

Benefits of multithreaded applications

D a n i e l T h u n e l l

Master of Science Thesis

Stockholm, Sweden 2007

ECS/ICT-2007-65

MSc Thesis Report Daniel Thunell

 i

Abstract

This is a master thesis of which the purpose is to find the benefits and

increase of performance that are possible when going from a single threaded,

sequential application to a multi threaded parallel. The theses will be based

on a real life example where a company need an application that will act as a

bridge between their existing program and a server to which they need to

communicate. The application will be developed in Java and use an existing

API for the server communication.

This application will be tested to see how well it interacts with the server,

what performance it can deliver and how this performance relates in a multi

threaded environment.

We will see that by utilizing the parallelism of a multithreaded application

we can boost performance by an incredible 500% compared to sequential

computing. This result should be considered a clear indicator of the

performance gains made possible from multi threading. Besides sheer

performance, writing applications that work with several threads also

prepares for future scalability. Giving you the possibility to add more

threads at a later point, should the load on the application increase.

MSc Thesis Report Daniel Thunell

 ii

Sammanfattning
Det här ett examensarbete vars mål är att hitta de fördelar och prestanda

vinster som är möjliga när en applikation går från att vara enkel-trådat och

sekventiellt till fler-trådat och parallellt. Examensarbetet kommer att baseras

på ett exempel ur verkliga livet där ett företag behöver en applikation som

ska fungera som en brygga mellan deras existerande program och en server

med vilken de kommunicerar. Applikationen kommer att utvecklas i Java

och använda sig av ett befintligt API för server kommunikationen.

Den utvecklade applikationen kommer att testas för att se hur väl den

interagerar med servern, vilken prestanda den levererar och hur dess

prestanda relaterar till den fler-trådade miljön.

Vi kommer att se att genom att utnyttja parallellismen som uppstår av att

använda flera trådar kan vi öka prestanda med hela 500% jämfört med att

arbeta sekventiellt. Detta resultat borde anses vara en tydlig indikator av

prestandavinsterna som möjliggörs av att använda flera trådar. Förutom ren

prestanda ger applikationer skrivna för att använda flera trådar en grund för

framtida skalbarhet. Genom att ge möjligheten att lägga till fler trådar vid ett

senare tillfälle om arbetsbördan på applikationen skulle öka.

MSc Thesis Report Daniel Thunell

 iii

Table of Contents
1 Introduction with goals and extent _______________________________1

2 Syllabus ___2

3 Description of system___3

3.1 The platform __3

3.2 The Carrier__3

3.3 The Application __3

4 Background material__5

4.1 The SMPP protocol _______________________________________5

4.1.1 SMPP protocol versions ________________________________5

4.2 SMPP bind modes __5

4.2.1 Receiver mode _______________________________________5

4.2.2 Transmitter mode _____________________________________6

4.2.3 Transceiver mode _____________________________________7

4.2.4 Synchronization ______________________________________7

4.3 SMPP API’s___7

4.3.1 The Logica SMPP API _________________________________8

4.3.2 OpenSMPP / SMS Tools _______________________________8

4.3.3 Other API’s__8

5 Problem formulation__9

6 Design__10

6.1 Programming Language and API ___________________________10

6.1.1 Programming Language _______________________________10

6.1.2 API ___10

6.2 Design __10

6.2.1 Basic concepts ______________________________________10

6.2.2 Traffic and Work Distribution __________________________11

6.2.3 Main Thread __12

6.2.4 Sender Threads ______________________________________12

6.2.5 Receiver Threads ____________________________________13

7 Implementation___14

7.1 Classes __14

7.1.1 Server ___14

7.1.2 ServerProperties _____________________________________14

7.1.3 Receiver ___14

7.1.3 Sender ___14

7.1.5 Handler __14

7.1.6 SMS __15

7.1.7 SMSList ___15

7.1.8 MiddleWare __15

7.1.9 LogFile __15

8 Tests ___16

8.1 Message Generation Speed ________________________________16

8.1.1 The Test ___16

8.1.2 Test Environment ____________________________________16

8.1.3 Result ___17

8.1.4 Conclusion ___17

8.2 Concurrent message generation_____________________________18

8.2.1 Background___18

8.2.2 The Test ___18

MSc Thesis Report Daniel Thunell

 iv

8.2.3 Test Environment ____________________________________18

8.2.4 Result ___19

8.2.5 Conclusion ___20

9 Presentation and discussion of the results ________________________21

10 Conclusions __22

11 References ___24

MSc Thesis Report Daniel Thunell

 v

List of figures

Figure 1: SMPP Receiver Session_________________________________6

Figure 2: SMPP Transmitter Session_______________________________7

Figure 3: Sender Thread Flowchart _______________________________13

Figure 4: Receiver Thread Flowchart _____________________________13

Figure 5: Message Generation Test Result _________________________17

Figure 6: Concurrency Test Result _______________________________20

MSc Thesis Report Daniel Thunell

 vi

List of tables

Table 1: Client Specifications ___________________________________16

Table 2: Server no. 1 Specifications ______________________________16

Table 3: Message Generation Test Result __________________________17

Table 4: Server no. 2 Specifications ______________________________18

Table 5: Server no. 3 Specifications ______________________________18

Table 6: Server no. 4 Specifications ______________________________19

Table 7: Concurrency Test Result ________________________________19

MSc Thesis Report Daniel Thunell

 1

1 Introduction with goals and extent

This thesis will handle a problem that commonly arises in the computer

application development world. A system built for a specific task that works

without complications for that task need to be modified in order to comply

with a new situation. The base for this will be a “hands-on”, real life

example.

