Physical Science: Tables \& Formulas

SI Base Units

Base Quantity	Unit Name	Unit Symbol
Amount of substance	mole	Mol
Electric current	ampere	A
Length	meter	M
Luminous intensity	candela	Cd
Mass	kilogram	Kg
Time	second	S
Temperature	Kelvin	K

SI Derived Units

Derived Quantity	Name (Symbol)	Expression in terms of other SI units	Expression in terms of SI base units
Area	Square meter $\left(\mathrm{m}^{2}\right)$		
Volume	Cubic meter $\left(\mathrm{m}^{3}\right)$		
Speed/velocity	Meter per second $(\mathrm{m} / \mathrm{s})$		
Acceleration	Meter per second squared $\left(\mathrm{m} / \mathrm{s}^{2}\right)$		
Frequency	Hertz (Hz)		s^{-1}
Force	Newton (N)	$\mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{s}^{-2}$	
Pressure, stress	Pascal (Pa)	$\mathrm{N} \cdot \mathrm{m}^{2}$	$\mathrm{~m} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-2}$
Energy, work, quantity of heat	Joule (J)	$\mathrm{N} \cdot \mathrm{m}$	$\mathrm{m}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-2}$
Power	Watt (W)	J / s	$\mathrm{m}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-3}$
Electric charge	Coulomb (C)	--	$\mathrm{s} \cdot \mathrm{A}$
Electric potential difference	Volt (V)	W / A	$\mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{s}^{-3} \cdot \mathrm{~A}^{-1}$
Electric resistance	Ohm (Ω)	V / A	$\mathrm{m}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-3} \cdot \mathrm{~A}^{-2}$

Prefixes used to designate multiples of a base unit

Prefix	Symbol	Meaning	Multiple of base unit	Scientific Notation
tera	T	trillion	$1,000,000,000,000$	10^{12}
giga	G	billion	$1,000,000,000$	10^{9}
mega	M	Million	$1,000,000$	10^{6}
kilo	k	Thousand	1,000	10^{3}
centi	c	One hundredth	$1 / 100$ or .01	10^{-2}
milli	m	One thousandth	$1 / 1000$ or .001	10^{-3}
micro	u	One millionth	$1 / 1000000$ or .000001	10^{-6}
Nano	n	One billionth	$1 / 1000000000$ or .000000001	10^{-9}
pico	p	One trillionth	$1 / 1000000000000$ or.000000000001	10^{-12}

In general, when converting from base units ($\mathrm{m}, \mathrm{l}, \mathrm{g}$, etc) or derived units ($\mathrm{m}^{2}, \mathrm{~m}^{3}, \mathrm{~m} / \mathrm{s}, \mathrm{Hz}, \mathrm{N}, \mathrm{J}, \mathrm{V}$, etc) to a multiple greater (kilo, mega, giga, or tera) than the base or derived unit- then divide by the factor. For example: $10 \mathrm{~m}=10 / 1000 \mathrm{~km}=1 / 100 \mathrm{~km}=.01 \mathrm{~km}$.

When converting from base units or derived units to a multiple smaller (centi, milli, micro, nano) than the base or derived unit- then multiply by the factor. For example: $10 \mathrm{~m}=10 \times 100 \mathrm{~cm}=1000 \mathrm{~cm}$.

Subatomic Particles

Particle	Charge	Mass	Location
Proton	+1	1	nucleus
Neutron	0	1	nucleus
Electron	-1	0	Outside the nucleus

Common Cations

Ion Name (symbol)	Ion Charge
Lithium (Li)	$1+$
Sodium (Na)	$1+$
Potassium (K)	$1+$
Rubidium (Rb)	$1+$
Cesium (Cs)	$1+$
Beryllium (Be)	$2+$
Magnesium (Mg)	$2+$
Calcium (Ca)	$2+$
Strontium $(\mathrm{Sr)}$	$2+$
Barium (Ba)	$2+$
Aluminum (Al)	$3+$

Common Anions

Element Name (symbol)	Ion Name (symbol)	Ion Charge
Fluorine	Fluoride	$1-$
Chlorine	Chloride	$1-$
Bromine	Bromide	$1-$
Iodine	Iodide	$1-$
Oxygen	Oxide	$2-$
Sulfur	Sulfide	$2-$
Nitrogen	Nitride	$3-$

