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Abstract

Locales are Isabelle’s approach for dealing with parametric theories.
They have been designed as a module system for a theorem prover
that can adequately represent the complex inter-dependencies between
structures found in abstract algebra, but have proven fruitful also in
other applications — for example, software verification.

Both design and implementation of locales have evolved consider-
ably since Kammüller did his initial experiments. Today, locales are a
simple yet powerful extension of the Isar proof language. The present
tutorial covers all major facilities of locales. It is intended for locale
novices; familiarity with Isabelle and Isar is presumed.

1 Introduction

Locales are based on contexts. A context can be seen as a formula schema∧
x1. . . xn. [[ A1; . . . ;Am ]] =⇒ . . .

where the variables x1, . . . , xn are called parameters and the premises A1, . . . , Am

assumptions. A formula C is a theorem in the context if it is a conclusion∧
x1. . . xn. [[ A1; . . . ;Am ]] =⇒ C.

Isabelle/Isar’s notion of context goes beyond this logical view. Its con-
texts record, in a consecutive order, proved conclusions along with attributes,
which can provide context specific configuration information for proof pro-
cedures and concrete syntax. From a logical perspective, locales are just
contexts that have been made persistent. To the user, though, they provide
powerful means for declaring and combining contexts, and for the reuse of
theorems proved in these contexts.

∗Published in L. Lambán, A. Romero, J. Rubio, editors, Contribuciones Científicas
en honor de Mirian Andrés. Servicio de Publicaciones de la Universidad de La Rioja,
Logroño, Spain, 2010. Reproduced by permission.
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2 Simple Locales

In its simplest form, a locale declaration consists of a sequence of context
elements declaring parameters (keyword fixes) and assumptions (keyword
assumes). The following is the specification of partial orders, as locale
partial_order.
locale partial_order =
fixes le :: "’a ⇒ ’a ⇒ bool" (infixl "v" 50)
assumes refl [intro, simp]: "x v x"
and anti_sym [intro]: "[[ x v y; y v x ]] =⇒ x = y"
and trans [trans]: "[[ x v y; y v z ]] =⇒ x v z"

The parameter of this locale is le, which is a binary predicate with infix
syntax v. The parameter syntax is available in the subsequent assumptions,
which are the familiar partial order axioms.
Isabelle recognises unbound names as free variables. In locale assumptions,
these are implicitly universally quantified. That is, [[x v y; y v z]] =⇒ x
v z in fact means ∧

x y z. [[x v y; y v z]] =⇒ x v z.
Two commands are provided to inspect locales: print_locales lists the
names of all locales of the current theory; print_locale n prints the pa-
rameters and assumptions of locale n; the variation print_locale! n ad-
ditionally outputs the conclusions that are stored in the locale. We may
inspect the new locale by issuing print_locale! partial_order. The out-
put is the following list of context elements.

fixes le :: "’a ⇒ ’a ⇒ bool" (infixl "v" 50)
assumes "partial_order op v"
notes assumption

refl [intro, simp] = ‘?x v ?x‘
and
anti_sym [intro] = ‘[[?x v ?y; ?y v ?x]] =⇒ ?x = ?y‘
and
trans [trans] = ‘[[?x v ?y; ?y v ?z]] =⇒ ?x v ?z‘

This differs from the declaration. The assumptions have turned into con-
clusions, denoted by the keyword notes. Also, there is only one assump-
tion, namely partial_order op v. The locale declaration has introduced the
predicate partial_order to the theory. This predicate is the locale predicate.
Its definition may be inspected by issuing thm partial_order_def.

partial_order ?le ≡
(∀ x. ?le x x) ∧
(∀ x y. ?le x y −→ ?le y x −→ x = y) ∧
(∀ x y z. ?le x y −→ ?le y z −→ ?le x z)

In our example, this is a unary predicate over the parameter of the locale.
It is equivalent to the original assumptions, which have been turned into
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definition definition through an equation
inductive inductive definition
primrec primitive recursion
fun, function general recursion
abbreviation syntactic abbreviation
theorem, etc. theorem statement with proof
theorems, etc. redeclaration of theorems
text, etc. document markup

Table 1: Isar commands that accept a target.

conclusions and are available as theorems in the context of the locale. The
names and attributes from the locale declaration are associated to these
theorems and are effective in the context of the locale.
Each conclusion has a foundational theorem as counterpart in the theory.
Technically, this is simply the theorem composed of context and conclusion.
For the transitivity theorem, this is partial_order.trans:

