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Perceptual Reasoning for Perceptual Computing
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Abstract—In 1996, Zadeh proposed the paradigm of computing
with words (CWW). A specific architecture for making subjective
judgments using CWW was proposed by Mendel in 2001. It is
called a Perceptual Computer (Per-C), and because words can mean
different things to different people, it uses interval type-2 fuzzy set
(IT2 FS) models for all words. The Per-C has three elements: the
encoder, which transforms linguistic perceptions into IT2 FSs that
activate a CWW engine; the decoder, which maps the output of a
CWW engine back into a word; and the CWW engine. Although di-
fferent kinds of CWW engines are possible, this paper only focuses
on CWW engines that are rule-based and the computations that
map its input IT2 FSs into its output IT2 FS. Five assumptions are
made for a rule-based CWW engine, the most important of which
is: The result of combining fired rules must lead to a footprint of
uncertainty (FOU) that resembles the three kinds of FOU that have
previously been shown to model words (interior, left-shoulder, and
right-shoulder FOUs). Requiring this means that the output FOU
from a rule-based CWW engine will look similar in shape to an
FOU in a codebook (i.e., a vocabulary of words and their respective
FOUs) for an application, so that the decoder can therefore sensibly
establish the word most similar to the CWW engine output FOU.
Because existing approximate reasoning methods do not satisfy this
assumption, a new kind of rule-based CWW engine is proposed,
one that is called Perceptual Reasoning, and is proved to always
satisfy this assumption. Additionally, because all IT2 FSs in the
rules as well as those that excite the rules are either an interior,
left-shoulder, or right-shoulder FOU, it is possible to carry out the
sup-min calculations that are required by the inference engine,
and those calculations are also in this paper. The results in this
paper let us implement a rule-based CWW engine for the Per-C.

Index Terms—Computing with words, footprint of uncertainty,
interval type-2 fuzzy sets, perceptual computer, perceptual reason-
ing (PR), rule-based systems.

I. INTRODUCTION

ZADEH coined the phrase “computing with words”
(CWW)1 [41], [42]. According to him, CWW is “a

methodology in which the objects of computation are words and
propositions drawn from a natural language.” It is “inspired by
the remarkable human capability to perform a wide variety of
physical and mental tasks without any measurements and any
computations.” Words in the CWW paradigm can be modeled
by type-1 fuzzy sets (T1 FSs) or their extension, type-2 (T2)
FSs.

CWW using T1 FSs has been studied by many researchers,
e.g., [3], [8], [13], [24], [27], [29], [30], [39], [41], and [42];
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Fig. 1. Architecture of the Perceptual Computer.

however, as claimed in [15]–[18], “Words mean different things
to different people, and so are uncertain. We therefore need
an FS model for a word that has the potential to capture its
uncertainties, and an interval T2 FS (IT2 FS) should be used
as a model of a word.” Consequently, in this paper, IT2 FSs are
used to model words.

A specific architecture is proposed in [15]–[18] for mak-
ing (subjective) judgments by CWW. It is called a Perceptual
Computer—Per-C for short—and is depicted in Fig. 1, and its
use is called Perceptual Computing. Perceptions (i.e., granu-
lated terms, words) activate the Per-C and are also output by the
Per-C; so, it is possible for a human to interact with the Per-C
just using a vocabulary of words.

In Fig. 1, the encoder transforms linguistic perceptions into
IT2 FSs that activate a CWW engine. It contains an applica-
tion’s codebook that is a collection of words (the application’s
vocabulary) and their IT2 FS models. How to obtain IT2 FS
models for words is explained in [10] and [11], and is not the
subject of this paper, although some aspects of it are discussed
next. The decoder maps the output of the CWW engine back
into a word. Usually, a codebook is available, in which every
word (the vocabulary) is modeled as an IT2 FS. The output of
the CWW engine is mapped into a word (in that vocabulary)
most similar to it. How to do this is explained in [34] and is also
not the subject of this paper, although some aspects of this will
also be explained next. The CWW engine, e.g. IF-THEN rules
(e.g., [16]), the linguistic weighted average [31]–[33], linguistic
summarizations [5], [22], [38], etc., maps IT2 FSs into IT2 FSs.
This paper focuses only on CWW engines that are rule-based
and the computations that map the input IT2 FSs into the output
IT2 FSs.

In order to carry out those computations, one must first ask:
“What kinds of IT2 FSs should be used to model antecedent,
consequent and input words in a rule-based CWW engine?” An
answer has been obtained by Liu and Mendel [10], [11] and is
explained next. It is predicated on the belief that, in order to ob-
tain a meaningful uncertainty model for a word, data about the
word must be collected from a group of subjects. In their encod-
ing method, called the Interval Approach, data intervals about a
vocabulary of words are obtained from a group of subjects. Sub-
jects are asked “On a scale of 0–10 where would you locate the
end-points of an interval that you associate with the word___?”
After some preprocessing, during which some intervals (e.g.,
outliers) are eliminated, the collection of remaining intervals is
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Fig. 2. FOUs for CWWs.

classified as either an interior, left-shoulder, or right-shoulder
IT2 FS. Then, each of the data intervals is individually mapped
into its respective T1 interior, left-shoulder, or right-shoulder
MF, after which the union of all of these T1 MFs is taken, and
the union is upper and lower bounded using piecewise-linear
functions. The result is a footprint of uncertainty (FOU) for an
IT2 FS2, which is completely described by these lower and upper
bounds, called the lower membership function (LMF) and the
upper membership function (UMF), respectively. Regardless of
the size of a survey, this IA method will lead to piecewise-linear
shapes for the LMF and UMFs of words.

When this methodology was applied to real data [9] for a
vocabulary of 32 words, the left-shoulder, right-shoulder, and
interior FOUs (see Fig. 2) had the following general features.

1) Left- (LS) and Right-Shoulder (RS) FOUs: The legs of the
LMF and UMF are not parallel.

2) Interior FOUs: The UMF is a trapezoid that usually is not
symmetrical, and the LMF is a triangle that usually is not
symmetrical3.

It is such FOUs that will be used in the Per-C.
Recall that the general structure of a rule for p inputs x1 ∈

X1 , . . . , xp ∈ Xp and one output y ∈ Y , is:

Ri : IF x1 is F̃ i
1 and · · · and xp is F̃ i

p , THEN y is G̃i

i = 1, . . . ,M. (1)

In this rule, the p antecedents and the consequent are modeled
as IT2 FSs that are a subset of the words in a CWW codebook;
hence, as just mentioned, they can only be IT2 FSs like the ones
shown in Fig. 2.