A company working with an SMS subscription service has developed and

built their own Java™ system. Their system generates the text messages to

be delivered to the subscribers of that service, and distributes them to the

subscribers’ mobile phone carrier. Most of the carriers to which the

company deliver text messages use similar delivery systems for injecting the

messages into their networks and the companys system is built to handle

this. However one carrier has a completely different way of injecting

messages. Therefore an additional piece of software needs to be added to the

system to cope with that specific way of communicating with the carrier.

That additional software is the system that is the subject of this

investigation.

This software will act as a bridge between the existing traffic generating

platform and the carrier delivering that traffic. In this case the system will

distribute the incoming traffic among its threads that send the traffic to the

distributor.

This study will have two related but different goals following the

development of this system. Firstly how performance can be improved by

going from a single-threaded process to a multithreaded process. The other

major goal of this study is to highlight some key issues to keep in mind

when developing software that is adaptable to new situations. That is,

software that can easily be threaded to handle increases in load and software

that is easily configurable for handling new situations that arise with

changes over time.

MSc Thesis Report Daniel Thunell

 2

2 Syllabus
SMSC Abbreviation for Short Message Service Center.

The gateway to which content providers submit

data for delivery to the mobile phone network.

ESME Abbreviation for External Short Message

Entity. The client which connects to the SMSC.

SMPP Short Message Peer to Peer protocol. Protocol

for communication between SMSC and ESME.

Outbound (traffic) The term outbound will be used for traffic

going from the platform to the SMSC.

Inbound (traffic) Consequently the term inbound will be used for

traffic coming from the SMSC and going in to

the platform.

Operator / Carrier /

Service Provider /

Distributor

 These terms will be used interchangeable to

describe the owner of the SMSC. The party

responsible for the delivery of SMS messages

to the mobile phones.

Platform The back-end system to which the bridge will

be connected.

Application /

Bridge / System

 These terms will be used interchangeable for

the program that is the subject of this thesis.

MSc Thesis Report Daniel Thunell

 3

3 Description of system

The application that is the subject of investigation in this thesis is built to act

as a bridge between an existing platform and a mobile phone carrier. The

application will handle traffic both coming from the platform and going to

the carrier; from our point of view this will be called outbound traffic. As

well as traffic originating from the subscribers and coming from the carrier

in to the platform, we will call this traffic inbound.

It is important that the developed application not only fulfills the current

needs, but also is able to handle an increased traffic load should the number

of subscribers grow.

3.1 The platform

The platform is an existing system used by a company to generate and send

SMS text messages to subscribers. It is to this system the Application will

be connected. It picks up texts from a database and matches these texts

against different keywords. Stored in a second database are subscribers who

have chosen certain keywords that they want to watch for their subscription.

The platform then matches the texts with the subscribers’ keywords and

generates SMS messages with the matched texts to be sent to the

subscribers.

Also, the platform handles incoming SMS messages coming from the

subscribers to start and stop their subscriptions. In its current deployment

this platform only supports communication with the mobile phone carrier

using the HTTP protocol. Since one of the providers the company works

with wants the messages for it’s subscribers to be delivered over the SMPP

protocol, and the company don’t want to redesign its current platform for

this, an extra layer of software is required. This software layer will behave

against the platform just like its current send method and then connect to

the carrier using the SMPP protocol and deliver the SMS messages.

3.2 The Carrier

The carrier is a mobile telephone service provider, who has granted the

company access to their server working as an SMSC. SMS messages that

are to be delivered to carriers customers (the company’s subscribers) should

be transmitted to the SMSC using the submit_sm command of the SMPP

protocol. From the same SMSC, SMS messages coming from the

subscribers can be retrieved. This is the functionality that is to be provided

by the Application.

3.3 The Application

The Application will provide two methods that are to be used for

communication with the platform.

One to which the platform can send out the SMS messages it generates. This

method is constructed so that the platform can send its messages using this

new method with as little modification as possible. The Application will

connect to the SMSC using the SMPP protocol and it is on this connection

MSc Thesis Report Daniel Thunell

 4

which the outbound messages will actually be delivered and the inbound

SMS messages retrieved.