[[partial_order ?le; ?le ?x ?y; ?le ?y ?z]] =⇒ ?le ?x ?z

2.1 Targets: Extending Locales

The specification of a locale is fixed, but its list of conclusions may be ex-
tended through Isar commands that take a target argument. In the follow-
ing, definition and theorem are illustrated. Table 1 lists Isar commands
that accept a target. Isar provides various ways of specifying the target.
A target for a single command may be indicated with keyword in in the
following way:
definition (in partial_order)

less :: "’a ⇒ ’a ⇒ bool" (infixl "@" 50)
where "(x @ y) = (x v y ∧ x 6= y)"

The strict order less with infix syntax @ is defined in terms of the locale
parameter le and the general equality of the object logic we work in. The
definition generates a foundational constant partial_order.less with defi-
nition partial_order.less_def:

partial_order ?le =⇒
partial_order.less ?le ?x ?y = (?le ?x ?y ∧ ?x 6= ?y)

At the same time, the locale is extended by syntax transformations hiding
this construction in the context of the locale. Here, the abbreviation less is
available for partial_order.less le, and it is printed and parsed as infix @.
Finally, the conclusion less_def is added to the locale:
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(?x @ ?y) = (?x v ?y ∧ ?x 6= ?y)

The treatment of theorem statements is more straightforward. As an exam-
ple, here is the derivation of a transitivity law for the strict order relation.
lemma (in partial_order) less_le_trans [trans]:

"[[ x @ y; y v z ]] =⇒ x @ z"
unfolding less_def by (blast intro: trans)

In the context of the proof, conclusions of the locale may be used like the-
orems. Attributes are effective: anti_sym was declared as introduction rule,
hence it is in the context’s set of rules used by the classical reasoner by
default.

2.2 Context Blocks

When working with locales, sequences of commands with the same target
are frequent. A block of commands, delimited by begin and end, makes a
theory-like style of working possible. All commands inside the block refer
to the same target. A block may immediately follow a locale declaration,
which makes that locale the target. Alternatively the target for a block may
be given with the context command.
This style of working is illustrated in the block below, where notions of
infimum and supremum for partial orders are introduced, together with the-
orems about their uniqueness.
context partial_order
begin

definition
is_inf where "is_inf x y i =

(i v x ∧ i v y ∧ (∀ z. z v x ∧ z v y −→ z v i))"

definition
is_sup where "is_sup x y s =

(x v s ∧ y v s ∧ (∀ z. x v z ∧ y v z −→ s v z))"

theorem is_inf_uniq: "[[is_inf x y i; is_inf x y i’]] =⇒ i = i’"
〈proof 〉

theorem is_sup_uniq: "[[is_sup x y s; is_sup x y s’]] =⇒ s = s’"
〈proof 〉

end

The syntax of the locale commands discussed in this tutorial is shown in Ta-
ble 3. The grammar is complete with the exception of the context elements
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constrains and defines, which are provided for backward compatibility.
See the Isabelle/Isar Reference Manual [8] for full documentation.

3 Import

Algebraic structures are commonly defined by adding operations and prop-
erties to existing structures. For example, partial orders are extended to
lattices and total orders. Lattices are extended to distributive lattices.

With locales, this kind of inheritance is achieved through import of locales.
The import part of a locale declaration, if present, precedes the context
elements. Here is an example, where partial orders are extended to lattices.
locale lattice = partial_order +
assumes ex_inf: "∃ inf. is_inf x y inf"
and ex_sup: "∃ sup. is_sup x y sup"

begin

These assumptions refer to the predicates for infimum and supremum defined
for partial_order in the previous section. We now introduce the notions of
meet and join.
definition

meet (infixl "u" 70) where "x u y = (THE inf. is_inf x y inf)"
definition

join (infixl "t" 65) where "x t y = (THE sup. is_sup x y sup)"

end

Locales for total orders and distributive lattices follow to establish a suffi-
ciently rich landscape of locales for further examples in this tutorial. Each
comes with an example theorem.
locale total_order = partial_order +
assumes total: "x v y ∨ y v x"

lemma (in total_order) less_total: "x @ y ∨ x = y ∨ y @ x"
〈proof 〉

locale distrib_lattice = lattice +
assumes meet_distr: "x u (y t z) = x u y t x u z"

lemma (in distrib_lattice) join_distr:
"x t (y u z) = (x t y) u (x t z)"
〈proof 〉

The locale hierarchy obtained through these declarations is shown in Fig-
ure 1(a).
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partial_order
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(a) Declared hierarchy

partial_order

lattice

distrib_lattice total_order

(b) Total orders are lattices

partial_order

lattice

distrib_lattice

total_order

(c) Total orders are
distributive lattices

Figure 1: Hierarchy of Lattice Locales.

