
Experiments with a Large Heterogeneous Mobile Robot Team:

Exploration, Mapping, Deployment and Detection

Andrew Howard

Robotics Research Laboratory
Department of Computer Science
University of Southern California
http://robotics.usc.edu/∼/ahoward

Lynne E. Parker

Distributed Intelligence Labora-
tory
Department of Computer Science
University of Tennessee
http://www.cs.utk.edu/∼parker/

Gaurav S. Sukhatme

Robotics Research Laboratory
Department of Computer Science
University of Southern California
http://robotics.usc.edu/∼gaurav

Abstract

We describe the design and experimental validation
of a large heterogeneous mobile robot team built for
the DARPA Software for Distributed Robotics (SDR)
program. The core challenge for the SDR program
was to develop a multi-robot system capable of car-
rying out a specific mission: to deploy a large number
of robots into an unexplored building, map the build-
ing interior, detect and track intruders, and transmit
all of the above information to a remote operator. To
satisfy these requirements, we developed a hetero-
geneous robot team consisting of approximately 80
robots. We sketch the key technical elements of this
team, focusing on the novel aspects, and present se-
lected results from supervised experiments conducted
in a 600 m2 indoor environment.

1 Introduction

The DARPA Software for Distributed Robotics
(SDR) program was designed to demonstrate prac-
tical autonomy in large mobile robot teams. Specifi-
cally, the program required the design and implemen-
tation of an autonomous multi-robot system which
could explore and map a large indoor environment,
deploy a sensor network into that environment, and
use this network to track intruders.

To meet this challenge, we have constructed a het-
erogeneous team of approximately 80 robots. With a
team of this size, cost is an important consideration;
robots are therefore divided into two distinct classes,

with very different numbers, capabilities and costs:

• A small number of highly capable (and ex-
pensive) robots, each equipped with a scan-
ning laser range-finder, camera and powerful on-
board CPU.

• A large number of relatively simple (inexpensive)
robots, each equipped with a microphone, crude
camera, and minimal on-board CPU.

The fully assembled team is shown in Figure 1; the
more capable robots are based on the ActivMedia Pi-
oneer2DX and RWI ATRV-mini platforms, while the
simpler “sensor robots” are based on the ActivMe-
dia AmigoBot. All robots are equipped with 802.11b
WiFi, and are networked together using an ad-hoc
routing package. A remote console is used for opera-
tor feedback.

Using this team, we divide the overall mission into
two phases: 1. exploration and mapping, and 2. de-
ployment and detection. In the first phase, the map-
ping sub-team explores the environment and gener-
ates an occupancy grid map. Exploration is coor-
dinated, and mutual observations are used to solve
difficult correspondence problems (i.e., the mapping
robots are able to detect and identify one other,
thereby resolving potentially ambiguous loop clo-
sures). In the second phase, the occupancy grid map
is used to compute a set of deployment locations, and
the simple sensor robots are deployed to these loca-
tions using an “assistive” navigation technique. That
is, since the sensor robots are not capable of safe
navigation (they lack the necessary ranging sensors)

1

(a) (b)

Figure 1: (a) The heterogeneous robot team, with two classes of robots; the mapper/leader robots are
based on the ActivMedia Pioneer2DX and RWI ATRV-mini, the sensor robots are based on the smaller
AmigoBot. (b) The mapping sub-team (four robots): each robot carries a unique laser-visual fiducial that
can be detected and identified at ranges in excess of 8m.

they are guided into position by the more capable
robots. Once deployed, the sensor robots collaborate
to form a distributed sensor network that tracks in-
truders based on their acoustic signature.

This system has been validated in a series of ex-
periments carried out under very rigorous conditions.
An independent team selected and prepared the ex-
perimental site, specified the experimental conditions
and metrics, and supervised the conduct of individual
trials (monitoring completion times, operator inter-
ventions, code modifications and so on). Access to
the site was limited both prior to and during the ex-
periments, such that the majority of the environment
was unknown to the human operators.

In the following pages, we describe the key algo-
rithms used for exploration and mapping, and de-
ployment and detection. We present empirical results
derived from supervised experiments, and conclude
with some practical observations on the difficulties of
managing large mobile robot teams.

2 Mapping and Exploration

2.1 Mapping

Our mapping algorithm employs both centralized
and decentralized components: each robot uses an
on-board incremental simultaneous localization and
mapping algorithm (SLAM) to maintain an indepen-
dent local pose estimate; these estimates are trans-
mitted to the remote operator console, where they are
combined through a second SLAM algorithm to gen-
erate consistent global pose estimates for all robots.
An occupancy grip map, combining data from all
robots, is generated as a side-effect of this latter pro-
cess, and used for subsequent deployment operations.

For estimating local pose, each robot employs an
incremental maximum likelihood filter [18], similar in
spirit to that described in [6]. This filter uses data
from a scanning laser range finder to correct for drift
in the robot’s odometric pose estimate. The state
vector for the filter has two components: a local pose
estimate and a local map. Given a new range scan,
the filter is updated as follows:

1. Fit the scan against the local map.

2

2. Compute the corrected local pose from the scan
fit.

3. Add the new scan to the map and subtract an
old one.

The local pose estimates generated in this fashion
have the same fundamental properties as odometry:
the origin of the coordinate system is arbitrary, and
estimates drift over time. Importantly, however, the
drift rate in the local pose estimate is least an order of
magnitude lower than that seen with odometry alone.
Figure 2, for example, shows the local and odomet-
ric pose estimates for a single robot; for comparison
purposes, the robot’s global pose estimate (described
below) is taken as the “ground-truth”. Whereas the
odometry estimate quickly diverges, the error in the
local pose is less than 0.1 m after 100 m of travel.

Individual robots do not attempt to close loops
or merge data from other robots; this is the role of
the remote console, which aggregates local pose esti-
mates and laser range scans from each of the mapping
robots into a central repository; the overall map is as-
sembled from this data. Our global SLAM algorithm
is built around three key technologies: maximum like-
lihood estimation, manifold representations and loop
closure using mutual observation.