The other method provided by the Application will handle the inbound

messages received from the SMSC. It will call the same method the

platform uses to handle incoming messages as the old implementation in the

platform does. This means that the platform will not notice that the

messages have been received using a new method.

Since the outbound traffic load will be much heavier then the inbound traffic

load, which consists solely of “start subscription” and “stop subscription”

messages, only the outbound traffic will be handled multithreaded and the

inbound traffic will be handled by a single thread.

MSc Thesis Report Daniel Thunell

 5

4 Background material

4.1 The SMPP protocol

“The Short Message Peer to Peer (SMPP) protocol is

an open industry standard messaging protocol

designed to simplify integration of data applications

with wireless mobile networks ...” [1]

The Short Message Peer to Peer protocol was developed by the Irish

company Aldiscon, later bought by Logica who in turn handed it over to the

SMS Forum organization [2].

It is used to connect a client called an External Short Message Entity

(ESME) to a server called Short Message Service Center (SMSC) using a

TCP/IP connection on an arbitrary port. Communication between the ESME

and the SMSC is handled using a request-response scheme with predefined

Protocol Data Units (PDU’s). This communication may be handled in both a

synchronous fashion, i.e. each peer waits for a response for the last PDU

before sending the next or asynchronous where sending and receiving are

handled separately.

4.1.1 SMPP protocol versions

The latest version of the SMPP protocol is 5.0 [3], but versions 3.3 and 3.4

are the most commonly used [2].

Versions 1.0 to 3.3 are the original specification as defined and owned by

Logica [4]. The first version of the protocol released by the SMS forum after

taking over the protocol from Logica was version 3.4.

Version 4.0 was an independent customization of the protocol for the

Japanese market by Logica who still owns this version [4].

This is why the latest version of the protocol specification was named 5.0

instead of 3.5, to clarify that it actually is the most recent version. It includes

several changes defined during the lifetime of version 3.4 [4].

4.2 SMPP bind modes

The SMPP protocol supports different ways for the ESME to connect to the

SMSC called Bind modes. These modes allows for different operations to be

preformed on the established connection. Version 3.3 specifies two different

bind modes for the ESME; Receiver and Transmitter. The newer version 3.4

added a third complimentary bind-mode called Tranceiver.

4.2.1 Receiver mode

An ESME bound to a SMSC as a receiver can, as the name states, receive

messages from the SMSC. These will typically be SMS messages

originating from the customers of the provider owning the SMSC. For each

PDU received from the SMSC a response PDU is sent back.

From [4] a typical receiver session is shown in figure 1 below. Where the

ESME binds to the SMSC, receives two messages from the SMSC, sends

responses to each of them, and then unbinds.

MSc Thesis Report Daniel Thunell

 6

Figure 1: SMPP Receiver Session

4.2.2 Transmitter mode

The transmitter mode is the opposite of the receiver mode. When an ESME

is bound as a transmitter it is only allowed to submit SMS messages to the

SMSC. These messages are often called mobile terminated messages, i.e.

messages whose final destination is a mobile device. For each submitted

message a response PDU is received from the SMSC.

Also from [4] is an example session, depicted in figure 2 below. Here the

ESME connects to the SMSC and binds as a transmitter. Two messages are

submitted and one is cancelled. Each message is followed by a response

from the SMSC. Finally the ESME unbinds and closes the connection.

MSc Thesis Report Daniel Thunell

 7

Figure 2: SMPP Transmitter Session

4.2.3 Transceiver mode

Introduced in version 3.4 of the SMPP protocol is the third binding option

for the ESME. This is called Tranceiver mode, which as the name suggests

is a combination of Transmitter mode and receiver mode. When bound as a

Tranceiver the ESME can both send and receive PDU’s to/from the SMSC

using one single connection. This mode however will not be used in this

application.

4.2.4 Synchronization

In the examples shown above all messages exchanged between the SMSC

and the ESME are synchronous, i.e. each request is immediately followed

by a response. But the SMPP protocol also supports communication in a

asynchronous fashion where responses to requests are sent and received in

an arbitrary order.

4.3 SMPP API’s

There are several different API’s available to use for SMPP development. A

Google [5] search for “smpp api” yielded in 123 000 results on 2006-01-15.

SourceForge [6] hosted 26 project related to SMPP on the same date. Here

is a breakdown of the major API’s.

MSc Thesis Report Daniel Thunell

 8

4.3.1 The Logica SMPP API

Available from Logicas website [7] is the official API to SMPP. This API

was developed by the same company that originated the SMPP protocol

itself. It is written in Java and has been made available as open source. It is

however no longer supported by Logica as they have handed over

responsibility for the SMPP protocol to the SMS Forum group. The latest

release of this API is 1.3 which was released on 2001-11-28.

4.3.2 OpenSMPP / SMS Tools

This API is based on the API from Logica and is developed under

supervision of the SMS Forum. It is developed as a community effort and

released as open source. It can be freely downloaded from SourceForge [8].

