
Twisty Little Passages, All Alike – ODS Templates Exposed

Chris Olinger, SAS Institute Inc., Cary, NC

Abstract
The Output Delivery System in Version 7 of the SAS®
System provides a powerful feature set for customizing
SAS output. This paper talks about the twisty
capabilities of the TEMPLATE procedure for changing
the layout of procedure output and for creating your own
custom corporate styles. Covered are techniques for
editing existing ODS templates, for binding templates to
data sets, and for manipulating ODS styles. The
concepts covered in this talk can be applied to your SAS
jobs to create outstanding looking HTML (and later in
Version 8, RTF, Postscript, and PDF).

Introduction
You are standing at the end of a road before a small
brick building. Around you is a forest. A small stream
flows out of the building and down a gully.
> down

If you are reading this paper then you are probably a
SAS adventurer - the type of person who wants to
discover and figure out how you can squeeze every last
option out of the SAS programming language. This
paper is inspired by the first text-parser adventure
game, The Colossal Cave Adventure, written way back
in the mid-seventies for the PDP-10. All I could think of
when asked to write this paper was the Colossal Cave
puzzle: “You are in a maze of twisty little passages, all
alike.” It was a confusing puzzle, but once you figured
out how to get around it, you were home free. This is a
lot like PROC TEMPLATE.

PROC TEMPLATE is not for everybody. It has a myriad
of options to control the look and feel of output produced
by the SAS procedures – in fact, a few of the options
are used only by one or two procedures. If you master
the syntax, then it is safe to say that you are the
undisputed output adventurer at your site.

This paper covers several topics:

• what a template is
• editing existing templates in the system
• creating your own table template to bind with a data

set
• creating a style template

Template Overview
A little dwarf just walked around a corner, saw you,
threw a little axe at you, which missed, cursed, and ran
away.
> get axe

Most ODS output objects contain two basic
components:

• a template component
• and a data component containing the raw data

values that make up the piece of output

The output object also contains miscellaneous run-time
information about the current running procedure.
Represented visually, an output object looks like this:

The template portion of the output object is the only part
of an output object that you can directly modify. Most
output in the system references a template. However,
some pieces of output in the system do not. Most
notably, line printer oriented output (like that produced
by the PLOT and CHART procedures) does not
reference a template. PUT statements in a DATA
NULL step also do not reference a template. Other
exceptions are the REPORT, TABLUATE, PRINT, and
FREQ1 procedures. The syntax for each of these
procedures acts as a custom template so an ODS
template is not needed.

What exactly is a template? A template is a set of SAS
statements and attributes that describes how ODS
should format and present raw data. You create and
modify a template using PROC TEMPLATE. PROC
TEMPLATE also provides statements to delete
templates, list templates, and dump the SAS source

1 PROC FREQ multi-way tables do not use a template.
However, the rest of the tables do.

Output
Object

(run-time
info)

Raw Data Template

statements that make up a given template. You can find
out more about the syntax for PROC TEMPLATE in The
Complete Guide to the SAS Output Delivery System.2

A template is compiled and then stored in a file called a
template store. A template store is a special version of
an item store. An item store is a new SAS file that
allows multiple levels of directories to reside inside,
much like a PC file system stored within a single file. A
template store is just an item store with some extra
information thrown in so that ODS can recognize the
contents as templates.

Version 7 and Version 8 enable you to create six
different types of templates:

• Table
• Column
• Header
• Footer
• Tree
• Style

The Table template is a collection of attributes and
statements that describe a particular table, and it is the
most widely used template. The Column, Header, and
Footer templates are used mostly in conjunction with the
Table template. The Tree template is used for
rudimentary equations and functions, and the Style
template is used for controlling the overall look and feel
of the entire SAS job.

To create a template, you need to run PROC
TEMPLATE, specifying the DEFINE statement. This
statement allocates the template and then parses the
template’s statements up to the corresponding END
statement. When the parsing is complete, the template
is written to the specified directory. For instance,

proc template;
 define table mytables.table1;
 … statements …
 end;
run;

This example creates a table template and stores it in
mytables.table1. mytables is a directory, and table1 is
the actual template name. You can create as many
subdirectories as you want by using more periods. By
default, the template store that the template gets written
to is the first template store that is updateable in the

2 The documentation for PROC TEMPLATE was not
finalized in time for the Version 7 ship date. The
documentation for PROC TEMPLATE is now posted at
the BASE/SAS web site:
http://www.sas.com/rnd/base/index-early-access.html).

template path. The template path is controlled by the
ODS PATH statement. The default template path is

ods sasuser.templat(update)
 sashelp.tmplmst(read);

In the example above, the template would be written to
the template store SASUSER.TEMPLAT. For added
flexibility, in Version 8 there is an option on the DEFINE
statement to write directly to a specific template store,
bypassing the current ODS template path.

