0.014 0.119 Mid Sixteenth

6
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13 0.250 -0.028 0.111 Mid Thirty-Second
7 0.308 -0.060 0.124 Mid Sixty-Fourth

Because it violates my naive expec-

tations, this would be a bit disconcert-

ing, except that all the other

complications affecting this distribution

suggest that I give it a little leeway —

if not the logs, then something close.

So, back to the numbers.  Square

roots.  Still skewed to the left.

Using the original numbers.  Still

skewed to the left.  Now I’ve given it

more than a little “leeway”.  Still not

well behaved.

Count Value Value Mid Value
n=381

191 1.139 1.139 1.139 Median
96 1.172 1.099 1.136 Mid Quartile

49.5 1.207 1.059 1.133 Mid Eighth
25 1.252 1.014 1.133 Mid Sixteenth
13 1.284 0.972 1.128 Mid Thirty-Second

7 1.361 0.942 1.152 Mid Sixty-Fourth

So blindly, at least for the moment,

I have to ask just what it would take to

make this distribution symmetrical.

And this is going in exactly the opposite

direction from what I expected,

not

7
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1, .5, 0  (no transform, square root, log,,, decreasing)

but

1, 2, 3 ... (no transform, square, cube, increasing)

Proceeding, it takes something like

a cube to get the median, mid-quartile,

and mid-eighth to line up.

Count Value Value Mid Value
n=381

191 1.478 1.478 1.478 Median
96 1.610 1.327 1.469 Mid Quartile

49.5 1.756 1.188 1.472 Mid Eighth
25 1.963 1.043 1.503 Mid Sixteenth
13 2.117 0.918 1.518 Mid Thirty-Second

7 2.521 0.836 1.678 Mid Sixty-Fourth

That is interesting.  It violates my

naive expectation, quite sharply, so I

have to ask why — and maybe learn

something.

I don’t take the detail seriously,

not the third power, as compared to the

2.5th power or the 2nd power.  But I do

take the direction leading to the 2nd or

3rd power seriously.  What does it

mean?

Consider the opposite.  Suppose

that logs had worked.  In dollars, that

would mean that each additional dollar

is easier.  One dollar profit on one dollar

is hard, one dollar profit on one

thousand dollars is easy.

8
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This is running in the opposite

direction.  It means that once you have

made a 1% return, the next 1% is

“harder”, and the next harder, or less

likely.  Going down it means that going

down 1% is easier if you’ve already

dropped a couple of percent.  In stock

market terms it means that going up is

more likely to be slow, going down more

likely to be sudden.  Don’t trust this —

because I’m reaching in my mind for

models or “folklore” to match the clue

provided by the data — but that is

what I read as a strong possibility,

based on the shape of the distribution.

In value terms, when a value is drop-

ping, the chances increase that it will

drop precipitously (get out fast).  When

a value is rising, the chances that it

will continue to rise diminish.

Consider the implication.  There is

no proof here, nothing more than these

numbers.  But consider the implication to

see the issue raised by this peculiar dis-

tribution.  There is a minor industry

organized to provide information to

investors, very often graphical informa-

tion.  People look at these things.  And

although “technical analysis” of the

stock market gives names and numbers to

patterns, first people look at the num-

bers.  Then they try to formalize pat-

terns that may, or may not, be present.

To “look” at these numbers, charts

are frequently provided on two scales:

9

Macintosh HD:DA:DA IX:Volume II:330 Rates of Return Monday, September 9, 1996



Introduction to Data Analysis Return on Investmente

One is the price of the stock.  The alter-

native is the logarithm of the price of

the stock — done for all the common

sense reasons that we have already

discussed about logarithms — constant

rates of change (straight lines) on such

graphs correspond to constant rates of

increase at continuously compounded

rates.   This evidence, suggests that the

place to look for simplicity lies in quite

another direction, the squares or cubes,

not the logs.  Again — that is a lot of

guessing, and at least a bit of sloppy

thinking.  (Note I slipped from ratios,

which are a measure of change, to dol-

lars which are not.)  I do not submit this

to you, or to myself as a fact, as a conclu-

sion, or even as an inference.  I am

already criticizing it, reversing it, and

generally turning it around as I think

about it.  I’m letting you see the usually

hidden process of reasoning and guessing.

This is what follows from looking at the

shape of this distribution, finding a

surprise, and thinking about it.

Can I predict these returns?  For

that I need some correlation with other

variables, preferably a strong correla-

tion.   I’ll begin with assets.  Is it true

that as corporations get larger, their

rates of growth must diminish?  Is it true

that to find large returns I have to look

to middle size, or smaller corporations.

The assets variable is surely

truncated — the selection criterion for

10
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the Fortune list selected the largest cor-

porations.  So the first criterion for a

well behaved variable can not be exam-

ined.  Homeoscedasticity is a possi-

bility.  But I am going to do a quick start

with logs and go directly to the relation,

if any, between assets and  return.

Using my spread sheet program,

the number I get for the correlation is

.14, and the number I get using the more

exotic third power is .__.  That tells me

not to worry a great deal about that

transformation:  Where most of the data

lie between .95 and 1.3, curvature within

this range is not going to be difficult to

distinguish from a straight line.

Now that correlation tells me that

approximately 2% of the variance in

return is predictable from log assets.

Can I be seriously interested in some-

thing that “explains” 2% of the

variance in the variable I am trying to

predict?

It all depends on context.  And in

this case I am very interested.  Look at

the graph of the data together with the

regression line.  It has an intercept of

1.0524 and a slope of .0092 (with a

correlation of .145).

11
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Just looking at the graph, there are

lots of corporations to choose from with

log assets approximately 7.5 (assets

approximately 1.8 billion dollars).  And

there are lots of corporations to choose

from with log assets approximately 10.5

(assets approximately 36.3 billion

dollars).  With a slope of .0092, the

expected difference between their

average returns (as ratios) is

.0092 times 3 = .0276

That means that on the average

the higher group realized  2.76% greater

return.  The expected return for the

12
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higher group was 1.1491, as a ratio; the

expected return for the lower group was

1.1215, as a ratio.  Or, as percentages

15% versus 12% return on the investors’

dollar.  The variation around this return

is enormous:

Reading it directly off the graph,

it is common to find values between the

predicted ratio -.15 and the predicted

ratio +.15.

Computing it :

The mean return, as a ratio, is 1.136,

as a percentage that is 13.6% annual

return to the investor.

The standard deviation of the ratio

is .0805; the variance of the ratio is

.0065.

In standardized form the variance

of the residuals is root(10r-squared) is

.9895, 98.95% unexplained.

Knowing that the variance of the

return is .0065, that leaves the ratio

with an error variance of .0064

and an error standard deviation of

.0801, which is the square root of this

number.

13
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So, two standard deviations of error

above and below corresponds to the

predicted ratio ±.1602 — very close to

my eyeball estimate.

Can I find anything useful in such

small correlations and large variance?

You bet, literally, you bet.   I can bet my

money on 20 or 30 securities in the group

with log assets of about 7.5 and get a

return fairly close to the average for

that group — and the average for that

group is about 3% on the dollar greater

than the lower asset group.  Taking not

those with assets of 7.5 in logs but taking

the largest, and comparing their

expected value to the mean return for all

these investments, I should clear maybe

3% more than the average.  And in the

investment, beating the averages by 3%,

is doing very well, gaining perhaps 16 or

17% per year rather than the average

13.5% per year.

So yes, this r is tiny.  But for

investment purposes my primary interest

is in the slope.  And the size of this

slope is quite usable.  Then, knowing

that the r is small, I will have to

protect myself by diversifying, in order

to protect myself from the variance and

realize the gains predicted by the slope.

So yes, I can work with these tiny

correlations.  The problem here is not

the correlations.  The problem here is

14
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that I haven’t real ly  predicted any-

thing.  The words, “prediction”,

“estimation”, “error”, and so forth are

statistical conventions.  But check their

meaning operationally, with these

data:  These numbers tell me how well I

could have done, over the decade ending

last year if, at the beginning of the

decade, I had had the 1995 assets and

the regression data that became avail-

able at the end of the decade.  How well

this variable will, or would, predict

into the next decade or the next year is

an interesting question, not answered by

these data — though the exploration of

these data provides an interesting lead.

Note on multiple regression

I have barely begun this

exploration.  Are their variables

showing a higher correlation with

return?  (Yes)

It is also possible to try to predict

one variable, Return, by writing a linear

equation using two or more predictors,

not just one.

y = a0 + a1x1 + a2x2.

Most statistical programs will

accommodate “multivariate regression”.

The interpretation of multivariate

linear equations has some surprises in it,

but the basics begin like the basics of

two variable regression:  Start with

well behaved variables.  Generate

15
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residuals comparing y as predicted from

the y that is observed.  (you can graph

these residuals as the ordinates in two

or more different graphs of residuals,

one for each of the predicting vari-

ables.)  Then, if you want a number

saying “how good”, compared the vari-

ance and standard deviation of the

residuals to the variance and standard

deviation of the original variable “y”.

16
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the accuracy of ±4.5%.

Additionally, due to the smaller

number of test variables, the

repeatability of near-infrared is

superior to all of the other bodyfat

determination methods. …

I
have data on fat.  Not just any fat,

but my fat.  I’m told that less is

better, within certain ranges.  It is …Everyone’s body responds to diet

and exercise differently.  For

example, the “average person” who

loses one pound of weight due to

dieting, actually loses

approximately 3/4 of a pound of fat

and 1/4 pound of lean.  However, if

that same “average person” loses

one pound of body weight due to

exercise, he actually loses

approximately 1 1/4 pound of fat

and gains 1/4 pound of lean (muscle).

Thus the benefit of exercise is

obvious.

not at all clear to me how to change

body fat or whether to change body fat.

But one thing I do know about is gadgets,

I like gadgets  and data.  So one thing I

am sure I can do is to convert body fat

into is a high tech distraction replete

with gadgets and data.

The gadget is a Futrex 1000.  I press it

into the skin (and fat) above my bicep.

It returns a three digit number

estimating body fat.  According to

directions,

You should be aware that when you

start an exercise program there will

not be an immediate reduction in

your percent bodyfat.  This is

because the body will first lose

water.  As you continue your

program, you will begin to lose

bodyfat.  It usually takes several

weeks before noticeable loss in

percent bodyfat occurs.

…human bodyfat absorbs light at

specific wavelengths in the near-

infrared portion of the spectrum.

The Futrex 1000 emits these near-

infrared wavelengths.  Also, the

Futrex-1000 contains an optical

sensor to measure how much of this

energy is absorbed by your bodyfat.

The near-infrared absorption

technology used in the Futrex-1000

has been shown to be well within That tells me, among other things, that

the measurement includes error.  The

1
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magnitude is, it tells me “within the

accuracy of ±4.5%.

23.2% to a high of 26.4%.  The mean is

25.0%.  The standard deviation is 1.2%.

Plus or minus two standard deviations

would be plus or minus 2.4%,

disconcertingly different from the 4.5%

number specified in the directions.

It also tells me that it is measuring

something other than body fat.  It hints

at that in the little discourse on losing

water.  And, whether the directions

told me so or not, with most

“measurements” are not direct

measurement of the thing they claim to

measure:  It is measuring absorption of

light, not fat.  That means that the

numbers on its face are connected to the

true (but unknown) facts for my body by a

combination of theory and indirect

physical links that connect infrared to

fat.  Every step in the process is an

opening to sources of error.  Every step in

the process opens the door to other

variables which can affect the

measurement.  These are the variables

referred to in the famous caveat “all

things being equal”.

That difference alerts me to another

inevitable fact:  I have to distinguish

between variation around the mean

(measured by the standard deviation),

and variation of the mean (and the

whole distribution) around the true

value.  One is the variation around the

measurement, all things being equal.

The other is the variation of the

measurements induced by the fact that

all things will not be equal from day to

day.

If the measurements themselves have

4.5% error built in (whatever that

means) can I detect a trend within al l

this variation and all this error?  With

5 or 6 weeks of data, 1 or 2% change is

the most that would be credible since I

have neither eliminated food nor

dedicated myself exclusively to

exercise.

So, Wednesday, July 3 1:30 in the

afternoon.  I am going to reduce

uncertainty by using repeated

measurements.  The ten estimates are

Here is the graph and here are the

data.  They are not equally spaced in

time.  I did not always take ten

measurements.  And toward the end I

took many measurements because I

couldn’t believe the numbers.  The last

measurements are close together because

24.8% 25.6% 26.4% 24.2% 26.2% 26.1% 24.2% 23.4% 23.2% 25.8%

I’m not sure what the directions referred

to as ±4.5%.  Was that +4.5% of the

observed value?  Or was it 4.5% added

or subtracted from the observed value?  I

don’t know.  But the range in these ten

observations is 3.2%, from  a low of

2
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I was trying to figure out what could

possibly be going on that I would

(appear to have) gained, in one

instance, 3% during one hour.  So I took

multiple measurements, hoping to

outweigh the bizarre values with

others that would return to what had

appeared normal.  The result was the

opposite, replicating the bizarre values.

So, is there a trend?  How much?  (The

annotations, Very Poor, Poor, Fair, and

so forth, are based on the instruction

manual.

