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Abstract. This paper presents a Hamiltonian approach to modelling relative

spacecraft motion based on a derivation of canonical coordinates for the relative

state-space dynamics. The Hamiltonian formulation facilitates the modelling of high-

order terms and orbital perturbations within the context of the Clohessy-Wiltshire

solution. First, the Hamiltonian is partitioned into a linear term and a high-order

term. The Hamilton-Jacobi equations are solved for the linear part by separation,

and new constants for the relative motions are obtained, called epicyclic elements.

The influence of higher order terms and perturbations, such as Earth’s oblateness,

are incorporated into the analysis by a variation of parameters procedure. As an

example, closed-form solutions for J2—invariant orbits are obtained.
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1. Introduction

The analysis of relative spacecraft motion constitutes an issue of in-

creasing interest due to exiting and planned spacecraft formation flying

and orbital rendezvous missions. It was in the early 60’s that Clo-

hessy and Wiltshire first published their celebrated work that utilized

a Hill-like rotating Cartesian coordinate system to derive expressions

for the relative motion between satellites in the context of a rendezvous

problem (Clohessy and Wiltshire, 1960). The Clohessy-Wiltshire (CW)

linear formulation assumed small deviations from a circular reference

orbit and used the initial conditions as the constants of the unper-

turbed motion. Since then, recognizing the limitations of this approach,

others have generalized the CW equations for eccentric reference orbits

(Carter and Humi, 1987; Inalhan et al., 2002), and to include perturbed

dynamics (Gim and Alfriend, 2001; Alfriend and Schaub, 2000; Scheeres

et al., 2003).

An important modification of the CW linear solution is the use of

orbital elements as constants of motion instead of the Cartesian initial

RelativeMotionKluwer.tex; 15/07/2004; 15:24; p.2



3

conditions. This concept, originally suggested by Hill (1878), has been

widely used both in the analysis of relative spacecraft motion(Schaub

et al., 2000) and in dynamical astronomy (Namouni, 1999). Using this

approach allows the effects of orbital perturbations on the relative

motion to be examined via variational equations such as Lagrange’s

planetary equations (LPEs) or Gauss’s variational equations (GVEs).

Moreover, utilizing orbital elements facilitates the derivation of high-

order, nonlinear extensions to the CW solution (Gurfil and Kasdin,

2004).

There have been a few reported efforts to obtain high-order solutions

to the relative motion problem. Recently, Karlgaard and Lutze (2001)

proposed formulating the relative motion in spherical coordinates in

order to derive second-order expressions. The use of Delaunay elements

has also been proposed. For instance, Alfriend et al. (2002) derived

differential equations in order to incorporate perturbations and high-

order nonlinear effects into the modelling of relative dynamics.

The CW equations, obtained by utilizing Cartesian coordinates to

model the relative motion state-space dynamics, usually cannot be

solved in closed-form for arbitrary generalized perturbing forces; on

the other hand, the orbital elements or Delaunay-based representa-

tions can be straightforwardly expanded to treat orbital perturbations,

but they utilize characteristics of the inertial, absolute orbits. Hence,
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using orbital elements or Delaunay variables constitutes an indirect

representation of the relative motion problem.

This paper unifies the merits of the CW and the orbital elements-

based approaches by developing a Hamiltonian methodology that mod-

els the relative motion dynamics using canonical coordinates. The pro-

cedure, via solution of the Hamilton-Jacobi equation, is identical to that

leading to the classical Delaunay variables, except that it is performed

to first order in the rotating Hill frame. The Hamiltonian formulation

facilitates the modelling of high-order terms and orbital perturbations

via variation of parameters while allowing us to obtain closed form

solutions for the relative motion.

We start by deriving the Lagrangian for the relative motion in Carte-

sian coordinates. Then, using a Legendre transformation, we calculate

the Hamiltonian for the relative motion. We partition the Hamiltonian

into a linear term and a high-order term. We then solve the Hamilton-

Jacobi (HJ) equations for the linear part by separation, obtaining new

constants for the relative motion which we call epicyclic elements. These

elements can then be used to define the parameters of a relative motion

orbit or, more importantly, they can be used to predict the effect of

perturbations via variation of parameters.

As an example, we study the effect of J2 induced pertrubations on

a relative motion orbit. We also show how the canonical approach can
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be used to find general J2–invariant relative orbits similar to those in

Schaub and Alfriend(Schaub and Alfriend, 2001).

2. The Lagrangrian

The most convenient coordinate system for this problem is the one

in which the Hamilton-Jacobi equation most easily separates. We also

would like to operate in a coordinate system that most directly allows

us to utilize control and simulation techniques. Cartesian coordinates

turn out to be most convenient on all counts. Most of the work in

this paper will be confined to a rotating Cartesian Euler-Hill system as

shown in Figure 1. This coordinate system, denoted by R, is defined

by the unit vectors x̂, ŷ, ẑ. The origin of this coordinate system is set

on a circular reference orbit of radius a about the Earth. It is rotating

with mean motion n =
√

µ
a3 , where µ is the gravitational constant.

The reference orbit plane is the fundamental plane, the positive x̂-axis

points radially outward, the ŷ-axis is rotated 90 deg in the direction of

motion on the reference orbit and lies in the fundamental plane, and

the ẑ-axis completes the setup to yield a Cartesian dextral system.

For simplicity, we treat the case of a relative motion with respect to

a circular reference orbit. This is the most common problem and should
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easily reduce to the Clohessy-Wiltshire (CW) equations. We start with

this case because of its simplicity, allowing us to focus attention on the

details of the method. Nevertheless, we find that the resulting canonical

perturbation equations still provide new and meaningful results. In

future work we will present the more involved case of arbitrary elliptical

orbits.

The first step is to develop the Lagrangian of relative motion in the

rotating frame R. The velocity of the follower spacecraft in R is given

by the usual equation:

v = I ωR × r1 +
dR

dt
ρ + I ωR × ρ (1)

where r1 ∈ R3 is the inertial position vector of the leader spacecraft

along the reference orbit, ρ = [x, y, z]T ∈ R3 is the relative position

vector in the rotating frame, and I ωR = [0, 0, n]T is the angular

velocity of the rotating frame R with respect to the inertial frame I .