Comments: 1) The codebook for a CWW application may
be rather large, so that users who interface with the Per-C can
operate in a user-friendly environment. Usually, only a small
subset of the words in the codebook would be used to establish
the M rules, especially when rules are extracted from experts.
What is important is that the words used to characterize each of
the p antecedents and the consequent lead to FOUs that cover the
domain of each antecedent. In Fig. 2, e.g., five words do this. In
our experience, five to seven words will cover an interval, e.g.,
0–10.

2) A reviewer of this paper thought that (1) was an interval
type-2 fuzzy logic system (IT2 FLS). It is not, because of the

2It is assumed that readers are familiar with IT2 FSs. If they are not, see,
e.g., [19].

3In the extremely unlikely situation when all subjects give the same interval,
the UMF can be a triangle.

way in which fired rules will be combined during perceptual
reasoning (PR, as explained in Section II) and because type
reduction and defuzzification, which are the two components
of output processing for an IT2 FLS, are not used by us in
perceptual computing. In perceptual computing, our goal is not
to obtain a number at the output of the Per-C (which is what is
obtained at the output of an IT2 FLS), but is instead to obtain a
word that is most similar to a word in the codebook. �

How one should model the M rules, their inference mecha-
nism, and the combining of multiple fired rules for a Per-C are
questions that do not have unique answers; so, choices must be
made. In this paper, the following choices (i.e., assumptions)
are made:

Assumptions:
1) The result of combining fired rules must lead to an FOU

that resembles the three kinds of FOUs in a CWW code-
book: This is a very plausible requirement, since the de-
coder in the Per-C maps the CWW output FOU into a
word in the codebook most similar to it. This is our most
challenging assumption to achieve because it cannot be
assumed a priori but must be demonstrated through anal-
ysis. We do this in Section III.

2) Input IT2 MFs are separable: By a separable MF, we
mean one for which µX 1 ,...,Xp

(x1 , . . . , xp) = µX 1 (x1)
∧ . . . ∧ µX p(xp). Because each word in the vocabulary
has been modeled independently, and inputs to the Per-C
are words, separable MFs seem reasonable.

3) No uncertainties are included about connective words:
Although there exists a literature (e.g., [25], [26], [28],
and [36]) for allowing the connective words and and or
to incorporate uncertainties, except for [36], all results are
for type-1 FS antecedents and consequents, and are very
complicated, and [36]’s results are the most complicated.
Our first approach to a CWW rule-based engine is to keep
it as simple as possible, and to see if sensible results can be
obtained. If they cannot be, then one possibility is to use
more complicated models for connector words, but they
must be in the context of IT2 FS models for words.

4) Rules are activated by words that are modeled as either
shoulder or interior IT2 FSs: Rules will be activated by
words that are in the codebook, and as we have explained,
these words will be modeled as assumed earlier.

5) Minimum t-norm is used for the and connective: In a rule-
based FLS product and minimum, t-norms are most pop-
ular. We have found that computing the sup-min com-
position in closed form is relatively straightforward for
shoulder and interior FOUs (see Section IV), but comput-
ing the sup-product composition is very difficult. Because
the Per-C is very different from the more popular func-
tion approximation application for an IT2 FLS, in which
universal approximation dominates and product t-norm is
most popular, there is no compelling reason to use prod-
uct t-norm over the minimum t-norm. So, a pragmatic
approach is taken in this paper, one that focuses on the
minimum t-norm.

The rest of this paper is organized as follows: Section II
describes a kind of reasoning that satisfies Assumption 1, and
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which we call PR. It also provides computational algorithms for
PR. Section III studies the properties of PR, and demonstrates
that the aforesaid Assumption 1 is satisfied for it. Section IV
calculates firing intervals for the small set of FOUs that can
occur in a CWW situation. Section V provides some discussions
including a family of applications for PR. Section VI provides
conclusions and suggestions for future studies.

II. PR: ALGORITHMS

A. Introduction

There are many models for the fuzzy implication, under the
rubric of approximate reasoning, e.g., [7] Table 11.1 lists 14.
Each of these models has the property that it reduces to the truth
table of material implication when fuzziness disappears, and to
date none of these models has been examined using interval T2
FSs.

Following is a quote from [2] that we have found to be very
illuminating:

Rational calculation is the view that the mind works by car-
rying out probabilistic, logical, or decision-theoretic operations.
Rational calculation is explicitly avowed by relatively few the-
orists, though it has clear advocates with respect to logical in-
ference. Mental logicians propose that much of cognition is a
matter of carrying out logical calculations (e.g., [1], [4], [23]).
Rational description, by contrast, is the view that behavior can
be approximately described as conforming with the results that
would be obtained by some rational calculation. This view does
not assume (though it does not rule out) that the thought pro-
cesses underlying behavior involve any rational calculation.

For the Per-C, logical reasoning is not implemented as pre-
scribed by the truth table of material implication; instead, ratio-
nal description is subscribed to.

Two widely used fuzzy reasoning models that fit the concept
of rational description are Mamdani and TSK, because neither
satisfies the complete truth table for material implication, and
so are not rational calculation models. Both models have been
examined using interval T2 FSs (e.g., [9], [16]); however, neither
leads to a combined fired-rules output set that resembles the
FOUs in our codebook (Fig. 2). Recall (e.g., see Fig. 6) that
even for T1 FSs, each fired rule output fuzzy set for Mamdani
implication that uses, e.g., the minimum t-norm looks like a
clipped version of the consequent FS,4 and such an FS does not
resemble the consequent FS. For a TSK model, the concept of
a fired output FS does not occur, because the rule consequent in
a TSK rule is not an FS, but is a function of the inputs.

How fired rules are connected (combined) for a Mamdani
model is open to interpretation. Zadeh connected rules [40]
using the word ELSE, which is itself a bit vague. Some have in-
terpreted the word ELSE as the OR connector, some have inter-
preted it as the AND connector, and not surprisingly, some have
interpreted it as a blend of both the AND and OR connectors.
Others prefer to perform the combining as a part of defuzzifi-
cation. There is no measured evidence (data) to support any of

4When it uses the product t-norm, it looks like a scaled version of the conse-
quent FS.

these rule-combining methods for a Mamdani model when the
objective is to make subjective judgments.

Interestingly enough, fired rules are easily combined using
the TSK model through a weighted average of rule consequent
functions, where the weights are the rule firing strengths. The
result, though, is not an FS; it is a point value for T1 FSs or an
interval value for IT2 FSs. So, neither the Mamdani nor TSK
models seem to be appropriate for the Per-C.

B. PR Described

A new fuzzy reasoning model is now proposed [21]—
PR5—that not only fits the concept of rational description, but
also satisfies Assumption 1, namely, that the result of combining
fired rules must lead to an FOU that resembles the three kinds
of FOUs in a CWW codebook.