Maximum likelihood estimation (MLE) is used to
generate globally consistent maps; put simply, MLE
determines the set of robot trajectories that mini-
mizes the global inconsistency between overlapping
laser scans [12]. In practice, this is a high-dimensional
optimization problem that must be solved using a
sparse graph-based representation and numerical op-
timization. In this context, the use of local pose esti-
mates in the place of raw odometry greatly simplifies
the optimization problem: instead of treating each in-
dividual laser scan, we assemble successive scans into
local maps using the local pose estimate, then opti-
mize over the set of such maps. New maps are formed
whenever the cumulative uncertainty in the local pose
(i.e., since the map was first created) exceeds some
pre-set threshold. In these experiments, each local
map typically captures between 3 and 10m of robot
travel, yielding an optimization problem with a few
hundred to a few thousand variables (which is well
within the capabilities of contemporary conjugate-
gradient optimization algorithms).

We have also made an important extension to the

basic MLE formalism: instead of treating the map
as a planar structure, we represent it using a two-
dimensional manifold [7]. Unlike planar represen-
tations, this manifold representation is always self-
consistent, irrespective of whether or not loops have
been closed. To achieve this self-consistency, the
manifold representation must sacrifice uniqueness;
i.e., a single location in the world may be represented
more than once in the manifold (see Figure 4). As a
consequence, we can reduce loop closure to the prob-
lem of identifying and bringing together those points
on the manifold that represent the same point in the
world.

To recognize such points, we make use of mutual
observations: if two robots are far apart on the man-
ifold, but are proximal in the world (i.e., they can
sense one another directly), we can infer a new set of
constraints and close the loop. In practice, each map-
ping robot is equipped with a scanning laser range-
finder, a color camera and a unique coded fiducial,
such that they can determine the identity, range and
bearing of nearby robots. By exchanging such ob-
servations (Figure 3), pairs of robots can determine
their full relative pose (i.e., range, bearing and ori-
entation). Each mutual observations is transmitted
to the remote operator console, where it is added to
the set of global constraints; if the robots lie on two
remote points in the manifold, the new constraint
will tend to bring those points closer together, thus
closing the loop.

This approach to loop closure entirely side-steps
the hard correspondence problems associated with
conventional SLAM algorithms, particularly those
operating in self-similar environments; mutual obser-
vations provide constraints that are both reliable and
unambiguous. On the other hand, this approach re-
quires at least occasional encounters between robots
that have travelled through topologically distinct re-
gions of the environment. In the experiments de-
scribed in this paper, such encounters are entirely ac-
cidental, and arise as a side effect of the randomized
exploration strategy described in the next section.
Fortunately, the structure and size of the environ-
ment is such that suitable encounters are relatively
frequent. 1

1There are principled methods for planning robot encoun-
ters [16]; application of these methods would form a natural
extension to the work described here.

3

0

5

10

15

20

-10 -5 0 5 10 15 20 25 30

y
po

si
tio

n
(m

)

x position (m)

time = 2014 s
trip = 134 m

global
odometry

odometry + laser

(a)

Figure 2: Comparison of global pose estimates (solid line) with the odometric (dotted) and local (dashed)
pose estimates. The robot starts from the bottom right corner of the plot and travels approximately 100 m.
The final local pose estimate is within 0.1 m of the global value.

Figure 3: Mutual observation between two robots.
Each robot measures the identity, range and bear-
ing of the other robot; by combining pairs of such
observations, the relative pose of the robots (range,
bearing and orientation) can be determined.

2.2 Exploration

For exploration, we employ a decentralized frontier-
based approach [22, 2] with local occupancy grids [5]
and minimal communication between robots. The
basic algorithm (running on all robots) is as follows.

1. Construct a local occupancy grid map using laser
range data and local pose estimates.

This map is “local” in both the spatial and tempo-
ral sense: since local pose estimates are subject to
drift, one cannot meaningfully fuse observations that
are widely separated in either space or time. There-
fore, the local map considers nearby regions and re-
cent observations. As an implementation detail, note
that the additive properties of occupancy grids are
such that this map can be constructed incrementally:
new observations are added to the map and simul-
taneously pushed onto a queue; old observations are
popped from the queue and subtracted from the map.

4

(a) (b)

Figure 4: A manifold map representation, before and after loop closure. The manifold is a self-consistent –
but redundant – representation, in which the same point in the world may appear more than once on the
manifold. (a) Robots at remote locations in the manifold observe that they are proximal in the world (i.e.,
the robots detect one another using their sensors). (b) This information is propagated through the manifold,
allowing the loop to be closed.

2. Extract a list of discrete frontiers, i.e., the
boundaries between known and unknown regions
of the occupancy grid. Discard frontiers that are
unreachable.

This is a multi-step process in which individual fron-
tier cells are first labeled and then grouped into con-
nected components. Unreachable frontiers are de-
tected by constructing the configuration space of the
occupancy grid (i.e., expanding occupied cells by the
radius of the robot), and applying Dijkstra’s algo-
rithm [4]. Figure 5 illustrates these steps.

3. If the currently selected frontier has disappeared
or become unreachable (due to obstruction by
another robot), randomly select a new frontier.

The nature of frontiers is such that they necessarily
recede as the robot approaches; this algorithm selects
and pursues a receding frontier until such time as that
frontier disappears entirely or is obstructed by an-
other robot. At this point, a new frontier is selected
and the process continues. Random selection is used
to ensure asymptotic coverage; i.e., given sufficient
time, every point in the environment will eventually
be explored [21]. The rate at which exploration pro-
ceeds, however, is determined by the structure of the
environment: open or well-connected environments
will be explored much more rapidly than cluttered or
minimally-connected environments.

This simple algorithm has a number of attractive
features: it is fully decentralized (and thus robust
to communications failures), does not require global
pose estimates (robust to failures or delays on the re-
mote operator console), and is able to de-conflict the
robots’ actions without explicit communication (con-
flicting robots appear in the local map as obstacles,
prompting the selection of a new frontier for explo-
ration). Unfortunately, it also suffers from two major
drawbacks. First, the temporal locality of the map
implies a robot may explore the same location more
than once (having “forgotten” that this part of the
environment has already been covered). Second, the
lack of explicit coordination between robots leads to
redundant exploration: any given part of the environ-
ment may be explored by more than one robot. Both
effects can be seen in the results shown in Figure 6;
this plot shows the net area explored by a team of four
robots as a function of total distance traveled. Note
the rapid initial exploration, followed by slow conver-
gence to full coverage. Also shown on this plot is the
effect of varying the team size: a team of four robots
provides only marginal improvement over a team of
three. This was, perhaps, the most disappointing re-
sult observed in the exploration and mapping phase
of our experiments: for exploration that is both rapid
and complete, some degree of high-level supervision
and/or coordination may be necessary.