Assuming a circular reference orbit, denoting ‖r1‖ = a and substitut-

ing into Eq. (1), we can write the velocity in R in a component-wise

notation:

v =


ẋ− ny

ẏ + nx + na

ż


(2)

The kinetic energy per unit mass is given by
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K =
1
2
‖v‖2 (3)

The potential energy (for a spherical attracting body) of the fol-

lower spacecraft, whose position vector is r2, is the usual gravitational

potential written in terms of ρ = ‖ρ‖ and expanded using Legendre

polynomials:

U = − µ

‖r2‖
= − µ

‖r1 + ρ‖

= − µ

a

[
1 + 2r1 · ρ

a2 +
(
ρ
a

)2
]1/2

(4)

= −µ

a

∞∑
k=0

Pk(cos α)
(

ρ

a

)k

where the Pk(cos α) are the Legendre polynomials 1,

cos α = −ρ · r1

aρ
=

−x√
x2 + y2 + z2

(5)

and α is the angle between the reference orbit radius vector and the

relative position vector, as shown in Figure 1.

The Lagrangian L : R3×R3 → R1 is now easily found by subtracting

the potential energy from the kinetic energy,

L =
1
2

{
(ẋ− ny)2 + (ẏ + nx + na)2 + ż2

}
+n2a2

∞∑
k=0

Pk(cos α)
(

ρ

a

)k

(6)

1 This expansion results from use of the well known generating function g(t, x) =

(1− 2xt + t2)−
1
2 =

∑∞
n=0

Pn(x)tn−1
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As in the treatment leading to the Clohessy-Wiltshire equations for

relative motion, we examine only small deviations from the reference

orbit. Thus, we only consider the first three terms of the potential

energy,

U (0) = −µ

a
− µ

a2
ρ cos α− µ

a3
ρ2

(
3
2

cos2 α− 1
2

)
(7)

and then use Eq.(5) to find the low order Lagrangian,

L(0) =
1
2

(
ẋ2 + ẏ2 + ż2

)
+ n (xẏ − yẋ + aẏ)

+
3
2
n2a2 +

3
2
n2x2 − n2

2
z2 (8)

with the perturbed part of the Lagrangian equal to the higher order

terms in the potential [O((ρ/a)3)]. As a check, it is useful to derive the

linear relative equations of motion via the Euler-Lagrange equations on

the Lagrangian in Eq. (8). Omitting the details, it is straightforward

to derive the usual CW equations:

ẍ− 2nẏ − 3n2x = Qx (9)

ÿ + 2nẋ = Qy (10)

z̈ + n2z = Qz (11)

where (Qx, Qy, Qz) are the generalized forces in the relative motion

frame.

It is helpful before proceeding further to normalize our equations

and simplify the notation. Normalizing rates by n (so time is in units
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of radians, or, equivalently, the argument of longitude, u) and relative

distances by a (so all distances are fractions of the reference orbit

radius), the normalized Lagrangian is given by:

L̄(0) =
1
2

(
ẋ2 + ẏ2 + ż2

)
+ ((x + 1)ẏ − yẋ) +

3
2

+
3
2
x2 − 1

2
z2 (12)

where now the dot over a variable represents differentiation with respect

to normalized time (u) and the coordinates (x, y, z) are dimensionless

(and small).

It is also straightforward to change coordinates, writing the La-

grangian in the new coordinate system, and then use the Euler-Lagrange

equations to find the equations of motion in a new coordinate system.

For example, in Kasdin & Gurfil (Kasdin and Gurfil, 2004) we derive

the equations of motion in cylindrical coordinates.

3. The Hamilton-Jacobi Solution

The overall objective is to divide the three-degree-of-freedom Hamilto-

nian H : R3 × R3 → R1 into a linear part and a perturbed part,

H = H(0) +H(1)

and then solve the Hamilton-Jacobi equation for the unperturbed, lin-

ear system. This solution will provide us with new canonical coordinates
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and momenta that are constants of the (relative) motion. The per-

turbation, or variation of parameters, equations will then show how

these constants vary under various disturbances or higher order terms

contained in H(1).

Finding the Hamiltonian for the Cartesian system is straightforward.

First, the canonical momenta are found from the usual definition:

px =
∂L(0)

∂ẋ
= ẋ− y

py =
∂L(0)

∂ẏ
= ẏ + x + 1 (13)

pz =
∂L(0)

∂ż
= ż

and then, using the Legendre transformation H = q̇ipi − L, the un-

perturbed Hamiltonian for relative motion in cartesian coordinates is

found:

H(0) =
1
2
(px + y)2 +

1
2
(py − x− 1)2 +

1
2
p2

z −
3
2
− 3

2
x2 +

1
2
z2 (14)

This Hamiltonian is used to solve the Hamilton-Jacobi equation (see

Appendix). Because the Hamiltonian is a constant, Hamilton’s princi-

pal function easily separates into a time dependent part summed with

Hamilton’s characteristic function,

S(x, y, z, u) = W (x, y, z)− α′1u

Where α′1 is the constant value of the unperturbed Hamiltonian, H(0).

The Hamilton-Jacobi equation then reduces to a partial differential
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equation in W (x, y, z):

1
2

(
∂W

∂x
+ y

)2

+
1
2

(
∂W

∂y
− x− 1

)2

+
1
2

(
∂W

∂z

)2

−3
2
− 3

2
x2 +

1
2
z2 = α′1 (15)

Not unexpectedly, the z-coordinate easily separates. Separating the

characteristic function as W (x, y, z) = W ′(x, y) + W3(z), the HJ equa-

tion separates into:

α2 =
1
2

(
dW3

dz

)2

+
1
2
z2 (16)

α′1 +
3
2
− α2 =

1
2

(
∂W ′

∂x
+ y

)2

+
1
2

(
∂W ′

∂y
− x− 1

)2

− 3
2
x2 (17)

where α2 has been added and subtracted from Eq. (15) for convenience.

Equation (16) is just the HJ equation for simple harmonic motion

(which we expect from the well known solution of the CW equations).

It is easily solved via quadrature:

W3(z) =
∫ √

2α2 − z2dz

=
1
2

 z
√

2α2 − z2

+2α2 sin−1
(

z√
2α2

)
 (18)

The solution of Eq. (17) is more subtle. We separate by using the well

known constant of integration of the CW equations. Setting α3 equal

to the integral of Eq. (10) with the generalized force equal to zero

(Qy = 0) and putting it in terms of the canonical momentum, the
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third integration constant of the HJ equation is:

α3 = py + x− 1 (19)

Using the fact that py = ∂W ′/∂y, the remaining HJ equation (Eq. 17)

separates if we let

W ′(x, y) = W1(x) + W2(y)− yx (20)

so that

dW2

dy
= α3 + 1

and thus W2 = (α3 + 1)y by quadrature. Equation (17) then simplifies

to: (
dW1

dx

)2

+ x2 − 4α3x = 2α1 − α2
3 (21)

where we have used α1 = α′1 − α2 + 3/2. This equation is again easily

integrated for W1 by quadrature,

W1 =
∫ √

2α1 − α2
3 + 4α3x− x2dx (22)

yielding

W1 =
−2α3 + x

2

√
2α1 + 3α3

2 − (−2α3 + x)2

−2α1 + 3α3
2

2
sin−1

(
2α3 − x√
2α1 + 3α3

2

)
(23)

The final generating function from the solution of the low-order HJ

equation is thus given by:

S(x, y, z, α1, α2, α3, u) = W1(x) + W2(y) + W3(z)
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−yx− (α1 + α2)(u− u0) (24)

(Note that we have omitted the constant 3/2 as it does not affect the

solution and, again, we use argument of longitude, u, rather than time,

introducing an arbitrary initial angle, u0, where we use the usual defi-

nition of the zero of u being at the nodal crossing). It is straightforward

to express the new canonical momenta (α1, α2, α3) in terms of the

original cartesian positions and velocities (and thus in terms of the

initial conditions). For instance, α3 is given by Eq. (19) using Eq. (13).

