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1. Introduction 
Frequently in parametric regression models in survival 

analysis, there are covariates whose values are related to 
the lifetime under study. The main objective in such cases 
is, usually, to estimate the relationship between the 
lifetime and the explanatory variables and to test its 
significance. For example; the length of time it takes an 
employee to retire from a given job may be affected by 
variables such as the employee’s age, experience, 
education,...etc. Another example of this situation has 
been discussed by [10], in which survival times for 65 
multiple myeloma patients were recorded and related to a 
number of factors, such as the level of hemoglobin in the 
blood, the white blood cells count at diagnosis, sex, and 
age. The main problem in this type of studies is to identify 
which concomitant variables were strongly related to 
survival time. To examine the relationship between the 
lifetime and the concomitant variables we will use a 
regression model in which lifetime has a distribution that 
depends on concomitant variables. This involves 
specifying a model for the distribution of 𝑇𝑇 , given x 
(which may have some censored observation), where 𝑇𝑇 
represents lifetime and x is a vector of regressor variables 
for an individual. 

In the last decade, a new class of models has been 
proposed for use with this type of data, that the covariates 
whose values are related to the lifetime. [17] proposed a 
location-scale regression model based on the logarithm of 
an extended Weibull distribution which has the ability to 
deal with bathtub-shaped failure rate functions. [9] 
showed that the log-exponentiated Weibull regression 
model for interval-censored data represented a parametric 
family of models that include other regression models that 
are broadly used in lifetime data analysis. [13] proposed a 

log-β-Birnbaum–Saunders regression model that can be 
applied to censored data and be used more effectively in 
survival analysis. However, there are few practical 
regression models of this type of failure rate function. A 
log-beta log-logistic regression model (which we wish has 
a wide use in the lifetime) is proposed. After modeling, it 
is important to check assumptions in the model and to 
conduct a robustness study to detect influential or extreme 
observations that can distort the results of the analysis. So 
this paper performs a log-beta log-logistic regression 
model by various methods. 

The paper is organized as follows. In sec. 2 we display 
the review of regression failure models. Background of 
the log-beta log-logistic regression model in sec.3. 
Sensitivity analysis in sec 4. Curvature calculations for 
log-beta log-logistic regression model are introduced in 
sec 5. We also discuss some simulations studies and a real 
data set is analyzed in sec. 6.  

2. Review 
[7] gave an early discussion of parametric regression 

models in survival analysis where there are covariates 
whose values are related to the lifetime; they present a 
method of estimating survival distribution when the 
survival times are assumed to follow simple exponential 
distributions, with a different parameter for each patient. 
The parameter associated with each patient’s distribution 
is functionally related to the concomitant variates. [18] 
generalized the work of [7]. They extended the statistical 
model to permit maximum likelihood (ML) estimation of 
the parameters of the linear regression where not all 
patients in a follow-up study have died by the end of the 
study. [10,11,15] have discussed this approach and 
introduced exponential, Weibull, and Gamma regression 
model in two cases, complete and censored data. Recently, 
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this approach was discussed by many authors, see for 
example, [1,5,8,12,14,16]. They introduced exponential 
Weibull, log-Burr XII, log-modified Weibull, the log-
generalized inverse Weibull, the log-beta exponentiated 
Weibull, and log-beta log-logistic regression model. 

3. Background of the Log-beta Log-logistic 
(LBLLogistic) Regression Model 

The beta log-logistic distribution, with positive 
parameters a, b, α and δ, BLLog(a; b; α; δ), considers that 
lifetime T has a density function given by 
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Where a, b, α and δ > 0 is a shape parameter, and α > 0 is 
a scale parameter. The survival function corresponding to 
random variable T with BLLog density is given by 
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Recently, [12] suggested a regression model based on 
the BLLog distribution described in (1). This model is so-
called the LBLLogistic regression model. The 
LBLLogistic regression model is represented by 

 ' ,  1,  . . . log( ,  ,)i i i ix iy z nt β σ == = +  (3) 

where yi is the response variable, 𝒙𝒙𝑖𝑖′  = (xi1, xi2, . . ., xip) is 
the vector of explanatory variable, β = (β1, . . ., βp)', σ > 0 . 
Note that Y = log(T ) follows the BLLog distribution. The 
density function of Y can be written as 
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where a, b, σ > 0, −∞ < μ < ∞, and -∞ < y < ∞. 
Further, after suitable transformation, we define the 

standard random variable Z = (Y −µ)/σ with density 
function 
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The survival function takes the form 
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and the associated hazard rate function takes the form 
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in terms of t, model (3) is referred to as a log-location 
scale model.  