5

Figure 5: Snapshot of the local map used for explo-
ration. Black cells represent occupied space, white
cells are free, dark gray cells are unexplored. Fron-
tiers are marked in light gray, and a frontier is said
to be reachable if there exists a collision free path
joining it to the robot’s current location.

2.3 Mapping and Exploration Results

Formal experiments were conducted with a team of
four robots equipped as shown in Figure 1(b); each
robot has a SICK LMS200 scanning laser range-
finder, a Sony PTZ camera and a pair of fiducials
to facilitate mutual recognition. Maps were built on
the remote operator console, using data transmitted
over an ad-hoc 802.11b wireless network (total band-
width for four robots is approximately 3 kB/s, con-
sisting primarily of laser scan data). Since communi-
cation in this environment was expected to be patchy
(and some robots did indeed experience communica-
tion blackouts lasting several minutes), we chose to
use a UDP-based communication protocol and accept
some degree of data loss. The exploration algorithm
is such that any gaps created by lost data tend to be
filled-in by other robots.

A total of five exploration and mapping trials were
conducted under supervised conditions: in the first
three trials, all four robots were deployed from a com-
mon starting point; in the later “challenge” trials,
robots were deployed from one of two widely sepa-
rated locations (simulating multiple entry points into
the environment). One such trial is illustrated in mul-
timedia extension 1. Figure 7 shows the occupancy
grid maps generated in each of the five trials, along

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700 800 900

A
re

a
ex

pl
or

ed
 (

sq
. m

)

Cummulative distance (m)

4 robots
3 robots
2 robots
1 robots

Figure 6: Coverage plot for varying numbers of
robots: the plot shows the net area explored by the
robots as a function of the total distance traveled.

with the “ground-truth” floor-plan created with pen-
cil, paper and tape-measure. These maps were gener-
ated in real time, with an accuracy comparable to or
better than that achieved by the human survey team.
The mapping process was entirely autonomous, with
the exception of occasional operator interventions to
expedite the (very slow) exploration process. The
results for the challenge trials should also be noted:
in these trials, two robots were deployed from each
of two entry points. Since the relative pose of these
entry points was unknown, each pair of robots was
required to explore and map independently, giving
rise to unconnected maps. In both trials, however,
a robot from the first pair soon encountered a robot
from the second, and, as a result of this mutual ob-
servation, the two maps were merged into one.

Since the global mapping algorithm is both central-
ized and unbounded, processing time scales linearly
with the number of robots and super-linearly with the
size of the environment. In these particular trials, the
mapping algorithm running on the remote operator
console was able process data slightly faster than it
was generated by the four robots, but this probably
represents the limit of what is achievable by the cur-
rent implementation. The addition of more robots
or larger environments would necessitate significant
optimizations or algorithmic improvements.

6

Figure 7: Occupancy grid maps generated for the five supervised experiments. The corresponding floor-plan
is shown on the top left; the environment is 45 m by 25 m in size, with an internal area of 600 m2.

3 Deployment and Detection

The intruder detection and tracking task requires the
deployment of a large number (up to 70) of simple
sensor robots to serve as a distributed sensor net-
work. The hardware design of these simple sensor
robots was driven primarily by cost, project schedul-

ing constraints (18 months from start to finish), and
the desire to use commercially-available hardware,
rather than custom-build 70 robots. The ActivMe-
dia AmigoBot was chosen as the mobility platform,
due to its relative low cost. Each robot was outfit-
ted with an iPAQ PDA running Linux for compu-
tation and wireless communication. The iPAQ also

7

included a simple, low-fidelity, non-directional micro-
phone useful for generating the acoustic sensor net-
work. However, obstacle detection and localization
sensors were more problematic from a cost perspec-
tive, since the proximity sonar sensors commercially
available for the AmigoBot were not cost-effective for
a team of 70 robots. The custom installation of crude
proximity and obstacle avoidance sensors, such as
IR or whiskers, were also not cost effective from a
technician manpower perspective. The low fidelity
of the iPAQ microphones made them impractical for
acoustic relative positioning among the robots at a
resolution better than 2 meters. Localization based
on wireless strength of signal was considered, but
was not found to be of sufficient resolution (approx-
imately 0.5 - 1 meters) for independent robot navi-
gation. Thus, the commercially-available CMUCam2

was selected to enable leader-assisted deployment of
the simple robots.

The cost-driven hardware design choice clearly has
a significant impact on the software control of these
robots. If our simple sensor robots had the abil-
ity to detect obstacles and each other (beyond the
small field of view of the color tracking camera), then
swarm-type approaches to deployment would be ap-
propriate, such as reported in [8, 15, 3]. However,
since these abilities are absent on our simple sen-
sor node robots, they cannot navigate safely on their
own. Thus, our approach provides cooperative assis-
tive navigation to the sensor robots through the use
of more capable leader robots. The leader robots used
for the sensor net deployment were three (3) Pioneer
3-DX robots equipped with a forward-pointing SICK
laser scanner and a rear-pointing pan-tilt-zoom cam-
era (with resolution 160 by 120 pixels), along with
a wireless mobile ad hoc networking capability. Us-
ing the map generated in the first phase, these leader
robots are able localize themselves and guide the sen-
sor robots to their deployment positions.