I presume that you can collect and

analyze analogous data for a variety of

physiological measures and indicators

of performance.
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Date Mean
Percent
Body Fat

Standa
rd

Deviati
on

Wed 7/3/96 13:42 25.0% 1.2% 24.8% 25.6% 26.4% 24.2% 26.2% 26.1% 24.2% 23.4% 23.2% 25.8%

Wed 7/3/96 17:42 25.0% 0.9% 24.3% 25.5% 25.0% 24.1% 23.8% 25.2% 25.7% 26.7% 25.8% 24.3%

Thu 7/4/96 11:02 23.8% 1.5% 23.5% 23.0% 24.7% 22.6% 27.4% 22.5% 22.8% 23.6% 23.4% 24.2%

Thu 7/4/96 21:00 24.5% 0.8% 23.7% 23.5% 24.2% 24.8% 25.2% 23.9% 24.6% 23.8% 25.6% 25.4%

Fri 7/5/96 11:00 25.2% 1.1% 24.4% 23.5% 24.3% 25.6% 24.5% 24.8% 26.0% 26.9% 26.7% 25.4%

Fri 7/5/96 17:00 24.8% 0.9% 25.5% 25.9% 24.8% 25.0% 25.8% 24.5% 25.0% 23.7% 23.2% 24.5%

Sat 7/6/96 9:00 25.0% 0.6% 25.0% 25.3% 24.6% 25.9% 25.0% 25.5% 23.9% 25.1% 24.2% 25.1%

Sat 7/6/96 18:00 24.2% 0.5% 24.1% 23.4% 23.6% 24.4% 24.7% 24.9% 24.5% 24.3% 24.3% 23.8%

Sun 7/7/96 11:00 24.6% 0.7% 24.6% 25.7% 24.5% 23.8% 24.3% 23.9% 24.7% 25.5%

Sun 7/7/96 16:00 24.3% 0.9% 25.5% 24.6% 25.5% 23.4% 22.8% 24.5% 24.5% 23.6% 24.1% 24.7%

Mon 7/8/96 9:00 23.9% 1.2% 24.5% 22.9% 24.2% 24.0% 23.8% 21.9% 22.4% 25.4% 24.0% 25.4%

Mon 7/8/96 21:00 24.1% 0.8% 24.0% 25.2% 25.7% 24.0% 23.2% 23.2% 23.6% 23.8% 24.5% 24.0%

Tue 7/9/96 9:00 24.1% 0.8% 24.0% 25.2% 25.7% 24.0% 23.2% 23.2% 23.6% 23.8% 24.5% 24.0%

Wed 7/10/96 9:00 24.3% 0.5% 23.9% 24.5% 24.3% 24.1% 24.8% 23.1% 24.6% 24.7% 24.5% 24.0%

Sat 7/13/96 9:00 24.4% 0.9% 25.8% 24.2% 24.6% 22.9% 24.9% 24.2% 25.4% 23.4% 25.1% 23.7%

Sat 7/13/96 21:00 24.4% 1.0% 22.3% 24.1% 24.9% 24.3% 24.3% 24.5% 25.5% 25.6% 25.0% 23.8%

Sun 7/14/96 9:00 24.6% 0.4% 24.4% 25.3% 24.1% 24.7% 24.5% 25.0% 24.6% 23.8% 24.2% 24.8%

Sun 7/14/96 21:00 24.5% 0.8% 26.2% 23.7% 25.2% 24.5% 24.5% 23.3% 23.9% 24.9% 24.3% 24.6%

Mon 7/15/96 9:00 25.5% 0.6% 24.2% 26.2% 25.0% 24.4% 25.7% 25.5% 25.7% 25.9% 25.5% 25.0%

Wed 7/17/96 9:00 24.6% 0.5% 24.2% 24.5% 23.6% 24.7% 24.6% 25.4% 24.9% 24.7% 23.8% 24.5%

Wed 7/17/96 9:00 24.6% 0.5% 24.2% 24.5% 23.6% 24.7% 24.6% 25.4% 24.9% 24.7% 23.8% 24.5%

Mon 7/22/96 9:00 25.4% 0.6% 25.1% 25.2% 25.5% 25.8% 24.1% 25.6%

Wed 7/24/96 10:00 24.4% 0.6% 24.1% 24.5% 24.3% 25.6% 23.9% 24.5%

Wed 7/24/96 16:00 23.9% 0.7% 22.3% 24.1% 23.8% 24.0% 23.6% 24.0%

Thu 7/25/96 16:00 22.3% 0.8% 20.5% 21.9% 22.1% 23.3% 22.6% 23.0% 21.8% 22.5% 21.6% 22.9%

Thu 7/25/96 21:00 23.5% 0.7% 24.5% 23.8% 23.2% 23.5% 24.0% 23.3% 21.8% 23.3% 23.5% 23.8%

Fri 7/26/96 12:00 23.8% 0.4% 24.2% 23.8% 22.9% 23.7% 24.2% 23.8% 23.7% 24.0% 23.9% 23.7%

Fri 7/26/96 20:00 24.9% 0.7% 25.0% 25.1% 25.4% 24.1% 23.2% 25.0% 25.5% 24.8% 24.4% 24.6%

Sun 7/28/96 18:00 24.2% 0.7% 23.3% 23.8% 23.3% 24.5% 24.3% 25.1% 24.0% 25.2% 23.8% 24.6%

Mon 7/29/96 18:00 24.7% 0.6% 23.8% 24.7% 24.5% 24.8% 25.4% 24.7% 24.6% 24.4% 24.2% 25.8%

Thu 8/1/96 23:00 23.6% 0.8% 25.5% 23.4% 24.6% 23.6% 23.5% 22.7% 24.0% 24.5% 23.3% 23.4%

Fri 8/2/96 15:00 25.6% 0.6% 25.6% 24.8% 25.9% 24.4% 26.1% 25.5% 25.8% 25.2% 26.0% 24.9%

Sat 8/3/96 18:00 23.9% 0.7% 24.5% 23.3% 23.1% 24.3% 25.4% 23.2% 23.8% 23.9% 23.6% 24.1%
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Sat 8/3/96 21:00 23.5% 0.6% 24.0% 23.9% 22.3% 23.2% 24.3% 23.5% 22.9% 23.4% 23.6% 23.0%

Sun 8/4/96 13:00 24.5% 0.5% 24.2% 25.1% 24.2% 25.5% 25.0% 23.7% 24.2% 24.2% 24.7% 24.7%

Mon 8/5/96 8:00 23.8% 0.6% 24.3% 23.4% 22.9% 24.1% 23.6% 22.8% 24.3% 23.1% 24.6% 23.9%

Mon 8/5/96 22:00 23.7% 0.5% 23.7% 22.9% 23.7% 24.6% 23.3% 23.6% 23.5% 23.1% 23.9% 23.9%

Tue 8/6/96 10:00 22.8% 0.7% 23.0% 23.9% 22.1% 22.3% 22.1% 23.3% 22.0% 23.6% 22.8% 22.8%

Tue 8/6/96 22:00 23.7% 0.7% 23.2% 23.6% 24.1% 22.2% 22.5% 23.9% 23.8% 24.0% 22.9% 23.7%

Wed 8/7/96 10:00 23.0% 0.5% 22.8% 24.2% 22.8% 22.1% 22.9% 23.2% 23.0% 22.6% 23.0% 23.1%

Sat 8/10/96 13:00 24.0% 0.5% 24.6% 24.1% 23.4% 24.5% 24.2% 24.0% 23.4% 23.6% 23.4% 23.9%

Mon 8/12/96 13:00 24.1% 0.9% 24.2% 25.0% 23.9% 23.6% 22.0% 24.4% 24.4% 25.4% 23.9% 24.0%

Tue 8/13/96 22:00 24.3% 0.8% 24.0% 25.4% 23.5% 25.3% 25.3% 24.0% 24.3% 23.4% 25.3% 24.3%

Wed 8/14/96 22:00 24.4% 0.6% 23.8% 24.4% 24.3% 25.7% 25.4% 24.5% 25.1% 24.0% 24.1% 24.0%

Thu 8/15/96 10:00 23.5% 0.5% 23.6% 22.9% 23.2% 24.0% 23.6% 23.7% 23.3% 23.2% 24.5% 22.7%

Thu 8/15/96 23:50 23.2% 0.7% 23.1% 23.1% 23.2% 22.9% 23.5% 24.7% 22.4% 23.8% 22.4% 23.6%

Fri 8/16/96 11:50 23.2% 0.4% 23.2% 23.6% 23.5% 23.2% 22.8% 22.8% 23.4% 23.1% 23.1% 22.1%

Fri 8/16/96 19:00 22.6% 0.8% 23.2% 23.6% 24.3% 21.8% 23.5% 22.6% 22.1% 22.6% 22.2% 22.0%

Sat 8/17/96 11:00 23.0% 0.8% 22.8% 23.9% 21.6% 24.2% 23.4% 24.0% 23.1% 22.4% 22.8% 22.6%

Sat 8/17/96 18:00 26.3% 0.7% 25.8% 26.5% 26.5% 27.5% 26.1% 27.2% 25.4% 25.8% 25.7% 26.7%

Sat 8/17/96 19:30 25.5% 0.9% 24.1% 25.2% 26.2% 26.4% 25.6% 25.5% 26.4% 24.4% 24.3% 25.4%

Sat 8/17/96 20:00 24.7% 0.7% 23.6% 24.8% 24.0% 24.3% 26.0% 24.5% 23.8% 25.2% 24.8% 24.9%

Sun 8/18/96 9:00 25.1% 0.6% 25.6% 25.1% 26.1% 26.1% 26.3% 25.1% 25.1% 25.1% 24.7% 24.7%

Sun 8/18/96 21:00 25.2% 1.0% 23.3% 25.2% 22.9% 24.7% 25.5% 25.2% 25.5% 25.3% 25.4% 23.6%

Mon 8/19/96 12:40 26.7% 0.9% 26.7% 27.7% 25.9%

Mon 8/19/96 12:40 23.3% 0.4% 24.0% 23.5% 23.1% 23.1% 23.2% 24.1% 23.5% 23.4% 23.1% 22.9%

be 7 or 8 pounds in 5 or 6 weeks.  I would

know if something would be quite

dramatic if it occurred

.  and if, as I can almost guarantee, I

have not lost fat on that order of

magnitude during the first month or two,

can I even detect a trend in the

measurements of that time.  (I presume a

drop from 25% bodyfat on July 3 to 20%

body fat in the middle of August would

be quite noticeable:  If it were pure loss,

without increase in muscle, that would

5

Macintosh HD:DA:DA IX:Volume II:340 Trend Friday, September 6, 1996



Mean-Based Budgeting

in a booklet disclosing some of the detail.

And long before it is brought to the voters,

“What is your pleasure on the budget?”, it

goes through a budget committee, and

through Selectmen, and through public

hearings.M
y grade school textbooks, in

Chicago, told me that the model of

democracy could be found in the

Would detail help you evaluate the budget?

O.K.:

New England town meeting.  That was where

neighbors came together, argued their visions

of the good the true and the beautiful in fair

debate, and wrote the laws they would live

buy.  Displacing heaven to New England

saved my grade school teachers from poten-

tially interesting but much less theoretical

discussions of the experience we lived with in

Chicago.

Welfare:  Direct Assistance

Actual appropriations prior year: 

$44,000

Actual expenditures prior year:  

$22,738

My adult experience in New Hampshire

brings me fact to face with the New England

town meeting.  And I can say this much for it:

If the stuff that teachers feed nine year olds

had turned out to be true, then civic life in

New England would have been rather dull,

which it is not.

Selectmen’s Recommended Budget:  

$29,000

Budget Committee Recommendation: 

$31,500

The key item on the agenda each year is

the budget.  There it is:  A town of 3,979

people; last year’s appropriations,

$3,301,133; proposed budget $3,077,903 (not

including the school budget).  “What is your

pleasure on the budget?”

That doesn’t really help much.  And I don’t

recall that the wispy picture of democracy

drawn in my Chicago text book offered much

guidance for creating budgets, spending real

money on welfare, roads, salaries, and so

forth.

There is no formula that will translate

the grand democratic vision into a budget—

ultimately it is a matter of vision and

So what do you  think?  Is $3,077,903 a

good budget?   That’s a little hard to answer,

isn’t it.  Well the budget comes to the voters

1
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interest, what is needed, who says so, what

is right, what is legitimate, who is responsi-

ble, what can we afford.  More than numbers,

a budget debate includes demands from

department heads, from affected citizens,

from community groups, businesses, and other

governments — all of which represent them-

selves with varying degrees of effectiveness

and persuasion.

is an unrepeatable emergency.  After that

there is a building on the market at a price

which, in the long run, saves money.    Each

change is reasonable and not excessively dif-

ferent from the year before.  And then, year

by year,  insignificant deviations accumulate

into significant distortions — which are

undetectable in the comparison between one

year and the last.    It is like adding a few

grains of sugar to a cup of coffee, a few grains

at a time.  The change is undetectable.  But

eventually the coffee will surely become too

sweet.

But the discussion can be given context

(followed by argument about which context is

relevant).  Most easily:  What did we spend

last year?  The context does not establish an

ethical calculus that will translate beliefs

into numbers.  But it helps:  Just as the shape

of a statistical distribution indicates what is

average (without claiming that it is right),

the size of last year’s budget indicates where

the discussion will begin.  Just as the extremes

of a statistical distribution indicate what is

atypical, unusual numbers in a budget will

focus the debate.

A better context can protect against these

local excursions into madness by asking not,

“What did we do last year?”, but asking

“What does everyone else do?”, where

“everyone else” means the voters in other

towns in the state.  Other towns in the state

operate with the same state laws,

(governing, for example,  whether or not the

“town” budget includes the school budget),

with the same weather attacking the roads,

and with similar economies.  In this context

the mean provides a base line.  And the

shape of the distribution and the extremes

provide a reality check free of local person-

alities, free of local credit or blame:  “Three

quarters of the towns in this state are spend-

ing half as much per person on welfare as we

are.  Why is that?”     It gives focus to the

discussion.

The advantage of last year’s numbers as a

context for this year’s debate is that the

numbers are available.  The trouble with last

year’s numbers as a context is that they are

insensitive to deviations that grow by

degree:   Small deviations accumulate into

large excursions, imperceptibly, year by year:

One year a department merits an increase 2 or

3 percent in excess of other departments.

Next year the department needs a new piece

of equipment.  The next year the equipment

requires maintenance.  After that there

should be a capital reserve.  Next year there

Until recently mean based budgeting was a

good plan that was impossible to implement:

You knew the next town.  You could look at

2
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their books.  But budgets were on paper.

Budgets followed different accounting cate-

gories.  It was impractical to develop the

empirical base that would support these

local decisions.  It was impractical to begin

with the  simple statement

The statistics are straightforward.  But first,

there is a question.  Is this comparison valid?

Is there any reason to believe that budgets

either are (or should be) proportional to pop-

ulation?   Is there evidence that this

statistical criterion matches the problem to

which it is being applied?“On the average, towns spend x-dollars

per capita on welfare [using the median].

And fifty percent of the towns voted

appropriations between a-dollars per

capita and b-dollars per capita [using the

two quartiles].”

Folklore and common sense are richly contra-

dictory on this question:

For example, everyone knows that large

cities have problems of crime  not encountered

by small towns.  Therefore the per capita cost

of public safety will be (or should be) higher

in large cities.  Everyone knows that you can

not compare the budgets of small towns to the

budgets or larger cities, even on a per capita

basis:  Cities cost more.

followed up by the simple question

“Our town spends 20% more (or 20% less)

than the ‘normal’ range?  Why?”

Now, it is practical.  For better or for worse,

towns have accommodated themselves to

computers, states have archived these com-

puterized accounts and imposed common

accounting categories.   Archives are open to

public access.

Common sense, with its rich supply of contra-

dictory advice also tells us that it is easier

(more efficient) to large groups than small

ones.  A town like mine can, on the average,

expect about .05 fires at any hour of the day

or night, but it still has to have one full fire

crew at the ready when the call comes in.    A

large city can match its capacity much more

closely to the demand, lowering the cost per

capita.  On a per capita basis small towns

cost more.