Eq. (16) is used to find α2, substituting pz from Eq. (13) for dW3/dz.

Finally, α1 = α′1−α2 +3/2 is simply the value of the Hamiltonian and

is thus given by Eq. (14) with the momenta substituted from Eq. (13).

The result is:

α1 =
1
2
(px + y)2 +

1
2
(py − x− 1)2 − 3

2
x2 =

1
2
ẋ2 +

1
2
ẏ2 − 3

2
x2(25)

α2 =
1
2
p2

z +
1
2
z2 =

1
2
ż2 +

1
2
z2 (26)

α3 = py + x− 1 = ẏ + 2x (27)

The canonical coordinates (Q1, Q2, Q3) or the corresponding constant

phase variables (β1, β2, β3) are found via the partial derivatives of the

generating functions in Eq. (24) with respect to each of the new canon-

ical momenta,
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Qi =
∂ [S(x, y, z, α1, α2, α3, u) + α′1(u− u0)]

∂αi
=

∂ [W (x, y, z, α1, α2, α3)]
∂αi

(28)

yielding

Q1 = u− u0 + β1 = tan−1

 x− 2α3√
2α1 − α2

3 + 4α3x− x2


= − tan−1

(
3x + 2ẏ

ẋ

)
(29)

Q2 = u− u0 + β2 = tan−1
(

z√
2α2 − z2

)
= tan−1

(
z

ż

)
(30)

Q3 = β3 = y − 2
√

2α1 − α2
3 + 4α3x− x2 + 3α3 tan−1

 x− 2α3√
2α1 − α2

3 + 4α3x− x2


= −(3ẏ + 6x) tan−1

(
3x + 2ẏ

ẋ

)
− 2ẋ + y (31)

where we have used the definitions of the canonical momenta in terms

of velocities in Eqs. (13) and Eqs. (25) - (19) to express these in terms of

the cartesian positions and rates. Note that the generalized coordinate

Qi consists of a time term and a constant of the motion (a phase like

term), βi.

While these canonical variables can be used in the final equations of

motion, one more modification dramatically simplifies the final result.

We define a new momentum variable, α′1 = α1 + 3α2
3

2 , and solve for the
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new low order Hamiltonian:

H(0) = α1 + α2 = α′1 −
3α2

3

2
+ α2 (32)

By modifying the generating function accordingly, we obtain equa-

tions for the new canonical momenta and coordinates in terms of the

Cartesian variables:

α′1 =
1
2
(px + y)2 + 2(py − x− 1)2 +

9
2
x2 + 6x(py − x− 1)

=
1
2

(
ẋ2 + (2ẏ + 3x)2

)
(33)

α′2 =
1
2
p2

z +
1
2
z2 =

1
2
ż2 +

1
2
z2 (34)

α′3 = py + x− 1 = ẏ + 2x (35)

Q′1 = u− u0 + β′1 = tan−1

 x− 2α′3√
2α′1 − 4(α′3)2 + 4α′3x− x2


= − tan−1

(
3x + 2ẏ

ẋ

)
(36)

Q′2 = u− u0 + β′2 = tan−1

 z√
2α′2 − z2


= tan−1

(
z

ż

)
(37)

Q′3 = −3α′3(u− u0) + β′3 = y − 2
√

2α′1 − 4(α′3)2 + 4α′3x− x2

= −2ẋ + y (38)

Solving Eqs. (33)-(38) for x, y, and z yields the generating solution

for the Cartesian relative position components in terms of the new

constants of the motion, the canonical momenta (α1, α2, α3) and the
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canonical coordinates (Q1, Q2, Q3):

x(t) = 2α3 +
√

2α1 sin(Q1) (39)

y(t) = Q3 + 2
√

2α1 cos(Q1) (40)

z(t) =
√

2α2 sin(Q2) (41)

where we have dropped the primes for convenience.

From Eqs. (33)-(38) (or, alternatively, by differentiating Eqs. (39)-

(41) with respect to time) we can also obtain the expressions for the

Cartesian relative velocity components in terms of α1, α2, α3 and β1, β2, β3:

ẋ(t) =
√

2α1 cos(u− u0 + β1) (42)

ẏ(t) = −3α3 − 2
√

2α1 sin(u− u0 + β1) (43)

ż(t) =
√

2α2 cos(u− u0 + β2) (44)

Finally, it is often convenient to have expressions for the original

canonical momenta in terms of the new elements. These are easily found

from the transformation equations:

px(t) = −Q3 −
√

2α1 cos(u− u0 + β1) (45)

py(t) = 1− α3 −
√

2α1 sin(u− u0 + β1) (46)

pz(t) =
√

2α2 cos(u− u0 + β2) (47)

These equations are consistent with the well known results from the

CW equations, that the motion consists of a periodic out-of-plane oscil-

lation parameterized by α2, β2, a periodic in-plane motion described by
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α1, β1, and a secular drift in y given by α3. The usual invariance with y

is given by the arbitrary shift β3. It is straightforward to show that the

generating solution (39) - (41) is identical to the well known solution

of the CW equations in terms of initial conditions. We call the new

constants of the motion Ξ = [α1, α2, α3, β1, β2, β3] epicyclic orbital

elements for the relative motion. They are defined on the manifold

O × S3, where O = R× R≥0 × R ⊂ R3. For comparison, the Cartesian

vectors ρ and ρ̇ are defined on the tangent space R3 × R3.

4. Modified Epicyclic Elements

The epicyclic elements described above provide a convenient parame-

terization of a first-order relative motion orbit in terms of amplitude

and phase. This can be particularly convenient when distributing satel-

lites around a periodic orbit (equal amplitudes, but different phases).