4 Changing the Locale Hierarchy

Locales enable to prove theorems abstractly, relative to sets of assumptions.
These theorems can then be used in other contexts where the assumptions
themselves, or instances of the assumptions, are theorems. This form of the-
orem reuse is called interpretation. Locales generalise interpretation from
theorems to conclusions, enabling the reuse of definitions and other con-
structs that are not part of the specifications of the locales.
The first form of interpretation we will consider in this tutorial is provided
by the sublocale command. It enables to modify the import hierarchy to
reflect the logical relation between locales.
Consider the locale hierarchy from Figure 1(a). Total orders are lattices,
although this is not reflected here, and definitions, theorems and other con-
clusions from lattice are not available in total_order. To obtain the situa-
tion in Figure 1(b), it is sufficient to add the conclusions of the latter locale
to the former. The sublocale command does exactly this. The declaration
sublocale l1 ⊆ l2 causes locale l2 to be interpreted in the context of l1. This
means that all conclusions of l2 are made available in l1.
Of course, the change of hierarchy must be supported by a theorem that
reflects, in our example, that total orders are indeed lattices. Therefore the
sublocale command generates a goal, which must be discharged by the user.
This is illustrated in the following paragraphs. First the sublocale relation
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is stated.
sublocale total_order ⊆ lattice

This enters the context of locale total_order, in which the goal

1. lattice op v

must be shown. Now the locale predicate needs to be unfolded — for
example, using its definition or by introduction rules provided by the lo-
cale package. For automation, the locale package provides the methods
intro_locales and unfold_locales. They are aware of the current con-
text and dependencies between locales and automatically discharge goals
implied by these. While unfold_locales always unfolds locale predicates to
assumptions, intro_locales only unfolds definitions along the locale hier-
archy, leaving a goal consisting of predicates defined by the locale package.
Occasionally the latter is of advantage since the goal is smaller.
For the current goal, we would like to get hold of the assumptions of lattice,
which need to be shown, hence unfold_locales is appropriate.
proof unfold_locales

Since the fact that both lattices and total orders are partial orders is al-
ready reflected in the locale hierarchy, the assumptions of partial_order are
discharged automatically, and only the assumptions introduced in lattice
remain as subgoals

1.
∧

x y. ∃ inf. is_inf x y inf
2.

∧
x y. ∃ sup. is_sup x y sup

The proof for the first subgoal is obtained by constructing an infimum, whose
existence is implied by totality.

fix x y
from total have "is_inf x y (if x v y then x else y)"
by (auto simp: is_inf_def)

then show "∃ inf. is_inf x y inf" ..

The proof for the second subgoal is analogous and not reproduced here.
qed

Similarly, we may establish that total orders are distributive lattices with a
second sublocale statement.
sublocale total_order ⊆ distrib_lattice
〈proof 〉

The locale hierarchy is now as shown in Figure 1(c).

Locale interpretation is dynamic. The statement sublocale l1 ⊆ l2 will
not just add the current conclusions of l2 to l1. Rather the dependency is
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stored, and conclusions that will be added to l2 in future are automatically
propagated to l1. The sublocale relation is transitive — that is, propagation
takes effect along chains of sublocales. Even cycles in the sublocale relation
are supported, as long as these cycles do not lead to infinite chains. Details
are discussed in the technical report [2]. See also Section 7.1 of this tutorial.

5 Use of Locales in Theories and Proofs

Locales can be interpreted in the contexts of theories and structured proofs.
These interpretations are dynamic, too. Conclusions of locales will be prop-
agated to the current theory or the current proof context.1 The focus of this
section is on interpretation in theories, but we will also encounter interpre-
tations in proofs, in Section 5.3.
As an example, consider the type of integers int. The relation op ≤ is a
total order over int. We start with the interpretation that op ≤ is a partial
order. The facilities of the interpretation command are explored gradually
in three versions.