Since it is a free, open source project it has no support “help line”, but it has

a section devoted to it on the SMS Forum’s message board [9] where help

can be found.

As it has derived from the Logica API it is consequentially developed in

Java. The latest version is 2.0, released on 2006-05-09.

4.3.3 Other API’s

There are several other API’s available, both commercial and open source.

Among the open source API’s these can be mentioned to show the width of

programming languages supported.

• RoaminSMPP [10]. Developed in C#, fully compliant with SMPP

version 3.4

• Easy Messaging Gateway [11

http://sourceforge.net/projects/easymessaging]. Written for the .NET

2.0 platform in C#

• OSERL (Open SMPP Erlang Library) [12]. Erlang implementation

of the SMPP protocol, covering the entire version 5.0 specification.

• Lightweight PHP SMPP API [13]. PHP implementation of the

SMPP 3.3 and SMPP 3.4 API.

There are other API’s are available for programming languages such as C,

C++ and Python, as well as another Java API [14] independent from the

Logica and OpenSMPP API’s.

MSc Thesis Report Daniel Thunell

 9

5 Problem formulation

The problem that has been investigated is how to best build an extension to

an existing system. The new application should efficiently interact with the

existing system without having to change too much in it. As with all

applications it should work efficiently and be reasonably tolerant. As it will

be a system working in a live communication environment it is important

that it is prepared to be easily scalable, so that can be expanded on short

notice if the load to be handled increases rapidly. To support this, the

developed application will work multi-threaded, to utilize the parallelism of

modern computers. This application should have considerable performance

improvements compared to ordinary sequential computing.

MSc Thesis Report Daniel Thunell

 10

6 Design

6.1 Programming Language and API

6.1.1 Programming Language

The Application was developed in Java, this since the existing system to

which the Application was to be connected was developed in Java. Of

course this does not necessarily mean that the Application would have to be

implemented in Java as well, but the task of developing the Application

came with the preface that it should be. The Java version to be used was

1.4.2 of the Java SDK, this in order to be compliant with the Platform with

which the Application will interact and the JVM it runs on.

6.1.2 API

The first choice in the development was to choose which API to build the

new application around. For the first cut all the API’s developed for

programming languages other than Java were removed. When there were

several Java API’s available there was no need to complicate things by

using an API written in another language and write some wrapping code for

this.

Since it had to be a free API, a preface made by the company, there were

only three choices to be consideration; The Logica API [7], the OpenSMPP

API [8] and the Java SMPP API [14]. One major reason for this selection

was that they were the most downloaded from SourceForge, and should

therefore have undergone enough inspection to be considered reliable code

wise and conforming to the protocol specification.

In the end the choice fell on the OpenSMPP API. The Java SMPP API felt

inferior to the others since they both originated from the company that

developed the SMPP protocol itself. When choosing between the Logica

API and the OpenSMPP API the choice was not obvious. The bottom line is

that the OpenSMPP API is essentially just an updated version of the Logica

API. So the choice really is a choice between what’s been thoroughly used

and tested versus what’s new and improved. Here the latter was chosen,

mainly due to the more active support group, which was considered a

valuable resource, should something go wrong (and it would be naïve to

assume that nothing would).

6.2 Design

6.2.1 Basic concepts

One main though ran through the entire design process, “keep it simple”.

Since this was going to be a rather small scale system, running on a server

that performance wise is similar to an average PC it was felt necessary not

to make things more complicated than they had to be just for the sake of

neatness.

From the beginning it was stated that the application should be scalable, i.e.

be able to handle an increased load without having to so much changes to

the application. To be able to change the settings of the application easily

MSc Thesis Report Daniel Thunell

 11

without having to recompile the entire project for each change Java’s

properties was used. This allows for values to easily be read from a file and

inserted into the running program. To utilize this all values for settings that

could be subject to change is stored in a configuration (or properties) file.

Such values include IP address of the SMSC, account information with

passwords etcetera.

To make the Application easily scalable the best solution is to make it multi

threaded. Then you could scale its capacity by adding more threads. The

number of threads to be used can be entered into the properties file and the

system would scale without recompilation.

6.2.2 Traffic and Work Distribution

One important note while designing this application is how the traffic that

the application will work with is distributed. First inbound and outbound

traffic can be separated.

The inbound traffic is only used to close a subscription. So in the system

where the application will be used the outbound traffic is then many times

higher than the inbound traffic. No exact data on this is available but the

company approximates that the relation between inbound and outbound is at

least 1 against 100, but probably higher. Keeping this in mind one thread to

handle the inbound traffic should easily suffice. It’s clear that it’s the sender

thread that needs to be quantified, and the number of threads that will be

used is to be determined later.

When designing a multithreaded application you need to think about how to

distribute the workload. One idea is to spawn a new thread each time a

request arrives. But this has both general and specific drawbacks. As stated

on [15]

“One of the disadvantages of the thread-per-request

approach is that the overhead of creating a new thread

for each request.”