However, variational equations presented later for these elements can

become quite complicated and numerically sensitive. This is particu-

larly a concern when some of the amplitudes approach zero, resulting

in the phase terms becoming ill-defined. For these situations it is con-

venient to introduced an alternative set of constants in terms of only

amplitude variables. We call these the modified epicyclic elements, la-
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bel them Ξ′ = [a1, a2, a3, b1, b2, b3], and define them via the contact

transformation:

a1 =
√

2α1 cos β1 (48)

b1 =
√

2α1 sinβ1 (49)

a2 =
√

2α2 cos β2 (50)

b2 =
√

2α2 sinβ2 (51)

a3 = α3 (52)

b3 = β3 (53)

It can easily be shown that the transformation in Eqs. (48)-(53) is

symplectic. That is, it is straightforward to show that:(
∂Ξ′

∂Ξ

)
J

(
∂Ξ′

∂Ξ

)T

= J (54)

where J is the symplecitic matrix [0, I;−I, 0]. Thus, the new elements

are also canonical and satisfy Hamilton’s equations. For some problems,

the variational equations for these elements will be easier to work with.

In terms of the new canonical momenta (a1, a2, a3) and new canon-

ical coordinates (b1, b2, b3), the Cartesian relative position equations

become:

x(t) = 2a3 + a1 sin(u− u0) + b1 cos(u− u0) (55)

y(t) = b3 − a3(u− u0)− 2b1 sin(u− u0) + 2a1 cos(u− u0) (56)

z(t) = b2 cos(u− u0) + a2 sin(u− u0) (57)
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Finally, it is important to note that Eqs. (39)-(44) or Eqs. (55) -

(57) constitute global coordinates for the tangent space R3 × R3 for

the relative motion, due to that fact the epicyclic orbital elements are

canonical. This means that variations of the parameters Ξ or Ξ′ due to

perturbations can be obtained via Hamilton’s equations on a perturbing

Hamiltonian, and the resulting time varying parameters Ξ(t) or Ξ′(t)

can then be substituted into the generating solutions (39)-(41) or (55) -

(57) to yield the exact relative motion description in the configuration

space R3.

One important caveat is necessary. While nominally either set of

elements can be used for perturbation analysis, it is only the original

epicyclic elements for which the Hamiltonian splits into a nominal,

unperturbed part and a perturbation part. The value of this is that

Hamilton’s equations can be used on the perturbation Hamiltonian

alone (as with Delaunay elments in the two-body problem) in terms of

the epicyclic elements. This is not the case for the modified elements,

as they do not necessarily solve the H-J equation. The approach we will

take is to find the perturbation differential equations for the original

epicyclic elements and then perform the transformation to modified

elements, using the chain rule to find the desired differential equations

for these elements.
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5. Perturbation Analysis

The primary value of the canonical approach is the ease with which

equations for the variations of parameters can be found. Specifically,

the variations of the epicyclic orbital elements are given by Hamilton’s

equations applied to the perturbation Hamiltonian, H(1):

α̇i = −∂H(1)

∂Qi
(58)

β̇i =
∂H(1)

∂αi
(59)

Q̇i =
∂H(0)

∂αi
+ β̇i (60)

These can be used to find the effect on the elements of any number of

perturbations which are derived from a conservative potential, such as

high-order gravitational harmonics (oblateness) and third-body effects,

in a similar manner to the variation of the Delaunay elements (La-

grange’s planetary equations can be found via a non-symplectic trans-

formation of the Delaunay elements). To demonstrate the methodology,

in the remainder of this section we consider the effect of the Earth’s

zonal harmonics, particularly the J2. For Earth orbiting systems, this

is often one of the largest perturbations and the most disruptive for

maintaining formations. While all of the results may not be new, this

approach is unique, with the benefit of all variables being differential,

and this example provides an important verification of the method.
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Treating the Earth as axially symmetric, the external potential in-

cluding the gravitational zonal harmonics, U⊕ = U + Uzonal, is given

by (Battin, 1999):

Uzonal =
µ⊕
‖r2‖

∞∑
k=2

Jk

(
R⊕
‖r2‖

)k

Pk(cos φ) (61)

where φ is the follower spacecraft colatitude angle, given by

cos φ =
Z

‖r2‖
(62)

Z is the normal deflection in an inertial, geocentric-equatorial reference

frame and the Jk’s are constants, the first three of which are:

J2 = 0.00108263 (63)

J3 = − 0.00000254 (64)

J4 = − 0.00000161 (65)

The perturbed relative motion is then found by setting the perturb-

ing Hamiltonian equal to this potential,H(1) = Uzonal, and substituting

‖r2‖ = ‖ρ + r1‖. By using Eqs. (39)-(41), the Hamiltonian can be

written in terms of the epicyclic elements and then the variational

equations of motion can be found via Eqs. (58) - (60).
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5.1. Example 1: J2 Perturbation in Equatorial Orbits

To illustrate the analysis, we start with the simpler problem of a cir-

cular, equatorial reference orbit and ask for the variational equations

of the modified elements describing a relative motion due to J2. Sub-

stituting i = 0 in the zonal potential, the perturbing Hamiltonian, in

terms of the cartesian Euler-Hill coordinates, is given by,

H(1) =
n2J2R

2
⊕(2z2 − 1− 2x− x2 − y2)

2a2(1 + 2x + x2 + y2 + z2)(5/2)
(66)

where we have again normalized the distances by the reference orbit

radius, a. Expanding to second order in the elements and substituting

for (x, y, z) yields the perturbing Hamiltonian in terms of the epicyclic

elements,

H(1) = −1
2
J2

(
R⊕
a

)2

(1− 6α3 − 3
√

2α1 sinQ1 + 24α2
3

+24
√

2α1α3 sinQ1 + 12α1 sin2 Q1 −
3
2
Q2

3 − 6
√

2α1Q3 cos Q1

−12α1 cos2 Q1 − 9α2 sin2 Q2) (67)

where we have eliminated the leading n2 term since we again have put

time in units of argument of longitude.