Common Polyatomic Ions

Ion Name	Ion Formula	Ion Name	Ion Formula
Carbonate	$\mathrm{CO}_{3}{ }^{2-}$	Nitrite	$\mathrm{NO}_{2}{ }^{-}$
Chlorate	$\mathrm{ClO}_{3}{ }^{-}$	Phosphate	$\mathrm{PO}_{4}{ }^{3-}$
Cyanide	CN^{-}	Phosphite	$\mathrm{PO}_{3}{ }^{3-}$
Hydroxide	OH^{-}	Sulfate	$\mathrm{SO}_{4}{ }^{2-}$
Nitrate	$\mathrm{NO}_{3}{ }^{-}$	Sulfite	$\mathrm{SO}_{3}{ }^{2-}$

Prefixes for Naming Covalent Compounds

Number of Atoms	Prefix	Number of Atoms	Prefix
1	Mono	6	Hexa
2	Di	7	Hepta
3	Tri	8	Octa
4	Tetra	9	Nona
5	penta	10	deca

Types of Chemical Reactions

Type of reaction	Generalized formula	Specific Example
Combustion	$\mathrm{HC}+\mathbf{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$	$2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{CO}_{2}$
Synthesis	$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB}$	$2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$
Decomposition	$\mathrm{AB} \rightarrow \mathrm{A}+\mathrm{B}$	$2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
Single Replacement	$\mathrm{A}+\mathrm{BC} \rightarrow \mathrm{AC}+\mathrm{B}$	$2 \mathrm{Al}+3 \mathrm{CuCl}_{2} \rightarrow 3 \mathrm{Cu}+2 \mathrm{AlCl}_{3}$
Double Replacement	$\mathrm{AX}+\mathrm{BY} \rightarrow \mathrm{AY}+\mathrm{BX}$	$\mathbf{P b}\left(\mathbf{N O}_{\mathbf{3}}\right)_{\mathbf{2}}+\mathbf{K}_{\mathbf{2}} \mathbf{C r O}_{\mathbf{4}} \rightarrow \mathbf{P b C r O}_{\mathbf{4}}+\mathbf{2} \mathbf{K N O}_{\mathbf{3}}$

The Effects of Change on Equilibrium in a Reversible Reaction (Le Châtelier's Principle)

Condition	Effect
Temperature	Increasing temperature favors the reaction that absorbs energy (endothermic)
Pressure	Increasing pressure favors the reaction that produces less gas.
Concentration	Increasing conc. of one substance favors reaction that produces less of that substance

Common Acids

Acid	Formula	Strength
Hydrochloric (muriatic) acid	HCl	strong
Nitric acid	HNO_{3}	strong
Sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	strong
Acetic acid	$\mathrm{CH}_{3} \mathrm{COOH}_{2}$	weak
Citric acid	$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$	weak
Formic	HCOOH	weak

Common Bases

Base	Formula	Strength
Potassium hydroxide (potash)	KOH	strong
Sodium hydroxide (lye)	NaOH	strong
Calcium hydroxide (lime)	$\mathrm{Ca}(\mathrm{OH})_{2}$	strong
ammonia	NH_{3}	weak

Strong acids \leftarrow more acidic \leftarrow			weak acids	Neutral	Weak bases			\rightarrow More basic \rightarrow	strong bases					
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

Types of Nuclear Radiation

Radiation Type	Symbol	Charge	Nuclear Equation
Alpha particle	$2_{2}^{4} \mathrm{He}$	+2	${ }_{89}{ }^{225} \mathrm{Ac} \rightarrow{ }_{87}{ }^{221} \mathrm{Fr}+{ }_{2}^{4} \mathrm{He}$
Beta particle	${ }_{-1}{ }^{0} \mathrm{e}$	-1	${ }_{6}{ }^{14} \mathrm{C} \rightarrow{ }_{7}{ }^{14} \mathrm{~N}+{ }_{-1}{ }^{0} \mathrm{e}$
Gamma	γ	0	n/a