Consider a sample (y1,x1),…,(yn,xn) of n independent 
observations, where each random response is defined by 
yi= min{log(ti), log(ci)}. We assume noninformative censoring 
such that the observed lifetimes and censoring times are 
independent. Let ℱ and 𝒞𝒞 be the sets of indices of individuals 
for which yi is the log lifetime and log-censoring, 
respectively. The log-likelihood function for the vector of 
parameters θ=(a,b,δ,βT)T from model (3) has the form 
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where f(yi) is the density function (4) and S(yi) is the 
survival function (6) of Yi. The log-likelihood function for 
θ reduces to  
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where r is the number of uncensored observations (failures) 
and zi =( yi - xT

i β)/ σ. The MLE 𝜽𝜽� of θ can be obtained by 
maximizing the log-likelihood function (8).  

Let 𝐼𝐼(𝜽𝜽) = 𝐸𝐸�𝐿̈𝐿(𝜽𝜽)� is the observed information matrix 
and the asymptotic covariance matrix 𝑰𝑰−1(𝜽𝜽) of 𝜃𝜃� can be 
approximated by the inverse of the (p+3)(p+3) observed 
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4. Sensitivity Analysis 
After fitting a model, it is important to check the 

assumptions of the model to detect possible extreme or 
influential observations. So we will discuss the influence 
diagnostic based on case deletion, in which the influence 
of the ith observation on the parameter estimates is 
evaluated by removing it from the analysis. We will 
display that by the following measures.  

4.1. Generalized Cook Distance  
[2] has proposed measuring the "distance" between the 

𝜃𝜃� and the corresponding 𝜃𝜃�(−𝑖𝑖)by calculating the F statistic 
for the "hypothesis" that 𝜃𝜃� = 𝜃𝜃�(−𝑖𝑖) . This statistic is 
recalculated for each observation i=1,…,n. The resulting 
values should not literally be interpreted as F tests. The 
suggested measure of the distance of 𝜃𝜃�(−𝑖𝑖) from 𝜃𝜃� is  

 ( ) ( )( ) ( ) ( )( ) ( )
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4.2. Likelihood Displacement 
Measures of the influence of the ith observation on the 

ML estimate 𝜃𝜃� , can be based on the sample influence 
curve 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 ∝ 𝜃𝜃� − 𝜃𝜃�(−𝑖𝑖) , where 𝜃𝜃�(−𝑖𝑖) denotes the ML 
estimate of 𝜃𝜃 computed without the ith observation. While 
this idea is straightforward, it may be computationally 
expensive to implement since n+1 ML estimates are 
needed, each of which may require several iterations. [4] 
derived the general measure from the use of contours of 
the log likelihood function to order observations based on 
influence. If 𝐿𝐿(𝜃𝜃)  be the log likelihood based on the 
complete data, a likelihood distance 𝐿𝐿𝐿𝐿𝑖𝑖(𝜃𝜃) defined as 
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Where 𝑞𝑞 is the dimension of 𝜃𝜃. 

4.3. Local Influence Approach  
Removing observations from the analysis suddenly lead 

to all information on a single data point is deleted 
suddenly, and therefore, it is difficult to determine 
whether that data point has some influence on a specific 
aspect of the model. We can find a solution for this 
problem by using local influence approach in which one 
can investigate how the results of an analysis change 
under small perturbations in the model.  

The basic idea in influence analysis -as presented by 
[4]- is “ to introduce small perturbations in the problem 
formulation, and then monitor how the perturbations 
change the outcome of the analysis. The important 
questions in designing methods for influence analysis are 
the choices of the perturbation scheme, the particular 
aspect of an analysis to monitor, and the method of 
measurement”.  

The numerous influence diagnostics that depend on 
case-deletion can be regarded as global measures since 
they are designed to measure total change at various 
corners of Ω =(0,1)n, where n is the sample size. 