PR consists of two steps.
1) A firing interval is computed for each rule, as would be

done for both the IT2 FS Mamdani and TSK models.
2) The IT2 FS consequents of the fired rules are combined

using a linguistic weighted average (LWA) [31]–[33], in
which the weights are the firing intervals and the “signals”
are the IT2 FS consequents.

Firing interval calculations are covered in Section IV. Next,
the mechanism of PR is explained.

C. Combining the Fired Rules Using the LWA

In this section, it is assumed that, for a given p × 1 vector of
input IT2 FSs, X̃′, firing intervals F i(X̃′) have been computed
for all fired rules.6 In practice, n ≤ M rules fire, and usually n
is much smaller than M . Those firing intervals are denoted

F i(X̃′) =
[
fi(X̃′), f

i
(X̃′)

]
≡

[
fi, f

i
]

(2)

where fi and f
i

are the lower and upper bounds for F i(X̃′),
and often for notational simplicity, the explicit dependence of
these bounds on X̃′ is omitted. In PR, fired rules are combined
using the following LWA that is denoted ỸPR :

ỸPR =
∑n

i=1 F i(X̃′)G̃i∑n
i=1 F i(X̃′)

. (3)

In (3), F i(X̃′) are intervals of nonnegative real numbers and
G̃i are rule-consequent IT2 FSs. This LWA is a special case of
the more general LWA in which both G̃i and F i(X̃′) are IT2
FSs.

Equation (3) is an expressive way to describe ỸPR , meaning
that ỸPR is not computed using multiplications, additions, or

5“Perceptual Reasoning” is a term that we have coined, because it is used by
the Perceptual Computer, when the CWW Engine consists of IF-THEN rules.

6There is a very important notational difference between the firing intervals
in this paper and those in the existing literature about IT2 FLSs. Here, because
words are modeled as IT2 FSs and words excite all rules, the firing interval,
F i (X̃′), is shown to depend upon the entire input IT2 FS X̃′. In the existing
IT2 FLS literature (e.g., [16]), an input to a rule is a vector of numbers X′ that
can be fuzzified as an IT2 FS, in which case T2 nonsingleton fuzzification is
said to occur. In that literature, it is therefore common to see F i (X′) instead of
F i (X̃′).
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Fig. 3. F̃ i (X̃′), the interpreted IT2 FS for firing interval F i (X̃′) of Rule-i.

divisions, as expressed by (3). Instead, the lower and upper MFs
of ỸPR , Y PR , and ȲPR are computed separately using α-cuts,
as summarized in Section II-E.

In the rest of this section, we provide a brief and highly
condensed explanation of how to compute ỸPR .

D. Overview of Computing ỸPR

In order to use the results in [31]–[33], F i(X̃′) is interpreted
here as an IT2 FS whose MF is depicted in Fig. 3. Observe, in

Fig. 3, each α-cut on F i(X̃′) is the same interval [fi, f
i
], for

∀α ∈ [0, 1], and that F i(X̃′) = F̄ i(X̃′).
FOUs for G̃i are depicted in Fig. 4. Observe that for an

interior FOU, the height of Gi is denoted hGi , the α-cut on Gi

is denoted7 [air (α), bil(α)], α ∈ [0, hGi ], and the α-cut on Ḡi

is denoted [ail(α), bir (α)], α ∈ [0, 1].
An interior FOU for ỸPR is depicted in Fig. 5. The

α-cut on ȲPR is [yLl(α), yRr (α)] and the α-cut on Y PR is
[yLr (α), yRl(α)], where, as shown in [31]–[33], the end points
of these α-cuts are computed as solutions to the following four
decoupled optimization problems8:

yLl(α) = min
∀fi ∈[f i ,f̄ i ]

∑n
i=1 ail(α)fi∑n

i=1 fi
, α ∈ [0, 1] (4)

yRr (α) = max
∀fi ∈[f i ,f̄ i ]

∑n
i=1 bir (α)fi∑n

i=1 fi
, α ∈ [0, 1] (5)

yLr (α) = min
∀fi ∈[f i ,f̄ i ]

∑n
i=1 air (α)fi∑n

i=1 fi
, α ∈ [0, hY P R

] (6)

yRl(α) = max
∀f∈[f i ,f̄ i ]

∑n
i=1 bil(α)fi∑n

i=1 fi
, α ∈ [0, hY P R

] (7)

7In this notation, the first subscript is an index that runs from 1 to at most M ,
whereas the second subscript is a pneumonic for left or right.

8The LWA used in this paper is slightly different from the version proposed
in [31] and [32] in that here hY P R

= mini hG i , whereas in [31] and [32]

hY P R
may be larger than mini hG i . A detailed explanation of this is given

in [33]. We advise the reader to use the LWA in this paper because it handles
the case when hG i are not all the same correctly.

Fig. 4. (a) LS, (b) RS, and (c) interior FOUs for consequent words.

Fig. 5. ỸPR , the LWA for PR.

where

hY P R
= min

i
hGi . (8)

Observe from (4) and (5) that ȲPR , characterized by
[yLl(α), yRr (α)], is completely determined by the UMFs Ḡi ,
because they involve only ail(α) and bir (α) (see Fig. 4), and
from (6) and (7) that Y PR , characterized by [yLr (α), yRl(α)],
is completely determined by the LMFs Gi , because they only
involve air (α) and bil(α). Observe also from (4) and (5) that
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Fig. 6. Outputs of PR (ỸPR , the solid curves) and a Mamdani inference
mechanism (ỸM , the dotted curves) when only rule Ri fires with firing interval
[0.3, 0.5].

ȲPR is always normal, i.e., its α = 1 α-cut can always be com-
puted. This is different from many other approximate reasoning
methods, e.g., the Mamdani-inference based method. For the
latter, even if only one rule is fired, unless the firing interval is
[1, 1], the output is a clipped or scaled version of the original
IT2 FS instead of a normal IT2 FS, as shown in Fig. 6. This
may cause problems when the output is mapped to a word in the
codebook.