As an example, consider the following table template
from the STANDARD procedure:

proc template;

define table Base.Standard;
 column name mean std n label;
 define name;
 header = 'Name';
 end;
 define mean;
 header = 'Mean';
 format = D12.;
 end;
 define std;
 header=’/Standard/Deviation';
 format = D12.;
 end;
 define n;
 header = 'N';
 format = best.;
 end;
 define label;
 header = 'Label';
 end;
 required_space = 3;
 byline;
 wrap;
end;

run;

This template defines five columns. The COLUMN
statement specifies the ordering of the columns. Each
column has a definition declared via an embedded
DEFINE/END statement block. Each column has a
header and a format specified. Additionally, there are
three table attributes defined, REQUIRED_SPACE,
BYLINE, and WRAP.

Modifying a System Template
A huge, green, fierce dragon bars the way! The dragon
is sprawled out on a Persian rug!
> kill dragon

With your bare hands?
> yes

Congratulations! You have just vanquished a dragon
with your bare hands! (Unbelievable, isn’t it?)

Modifying a template is not hard. Once you know the
secret it’s easy. As an example, you are going to take
the OverAllAnova table from GLM procedure and
reformat it so that you can fit it inside this two-column
paper format.

The following code generates a data set and produces
an OverAllAnova table in RTF3 form.

data a;
 do a = 1 to 4;
 do b = 1 to 4;
 do c = 1 to 4;
 n = int(6*ranuni(1));
 do i = 1 to n;
 y = a + b + rannor(1);
 output; end;
 end;
 end;
 end;

ods rtf file="glm.rtf";
ods select OverallANOVA;

proc glm data=a;
 class a b c;
 model y=a|b|c / ss1 ss2 ss3 ss4;
quit;

ods rtf close;

This code produces the following table. Unfortunately,
the table is too wide for this paper format, so after
selecting table AutoFormat in Word, you get the
following table (your supervising editor is very
displeased):

3 RTF is an experimental output destination in Version 7
and Version 8. Use at your own risk.

Source
D
F

Sum
of

Squ
ares

Mea
n

Squ
are

F
Va
lue

Pr
>
F

Model
5
6

492.
5623

493

8.79
575

62

10.
47

<.
00
01

Error
1
0
5

88.1
7570

08

0.83
976

86

Corrected
Total

1
6
1

580.
7380

501

There are just too many columns to fit in this space.
What you would like to do is change how the columns
are presented in the table so that it comes out correct
the first time.

The first step in fixing this output is to discover the name
of the template being used. The names of some of the
procedure’s output objects and templates are
documented in the procedure guides, but an easier way
to get the information is to use the ODS TRACE
OUTPUT command. The TRACE OUTPUT command
tells ODS to print a message to the SAS log each time a
piece of output is created. The trace record contains the
name of the output and the template that is associated
with it.

ods trace output;

When you run the example again with TRACE OUTPUT
turned on, you get the following in the SAS log:

Output Added:

Name: OverallANOVA
Label: Overall ANOVA
Template: stat.GLM.OverallANOVA
Path: GLM.ANOVA.y.OverallANOVA

Here, notice that the template for the OverAllAnova
table is Stat.Glm.OverAllAnova. Remember, the periods
indicate directories, so the OverAllAnova template lives
in the GLM directory, beneath the Stat directory, in a
template store somewhere. The actual template store
that the template is contained in does not matter, as
long as it exists in the concatenation path.

There are two ways that you can get the SAS source of
this template. The first is to use the SOURCE statement
in PROC TEMPLATE.

proc template;
 source Stat.GLM.OverallAnova;
run;

This statement dumps the SAS source to the log. Or,
you can dump the source directly to a file so you can
edit it.

proc template;
 source Stat.GLM.OverallAnova /
 file=”overall.sas”;
run;

You can also view the template in DMS mode by
selecting View->Results. Right-Mouse-Button (RMB)
down on “Results” and then select “Templates”. This will
bring up an explorer window on the templates in the
system. Double click SASHELP.TMPLMST, select Stat,
select GLM, select OverallAnova. You can RMB down
on OverallAnova and select “Edit” if you prefer. This
enables you to view the text of the template in edit mode
rather than browse mode. After you are done editing,
you can select Run->Submit to run the code.