The process begins with a pre-planning step that

2The CMUCam is a low-cost camera that is designed for
tracking tasks, such as color blob tracking. The resolution of
the CMUCam is 80 by 144 pixels, with a 25 degree field of view.
For tracking tasks, the CMUCam returns the position and size
of a blob (of a pre-specified color) at 17 frames per second. The
frame rate for full image download to the controlling software
is considerably slower, since the download occurs over a serial
port. Thus, the CMUCam is not practical for applications
other than tracking tasks.

uses the map to determine desired sensor deployment
positions that maximize area coverage while main-
taining clear pathways for robot deployment. Then,
the basic deployment method is as follows: sensor
robots are assembled into chains behind a leader us-
ing simple color blob tracking (multi-robot follow-
the-leader); once a deployment destination is reached,
a single robot in the chain is autonomously ‘tele-
operated’ by the leader to the correct position, using
the camera mounted on the leader; the leader and the
remaining chain then proceed to the next deployment
position. Thus, the leader visits a series of locations
in turn, and deploys a single sensor robot at each.
Figure 8 shows a series of snapshots of our naviga-
tional assistance system in operation.

3.1 Planning Sensor Deployment Po-

sitions

With this assistive navigation approach, an especially
challenging problem is for the leader robots to take
paths that the simple robots can easily follow while
moving in a follow-the-leader formation. Obviously,
the navigational challenges grow if the leader robots
move to random sensor node deployment positions
without taking into account the formation of robots
that is following behind, and the desired deployment
positions of the entire group of sensor node robots.
Our approach therefore begins with three planning
steps. These planning steps occur in a centralized
process that runs on the base station. The results
of the planning process are then distributed to the
leader robots for the actual deployment.

1. Generate the planned sensor deployment posi-
tions to meet several criteria, including minimiz-
ing pathway obstruction, achieving a minimum
distance between sensor robots, and maximizing
visibility coverage.

Our approach explores a tree-like structure of poten-
tial sensor deployment positions to find locations that
satisfy a number of geometric constraints. The first
candidate sensor deployment position is generated at
a particular location of interest in the map, whose
position is supplied to the planning process. The al-
gorithm then generates candidate sensor positions by
ray sweeping (at 5-degree increments) from the last

8

Figure 8: Deployment of a sensor robot using assistive navigation: the lead robot first guides and then
directs the sensor robot into position.

generated sensor deployment position. Each candi-
date position must satisfy a number of criteria:

• Within Sensing Range: prefer candidate posi-
tions within sensing range of a prior deployment
position

• Within Line-of-Sight: prefer candidate positions
within line-of-sight of a prior deployment posi-
tion

• Maximize Visibility Coverage: prefer deploy-
ment positions that maximize the new visibility
coverage.

Candidate deployment positions are then considered
in descending order of the visibility coverage, with
preference first going to candidate solutions that meet
the line-of-sight criterion. Each candidate position
must meet several additional constraints:

• Nearby Obstacle: prefer deployment positions
adjacent to obstacles (to reduce pathway occlu-
sion)

• Avoid Doorways: avoid doorways to keep poten-
tial deployment pathways open

• Minimum inter-sensor distance: maintain a min-
imum distance between all deployment positions
to ensure sensor coverage

• Room for leader: require room for leader robot
to maneuver during deployment.

If the candidate sensor position meets these criteria,
it is then added to the list of selected deployment
positions. This process iterates until no more new
sensor deployment positions can be found. Figure 9
shows results of this planning step. More details of
this planning approach are described in [17].

2. Generate the way-points of the path that the
leader robot must follow to guide the sensor
robots to the vicinity of the sensor deployment
positions.

After the sensor deployment positions are planned,
the way-points for the leader robot to travel to during
the deployment process must be generated, as shown
in Figure 10. During the actual deployment process,
the leader robot passes through the first planned way-
point position and then stops at the second planned
way-point position. The leader robot positions are

9

Figure 9: Autonomously planned sensor net positions (black squares) and planned leader way-points asso-
ciated with each sensor position (small dots).

planned in such way that the sensor node robot im-
mediately following the leader robot will be adja-
cent to the planned sensor deployment position when
the leader robot stops at the second way-point. In
this manner, the sensor node will be properly posi-
tioned for deployment by the leader robot using au-
tonomous teleoperation. Figure 9 shows the leader
way-point positions corresponding to the previously
planned sensor positions.

3. Divide the sensor deployment positions into
groups to facilitate the deployment operation.

Since each leader robot can only deploy a few sensor
robots at a time, and since several leader robots are
available to operate in parallel, each group of posi-
tions is assigned to a team (consisting of one leader
robot and n sensor robots) for deployment. The phys-
ical robot limitations of the simple sensor node robots
prevent the sensor nodes from successfully following
in a chain through paths that take many twists and
turns. In practice, the simple sensor robots in a chain
have a strong tendency to get caught on doorways or
furniture if the leader’s path makes many sharp turns.
Therefore, deployment positions must be grouped so

Figure 10: Relationship between a planned sensor
position and the two leader positions, and successive
sensor positions in a group.

10

that the path taken to visit each position in the group
is as smooth as possible. The team assignments are
thus generated to achieve the objectives of: (1) mini-
mizing travel by the deployment teams, and (2) mini-
mizing the amount of turning a team must perform as
it travels to all of its assigned deployment positions.

3.2 Deployment

At the beginning of a deployment, the leader robot
uses its laser-based Monte Carlo localization capabil-
ity (similar to [19]) to lead the sensor-limited robots
in a chain formation to the vicinity of the goal desti-
nation of the first simple robot. (As found by [1], the
column chaining formation optimizes formation per-
formance in an obstacle-rich environment). During
this navigation mode, the simple robots use a crude
camera (the CMUCam) and a color blob tracking al-
gorithm to follow the robot ahead of it, which is out-
fitted with a rectangular red blob. Each robot in the
chain follows the robot directly in front of it at an
average deployment speed of approximately 0.5 me-
ters per second. In this mode, the simple robot keeps
the red blob within view and moves towards the cen-
troid of the blob. If the blob is lost, the simple robot
tries to reacquire the blob by continuing its previous
action or by panning itself from side to side. The
effect of this blob tracking when multiple robots are
front-to-back with each other is a follow-the-leader
chaining behavior. This mode of navigation (which
we call Long-Dist-Navigate) is used when the sim-
ple robots are far from their desired destination (i.e.,
greater than approximately 1 meter).