E. Algorithms

In summary, knowing the firing intervals [fi,f
i
], i =

1, . . . , n, ȲPR is computed in the following way:
1) Calculate yL l(αj ) and yRr (αj ), j = 1, . . . ,m. To do this:

a) Select appropriate m α-cuts for ȲPR (e.g., divide
[0, 1] into m − 1 intervals and set αj = (j − 1)/
(m − 1), j = 1, . . . , m).

b) Find the αj α-cut on Ḡi(i = 1, . . . , n); denote the end
points of its interval as [ail(αj ), bir (αj )], respectively.

c) Use KM algorithms [6], [16] to find yLl(αj ) in (4) and
yRr (αj ) in (5).

d) Repeat steps (b) and (c) for every αj (j = 1, . . . ,m).
2) Construct ȲPR from the m α-cuts. To do this:

a) Store the left coordinates (yLl(αj ), αj ), j = 1, . . . , m.
b) Store the right coordinates (yRr (αj ), αj ), j =

1, . . . ,m.
c) (Optional) Fit a spline curve through the 2m coordi-

nates just stored.
Similarly, to compute Y PR :
1) Calculate yLr (αj ) and yRl(αj ), j = 1, . . . , p, where αp =

mini hGi . To do this:
a) Select appropriate p α-cuts for Y PR (e.g., divide

[0, minihGi ] into p − 1 intervals and set αj =
(minihGi )(j − 1)/(p − 1), j = 1, . . . , p).

b) Find the αj α-cut on Gi (i = 1, . . . , n).
c) Use KM algorithms [6], [16] to find yLr (αj ) in (6) and

yRl(αj ) in (7).
d) Repeat steps (b) and (c) for every αj (j = 1, . . . , p).

2) Construct Y PR from the p α-cuts. To do this:
a) Store the left coordinates (yLr (αj ), αj ), j = 1, . . . , p.
b) Store the right coordinates (yRl(αj ), αj ), j =

1, . . . , p.

Fig. 7. Graphical illustration of Theorem 2 when two rules fire.

c) (Optional) Fit a spline curve through the 2p coordinates
just stored.

III. PR: PROPERTIES

All of the properties for PR that are described in this section
help in demonstrating Assumption 1 for PR, namely, the result of
combining fired rules using PR leads to an IT2 FS that resembles
the three kinds of FOUs in a CWW codebook. Proofs of all
theorems are given in the Appendix.

A. General Properties

Theorem 1: When all fired rules have the same consequent G̃,
ỸPR defined in (3) is the same as G̃. �

An example where only one rule is fired is shown in Fig. 6.
Theorem 2: ỸPR is constrained by the consequents of the fired

rules, i.e.,

min
i

ail(α) ≤ yL l(α) ≤ max
i

ail(α) (9)

min
i

air (α) ≤ yLr (α) ≤ max
i

air (α) (10)

min
i

bil(α) ≤ yRl(α) ≤ max
i

bil(α) (11)

min
i

bir (α) ≤ yRr (α) ≤ max
i

bir (α). (12)

The equalities hold simultaneously if and only if all fired rules
have the same consequent. �

Theorem 2 may be understood in this way: For PR using
IT2 FSs, ỸPR cannot be smaller than the smallest consequent
of the fired rules, and it also cannot be larger than the largest
consequent of the fired rules. A graphical illustration of Theorem
2 is shown in Fig. 7. Assume only two rules are fired and G̃1

lies to the left of G̃2 ; then, ỸPR lies between G̃1 and G̃2 .
Definition 1: Y PR is trapezoidal looking if its α = hY P R

α-cut is an interval instead of a single point. �
Y PR in Fig. 5 is trapezoidal looking.
Definition 2: Y PR is triangle-looking if its α = hY P R

α-cut
converges to a single point. �

Y PR in Fig. 6 is triangle-looking.
Theorem 3: Generally, Y PR is trapezoidal-looking; however,

Y PR is triangle-looking when all Gi are triangles with the same
height h, and either of the following unlikely events is true.

1) The apexes of all Gi coincide, or

2) fi = f
i
= fi for all i. �
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Theorem 4: Generally, ȲPR is trapezoidal-looking; however,
ȲPR is triangle-looking when either of the following unlikely
events is true.

1) All Ḡi are triangles and their apexes coincide; or

2) fi = f
i
= fi for all i. �

Condition 1 in Theorems 3 and 4 is much less likely to occur
than Condition 2. If Condition 2 occurs, then the firing interval
reduces to a firing level, which can occur if both the antecedents
in (1) and their associated inputs are T1 FSs (the consequents
are still IT2 FSs).

B. Properties Related to Assumption 1

Theorem 5: Let ỸPR be defined in (3). Then, ỸPR is an LS if
and only if:

1) At least one G̃
i

is an LS; and,
2) For every G̃

i
which is not an LS, the corresponding firing

interval satisfies fi = 0. �
Theorem 5 demonstrates that Ỹ PR is an LS does not neces-

sarily mean all consequents of the fired rules must be LSs.
Theorem 6: Let Ỹ PR be defined in (3). Then, Ỹ PR is a RS if

and only if:

1) At least one G̃
i

is a RS; and,
2) For every G̃

i
, which is not a RS, the corresponding firing

interval satisfies fi = 0. �
Theorem 6 demonstrates that Ỹ PR is a RS does not necessar-

ily mean all consequents of the fired rules must be RSs.
Theorem 7: Let Ỹ PR be defined in (3). Then, Ỹ PR is an

interior FOU if G̃i do not satisfy the requirements in Theorems
5 and 6. More specifically, Ỹ PR is an interior FOU if and only if:

1) All G̃
i

are interior FOUs; or,
2) G̃

i
consist of more than one kind of shapes, and for each

of at least two kinds of shapes, there exists at least one
corresponding firing interval such that fi > 0. �

Theorem 7 demonstrates that Ỹ PR is an interior FOU but that
does not necessarily mean all consequents of the fired rules must
be interior FOUs.

Theorems 5–7 are important because they show that the output
of PR is normal and similar to the word FOUs in a codebook (see
Fig. 2). So, a similarity measure [34] can be used to map Ỹ PR
to a word in the codebook. On the other hand, it is less intuitive
to map a clipped FOU (see Ỹ M in Fig. 6), as obtained from
a Mamdani inference mechanism, or a crisp point, as obtained
from the TSK inference mechanism, to a normal word FOU in
the codebook.

IV. COMPUTING FIRING INTERVALS

A. General Results

In the IT2 FLS literature (e.g., [9], [16], [19]), computing the
firing interval is simplest when inputs are modeled as singletons,
more difficult when inputs are modeled as T1 FSs, and most
difficult when inputs are modeled as IT2 FSs. Because rules in
the Per-C are always activated by IT2 FSs, our concern must
immediately be focused on computing the firing interval for this

most difficult case. Following are general results for computing
the firing interval for this case [9], [16], [19].