The statistics are straight forward:  If the

object is to place the total budget in context,

then “regress” total budget as a function of

total population.  Fit a line to the data,

compute the residuals, and that’s it:   X-burg

is  __ above or __ below what you would

expect for a town of its size.    If the objective

is to place the welfare budget in context, or

the road budget, or the budget for the town

office in context:  regress the objective on pop-

ulation size, and compare X-burg to the sta-

tistical norms for a town of its size.

So common sense, as usual, is eloquently use-

less, able to support any proposition, or deny

it, or both confirm it and deny it at the same

time.   Perhaps the facts can do better:  Is it

valid to compare costs from town to town, on a

3
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per capita basis.  Empirically, is there a

relation between cost and population?  What

is that relation?  Does it provide a usable

base for comparing budgets, town to town?

The Relation Between Population
and Total Budget

Beginning with the variable that sums up

the rest, beginning with the “bottom line”,

here are the population and budget numbers

for all towns of the state of New Hampshire

in 1994.

4
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TOWNNAME Popula
-tion

Log
Popu

la-
tion
(Bas

e
10)

1994
Final

Appropri-
ation

(Excludin
g School
Budget)

Log
1994
Appr
opri-
atio
n
(Bas
e10)

SOUTH
HAMPTON

740 2.87 324,468 5.51

GOSHEN 742 2.87 334,423 5.52
GILSUM 745 2.87 266,667 5.43
MONROE 746 2.87 456,612 5.66
ACWORTH 776 2.89 387,067 5.59
BATH 784 2.89 450,261 5.65
SPRINGFIELD 788 2.90 777,247 5.89HARTS

LOCATION
36 1.56 16,000 4.20

BRIDGEWATER 796 2.90 488,662 5.69
FRANCONIA 811 2.91 742,157 5.87ELLSWORTH 74 1.87 30,808 4.49
HILL 814 2.91 421,541 5.62WINDSOR 107 2.03 58,917 4.77
WARREN 820 2.91 329,435 5.52WATERVILLE

VALLEY
151 2.18 1,740,814 6.24

DALTON 827 2.92 594,631 5.77
NEW CASTLE 840 2.92 1,067,544 6.03EASTON 223 2.35 90,963 4.96
RICHMOND 877 2.94 327,495 5.52CLARKSVILLE 232 2.37 145,950 5.16
DANBURY 881 2.94 413,890 5.62ORANGE 237 2.37 143,221 5.16
NEWFIELDS 888 2.95 741,162 5.87ROXBURY 248 2.39 76,421 4.88
PITTSBURG 901 2.95 678,073 5.83CHATHAM 268 2.43 84,028 4.92
GRAFTON 923 2.97 549,815 5.74ERROL 292 2.47 211,349 5.33
STRATFORD 927 2.97 1,443,059 6.16SHARON 299 2.48 138,500 5.14
FREEDOM 935 2.97 1,067,095 6.03GROTON 318 2.50 241,847 5.38
WILMOT 935 2.97 513,349 5.71DUMMER 327 2.51 184,018 5.26
EFFINGHAM 941 2.97 664,421 5.82BENTON 330 2.52 56,121 4.75
LEMPSTER 947 2.98 504,417 5.70LANDAFF 350 2.54 181,648 5.26
JEFFERSON 965 2.98 375,173 5.57EATON 362 2.56 299,695 5.48
HARRISVILLE 981 2.99 546,486 5.74RANDOLPH 371 2.57 221,855 5.35
NEWINGTON 990 3.00 2,865,784 6.46HEBRON 386 2.59 267,954 5.43
CENTER HARBOR 996 3.00 828,850 5.92LYMAN 388 2.59 345,987 5.54
ORFORD 1,008 3.00 731,668 5.86DORCHESTER 392 2.59 178,009 5.25
STEWARTSTOW
N

1,048 3.02 429,166 5.63SHELBURNE 437 2.64 302,111 5.48
SUGAR HILL 464 2.67 520,871 5.72

SALISBURY 1,061 3.03 515,522 5.71BROOKFIELD 518 2.71 276,403 5.44
SANDWICH 1,066 3.03 1,451,472 6.16STARK 518 2.71 274,850 5.44
WOODSTOCK 1,167 3.07 1,564,914 6.19CARROLL 528 2.72 569,912 5.76
MIDDLETON 1,183 3.07 521,861 5.72NELSON 535 2.73 302,008 5.48
ALEXANDRIA 1,190 3.08 717,376 5.86ALBANY 536 2.73 447,992 5.65
TEMPLE 1,194 3.08 606,798 5.78LANGDON 580 2.76 286,900 5.46
MASON 1,212 3.08 675,578 5.83STODDARD 622 2.79 395,507 5.60
FRANCESTOWN 1,217 3.09 960,260 5.98PIERMONT 624 2.80 287,212 5.46
LINCOLN 1,229 3.09 2,960,520 6.47CROYDON 627 2.80 292,970 5.47
BENNINGTON 1,236 3.09 864,319 5.94WASHINGTON 628 2.80 865,975 5.94
GRANTHAM 1,247 3.10 872,350 5.94WENTWORTH 630 2.80 529,955 5.72
LYNDEBOROUGH 1,294 3.11 694,035 5.84MARLOW 650 2.81 345,725 5.54
MILAN 1,295 3.11 435,206 5.64COLUMBIA 661 2.82 202,933 5.31
UNITY 1,341 3.13 575,507 5.76SURRY 667 2.82 233,351 5.37
NEWBURY 1,347 3.13 1,216,672 6.09JACKSON 678 2.83 976,718 5.99
EAST KINGSTON 1,352 3.13 641,087 5.81SULLIVAN 706 2.85 256,805 5.41
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MADBURY 1,404 3.15 670,873 5.83 SUNAPEE 2,559 3.41 3,753,515 6.57
BRADFORD 1,405 3.15 1,095,186 6.04 FREMONT 2,576 3.41 768,185 5.89
WEBSTER 1,405 3.15 696,631 5.84 BRENTWOOD 2,590 3.41 771,805 5.89
RUMNEY 1,446 3.16 533,389 5.73 GILMANTON 2,609 3.42 1,493,586 6.17
SUTTON 1,457 3.16 1,030,573 6.01 ROLLINSFORD 2,645 3.42 835,310 5.92
DUBLIN 1,474 3.17 938,545 5.97 CHESTER 2,691 3.43 1,013,028 6.01
LYME 1,496 3.17 1,209,899 6.08 GREENLAND 2,768 3.44 1,204,935 6.08
HAMPTON FALLS 1,503 3.18 912,400 5.96 NOTTINGHAM 2,939 3.47 1,091,841 6.04
THORNTON 1,505 3.18 1,371,051 6.14 MOULTON-

BOROUGH
2,956 3.47 3,506,437 6.54

GREENFIELD 1,519 3.18 672,559 5.83
STRAFFORD 2,965 3.47 893,047 5.95WESTMORELAND 1,596 3.20 410,500 5.61
CANAAN 3,045 3.48 1,839,983 6.26HANCOCK 1,604 3.21 1,076,495 6.03
WAKEFIELD 3,057 3.49 1,805,051 6.26NEW HAMPTON 1,606 3.21 1,264,561 6.10
BARNSTEAD 3,100 3.49 1,608,588 6.21KENSINGTON 1,631 3.21 581,154 5.76
CHESTERFIELD 3,112 3.49 2,286,910 6.36CORNISH 1,659 3.22 895,466 5.95
WILTON 3,122 3.49 2,033,603 6.31LISBON 1,664 3.22 1,221,587 6.09
DEERFIELD 3,124 3.49 1,937,144 6.29CANTERBURY 1,687 3.23 615,537 5.79
NORTHWOOD 3,124 3.49 1,418,169 6.15HOLDERNESS 1,694 3.23 1,498,571 6.18
GORHAM 3,173 3.50 3,827,227 6.58MADISON 1,704 3.23 1,198,574 6.08
NEW LONDON 3,180 3.50 3,462,182 6.54DEERING 1,707 3.23 862,174 5.94
WALPOLE 3,210 3.51 2,425,109 6.38ALSTEAD 1,721 3.24 765,745 5.88
NEW BOSTON 3,214 3.51 1,932,824 6.29DUNBARTON 1,759 3.25 664,876 5.82
TILTON 3,240 3.51 1,719,738 6.24MONT VERNON 1,812 3.26 863,697 5.94
ALTON 3,286 3.52 2,958,199 6.47TUFTONBORO 1,842 3.27 983,087 5.99
OSSIPEE 3,309 3.52 4,037,042 6.61ANDOVER 1,883 3.27 562,335 5.75
NEWTON 3,473 3.54 1,414,819 6.15WHITEFIELD 1,909 3.28 2,011,131 6.30
LANCASTER 3,522 3.55 5,302,740 6.72ASHLAND 1,915 3.28 5,991,549 6.78
CANDIA 3,557 3.55 1,215,657 6.08MARLBOROUGH 1,927 3.28 1,484,826 6.17
BOSCAWEN 3,586 3.55 1,440,818 6.16CHICHESTER 1,942 3.29 696,019 5.84
EPSOM 3,591 3.56 1,129,369 6.05NEW DURHAM 1,974 3.30 1,709,885 6.23
NORTH
HAMPTON

3,637 3.56 2,621,011 6.42FITZWILLIAM 2,011 3.30 1,105,147 6.04
BETHLEHEM 2,033 3.31 1,695,314 6.23

MILTON 3,691 3.57 1,640,989 6.22PLAINFIELD 2,056 3.31 1,252,835 6.10
PITTSFIELD 3,701 3.57 2,221,767 6.35TROY 2,097 3.32 1,174,027 6.07
LEE 3,729 3.57 1,623,753 6.21SANBORNTON 2,136 3.33 1,485,044 6.17
HINSDALE 3,936 3.60 1,797,216 6.25TAMWORTH 2,165 3.34 1,159,218 6.06
ENFIELD 3,979 3.60 3,301,133 6.52GREENVILLE 2,231 3.35 1,303,897 6.12
NEW IPSWICH 4,014 3.60 1,431,500 6.16WARNER 2,250 3.35 1,513,819 6.18
WINCHESTER 4,038 3.61 2,301,339 6.36BARTLETT 2,290 3.36 1,143,921 6.06
SANDOWN 4,060 3.61 1,504,893 6.18ANTRIM 2,360 3.37 1,688,818 6.23
AUBURN 4,085 3.61 1,373,330 6.14CAMPTON 2,377 3.38 1,040,835 6.02
LOUDON 4,114 3.61 1,752,196 6.24BROOKLINE 2,410 3.38 1,113,194 6.05
HENNIKER 4,151 3.62 2,616,758 6.42COLEBROOK 2,444 3.39 1,357,725 6.13
HAVERHILL 4,164 3.62 1,252,612 6.10NORTH-

UMBERLAND
2,492 3.40 1,371,920 6.14

NORTHFIELD 4,263 3.63 1,809,819 6.26
HILLSBOROUGH 4,498 3.65 6,107,675 6.79DANVILLE 2,534 3.40 858,789 5.93
RYE 4,612 3.66 4,159,532 6.62BRISTOL 2,537 3.40 2,498,282 6.40

6
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CHARLESTOWN 4,630 3.67 2,602,431 6.42 LEBANON 12,183 4.09 21,029,363 7.32
ALLENSTOWN 4,649 3.67 2,352,666 6.37 HAMPTON 12,278 4.09 13,434,218 7.13

HOPKINTON 4,806 3.68 2,856,304 6.46 EXETER 12,481 4.10 12,223,190 7.09
WOLFEBORO 4,807 3.68 11,206,835 7.05 BEDFORD 12,563 4.10 9,122,876 6.96
MEREDITH 4,837 3.68 6,951,966 6.84 CLAREMONT 13,902 4.14 10,445,650 7.02
RINDGE 4,941 3.69 1,841,645 6.27 GOFFSTOWN 14,621 4.16 8,220,285 6.91
STRATHAM 4,955 3.70 2,125,127 6.33 LACONIA 15,743 4.20 11,776,111 7.07
EPPING 5,162 3.71 2,423,933 6.38 HUDSON 19,530 4.29 13,193,546 7.12
ATKINSON 5,188 3.71 2,125,331 6.33 LONDONDERRY 19,781 4.30 13,812,112 7.14
PETERBOROUGH 5,239 3.72 4,995,961 6.70 MERRIMACK 22,156 4.35 15,351,214 7.19
JAFFREY 5,361 3.73 6,983,140 6.84 KEENE 22,430 4.35 22,915,928 7.36
BOW 5,500 3.74 4,110,238 6.61 DOVER 25,042 4.40 20,808,160 7.32
LITCHFIELD 5,516 3.74 1,725,133 6.24 SALEM 25,746 4.41 29,189,769 7.47
KINGSTON 5,591 3.75 2,254,780 6.35 PORTSMOUTH 25,925 4.41 20,979,565 7.32
HOLLIS 5,705 3.76 3,674,216 6.57 ROCHESTER 26,630 4.43 19,804,052 7.30
FARMINGTON 5,739 3.76 2,610,103 6.42 DERRY 29,603 4.47 19,299,092 7.29
BELMONT 5,796 3.76 3,352,536 6.53 CONCORD 36,006 4.56 37,787,640 7.58
PLYMOUTH 5,811 3.76 4,317,324 6.64 NASHUA 79,662 4.90 45,170,090 7.65
LITTLETON 5,827 3.77 4,210,515 6.62 MANCHESTER 99,567 5.00 87,173,729 7.94
GILFORD 5,867 3.77 5,824,931 6.77
NEWPORT 6,110 3.79 5,242,011 6.72 Low Quartile 937 2.97
BARRINGTON 6,164 3.79 2,023,182 6.31 2nd Quartile

(median)
2,117 3.33

WEARE 6,193 3.79 2,865,631 6.46
High Quartile 4,644 3.67SWANZEY 6,236 3.79 2,276,072 6.36

SEABROOK 6,503 3.81 12,510,753 7.10
Median
(checking)

2,097PEMBROKE 6,561 3.82 6,894,823 6.84
HAMPSTEAD 6,732 3.83 2,466,294 6.39
NEWMARKET 7,157 3.85 4,467,355 6.65

Mean 4,740PLAISTOW 7,316 3.86 3,451,783 6.54
Sum/234
(Checking)

4,740CONWAY 7,940 3.90 5,988,938 6.78
FRANKLIN 8,304 3.92 6,792,378 6.83
RAYMOND 8,713 3.94 3,804,497 6.58
HOOKSETT 8,767 3.94 7,225,433 6.86
WINDHAM 9,000 3.95 5,286,475 6.72
AMHERST 9,068 3.96 4,672,970 6.67
HANOVER 9,212 3.96 8,928,686 6.95
PELHAM 9,408 3.97 5,087,464 6.71
SOMERSWORTH 11,249 4.05 7,619,638 6.88
MILFORD 11,795 4.07 8,529,696 6.93
DURHAM 11,818 4.07 7,989,037 6.90
BERLIN 11,824 4.07 9,251,705 6.97

And where does analysis of the relation between popu-

lation and budget (or the relation between any two

variables) begin?  With well behaved variables —

with an examination of the units of measure,

7
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translating if necessary to the forms of well behaved

variables.