[3] indicated that; single case-deletion diagnostics can 
be computationally intensive and suffer from a form of 
masking, and group deletion methods are not easily 

implemented or well understood. So [3] developed a 
methodology that is relatively easy to use for the 
identification of groups of observations that may require 
special attention. It summarized as follows: 

Let 𝜃𝜃 be a p×1 vector of unknown parameters, and 𝜃𝜃� be 
the ML estimate of 𝜃𝜃  obtained by maximizing 𝐿𝐿(𝜃𝜃) , 
where 𝐿𝐿(𝜃𝜃) represents the log-likelihood for a postulated 
model and observed data (unperturbed log-likelihood). 
Introduce some perturbations into the model via the m×1 
vector ω ∈  Ω, where ω represents the set of relevant 
perturbations, and let 𝐿𝐿(𝜃𝜃|𝜔𝜔) denotes the log likelihood 
corresponding to the perturbed model, and let 𝜃𝜃�𝜔𝜔  denote 
ML estimate under  𝐿𝐿(𝜃𝜃|𝜔𝜔) . Let d be a fixed nonzero 
direction of unit length in Rq. Let Δ is (p+3)×n matrix that 
depends on the perturbation scheme and whose ijth 
element  
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The normal curvature for 𝜃𝜃  at the direction d for the 
postulated model is given by 

 ( ) 1' '( ) 2 | Δ Δ | .dC d L dθ θ −=   (11) 

The extreme Cmax=max Cd and Cmin=min Cd are two 
possible option. max Cd is the largest eigenvalue of the 
matrix 𝐁𝐁 = Δ′𝐿̈𝐿(𝜃𝜃)−1 Δ, and 𝒅𝒅𝑚𝑚𝑚𝑚𝑚𝑚  is the corresponding 
eigenvector. The index plot of 𝒅𝒅𝑚𝑚𝑚𝑚𝑚𝑚  for matrix 𝐁𝐁  may 
indicate how to perturb the postulated model to obtain the 
greatest local change in the likelihood displacement; if the 
ith element of 𝒅𝒅𝑚𝑚𝑚𝑚𝑚𝑚  is found to be relatively large, this 
indicates that perturbations in the weight ωi of the ith 
observation may lead to substantial changes in the results 
of the analysis and thus that ωi is relatively influential. It 
is important to investigate the ith observation to find the 
specific observation of the sensitivity.  

5. Curvature Calculations for Log-beta 
Log-logistic Regression Model 

As we mentioned, [3] proposed a general framework to 
detect the influence of observations to evaluate how 
sensitive the analysis is to small perturbations that are 
agitated within the model. Some authors have investigated 
the evaluation of local influences in survival analysis 
models: for example [6] adapted the method of local 
influence to regression analysis with censoring; [9] 
studied the problem of evaluating local influences in the 
log- exponentiated Weibull regression model with 
censored data. We introduce a similar methodology to 
detect influential data points in the LBLLogistic 
regression model for interval-censored data. 

Next, the perturbation scheme will be calculate, the matrix 
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considering the model defined in (3) and its log-likelihood 
function given by (8). Let the vector of weights ω=( ω1, 
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ω2,…, ωn)’. Case-weight perturbation for the log-
likelihood function takes the form 
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where 0≤ωi≤1 and ω0 =(1,…,1)’. let us denote Δ =( Δ 1,…, 
Δ p+3)’ . ℱ and 𝒞𝒞 be the sets of indices of individuals for 
which yi is the log lifetime and log-censoring respectively. 
Then, the elements of vector 𝛥𝛥1 take the form 
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On the other hand, the elements of the vector 𝛥𝛥2 can be 
shown to be given by 
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The elements of the vector 𝛥𝛥3 can be shown to be given by 

 

( )
[ ]

( )( ) ( )( )
( )

( )

1
1

ˆˆ 1 1
3

ˆ

ˆˆ ˆexp( )
ˆ ˆˆ if ,

ˆ1 exp( )

ˆ ˆ1

ˆ ˆ 1 1
ˆ ˆ1 exp( )

if .ˆ ˆˆ ˆ( , )[1 ( , )]

i i
i

i

a b
i ii

i i

i

G zi

a b z z
r az i

z

G z G z

z G z
z

i
B a b I a b

σ

σ

−
−

− −

  +  − + − ∈  
+   


  −∆ =          −   − −  

 
 
 

 −




−




∈





 

The elements of the vector 𝛥𝛥j , for j=4,…,p+3, may be 
expressed as 
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6. Application 
An application of the result will be provided by using 

simulated and real data. The required numerical 
evaluations were applied using Mathcad and Mathematica 
programs. 