Theorem 8: Let the p IT2 FS inputs that activate a collection
of M rules be denoted X̃′. Using the9 minimum t-norm (∧), the
results of the input and antecedent operations for the ith fired
rule are contained in the firing interval F i(X̃′), which is given
in (2), in which10

fi(X̃′) = supx

∫
x1 ∈X 1

· · ·
∫

xp ∈Xp

[
µ

X̃ 1
(x1) ∧ µ

F̃ i
1
(x1)

]

∧ · · · ∧
[
µ

X̃p
(xp) ∧ µ

F̃ i
p
(xp)

]/
x (13)

and

f
i
(X̃′) = supx

∫
x1 ∈X 1

· · ·
∫

xp ∈Xp

[
µX̃ 1

(x1) ∧ µF̃ i
1
(x1)

]

∧ · · · ∧
[
µX̃p

(xp) ∧ µF̃ i
p
(xp)

] /
x. (14)

�
In evaluating (13) and (14), the supremum is attained when

each term in brackets attains its supremum; hence, one needs to
compute (k = 1, . . . , p)

fi
k
(X̃ ′

k ) ≡ supxk

∫
xk ∈Xk

[
µ

X̃k
(xk ) ∧ µ

F̃ i
k

(xk )
] /

xk (15)

and

f
i
k (X̃ ′

k ) ≡ supxk

∫
xk ∈Xk

[
µX̃k

(xk ) ∧ µF̃ i
k
(xk )

] /
xk . (16)

In (15) and (16), let

µ
Q̃i

k

(xk ) ≡
∫

xk ∈Xk

[
µ

X̃k
(xk ) ∧ µ

F̃ i
k

(xk )
]/

xk (17)

and

µQ̃i
k
(xk ) ≡

∫
xk ∈Xk

[
µX̃k

(xk ) ∧ µF̃ i
k
(xk )

]/
xk (18)

so that (15) and (16) can be reexpressed, as:

fi
k
(X̃ ′

k ) = supxk
µ

Q̃i
k

(xk ) (19)

f
i
k (X̃ ′

k ) = supxk
µQ̃i

k
(xk ). (20)

Let xi
k,max and x̄i

k ,max denote the values of xk that are as-
sociated with supxk

µ
Q̃i

k

(xk ) and supxk
µQ̃i

k
(xk ), respectively.

Then,

fi
k
(X̃ ′

k ) = µ
Q̃i

k

(xi
k,max) (21)

and

f
i
k (X̃ ′

k ) = µQ̃i
k
(x̄i

k ,max). (22)

9Although our specific calculations in Section IV are only for the minimum
t-norm, the results in this section are valid for both the minimum and product
t-norms.

10For a derivation of (13) and (14) using T1 FS mathematics, see [20].
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Fig. 8. Typical FOUs for CWW.

This means, of course, that fi(X̃′) and f
i
(X̃′) in (13) and

(14) can be reexpressed as11

fi(X̃′) = Tp
k=1f

i
k
(X̃ ′

k ) = Tp
k=1µQ̃i

k

(xi
k,max) (23)

and

f
i
(X̃′) = Tp

k=1f
i
k (X̃ ′

k ) = Tp
k=1µQ̃i

k
(x̄i

k ,max). (24)

Based on these discussions, the procedure to compute the
firing interval F i(X̃′) in (2) is (i = 1, . . . , M ):

1) Compute the functions µ
Q̃i

k

(xk ) and µQ̃i
k
(xk ), using the

minimum t-norm in (17) and (18), respectively.
2) Compute xi

k,max and x̄i
k ,max by maximizing µ

Q̃i
k

(xk ) and

µQ̃i
k
(xk ), respectively.

3) Evaluate fi
k
(X̃ ′

k ) and f
i
k (X̃ ′

k ), using (21) and (22),
respectively.

4) Compute fi(X̃′) and f
i
(X̃′) using (23) and (24),

respectively.
Observe that steps 1–3 must be performed for all p an-

tecedents, but these three steps can be done in parallel because
there is no coupling among the calculations for each of the an-
tecedents. This means that if we can perform these three steps
for any one of the antecedents, the results can be applied to all
p antecedents.

Next, steps 1–3 are carried out for the minimum t-norm and
the FOUs that can occur in the Per-C. Although the rest of this
section may appear to be tedious, without its results a rule-based
CWW engine cannot be implemented. Consequently, these de-
tails are provided in order to make perceptual computing readily
available to all readers of this journal.

B. Specific Results

Earlier, we explained that word FOUs have three canonical
shapes—LS, RS, and interior [referred to here as a nonshoulder
(NS)]—for which all LMFs and UMFs are piecewise-linear.
Here firing intervals are computed for the FOUs depicted in
Fig. 8, which include the word FOUs as a special case when
the LMFs of the NS FOUs are triangles instead of trapezoids.
The more general FOUs can occur when using an LWA CWW
Engine.

What complicates the firing interval calculations is that a
rule input12 X̃ can be LS, RS, or NS, and for each of these

11The notation T p
k=1fk denotes p−1 successive t-norms, i.e., f1 ∧ f2 ∧

. . . ∧ fp .
12In this section, the notation is simplified by not showing subscripts or

superscripts on all IT2 FSs.

Fig. 9. Possible combinations of input and antecedent FOUs: (a) (NS, NS),
(b) (LS, RS), (c) (LS, NS), and (d) (NS, RS). Ã and B̃ may be either X̃ or F̃ .

possibilities, its associated antecedent F̃ can also be LS, RS,
or NS; hence, there are nine different cases that have to be
considered—(X̃, F̃ ) = (LS, LS), (LS, NS), (LS, RS), (NS, LS),
(NS, NS), (NS, RS), (RS, LS), (RS, NS), and (RS, RS). Fig. 9
summarizes seven of these cases (Fig. 9(b)–(d) each apply to
two cases, because Ã and B̃ may be either X̃ or F̃ ). The two
cases (LS, LS) and (RS, RS) are so simple that no figures are
shown for them.

Regardless of which case one is in, all of the sup-min cal-
culations use the results that are in the following example by
making appropriate symbolic transformations.
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Fig. 10. Two intersecting lines, used for the calculation of supx∈X
min[y1 (x), y2 (x)].

Example 1: Here, the major computations that are used to eval-
uate supxm ∈Xm

min[µXm
(xm ), µF i

m
(xm )] for different kinds of

piecewise linear MFs are described. The situation is the one de-
picted in Fig. 10. Simplifying the notation, our objective is to
compute supx∈X min[y1(x), y2(x)], where:

y1(x) =




h1(x12 − x)
(x12 − x11)

, x11 ≤ x ≤ x12

0, otherwise
(25)

y2(x) =




h2(x − x21)
(x22 − x21)

, x21 ≤ x ≤ x22

0, otherwise.
(26)

Examining Fig. 10, it is easy to see that
supx∈X min[y1(x), y2(x)] occurs at the intersection of y1(x)
and y2(x), i.e., when x = x∗ and y = y∗. It is straightforward
to show that

x∗ =
h1x12(x22 − x21) + h2x21(x12 − x11)

h1(x22 − x21) + h2(x12 − x11)
(27)

supx∈X min[y1(x), y2(x)] = y∗

=
h1h2(x12 − x21)

h1(x22 − x21) + h2(x12 − x11)
. (28)

When h1 = h2 = 1, (27) and (28) simplify to

x∗ =
x12x22 − x21x11

(x22 − x21) + (x12 − x11)
(29)

supx∈X min[y1(x), y2(x)] = y∗

=
x12 − x21

(x22 − x21) + (x12 − x11)
. (30)

�
In order to illustrate the sup-min calculations, they are sum-

marized in Tables I and II for the important case of (NS, NS).
For the calculations of f̄ that are given in Table I, there are two
cases. When d > α and c < β, the trapezoidal UMF(X̃) is to
the left of the trapezoidal UMF(F̃ ), whereas when d > α and
b > γ, the trapezoidal UMF(F̃ ) is to the left of the trapezoidal
UMF(X̃). In both cases, (29) and (30) were used to compute
x∗ and y∗ = f̄ .