Well-Behaved Population

First population: Because my spread sheet program is

good at putting things in rank order , with names

attached, and because it is poor at stem and leaf (and

because I value my own time) I will forego the Stem and

Leaf and rely on the rank order for equivalent detail.

And because my spread sheet program is good at bad

histograms and more cumbersome for good ones, I will

settle for a less than friendly histogram — it will

suffice to give me an overview of the shape of the

distribution.  Using the population data, as given (with

the person as the unit of measure), here, is the his-

togram.  It is not well behaved;  on the contrary, it is

extremely skewed with a tail extending in the direc-

tion of the larger values.

Histogram

0

50

100

150

200
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Putting numbers (on what is already obvious from the

picture), the mid values give numerical expression to

the skew in this picture:  The mid-quartile is larger

than the median.  The mid-eighth is larger than the

mid quartile, and so forth.

Count

n=234 Population Population Mid Value Examples

117.5 2,116.5 2,116.5 2,117 Median Troy; Sanbornton

59 935 4,649 2,792 Mid Quartile Freedom Allenstown

30 624 8,304 4,464 Mid Eighth Piermont Franklin

15.5 356.0 13,232.5 6,794 Mid Sixteenth Landaff; Easton Bedford; Claremont

8 248 25,042 12,645 Mid Thirty-Second Roxbury Dover

4.5 187 28,103 14,145 Waterville Valley; Easton Rochester; Derry

2.5 91 57,834 28,962 Ellsworth; Windsor Concord; Nashua

1 36 99,567 49,802 Harts Location Manchester

Manchester at 99 thousand people is, by itself, equal to

the cumulative populations of the 107 smallest towns.

That makes it large, but not necessarily different.

Pursuing the well-behaved form, changing the unit of

measure from the person to the square roots improves

the symmetry, but not enough.

9
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Pursuing the well behaved form by changing to the log-

arithm, it is clear (to the eye)  that logs are close

Histogram of Town Populations (Using Logarithms, Base 10)

0
10
20
30
40
50
60

Putting numbers on the image, the mid value numbers

support the visual appearance.  For comparison, the

table below shows 3 transformations, including the logs

as well as two power transformations, one a little

weaker than the logarithm, one a little stronger.   Mid

values based on the  weaker transformation, the .1

power, still show a slightly increasing trend of values,

10
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still indicating a tail in the direction of the larger pop-

ulation values.  Mid values based on the logarithmic

transformation  wander — as they will when data are

symmetrical.  Mid values based on the stronger trans-

formation, the -.1 power, also wander, like the mid

values for the logarithm.  So the negative .1 power is

also close.  That makes it user’s choice:  I’ll use the log-

arithm as the well behaved unit of measure for these

populations.

power
0.1 2.15 2.15 2.15 Median

1.98 2.33 2.15 Mid Quartile
1.90 2.47 2.18 Mid Eighth
1.86 2.58 2.22 Mid Sixteenth
1.74 2.75 2.24 Mid Thirty-Second
1.68 2.78 2.23
1.57 2.97 2.27
1.43 3.16 2.30

log
3.33 3.33 3.33 Median
2.97 3.67 3.32 Mid Quartile
2.80 3.92 3.36 Mid Eighth
2.79 4.12 3.46 Mid Sixteenth
2.39 4.40 3.40 Mid Thirty-Second
2.26 4.45 3.36
1.95 4.73 3.34
1.56 5.00 3.28

power
-0.1 0.46 0.46 0.46 Median

0.50 0.43 0.47 Mid Quartile
0.53 0.41 0.47 Mid Eighth
0.54 0.39 0.46 Mid Sixteenth
0.58 0.36 0.47 Mid Thirty-Second

11
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0.59 0.36 0.48
0.64 0.34 0.49
0.70 0.32 0.51

Using logs, and computing the fences, Nashua and

Manchester exceed the inner fences on the high end.

Nothing is so large that it exceeds the outer fences.  On

the low end, as on the upper end, two towns are below

the inner fences.  None are below the outer fences:  Using

logarithms for the unit of measure, the variable is

well-behaved, with a note of caution at each end.

0.697 Quartile Spread
1.045 Step Size

In Population In Logs In Logs In Population
84 1.926 4.712 51,544 inner fences

8 0.881 5.757 571,483 Outer Fences

Well-Behaved Appropriations

That is one variable done, one more to go.  For

Appropriations:  Using dollars as the unit of measure,

the distributions is, like its mate, sharply skewed,

with a few large values at the high end.  Using loga-

rithms as the unit of measure the behavior changes,

close to symmetry.  Attempting to verify this with the

mid values, the result, using logs, is disconcerting.  The

numbers do not support what the eyeball has suspected.

the distribution is not really symmetrical:  It shows a

consistent trend of mid values, 6.10, 6.11, 6.18, etc., indi-

cating that even using logs as the unit of measure, the

distribution is skewed with a tail extending in the

direction of the higher appropriations.
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117.5 6.10 6.10 6.10 Median Haverhill;Plainfi
eld

59 5.76 6.46 6.11 Mid Quartile Unity Newington

30 5.51 6.84 6.18 Mid Eighth South Hampton Pembroke

15.5 5.34 7.09 6.22 Mid Sixteenth Errol;Randolph Exeter;Seabrook

8 5.14 7.32 6.23 Mid Thirty-Second Sharon Dover

4.5 4.82 7.41 6.12 Windsor;Roxbury Keene;Salem

2.5 4.62 7.80 6.21 Ellsworth;Benton Nashua;Concord

1 4.20 7.94 6.07 Harts Location Manchester

Can I accept that as symmetry?  Is it close enough?  I

don’t know.  The only way to answer the question is to

try a stronger transformation of the unit of measure and

see how strong a transformation it takes to eliminate

this trend among the mid values.

What it takes to break the trend is the -.11 power.   So

my choice is between the logarithm and the negative

-.11 power.  I’ll take the log as close enough.  (Had it

required the -1 power to break the trend, or even the -.5

power, I would have worried.  Fortunately I don’t have

to figure out what I would have done.) (Note that the

-.11 power reverses the rank order of the numbers, high

becomes low and low becomes high.  So the “high

values” at the mid thirty-second and later correspond

to low values on the original scale of the variable.  If

this were a tail, it would be a tail toward the small

values appropriations, implying that the

transformation had been too strong.)
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power
-0.11 0.213 0.213 0.213 Median

0.232 0.195 0.214 Mid Quartile
0.248 0.177 0.212 Mid Eighth
0.259 0.166 0.212 Mid Sixteenth
0.272 0.157 0.214 Mid Thirty-Second
0.289 0.153 0.221
0.311 0.145 0.228
0.345 0.144 0.244
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The Relation Between Population and Total
Appropriation

Is there a relation between population and appropria-

tion?  That was the question I had to answer.  If there is

a relation? And if the relation is a relation of strict

proportionality, double the population and you will

double the appropriation (on the average) — then I

have support for the procedures of mean-based budget-

ing:  Strict proportionality, empirically, establishes

reason to use appropriations per capita as a standard

for the budget — regardless of the size of the town.

Searching each separate variable for its well-behaved

form, tells me to look for the relation between these two

variables by examining their log log form,  using the log

form of each variable.
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Ordinarily, I would actually do the log log graph on

“wallpaper”, making it about three feet wide.  It takes

a graph of this size to provide proper labels that liter-

ally spell out the name of each town on the graph  Then

I would feast my eyes on the result, locating Waterville

Valley, a ski town in the mountains, locating

Manchester, an old industrial town, locating Concord,

the state capitol, Hanover, a college town, ... getting a

“feel for the data”.

But ,limiting myself to a publishable piece of paper, I

can at least inspect the shape of the graph, using dots.

17
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My first reaction to the graph is relief:   So far , with-

out getting serious (that is, without looking at the

residuals) it appears that the relation is a line, not a

curve.   And the slope is tantalizingly close to 1, at a

height showing that a population of 1,000 will have,

on the average an appropriation of about $600,000,

about $600 dollars per person.   There is hope:  This
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could be a linear relation, in logs, and a strictly propor-

tional relation in dollars and people.

Now I’ve got to get serious, using least squares regres-

sion to estimate a line at the center of the cloud of data

and then looking at the residuals.  So, allowing my

spread sheet program to execute a least squares regres-

sion of log appropriations on log population, using

common logs (base 10), I get an estimate of a line at the

center of this cloud of data, a line with intercept 2.689

and slope of 1.032.

That is a little worrisome:  I note that the anti log of

2.689, base 10, is 489, $489 per person — a little low

compared to my eyeball estimate of $600.  But then,

checking, $600 per person would have corresponded to

an intercept of 2.778.  The difference between 2.689 and

2.778 may be too fine for eyeball discrimination.  So

$4889 may be acceptably close to my original estimate.

Looking at the slope, the slope at 1.032 is also nice —

passably close to a very simple number, passably close

to the magic number 1 — at which I can establish strict

proportionality.  Using this intercept and this slope, as

estimated by the computer, and plotting residuals

(represented in logs), the residuals are
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The plot of the residuals makes the extremes in appro-

priations per capita stand out.  I see that exceptional

point at the top of the graph and I have to look:  That

“dot” is Waterville Valley, site of a large ski devel-

opment in the White Mountains.

In logs In Ratios
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Low Quartile 2.97 -0.14 0.72
Mean 3.33 0.00 1
High Quartile 3.67 0.10 1.25

In logs In Ratios
Quartile Spread 0.24 1.73

Step Size 0.36 2.28

lower inner fence -0.50 0.32
Lower Outer Fence -0.86 0.14

The mean residual is 0, as it must be in least squares

regression.  In logs, using the quartiles, fifty percent of

the towns lie in a range between -.14 and +.10.  In ratios

those two numbers translate into a ratio that is less

than one, .72, and a ratio  that is greater than one, 1.25.

In percentages, that means that fifty percent of the

town budgets like in a range from 28% below the aver-

age to 25% above the average of appropriations per

capita for the entire state.  Looking for outliers, one of

these residuals is below the inner fence on the low end.

But, as is obvious on the graph, there are several out-

liers exceeding the fences at the high end of

appropriations per capita — five exceed the inner fence

of appropriations per capita, one of the five exceeds

the outer fence:  That is Waterville Valley again, with

151 in its official population, and budget of $1.7 million

dollars — that is $11,500 per capita, definitely an

outlier.

Leaving this one point out, and re-estimating, the

revised estimates are now intercept = 2.604 ($402 per

capita), slope = 1.056.

Interpreting the slope itself, in logs the relation is

log (Appropriation) = 2.604 + 1.056(log population)
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Taking anti-logs on both sides of the equation and

restoring the original units, that is

Appropriation = ($402per person)x(population1.056)

Thinking about the Exponent:  The Relation
Between Population and Budget

Thinking:  How would I l i k e  this relation to turn

out?  That’s clear.  I want the exponent to be one.  That

would establish that the relation between budget and

population is independent of the size of the city.  That

would gives me empirical support for the standard by

which I can begin to sort the budgets of the state of New

Hampshire and, in particular, the budget of my town.

Carl Sagan suggests that the essence of scientific

method is skepticism.  I am surely a skeptic — I don’t

even trust myself.  That’s why it is important to be up

front about what I would like to find and, therefore, to

be particularly careful and suspicious when, low and

behold I find, at the end of my analysis that I have

“discovered”, exactly what I was looking for at the

beginning.  Maybe, but I have to be careful.

So what I have so far is a proportionality between

Appropriations and the 1.056th power of population,

not the first power.   Can I just lop off that .056, declare

the power to be 1 (close enough).  If I were to do that I

would argue something sophisticated like

“On grounds of parsimony, I will simplify that

1.056 to 1, which establishes that the appropria-

tions are directly proportional to the population.”

But how do I know that .056 is small?  Compared

to what?   Like analyzing budgets, data analysis is
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often a “game” of establishing contexts.  How do I know

that .056 is small?  Can I leave it out?

I will figure that out by trusting the mathematics

and getting a feel for it.  What 1.056 says, in contrast to

1.000, is that larger cities spend more, per capita (and

on the average), than small towns.  How much more?

Following the math, I will figure out the numbers with

and without that .056. Using strict proportionality

(using 1.000), suppose that a town of one thousand

people could expected to appropriate $400,000.  Using

strict proportionality, by comparison, a town of 10,000

people would be expected to appropriate ten times

more, $4,000,000, and a town of 100,000 (Manchester)

would be expected to appropriate one hundred times

more  $40,000,000.

Log
Popula-
tion

Popu-
lation

Prediction in logs Prediction in dollars Ratio (to first row) Ratio of
the
appropri-
ation to
the
appropri-
ation of a
town of
1,000
people.

3 1,000 log appropriation
= intercept

+ log population

$appropriation

    = 10
intercept

population

1

4 10,000 log appropriation
= intercept + log
population

$appropriation

    = 10
intercept

population
    

10intercept10,000

10 intercept1,000
= 10

10 to 1

23

Macintosh HD:DA:DA IX:Volume II:330 Rates of Return Friday, September 6, 1996



Introduction to Data Analysis Mean Based Budgeting

5 100,000 log appropriation
= intercept + log
population

$appropriation

    = 10
intercept

population
    

10intercept100,000

10 intercept1,000
= 100

100 to 1

Now, by contrast how big is that 1.056?   “.056”

looks small but, actually the increase is not obviously so

small that it can be ignored:   Compared to a town of

1,000 people, a town that is 10 times larger would have

an appropriation that is larger by the ratio of

(10^1.056)/(1^1.056). That is 11.38 to 1.  And it means

that the relative budget is 14% larger than would be

expected under strict proportionality.  And Manchester,

the extreme at with approximately 100,000 people

would have an expected budget that is 29% larger than

would be expected under strict proportionality.

Log
Popula-
tion

Popu-
lation

Prediction in logs Prediction in dollars Ratio (to first row) Ratio of
the
appropri-
ation to
the
appropri-
ation of a
town of
1,000
people.

3 1,000 log appropriation
= intercept
+ 1.056 log population

$appropriation

    = 10
intercept

population
1.056

1
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4 10,000 log appropriation
= intercept
+ 1.056 log population

$appropriation

    = 10
intercept

population
1.056

    

10intercept10,000 1.056

10 intercept1,0001.056
= 10

1.056
11.38 to 1

5 100,000 log appropriation
= intercept
+ 1.056 log population

$appropriation

    = 10
intercept

population
1.056

    

10intercept100,000 1.056

10 intercept1,0001.056
= 100

1.056
129.4 to 1

So, I can’t casually throw it away:  With or with-

out that .056 tacked on to the 1 (in the exponent), I

would not or would find a 29% larger budget (to be typi-

cal or large).  It is not a large amount.  It affects only one

large city and (at this magnitude) it only affects the

comparison between the largest city and the smaller

towns, not the comparison to the average.  But it is

worth attention.