Basically this means that if a server that creates new threads for each

request, and the number of request are high, it would spend more time and

resources creating and destroying the threads than actually processing the

requests. [15] continues.

“Creating too many threads in one JVM can cause the

system to run out of memory or thrash due to

excessive memory consumption.”

This should not be a problem for this specific Application, but it is

important to keep in mind that you need to have control over how many

threads your application creates. Also specifically for this application the

above approach would not be optimal due to the nature of request. The

messages that are to be sent will arrive in larger bunches with relatively long

intervals. This means that with the above approach you would not utilize the

parallelism of a multi threaded system well since one thread would take all

the messages associated with one request, process them and probably be

ready by the time the next bunch of messages arrive. All while the other

threads do nothing.

MSc Thesis Report Daniel Thunell

 12

An approach more suited for this application is the so called Bag of Tasks. It

works as follows: One thread gathers the tasks to be preformed and stores

them in a “bag”. A number of worker threads check the “bag” if there are

any tasks to be preformed. If there are, the worker takes them from the

“bag” and performs them. Gregory A. Andrews states this about the Bag of

Tasks approach in [16]

“The bag-of-tasks paradigm has several useful

attributes. First it is quite easy to use. … define the

representation for a task, implement the bag, [and]

program the code to execute a task …. Second,

programs that use a bag of tasks are scalable …

merely by varying the number of workers.”

This matches well with the statements made for the Application; it should be

scalable and simple. For this application load balancing between the threads

is not necessary. It is not interesting which thread sends the messages, only

that they get sent.

This approach also handles the second problem with the one-thread-per-

request approach, namely that of utilizing the parallelism. If the number of

messages that arrive in a single request is large, the first worker to check the

“bag” does not have to take all of the messages, but can rather take a subset

of messages and leave the rest for another worker (or itself should it be done

and check the “bag” before any other thread does).

Another thing that is made easy by this approach is the mean to “tweak” the

Application to an optimal number of threads. Of course you could spawn

threads dynamically if the number of running threads is less than some pre

defined threshold. But this would require more complex code. So for the

sake of simplicity this approach is better suited.

6.2.3 Main Thread

The application launches with a main thread that in turn creates and starts

the receiver thread and all the sender threads. The main thread is then

responsible for receiving the SMS messages the platform has generated and

sent to the Application. The main thread distributes them among the

Application’s sender threads that then will send the messages to the carrier.

6.2.4 Sender Threads

Each of the sender threads takes the SMS messages assigned to it by the

main thread, establishes a SMPP connection with the carriers SMSC and

sends the messages to the SMSC. When the thread is has sent all it’s

messages, it disconnects from the SMSC and goes back to idle until it gets

another list of messages assigned to it by the main thread.

MSc Thesis Report Daniel Thunell

 13

Figure 3: Sender Thread Flowchart

6.2.5 Receiver Threads

The receiver thread periodically establishes a SMPP connection with the

carriers SMSC and checks with the SMSC if there are any inbound

messages stored. At this point one of two things happens.

1. There are some messages present at the SMSC. These are then

retrieved sequentially until none are left. The receiver thread then

disconnects from the SMSC and forwards all the SMS messages to

the platform.

2. No inbound messages are found at the SMSC at this time. If this is

the case the receiver thread simply disconnects.

In both cases, when the receiver thread is done it idles for a pre-defined time

before repeating the procedure

Figure 4: Receiver Thread Flowchart

Connect

Idle

Connected Submit

Assigned by Main

Successful All submitted

Messages left

Connect

Idle

Connected

Check Retrieve

Timer

Successful

New messages

No messages

All
retrieved Messages

 left

To platform

MSc Thesis Report Daniel Thunell

 14

7 Implementation

7.1 Classes

The desired behaviour of the Application was described in chapter 3. To

achieve this behaviour, according to the design from the previous chapter,

the Application was developed with one main class, two classes to be

threaded. Some additional help-classes were developed as well. This chapter

will give a brief explanation of the classes that were developed for the

Application.

7.1.1 Server

This is the main-class, i.e. the class that launches the application. It takes the

file path to the properties file as argument, creates a ServerProperties

object to hold these properties and then spawns the Receiver thread and

all of the Sender threads. Then the thread waits until some SMS messages

to be delivered are received. These are then distributed in predefined

bunches to the sender threads in the order they become available.

7.1.2 ServerProperties

This is the class of which the Server class creates an instance to hold the

properties. It reads in all the properties from the file and stores them

internally. It also provides access methods to these properties so the

application can use them.

7.1.3 Receiver

The behaviour of this thread was explained in chapter 3.3.3 and its design is

rather straight forward. Create a Handler object using the

ServerProperties object the Server thread created and a flag for the

bind mode receiver. Check for, and receive, all messages on the SMSC

using the receiveList method provided by the Handler. If the

message is not empty, call the inbound method of the MiddleWare

class. When all is done, the thread idles using Java’s sleep command.