Eqs. (58) - (60) are now used to find the differential equations for

the epicyclic elements,

α̇1 = −3
2
J2

(
R⊕
a

)2

 −
√

2α1 cos Q1 + 8
√

2α1α3 cos Q1

+2
√

2α1Q3 sinQ1 + 8α1 sin 2Q1

 (68)
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β̇1 = −3
4

J2√
α1

(
R⊕
a

)2


8
√

2α3 sinQ1 −
√

2 sinQ1

−16
√

α1 cos2 Q1 − 2
√

2Q3 cos Q1

+8
√

α1


(69)

α̇2 = −9
2
J2

(
R⊕
a

)2

α2 sin 2Q2 (70)

β̇2 =
9
2
J2

(
R⊕
a

)2

sin2 Q2 (71)

α̇3 = −3
2
J2

(
R⊕
a

)2 (
Q3 + 2

√
2α1 cos Q1

)
(72)

Q̇3 = −3α3 + 3J2

(
R⊕
a

)2 (
1− 8α3 − 4

√
2α1 sinQ1

)
(73)

As alluded to in Section 4, these equations are reasonably compli-

cated and nonlinear, with an evident singularity at α1 = 0. Therefore,

it is more convenient, and useful, to change to the modified epicyclic

elements, resulting in the time varying differential equations,

ȧ1 =
3
2
J2

(
R⊕
a

)2


− cos(u− u0) + 4 sin(2(u− u0))a1

+4 cos(2(u− u0))b1 + 2 sin(u− u0)q3

+8 cos(u− u0)a3


(74)

ḃ1 =
3
2
J2

(
R⊕
a

)2


sin(u− u0) + 4 cos(2(u− u0))a1

−4 sin(2(u− u0))b1 + 2 cos(u− u0)q3

−8 sin(u− u0)a3


(75)

ȧ2 = −9
4
J2

(
R⊕
a

)2

((1 + cos(2(u− u0)))b2 − sin(2(u− u0))a2)(76)

ḃ2 =
9
4
J2

(
R⊕
a

)2

(sin(2(u− u0))b2 − (1− cos(2(u− u0)))a2) (77)

ȧ3 = −3
2
J2

(
R⊕
a

)2

(q3 + 2 cos(u− u0)a1 − 2 sin(u− u0)b1) (78)
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q̇3 = −3a3 + 3J2

(
R⊕
a

)2

 1− 8a3 − 4 sin(u− u0)a1

−4 cos(u− u0)b1

 (79)

These equations can be used to analyze the effect of J2 on the relative

motion in equatorial orbits as well as to search for initial conditions

that guarantee bounded formations. As a first check of the validity of

the result, we examine the stable, circular orbit solution of a constant

radial offset. It is well known that in an equatorial orbit the purely

radial perturbed force still allows for a circular orbit but with a modified

rate. Alternatively, we can ask for the small, constant radial offset (non-

zero x) that will produce an orbit with the reference orbit rate. One

approach is to simply equate the radial gravitational force with the

centrifugal force of an orbit at rate n. To first order in J2 the result is

an offset of x0 = J2
2

(
R⊕
a

)2
. This same result can easily be found via

the C-W differential equations by insterting a radial perturbing force,

fr = −3
2

µJ2R2
⊕

r4 , setting all rates to zero, and solving for x0 to first order.

Again, the result is x0 = J2
2

(
R⊕
a

)2
. We now search for that same result

in Eqs. (74) - (79). Keeping only terms to first order in J2 and the

epicyclic elements, the equations simplify to,

ȧ1 = −3
2
J2

(
R⊕
a

)2

cos(u− u0) (80)

ḃ1 =
3
2
J2

(
R⊕
a

)2

sin(u− u0) (81)

ȧ2 = 0 (82)
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ḃ2 = 0 (83)

ȧ3 = 0 (84)

q̇3 = −3a3 + 3J2

(
R⊕
a

)2

(85)

These equations can be solved by quadrature,

a1 = a1(0)− 3
2
J2

(
R⊕
a

)2

sin(u− u0) (86)

b1 = b1(0)− 3
2
J2

(
R⊕
a

)2

cos(u− u0) (87)

a2 = a2(0) (88)

b2 = b2(0) (89)

a3 = a3(0) (90)

q3 = q3(0) + 3(J2

(
R⊕
a

)2

− a3(0))(u− u0) (91)

One equilibrium solution to these equations has no out-of-plane

motion (a2(0) = b2(0) = 0) and a3(0) = J2

(
R⊕
a

)2
to eliminate the

drifting term. To see that this is the same radial offset solution, we

insert this solution back into Eqs. (55) and (56) to find the solution

in the Euler-Hill frame is y = 0 and x = J2
2

(
R⊕
a

)2
as expected. This

confirms the validity of the approach. We also note that this condition

is necessary for any non-drifting solution in the equatorial Euler-Hill

frame and it eliminates all effects of J2 to first order.

We also make an observation. One might expect from looking at Eqs.

(55) and (56) that this constant equilibrium would be entirely contained
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in a3, with q3 = a1 = b1 = 0. This is not the case, however. A careful

solution of the time varying equations shows that under perturbation,

a1 and b1 have an in-phase harmonic solution resulting in the constant

result. This is similar to the inertial description of this orbit using

Lagrange’s planetary equations, which consist of an osculating ellipse

of varying eccentricity always tangent to the physical, circular orbit

trajectory.

5.2. Example 2: General J2 Perturbation for LEO

Formations

In our next example, we turn to the full J2 perturbed problem; that

is, we allow for inclined reference orbits. The analysis becomes more

problematic here. Without even searching for the variational equations,

we know that any satellite orbit will have a long term, secular drift in

the node angle and argument of perigee induced by oblateness, causing

any relative motion analysis to lose validity as the satellite drifts away

from the Euler-Hill reference frame. Schaub and Alfriend (Alfriend and

Schaub, 2000; Alfriend and Yan, 2002), for example, realizing this, de-

rived general J2–invariant (and almost invariant) satellite formations by

matching these drifts among the satellites. In other words, the satellite
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orbits still drift relative to the usual Hill reference frame, but they drift

in such a way that the formation remains bounded.

To find the linearized effects of J2 on a general satellite relative

orbit and search for bounded formations, it is therefore most insightful

to return to the original derivation and replace the fixed reference orbit

with a circular orbit also rotating at the mean J2 induced drift. The

motion can then be examined relative to this drifting reference orbit.

We do this is in the following subsections.

5.2.1. The Modified Reference Orbit and J2 Perturbing Lagrangian

and Hamiltonian

As the reference orbit is circular, we need only account for the long-

term, uniform drift in the longitude of the ascending node (Ω) and the

long term drift in the argument of latitude (u = M + ω). Allowing the

reference orbit to have a drift in the longitude of the ascending node,

Ω̇, and argument of latitude, u̇, results in a modification to the angular

velocity between this modified Hill frame and the inertial frame. Using

the 3-1-3 ordered rotation (Ω, i, u) and the fact that there is no long

term drift in inclination, i, the angular velocity, expressed in the inertial
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frame (I ), is now given by:

I ωR =


Ω̇ sin i sinu

Ω̇ sin i cos u

Ω̇ cos i + u̇


(92)

where u is the argument of longitude, u̇ = n + δn is the modified

orbit rate including the J2 perturbation, and n =
√

µ/ā3, ā being the

mean semi-major axis. Note that we are not necessarily making the

assumption that there is a satellite on the reference orbit experiencing

the J2 perturbations nor are we assuming that these rates represent

any physical effect; we are simply modifying the angular velocity of the

reference orbit by additional constant rates.