5.1 First Version: Replacement of Parameters Only

The command interpretation is for the interpretation of locale in theories.
In the following example, the parameter of locale partial_order is replaced
by op ≤ and the locale instance is interpreted in the current theory.
interpretation int: partial_order "op ≤ :: int ⇒ int ⇒ bool"

The argument of the command is a simple locale expression consisting of
the name of the interpreted locale, which is preceded by the qualifier int:
and succeeded by a white-space-separated list of terms, which provide a full
instantiation of the locale parameters. The parameters are referred to by
order of declaration, which is also the order in which print_locale outputs
them. The locale has only a single parameter, hence the list of instantiation
terms is a singleton.
The command creates the goal

1. partial_order op ≤

which can be shown easily:
by unfold_locales auto

The effect of the command is that instances of all conclusions of the lo-
cale are available in the theory, where names are prefixed by the qualifier.

1Strictly speaking, only interpretation in theories is dynamic since it is not possible to
change locales or the locale hierarchy from within a proof.
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For example, transitivity for int is named int.trans and is the following
theorem:

[[?x ≤ ?y; ?y ≤ ?z]] =⇒ ?x ≤ ?z

It is not possible to reference this theorem simply as trans. This prevents
unwanted hiding of existing theorems of the theory by an interpretation.

5.2 Second Version: Replacement of Definitions

Not only does the above interpretation qualify theorem names. The prefix
int is applied to all names introduced in locale conclusions including names
introduced in definitions. The qualified name int.less is short for the in-
terpretation of the definition, which is partial_order.less op ≤. Qualified
name and expanded form may be used almost interchangeably.2 The former
is preferred on output, as for example in the theorem int.less_le_trans:

[[int.less ?x ?y; ?y ≤ ?z]] =⇒ int.less ?x ?z

Both notations for the strict order are not satisfactory. The constant op
< is the strict order for int. In order to allow for the desired replace-
ment, interpretation accepts equations in addition to the parameter instanti-
ation. These follow the locale expression and are indicated with the keyword
rewrites. This is the revised interpretation:
interpretation int: partial_order "op ≤ :: [int, int] ⇒ bool"
rewrites "int.less x y = (x < y)"

proof -

The goals are now:

1. partial_order op ≤
2. partial_order.less op ≤ x y = (x < y)

The proof that ≤ is a partial order is as above.
show "partial_order (op ≤ :: int ⇒ int ⇒ bool)"
by unfold_locales auto

The second goal is shown by unfolding the definition of partial_order.less.
show "partial_order.less op ≤ x y = (x < y)"
unfolding partial_order.less_def [OF 〈partial_order op ≤〉]
by auto

qed

Note that the above proof is not in the context of the interpreted locale.
Hence, the premise of partial_order.less_def is discharged manually with
OF.

2Since op ≤ is polymorphic, for partial_order.less op ≤ a more general type
will be inferred than for int.less which is over type int.
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5.3 Third Version: Local Interpretation

In the above example, the fact that op ≤ is a partial order for the integers
was used in the second goal to discharge the premise in the definition of op
@. In general, proofs of the equations not only may involve definitions from
the interpreted locale but arbitrarily complex arguments in the context of
the locale. Therefore it would be convenient to have the interpreted locale
conclusions temporarily available in the proof. This can be achieved by a
locale interpretation in the proof body. The command for local interpre-
tations is interpret. We repeat the example from the previous section to
illustrate this.
interpretation int: partial_order "op ≤ :: int ⇒ int ⇒ bool"
rewrites "int.less x y = (x < y)"

proof -
show "partial_order (op ≤ :: int ⇒ int ⇒ bool)"
by unfold_locales auto

then interpret int: partial_order "op ≤ :: [int, int] ⇒ bool" .
show "int.less x y = (x < y)"
unfolding int.less_def by auto

qed

The inner interpretation is immediate from the preceding fact and proved
by assumption (Isar short hand “.”). It enriches the local proof context
by the theorems also obtained in the interpretation from Section 5.1, and
int.less_def may directly be used to unfold the definition. Theorems from
the local interpretation disappear after leaving the proof context — that is,
after the succeeding next or qed statement.

5.4 Further Interpretations

Further interpretations are necessary for the other locales. In lattice the
operations u and t are substituted by min and max. The entire proof for
the interpretation is reproduced to give an example of a more elaborate
interpretation proof. Note that the equations are named so they can be
used in a later example.
interpretation int: lattice "op ≤ :: int ⇒ int ⇒ bool"
rewrites int_min_eq: "int.meet x y = min x y"
and int_max_eq: "int.join x y = max x y"

proof -
show "lattice (op ≤ :: int ⇒ int ⇒ bool)"

We have already shown that this is a partial order,
apply unfold_locales

hence only the lattice axioms remain to be shown.