Once the leader reaches the vicinity of the sensor
net position (defined by the way-points illustrated in
Figure 10), the leader robot autonomously teleoper-
ates the first simple robot into deployment position
(which we call Short-Dist-Navigate). To enable the
leader robot to determine the position of any sim-
ple robot, a visual fiducial (shown in Figure 11) is
mounted on each simple robot. This visual fiducial is
cylindrical, with a height of 48 cm and a circumfer-
ence of 23 cm. The marker is composed of four parts:
a START block, an ID (identification) block, an Ori-
entation block and an END block. The START and
END blocks facilitate the detection of the marker in
the field of view. The START block is a combina-
tion of red and green stripes at the bottom of the

marker. The END block is a red stripe at the top of
the marker. Between the START and END blocks are
the ID block and the Orientation block. The ID block
is unique to each robot, and is composed of 7 black or
white stripes, providing 27 = 128 different IDs. The
orientation block consists of two stripes that are black
for one-half of the fiducial circumference and white
for the other half, offset by ninety degrees. Once a
marker is recognized in the camera image, the marker
detection algorithm determines the identity and the
relative position of the marker in terms of the follow-
ing parameters, as shown in Figure 11:

• d: the distance between the leader’s camera and
the center of the simple robot

• Γ: simple robot orientation – the angle between
the heading of the simple robot and the center
of the camera.

• Θ: the angle between the center of the simple
robot and the plane containing the leader’s cam-
era.

The size and location of the marker in the image
enables the leader to determine the location of the
simple robot relative to itself, while the orientation
block enables the leader to determine the relative ori-
entation of the simple robot about its center axis.
Thus, if a marker of height h is located at (x, y) in the
image plane of (r, c) pixels, the edges of the marker
are (l, r), and the orientation delimitation is located
at column k, then the above parameters are calcu-
lated by the leader robot as follows:

d =
C1

h × C2

Γ = 180 ×

k − l

r − k

Θ = FOV +
x

c
× (180 − 2 × FOV)

where FOV is the field-of-view of the camera, and
C1 and C2 are constants defined by the size of the
real marker.

The leader robot combines the relative location of
the simple robot with its own global position to de-
termine the global position of the simple robot. The
leader robot then communicates steering and control
commands to effect the motion of the simple robot

11

Figure 11: Visual fiducial mounted on sensor node
robots to provide unique visual ID, relative position,
and orientation information.

towards its global deployment position. To allow for
lost communication messages, the simple robot ex-
ecutes the received commands for just a short time
period (typically 0.5 to 3 seconds). The leader robot
then recalculates the simple robot pose information
and sends the next set of control commands, repeat-
ing until the simple robot is within a threshold of its
planned position.

The behavior organization of the robots to accom-
plish this deployment process are shown in Figures 12
and 13. In this multi-robot coordination process, sev-
eral messages are passed between the robots, as de-
fined in Table 1. The simple robots have three main
states, as shown in Figure 12: Long-Dist-Navigate,
Short-Dist-Navigate, and Sensor Net, in addition to
the Wait state. The simple robot begins in the Wait
state until it receives a “Start” message from the
leader robot. The simple robot then transitions to
the Long-Dist-Navigation state, beginning the chain
formation-keeping behavior3. The simple robots re-
main in this state until they receive either an “SDN”
or “RTW” message from the leader robot, caus-
ing them to either switch to the Short-Dist-Navigate
state or return to the Wait state.

In the Short-Dist-Navigate state, the simple robot
receives navigation control commands from the leader
robot to assist the robot in reaching its sensor net-
work deployment position. Once the simple robot

3While an ultimate objective of our research is to enable the
robots to autonomously form themselves in the proper phys-
ical configuration to enter the Long-Dist-Navigate mode, for
this research, we assume that the robots are manually initial-
ized to be in the proper front-to-back orientation for successful
chaining.

reaches its destination position, the leader robot
sends an “SNDR” message to the simple robot in-
structing it to enter the Sensor Net state (described
further in the next subsection). The simple robot re-
mains in the Sensor Net state until a leader robot
returns to move the robot to another location. In
our application, this occurs when the simple robot’s
power level falls below a threshold4 and the robot
needs to return to a recharging station. The leader
robot becomes aware of this need through messages
from the simple robots, and returns to assist the sim-
ple robot back to the recharging station.

Figure 13 illustrates the state transitions of the
leader robot during the deployment process. The
leader robot also has three main states: Navigate,
Assist, and Transition, as well as a Wait state. Once
the leader robot receives a “Start” message (from the
human operator), the leader robot enters the Navi-
gate state. In this state the leader robot plans a path
to the desired deployment location of the first simple
robot on its team. It then uses its laser scanner to
localize itself and avoid obstacles while it navigates
to the goal position. Once the leader robot reaches
the goal position, it changes states to the Assist state
and sends a message to the first simple robot to enter
the Short-Dist-Navigate state. The leader robot also
sends an “RTW” message to the other simple robots
on the deployment team to cause them to wait while
the first leader robot is being assisted. At this point,
the leader robot’s goal is to autonomously navigate
the first simple robot into its deployment position as
described earlier. Once the first simple robot is in po-
sition, the leader robot sends it an “ADP” message
to let it know that the desired position is reached,
followed by an “SNDR” message to cause the simple
robot to initiate the sensor net detection mode. Fi-
nally, the leader robot sends an “LDN” message to
the remaining simple robots, causing them to reiniti-
ate their chaining behavior.

Once the first sensor node robot is guided into its
deployment position, the leader robot then succes-
sively visits the deployment destinations of the re-
maining simple robots until all of the robots have
been deployed. The leader robot then returns to its
home position to pick up another set of simple robots

4Our simple robots have a battery life of approximately 6-8
hours for this application. Thus, the recharging activity is not
a frequent occurrence.

12

Table 1: Messages defined to achieve inter-robot coordination and cooperation.

Message ID Description Sender Receiver
Start Start mission Human op. or leader robot Leader or simple robots
LDN Initiate Long-Dist-Navigation mode Leader robot Simple robot
SDN Initiate Short-Dist-Navigation mode Leader robot Simple robot
ADP At Desired Position Leader robot First simple robot
SNDR Initiate Sensor Net Detection mode Leader robot First simple robot
RTW Return to Wait Leader robot Simple robot

Figure 12: State diagram of simple robot.

Figure 13: State diagram of the leader robot.

13

to deploy. This process is repeated until all of the
simple robots on the deployment team have reached
their desired positions (see also [14]).