For the calculations of f that are given in Table II, there
are also two cases. Case 1 occurs as long as rX and lF inter-
sect. This case begins when hF̃ intersects rX [slide the dashed
trapezoid for LMF(F̃ ) to the left so that the topmost point of

lF touches rX ], and an analysis of when this occurs leads to
the inequality for ζ that is stated in the table. Case 2 occurs
as long as rF and lX intersect, and an analysis of when this
occurs leads to the inequality for η that is also stated in the ta-
ble. For both cases, (27) and (28) were used to compute x∗ and
y∗ = f .

The calculations of f and f̄ for the remaining eight cases—
(LS, LS), (LS, NS), (LS, RS), (NS, LS), (NS, RS), (RS,
LS), (RS, NS), and (RS, RS)—although seemingly tedious
are very straightforward. When X̃ or F̃ are both left or
RSs, and the tops of their two trapezoidal MFs overlap (even
at just one point), then sup∀xmin[LMF(X̃), LMF(F̃ )] = 1
and sup∀xmin[UMF(X̃), UMF(F̃ )] = 1, so that f = f̄ = 1;
hence, the cases (LS, LS) and (RS, RS) are not tedious at all.
The details of the cases (LS, NS), (LS, RS), (NS, LS), (NS, RS),
(RS, LS), (RS, NS) are left to the reader.

In order to see the forest from the trees (so to speak), summary
flowcharts are provided in Figs. 11–15. They are very useful for
writing a computer program to carry out all of the firing interval
computations. To use these flowcharts, it is assumed that all
FOUs have been prelabeled as either LS, RS, or NS.

The entry flowchart in Fig. 11 establishes which one of the
nine possible cases for the input FOU and antecedent FOU has
occurred.

The flowchart in Fig. 12 handles the cases (LS, LS), (RS, RS),
(LS, RS), and (RS, LS). It disposes of the cases (LS, LS) and
(RS, RS) very easily, and treats the cases (LS, RS) and (RS, LS)
simultaneously by using the Ã − B̃ labeling described earlier. It
includes the situations when the FOUs do not overlap or overlap
in different ways.

The flowcharts in Figs. 13 and 14 handle the case (NS, NS).
Fig. 13 is for the LMF calculations and is based on Table II.
Fig. 14 is for the UMF calculations and is based on Table I.
These flowcharts also include the case when there is no overlap
between the two FOUs.

The flowchart in Fig. 15 handles the cases (LS, NS), (NS, LS),
(RS, NS), and (NS, RS). Its left-hand path handles the cases (LS,
NS), (NS, LS) and its right-hand path the cases (RS, NS), (NS,
RS). Both paths include the situations when the FOUs do or do
not overlap.

V. DISCUSSION

A. Applications for PR

A family of applications for which PR can be used is dis-
tributed and (or) hierarchical decision making. One example
of such a situation is when there are q judges (or experts, man-
agers, commanders, referees, etc.) who have to provide a sub-
jective decision or judgment about a situation (e.g., quality of a
submitted journal article). They will do this by providing a lin-
guistic evaluation (i.e., a word, term, or phrase) for a collection
of prespecified and preranked categories, using a prespecified
codebook of terms, because it may be too problematic to provide
a numerical score for these categories.

Prior to the judging, FOUs are determined for all of the words
in the codebook, the categories will have had linguistic weights
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TABLE I
SUP-MIN CALCULATIONS FOR TRAPEZOIDAL UMFS

TABLE II
SUP-MIN CALCULATIONS FOR TRIANGLE LMFS: hF < hX
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Fig. 11. Entry flowchart.

Fig. 12. Sup-min calculations when both of the FOUs are shoulders. See
Fig. 9(b) for definitions of notation.

assigned to them, and those weights will also have had FOUs
determined for them. The judges do not have to be concerned
with any of the a priori rankings and modeling; it will all have
been done before the judges will be asked to judge.

After the judges assign their linguistic scores to each category,
an LWA can be computed for each of the judges. The q LWAs
are then sent to a control (command) center (e.g., the Associate
Editor); however, because judges may not be of equal expertise,
each judge’s level-of-expertise will have also been prespecified
using a linguistic term provided by the judge from a small
vocabulary of terms. The q LWAs can also be aggregated by
another LWA and it is also sent to the control center, where a
final decision or judgment is made. LWA FOUs will look like
the ones in Fig. 8.

At the control center, one way in which a decision can be
made is by using a collection of IF-THEN rules. These rules
will be activated by a combination of the LWA FOUs from the
individual judges and the aggregated LWA FOU. Exactly what
the rules would look like is beyond the scope of this paper. Fired

Fig. 13. Sup-min LMF calculations when both MFs are trapezoids. See
Fig. 9(a) for definitions of notation.

Fig. 14. Sup-min UMF calculations when both MFs are trapezoids. See
Fig. 9(a) for definitions of notation.
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Fig. 15. Sup-min calculations when one of the FOUs is a shoulder and the other FOU is an NS.

rules would be combined using PR, after which (see Fig. 1) the
PR FOU would be decoded into a suitable word by the Per-
C decoder. It is expected that similarity and ranking will play
important roles in accomplishing this. If the final result is a
preestablished category (e.g., accept, rewrite, reject), instead of
any word from the codebook, then a rule-based classifier would
be used as part of the decoder, where again PR would be used
to aggregate the fired rules prior to the classification.

We hope that by explaining some high-level details of this
application the readers will find other applications for PR.

B. PR Versus IT2 Mamdani

A reviewer wanted to know how different the results would
be by using PR versus, e.g., an IT2 Mamdani rule-based fuzzy
logic system. While we do not have a concrete answer to this
question (it would be application dependent, and would also
depend upon the number of words in the codebook), we would
like to make some general observations relating to the question
as it applies to the Per-C.

