Physical Science: Tables & Formulas

SI Base Units

Base Quantity	Unit Name	Unit Symbol	
Amount of substance	mole	Mol	
Electric current	ampere	A	
Length	meter	М	
Luminous intensity	candela	Cd	
Mass	kilogram	Kg	
Time	second	S	
Temperature	Kelvin	K	

SI Derived Units

Derived Quantity	Name (Symbol)	Expression in terms of other SI units	Expression in terms of SI base units
Area	Square meter (m^2)		
Volume	Cubic meter (m^3)		
Speed/velocity	Meter per second (m/s)		
Acceleration	Meter per second squared (m/s^2)		
Frequency	Hertz (Hz)		s ⁻¹
Force	Newton (N)		$m kg s^{-2}$
Pressure, stress	Pascal (Pa)	N [·] m ²	$m^{-1} \cdot kg \cdot s^{-2}$
Energy, work, quantity of heat	Joule (J)	N [·] m	$m^2 \cdot kg \cdot s^{-2}$
Power	Watt (W)	J/s	$m^2 \cdot kg \cdot s^{-3}$
Electric charge	Coulomb (C)		s · A
Electric potential difference	Volt (V)	W/A	$m^2 \cdot kg \cdot s^{-3} \cdot A^{-1}$
Electric resistance	Ohm (Ω)	V/A	$m^2 \cdot kg \cdot s^{-3} \cdot A^{-2}$

Prefixes used to designate multiples of a base unit

Prefix	Symbol	Meaning	Multiple of base unit	Scientific Notation
tera	Т	trillion	1, 000, 000, 000, 000	10^{12}
giga	G	billion	1,000,000,000	109
mega	М	Million	1,000,000	10 ⁶
kilo	k	Thousand	1,000	10^{3}
centi	с	One hundredth	1/100 or .01	10 ⁻²
milli	m	One thousandth	1/1000 or .001	10 ⁻³
micro	u	One millionth	1/1000000 or .000001	10 ⁻⁶
Nano	n	One billionth	1/1000000000 or .000000001	10 ⁻⁹
pico	р	One trillionth	1/100000000000 or.00000000001	10 ⁻¹²

In general, when converting from base units (m, l, g, etc) or derived units (m^2 , m^3 , m/s, Hz, N, J, V, etc) to a multiple greater (kilo, mega, giga, or tera) than the base or derived unit- then <u>divide</u> by the factor. For example: 10m = 10/1000km = 1/100 km = .01km.

When converting from base units or derived units to a multiple smaller (centi, milli, micro, nano) than the base or derived unit- then <u>multiply</u> by the factor. For example: $10m = 10 \times 100$ cm = 1000cm.

Subatomic Particles

Particle	Charge	Mass	Location
Proton	+1	1	nucleus
Neutron	0	1	nucleus
Electron	-1	0	Outside the nucleus

Common Cations

Ion Name (symbol)	Ion Charge
Lithium (Li)	1+
Sodium (Na)	1+
Potassium (K)	1+
Rubidium (Rb)	1+
Cesium (Cs)	1+
Beryllium (Be)	2+
Magnesium (Mg)	2+
Calcium (Ca)	2+
Strontium (Sr)	2+
Barium (Ba)	2+
Aluminum (Al)	3+

Common Anions

Element Name (symbol)	Ion Name (symbol)	Ion Charge	
Fluorine	Fluoride	1-	
Chlorine	Chloride	1-	
Bromine	Bromide	1-	
Iodine	Iodide	1-	
Oxygen	Oxide	2-	
Sulfur	Sulfide	2-	
Nitrogen	Nitride	3-	

Common Polyatomic Ions

Ion Name	Ion Formula	Ion Name	Ion Formula
Carbonate	CO_{3}^{2}	Nitrite	NO ₂
Chlorate	ClO ₃ ⁻	Phosphate	PO ₄ ³⁻
Cyanide	CN ⁻	Phosphite	PO ₃ ³⁻
Hydroxide	OH	Sulfate	SO_4^{2-}
Nitrate	NO ₃	Sulfite	SO_3^{2}

Prefixes for Naming Covalent Compounds

Number of Atoms	Prefix	Number of Atoms	Prefix
1	Mono	6	Hexa
2	Di	7	Hepta
3	Tri	8	Octa
4	Tetra	9	Nona
5	penta	10	deca