The equation for the rotation rates are somewhat subtle to obtain.

The typical expressions are written in terms of the initial or mean semi-

major axis of the osculating orbits (see, e.g., Battin (1999) or Vinti

(1998)). Here, however, we select a reference orbit with the radius, r̄,

equivalent to the mean radius of the J2 perturbed orbit (Born, 2001),

r̄ = ā +
3
4
J2

(
R⊕
ā

)2

(3 sin2 i− 2) (93)

Since we are free to select the reference orbit, this equation is solved

for ā and then used to find the mean rates of change of the node angle

and argument of longitude (Born, 2001; Vinti, 1998) for the arbitrary,
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circular reference orbit,

Ω̇ = −3
2
n̄J2

(
R⊕
r̄

)2

cos i (94)

δn =
3
4
n̄J2

(
R⊕
r̄

)2 (
3− 7

2
sin2 i

)
(95)

where n̄ =
√

µ/r̄3. Note also that in Eq. (95) we have included in u̇ both

the effect of the rate of change of true anomaly and of the argument of

perigee as the reference orbit is circular (i.e., u̇ = Ṁ + ω̇).

We now substitute this angular velocity into Eq. (1) to find the

satellite’s new velocity vector with respect to inertial space:

v =


ẋ− n̄y

ẏ + n̄x + n̄r̄

ż


+



Ω̇sicuz − Ω̇ciy − δny
(Ω̇ci + δn)(x + r̄)

−Ω̇sisuz


Ω̇sisuy − Ω̇sicu(x + r̄)


(96)

where we have used the notation si = sin(i), ci = cos(i), and so on.

The Lagrangian is now computed in the same manner as before

by subtracting the potential energy from the kinetic energy, but now

including the new velocity expressions in the kinetic energy and the

perturbing potential from Eq. (61):

L =
1
2
|v|2 + n̄2r̄2

∞∑
k=0

Pk(cos α)
(

ρ

r̄

)k

− Uzonal (97)

As we did in the original problem, we simplify by normalizing the

Lagrangian. We normalize all distances by the reference orbit radius,
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r̄, but we normalize rates (i.e., time) by n̄ + δn. This results in the

normalized Lagrangian:

L̄ =
1
2
|v(0)|2 + v(0) · v(1) +

1
2
|v(1)|2

+
1

(1 + δn
n̄ )2

∞∑
k=0

Pk(cos α)
(

ρ

r̄

)k

− Uzonal (98)

where, as before, all distances are dimensionless, the longitude angle

is used instead of time, and all differentiation is with respect to nor-

malized time. Here, v(0) is the part of the normalized velocity in the

relative motion frame independent of J2 (and the same as the velocity

in the original problem),

v(0) =


ẋ− y

ẏ + (x + 1)

ż


(99)

and v(1) is the small remaining term of order J2,

v(1) =


v

(1)
x

v
(1)
y

v
(1)
z


=


Ω̇sicuz − Ω̇ciy

Ω̇ci(x + 1)− Ω̇sisuz

Ω̇sisuy − Ω̇sicu(x + 1)


(100)

As before, we keep only the low order terms in the Lagrangian. For

this treatment we use only the first order potential as we did earlier and

we keep terms only to first order in J2, thus allowing us to immediately

drop the second order term, 1
2 |v

(1)|2 from Eq. (98). The result is a low

order Lagrangian identical to our earlier treatment (Eq. 12) but with
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three additional perturbing terms:

L̄ = L̄(0) + v(0) · v(1) − 2
δn

n̄
(1− x + x2 − y2

2
− z2

2
)− Ūzonal (101)

We note here that the Euler-Lagrange equations could be used on

this Lagrangian to find differential equations for the motion in this new

rotating frame, which may have some usefulness for control design, for

example.

We are now in a position to study the effect on the relative motion

due to the J2 perturbation. Because the perturbation terms in Eq.

(101) have a velocity dependence, it is not as simple as finding the

variations of the epicyclic element equations from before due to the

perturbing potential. We must redefine the canonical momenta for this

new drifting frame of reference. Using the usual definition,

px =
∂L̄
∂ẋ

= ẋ− y − yΩ̇ cos i + zΩ̇ sin i cos u

py =
∂L̄
∂ẏ

= ẏ + x + 1 + (x + 1)Ω̇ cos i− zΩ̇ sin i sinu (102)

pz =
∂L̄
∂ż

= ż − (x + 1)Ω̇ cos u sin i + yΩ̇ sin i sinu

Again using the Legendre transformation, H =
∑

q̇ipi − L, we find

the new Hamiltonian,

H =
1
2
(px + y − v(1)

x )2 +
1
2
(py − (x + 1)− v(1)

y )2 +
1
2
(pz − vz)2

−3
2
− 3

2
x2 +

1
2
z2 + +yv(1)

x − (x + 1)v(1)
y + Up (103)
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where Up(x, y, z) is the small, velocity independent perturbation effec-

tive potential given by:

Up = 2
δn

n̄
(1− x + x2 − y2

2
− z2

2
) + Ūzonal (104)

There are two possible solution approaches at this stage. The first

is to solve the Hamilton-Jacobi equation again but with the low-order

Hamiltonian given by the terms in Eq. (103) without the perturbing

effective potential. This would result in new closed-form equations for

the relative motion about the new drifting reference orbit in terms

of new, J2-dependent epicyclic elements. The variational equations for

these elements could then be found via Hamilton’s equations on the

perturbing effective potential as usual. The advantage of this approach

is that the perturbations are entirely velocity (i.e., momentum) inde-

pendent. Thus, the solution trajectory is guaranteed to be osculating;

that is, the solution is tangent everywhere to the physical trajectory

that incorporates the variations of the parameters (Efroimsky and Gol-

dreich, 2003; Efroimsky and Goldreich, 2004). The disadvantage is that

it requires finding a new solution to the H-J equation (a formidable

task, particularly since the nominal Hamiltonian is time-varying) and

no longer has as clear a connection to the CW solution. We report on

this aproach in a future paper.
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The second approach, and the one we take in the sequel, is to multi-

ply out the terms in Eq. (103) that depend upon v(1) and treat them as

perturbations. In other words, we expand the Hamiltonian again into

a low order term and perturbing term,

H = H(0) +H(1) (105)

where H is the same as in our original problem given by Eq.(14) and

the perturbing part is given by,

H(1) = −pxv(1)
x − pyv

(1)
y − pzv

(1)
z + Up (106)

where we have again dropped terms of second order (or higher) in J2.