The actual code of the OverallANOVA template is as
follows:

define table Stat.GLM.Overallanova;
 notes ’Over-all ANOVA’;
 parent = Stat.GLM.ANOVA;
 top_space = 0;
 double_space;
end;

There is not much to this template. It turns out that this
template is parented to another template. The
PARENT= option declares that the OverallANOVA
template will inherit all the values of Stat.GLM.ANOVA,
overriding a select few attributes that apply only to the
ODS LISTING destination. Again, using the SOURCE
statement, you get the following SAS source for
Stat.GLM.ANOVA:

define table Stat.GLM.ANOVA;
 notes ’Parent for GLM ANOVA tables’;
 column Source DF SS MS FValue ProbF;
 define Source;
 parent=Stat.GLM.Source;
 end;
 define DF;
 parent=Stat.GLM.DF;
 end;
 define SS;
 parent=Stat.GLM.SS;
 end;
 define MS;
 parent=Stat.GLM.MS;
 end;
 define FValue;
 parent=Stat.GLM.FValue;
 end;
 define ProbF;
 parent=Stat.GLM.ProbF;
 end;
end;

For PROC GLM, all ANOVA tables share this common
parent that defines the column order and specifies the
basic column definitions (which are also parented to
common column definitions). There are two ways that
you can change this source code to get the results that
you want. The first example hand copies the values
from the common parent into Stat.GLM.OverallANOVA,
overriding what you need. The template is stored in the
first updateable template store in the concatenation
path.

proc template;

define table Stat.GLM.OverallANOVA;
 parent=stat.glm.anova;
 column source df (ss ms) (fvalue probf);
 define source;
 parent=Common.ANOVA.source;
 format=$16.;
 end;
 define df;
 parent=Common.ANOVA.df;
 format=4.0;
 end;
 define ss;
 parent=Common.ANOVA.ss;
 header="#SS#MS";
 format=7.2;
 end;
 define ms;
 parent=Common.ANOVA.ms;
 format=7.2;
 end;

 define fvalue;
 parent=Common.ANOVA.fvalue;
 header="#F#p>F";
 format=7.2; end;
 define probf;
 parent=Common.ANOVA.probf;
 format=pvalue5.2;
 end;
end;

run;

ods rtf file="glm.rtf";

ods select overallANOVA;
proc glm data=a;
 class a b c;
 model y = a|b|c / ss1 ss2 ss3 ss4;
run;

ods rtf close;

proc template;
 delete stat.glm.overallAnova;
run;

The second example uses the EDIT statement to
explicitly copy the template, modifying only the values
that you want to change. The template is stored in the
first updateable template store in the concatenation
path.

proc template;

edit Stat.GLM.OverallANOVA;
 column source df (ss ms) (fvalue probf);

 edit source;
 format=$16.;
 end;
 edit df;
 format=4.0;
 end;
 edit ms;
 format=7.2;
 end;
 edit probf;
 format=pvalue5.2;
 end;
 edit ss;
 header="#SS#MS";
 format=7.2;
 end;
 edit fvalue;
 header="#F#p>F";
 format=7.2;
 end;
end;

run;

ods rtf file="glm.rtf";

ods select overallANOVA;
proc glm data=a;
 class a b c;
 model y = a|b|c / ss1 ss2 ss3 ss4;
 run;

ods rtf close;

proc template;
 delete stat.glm.overallAnova;
run;

Both of these examples use the column stacking feature
of table templates.

Column source df (ss ms) (fvalue probf);

When you enclose a group of columns within a set of
parentheses, ODS stacks the columns in the group on
top of each other. Each field in the grouped column is
formatted according to the real column format. The
header for the column comes from the first column in
the group.

Notice also that you are using new formats to change
the relative widths of the columns and that the headers
for the two stacked columns contain a ‘#’ as the first
character. The ‘#’ is a split character that will force a
split in the header.

Lastly, notice the DELETE statement at the end of both
examples. The DELETE statement removes the
template that we just created so that it will not interfere
with subsequent runs of PROC GLM.

In either example, the new template produces the
following table (after a table AutoFormat in Word):

Source DF
SS
MS

F
p>F

Model 56 492.56
8.80

10.47
<.01

Error 105 88.18
0.84

Corrected Total 161 580.74

Binding a Template to a SAS Data
Set
You are at a complex junction. A low hands and knees
passage from the north joins a higher crawl from the
east to make a walking passage going west. There is
also a large room above. The air is damp here.
> north

If you have a table that you are producing with PUT
statements in a DATA _NULL_ step, you can instead
bind a template to the DATA step to produce the table in
a more regular fashion. There are some unique features
of the table template that can be leveraged to produce a
nice looking tabular report. However, most of the
features of the table template are redundant with the
REPORT procedure, so we are not suggesting that you
run out and convert all of your PROC REPORT code.
Use the procedure that best suits your needs.