Now I’m going to tackle it another way, asking

“How much do I believe these numbers anyway?”

These numbers are the facts, not a sample of the facts,

so variability is not an issue.  But I note that just remov-

ing one data point raised the slope from about 1.04 to

about 1.05.   I don’t really believe that number out to as

many digits as I can calculate.   Is the contrast between

1 and a slope of 1.05, on the log log graph, within the

“wobble” or uncertainty that is built in to my data?

The slope and the intercept estimated by my computer

minimize the squared deviations.  How much larger

would the squared deviations become if I were to

impose a slope of 1.000?  How sensitive is the squared

error (by which least squares regression evaluates the

result) to the contrast between the simple 1 and the

observed slope of 1.056?
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Starting with the best, starting with 1.056, the
equation “explains” 89.07% of the variance:

By regression, r = .9438, r2 = .8907, 89.07 percent of the variance is “explained”.

Intercept = 2.604,
slope = 1.056.

By contrast, imposing the exponent 1.000, the equation “explains” 88.77% of the variance:

Intercept = 2.304   (anti-log of 2.304 = $637),
slope ≡ 1.000

That almost convinces me that the difference can

be ignored, 89.1% for the statistical best answer, 88.8%

for the simple answer, 1.    In fact, “1” may be the better

answer.  In the world of science I am free to and encour-

aged to look at details that may be a hint of some

subtlety — but in my tentative conclusions I am obliged

to choose what is simple unless there is compelling

reason to do otherwise.   I also note that imposing the

slope 1 leads to a re-estimate of the constant so that it

now corresponds to $637.  That is closer to what I saw in

the graph and close to the median $598 per person,

which is less subject to error due to single cases like

Waterville Valley or the other four high values of the

residuals.  In a sense by “helping” the statistics with

their estimate of the slope, I may have been rewarded

with a better estimate of the intercept.

I am not wholly happy, but I am willing to commit:

“On grounds of parsimony, I will simplify that
1.056 to 1, which establishes that the appro-
priations are directly proportional to the popu-
lation —at a trivial loss of approximately 1%
in the variance explained, and at a gain of
considerable simplicity.

26

Macintosh HD:DA:DA IX:Volume II:330 Rates of Return Friday, September 6, 1996



Introduction to Data Analysis Mean Based Budgeting

I will keep that 1.056 in mind and, in a professional
publication I would be sure to alert the reader.  But I
would not use it unless subsequent research advanced
the case for using the more complicated rather than he
more precise answer in cases where both “explain”
approximately the same amount of the variance.

And here is my first report:
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 $830 per Person:  $232 per Person over 
the Average for New Hampshire

 $604 per Person

   7 LEBANON

54 ENFIELD

  36 HANOVER  $969 per Person

 113 CANAAN
 $609 per Person 110 PLAINFIELD

$ per Person

  87 GRANTHAM  $700 per Person

Enfield Town Budget, 1994

Rank  by Dollars per 
Personand Name of Town

8/1/95 b

Appropriation Data from State of New Hampshire Department of Revenue Administration

Prepared by Joel H. Levine, RR1 Box 116, Enfield, New Hampshire  03748

The Enfield budget is $3,301,133 for a 1990 population of 3,979.  Reduced to the state average of $598 per person, the 
Enfield budget would be to $2,379,442.  It would be $921,691 below the present budget.

State Average:
118 GRAFTON  $596 per Person

$598 per Person (Median)

 $1,726 per Person

Total Appropriation Shown as Dollars per Person, Compared to State and to Adjacent Towns
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The Ego of the Data Analyst — Postscript

I note, with pain, that this report use few words at all.  My intent in this case was to build a

chart, one page, few words, that would begin a discussion.  I know, and in a report written to profes-

sionals you would know, that the comparisons implied by the chart are valid.  I know and you know

that it is valid to standardize budgets by computing the appropriation per person and to compare

them in that form.  And if someone had chosen to take up the question of validity, I would have

been ready.  It is not easy work or, to put it another way, you have to be up to a certain level of com-

petence before it is easy work.  But for the most part, few people will care.  On the other hand, if

someone does begin to ask you the right questions, you and the interrogator will, each of you, have

found a worthwhile colleague.

Try it.  Data grouped by the broad classifications of the state accounting categories are enclosed.

Without ever setting foot in the Town of Enfield, without hours spent over the budget and discus-

sions with the accountants,  you can easily show that there was a $400,000 purchase in need of

explanation.  Without any attention to the local press you will find that someone really should say

a few words about a $6,000,000 piece of goods purchased by the Town of Lebanon.  These are simple

statistical outliers brought into focus by the application of mean based budgeting.

_________________________________
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Calculus and Correlation:
A Calculus

for the Social Sciences

hirty years ago optimistic social scientists dreamed of a calculus of

the social sciences.  The logic of this calculus would mirror the logic

of social events and it would be the natural language with which to for-

mulate laws of behavior.  With it, social science would become “science.”

That distant dream expressed both admiration for physical science and

hope.  The admiration was for the incredible fit between the calculus and

basic concepts of physical science, a fit so apt that it is no longer possible

to think about phenomena like “velocity” and “acceleration” apart from

their mathematical expressions.  And, seeing that fit, social scientists

hoped for a calculus of our own, a mathematics that would confer upon

us the blessings that classical calculus had bestowed upon physics.  Our

present generation of survey researchers would be our Tycho Brahes,

documenting the basic facts of social existence.  Our Newton would lie

just ahead, discovering law.

Why invent a calculus of our own?  Why not borrow?  Presumably

because social science is built from variables like class and power, from

roles like “mother,” from religion and politics, and because such vari-

ables defy the scientific heritage of physics.  The science of these things

will require a new math.  That's one view.  But one way that science

moves forward is by looking backward to re-assemble its understanding

of what it has already accomplished and I'm going to look backward to

argue that the calculus, or a calculus, of the social sciences is already here

— even for such variables.  What's more, I suggest that the Newton and

T
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Leibniz of our calculus are none other than the original Isaac Newton

and Baron von Leibniz — because it is the same calculus.

My theme is that our basic idea of correlation, in the social sciences,

and their basic idea of the derivative, in the calculus, are fundamentally

the same.   The similarity is well disguised by convention and context,

but the two are essentially the same.  In one sense my task is simple:  I

have to show the correspondence between the two forms of the one con-

cept.  In another sense the task is difficult because I have to break

through the disguises of convention and context, playing with uncom-

fortably basic questions like what is correlation and what is a derivative.

It's tricky to deal with broad generalities while retaining useful content,

but that's the task.  The immediate implications are for the concept of

correlation:  Currently, two-variable correlation is reasonably well

understood among social scientists.  But partial correlation is something

we know more by practice than by intellect, and three-variable, four-

variable and n-variable correlation are hardly understood at all, at

present.  James A. Davis put it well in successive chapter headings for his

book on survey analysis, referring to “Two Variables,” “Three

Variables,” and “Too-Many Variables.”1  But we can do better than that.

If we rely on the ideas of the calculus as the organizing principle, then

the whole intellectual picture of correlation becomes “obvious.”

The Logic of Contrasts:  Change of One Variable

Let's begin on neutral turf, neither correlation nor the derivative,

beginning with the basic problem of comparing two numbers.  Suppose

that the great oracle who prepares data for data analysts encodes a

sequence of four messages about the world, shown in Figure 3.1.

My job as analyst is to read these four messages and interpret them.

But, oracles being what they are, the messages are both badly labeled

and ambiguous, leaving me little to work with.  One fact that's clear

about them is that the two numbers in each pair are different:  2 is not

                                             
1. James A. Davis, Elementary Survey Analysis, Prentice-Hall,

Englewood Cliffs, N.J., 1971.
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equal to 4;  4 is not equal to 8.  So I can ask the  question, “How different

are they?” If I compare the two numbers by their ratio, then I think the

great oracle is telling me “2” in the first message, and then “2” again, and

again “2.”  That's clear enough.  Reading the messages as fractions, the

sequence of four messages is constant.  The data vary, but the message is

constant.

Unfortunately, there is another obvious interpretation for the same

data and if I compare the two numbers by their difference, instead of

their ratio, then I get a conflicting result:  If I compare two numbers by

their difference, then I think that the great oracle is telling me “2” and

then “4,” “6,” and “8.”  That's also clear.  Reading the messages as differ-

ences, the sequence is a regular progression, not a constant.  And, of

course, having found two ways to read the data I can probably find

more, and that leaves me with a choice:  Which is correct?  Do the

messages describe a constant, or a progression, or something else?

Which reading of the data connects to reality?  Without labels and clar-

ity, the question is undecidable and that's the point:  The numbers do not

speak for themselves.  Here at the very lowest level of quantification,

comparing numbers, they require human intervention and choice.

Quantification is about ideas.  Get the numbers right with respect to real-

ity and you have a foundation that lets you progress to the next level of

difficulty.   Get them wrong here, at the beginning, and any subsequent

analysis of the data, and of the reality behind the data, is in jeopardy.     

Reading Reading
Message Message One:Two:

Ratios Differences

#1: [ 2, 4] 2 2

#2: [ 4,  8] 2 4

#3: [ 6, 12] 2 6

#4: [  8, 16] 2 8

Figure 3.1
Four Sets of Data Read as Messages Describing the Real World
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But in one important

sense there really is a

universal answer to the

question, or at least a

preferred answer,  for all

cases:  How different are

two values of one variable?

I’ll have to justify this

answer, but as a matter of form the correct answer is always their difference:

Never their ratio, never a percentage, always the difference.  Always, for

any variable and any problem.   And the way you make this rule work is

by including a generous escape clause:   If theory or intuition suggests

ratios, then use logarithms before computing the differences of the logs.

Whatever it takes, logarithms, inverses, whatever:  Transform the vari-

able and then compare values by computing their difference.

Such abstraction may seem distant from the work of a practical

scientist — discussing universal answers and content-free rules.  But

there is solid practical reason for it.  This is the kind of thing that

mathematicians learn, but rarely teach, because the message is only

implicit in the mathematics.  It's implicit, for example, in the derivative

— the mathematical form, content free, by which we describe velocities

and accelerations of all kinds of particular cases.  Take a look at a deriva-

tive, defined in Figure 3.2, and note the abstraction.  The derivative uses

two variables, an “x” and an “f,” and each variable has two values.  In

the denominator, the derivative compares two values of x, using subtrac-

tion.  In the numerator, the derivative compares two values of f, again

using subtraction.  Thus, if x0 is the starting time of an experiment and x

is the current time, then the denominator, x – x0 , is the time elapsed.

And if f (x0) is a location at time x0 and f (x) is a location at time x, then

the numerator, f (x0) – f (x), is the distance between locations.  Putting the

two variables together, the derivative divides one difference by the

other, giving the rate of change in units of distance divided by time, in

miles per hour or centimeters per second.

Part of the genius of the derivative lies in the stunning simplicity of

this rate of change at the heart of the concept.  A rate of change

expressed as “miles per hour” is so obvious to us now, hundreds (or

x → xo

lim f x – f xo

x – x o

Figure 3.2
The Derivative of “f ” with Respect to “x ”
Expressed as the Ratio of Two Differences
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thousands) of years after its invention — so built in to the culture, that

math students go right past it, focusing on the less familiar concept of

limit, also built in to the definition.  But there was a time, I'm told, when

physical scientists weren't at all sure that a precise concept of velocity

was important.  If, for example, you hadn't observed that falling objects

fall at different velocities — if you thought they all did the same thing

under the influence of what we now call gravity — then you might not

be well focused on the concept of velocity.  It probably took some serious

thinking to define “velocity” as a rate of change and serious creativity to

re-use the same idea for acceleration, defining it as the rate of change of a

rate of change.

What's so clever about the derivative and the rate of change?

What's clever is the foresight to begin with subtraction.  The derivative

compares two values of one variable by subtraction.  You would think

that flexibility might be a virtue here, when it comes to comparing

numbers:  When social scientists compare two people's educations, or

two counts, or two prices of a commodity, we are ready to use differ-

ences, or ratios, or percentages. Whatever makes sense, we'll use it.

Compared to our flexibility, in the social sciences, Newton and Leibniz’s

derivative is the work of monomaniacs, monomaniacs with foresight.

You have to violate the rule of subtraction, temporarily, in order to

demonstrate the trouble that would develop without it.  For example, let

me attempt the mathematical description of a population that doubles

each year, and let me compare population to population by division

instead of subtraction.  Having specified, at the outset, that the popula-

tion doubles each year, you would think that division would be the

natural arithmetic for this population.  But watch:  If I compare popula-

tion to population using division, then I have to compare change of

population to change of time with an exponent.  Thus, if I begin the com-

parison with division, I have to follow up with the unpleasant expression

at the left of Figure 3.3.

This expression does the job, but one thing that Newton and Leibniz

did not do is work with this kind of thing.  It's not just “ugly.”  The

problem is that to generalize this expression, to create a calculus that

could calculate its implications would require a whole new branch of the
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calculus, just for this expression.  And mathematicians and physicists

f x
f x o

1

x–xo = 2
 

log f x – log f x o

x – x o
= log 2

Using Division Using Subtraction

“Population doubles each year” — expressed by division, left, and by
subtraction, right, where “f” is Population and “x” is time.

Figure 3.3
Doubling of Population

f x

f xo
x
xo

Constant = 1
log f x – log f x o

log x – log x o

= Constant

Using Division Using Subtraction

“Proportional growth of the population is directly proportional to the
growth of the food supply” — expressed by division, left, and by
subtraction, right, where “f” is population and “x”  is food supply.

Figure 3.4
Proportional Growth of Population and Food Supply
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don't do that, not if they can avoid it.   They keep it simple, which means,

in this case, being rigidly simple-minded with respect to form, by

subtracting.  How do I replace division by subtraction?  Using logs. That

is what logarithms do for positive numbers, replacing multiplication and

division of the original numbers by addition and subtraction of their

logarithms.  If I transform population to log population and subtract,

then the whole concept reverts to standard form as a rate of change,

Figure 3.3, where it is subject to well-known methods of inference and

easily handled by anyone with a term of calculus.2

And if this example doesn't worry you, then try something more

troublesome:  Try expressing something like “the rate of growth of a

population is directly proportional to the rate of growth of the food sup-

ply.”  If I compare population to population and food supply to food

supply using division, then the comparison between change of popula-

tion and change of food supply requires the distinctly unpleasant

expression on the left of Figure 3.4, another new object requiring another

new mathematical development.  By comparison, changing the numbers

to their logarithms and subtracting re-expresses the same concept in

standard form as a rate of change.    Keeping it simple, the derivative

conserves the user's intellectual muscle for something more productive,

further down the road.