1) In the Per-C that uses PR, the flow of computations is:
IT2 FSs activate a set of rules, firing intervals are com-
puted, and PR is used to compute FOU(ỸPR), after which
FOU(ỸPR) is mapped into a word by the decoder. As
proven in this paper, FOU(ỸPR) will resemble the FOUs
in the codebook, and we believe this to be desirable from
a human reasoning point-of-view. Additionally, no infor-

mation is lost by mapping directly from FOU(ỸPR) into
a word.

2) In an IT2 Mamdani rule-based fuzzy logic system, the
flow of computations is: IT2 FSs activate a set of rules,
firing intervals are computed, and a decision must then be
made about how to proceed. In one approach, the firing
intervals are combined with their respective IT2 FS conse-
quents, resulting in an IT2 fired-rule output FS, after which
the union of all such IT2 FSs is computed, the result be-
ing FOU(ỸM |Union). If n rules fire, FOU(ỸM |Union) will
be very broad and will not remotely resemble any of the
word FOUs in the codebook. We believe this to be un-
desirable from a human reasoning point-of-view. It may
happen though that when FOU(ỸM |Union) is decoded by
the decoder, exactly the same word is obtained as obtained
from FOU(ỸPR). We are presently studying when and if
this can occur. Note that for this kind of an IT2 Mamdani
rule-based fuzzy logic system, no information is lost by
mapping directly from FOU(ỸM |Union) into a word.

In another approach, the firing intervals and their respective
IT2 FS consequents are used in a type-reduction method, the
result being an interval-valued set YM |TR , which must then be
decoded into a word by the decoder. Although there are different
ways in which this can be done (e.g., the centroid of each word
in the codebook can be precomputed, and then the word whose
centroid is most similar to YM |TR would be chosen; or, the
center-of gravity of each word’s centroid can be precomputed,
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Fig. 16. α-cuts on an (a) LS ỸPR , (b) RS ỸPR , and (c) interior ỸPR with hY P R
= 1.

and then the word whose centroid’s center-of-gravity is most
similar to the center-of-gravity of YM |TR would be chosen), we
are concerned by the fact that some information about the word
is lost through type reduction, and even more information is
lost when the center-of-gravity of a centroid is computed. Even
with all of this lost information, it may still happen that the
resulting word is the same as that obtained from FOU(ỸPR).
We do not plan to study when or if this can occur because losing
information does not seem like a good thing to us.

VI. CONCLUSION

A new CWW engine—PR—has been proposed in this paper.
It uses IF-THEN rules; however, unlike traditional IF-THEN
rules that use Mamdani or TSK models, PR uses an LWA to
combine fired rules. It is proved that combining fired rules using
the LWA leads to an IT2 FS whose FOU resembles three kinds of
FOUs that have previously been shown to model words (interior
FOU, LS FOU, and RS FOU), something that the authors feel
is a highly desirable property for perceptual computing. To the
best knowledge of the authors, no other method of approximate
reasoning has this property.

Because IT2 FS word models that would be used in a rule-
based CWW engine for both rule antecedents and inputs to
the rules are piecewise linear interior, LS, or RS FOUs, it is
possible to precompute the firing intervals for such an engine.
These closed-form formulas are also in this paper, and although
tedious to derive, because there are many cases that have to be
considered, they are easy to program.

Referring to the Per-C in Fig. 1, the results in this paper now
let a rule-based CWW engine be fully implemented. Future
publications will explain all components of the Per-C and will

illustrate its applications to distributed hierarchical decision-
making situations.

APPENDIX

PROOFS OF THE THEOREMS IN SECTION III

Proofs of Theorems 1–7 are provided in this appendix. To
begin, some preliminary results are provided.

A.1: Preliminary Results

Lemma 1: Let yLr (α) be defined in (6), where air (α) have
been sorted in ascending order and fi ≥ 0. The properties of
yLr (α) include [12]:

1) Because yLr (α) is a weighted average of air (α), and
fi ≥ 0,

a1r (α) ≤ yLr (α) ≤ anr (α). (A1)

2) yLr (α) is a nondecreasing function of air (α).
3) yLr (α) can be reexpressed as

yLr (α) = min
k∈[1,n−1]

∑k
i=1 air (α)f

i
+

∑n
i=k+1 air (α)fi

∑k
i=1 f

i
+

∑n
i=k+1 fi

(A2)
and can be computed by a KM algorithm [16], [35]. �

Note that yLl(α), yRl(α), and yRr (α) have similar properties.
These properties, whose proofs are in [12], will be used heavily
in proving the theorems in this section.

Lemma 2: An IT2 FS Ỹ PR is an LS [see Fig. 16(a)] if and
only if yLl(1) = 0 and yLr (hY P R

) = 0. �
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Proof: Intuitively, an IT2 FS Ỹ PR is an LS if and only if
yLl(α) = 0 for ∀α ∈ [0, 1] and yLr (α) = 0 ∀α ∈ [0, hY P R

],
as shown in Fig. 16(a). Because only convex IT2 FSs are
used in PR, we have yLl(α) ≤ yLl(1) ∀α ∈ [0, 1]. Conse-
quently, yLl(1) = 0 means yLl(α) = 0 ∀α ∈ [0, 1]. Similarly,
yLr (hY P R

) = 0 means yLr (α) = 0 ∀α ∈ [0, hY P R
].

Lemma 3: An IT2 FS Ỹ PR is a RS [see Fig. 16(b)] if and only
if yRr (1) = M and yRl(hY P R

) = M . �
The proof of Lemma 3 is so similar to that of Lemma 2 that

it is left to the reader.
Lemma 4. An IT2 FS Ỹ PR is an interior FOU if and only if

yLr (hY P R
) > 0 and yRl(hY P R

) < M . �
An example of interior ỸPR is shown in Fig. 16(c).
Proof: When yLr (hY P R

) > 0 and yRl(hY P R
) < M , Ỹ PR is

not an LS by Lemma 2, and it is also not an RS by Lemma 3.
Consequently, Ỹ PR must be an interior FOU.