Equations

Density $=$ mass \div volume $(D=m / v) \quad$ Units: $\mathrm{g} / \mathrm{cm}^{3}$ or g / mL
Rearranged: mass $=$ Density x Volume Units: grams or
Volume $=$ mass \div density Units: cm^{3} or mL

Moles $=$ mass $($ grams $) \times$ Molar Mass $($ grams $/ \mathrm{mol}) \quad$ Molar Mass $=$ atomic mass in grams
Energy $=$ mass $x(\text { speed of light })^{2} \quad E=\mathrm{mc}^{2} \quad$ Units: joules

Speed $=$ distance \div time $\quad v=d \div t \quad$ Units: meters $/$ second
Rearranged: distance $=$ speed x time Units: meters
time $=$ distance \div speed Units: seconds

Momentum $=$ mass x velocity $\quad \mathrm{p}=\mathrm{mxv} \quad$ Units: $\mathrm{kg} \mathrm{m} / \mathrm{s}$
Acceleration $=($ final velocity - initial velocity $) \div$ time $\quad \mathrm{a}=\Delta \mathrm{v} \div \mathrm{t} \quad$ Units: meters $/(\text { second })^{2}$
Rearranged: $\Delta \mathrm{v}=$ acceleration x time Units: meters/second

$$
\text { time }=\Delta \mathrm{v} \div \mathrm{a} \quad \text { Units: seconds }
$$

Force $=$ mass x acceleration $\quad \mathrm{F}=\mathrm{mxa} \quad$ Units: $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$ or Newtons (N)
Rearranged: mass $=$ Force \div acceleration Units: g or kg acceleration $=$ Force \div mass Units: meters $/(\text { second })^{2}$

Weight $=$ mass x gravity $\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \quad$ Units: $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$ or Newtons (N)

Work $=$ Force x distance $\quad \mathrm{W}=\mathrm{F} x$ d \quad Units: Joules (J)
Rearranged: Force $=$ Work \div distance Units: Newtons distance $=$ Work \div Force Units: meters

Power $=$ Work \div time $\quad \mathrm{P}=\mathrm{W} \div \mathrm{t} \quad$ Units: J / s or Watts (W)
Rearranged: Work $=$ Power x time Units: Joules (J) time $=$ Work \div Power Units: seconds (s)

Mechanical Advantage $=$ Output Force \div Input Force $\quad($ Resistance Force \div Effort Force $)$
or
Mechanical Advantage $=$ Input Distance \div Output Distance $\quad($ Effort Distance \div Resistance Distance $)$
Gravitational Potential Energy $=$ mass \times gravity $\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \times$ height $\quad \mathrm{GPE}=\mathrm{m} \times \mathrm{gxh} \quad$ Units: Joules

Rearranged: $\mathrm{m}=\mathrm{GPE} \div(\mathrm{g} \cdot \mathrm{h}) \quad \mathrm{h}=\mathrm{GPE} \div(\mathrm{m} \cdot \mathrm{g})$
Kinetic Energy $=1 / 2$ mass $x(\text { velocity })^{2} \quad$ KE $=.5 \mathrm{mv}^{2} \quad$ Units: Joules
Rearranged: $\mathrm{m}=2 \mathrm{KE} \div \mathrm{v}^{2} \quad \mathrm{v}=\sqrt{\mathbf{2 K E} \div \mathbf{m}}$
Efficiency of a Machine $=($ Useful Work Output \div Work Input $) \times 100$

Temperature Conversions

Celsius-Fahrenheit Conversion:

Fahrenheit temperature $=(1.8 \times$ Celsius temperature $)+32.0^{0}$

$$
\mathrm{F}=1.8(\mathrm{C})+32^{0}
$$

Celsius temperature $=($ Fahrenheit temperature -32$) \div 1.8 \mathrm{C}=(\mathrm{F}-32) \div 1.8$

Celsius-Kelvin Conversion:

Kelvin $=$ Celsius +273
Celsius $=$ Kelvin -273

Energy $=$ mass x Specific Heat Value $x \quad$ change in temperature $E=m \cdot c \cdot \Delta t \quad$ Units: Joules Rearranged: mass $=$ Energy $\div(\mathrm{c} \mathrm{x} \Delta \mathrm{T})$ Units: $\mathrm{kg} \quad \Delta \mathrm{T}=$ Energy $\div(\mathrm{c} \mathrm{x}$ mass $)$ Units: K or ${ }^{0} \mathrm{C}$