3.3 Acoustic Sensor Net Detection

Once the simple robots are in position, they switch
state to their primary role of forming a distributed
acoustic sensor network for intruder detection. Their
objective is to detect acoustic targets that are moving
through the environment. We assume that the target
is making some detectable noise, and that the target
is the only source of sound. Figure 14 shows these
robots deployed in the planned sensor net positions
and acting as this sensor network.

In our application, each sensor node has only one
low-fidelity microphone; these microphones are not
calibrated across robots. Individual acoustic sensors
are only able to detect volume; the distance and di-
rection to the target cannot be detected. Our real
world constraints prevent us from using a known
energy output level from the target, both because
of practical issues of varying sound levels at the
source and declining microphone sensitivity as bat-
tery power declines. Sophisticated algorithms for tar-
get localization under these constraints have been de-
veloped in [11], which uses mathematical analysis to
estimate the target position based upon the strengths
of the signals heard by neighboring nodes. However,
these analytical models were designed for open-air en-
vironments where acoustic signal propagation models
are known. Unfortunately, acoustic propagation in
indoor environments is extremely difficult to model;
thus we are not currently able to take advantage of
these precise analytical methods. As [11] notes, the
complexity of the more sophisticated algorithms is
justified only if their accuracy is higher than the node
spacing itself. Since this is not the case in our appli-
cation, we make the same conclusion as [11] that a
reasonable approximation to target localization is the
location of the node hearing the highest volume.

Thus, our approach (see also [13]) involves each
robot filtering its acoustic data and then communi-
cating its volume heard to its local neighbors, as il-
lustrated in Figure 15. Because of noisy data gen-
erated by our simple microphones, merely reporting
the location of the highest raw volume heard is not
sufficient to define the target’s current position. We

Figure 15: Illustration of how the distributed acous-
tic sensor net operates. The small circles represent
sensor node positions. The edges represent nearby
neighbor communications paths. The numbers rep-
resent the volume heard at that node. The circled
sensor nodes are the local maxima, determined via
communications with neighboring nodes.

therefore define a qualifying ratio, which gives the
fraction of time a sensor node must hear the highest
volume (relative to its immediate neighbors) during
the most recent predefined (short) time interval. If
the robot’s volume heard over the time interval ex-
ceeds the qualifying ratio, it reports its position to the
operator control unit (i.e., base station) as the cur-
rent target position estimate. If there is more than a
single sensor robot that exceeds the qualifying ratio
(as is sometimes the case when the ratio is less than
0.5), then all such robots will report their positions.
If multiple targets are in the environment, all the tar-
get locations in the sensor network are reported. If
there is a tie in the detected maximum volumes of
two neighbors, then both report their positions. If
the target is moving, these ties will be broken very
quickly. The pseudocode for this distributed acoustic
detection algorithm is shown in Table 2.

3.4 Deployment and Detection Re-

sults

The deployment and detection approach was vali-
dated through extensive experiments performed in
the environment shown in Figure 7. The experi-
ments consisted of repeated deployments of 1-3 sim-
ple robots per team, as illustrated in multimedia ex-

14

Figure 14: Physical robots deployed according to the results of the autonomous planning process for the
environment shown in Figure 9.

tension 2. The experiments were tightly controlled
by a set of human evaluators who were not the sys-
tem developers. Additionally, the experiments were
run by human controllers that were allowed access
only to laser feedback from the leader robots and a
stream of text messages from the robot team mem-
bers to determine the state of the system. If a de-
ployment failed on one experiment (for example, if a
simple robot got caught on an obstacle when trying
to follow the leader through a sharp turn), the conse-
quences of that failure were not corrected unless the
human controllers could determine from the leader
robot’s laser feedback that some robot had blocked
a passageway. Thus, the data reported here incor-
porates propagation of error from one experiment to
the next. In these experiments, a total of 61 simple
robot deployments were attempted.

The color blob tracking algorithm for the chain-
ing on the simple robots proved to be quite robust
when operating in uncluttered environments. This
algorithm can successfully follow a leading robot as
it moves in the environment, up to a 90-degree turn
angle. We successfully demonstrated 5 simple robots
robustly following a leading leader robot in a chain-
ing behavior. The main limitation to scalability is
the tendency of the following behavior to “shave off”
corners. Thus, as this tendency propagates through

many robots, eventually some simple robot will be-
come lost or caught on obstacles by cutting corners
too closely. In our experiments in cluttered spaces,
it was difficult for the simple robots to follow the
leader when it took many sharp turns in complex en-
vironments. The simple color tracking camera also
requires a fair amount of light to work properly. We
were able to operate very well in open spaces with
typical office lighting. Because of the requirement
to make several sharp turns in our test environment,
the chaining behavior was only found to be robust for
teams of 1-2 simple robots in cluttered environments.

The color vision-based fiducial detection software
for leader teleoperation was tested independently
from the rest of the behaviors to determine its robust-
ness and accuracy as a function of distance and rel-
ative position in the leader’s field of view. For these
independent evaluations, we selected 10 different po-
sitions with various lighting and background condi-
tions. Distances between the leader’s camera and the
simple robot marker varied from 0.5m to 2.5m. When
the leader can detect the marker, the determination
of the relative pose of the simple robot is very high,
with an average error in estimated distance of about
6cm. The primary difficulty is in the leader robot
not being able to find the marker, due to distance,
unfavorable lighting conditions, or a cluttered visual

15

Table 2: The Distributed Acoustic Sensing Algo-
rithm.

Distributed Acoustic Sensing Algorithm
While (forever)

• Filter sound – For each sound instant:

– Subtract out all noise below a predefined vol-
ume;

– Use only sound data within specified frequency
range;

– Average sounds over a short period (approx.
1/3 second)

• Communicate my filtered sound (h) to my nearest
neighbors;

• Receive V [1..n] volumes from my n nearest neigh-
bors;

• Update fraction of highest volume heard for most
recent time interval. (i.e., if h > V [i] for all i, then
fraction increases; else, it decreases.)

• If my fraction of highest volume heard > qualifying
ratio,

– Broadcast my position to the base station as
the nearest to the detected target.