The following example shows how to bind a template to
a DATA step. For more information on how to use the
DATA step to interface with ODS, please refer to
Heffner (1998) and the documentation.

data _null_;
 set mydata;
 file print
 ods=(template=’mytemplates.template’);
 put _ods_;
run;

The file print statement takes a template name that the
DATA step uses to render its output. The template
column names should match the variable names in the
data set. The put _ods_ statement moves the data from
the data set to the underlying ODS data component.

The next three examples produce a budget analysis
report in HTML. The report consists of a table or set of
tables, one for each quarter of the year, that show how
well various departments did with respect to their stated
budget goals. The input data set is documented fully in
Figure 1 in the appendix.

The first example is a simple table. It uses the TEST
statement to test out the template. The TEST statement
binds the last template created to the specified data set.

data budget;
 input QTR @8 Dept $10. @22
 Account $8. Budget Actual;
 attrib Actual format=dollar11.2
 Budget format=dollar11.2
 Dept format=$10.
 QTR format=best4.
 Diff format=dollar11.2;
 diff = actual - budget;
 datalines;
...
;
proc sort data = budget;
 by qtr dept;
run;

ods listing close;
ods html file="budget.htm";
proc template;
 define table mytables.budget;
 column qtr dept account
 budget actual diff;
 use_name;
 end;
 test data=budget;
run;
ods html close;

The ODS LISTING statement closes the SAS listing.
The ODS HTML statement opens an HTML file called
budget.htm. This example creates a template called
mytables.budget. The template will be stored in the first
updateable template store in the template path.

The template contains a column statement that defines
the columns of the table. The names of the columns
must match the variable names of the input data set! If
they do not match (and you do not use the column
dataname= attribute) then you will not get any output.
Only the template columns that are paired with data are
printed.

The use_name attribute tells the template to use the
name of the variable in the data component as a header
for the column if there isn’t a header already defined in
the template and there isn’t a label defined on the data
component column.

The resultant output can be seen in Figure 2 in the
Appendix.

You have just created a table that looks like a PROC
PRINT listing. You can take this table a step further by
using the BLANK_DUPS and CLASSLEVEL attributes.
These two options blank out duplicate values in
vertically adjacent column cells (the MEANS procedure
achieves this effect in the same manner).

ods html file="budget2.htm";

proc template;

 define table mytables.budget2;
 column qtr dept account budget
 actual diff;
 classlevels;
 use_name;
 define qtr;
 blank_dups;
 end;
 define dept;
 blank_dups;
 end;
 end;

 test data=budget;
run;

ods html close;

The output from this example can be seen in Figure 3 in
the Appendix.

Notice that the column statement defines six columns.
However, only two columns, qtr and dept, actually have
definitions specified. Any column that does not have a
definition is assigned default values for any attributes
that are needed by ODS.

To take this report one step further you can

1. add a spanning header that references the current
date and time using a macro variable reference

2. split the table into multiple tables, by quarter, and
add a spanning header that links to the next
quarter’s table

3. add an extra column using the COMPUTE
statement

4. add traffic lighting to the report using CELLSTYLE4

to help track where you had problems.

The following code produces the table in Figure 4 in the
Appendix:

4 CELLSTYLE and COMPUTE do not work together
very well in Version 7, so you will not be able to run this
program as specified in Version 7. The bug(s) have
been fixed in Version 8.

proc template;

 define table mytables.budget3;
 column dept account budget actual
 (pct diff);
 header h1 h2;
 mvar sysdate systime qnum;

 classlevels use_name;

 define h1;
 text "Quarter: " qnum;
 style = header
 { prehtml=symget("href")
 posthtml=’’
 };
 end;

 define h2;
 text "Report Created: " sysdate
 " " systime;
 just = l;
 start=dept;
 end=actual;
 end;

 define dept;
 header="Department";
 blank_dups;
 end;

 define pct;
 header="#% Diff#$ Diff";
 compute as (diff / budget);
 format=percent8.2;
 cellstyle
 val >= .50 as data
 { background=red
 flyover="Get a new job!"
 },
 val >= .25 as data
 { background=light red },
 val >= .10 as data
 { background=very light red },
 val <= -.50 as data
 { background=black
 foreground=yellow
 flyover="Great job!"
 },
 val <= -.25 as data
 { background=blue
 foreground=white
 },
 val <= -.10 as data
 { background=very light blue },
 1 as data;
 end;
 end;

run;

%macro quarters;
 %do qnum=1 %to 4;
 %let next=%eval(&qnum + 1);
 %if &next=5 %then %let next=1;
 %let href=;
 data _null_;
 set budget(where=(qtr=&qnum));
 file print
 ods=(template=’mytables.budget3’);
 put _ods_;
 run;
 %end;
%mend;

ods html file="quarter1.htm"
 newfile=table style=d3d;
%quarters;
ods html close;