The popular culture views math as something complicated, but the

truth is that math places high value on simplicity, acknowledging the

humble fact that human beings have limited cognitive capacity.    And

the trick to doing better is not to work yourself into a frenzy to make

yourself a smarter human being.  The trick is to work on the problem to

make it simpler — without any change in the problem.  Mathematics

keeps it simple.

To be sure, there is a price to be paid for simplicity:  You have to

switch from population to log population, from the kind of thing you can

count, one person, two people, three . . . to a different kind of unit.  That

                                             
2. Working with the calculus, on the left, the math establishes the

mutual implication between this rate of change and exponential growth.
Working with the thing on the right, the same implication is there — it
must be.  But it is difficult to prove.
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isn't easy.  Everyone knows what a person is.  But a log-person?  Every-

one knows what a dollar is.  But a log-dollar?  That's uncomfortable.  It

takes time to get used to such things.  But it pays off with simplicity:

Even if you have no direct interest in equations and take no joy from the

beauty of the math, even if your interests are immediate and practical,

change the variables.  Suppose, for example, that I am watching the price

of a corporation's stock on Wall Street — that's as immediate and

practical as I can get:  Suppose I buy a security priced at $100 and

observe a change of price to $110.  Everyone in this culture knows about

percentages.  So how could the difference of logarithms, which I recom-

mend, be simpler than percentages as a description of this change?  The

answer is that percentages are not simple, just familiar, and if you insist

on using them for practical work you quickly get into as much trouble as

you would if you insisted on using them in equations.  Suppose I buy

this security at $100 and observe its changes, using percentages.  And

suppose its price moves up ten percent one day, down ten percent the

next, up ten percent the next day, and down ten percent again, regularly.

That's steady and sounds stable, but if I keep that kind of steadiness

going, day after day,  in percentages, I will lose about seventy percent of

my money in the course of a year:  Check the numbers.  Ten percent up

from $100 is $110.  Ten percent down from $110 is $99.  Ten percent up

from $99 is $108.90.  Follow that out for a year and what's left is about

$30.3  In fact, to stay even, expressing change in percentages, I would

have to climb ten percent while holding my loss to about nine and one-

tenth percent:  10% up and 9.1% down, just to stay even.

If that surprises you, then I've made my point that percentages are

not simple.  A little thought will show you the problem — the base from

which you must compute the percentages keeps shifting.  And, seeing

                                             
3. Assuming 250 days of trading, on the stock exchange, each year,

and using as many digits of accuracy as my computer will allow,  the
sequence begins

100.0000, 110.0000,  99.0000, 108.9000,  98.0100, 107.8110,  97.0299,
106.7329, . . .

and concludes
. . . , 29.6387,  32.6025,  29.3423,  32.2765,  29.0488,  31.9537,  28.7584,
31.6342,  28.4708.
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the problem, you might figure out a way to compensate for it.  But now,

adding some sort of built-in compensation to the discussion, you are no

longer talking about a sequence that is simple, using percentages.  (In

fact, you are probably on your way to re-inventing logarithms.)  Better to

convert the price to logs and observe, plus log(1.1), minus log(1.1), plus

log(1.1), minus log(1.1).  Logs are simpler.

Again, I'll admit there is a price:  Tell someone, “Today the loga-

rithm of the price of a share of General Motors stock moved up by

log(1.1),”  and they will look at you strangely.  But there is no easy way

out.  The same people who object to logarithms and claim to be at ease

with percentages will look at you strangely when they find that a precise

balance of gains and losses, 10% gained, 10% lost, can wipe out  70% of

their money in the course of a year.

To follow the same point, that changing the numbers pays off, even

in empirical work, consider the data for the relation between the total

populations of nations and their gross national products (GNPs).  There

should be nothing exciting about population and gross national product:

Large nations, like China, the former Soviet Union, India and the U.S.

should show large populations and large gross national products.   (I'm

using GNP, not GNP per capita.)  Using “people” for population and

“dollars” for GNP, think about the graph of these two variables.  You

might expect something like a line extending from low to high, from low

population and low GNP to high population and high GNP, from

Tokelau (an island nation in the South Pacific) on one end to China on

the other.  And when you have a clear mental image of the graph you

expect for these data, look at the facts graphed in  Figure 3.5.   In fact, the

real graph of “people” (left to right) by “dollars” (bottom to top) is, in

non-technical terms, a mess:  More than 90% of the nations clump

together in a blur at the lower left-hand corner of the graph.  The lay

explanation for this mess is practical.  Practically, it appears that the U.S.

and a few large nations are too big, so big that these super-states are

different in kind from other nations and don't belong on the same graph.

You don’t mix “apples” and “oranges” and you don’t mix Tokelau with

China, for which differences of degree have become differences in kind,

as one is almost one million times larger than the other.
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So, following this explanation, you solve the problem by removing

the U.S. and other very large nations from the graph and drawing it

again, without them.  Sounds good, but it doesn't work:  If I oblige by

removing the special cases, I get the revised graph in Figure 3.6, which is

basically a re-run of the same phenomenon, minus a few of the original

data points.  And if you fix it again, simply by removing more cases,

then you will be disappointed, again and again.  Holding on to the famil-

iar units of dollars and people, these data will not behave.  And each

time you compensate for your difficulties, keeping track of what has not

been placed on the graph, as well as trying to make sense of what has,

the analysis gets more complicated.

The real problem here is the mathematics:  You may not be inter-
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1988 population in hundreds of millions, left to right, by 1990 gross national
product in trillions of dollars, bottom to top.  For example, the United States
is plotted at 251 million people and 4.86 trillion dollars.  Data from 1991
Britannica Book of the Year, Encyclopaedia Britannica, Inc., Chicago, 1991.

Figure 3.5
Gross National Product Versus Population
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ested in it — your interests may be practical and data oriented, but you

can’t escape it.  The practical problem with these data is directly

comparable to the mathematical problem in the equations of Figure 3.4.

And, fortunately, the solution is also the same:  Fix up the comparison

between one population and another, and the comparison between one

GNP and another, by converting to logs.  Then, comparing differences of

population to differences of GNP, you will be rewarded with the graph

in Figure 3.7. In “theory” the two graphs, Figures 3.5 and 3.7, display

exactly the same information.  In practice there is a big difference.  Even

Tokelau, with its two thousand people, and China, with its one billion,

line up.  Mathematics keeps it simple.
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is plotted at 57 million people and 898 billion dollars. Data match Figure 3.5.

Figure 3.6
Gross National Product Versus Population — Truncated
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First page of Two-Page
Spread

Replace with separately
printed figure. Print as two

facing pages   Figure 3.7

There are two versions of the
paste-in pages.  They are
slightly different at the

bottom and require varying
tricks in the reduction.
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Second page of Two-Page
Spread

Replace with separately
printed figure. Print as two

facing pages   Figure 3.7
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The Logic of  Correlation

In summary, regardless of context and meaning, when you compare

two values of one variable, subtract.  Change the numbers, if necessary,

but subtract.  And that simple lesson in the virtue of good form is half of

what I need to connect correlation to the derivative.  The other half is a

good look at correlation, looking at what correlation is in the abstract.  To

anticipate the argument:  In the abstract, correlation expresses a particu-

lar kind of comparison, involving two or more variables.  By custom,

however, correlation and its implied comparison, are not generally

expressed by subtraction.  And that is where the two halves of the argu-

ment get joined:  When correlation is re-expressed, using subtraction, the

form of the comparison shows that both concepts, both correlation and

the derivative, are expressing with the same idea.

Let's look at correlation.  To illustrate, let me capture the first two

messages from my oracle and give them labels.  Shown in Figure 3.8, the

first message is now a message about “Democrats”:  Four of them voted

for Bush, two for Dukakis.  And the second message is a message about

“Republicans”:  Eight of them voted for Bush, four for Dukakis.  In these

hypothetical data, is there a correlation between party and vote?  How

do you answer the question?  Paraphrasing the answer by G. Udny Yule,

circa 1903, the answer begins by asking the meaning of a single number:4

Look at the “2” at the upper left of Figure 3.8, two Democrats voted for

Dukakis.  Does this single number, “2,” say anything about the correla-

tion between Vote and Party?   No, “2” is neither large nor small, except

in comparison to some other number.

All right then, reading the first message, Yule would have

compared 2 to 4, using the odds:  These Democrats voted for Bush, two

to one.  Now, does this comparison, using odds, say anything about the

correlation between party and vote?  Still, the answer is no.  The 4 to 2

odds, favoring Bush, are neither large nor small except by comparison to

the odds among Republicans. The fact that these Democrats favored

                                             
4. Over the years, Yule's Q, which I am about to derive, has been

derived by alternative methods and has been related to other measures,
but it is the original logic of Yule's derivation that I am after.
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Bush tells us nothing about the correlation between the two parties and

the vote.  For that we need to compare the Democrats to the Republicans.

So Yule would have read the second message, again using odds, and

then compared message to message by the ratio of their odds, which he

named κ , the “odds ratio.”  In this example the odds ratio is 1, and now,

with this ratio of two ratios, this comparison of comparisons, we know

about the correlation between party and vote:  In this example, there is

no correlation.  The logic of this correlation is summarized in Figure 3.9.

Yule used ratios, not differences, but his logic is clear enough.

Votes for
Dukakis

Votes for
Bush

Votes for
Dukakis

Votes for
Bush

Demo-
cratic
Party

2 4
n

Dem,Dukakis
n

Dem,Bush

Repub-
lican
Party

4 8 n
Rep,Dukakis

n
Rep,Bush

Data as Numbers Data as Symbols

Figure 3.8

Data for Two Two-Valued Variables

Evidence:

Among Democrats:  Odds favoring Bush = 4/2

Among Republicans:   Odds favoring Bush = 8/4

Contrasting odds among
Republicans to odds among
Democrats:   Odds ratio, κ  =  (8/4) / (4/2)  =  1

Conclusion:

“Vote,” represented by the odds favoring Bush, is not correlated with
Party:   Comparing Republicans to Democrats, the odds do not change.

Figure 3.9

Logic of Contrasts for Two-Valued Variables
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Correlation lies in the double contrast measured by the ratio of odds.

Visually, his logic is crystallized by the notation for κ, shown in Figure

3.10.  In both the numerator and denominator the second subscript

changes — expressing the comparison between Bush and Dukakis.

Then, between the numerator and the denominator, the first subscript

changes, expressing the comparison with respect to party.

The Conventions of Correlation:  Yule's Q

Unfortunately, Yule too had a public that liked some kind of num-

bers and disliked others.  The issue, in this case, was not a matter of

subtraction, or division, or percentages.  Rather, the issue was custom

and custom in Yule's day, and our own, demanded that a measure of

correlation satisfy three conventions.  Logic aside, custom demanded:

1. That the value of a correlation coefficient would lie between +1
and –1 (or between +1 and 0 where “negative” correlation is
undefined)

2. That the value of a correlation would be 0 for uncorrelated
variables and

Dem,Bush
n

κVP =
/

Odds Ratio, Republicans to Democrats
 (First subscript)

Odds among Republicans, ratio Bush to Dukakis (Second subscript)

Rep,Bush
n

Rep,Dukakis
n

Dem,Dukakis
n

/

Odds among Democrats, ratio Bush to Dukakis (Second subscript)

Figure 3.10

Yule's odds ratio, κ
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3. That the values of a correlation coefficient might change sign,
but not magnitude, if the order of the rows or the columns
were reversed.

Yule's odds ratio, κ, violated custom on all three counts:  Violating

the first convention, as a ratio, Yule's odds ratio lies between 0 and infin-

ity, not plus-one and minus-one.   Violating the second convention,

Yule’s odds ratio is one for uncorrelated variables, not zero.   And

violating the third convention, the ratio changes from κ to 1/κ, not –κ, if

the order of the rows or columns is reversed.  Yule responded by

transforming his κ  to a new expression he named Q, bending and

stretching κ to the demands of custom, using Equation 3.1.  Yule's Q,

named for Adolphe Quetelet, satisfied convention, but the logic was

buried.

QXY=
κ XY – 1

κ XY + 1
,

[3.1]

And, after ninety years of historical drift, the form of Yule's Q  has

itself been altered with the result that the presence of the odds ratios and

the logic of Yule’s contrasts are entirely hidden, using the form in

Equation 3.2.  In theory, the original odds ratio and this modern expres-

sion of Q embody the same information.  In practice there is a difference.

Q PV=
n RB n DD – n RD n DB

n RB nDD + n RDn DB

.
[3.2]

The Logic of  Contrasts:
Correlation and the Derivative

This transformation from κ  to Q  was, in a sense, a change of lan-

guage — expressing the concept in the argot of statistics.  But differences

in language matter, the classical example being the difference between

Roman numerals and Arabic positional numerals as two different
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expressions of numbers.  Just try subtracting “C” from “XL” and then try

subtracting “100” from “40.”  One language works for science; the other

is reserved for tombstones.  In science language is active.  It can block

access to the logic of the science or simplify that access and accelerate it.

And in this technical sense the conventional language of correlation, in

Yule's day and in our own, is barbaric.  Like Roman numerals, it labels

the objects, but it inhibits their use by disguising the logic.  It satisfies

convention while obscuring the link between the principle of correlation

and ideas of broad currency in the wider community of science.

Now, I'm ready to link correlation to the derivative.  On the one

side, correlation encodes a double contrast.  On the other side, in the cal-

culus there is a comparable double contrast: the rate of change with

respect to x of the rate of change with respect to y (or, in the limit, the

derivative with respect to x of the derivative with respect to y).   If I link

the two halves of the argument by using differences to express

correlation — changing the language of correlation — then it becomes

clear that these ideas are the same.

Using the difference, among Democrats, the contrast with respect to

vote is the difference, ∆:

←Difference of log n  with respect to Vote→
∆Vote(among Democrats) =  [ log nDem,Bush   –  log nDem,Dukakis ]

=  [ log 4 – log 2] . [3.3]

Using the difference, among Republicans the contrast with respect to

votes is the difference:

←Difference of log n  with respect to Vote→
∆Vote(among Republicans) =  [ log nRep,Bush   –  log nRep,Dukakis ]

=  [ log 8 – log 4] [3.4]

And then, using difference for the contrast with respect to party of these

contrasts with respect to vote, ∆2:
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Difference with respect to Party
of Differences of log n

←with respect to Vote-→
Difference  of log n Difference  of log n

←with respect to Vote → ←with respect to Vote →
∆ Party,Vote

2  =  [log nR,B – log nR,D ]  –  [log nD,B – log nD,D ] [3.5]

There it is, “correlation” as the difference of two differences, the

difference with respect to party of the differences with respect to vote.