6.1. Simulations Study (1) 
In order to assess the performance of estimating the 

parameters of the LBLLogistic regression model, various 
simulation studies are performed for different settings of 
sample sizes, censoring percentages, and parameter values. 
The lifetimes denoted by T1,...,Tn were generated from the 
BLLog distribution given in (1). The following 
transformation was made 𝑦𝑦𝑖𝑖 = log(𝑇𝑇𝑖𝑖) 𝜎𝜎 = 1

𝛿𝛿
, and 

𝜇𝜇 = log(𝛼𝛼)  where 𝑦𝑦𝑖𝑖  =  µ𝑖𝑖 + 𝜎𝜎𝑧𝑧𝑖𝑖  and µ𝑖𝑖  =  𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 . 
The values 𝛽𝛽0 = 0.3 and 𝛽𝛽1 = −0.23 were chosen for this 
study. The fixed components 𝜇𝜇𝑖𝑖  were generated using 𝑥𝑥𝑖𝑖  
from gamma distribution with parameters (0.25, 35). The 
stochastic components 𝑧𝑧𝑖𝑖  representing the errors in the 
model was generated from (5) for different values of a and 
b. The censoring times denoted by C1,...,Cn were 
generated from a uniform distribution(0, 𝜗𝜗), where 𝜗𝜗 was 
chosen to achieve censoring percentages of 0 or 0.10 or 
0.30. The lifetimes considered in each fit were calculated 
as min{Ci,Ti}. We generated the model for different 
values of n= 20, 50 and 100, different values of σ=0.8, 1.8, 
and 5, different values of a= 0.5, 1.08, 1.8, 3, 5, 8, and 10, 
and different values of b=0.5, 0.8, 1, 1.1, 1.8, 2, 4, and 5. 
For each sample a LBLLogistic regression model is fitted 
by estimating the corresponding parameter value using 
maximum likelihood method. From these one thousand, 
parameter estimates, bias, the mean square error (MSE), 
and relative root MSE were calculated. The results are 
summrize in Table 1. 

It may be noticed that:- 
- we have small bias and MSE when a> b. 
- we have very big bias and MSE when a< b. 
- The bias and MSE decreased when n increased. 
-The bias and MSE increased when the censoring 

percentage increased. 

6.2. Simulations Study (2) 
In order to investigate the form of the empirical 

distribution of the martingale residuals for different 
settings of n and censoring percentages, several simulation 
studies are performed for which the results are displayed 
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graphically in Figure 1 – Figure 6. We assumed sample 
sizes 30, 50, and 100. The log-lifetime denoted by 
log(T1),...,log(Tn) were generated from the LBLLogistic 
regression model given in (3), for a=10, b=1, different 
value of σ=0.8, 1.8 and 5, 𝛽𝛽0 =0.3 and 𝛽𝛽1 =-0.23 with xi 
generated from a gamma distribution with parameters (35, 
0.25). The censoring times denoted by C1,...,Cn were 
generated from uniform distribution(0,  𝜗𝜗 ), where 𝜗𝜗  was 

adjusted until the censoing percentages 0, 10, and 30% be 
reached. The lifetimes considered in each fit were 
calculated as 𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶𝑖𝑖 ,𝑇𝑇𝑖𝑖} . For each setting of n. we 
generate 1000 sample under the LBLLogistic regression 
model (3). 

For each fit, the martingale residuals were calculated 
and stored. Then, the residuals were estimated and plotted 
in probability plots. 

Table 1. The estimates, bias, MSE, and relative root MSE for log-beta log-logistic regression model 
σ value a value b value n % Censoring Estimate Bias MSE Relative root MSE 