Looking at the code, the first thing that you notice is that
a new PCT column is added to the column statement
and that PCT is stacked on top of DIFF. PCT is a
computed column. A computed column is a column that
modifies or creates its value with the COMPUTE
statement. The DEFINE/END block for PCT specifies
that the value for the column is (diff / budget).
You can also use DATA step functions in the
COMPUTE statement for more complex calculations.
The COMPUTE statement uses the WHERE clause
processor to evaluate its expressions, so anything that
you can do in a WHERE statement you can do in a
COMPUTE statement as well.

There are also two new headers in the table. H1 is
defined as the string “Quarter: “ QNUM. QNUM is
declared on the MVAR statement. The MVAR statement
declares variables that are macro references to be
resolved when the template is used. Do not confuse this
with actually using a macro variable! If you specify
&QNUM then the macro variable is resolved at template
compile time. Using a macro variable with the MVAR
statement enables you to change the value of the
variable each time the template is used. This same trick
is used on the header H2, where you define a header
containing the system date and the system time that the
table was created. If you used “&sysdate” and
“&systime” you would wind up with a header that
specified the date and time that the template was
created.

Also, note the STYLE attribute on H1. The style for the
header is defined as style = header { prehtml =
symget("href") posthtml = ’’ }. What
this is saying is that the style for the header is the
system HEADER element, but the PREHTML and
POSTHTML style attributes are being overridden.
PREHTML writes the text associated with the attribute
before the contents of the HTML cell. POSTHTML
writes the text associated with the attribute after the
contents of the HTML cell. This code effectively enables

you to turn the header into an HTML link to another
table. PREHTML is being set to a macro reference,
symget(“href”), that will be resolved when the template
is used. SYMGET is a little different than using the
MVAR statement, but the results are the same. Use
SYMGET when defining style attributes; use MVAR
when defining table templates.

If there is no STYLE attribute for a header or column
then the following defaults are used,

Cell Type Normal Preformatted

Column Data DataFixed

Column Header Header HeaderFixed

Footer Footer FooterFixed

Header Header HeaderFixed

Table Table

The last thing to notice about this template is the
CELLSTYLE-AS statement on the PCT column.
CELLSTYLE-AS sets the style of the data cell based on
the value of the cell. _VAL_ is a special tag that
references the current value of the column. You can
string multiple expressions together with commas to
form an if/then/else clause. The first expression that
evaluates to TRUE specifies the style for the cell. The
trailing 1 as data; is a catch-all that sets the style of
the column cell to the system default DATA if all of the
previous expressions fail. Unlike with the COMPUTE
statement, the CELLSTYLE-AS statement does not let
you reference other columns in the expression. This is a
limitation that will be dealt with in later releases of the
software. However, you can reference DATA step
functions.

The tables are created using a macro, %quarter, that
sets the HREF and QNUM macro variables in a loop (1-
4). The H1 header links to the next quarter’s table. The
fourth quarter’s header links to the first quarter’s table.
The NEWFILE=TABLE attribute on the HTML statement
generates a new HTML file for each table that is
created. The HTML output destination automatically
increments the file number.

Understanding ODS Styles
You are in a maze of twisty little passages, all alike.
> north

You are in a maze of twisty little passages, all alike.
> west

You are in a maze of twisty little passages, all alike.
> !@#$

Watch it! 5

An ODS style is a collection of presentation attributes
that apply to an output destination. These attributes
include foreground and background color and fonts.
Kelley and McNeill (1999) have this to say about styles:

“ODS styles govern the overall look and feel of Version
7 SAS procedure output. Styles determine the colors,
fonts, graphic images, and other visual aspects in effect
when output is generated. SAS delivers several
predefined styles with Version 7, and you can customize
them or create new ones.

Exactly one style is in effect at any time during a SAS
session. It applies to all procedure output during the
period it is in effect. Such output has a uniform look and
feel – regardless of the procedure. Row headers have
the same background color, data cells have the same
font, and so on. Styles apply to all of the ODS output
formats that allow colors, proportional fonts, and so
forth.

ODS organizes a style as a named collection of style
elements. Specifically,

• Style names tell ODS which one of the available
styles to apply to the output. If you do not specify a
style name, ODS selects the predefined style
named Default. The selected style remains in
effect until you select another one or terminate the
SAS session. You can rename or delete styles.
(Be warned that if you rename or delete a
predefined style, you could render the SAS session
inoperable.)