Wave Speed Equation

Wave's Speed $=$ frequency x wavelength $\quad v=f x \lambda \quad$ Units: m / s
$\begin{array}{rll}\text { Rearranged: Frequency }=\text { Wave Speed } \div \text { wavelength } & \mathrm{f}=\mathrm{v} \div \lambda & \text { Units: Hertz } \\ \text { Wavelength }=\text { Wave Speed } \div \text { frequency } & \lambda=\mathrm{v} \div \mathrm{f} & \text { Units: meters } / \text { second }\end{array}$

Speed of light $($ in a vacuum $)=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}(300,000,000 \mathrm{~m} / \mathrm{s})$
Speed of Sound (in air at $25{ }^{\mathbf{0}} \mathbf{C}$) $=346 \mathrm{~m} / \mathrm{s}$ Speed of Sound (in water at $25^{\circ} \mathrm{C}$) $=1490 \mathrm{~m} / \mathrm{s}$
Speed of Sound (in iron at $\mathbf{2 5}{ }^{\mathbf{0}} \mathbf{C}$) $=5000 \mathrm{~m} / \mathrm{s}$

Ohm's Law Equation
Current $=$ Voltage \div Resistance $\quad \mathrm{I}=\mathrm{V} / \mathrm{R} \quad$ Units: Amperes (A)
Rearranged: Voltage $=$ Current x Resistance $\quad V=I x R \quad$ Units: Volts (V)

$$
\text { Resistance }=\text { Voltage } \div \text { Current } \quad \mathrm{R}=\mathrm{V} / \mathrm{I} \quad \text { Units: Ohms }(\Omega)
$$

Electric Power Equation
Power $=$ Current x Voltage $\quad \mathrm{P}=\mathrm{I} x \mathrm{~V} \quad$ Units: watts (W) or Kilowatts (kW)
Variations: $\quad \mathrm{P}=\mathrm{I}^{2} \times \mathrm{R} \quad \mathrm{P}=\mathrm{V}^{2} / \mathrm{R}$
$\begin{array}{rll}\text { Rearranged: Voltage }=\text { Power } \div \text { Current } & \mathrm{V}=\mathrm{P} \times \mathrm{I} & \text { Units: Volts (V) } \\ \text { Current }=\text { Power } \div \text { Voltage } & \mathrm{I}=\mathrm{P} \div \mathrm{V} & \text { Units: Amperes (A) }\end{array}$

Electromagnetic Spectrum: Relates the energy, frequency and wavelength of various types of electromagnetic waves (radio, TV, micro, infrared, visible, ultraviolet, X-ray, and gamma). As energy and frequency increase the wavelength decreases.

THE ELECTRO MAGNETIC SPECTRUM

Wavelength

Frequency

THE ELECTROMAGNETIC SPECTRUM

DoD Joint Spectrum Center
2004 Turbot Landing • Annapolis MD 21402-5064 • http://www.jsc.mil

- AM radio - 535 kilohertz to 1.7 megahertz
- Short wave radio - bands from 5.9 megahertz to 26.1 megahertz
- Citizens band (CB) radio - 26.96 megahertz to 27.41 megahertz

Television

- FM radio - 88 megahertz to 108 megahertz
- Television stations - 174 to 220 megahertz for channels 7 through 13
- Garage door openers, alarm systems, etc. - Around 40 megahertz
- Standard cordless phones: Bands from 40 to 50 megahertz
- Baby monitors: 49 megahertz
- Radio controlled airplanes: Around 72 megahertz, which is different from...
- Radio controlled cars: Around 75 megahertz
- Wildlife tracking collars: 215 to 220 megahertz
- MIR space station: 145 megahertz and 437 megahertz
- Cell phones: 824 to 849 megahertz
- New $900-\mathrm{MHz}$ cordless phones: Obviously around 900 megahertz!
- Air traffic control radar: 960 to 1,215 megahertz
- Global Positioning System: 1,227 and 1,575 megahertz
- Deep space radio communications: 2290 megahertz to 2300 megahertz