7.1.3 Sender

This threads behaviour was explained in chapter 3.3.2. It starts similar to the

receiver thread in that is creates a Handler object, but obviously set as

transmitter instead of receiver. Then the thread takes the list of outbound

SMS messages it was assigned and calls the handlers submitList method

to send them to the carrier. When it has sent all its messages, the thread will

idle until the Server thread assigns it with another list of messages.

7.1.5 Handler

The handler class is the class that manages all communication with the

SMSC. A handler object is created with the ServerProperties object

the Server thread created. From this all necessary information needed to

communicate with the SMSC is available, such as; IP address, port,

MSc Thesis Report Daniel Thunell

 15

username and password. This is the class that accesses the OpenSMPP API.

The API provides methods for binding with the SMSC as well as for

composing PDU’s.

7.1.6 SMS

This class simply stores a SMS message internally. It only has two fields,

one for the text in the message and one for the phone number. The phone

number field is used as destination number for outbound messages and as

source number for inbound messages.

7.1.7 SMSList

The SMSList class is used internally for grouping together the SMS

objects. It is built around Java’s Arraylist, but provides its own access

methods.

7.1.8 MiddleWare

This is the “glue” between the Application, described in chapter 3.3, and the

Platform, described in chapter 3.1. It provides two methods, one that the

Platform calls to send messages into the Application and one that the

Application calls when it has received SMS messages to send these in to the

Platform.

7.1.9 LogFile

This class does not add any functionality to the Application necessary for its

operation. It just simplifies the logging in that all classes can use it with just

one method call instead of implementing its own logging method.

MSc Thesis Report Daniel Thunell

 16

8 Tests

8.1 Message Generation Speed

8.1.1 The Test

The purpose of this test is to see how fast Application can generate and send

SMS messages to the SMSC. To do this a dummy server was set up using

the SMPPSim software freely available from Selenium Software Ltd [17].

The version used was 2.2.1. The SMPPSim application mimics the

behaviour of a SMSC and is compliant with SMPP protocol specification.

When it receives a submit_sm PDU it responds close to immediately with

a submit_sm_resp PDU.

To see how long the application takes to generate and submit a message a

timestamp was logged just before every message was submitted to the

SMSC/SMPPSim. The difference between these timestamps was then

calculated to see how long the application takes to run a cycle of generating

and sending messages. For each run 500 messages was sent to the

SMSC/SMPPSim and ten runs were made. The result is shown in section

8.1.3.

8.1.2 Test Environment

These are the computers that were used in this test. As client an Acer

TravelMate 380 laptop with the following specifications was used.

CPU Intel Pentium M @ 1.6 GHz

RAM 512 MB

OS Microsoft Windows XP Professional

Service Pack 2 (Build 2600)

Java SDK 1.4.2.13
Table 1: Client Specifications

As server, a standard desktop computer was used. It had the following

specifications.

CPU AMD Athlon XP 2800+ @ 2,080 GHz

RAM 1024 MB

OS Microsoft Windows XP Professional

Service Pack 2 (Build 2600)

Java SDK 1.5.0.7
Table 2: Server no. 1 Specifications

The client and server were connected using a TCP/IP connection over a

100MBps Ethernet connection.

MSc Thesis Report Daniel Thunell

 17

8.1.3 Result

Shown in the table below are the values that were calculated from the

collected timestamps of each run. Most important is the column that shows

the average generation time. This is the time it takes for the application to

complete the cycle of generating and sending one message.

Run# Avg. gen time Median Std. Dev.

1 10,4 10,0 6,9

2 8,9 10,0 6,1

3 8,1 10,0 6,2

4 9,3 10,0 14,7

5 8,2 10,0 6,0

6 8,0 10,0 6,3

7 8,5 10,0 6,2

8 8,2 10,0 5,8

9 8,7 10,0 6,4

10 8,2 10,0 6,2

Average 8,7 10,0 7,1

Table 3: Message Generation Test Result

The last row of table three shows the accumulated average of the ten runs. A

graphical representation of table three is shown in figure five below.

Message Generation Time

0,0000

2,0000

4,0000

6,0000

8,0000

10,0000

12,0000

14,0000

16,0000

1 2 3 4 5 6 7 8 9 10

A
ve
ra
ge

Run

m
s

Avg gen time Median Std dev

Figure 5: Message Generation Test Result

8.1.4 Conclusion

From table three we see that the average cycle time of the Application is

8,67 ms. This is equivalent to sending 115 messages per second. When the

MSc Thesis Report Daniel Thunell

 18

Application is run on a multi-core/multiprocessor computer each

simultaneous running thread should be able to achieve this capacity.

However it is important to notice that the actual number of messages per

second achieved is highly dependant on network and server latencies. If one

or both of these latencies grow, the number of messages delivered per

second will shrink.

8.2 Concurrent message generation

8.2.1 Background

In the original design idea of the Application one of the thoughts with using

several threads was that a number of threads would be used in the current

deployment to handle the current load and support handling an increased

load by adding more threads.