In this case, the solution to the H-J equation is as given previously.

The nominal trajectory in the drifting frame is again given by Eqs.

(39) - (41) and the relationship between the epicyclic elements and

the canonical momenta and Cartesian position is the same as in Eqs.

(33) - (35). However, the additional equalitities relating the epicyclic

momenta to the Cartesian position and velocities (initial conditions)

must be modified due to the new definition of the canonical momenta

in the drifting frame (Eqs. (102)). The epicyclic elements are now given,

in terms of normalized positions and velocities, by:

α1 =
1
2
(ẋ + v(1)

x )2 + 2(ẏ + v(1)
y )2 +

9
2
x2 + 6x(ẏ + v(1)

y ) (107)

α2 =
1
2
(ż + v(1)

z )2 +
1
2
z2 (108)
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α3 = ẏ + 2x + v(1)
y (109)

The phase variables (β1, β2, β3) are found in a similar manner by sub-

stituting these expressions for (α1, α2, α3) into Eqs. (36) - (38). Note

also that the well-known constant of the motion in the traditional CW

problem (α3) has been modified to account for the drift of the reference

frame due to J2.

The subtlety in this approach comes in the interpretation of the

perturbed motion. The variation of the constants can still be found via

Hamilton’s equations on H(1) in Eq. (106). However, now the perturb-

ing Hamiltonian is velocity dependent (i.e., a function of the canonical

momenta). It is a theorem that for any velocity dependent perturba-

tions, the nominal trajectory is not osculating (Efroimsky and Gol-

dreich, 2003; Efroimsky and Goldreich, 2004). In other words, the

variational equations we will find for the epicyclic elements can still

be used to model the relative motion in the new drifting frame, but the

unperturbed elliptic trajectory given by Eqs. (39) - (41) is not tangent

to the perturbed, physical trajectory.

5.2.2. Variation of Parameters

Finally, we arrive at the derivation of the variational equations for the

epicyclic elements relative to the average drifting frame due to J2. First,
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by substituting for the various expressions in Eq. (106) we find the time

varying perturbing Hamiltonian (keeping terms only to second order in

the cartesian positions and velocities):

H(1) = −J2

8

(
R⊕
r̄

)2



−2 + 18 x− 42 x2 + 21 y2 + 21 z2

+(42y2 + 30z2 − 12 + 36x− 72x2) cos2(u) cos2(i)

+
(
12− 42y2 − 36x− 30z2 + 72x2

)
cos2(u)

−

 21z2 + 30 + 12py − 12pxy − 30x2

−6x + 9y2 + 12pyx

 cos2(i)

+ (6pzx− 12pxz + 6pz − 12yz) sin(2i) cos(u)

+ (6pyz − 6pzy − 12z + 48xz) sin(2i) sin(u)

+ (12y − 48xy) cos2(i) sin(2u) + (48x− 12y) sin(2u)


(110)

This perturbing Hamiltonian is used to find the equations of mo-

tion for the epicyclic elements via Hamilton’s equations (Eqs. (58) -

(60)). However, as we described in Section 4, the resulting differential

equations are nonlinear in the elements and rather cumbersome to

evaluate. Instead, we again convert from the epicyclic elements to the

modified elements and use the chain rule to find the resulting linear

first-order variational equations. As we did for the equatorial orbit, we

drop the homogeneous terms as second-order small and study only the
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inhomogeneous part of the variational equations due to J2,

ȧ1 =
3
32

J2

(
R⊕
r̄

)2



− cos(2i− u− u0) + 7 cos(3u− u0 + 2i)

−14 cos(3u− u0) + 8 cos(u− u0 − 2i)

+16 cos(u− u0) + 7 cos(3u− u0 − 2i)

+8 cos(u− u0 + 2i) + 2 cos(u + u0)

− cos(u + u0 + 2i)


(111)

ḃ1 = − 3
32

J2

(
R⊕
r̄

)2



sin(u + u0 + 2i) + sin(u + u0 − 2i)

−14 sin(3u− u0) + 7 sin(3u− u0 + 2i)

+7 sin(3u− u0 − 2i)

+8 sin(u− u0 − 2i) + 8 sin(u− u0 + 2i)

−2 sin(u + u0) + 16 sin(u− u0)


(112)

ȧ2 = −3
8
J2

(
R⊕
r̄

)2

(cos(2u− u0 − 2i)− cos(2u− u0 + 2i)) (113)

ḃ2 = −3
8
J2

(
R⊕
r̄

)2

(sin(2u− u0 + 2i)− sin(2u− u0 − 2i)) (114)

ȧ3 =
3
8
J2

(
R⊕
r̄

)2

(sin(2u− 2i) + sin(2u + 2i)− 2 sin(2u)) (115)

q̇3 = −3a3 +
9
8
J2

(
R⊕
r̄

)2

 2 cos(2u)− cos(2u− 2i)

− cos(2u + 2i)− 2 cos(2i)− 2

 (116)

These equations can easily be solved by quadrature. The motion of

the satellite in the relative frame is then found by substituting the solu-

tions for the epicyclic elements variations (in terms of arbitrary initial

conditions (a1(u0), b1(u0), a2(u0), b2(u0), a3(u0), q3(u0)) into equations

(55)-(57).
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As in the equatorial orbit case, we can search for conditions of

bounded relative motion. Because of our choice of drifting reference

orbit, this is easily accomplished. By examining the equations for q3(u)

(or q̇3), we can solve for the initial condition on a3(u0) to eliminate the

drift term,

a3(u0) = −3
4
J2

(
R⊕
r̄

)2

 1 + cos(2i)− 1
2 cos(2u0)

+1
4 (cos(2i− 2u0) + cos(2i + 2u0))

 (117)

(Recall that in the unperturbed case, a3(u0) = 0 was the usual condi-

tion in the C-W equations to eliminate the drift term.)