Types of Chemical Reactions

Type of reaction	Generalized formula	Specific Example
Combustion	$HC + O_2 \rightarrow H_2O + CO_2$	$2C_2H_6 + 7O_2 \rightarrow 6H_2O + 4CO_2$
Synthesis	$A + B \rightarrow AB$	$2Na + Cl_2 \rightarrow 2NaCl$
Decomposition	$AB \rightarrow A + B$	$2H_2O \rightarrow 2H_2 + O_2$
Single Replacement	$A + BC \rightarrow AC + B$	$2Al + 3CuCl_2 \rightarrow 3Cu + 2AlCl_3$
Double Replacement	$AX + BY \rightarrow AY + BX$	$Pb(NO_3)_2 + K_2CrO_4 \rightarrow PbCrO_4 + 2KNO_3$

The Effects of Change on Equilibrium in a Reversible Reaction (Le Châtelier's Principle)

Condition	Effect
Temperature	Increasing temperature favors the reaction that absorbs energy (endothermic)
Pressure	Increasing pressure favors the reaction that produces less gas.
Concentration	Increasing conc. of one substance favors reaction that produces less of that substance

Common Acids

Acid	Formula	Strength	
Hydrochloric (muriatic) acid	HCl	strong	
Nitric acid	HNO ₃	strong	
Sulfuric acid	H_2SO_4	strong	
Acetic acid	CH ₃ COOH	weak	
Citric acid	$C_6H_8O_7$	weak	
Formic	НСООН	weak	

Common Bases

Base	Formula	Strength
Potassium hydroxide (potash)	КОН	strong
Sodium hydroxide (lye)	NaOH	strong
Calcium hydroxide (lime)	Ca(OH) ₂	strong
ammonia	NH ₃	weak

pH scale

Strong	g acids	← mor	e acidio	e ←	weak a	cids	Neutral	Weak	bases	→ Mo	ore basic	$c \rightarrow$	strong	bases
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

Types of Nuclear Radiation

Radiation Type	Symbol	Charge	Nuclear Equation
Alpha particle	2 ⁴ He	+2	$_{89}^{225}Ac \rightarrow _{87}^{221}Fr + _{2}^{4}He$
Beta particle	$_{-1}^{0}e$	-1	$_{6}^{14}C \rightarrow _{7}^{14}N + _{-1}^{0}e$
Gamma	γ	0	n/a

Equations

Density = mass \div volume (D = m/v) Units: g/cm³ or g/mL

Rearranged: mass = Density x Volume Units: grams or Volume = mass \div density Units: cm³ or mL

Moles = mass (grams) x Molar Mass (grams / mol) Molar Mass = atomic mass in grams

Energy = mass x (speed of light)² $E = mc^{2}$ Units: joules

Speed = distance \div time $v = d \div t$ Units: meters / second

Rearranged: distance = speed x time Units: meters time = distance ÷ speed Units: seconds

Momentum = mass x velocity p = m x v Units: kg m/s

Acceleration = (final velocity - initial velocity) ÷ time $a = \Delta v \div t$ Units: meters / (second)²

Rearranged: $\Delta v =$ acceleration x time Units: meters/second time = $\Delta v \div a$ Units: seconds

Force = mass x acceleration F = m x a Units: kg · m/s² or Newtons (N)

Rearranged: mass = Force \div acceleration Units: g or kg acceleration = Force \div mass Units: meters / (second)² Weight = mass x gravity (9.8 m/s^2) Units: kg⁺m/s² or Newtons (N)

Work = Force x distance W = F x d Units: Joules (J)

Rearranged: Force = Work ÷ distance Units: Newtons distance = Work ÷ Force Units: meters

Power = Work \div time $P = W \div t$ Units: J/s or Watts (W)

Rearranged: Work = Power x time Units: Joules (J) time = Work ÷ Power Units: seconds (s)

Mechanical Advantage = Output Force ÷ Input Force (Resistance Force ÷ Effort Force)

or

Mechanical Advantage = Input Distance ÷ Output Distance (Effort Distance ÷ Resistance Distance)