However it turned out that the Carrier to which the Application would

communicate with capacity limit of about 5 messages per second. When in

talks with the company that were to use the Application it was found out

that this was a typical setting, most carriers allowed around five to ten

messages per second, while some only allowed one!

8.2.2 The Test

With the Application being able to generate and send one message every 9

ms (as shown in section 8.1) it should be able to send five messages per

second to five different SMSC’s. If one thread is used for one SMSC each

thread should have enough idle time to let the other threads send to their

respective SMSC, and this on a machine with a single processor with only

one core.

8.2.3 Test Environment

The Application was run on the same client machine described in section

8.1.2, this machine also hosted one simulated SMSC which was reached

through its external IP address. The server used in section 8.1 was also used

for this test. The other three servers used are described below.

CPU AMD Duron 1400 @ 1,4 GHz

RAM 512 MB

OS Mandriva Linux 2007, Kernel 2.6.17

Java SDK 1.6.0
Table 4: Server no. 2 Specifications

CPU Intel Celeron @ 1,70 GHz

RAM 768 MB

OS Ubuntu Linux, Kernel 2.6.15

Java SDK 1.6.0
Table 5: Server no. 3 Specifications

MSc Thesis Report Daniel Thunell

 19

CPU Intel Pentium III @ 800 MHz

RAM 512 MB

OS Ubuntu Linux, Kernel 2.6.15

Java SDK 1.6.0
Table 6: Server no. 4 Specifications

These three servers were reached remotely using a high speed internet

connection. All five servers ran SMPPSim [17] version 2.2.1.

8.2.4 Result

For each run of this test the total number of messages sent by the

Application each second was counted. From this the average number of

messages sent per second per run was calculated as well as a total average of

the entire test. The result is shown in table seven below. When calculating

the median only seconds one through eight are considered as the remaining

columns have values far lower due to the fact that the list of SMS’s to send

ran out.

second 1 2 3 4 5 6 7 8 9 10 11

run Median

1 32 30 30 31 31 31 33 30 2 31,0

2 31 30 30 29 28 31 29 30 12 30,0

3 15 22 23 23 27 27 26 27 26 26 8 24,5

4 29 31 31 31 30 30 31 30 7 30,5

5 24 25 25 30 32 30 31 31 22 30,0

6 21 22 23 21 23 21 23 24 23 23 26 22,5

7 31 30 28 25 25 21 20 21 21 19 9 25,0

 average 27,6
Table 7: Concurrency Test Result

A graphical representation of the same data is shown in figure six below.

Where you can see how many SMS’s that the application was able to send

in one second during the entire test.

MSc Thesis Report Daniel Thunell

 20

No. SMS sent during one sec

0

2

4

6

8

10

12

14

33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3

No/sec

O
c
c
u
re
n
c
e
s

Figure 6: Concurrency Test Result

8.2.5 Conclusion

As shown in the previous chapter the Application can send five messages

per second to five different SMSC’s, while using only one processor core

none the less.

It is notable that in this test the Application still contains some sleep-time on

each thread so not to exceed any throttling limit to any of the SMSC’s. This

means that there is time left for the receiver thread to check the different

SMSC’s for inbound messages.

MSc Thesis Report Daniel Thunell

 21

9 Presentation and discussion of the results

The tests performed in section eight have shown that there are clear benefits

to be made from utilizing the parallelism derived from making an

application multithreaded. In this simple example the Application could

increase its performance by 500% by distributing its workload on five

threads instead of one. This increase should make it apparent that there is a

lot of performance to be gained from migrating to a multithreaded

environment.

One of the most interesting results from this test is the fact that this increase

in performance that came from multithreading was achieved on a computer

with only one processor core. This was made possible due to the fact that

there were considerable idle times involved that were the result of

limitations in communication speed that was set by the Carrier.

If the fact that this enormous increase in performance was possible with one

processor core is considered it should be clear that there could be even more

performance to be gained in environments in which several processors

and/or processors with more than one core are available. In these cases true

parallelism can be achieved and you would be able, at least in theory, to

increase your performance with the number of processor cores available to

you.

MSc Thesis Report Daniel Thunell

 22

10 Conclusions

Servers have long been equipped with several processors and also

processors with several cores, but now multi-core processors have taken the

leap into commercial computing as well with many, according to [18] Intel

expected 70% of new computers to be dual core by the end of 2006. Quad-

core processors are just being released to the market [19], and Intel already

has produced an experimental architecture with 80 processor cores that they

aim to mass-produce in only five years [20].

So in a world where computers with multi-core processors are becoming

more and more common, it becomes essential to write code that is either

multi threaded to begin with, or is prepared be multi threaded with little or

no change to be able to utilize the full potential of these systems. This thesis

has shown the gain of performance possible in a client-to-server

communication system by utilizing several threads.