And to see why I find this exciting, let me juxtapose it with the

derivative of the derivative — the mixed partial derivative.  For well-

behaved functions, the derivative of the derivative can be written in the

form of Equation 3.6, which is itself the difference of two differences.

Difference with respect to x
←of  Differences with respect to y→
Difference Difference

←with respect to y→ ←with respect to y→

∂
2

∂y∂x
g(x ,y) = lim

y→ y
o

lim

x→ x
o

[ g(x ,y) – g(x ,y o) ] – [ g(x o,y) - g(xo,y o) ]

( y–yo) ( x–xo)

[3.6]

In Equation 3.5 you have correlation as a double contrast; in

Equation 3.6 you have the mixed partial derivative as a double contrast

and I submit that these two are the same.  The terms within the square

brackets of each expression are change with respect to one variable.  And

the difference between the terms in brackets is the change with respect to

the other.  Now I grant that describing these two equations as “the same”

is sloppy:  In the calculus, the expression “x –xo” has numerical value

where, in the table, there is only a difference between categories, like

Bush and Dukakis.  In fact, I'm willing to go all the way when I declare

that these are the same — including the introduction of numerical values

for all sorts of social science objects that have been presumed to be non-

numerical, including Bush and Dukakis — but not in this chapter.  For
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the moment I want to continue the single point that correlation is a

disguised form of the basic concept of the derivative.

Gaussian, or “Normal,” Correlation

So far I've attached my argument to a single measure of correlation,

Yule's expression of correlation as k  or Q.   I'll admit that I'm using Yule:

The test of the concept lies in its utility.  And had Yule's example of cor-

relation not illustrated my point, I would have chosen another example.

But it was not necessary.  Nor is it necessary in the case of another corre-

lation, in the case of Gaussian, or “normal,” correlation, ρ.  If Yule's two-

valued variables are the crudest variables that social science has to

contend with, then Gaussian variables may be the most sophisticated, so

sophisticated that they are not even real:  In one dimension, Gaussian

variables are the prime example of the bell-shaped curve, with values

symmetrically distributed around their average value.  In two-

dimensions, Gaussian variables are the prime statistical model of a linear

relation, with values of both variables symmetrically distributed around

the line that describes their averaged relation.  Gaussian variables are a

statistical ideal, a mathematical norm to which the real world may or

may not comply.  For these idealized things there is an idealized

correlation coefficient, ρ.  And for ρ, as for Q, there is a direct link

between correlation, Gaussian correlation, and the mixed partial

derivative.

To show the correspondence, I am going to be intentionally abrupt:

Never mind first principles of correlation that appear in any textbook on

correlation.  Never mind careful discussion of why the correspondence is

reasonable.  Instead, I am going to use the principle we have already

developed, outlined in Figure 3.11, simply running the argument for ρ in

parallel to the argument for Q:  Thus, first transform the numbers.  For

the Gaussian this means using the logarithm of the Gaussian formula.

Second, measure the change with respect to one of the two variables.  For

the Gaussian, this is the derivative.  Third, measure the change with

respect to the second variable of these changes with respect to the first.

For the Gaussian, this is the mixed partial derivative.  And that's the end
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of the argument because what's left shows ρ-correlation in a one-to-one

correspondence with the mixed partial derivative.  For ρ, as for Q, in

each case the correlation coefficient carries the same information as the

appropriate measure of change, stretched and shrunk to the limits of

plus-one and minus-one, by the equations of Figure 3.12.5

                                             
5. My apologies for word difficulties beyond my control:  I am

avoiding the conventional term "mixed partial derivative" and
substituting "two-variable derivative."  This is to avoid the word "partial"
because partial has a different meaning in the context of correlation.
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Q  – Correlation Versus the ρ  − Correlation Versus the
Two-Variable Difference Two-Variable Derivative

Correlation to Contrast

QXY =
e

∆ XY

2

– 1

e
∆ XY

2

+ 1

ρ =
–1 + (1+4 gxy )

1

2

2 gxy

Contrast to Correlation

∆ xy
2

=
1 + QXY

1 – QXY
QXY =

e
∆ XY

2

– 1

e
∆ XY

2

+ 1

where ∆ xy
2

= log κ, the logodds ratio, and where g(x,y ) = ∂2

∂y ∂x
g

Graphically

xy

Q ρ +1

−1

+1

−1

log odds ratio g

Figure 3.12

Transformations:  Correlation to Change and Change to Correlation,

Shown Algebraically and Graphically, for Both Q and ρ.
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More-Variable Correlation

And there, in two instances, is Newton and Leibniz’s concept

disguised, but functioning, as correlation.  You discover the underlying

rhythm, uniting our concept with theirs, by translation.  And that's what

I have to say about two-variable correlation, for the moment.  Personally,

I take pleasure in a concept that unifies ideas, ordering them and

simplifying them.  And the pleasure is all the greater when the unifying

concept is already a classic, extending its reach.   But we scientists are

supposed to be practical too, and for that it is necessary to extend the

concept beyond two variables to three variables and more.6  Three-

variable correlation is not in the vocabulary of statistics.  There is three-

variable linear regression, which is something else.  And there is three-

variable partial correlation, which is a special form of two-variable

correlation, extracted from the complicating presence of other variables.

                                             
6. The subject is surely broader than I've indicated here and the

parallels seem to continue for partial correlation.  For partial correlation
between Gaussian variables, the correct difference coefficient appears to
be the average with respect to z of the derivative with respect to x and y.
This average derivative corresponds to the usual "partial correlation"
coefficient by exactly the same formula that translates the simple two-
variable derivative into ρ.

For partial correlation between Yule's two-valued variables, you get
something different in form from the partial Q suggested by Goodman
and Kruskal but very similar in its numerical values when both are
applied to real data.  Goodman and Kruskal reasoned their way to a
partial Q by working with the form of Q shown in Equation 3.2.
Working, instead, with the difference form of Equation 3.5, and then
translating from differences to kappa to Q leads to a partial Q that
corresponds to the average odds ratio:

QXY: Z=
κ XY:Z – 1

κXY:Z+ 1

where κ   is the geometrical mean of the odds ratio, or the anti-log of the
arithmetic mean of the difference of differences.  In conventional form,

QXY:Z=
n x’y’z’nxyz ’n x’y’zn xyz’ – nxy’z’n x’yz’n xy’zn x’yz

n x’y’z’nxyz’n x’y’zn xyz’+ n xy’z’n x’yz’n xy’zn x’yz   
.
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Both of these are interesting, but there are lots of things you can do with

three variables.  The narrower question is what do you get if you extend

the logic of differences or derivatives to three variables and then use the

result as correlation?  The question is almost irresistible to anyone with

the nasty turn of mind to push:  to push for the next step, to push for

more generality, to push to an extreme in which the argument will either

fail or add insight.  If this two-variable derivative corresponds to two-

variable correlation, then what does the three-variable derivative or the

three-variable difference correspond to?  You have to ask what happens

if you push the argument to more variables.

Precisely because we are using a calculus, the formulas for three-

variable correlation are automatic.  For the Gaussian it’s very simple:

There is none.  Or, to be more precise, the three-way correlation is theo-

retically zero for Gaussian variables.  By mathematical assumption the

Gaussian has no three-variable “xyz” term that we would call three-way

interaction, were it present.  For real-world data such things may exist,

but not for the Gaussian.7

For Yule's variables, however, ∆3 is clear and not trivial.  Logically,

it must be the difference  of the differences of the differences:

∆ 3 = ∆ 2 (z’) – ∆ 2 (z )X YZ X Y X Y . [3.7]

And now, simply invoking the equation that translates from ∆ to κ
and Q, Figure 3.12, you get the same concept expressed as a ratio, κ3,

and the same concept expressed as a Q, Q3.  What is it?  As a ratio, κ3 is

the ratio of two odds ratios:  It is the factor by which the odds ratio

changes, as a function of a third variable, Z .  As a Q it is a coefficient that

juxtaposes opposite diagonals from the two different two-variable tables,

multiplying the diagonal numbers, nx’y’z’nxyz’, from one table by the

diagonal numbers, nxy’znx’yz, from the other.

                                             
7. Specifically, no matter how many variables are included in the

full n-variable Gaussian, it has no product terms with more than two
variables.
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QXYZ =
nx ’y’z’nxyz ’n xy’znx’yz – n xy’z’n x’yz’nx ’y ’zn xyz

nx ’y’z’n xyz’nxy’zn x’yz + nxy’z’n x’yz’nx’y’znxyz [3. 8]

This concept of three-variable correlation fits right in when you

think in terms of differences — just add one more level of contrast.  This

“thing”, implied by the logic, is what some social scientists call three-

variable interaction, while others call it specification.  Here it is shown as

“simply” the three-variable generalization of correlation.  It’s certainly a

known concept, but usually a negative one:  When specification is pres-

ent, ordinary two-variable methods fail, so we tend to watch for it and

hope it isn't present.  When specification is present we tend to separate

the separate cases verbally, rather than quantitatively, and then discuss

the separate two-variable cases.

I suspect that the limited use of the concept is caused, in part,  by

the lack of a number, the lack of a well-understood measure that would

detect, express, and facilitate comparisons among three-way correlations

— the way we use correlation to detect and compare different two-

variable correlations.8  Therefore, let me close this discussion by

                                             
8. In both the analysis of variance and log-linear modeling there are

tests for the presence of these effects.  But just as we always caution users
to separate the probabilistic  “significance” of a two-variable correlation
from the descriptive strength  of the correlation, there is a difference
between detecting the probabilistic significance of three-variable
correlation and measuring its strength.  Similarly, in both the analysis of
variance and log-linear modeling we can measure the cell-by-cell
consequences of correlation, but these effects are not the correlation
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Low GNP/Capita High GNP/Capita

Low Literacy 51 15

High Literacy 14
50

∆2 = 2.50,  κ   = 12.14,   Q = .84

Figure 3.13

Relation Between Literacy and Per Capita Gross National Product

Low    High

                                                                                                                                                                  
coefficients.  (The difference between the effects and the correlation is
easily seen in a two-row, two-column table:  The table has four
interaction effects and one correlation.)
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Military Expenditures/GNP '78 Military Expenditures/GNP '78
Low

GNP/Capita
'75

High
GNP/Capita

'75

Low
GNP/Capita

'75

High
GNP/Capita

'75

Low
Liter-
acy
'75

29 5 22 10

High
Liter-
acy
'75

7 29 7 21

∆2 = 3.18,  κ  = 24.03,  Q = .92 ∆2 = 1.89,  κ = 6.60,  Q = .74

∆3 = 1.29,  κ 3  = 3.6406926,   Q3 = .57

Figure  3.14

Combined Data for Literacy and GNP Per Capita Separated According to High

or Low Military Expenditures as a Fraction of GNP
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applying the three-variable measure, derived from the model of the

derivative, to data.  For data, I’ve used various indicators for 155 nations,

splitting each variable into two values, High and Low, accordingly as

values were greater than the median for all values or less than or equal

to the median.9  Through all of these three-variable examples I’ve used

two variables whose two-variable correlation is “obvious”:  Using

literacy rates and per capita gross national products, the two-variable

correlation is strong.  Shown in Figure 3.13, nations with high literacy

were twelve times more likely to show high GNP per capita.  The odds

were 50 to 14 for the more literate nations, compared to 15 to 51 for the

less literate.

That's the way it's supposed to be — education leads to money and

money leads to education, at least for a nation as a whole (nothing guar-

antees that the literate individuals in the country are the ones with the

money).  But, that's not the whole story.  If military expenditures

(military expenditures as a fraction of gross national product) are

introduced as a third variable, then the two-variable correlations change:

Where military expenditures are high, the correlation between literacy

and wealth is relatively low.  Where military expenditures are low, the

correlation between literacy and wealth is relatively high.

Figure 3.14 shows the data.  The correlations are positive in both

sets of countries, but different.   In fact, the presence or absence of high

military expenditures effects a three- to four-fold change in the correla-

tion between literacy and wealth.  (The odds ratios change by a factor of

3.6.)

Habits with three variables are hard to break, so let's be clear what

the data do not say about literacy, wealth, and military expenditures.

The data do not say that high literacy and low military expenditures

combine, or “add-up,” to increase the wealth of the country.  No, that

would correspond to data in which the worst case for GNP would be low

literacy and high military expenditures, while the best case would be the

opposite, high literacy and low military expenditures.  Lining up the

                                             
9. Using data reported in the World Handbook of Political and Social

Indicators, Taylor and Jodice, 1983, available from the Interuniversity
Consortium for Political and Social Research, Ann Arbor, Michigan.
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Low Literacy High Literacy
←→
High Military Low Military

Low Lit.
High Mil.

Low Lit.
Low Mil.

High Lit.
High Mil.

High Lit.
Low Mil.

Low
GNP
/C 22 29 7 7

High
GNP
/C 10 5 21 29

Odds that
GNP per

capita will
be High:

10/22 = .45

Odds that
GNP per

capita will
be High:

5/29 = .17

Odds that
GNP per

capita will
be High:

21/7 = 3.00

Odds that
GNP per

capita will
be High:

29/7 = 4.14

Columns are ordered according to an additive model, with the order of the two
middle categories being indeterminate. Counts indicate the number of countries
displaying each combination.  And the odds indicate the observed odds favoring
High GNP per Capita

Figure 3.15

Comparing an “Additive Model” of the Odds Favoring High

GNP per Capita (Left to Right) to the Actual Odds Favoring

High GNP per Capita.
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x

y

z

x

y

z

On the left the data lie in a plane; here the two-variable relations are
constant, or uniform, throughout the data.  On the right the data indicate a
three-variable correlation; here, the two-variable relations change.

Figure 3.16
Two Forms of Three-Variable Relation

data in that order, in Figure 3.15, that is not what the data show.   On the

contrary, both the best case for high GNP and the worst case involve low

military spending.

That's what is not in the data:  In fact, the three-variable correlation

is not a statement about wealth at all.  It is a statement about the correla-

tion between literacy and wealth:  The correlation changes.

The difference between the usual use of three variables and the

pattern detected by the three-variable correlation is shown graphically in

Figure 3.16.  On the left, the three-variable relation is, or is presumed to

resemble, a plane:  Within the plane the relation between x and y,

between x and z, or between y and z is both linear and “constant,” the

same throughout the data.  On the right, the correlation changes.  I’ve

drawn it as a change in the xy correlation:  It goes in one direction for

low values of z; it goes in the opposite direction for high values of z.  The

two patterns, the one on the left and the one on the right, are quite
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incompatible:  Real data can be matched by (at most) one of these

patterns.10

The data for these nations can be set out in two more table formats,

Figures 3.17 and 3.18, both of which show the same effect, although they

are conducive to different interpretations of the data:  As far as the num-

bers are concerned, it is equally correct to observe that literacy affects the

correlation between wealth and military expenditures, Figure 3.17.