0.8 

5 

0.5 

20 

0 -0.331 -0.101 0.018 -0.663 

10 -0.331 -0.101 0.018 -0.667 

30 -0.335 -0.105 0.024 -0.776 

50 

0 -0.323 -0.093 0.015 -0.62 

10 -0.324 -0.094 0.015 -0.622 

30 -0.324 -0.094 0.016 -0.623 

100 

0 -0.326 -0.096 0.016 -0.631 

10 -0.326 -0.096 0.016 -0.631 

30 -0.326 -0.096 0.016 -0.633 

1 

20 

0 -1.142 -0.912 188.175 -68.588 

10 -1.232 -1.002 68.853 -41.489 

30 -1.429 -1.199 241.84 -77.756 

50 

0 -0.584 -0.354 2.99 -8.645 

10 -0.64 -0.41 8.237 -14.35 

30 -0.538 -0.308 5.709 -11.947 

100 

0 -0.574 -0.344 12.618 -17.761 

10 -0.469 -0.239 0.334 -2.891 

30 -0.836 -0.606 9.351 -15.29 

8 

0.5 

20 

0 -0.312 -0.082 0.013 -0.566 

10 -0.313 -0.083 0.013 -0.568 

30 -0.313 -0.083 0.013 -0.575 

50 

0 -0.305 -0.075 0.011 -0.525 

10 -0.305 -0.075 0.011 -0.526 

30 -0.305 -0.075 0.011 -0.527 

100 

0 -0.307 -0.077 0.012 -0.537 

10 -0.307 -0.077 0.012 -0.537 

30 -0.307 -0.077 0.012 -0.538 

0.8 

20 

0 -0.343 -0.113 0.022 -0.745 

10 -0.344 -0.114 0.025 -0.788 

30 -0.361 -0.131 0.147 -1.92 

50 

0 -0.344 -0.114 0.021 -0.722 

10 -0.344 -0.114 0.021 -0.724 

30 -0.345 -0.115 0.022 -0.742 

100 

0 -0.348 -0.118 0.022 -0.742 
10 -0.348 -0.118 0.022 -0.742 

30 -0.348 -0.118 0.022 -0.745 

1.8 5 0.5 

20 

0 -0.257 -0.027 0.003347 -0.289 

10 -0.257 -0.027 0.00338 -0.291 

30 -0.258 -0.028 0.003462 -0.294 

50 

0 -0.254 -0.024 0.002978 -0.273 

10 -0.254 -0.024 0.002993 -0.274 

30 -0.255 -0.025 0.003024 -0.275 

100 

0 -0.256 -0.026 0.003133 -0.28 

10 -0.256 -0.026 0.003136 -0.28 

30 -0.256 -0.026 0.003145 -0.28 



 American Journal of Applied Mathematics and Statistics 79 

 