Figure 16: Marker detection accuracy as a function
of inter-robot distance.

background. The results of these tests of robustness
are shown in Figure 16. The performance is quite
good until a distance of about 2.1 meters is reached,
due to the limits of the size of the marker and the
image resolution. The ability of the leader to detect
the marker falls off quickly beyond this distance.

The autonomous teleoperation approach provides
accuracy of final simple robot positioning of approx-
imately 30 centimeters, compared to the original
planned way-point positions. Since the typical dis-
tance between deployed simple robot positions is 2
meters or more, this level of accuracy is suitable for
our purposes. Over a set of 36 successful trials, the
average time for an individual robot deployment was
132 seconds, with a standard deviation of 45 sec-
onds. The fastest deployment achieved was 65 sec-
onds, while the slowest deployment time was 250 sec-
onds. The variation is typically due to the leader
occasionally losing the simple robot’s visual marker
and having to slowly pan its camera to find it again.

Another metric of evaluation is the percentage of
sensor robots successfully deployed (i.e., the ratio of
successful deployments to attempted deployments).
Our experimental data shows an overall deployment
success rate of 60% - 90%, depending upon the en-
vironmental characteristics. In other words, for each
attempt at deploying a simple robot, 60% - 90% of
those robots successfully reached their planned de-
ployment position. The reason for the low end of
this success rate is the complexity of our heteroge-
neous robot system. Our system for simple robot
deployment is composed of several non-trivial mod-

16

ules, including localization, path planning, naviga-
tion, leader following, visual marker detection, and
inter-robot communication. The successful comple-
tion of the entire deployment process depends upon
the successful completion of all of the system mod-
ules while the robots are operating in cluttered en-
vironments along complex paths. Additionally, the
independent experimentation reported here was espe-
cially challenging because we forced the robot team
to deal with the consequences of prior deployment
failures. Thus, subsequent robot team deployments
had to deal with situations such as partially blocked
doorways if a prior deployment resulted in a simple
robot being caught on the doorway. If all the test
runs had been independent, the overall system suc-
cess rate would certainly have been higher.

Clearly, there are many potential failure modes in
such a complex heterogeneous system involving such
a large number of robots. The most common failure
modes of the system were caused by variable lighting
conditions (which could cause the sensor node robots
to lose the color blobs, or the leader robots to lose the
visual marker for autonomous tele-operation), clut-
tered environments (which could cause the follower
sensor node robots to lose the leader robot amidst
many navigational twists and turns), and communi-
cations failures (due to delays in multi-hops in the
wireless ad-hoc network). To account for these po-
tential subsystem failures, we built extensive fault
tolerance into the behavior of the leader robot. Ta-
ble 3 shows the set of base failure states identified
for this system and the implemented recovery action.
Using these methods of behavior fault tolerance, the
success rate of the leader robots making it back home
autonomously in these rigorous experiments was 91%
(over 45 trials).

In three separate trials supervised by the indepen-
dent team, our distributed acoustic sensor network
achieved 100% detection of targets in the environ-
ment (all targets were localized to the correct room
or corridor) with no false positives; these trials in-
volved 3 leaders and up to 35 sensor robots. Clearly,
these results show that the planned sensor positions
and the distributed acoustic sensor processing worked
well for the objectives of these experiments.

4 Discussion and Conclusion

To achieve practical autonomy in large mobile robot
teams, one must necessarily adopt a fault-tolerant
and cost effective approach to system design. Our
ultimate approach incorporated a number of key el-
ements, some designed in from the outset, others
learned along the way.

• Heterogeneity: by using two distinct classes
of robots – one capable but expensive, the other
simple but inexpensive – overall system cost has
been reduced by nearly an order of magnitude.
The down-side of this approach is that algorithm
choice is dictated by platform availability, rather
than vice-versa. Given the opportunity to repeat
this project, we would probably chose a differ-
ent point in the cost/capability/number trade-
space, with a smaller number of slightly more
capable robots. This would increase system reli-
ability while saving money on hardware support
and software development.

• Middleware and simulation: this system in-
tegrates a wide range of existing technologies
(particle-filter-based localization, configuration
space path-planning and obstacle avoidance)
with a number of new approaches (manifold
maps, mutual observation and follow-the-leader
deployment). Recognizing this, we adopted the
Player robot server [20] as a form of middleware.
Player gives us access to existing implementa-
tions of common algorithms, while also provid-
ing a set of standard interfaces around which the
overall software is structured. Player also gives
us access to the Stage and Gazebo simulators
[10], which were crucial in the early stages of
algorithm development and validation.

• Communications: one of the lessons learned
during the course of this project was the limi-
tations inherent in off-the-shelf 802.11b wireless
technology. When operating with large numbers
of devices (greater than three), or over significant
indoor distances (greater than 10m), total packet
loss can easily exceed 30%. Under these con-
ditions, the effective throughput for TCP-based
protocols drops to zero. UDP-based protocols
are much more robust, provided the supporting
algorithms can tolerate significant data loss.

17

Table 3: Identified failure states detected by the leader robot and implemented recovery actions.

Failure Type Fault Recovery Action

Can’t reach way-point Re-plan path.
Lost simple robot Leave lost robot in wait state and move on to next robot in chain.

Leader robot camera failure Leave simple robot(s) in wait state, send camera failure feedback to
human operator and return home.

Simple robot motor failure Check if simple robot is close enough to goal; if so, change
simple robot state to sensor detection and proceed as if successfully deployed;
else, leave simple robot in wait state and proceed to the next simple robot.

Localization drift Check if simple robot is close enough to goal; if so, change
simple robot state to sensor detection and proceed as if successfully deployed;
else, leave simple robot in wait state and proceed to the next simple robot.

Can’t detect marker Check if simple robot is close enough to goal; if so, change
simple robot state to sensor detection and proceed as if successfully deployed;
else, leave simple robot in wait state and proceed to the next simple robot.

Communication failure Return home.

• Algorithmic robustness: given the inevitabil-
ity of failures during such a large experiment, key
algorithms had designed-in robustness. Exam-
ples in our project include the use of mutual ob-
servation for loop closure (zero errors over seven
supervised trials), and leader recovery actions in
response to deployment faults (91% successful
return to base over 45 trials).