• Style elements govern the look and feel of a
particular part of the output, such as a PROC
REPORT data cell or a PROC TABULATE row
header. Style elements have names (Data,
RowHeader) that are fixed by ODS; style elements
cannot be renamed or deleted.

• ODS organizes style elements as a collection of
name-value pairs called style attributes. Each
attribute determines a particular aspect of the style

5 The game understands certain four letter words that
cannot be printed here. Use your imagination.

element, such as the row header background color
(background=green) or data cell font size
(font_size=4). Style attribute names are fixed by
ODS. The domain of style attribute values depends
upon the attribute.”

67</(�6WDWHPHQW
More specifically, a style is a collection of STYLE and
REPLACE statements. Each statement defines a style
element by listing its style attributes. For instance, a
very simple style that contains three style elements is
listed below:

proc template;
 define style styles.MyFirstStyle;
 style header /
 foreground=black
 background=white
 font=(Arial,3,Italic)
 ;
 style footer /
 foreground=black
 background=white
 font=(Arial,3,Italic)
 ;
 style data /
 foreground=black
 background=pink
 font=(Arial,4)
 ;
 end;
run;

This style defines the elements HEADER, FOOTER,
and DATA. Any output that uses this style is limited to
the elements that have been defined. General SAS
output uses a large array of style elements. For a
complete list of style elements, refer to The Complete
Guide to the SAS Output Delivery System. However,
this style is enough to handle simple PROC PRINT
output.

Each element in this example has a foreground and
background color. Style colors can be any valid
SAS/GRAPH® color or a #RRGGBB value. Fonts are
specified as a tuple: (FontNameList, Size, Attributes).
FontNameList is the name of the font(s) that you want to
use. If there is more than one (or if a font name contains
embedded spaces), then enclose the font list in quotes
and separate the font names with commas. The first font
in the list that is recognized by the output destination is
used. Attributes is a list of modifiers like Italic and Bold.

There are approximately sixty-five different style
attributes that can be specified on a style element. For a
complete list, refer to the documentation.

If you look closely at this style, you will notice that the
Header and Footer elements are exactly the same. You

can abstract common information to another element
using style element inheritance. Style element
inheritance is achieved using the FROM keyword on the
STYLE statement. For instance,

proc template;
 define style styles.MyFirstStyle;
 style cell /
 foreground=black
 background=white
 font=(Arial,3,Italic)
 ;
 style header from cell
 ;
 style footer from cell
 ;
 style data from cell /
 background=pink
 font=(Arial,4)
 ;
 end;
run;

Here you add a new abstract element named Cell. The
style elements Header, Footer, and Data inherit from
Cell. The Data element overrides background color and
font. Using style element inheritance enables you to
build one style element based on some other style
element.

You can further abstract this style using style
references. Often, it is desirable to use a reference to a
common value so that all attributes with the same value
can be easily changed. For instance,

proc template;
 define style styles.MyFirstStyle;
 style ref /
 “cellfg” = black
 “cellbg” = white
 “databg” = pink
 “cellfont” = (Arial,3,Italic)
 “datafont” = (Arial,4)
 ;
 style cell /
 foreground=ref(“cellfg”)
 background=ref(“cellbg”)
 font=ref(“cellfont”)
 ;
 style header from cell;
 style footer from cell;
 style data from cell /
 background=ref(“databg”)
 font=ref(“datafont”)
 ;
 end;
run;

Notice how the style element REF is composed of
attributes whose labels are enclosed in quotes. Any
attribute name enclosed in quotes is called a user-
defined attribute. These attributes can be used by other
attributes to group common elements. If you want to
change all occurrences of the color black to the color
blue, all you would need to do is change the reference
color instead of searching through your style for all
instances of the color black.

All references are resolved the first time a style is used.
If a reference cannot be resolved, then a warning is
printed to the log and the value of the attribute remains
unset. You can use the special reference value
SYMGET to reference a macro variable directly:

proc template;
...
style cell / background=symget(“bg”);
...
run;

%let bg=red;

... sascode ...

The macro reference is resolved each time the style
element is used so the value can change between uses.
This is a very powerful technique, but it can be costly
performance-wise due to the potential number of times
the macro variable may be queried.