1.8 

20 

0 -0.429 -0.199 1.046 -5.113 

10 -0.438 -0.208 1.182 -5.437 

30 -0.475 -0.245 1.31 -5.723 

50 

0 -0.341 -0.111 0.051 -1.124 

10 -0.342 -0.112 0.344 -2.932 

30 -0.388 -0.158 0.859 -4.633 

100 

0 -0.32 -0.09 0.028 -0.839 

10 -0.32 -0.09 0.043 -1.036 

30 -0.319 -0.089 0.042 -1.027 

10 

20 

0 -0.284 -0.054 0.035 -0.93 

10 -0.278 -0.048 0.07 -1.327 

30 -0.28 -0.05 0.065 -1.275 

50 

0 -0.262 -0.032 0.081 -1.425 

10 -0.282 -0.052 0.016 -0.633 

30 -0.274 -0.044 0.054 -1.159 

100 

0 -0.266 -0.036 0.024 -0.782 

10 -0.274 -0.044 0.014 -0.587 

30 -0.271 -0.041 0.033 -0.907 

4 

20 

0 -0.443 -0.213 0.22 -2.343 

10 -0.471 -0.241 0.325 -2.849 

30 -0.467 -0.237 0.285 -2.669 

50 

0 -0.383 -0.153 0.075 -1.365 

10 -0.399 -0.169 0.129 -1.795 

30 -0.405 -0.175 0.146 -1.912 

100 

0 -0.358 -0.128 0.039 -0.989 

10 -0.367 -0.137 0.035 -0.94 

30 -0.37 -0.14 0.036 -0.952 

5 

5 

0.5 

20 

0 -0.22 0.01 0.0004115 -0.101 

10 -0.22 0.01 0.0004152 -0.102 

30 -0.22 0.01 0.0004381 -0.105 

50 

0 -0.22 0.01 0.0004107 -0.101 

10 -0.22 0.01 0.0004137 -0.102 

30 -0.22 0.01 0.000418 -0.102 

100 

0 -0.22 0.01 0.0004006 -0.1 

10 -0.22 0.01 0.0004008 -0.1 

30 -0.22 0.01 0.0004025 -0.1 

2 

20 

0 -0.259 -0.029 0.011 -0.533 

10 -0.263 -0.033 0.006939 -0.416 

30 -0.259 -0.029 0.011 -0.513 

50 

0 -0.255 -0.025 0.007557 -0.435 

10 -0.25 -0.02 0.012 -0.558 

30 -0.255 -0.025 0.006331 -0.398 

100 

0 -0.255 -0.025 0.007656 -0.437 

10 -0.251 -0.021 0.008225 -0.453 

30 -0.248 -0.018 0.009205 -0.48 

10 0.5 

20 

0 -0.216 0.014 0.0002709 -0.082 

10 -0.216 0.014 0.0002737 -0.083 

30 -0.217 0.013 0.0002791 -0.084 

50 

0 -0.216 0.014 0.0002674 -0.082 

10 -0.217 0.013 0.0002816 -0.084 

30 -0.217 0.013 0.0002817 -0.084 

100 

0 -0.216 0.014 0.0002632 -0.081 

10 -0.216 0.014 0.0002639 -0.081 

30 -0.216 0.014 0.0002626 -0.081 
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4 

20 

0 -0.262 -0.032 0.004885 -0.349 

10 -0.263 -0.033 0.004936 -0.351 

30 -0.265 -0.035 0.004906 -0.35 

50 

0 -0.257 -0.027 0.005664 -0.376 

10 -0.259 -0.029 0.00562 -0.375 

30 -0.26 -0.03 0.005478 -0.37 

100 

0 -0.248 -0.018 0.00652 -0.404 

10 -0.25 -0.02 0.006257 -0.396 

30 -0.252 -0.022 0.006029 -0.388 

0.8 5 1.1 

20 

0 -0.915 0.685 14.546 -16.582 

10 -1.368 1.138 149.088 -53.088 

30 -1.189 0.959 30.939 -24.184 

50 

0 -1.335 1.105 22.942 -20.825 

10 -1.754 1.524 201.208 -61.673 

30 -1.354 1.124 49.203 -30.498 

100 

0 -2.828 2.598 95.105 -42.401 

10 -1.603 1.373 28.16 -23.072 

30 -2.112 1.882 285.445 -73.457 

0.8 0.5 5 

20 

0 -8.355 8.125 7.25*103 -370.205 

10 -5.182 4.952 3.99*103 -274.633 

30 -10.584 10.354 8.187*103 -393.404 

50 

0 -3.965 3.735 1.369*103 -160.882 

10 -5.361 5.131 2.945*103 -235.934 

30 -4.735 4.505 1.483*103 -167.456 

100 

0 -4.428 4.198 2.119*103 -200.13 

10 -4.45 4.22 1.311*103 -157.45 

30 -5.624 5.394 1.604*103 -174.153 

1.8 1.08 1.8 

20 

0 -36.862 -36.632 1.645*104 -641.3 

10 -40.343 -40.113 2.394*104 -773.667 

30 -40.281 -40.051 1.581*104 -628.621 

50 

0 -21.115 -20.885 9.726*104 -493.107 

10 -28.244 -28.014 1.584*104 -629.241 

30 -25.817 -25.587 1.195*104 -546.508 

100 

0 -10.396 -10.166 2.084*103 -228.274 

10 -14.602 -14.372 4.343*103 -329.503 

30 -17.862 -17.632 8.29*103 -455.256 

1.8 1.8 

5 

20 

0 -9.282 9.052 1.854*103 -187.186 

10 -11.44 11.21 4.664*103 -296.933 

30 -6.952 6.722 1.571*103 -172.321 

50 

0 -10.037 9.807 3.212*103 -246.401 

10 -15.685 15.455 9.225*103 -417.588 

30 -14.92 14.69 4.778*103 -300.528 

100 

0 -13.792 13.562 4.265*103 -283.956 

10 -11.754 11.524 3.511*103 -257.626 

30 -15.974 15.744 7.918*103 -386.878 

5 3 

20 

0 -29.746 29.516 2.146*104 -636.909 

10 -28.953 28.723 1.481*104 -529.057 

30 -22.493 22.263 5.662*103 -327.168 

50 

0 -36.334 36.104 1.856*104 -592.372 

10 -39.978 39.748 2.572*104 -697.278 

30 -38.532 38.302 2.388*104 -671.886 

100 

0 -67.894 67.664 8.567*104 -1.273*103 

10 -53.165 52.935 3.637*104 -829.156 

30 -42.381 42.151 2.305*104 -660.081 
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Figure 1. Normal probability plots for martingale residuals (𝑟𝑟𝑀𝑀𝑖𝑖) . Sample sizes n=30, 50 and 100, percentage of right-censored= 0, 10 and 30, σ=0.8 