However it is important to note that there is a threshold at which point more

threads does not add performance due to reasons outside the application

itself. This threshold is highly system dependent and could easily change

within the same system if different configurations and/or hardware were

used. The reasons this happens could be outside the computer running the

threaded application such as latencies in the network, or limitations within

the computer such as insufficient availability of system memory or simply

not enough processing power to utilize the threads. These two problems

would cause the system to spend an overhead in switching running threads

that would decrease overall performance.

For the system being used in this thesis there was a defined limitation in the

Carriers server limiting the capacity of requests that were able to be sent to

the SMSC to 5 SMS messages per second. This value could not be exceeded

by the client whether multi threaded or not. However, as mentioned earlier

this does not mean that this is an absolute top value for the system, just in its

current configuration. Adding more server capacity and increasing this limit

would leave an opening for more threads at the client side.

Of course there is also a threshold in the client at which point the gain of

spawning more client threads levels out. This is because the sheer number of

threads is too much for the client system to handle. Again this number

increases/decreases with the system configuration.

Due to the fact that the server was limited far below the capacity of the

developed Application, the Application was able to use the idle time to

communicate with five servers at the same time. This meant that by utilizing

the parallel behavior of multi threaded applications performance was

increased by 500% in comparison to communicating with all five servers

sequentially, and all this on just one processor core.

In general for service systems like this there is definitely an interest in

finding a way to distribute the work load on a number of threads for both

client and server in order to best utilize the system.

The conclusions above have been derived from these tests that were

preformed in this thesis. Which were firstly tests on how fast the

MSc Thesis Report Daniel Thunell

 23

Application could generate messages internally? In which it was found out

that the Application far exceeded the limitations set by the Carrier. Secondly

a test was conducted to see if the Application really could communicate

successfully with five servers at full speed. This test succeeded in

transmitting five SMS messages per second to five different SMSC’s

showing that a huge increase in performance was to be made by going in

parallel rather than sequentially.

By developing your applications to be multi threaded you make your

program easier to scale in the future should so be needed. You would only

need to add more threads to increase your computing power. Even if you

don’t need it now, you may need it in the future.

Multi threaded applications are especially useful in request driven

applications such as this or a web-server when you can let one thread handle

each request and thus reducing the overall response time in the system for

handling requests.

An important note when writing the threaded code is to do this effectively

and think through your design carefully. If for example your program needs

to access a shared resource, like a database of a printer, and access to it is

sequential. This may, and often will, lead to situations where several threads

are forced to wait for other threads to finish with the shared resource, thus

eliminating the concurrency gained from multithreading.

MSc Thesis Report Daniel Thunell

 24

11 References

[1] SMS Forum. Message Board, FAQ Section. [Online]

http://smsforum.net/smf/index.php?topic=269.0,

[2] Wikimedia Foundation. Wikipedia – The Free Online Dictionary,

SMPP [Online] http://en.wikipedia.org/wiki/SMPP.

[3] SMS Forum. [Online] http://www.smsforum.net.

[4] SMPP Protocol Specification Version 5.0. 2003. [Online]

http://www.smsforum.net.

[5] Google Inc. [Online] http://www.google.com.

[6] Open Source Technology Group Inc. SourceForge. [Online]

http://www.sourceforge.net.

[7] Logicas Inc. Logica SMPP API Website. [Online]

http://opensmpp.logica.com.

[8] OpenSMPP /SMS Tools. [Online]

http://sourceforge.net/projects/smstools/.

[9] SMS Forum. Message Board, Section APIs / OpenSMPP API.

[Online] http://smsforum.net/smf/index.php.

[10] RoaminSMPP. [Online] http://sourceforge.net/projects/roaminsmpp.

[11] Easy Messaging Gateway. [Online]

http://sourceforge.net/projects/easymessaging.

[12] OSERL (Open SMPP Erlang Library). [Online]

http://sourceforge.net/projects/oserl.

[13] Lightweight PHP SMPP API [Online]

http://sourceforge.net/projects/phpsmppapi.

[14] Java SMPP API [Online] http://sourceforge.net/projects/smppapi/.

[15] IBM Inc. Java theory and practice: Thread pools and work queues.

[Online] http://www-128.ibm.com/developerworks/library/j-

jtp0730.html

[16] Andrews, Gregory R. 2000. Foundations of multithreaded parallel

and distributed programming. ISBN 0-201-35752-6. United States of

America: Addison Wesley Longman, Inc.

[17] Selenium Software Ltd [Online] http://www.seleniumsoftware.com.

[18] CNet Networks Inc. CNet News [Online]

http://www.cnet.com.au/desktops/pcs/0,239029439,240053542,00.htm

[19] Intel Inc. Press Relase [Online]

http://www.intel.com/pressroom/archive/releases/20070108comp.htm.

[20] CNet Networks Inc. CNet News [Online]

http://news.com.com/Intel+pledges+80+cores+in+five+years/2100-

1006_3-6119618.html.