In Version 8 there is also the special value, _UNDEF_. If
an attribute is marked _UNDEF_ then the value of the
style attribute is considered not set, even if an inherited
parent has declared the value specifically.

style data from cell /
 background=_undef_;

5(3/$&(�6WDWHPHQW
The style in the previous examples is a good example of
how to build a standalone style. But what if you want to
keep your master style the way it is and change it
subtly? For instance, if you wanted to keep the structure
of the master style (for example, the inheritance path,
the style element names), and if you wanted to change
just the colors, how would you go about it? There are
two ways. The brute-force method would be to copy the
source using the SOURCE statement in PROC
TEMPLATE, change the values that you wanted to
change, and then recompile it using another name. This
method works great for small styles but isn’t so
wonderful for larger ones. The second, more elegant,
solution is to use style inheritance. Style inheritance is a
little different than style element inheritance using
FROM. Style inheritance uses the PARENT= attribute.

proc template;
 define style styles.MySecondStyle;
 parent=style.MyFirstStyle;
 end;
run;

The above code creates a new style called
Styles.MySecondStyle that is an exact copy of your first
style. If you wanted to change the Data element to add
FLYOVER text, you would just override the element
definition.

proc template;
 define style styles.MySecondStyle;
 parent=styles.MyFirstStyle;
 style data from data /
 flyover=”Data Cell”
 ;
 end;
run;

Notice here that Data inherits FROM Data. The parent
Data is contained in the parent style,
styles.MyFirstStyle. It is illegal to inherit FROM an
element of the same name when the element does not
exist in a parent inheritance layer. Using FROM in this
context appends or overrides any attributes specified in
the parent element. Conversely, if you wanted to
override the Data style element in its entirety, then you
would leave the FROM clause off.

You have successfully added the FLYOVER attribute to
the Data element. But what happens when you want to
change the Cell element such that the changes to Cell
cascade down to both Header and Footer? Changing
the Cell element with the STYLE statement will only
affect the Cell element ! For instance,

proc template;
 define style styles.MySecondStyle;
 parent=styles.MyFirstStyle;
 style cell from cell /
 flyover=”Cell”
 ;
 end;
run;

You have modified Cell, but SAS output does not use
Cell for actual rendering, it uses Header and Footer
which inherit from Cell. Cell is an abstract definition.
What you really want is for the new values in Cell to
trickle down to Header and Footer. The way to achieve
this effect is by using REPLACE.

proc template;
 define style styles.MySecondStyle;
 parent=styles.MyFirstStyle;
 replace cell /
 foreground=ref(“cellfg”)
 background=ref(“cellbg”)
 font=ref(“cellfont”)
 flyover=”Cell”
 ;
 end;
run;

REPLACE causes the element definition to appear as if
it were replaced in the parent style. Note that the
element definition is replaced in its entirety! This
includes any FROM that is specified.6 Because of this
restriction, you must copy any values from the parent
that you want kept as part of the element. When the Cell
element is replaced in the parent, all elements inheriting
from Cell will pick up the new definition.

Currently, there is no way to override part of or append
to a style element that you want to replace - you must
replace the element completely. Under investigating is
an OVERRIDE statement that would act as STYLE does
but affect only the parent style element.

A note of warning: using REPLACE can sometimes
result in confusing warning messages. Most often these
warning messages are the result of replacing a style
element that was being used by another style element in
the parent style, but forgetting to include all of the
attributes that the parent style needs. If the parent style
can’t find a color, for instance, it will complain. Practice
caution when using REPLACE.

6W\OHV�'HIDXOW
Now that you have mastered styles, take a look at
Styles.Default and Styles.D3D.

proc template;
 source styles.default;
 source styles.D3D;
run;

Styles.Default is the master style in the system. The
elements defined by this style are used by all of the
procedures that generate ODS output. To create a new
style, you should PARENT= off of Styles.Default and
modify the elements that give you the desired effect. As

6 In fact, you can use REPLACE to change the
inheritance path of a style element. Just change the
FROM value and you have modified the parent style
element to inherit from a different element.

an example, consider Styles.D3D. This style mostly
overrides colors, but it also does some replacing of
system style elements as well.

A good example of producing a corporate style can be
found at: http://www.sas.com/rnd/base/topics/style-
template/style.html. This paper was written by the
infamous Paul Kent and shows you how to take an
existing background image (your company’s logo
perhaps) and extrapolate it into a full-blown style. The
best way to learn about styles is to try one so you are
encouraged to check this example out. You can take a
look at some of the output that uses this style in Figure
5 in the Appendix.

Conclusion
There is a loud explosion, and a twenty-foot hole
appears in the far wall, burying the dwarves in the
rubble. You march through the hole and find yourself in
the main office, where a cheering band of friendly elves
carry the conquering adventurer off into the sunset.

PROC TEMPLATE is a powerful tool for manipulating
SAS output. With it, you can

• modify any procedure output that uses a template
• create stand alone reports by binding a template to

a data step
• create custom styles for jazzing up your

presentations and reports
• achieve output enlightenment

We look forward to hearing from you at future
conferences.

XYZZY.