 
Figure 2. Histogram and Smooth curve plots for martingale residuals(𝐫𝐫𝐌𝐌𝐢𝐢) .Sample sizes n=30, 50 and 100, percentage of right-censored= 0, 10 and 30, 
σ=0.8 
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Figure 3. Normal probability plots for martingale residual (𝑟𝑟𝑀𝑀𝑖𝑖). Sample sizes n=30, 50 and 100, percentage of right-censored=10, 30 and 50, σ=1.8 

 
Figure 4. Histogram and Smooth curve plots for martingale residuals (rMi ) . Sample sizes n=30, 50 and 100, percentage of right-censored=10, 30 and 
50, σ=1.8 
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Figure 5. Normal probability plots for martingale residuals (rMi ) . Sample sizes n=30, 50 and 100, percentage of right-censored=10, 30 and 50, σ=5 

 
Figure 6. Histogram and Smooth curve plots for martingale residuals (rMi ) . Sample sizes n=30, 50 and 100, percentage of right-censored=10, 30 and 
50, σ=5 



84 American Journal of Applied Mathematics and Statistics  

 

From Figure 1 – Figure 6 we can extract the following 
interpretations; 

- We can observe that the empirical distribution of the 
martingale residuals presents agreement with the normal 
distribution. 

- As the sample size increased, the empirical 
distribution of the martingale residuals seems to present 
the best agreement with the normal distribution. 

- As the 1/σ increasing, the empirical distribution of the 
martingale residuals seems to present the best agreement 
with the normal distribution. 

6.3. Application: Myeloma Data 
[12] used the data set given in [10] for the fit 

LBLLogistic regression model. The aim of the recent 
study is to study the performance of the LBLLogistic 
regression model. We use Mathcad and Mathematica to 
compute Case-deletion measures 𝐺𝐺𝐺𝐺𝑖𝑖(𝜃𝜃)  and 𝐿𝐿𝐿𝐿𝑖𝑖(𝜃𝜃) 
defined in (9) and (10). The results of such influence 
measure index plots are displayed in Figure 7 and Figure 8. 
These plots show that the cases 29, 40, 44, and 48 are 
possible influential observations. 

 
Figure 7. the index plot of 𝐺𝐺𝐺𝐺𝑖𝑖(𝜃𝜃) on the myeloma data 

 
Figure 8. The index plot of 𝐿𝐿𝐿𝐿𝑖𝑖(𝜃𝜃) on the myeloma data 

Impact of the detected influential observations 
The diagnostic analysis 𝐺𝐺𝐺𝐺𝑖𝑖(𝜃𝜃)  and 𝐿𝐿𝐿𝐿𝑖𝑖(𝜃𝜃)  detected 

the four influential observations (cases 29, 40, 44, and 48). 
The observation 29 corresponds to that one of the largest 
blood urea nitrogen measurement and age .The 
observation 40 corresponds to that one of the largest blood 

urea nitrogen measurement, age, and serum calcium 
measurement at diagnosis. The observation 44 
corresponds to that one of the lowest hemoglobin 
measurement and serum calcium measurement at 
diagnosis. The observation 48 corresponds to that one of 
the largest hemoglobin measurement at diagnosis. In order 
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to reveal the impact of these four observations on the 
parameter estimates, the model is refitted under some 
situations. First, each one of these four observations is 
individually eliminated. Second, we remove from the set 
“A” (original data set) the totality of potentially influential 
observations. Table 2 provides the relative change of each 

estimate (after the “set I ” of observations being removed), 
and the corresponding p-value. Table 2 provides the 
following sets: I1={#29}, I2={#40}, I3={#44}, I4={#48}, 
I5={#29, #40}, I6={#29, #44}, I7={#29, #48}, I8={#29, 
#40, #44}, I9={#29, #40, #48}, I10={ #40, #44, #48}, 
I11={#29, #40, #44, #48}. 