With this condition on a3(u0), the perturbed equations for x(u),

y(u), and z(u) become,

x(u) = a1(u0) sin(u− u0) + b1(u0) cos(u− u0)

+
1
32

J2

(
R⊕
r̄

)2



4 cos(2u)− 2 cos(2u + 2i)− 2 cos(2u− 2i)

−48 cos(u− u0) + 6 cos(u + u0)

−24 cos(u− u0 − 2i)− 24 cos(u− u0 + 2i)

−3 cos(u + u0 − 2i)− 3 cos(u + u0 + 2i)

+14 cos(u− 3u0)

−7 cos(u− 3u0 + 2i)− 7 cos(u− 3u0 − 3i)



(118)

y(u) = q3(u0) + 2a1(u0) cos(u− u0)− 2b1(u0) sin(u− u0)
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+
1
32

J2

(
R⊕
r̄

)2



2 sin(2u)− sin(2u− 2i)− sin(2u + 2i)

+96 sin(u− u0)− 12 sin(u + u0)− 18 sin(2u0)

+9 sin(2u0 + 2i) + 9 sin(2u0 − 2i)

+48 sin(u− u0 − 2i) + 48 sin(u− u0 + 2i)

+6 sin(u + u0 − 2i) + 6 sin(u + u0 + 2i)

−28 sin(u− 3u0)

+14 sin(u− 3u0 + 2i) + 14 sin(u− 3u0 − 2i)



(119)

z(u) = a2(u0) sin(u− u0) + b2(u0) cos(u− u0)

+
3
16

J2

(
R⊕
r̄

)2

 cos(u + 2i)− cos(u− 2i)

+ cos(u− 2u0 + 2i)− cos(u− 2u0 − 2i)

 (120)

To verify, we again examine the case of i = 0. By selecting all of the

initial conditions to be zero (a1(u0) = a2(u0) = b2(u0) = q3(u0) = 0)

except for b1(u0) = 3J2

(
R⊕
r̄

)2
, the satellite remains at the origin of the

new, drifting relative motion frame. This is again the known circular

orbit equilibrium solution at the equator; however, for a given radius

of the orbit, r̄, the orbit rate is no longer the Keplerian n̄ but instead

is given by Ω̇ + u̇ = n̄

[
1 + 3

4J2

(
R⊕
r̄

)2
]
, where, again, n̄ =

√
µ/r̄3.

5.2.3. Simulation Results

Figures 2 and 3 show a small relative motion trajectory about the

origin of a J2 drifting, Euler-Hill like reference frame at 500 km altitude

and 30 degree inclination. The initial conditions were chosen so that
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the orbit does not drift. A J2 invariant formation could be formed by

modifying u0 for each of the satellites and thus distributing them about

the trajectory. Note that units are in fractions of the orbit radius (R⊕+

500 km). To verify, a full, nonlinear inertial simulation was performed

with the same initial conditions and compared in the rotating frame.

Figure 4 shows the nonlinear trajectory and the linear one over 10

orbits. Errors are on the order of 1 km, with a slight drift in the y-

direction as would be expected from the linear approximation (the C-W

equations in the absence of any perturbation show a drift of roughly

the same magnitude as the linear no-drift condition is not the same as

the energy matching condition). Of note is that a formation using these

equations would drift together due to this effect.

Figures 5 and 6 show a similar trajectory for a high inclination

reference orbit of 85 degrees.

6. Conclusions

This paper presented a new Hamiltonian framework for the analysis

of spacecraft relative motion in terms of canonical relative motion el-

ements we termed “epicyclic” elements. These epicyclic elements are

constants of the linearized motion describing the relative satellite tra-
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jectory, similar to the orbital elements as constants describing motion

in the two-body problem. These elements are easily expressed in terms

of the cartesian or polar initial conditions of the satellite motion. The

value of this Hamiltonian approach is in the straightforward variation

of parameters equations describing the change of the elements over time

in the presence of perturbations or control. All equations are expressed

entirely in the relative motion frame of reference, where most measure-

ments are taken and where trajectory specification is most natural.

While there are many applications of this approach, in this paper we

calculated the effect of just one example perturbation—the J2 Earth

zonal harmonic. We were able to find very simple expressions for the

relative motion and straightforward conditions for J2–invariant orbits.

Appendix

The Hamilton-Jacobi equation is a methodology for solving integrable

dynamics problems via canonical transformations. We briefly describe

the derivation here utilizing Goldstein (1980). Given a set of generalized

coordinates (q, q̇) and a Lagrangian L, the canonical momenta are found

via:

pi =
∂L
∂qi
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The Hamiltonian is then given by the Legendre transformation:

H(q, p, t) = q̇ipi − L(q, q̇, t)

The n second order equations of motion for the problem can then be

alternatively written as 2n first order equations for q̇ and ṗ (Hamilton’s

equations):

q̇i =
∂H
∂pi

ṗi = −∂H
∂qi

These canonical coordinates are not unique. If we consider a trans-

formation of the phase space to a new set of coordinates Qi(q, p, t) and

Pi(q, p, t), we can ask for the class of transformations for which the new

coordinates also satisfy Hamilton’s equations on the new Hamiltonian

K(Q,P, t) = H(q(Q,P, ), p(Q,P ), t). Such a transformation is called

canonical. A common approach to the transformation is via generating

functions. For some function F2(q, P, t), a transformation is canonical

provided that:

pi =
∂F2

∂qi

Qi =
∂F2

∂Pi

K = H+
∂F2

∂t

The Hamilton-Jacobi problem comes from asking for the special

canonical transformations for which K ≡ 0 and thus the new canonical
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coordinates are constants of the motion. If such a transformation can

be found, the equations of motion have been solved. The generating

function for such a transformation is called Hamilton’s Principle Func-

tion, S(q, α, t), where αi is the new constant canonical momentum, Pi.

This generating function can be found by setting the expression for K

equal to zero while substituting from the transformation equations:

H
(

q1, . . . , qn;
∂S

∂q1
, . . . ,

∂S

∂qn
; t

)
+

∂S

∂t
= 0

This is known as the Hamilton-Jacobi equation for S. Note that in the

special case where H is independent of time it is a constant of the mo-

tion and can be set equal to α1. In this case, the HJ equation separates

and we write Hamilton’s principle function in terms of W (qi, αi), called

Hamilton’s characteristic function, and time:

S(q1, . . . , qn;α1, . . . , αn; t) = W (q1, . . . , qn;α1, . . . , αn)− α1t

The Hamilton-Jacobi equation for W then reduces to:

H
(

q1, . . . , qn;
∂W

∂q1
, . . . ,

∂W

∂qn

)
= α1
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Figure 1. Relative motion rotating Euler-Hill reference frame
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Figure 2. Relative Motion Orbit with J2 Perturbations in 30 degree inclination,

drifting reference orbit
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Figure 3. X-Y Projection of Relative Motion Orbit with J2 Perturbations in 30

degree inclination, drifting reference orbit
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Figure 4. A comparison of the X-Y projection of the Relative Motion Orbit using

the linearized, canonical equations and a full, inertial, nonlinear simulation over 10

orbits.
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Figure 5. Relative Motion Orbit with J2 Perturbations in 85 degree inclination,

drifting reference orbit
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Figure 6. X-Y Projection of Relative Motion Orbit with J2 Perturbations in 85

degree inclination, drifting reference orbit
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