A.2: Proof of Theorem 1

When all fired rules have the same consequent G̃, (3) is sim-
plified to13

ỸPR =
∑n

i=1 F i(X̃′)G̃∑n
i=1 F i(X̃′)

. (A3)

Denote the α-cut on Ḡ as [al(α), br (α)] (α ∈ [0, 1]) and the
α-cut on G as [ar (α), bl(α)] (α ∈ [0, hG ]). Then, the α-cuts on
ỸPR in (4)–(7) are computed as

yLl(α) = min
fi ∈[f i ,f

i
]

∑n
i=1 al(α)fi∑n

i=1 fi
= al(α), α ∈ [0, 1]

(A4)

yRr (α) = max
fi ∈[f i ,f

i
]

∑n
i=1 br (α)fi∑n

i=1 fi
= br (α), α ∈ [0, 1]

(A5)

yLr (α) = min
fi ∈[f i ,f

i
]

∑n
i=1 ar (α)fi∑n

i=1 fi
= ar (α), α ∈ [0, hG ]

(A6)

yRl(α) = max
fi ∈[f i ,f

i
]

∑n
i=1 bil(α)fi∑n

i=1 fi
= bl(α), α ∈ [0, hG ]

(A7)

i.e.,

[yLl(α), yRr (α)] = [al(α), br (α)], α ∈ [0, 1] (A8)

[yLr (α), yRl(α)] = [ar (α), bl(α)], α ∈ [0, hG ]. (A9)

Because every α-cut on ỸPR is the same as the corresponding
α-cut on G̃, it follows that ỸPR = G̃.

13Recall that (3) is an “expressive” equation, so we cannot “cancel” F i (X̃′)
in its numerator and denominator.

A.3: Proof of Theorem 2

Equation (10) is readily seen from Part 1 of Lemma 1. The
other three inequalities can be proved similarly.

When all n fired rules have the same consequent G̃, we know
from Theorem 1 that

yLl(α) = min
∀i

ail(α) = max
∀i

ail(α) = al(α) (A10)

yLr (α) = min
∀i

air (α) = max
∀i

air (α) = ar (α) (A11)

yRl(α) = min
∀i

bil(α) = max
∀i

bil(α) = bl(α) (A12)

yRr (α) = min
∀i

bir (α) = max
∀i

bir (α) = br (α). (A13)

When all G̃i are not the same, at least one of (A10)–(A13)
does not hold; hence, equalities in (9)–(12) hold simultaneously
if and only if all fired rules have the same consequent.

A.4: Proof of Theorem 3

Because (see Fig. 4) bil(α) ≥ air (α), observe from (6) and
(7) that

yLr (α) = min
∀fi ∈[f i ,f̄ i ]

∑n
i=1 air (α)fi∑n

i=1 fi
≤ max

∀fi ∈[f i ,f̄ i ]

∑n
i=1 air (α)fi∑n

i=1 fi

≤ max
∀fi ∈[f i ,f̄ i ]

∑n
i=1 bil(α)fi∑n

i=1 fi
= yRl(α) (A14)

i.e., yLr (α) ≤ yRl(α), so that in general Y PR is trapezoidal-
looking (see Fig. 5).

If all Gi are triangles with the same height h, then according
to (8), hY P R

= mini hi Gi = h. If, in addition, the apexes of all

Gi coincide at x = λ, then the α-cuts on all of them collapse to
a point, i.e., air (h) = bil(h) = λ ∀i = 1, . . . , n. Consequently

yLr (h) = min
∀fi ∈[f i ,f̄ i ]

∑n
i=1 air (h)fi∑n

i=1 fi
= λ min

∀fi ∈[f i ,f̄ i ]

∑n
i=1 fi∑n
i=1 fi

= λ

(A15)

yRl(h) = max
∀fi ∈[f i ,f̄ i ]

∑n
i=1 bil(h)fi∑n

i=1 fi
= λ max

∀fi ∈[f i ,f̄ i ]

∑n
i=1 fi∑n
i=1 fi

= λ

(A16)

i.e., yLr (h) = yRl(h) = λ; hence, Y PR is triangle-looking with
height h.

Finally, if all Gi are triangles with the same height h, then
air (h) = bil(h), and Y PR also has height h. In addition, if
fi = f̄ i = fi , then

yLr (h) = min
∀fi ∈[f i ,f̄ i ]

∑n
i=1 air (h)fi∑n

i=1 fi
=

∑n
i=1 air (h)fi∑n

i=1 fi

(A17)

yRl(h) = max
∀fi ∈[f i ,f̄ i ]

∑n
i=1 bil(h)fi∑n

i=1 fi
=

∑n
i=1 bil(h)fi∑n

i=1 fi

=
∑n

i=1 air (h)fi∑n
i=1 fi

= yLr (h). (A18)

Hence, again, Y PR is triangle-looking with height h.
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A.5: Proof of Theorem 4

Because all Ḡi have equal height 1, the approach used to
prove Theorem 3 can also be used to prove Theorem 4. The
details are left to the reader.

A.6: Proof of Theorem 5

Recall that yLl(1) is computed as

yLl(1) = min
∀fi ∈[f i ,f

i
]

∑n
i=1 ail(1)fi∑n

i=1 fi
. (A19)

We consider two cases for (A19).
1 All G̃

i
are LSs, i.e., all ail(1) = 0. Obviously, yLl(1) = 0

in this case. Similarly, we can show that yLr (hY P R
) = 0;

hence, according to Lemma 2, Ỹ PR is an LS.

2 Not all G̃
i

are LSs, i.e., not all ail(1) are 0. In this case,
yLl(1) needs to be computed using a KM algorithm, and
{ail(1)} need to first be sorted in ascending order. Assume

K (1 ≤ K < n) of the n G̃
i

are LSs. Because LSs have
ail(1) = 0, in the sorted {ail(1)}

ail(1)
{

= 0, i = 1, . . . ,K
> 0, i = K + 1, . . . , n.

(A20)

According to Part 1 of Lemma 1

yLl(1) ≥ a1l(1) = 0. (A21)

According to Part 3 of Lemma 1, and also using the assumed
fact that fi = 0 ∀i ≥ K + 1

yLl(1) = min
k∈[1,n−1]

∑k
i=1 ail(1)f

i
+

∑n
i=k+1 ail(1)fi

∑k
i=1 f

i
+

∑n
i=k+1 fi

≤
∑K

i=1 ail(1)f
i
+

∑n
i=K +1 ail(1)fi

∑K
i=1 f

i
+

∑n
i=K +1 fi

= 0. (A22)

Equations (A21) and (A22) together demonstrate that
yLl(1) = 0. Similarly, we can show that yLr (hY P R

) = 0. From

Lemma 2, we know Ỹ PR is an LS.
In summary, Ỹ PR is an LS only when:

Case 1: All G̃
i

are LSs; or
Case 2: At least one G̃

i
is an LS, and the remaining G̃

i
have

fi = 0.
Because Case 1 is included in Case 2, we only present Case

2 in the statement of Theorem 5.

A.7: Proof of Theorem 6

The proof of this theorem is so similar to the proof of Theorem
5 that it is left to the readers.

A.8: Proof of Theorem 7

The correctness of Theorem 7 is readily seen from Theorems
5 and 6, i.e., when either of Cases 1 and 2 is true, Ỹ PR is neither
an LS nor a RS, and hence, it must be an interior FOU.
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