Where literacy is high, there is a positive correlation between wealth and

per capita military spending.  Where literacy is low, there is a negative

correlation.  Comparing the less literate nations to the more literate

nations the odds favoring military expenditures shift by a factor of 3.6,

necessarily the same factor as for the first presentation of the data.

And finally, the data allow a third presentation, Figure 3.18, dis-

playing the data in their full ambiguity. Separating the nations by GNP

per capita, where wealth is low, there is a slight positive correlation

between literacy and military spending.    Where wealth is high, there is

a negative correlation.

While all three of these arrangements are the same data, they look

different, illustrating the positive effects of good form, the

                                             
10. The diagram is, of course, an exaggeration:  The correlation must

change, but it need not change sign.  And while the figure on the right is
drawn to show the change in the xy correlation, it is also true that three-
variable correlation, or specification, changes the xz correlation and the
yz correlation as well as the xy correlation.

One “obvious” candidate for a measure of three-variable correlation
is a generalization of the two-variable correlation coefficient r.  If you
define r3 as the mean product of three standardized variables
(standardized to mean 0 and standard deviation 1), then the result seems
responsive to the presence of these three-variable correlations.  But this
r3 is not satisfactory without modification because it is also responsive to
data distributions that are not indicative of  three-variable correlation:  It
achieves its maximum values for variables that are co-linear, and highly
skewed, which is not what I’m after.   (It is not bounded by plus- and
minus-one, but that’s a minor problem.)
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Low High
Literacy '75 Literacy '75

Low
Military Expen-
ditures /GNP

‘78

High
Military Expen-

ditures/GNP
‘78

Low
Military Expen-

ditures/GNP
‘78

High
Military Expen-

ditures/GNP
‘78

Low
GNP/
Capit
a '75

29 22 7 7

High
GNP/
Capita
'75

5 10 29 21

∆2
 = .97,  κ  = 2.64,  Q = .45 ∆2

 = -.32,  κ = .72,  Q = -.16

∆3
 = 1.29,  κ 3  = 3.64,   Q

3
 = .57

Figure 3.17
Combined Data for GNP Per Capita and Military Expenditures as a Fraction of

GNP, Separated according to High or Low Literacy

Low High
GNP/Capita '75 GNP/Capita '75

Low
Military Expen-
ditures /GNP

‘78

High
Military Expen-

ditures/GNP
‘78

Low
Military Expen-

ditures/GNP
‘78

High
Military Expen-

ditures/GNP
‘78

Low
Liter-
acy
‘75

29 22 5 10

High
Liter-
acy
‘75

7 7 29 21

∆2
 = .28,  κ  = 1.32,  Q = .14 ∆2

 = -1.02,  κ = .36,  Q = -.47

∆3
 = 1.29,  κ 3  = 3.64,   Q

3
 = .57

Figure 3.18
Combined Data for Literacy and Military Expenditures as a Fraction of GNP,

Separated according to High or Low GNP per Capita

negative effects when it’s absent:  Using ∆’s to measure correlation it is

clear that the differences of correlation are the same, 1.29 in each case.
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Even using κ’s, it is almost clear that the change of odds ratios, from 24

to 6.6, from 2.6 to .7, and from 1.3 to .4, is the same in each case.  Using

Qs, satisfying convention, the information is present but obscure,  .92

versus .74, .45 versus –.16, and .14 versus –.47.  “Everyone” knows it's

hard to compare two Qs, but it’s also hard to resist.  In the first

presentation, the two Qs look “large.”  They look approximately equal.

In the second and third presentations the two Qs differ in sign and

magnitude.  They look different. It would be easy to miss the

specification in one case or focus on it in the other, using Q.  Reverting to

good form, using differences, these are all the same.

Scanning the social and political indicators for other instances of

three-variable correlation yields a group of “third” variables suggesting,

jointly, that the correlation between literacy and wealth (between literacy

rates and per capita gross national products) is specified by the size of

the country:  In small countries, the correlation is relatively large, or

more positive.  In large countries the correlation between literacy and

wealth is relative small, or less positive.  The specifying variables include

three measures of population, one measure of physical area, and one

more measure of expenditure.

Specified by

Total Adult Population: ∆3
 = 0.86, κ 3  = 2.36, Q

3
 = .40

Total Military Manpower: ∆3
 = 0.90, κ 3  = 2.47, Q

3
 = .42

Total Population: ∆3
 = 0.98, κ 3  = 2.67, Q

3
 = .46

Total Agricultural Area: ∆3
 = 1.10, κ 3  = 3.00, Q

3
 = .50

Total Working Age Population: ∆3
 = 1.22, κ 3  = 3.40, Q

3
 = .55

Total Defense Expenditures: ∆3
 = 1.24, κ 3  = 3.46, Q

3
 = .55

Pushing Newton and Leibniz’s concept to three variables, these six

correlations indicate differences in the correlation between literacy and

wealth.  These correlation coefficients are Newton and Leibniz’s concept

at work, disguised as correlation.
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Appendix 3.1

1988 Population in thousands and 1990 Gross National Product in
millions of dollars.  For example, the United States data indicate 251
million people and 4.86 trillion dollars.  Data from 1991 Britannica Book
of the Year, Encyclopaedia Britannica, Inc., Chicago, 1991.

Population GNP
in in

Thousands Millions
of Dollars

United States 251,394 4,863,674
Japan    123,530 2,576,541
Soviet Union 290,122 2,500,000
Germany (West)62,649 1,131,265
France     56,647 898,671
Italy       57,512 765,282
United Kingdom57,384 730,038
Canada        26,620 437,471
China      1,133,683 356,490
Brazil       150,368 328,860
Spain         38,959 301,829
India 853,373 271,440
Netherlands 14,934 214,458
Australia 17,073 204,446
Switzerland 6,756 178,442
Poland  38,217 172,774
Sweden  8,529 160,029
Germany (East) 16,433 159,370
Mexico 81,883 151,870
Korea (South) 42,793 150,270
Belgium 9,958 143,560
Yugoslavia 23,800 129,514
Taiwan 20,221 125,408
Czechoslovakia 15,664 123,113
Austria 7,623 117,644
Denmark 5,139 94,792
Iran   56,293 93,500
Finland 4,978 92,015
Saudi Arabia 14,131 86,527
Norway    4,246 84,165

Population GNP
in in

Thousands Millions
of Dollars

Argentina 32,880 83,040
Romania  23,265 79,813
South Africa 37,418 77,720
Indonesia 180,763 75,960
Turkey 56,941 68,600
Hungary   10,437 64,527
Venezuela  19,735 59,390
Algeria    25,337 58,250
Hong Kong 5,841 54,567
Thailand  56,217 54,550
Bulgaria  8,997 50,837
Greece  10,038 48,040
Iraq    17,754 40,700
Israel    4,666 38,440
Philippines  61,480 37,710
Portugal  10,388 37,260
Colombia 32,978 37,210
Pakistan  122,666 37,153
Egypt    53,170 33,250
New Zealand  3,389 32,109
Nigeria  119,812 31,770
Malaysia 17,886 31,620
Peru    22,332 29,185
Cuba 10,603 26,920
Ireland 3,509 26,750
Kuwait 2,143 26,250
Singapore 2,718 24,010
United Arab Emir1,903 23,580
Libya  4,206 23,000
Korea (North) 22,937 20,000
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Population GNP
in in

Thousands Millions
of Dollars

Syria 12,116 19,540
Chile   13,173 19,220
Puerto Rico 3,336 18,520
Bangladesh 113,005 18,310
Morocco 25,113 17,830
Vietnam 66,128 12,600
Cameroon 11,900 11,270
Ecuador 10,782 10,920
Tunisia  8,182 9,610
Cote d'Ivoire 12,657 8,590
Luxembourg 378 8,372
Kenya 24,872 8,310
Sudan 28,311 8,070
Guatemala 9,197 7,620
Myanmar  41,675  7,450
Uruguay   3,033 7,430
Oman  1,468  7,110
Sri Lanka 17,103 7,020
Angola 10,002 6,930
Zimbabwe 9,369 6,070
Ethiopia  50,341 5,760
Zaire   34,138 5,740
Yemen (San'a') 9,060 5,700
Ghana    15,020  5,610
Panama    2,418 5,091
Iceland 256 5,019
El Salvador 5,221 4,780
Paraguay 4,279 4,780
Costa Rica 3,015 4,690
Dominican Rep 7,170 4,690
Senegal 7,317 4,520
Uganda 16,928 4,480
Jordan 3,169 4,420
Cyprus 739 4,320
Trinidad&Tobago1,233 4,160
Honduras 4,674 4,110
Qatar 444 4,060
Albania 3,262 4,030

Population GNP
in in

Thousands Millions
of Dollars

Bolivia 7,322 3,930
Tanzania 24,403 3,780
Mongolia 2,116 3,620
Gabon 1,171 3,200
Afghanistan 15,592 3,100
Brunei 259 3,100
Bahrain   503 3,027
Papua New Guinea3,671 2,920
Nicaragua 3,871 2,911
Nepal    18,910 2,843
Bahamas   253 2,611
Macau        461 2,611
Jamaica 2,391 2,610
Guinea 6,876 2,300
Haiti  5,862 2,240
Niger   7,779 2,190
Zambia 8,456 2,160
Madagascar 11,980 2,080
Rwanda 7,232 2,064
Burkina Faso 9,012 1,960
Congo  2,326 1,950
Mauritius 1,080 1,890
Reunion 600 1,830
Lebanon 2,965 1,800
Mali 8,152 1,800
Malta 353 1,740
Jersey 83 1,647
Mozambique 15,696 1,550
Barbados 257 1,530
Benin 4,741 1,530
West Bank 908 1,500
Namibia 1,302 1,477
Bermuda 59 1,406
Martinique 261 1,400
Fr. Polynesia 197 1,370
Malawi 8,831 1,320
Togo 3,764 1,240
Burundi 5,451 1,200
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Population GNP
in in

Thousands Millions
of Dollars

Botswana 1,295 1,191
Guadeloupe 380 1,170
Fiji 740 1,130
Guernsey 60 1,122
Cen. African Rep 2,875 1,080
Virgin Islands 105 1,070
Liberia 2,595 1,051
Suriname 411 1,050
Guam 132 1,000
Yemen (Aden) 2,486 1,000
Somalia 7,555 970
Sierra Leone 4,151 930
Mauritania 1,999 910
Neth. Antilles 196 860
New Caledonia 168 856
Chad 5,678 850
Laos 4,024 710
Lesotho 1,760 690
Faeroe Islands 48 686
Aruba 63 619
Cambodia 8,592 600
Swaziland 770 580
Gaza 608 560
Greenland 56 465
Cayman Islands 26 461
Liechtenstein 29 450
Andorra 51 360
Isle of Man 64 340
Djibouti 530 330
Guyana 756 327
Monaco 29 280
Belize 189 264
Seychelles 69 260
Nor. Mariana Is 23 256
Antigua 81 230
St. Lucia 151 220
Bhutan 1,442 202
Comoros 463 200

Population GNP
in in

Thousands Millions
of Dollars

American Samoa 40 190
San Marino 23 188
Gambia 860 180
French Guiana 117 176
Cape Verde 339 170
Nauru      9 160
Guinea-Bissau 973 145
Equator. Guinea 350 140
Grenada   101 139
Br. Virgin Is. 13 133
Dominica   82 130
Gilbraltar 31 130
Solomon Islands 319 130
St. Vincent 115 130
St. Kitts-Nevis  44 120
Vanuatu  147 120
Micronesia 108 107
Western Samoa 165 100
Maldives  214 80
Tonga      96 80
Turks & Caicos 15 63
Falkland Islands 2 56
Montserrat  12  54
Marshall Islands 46 46
Kiribati 71 40
Palau  14 32
SaoTome&Principe 121 32
Anguilla  7 28
Cook Islands 19 21
Wallis & Futuna  16 10
Niue 2 3
Tuvalu   9  3
Tokelau  2 1
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Appendix 3.2

Three-variable data, indicating the names as well as the counts of the
nations showing each combination.  These are the combined data for
Literacy, for GNP Per Capita, and for Military Expenditures as a Fraction
of GNP, comparable to Figure 3.14.
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Low    High
Military Expenditures/GNP '78 Military Expenditures/GNP '78

Low
GNP/Capita

'75

High
GNP/Capita

'75

Low
GNP/Capita

'75

High
GNP/Capita

'75

Low
Liter-
acy
'75

29
Haiti, Guatemala,
Honduras, Gam-
bia, Senegal,
Benin, Niger,
Ivory Coast,
Guinea, Liberia,
Sierra Leone,
Ghana, Togo,
Cameroon, Cen-
tral African Re-
public, Zaire,
Kenya, Burundi,
Rwanda,
Ethiopia,
Mozambique,
Malawi, Lesotho,
Swaziland,
Madagascar,
Afghanistan,
Bangladesh,
Nepal, Papua
New  Guinea

5
Nicaragua,
Gabon, Algeria,
Tunisia, Libya

22
Cape Verde,
Guinea Bissau,
Mali, Mauritania,
Upper Volta,
Nigeria, Chad,
Congo, Uganda,
Somalia, Zambia,
Zimbabwe,
Botswana,
Morocco, Sudan,
Egypt, Jordan,
Yemen Sana, Ye-
men Aden, India,
Pakistan, Laos

10
South Africa,
Iran, Turkey,
Iraq, Syria, Saudi
Arabia, Kuwait,
Bahrain, United
Arab Emirates,
Malaysia

High
Liter-
acy
'75

7
El Salvador,
Columbia,
Ecuador, Bolivia,
Paraguay, Sri
Lanka, Philip-
pines

29
Canada, Domini-
can Republic, Ja-
maica, Trinidad
Tobago, Barba-
dos, Mexico,
Costa Rica,
Panama,
Venezuela, Suri-
nam, Brazil,
Chile, Argentina,
Uruguay, Ireland,
Luxembourg,
Switzerland,
Spain, Austria,
Italy, Malta,
Cyprus, Finland,
Denmark, Ice-
land, Mauritius,
Japan, Australia,
New Zealand

7
Guyana, Tanza-
nia, China, Korea
South, Burma,
Thailand,
Indonesia

21
United States,
Cuba, Peru,
United Kingdom
Netherlands,
Belgium, France,
Portugal, Federal
Republic Ger-
many, German
Democratic Re-
public, Poland,
Hungary, Yu-
goslavia, Greece,
Bulgaria, Roma-
nia, USSR, Swe-
den, Norway, Is-
rael, Singapore

∆3
 = 1.29,  κ 3  = 3.6406926,   Q

3
 = .57
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