Gravitational Potential Energy = mass x gravity (9.8 m/s^2) x height GPE = m x g x h Units: Joules

Rearranged: $m = GPE \div (g \cdot h)$ $h = GPE \div (m \cdot g)$

Kinetic Energy = $\frac{1}{2}$ mass x (velocity)² KE = .5 mv² Units: Joules

Rearranged: $m = 2KE \div v^2$ $v = \sqrt{2KE \div m}$

Efficiency of a Machine = (Useful Work Output ÷ Work Input) x 100

Temperature Conversions

Celsius-Fahrenheit Conversion:

Fahrenheit temperature = $(1.8 \text{ x Celsius temperature}) + 32.0^{\circ}$ F = $1.8 (C) + 32^{\circ}$

Celsius temperature = (Fahrenheit temperature -32) $\div 1.8$ C = (F -32) $\div 1.8$

Celsius-Kelvin Conversion:

Kelvin = Celsius + 273 Celsius = Kelvin - 273

Specific Heat Equation

Energy = mass x Specific Heat Value x change in temperature $E = m \cdot c \cdot \Delta t$ Units: Joules **Rearranged**: mass = Energy ÷ (c x ΔT) Units: kg ΔT = Energy ÷ (c x mass) Units: K or ⁰C

Wave Speed Equation

Wave's Speed = frequency x wavelength	$v = f x \lambda$	Units: m/s	S
Rearranged : Frequency = Wave Speed ÷ waveleng	gth $f = v$	$\dot{\cdot} \div \lambda$	Units: Hertz
Wavelength = Wave Speed \div frequence	$\lambda = v$	v÷f	Units: meters / second

Speed of light (in a vacuum) = $3.0 \times 10^8 \text{ m/s} (300,000,000 \text{ m/s})$ Speed of Sound (in air at 25 °C) = 346 m/s Speed of Sound (in water at $25 ^{\circ}$ C) = 1490 m/sSpeed of Sound (in iron at 25 °C) = 5000 m/s

Ohm's Law Equation

Current = Vo	oltage ÷ Resistance	I = V / R	Units: Amper	es (A)
Rearranged:	Voltage = Current x	Resistance	$V = I \ge R$	Units: Volts (V)
	Resistance = Voltage	÷Current	$\mathbf{R} = \mathbf{V} / \mathbf{I}$	Units: Ohms (Ω)

Electric Power Equation

Power = Curr	P = $I = I$	x V Units:	Units: watts (W) or Kilowatts (kW)			
Variations:	$\mathbf{P} = \mathbf{I}^2 \mathbf{x} \mathbf{R} \qquad \mathbf{P} = \mathbf{V}^2 / \mathbf{R}$					
Rearranged:	Voltage = Power \div Current	$V = P \ge I$	Units: Volts (V)			
	$Current = Power \div Voltage$	$I = P \div V$	Units: Amperes (A)			

Electromagnetic Spectrum: Relates the energy, frequency and wavelength of various types of electromagnetic waves (radio, TV, micro, infrared, visible, ultraviolet, X-ray, and gamma). As energy and frequency increase the wavelength decreases.

Page **7** of **10**

THE ELECTROMAGNETIC SPECTRUM

- AM radio 535 kilohertz to 1.7 megahertz
- Short wave radio bands from 5.9 megahertz to 26.1 megahertz
- Citizens band (CB) radio 26.96 megahertz to 27.41 megahertz Television
- FM radio 88 megahertz to 108 megahertz
- Television stations 174 to 220 megahertz for channels 7 through 13
- Garage door openers, alarm systems, etc. Around 40 megahertz
- Standard cordless phones: Bands from 40 to 50 megahertz
- Baby monitors: 49 megahertz
- Radio controlled airplanes: Around 72 megahertz, which is different from...
- Radio controlled cars: Around 75 megahertz
- Wildlife tracking collars: 215 to 220 megahertz
- MIR space station: 145 megahertz and 437 megahertz
- Cell phones: 824 to 849 megahertz
- New 900-MHz cordless phones: Obviously around 900 megahertz!
- Air traffic control radar: 960 to 1,215 megahertz

- Global Positioning System: 1,227 and 1,575 megahertz
- Deep space radio communications: 2290 megahertz to 2300 megahertz