Table 2. Estimates and their p-value and Relative changes, for the corresponding set 
Dropping 𝜷𝜷�𝟎𝟎 𝜷𝜷�𝟏𝟏 𝜷𝜷�𝟐𝟐 𝜷𝜷�𝟑𝟑 𝜷𝜷�𝟒𝟒 𝜷𝜷�𝟓𝟓 
None 0.09 -0.396 0.085 0.00125 0.121 -0.039 
P-value (0.5) (0.02) (0.001) (0.5) (0.4) (0.1) 
RC 68.694 74.705 46.921 74.933 56.732 74.609 
Set I1 0.09 -0.395 0.085 0.001254 0.122 -0.039 
P-value (0.176) (0.43) (0.045) (0.214) (0.134) (0.4) 
RC 68.772 74.726 47.425 74.924 56.525 74.49 
Set I2 0.089 -0.394 0.085 0.001255 0.12 -0.039 
P-value (0.179) (0.429) (0.046) (0.214) (0.135) (0.399) 
RC 69.028 74.783 47.329 74.908 56.988 74.739 
Set I3 0.089 -0.395 0.084 0.001253 0.12 -0.039 
P-value (0.178) (0.43) (0.046) (0.214) (0.135) (0.4) 
RC 69.059 74.721 47.554 74.933 56.999 74.537 
Set I4 0.089 -0.395 0.086 0.001253 0.121 -0.039 
P-value (0.178) (0.43) (0.045) (0.214) (0.134) (0.4) 
RC 69.074 74.713 46.629 74.934 56.638 74.637 
Set I5 0.089 -0.394 0.084 0.001255 0.121 -0.039 
P-value (0.179) (0.429) (0.046) (0.214) (0.135) (0.399) 
RC 69.118 74.808 47.863 74.897 56.779 74.618 
Set I6 0.089 -0.395 0.084 0.001254 0.121 -0.039 
P-value (0.178) (0.43) (0.046) (0.214) (0.135) (0.4) 
RC 69.149 74.744 48.095 74.922 56.79 74.412 
Set I7 0.089 -0.395 0.085 0.001254 0.122 -0.039 
P-value (0.179) (0.43) (0.045) (0.214) (0.134) (0.4) 
RC 69.201 74.735 47.141 74.924 56.432 74.513 
Set I8 0.088 -0.394 0.083 0.001255 0.12 -0.039 
P-value (0.181) (0.429) (0.047) (0.214) (0.136) (0.399) 
RC 69.488 74.83 48.582 74.895 57.052 74.543 
Set I9 0.088 -0.394 0.084 0.001255 0.121 -0.039 
P-value (0.182) (0.429) (0.046) (0.214) (0.135) (0.398) 
RC 69.47 74.821 47.601 74.897 56.656 74.65 
Set I10 0.087 -0.394 0.084 0.001255 0.12 -0.039 
P-value (0.183) (0.428) (0.047) (0.214) (0.135) (0.398) 
RC 69.802 74.817 47.742 74.906 57.175 74.703 
Set I11 0.087 -0.393 0.083 0.001255 0.121 -0.039 
P-value (0.183) (0.428) (0.047) (0.214) (0.135) (0.398) 
RC 69.922 74.845 48.333 74.895 56.954 74.572 

The figures in Table 2 indicate that the estimates of the 
LBLLogistic regression model are not highly sensitive 
under deletion of the outstanding observations except for 
𝛽̂𝛽1  where it became nonsignificant. In general, the 
significance of the parameter estimates does not change 
after removing the sets. Hence, we do not have inferential 
changes after removing the observations handed out in the 
diagnostic plots. 

7. Concluding Remarks 
An appropriate matrix for assessing local influence is 

obtained. We have displayed various simulation studies to 
assess the performance of estimating the parameters of the 
LBLLogistic regression model and we noticed that; the 
bias, MSE, and relative root MSE decreased when a> b 
and when the sample size increased, and the bias, MSE 

and relative root MSE increased when a< b and when the 
sample size decreased. We also noticed that when the 
censoring percentages increase, the bias, MSE, and 
relative root MSE increase. Also, various simulation 
studies are performed to investigate the form of the 
empirical distribution of the martingale residual and we 
noticed that the martingale residual has shaped normal 
form. Finally, the authors have analyzed a data set as an 
application of influence diagnostics in the LBLLogistic 
regression model, although the diagnostic plots detected 
some possible influential observations, their deletion did 
not cause substantial changes in the results. 
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