Contact Information
The SAS Institute elves that bring you ODS are very
excited about the potential of these new capabilities of
the SAS System. You can send electronic mail to
ods@sas.com with your comments, or if you prefer, to
beg for a map. You can also contact the bearded pirate
directly at sascro@sas.com

We will be adding more information about ODS
capabilities to the Research and Development section of
SAS Institute’s Web Page. See
http://www.sas.com/rnd/base/

References
Kelley, D. W. and McNeill S. L. (1999), “Getting Stylish
with Version 7 Base Reporting,” in the Proceedings for
the Twenty-Fourth Annual SAS Users Group
International Conference, Cary, NC: SAS Institute Inc.

Heffner, W. F. (1998), “ODS: The Data Step Knows,” in
the Proceedings for the Twenty-Third Annual SAS

Users Group International Conference, Cary, NC: SAS
Institute Inc.

If you are interested in playing the Colossal Cave
Adventure, see http://www-tjw.stanford.edu/adventure/.
General information about the game can be found at
http://people.delphi.com/rickadams/adventure/index.html

SAS and SAS/GRAPH are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective
companies.

Appendix

Figure 1:

data budget;
 input QTR @8 Dept $10. @22 Account $8. Budget Actual;
 attrib Actual format=dollar11.2
 Budget format=dollar11.2
 Dept format=$10.
 QTR format=best4.
 Diff format=dollar11.2;
diff = actual - budget;
datalines;
 1 Staff fulltime 130000.00 127642.68
 2 Staff fulltime 165000.00 166345.75
 1 Staff parttime 40000.00 43850.12
 2 Staff parttime 60000.00 56018.96
 1 Equipment lease 40000.00 40000.00
 2 Equipment lease 40000.00 40000.00
 1 Equipment purchase 40000.00 48282.38
 2 Equipment purchase 20000.00 17769.15
 1 Equipment tape 8000.00 6829.42
 2 Equipment tape 12000.00 11426.73
 1 Equipment sets 7500.00 8342.68
 2 Equipment sets 7500.00 8079.62
 1 Equipment maint 10000.00 7542.13
 3 Staff fulltime 130000.00 127642.68
 4 Staff fulltime 165000.00 166345.75
 3 Staff parttime 40000.00 43850.12
 4 Staff parttime 60000.00 56018.96
 3 Equipment lease 40000.00 40000.00
 4 Equipment lease 40000.00 40000.00
 3 Equipment purchase 40000.00 48282.38
 4 Equipment purchase 40000.00 17769.15
 3 Equipment tape 8000.00 6829.42
 4 Equipment tape 12000.00 11426.73
 3 Equipment sets 7500.00 8342.68
 4 Equipment sets 7500.00 8079.62
 3 Equipment maint 10000.00 7542.13
 4 Equipment maint 12000.00 10675.29
 3 Equipment rental 4000.00 3998.87
 4 Equipment rental 6000.00 5482.94
 3 Facilities rent 24000.00 24000.00
 4 Facilities rent 24000.00 24000.00
 3 Facilities utils 5000.00 4223.29
 2 Equipment maint 12000.00 10675.29
 1 Equipment rental 4000.00 3998.87
 2 Equipment rental 6000.00 5482.94
 1 Facilities rent 24000.00 24000.00
 2 Facilities rent 24000.00 24000.00
 1 Facilities utils 5000.00 4223.29
 2 Facilities utils 3500.00 3444.81
 1 Facilities supplies 2750.00 2216.55
 2 Facilities supplies 2750.00 2742.48
 1 Travel leases 3500.00 3045.15
 2 Travel leases 4500.00 3889.65
 1 Travel gas 800.00 537.26
 2 Travel gas 1200.00 984.93

 1 Other advert 30000.00 32476.98
 2 Other advert 30000.00 37325.64
 1 Other talent 13500.00 12986.73
 2 Other talent 19500.00 18424.64
 1 Other musicfee 3000.00 2550.50
 2 Other musicfee 5000.00 4875.95
 4 Facilities utils 3500.00 3444.81
 3 Facilities supplies 2750.00 2216.55
 4 Facilities supplies 2750.00 2742.48
 3 Travel leases 3500.00 3045.15
 4 Travel leases 4500.00 3889.65
 3 Travel gas 800.00 537.26
 4 Travel gas 1200.00 984.93
 3 Other advert 30000.00 32476.98
 4 Other advert 30000.00 39325.64
 3 Other talent 13500.00 12986.73
 4 Other talent 19500.00 39424.64
 3 Other musicfee 3000.00 2550.50
 4 Other musicfee 5000.00 4875.95
;
run;

Figure 2:

Figure 3:

Figure 4:

Figure 5:

	p: Paper 56