In closing, we note that the multi-robot systems
developed for the DARPA SDR project have estab-
lished new benchmarks for task complexity, team size
and experimental rigor. We hope that many of the
algorithms and much of the methodology developed
for this project will find application in the broader
robotics community.

Resources

Raw data from these experiments is available on the
Radish web-site [9].

http://radish.sourceforge.net/
Much of the code can be downloaded as part of the
Player package:

http://playerstage.sourceforge.net/

Acknowledgments

This work is sponsored in part by DARPA
grant 4400057784/SDR (Software for Distributed
Robotics) in conjunction with SAIC, Telcordia, the
University of Southern California and the University
of Tennessee Knoxville.

Thanks to Michael Bailey, Ben Birch, Balajee Kan-
nan, Chris Reardon, Fang Tang, Yifan Tang, Chris
Jones, Nate Keonig and Ian Kelly for their significant
contributions to this research.

Particular thanks go to John Spofford for his pa-
tience and understanding, and to Eric Krotkov and
Doug Hackett for their extraordinary efforts in the
preparation and supervision of the Fort AP Hill ex-
periments.

A Index to Multimedia Exten-

sions

The multimedia extensions to this article are at:
http://www.ijrr.org.

Extension Type Description
1 Video Multi-robot exploration and mapping
2 Video Guided robot deployment

18

References

[1] T. Balch and R. Arkin. Behavior-based forma-
tion control for multi-robot teams. IEEE Trans-
actions on Robotics and Automation, pages 926–
939, December 1998.

[2] W. Burgard, M. Moors, D. Fox, R. Simmons,
and S. Thrun. Collaborative multi-robot explo-
ration. In Proc. of IEEE International Confer-
enceon Robotics and Automation (ICRA), vol-
ume 1, pages 476–81, 2000.

[3] K. Chakrabarty, S. S. Iyengar, H. Qi, and
E. Cho. Coding theory framework for target lo-
cation in distributed sensor networks. In Pro-
ceedings of IEEE International Conference on
Information Technology: Coding and Comput-
ing, pages 130–134, 2001.

[4] E. W. Dijkstra. A note on two problems in con-
nection with graphs. Numerische Mathematik,
1:269–271, 1959.

[5] A. Elfes. Occupancy grids: A stochastic spa-
tial representation for active robot perception.
In Proceedings of the Sixth Conference on Un-
certainty in AI. Morgan Kaufmann Publishers,
Inc, July 1990.

[6] J. Gutmann and K. Konolige. Incremental map-
ping of large cyclic environments. In Proceeding-
sof the IEEE International Symposium on Com-
putational Intelligence in Robotics and Automa-
tion (CIRA), 2000.

[7] A. Howard. Multi-robot mapping using manifold
representations. In IEEE International Confer-
ence on Robotics and Automation, pages 4198–
4203, New Orleans, Louisiana, Apr 2004.

[8] A. Howard, M. J. Mataric, and G. S. Sukhatme.
Mobile sensor network deployment using po-
tential fields: A distributed scalable solution
to the area coverage problem. In Distributed
Autonomous Robotic Systems 5: Proceedings
of the Sixth International Symposium on Dis-
tributed Autonomous Robotic Systems (DARS
2002), pages 299–308. Springer-Verlag, 2002.

[9] A. Howard and N. Roy. Radish:
the robotics data set repository.
http://radish.sourceforge.net, May 2003.

[10] N. Koenig and A. Howard. Design and use
paradigms for Gazebo, an open-source multi-
robot simulator. In IEEE/RSJ International
Conference on Intelligent Robots and Systems,
Sendai, Japan, Sep 2004.

[11] D. Li, K. Wong, Y. Hu, and A. Sayeed. De-
tection, classification and tracking of targets in
distributed sensor networks. IEEE Signal Pro-
cessing Magazine, pages 17–29, March 2002.

[12] F. Lu and E. Milios. Globally consistent range
scan alignment for environment mapping. Au-
tonomous Robots, 4:333–349, 1997.

[13] L. E. Parker, B. Birch, and C. Reardon. Indoor
target intercept using an acoustic sensor network
and dual wavefront path planning. In Proceed-
ings of IEEE International Symposium on In-
telligent Robots and Systems (IROS ’03), pages
278–283, October 2003.

[14] L. E. Parker, B. Kannan, F. Tang, and M. Bai-
ley. Tightly-coupled navigation assistance in het-
erogeneous multi-robot teams. In Proceedings
of IEEE International Symposium on Intelligent
Robots and Systems (IROS ’04), pages 1016–
1022, 2004.

[15] D. Payton, M. Daily, R. Estowski, M. Howard,
and C. Lee. Pheromone robotics. Autonomous
Robots, 11(3):319–324, 2001.

[16] N. Roy and G. Dudek. Collaborative robot ex-
ploration and rendezvous: Algorithms, perfor-
mance bounds and observations. Autonomous
Robots, 11(2):117–136, 2001.

[17] Y. Tang, B. Birch, and L. E. Parker. Planning
mobile sensor net deployment for navigationally-
challenged sensor nodes. In IEEE International
Conference on Robotics and Automation (ICRA
’04), pages 172–179, 2004.

[18] S. Thrun. Robotic mapping: A survey. In
G. Lakemeyer and B. Nebel, editors, Explor-
ing Artificial Intelligence in the New Millenium.
Morgan Kaufmann, 2002.

19

[19] S. Thrun, D. Fox, W. Burgard, and F. Del-
laert. Robust Monte Carlo localization for
mobile robots. Artificial Intelligence Journal,
128(1–2):99–141, 2001.

[20] R. T. Vaughan, B. P. Gerkey, and A. Howard.
On device abstractions for portable, reusable
robot code. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages
2121–2427, Las Vegas, Nevada, U.S.A, Oct 2003.
(Also Technical Report CRES-03-009).

[21] I. A. Wagner, M. Lindenbaum, and A. M. Bruck-
stein. Robotic exploration, Brownian motion
and electrical resistance. Lecture Notes in Com-
puter Science, 1518:116–??, 1998.

[22] B. Yamauchi. Frontier-based approach for au-
tonomous exploration. In Proceedings of the
IEEE International Symposium on Computa-
tional Intelligence, Robotics and Automation,
pages 146–151, 1997.

20