10



int.less_def from locale partial_order:
(?x < ?y) = (?x ≤ ?y ∧ ?x 6= ?y)

int.meet_left from locale lattice:
min ?x ?y ≤ ?x

int.join_distr from locale distrib_lattice:
max ?x (min ?y ?z) = min (max ?x ?y) (max ?x ?z)

int.less_total from locale total_order:
?x < ?y ∨ ?x = ?y ∨ ?y < ?x

Table 2: Interpreted theorems for ≤ on the integers.

1.
∧

x y. ∃ inf. int.is_inf x y inf
2.

∧
x y. ∃ sup. int.is_sup x y sup

By is_inf and is_sup,
apply (unfold int.is_inf_def int.is_sup_def)

the goals are transformed to these statements:

1.
∧

x y. ∃ inf≤x. inf ≤ y ∧ (∀ z. z ≤ x ∧ z ≤ y −→ z ≤ inf)
2.

∧
x y. ∃ sup≥x. y ≤ sup ∧ (∀ z. x ≤ z ∧ y ≤ z −→ sup ≤ z)

This is Presburger arithmetic, which can be solved by the method arith.
by arith+

In order to show the equations, we put ourselves in a situation where the
lattice theorems can be used in a convenient way.

then interpret int: lattice "op ≤ :: int ⇒ int ⇒ bool" .
show "int.meet x y = min x y"
by (bestsimp simp: int.meet_def int.is_inf_def)

show "int.join x y = max x y"
by (bestsimp simp: int.join_def int.is_sup_def)

qed

Next follows that op ≤ is a total order, again for the integers.
interpretation int: total_order "op ≤ :: int ⇒ int ⇒ bool"
by unfold_locales arith

Theorems that are available in the theory at this point are shown in Table 2.
Two points are worth noting:

• Locale distrib_lattice was also interpreted. Since the locale hierar-
chy reflects that total orders are distributive lattices, the interpreta-
tion of the latter was inserted automatically with the interpretation
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of the former. In general, interpretation traverses the locale hierarchy
upwards and interprets all encountered locales, regardless whether im-
ported or proved via the sublocale command. Existing interpreta-
tions are skipped avoiding duplicate work.

• The predicate op < appears in theorem int.less_total although an
equation for the replacement of op @ was only given in the interpreta-
tion of partial_order. The interpretation equations are pushed down-
wards the hierarchy for related interpretations — that is, for interpre-
tations that share the instances of parameters they have in common.

The interpretations for a locale n within the current theory may be inspected
with print_interps n. This prints the list of instances of n, for which
interpretations exist. For example, print_interps partial_order outputs
the following:

int : partial_order "op ≤"

Of course, there is only one interpretation. The interpretation qualifier
on the left is mandatory. Qualifiers can either be mandatory or optional.
Optional qualifiers are designated by “?”. Mandatory qualifiers must occur in
name references while optional ones need not. Mandatory qualifiers prevent
accidental hiding of names, while optional qualifiers can be more convenient
to use. The default is mandatory.

6 Locale Expressions

A map ϕ between partial orders v and � is called order preserving if x v y
implies ϕ x � ϕ y. This situation is more complex than those encountered
so far: it involves two partial orders, and it is desirable to use the existing
locale for both.
A locale for order preserving maps requires three parameters: le (infixl v)
and le’ (infixl �) for the orders and ϕ for the map.
In order to reuse the existing locale for partial orders, which has the single
parameter le, it must be imported twice, once mapping its parameter to le
from the new locale and once to le’. This can be achieved with a compound
locale expression.
In general, a locale expression is a sequence of locale instances separated
by “+” and followed by a for clause. An instance has the following format:

qualifier : locale-name parameter-instantiation

We have already seen locale instances as arguments to interpretation in
Section 5. As before, the qualifier serves to disambiguate names from differ-
ent instances of the same locale, and unless designated with a “?” it must
occur in name references.
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Since the parameters le and le’ are to be partial orders, our locale for order
preserving maps will import the these instances:

le: partial_order le
le’: partial_order le’

For matter of convenience we choose to name parameter names and qualifiers
alike. This is an arbitrary decision. Technically, qualifiers and parameters
are unrelated.
Having determined the instances, let us turn to the for clause. It serves to
declare locale parameters in the same way as the context element fixes does.
Context elements can only occur after the import section, and therefore the
parameters referred to in the instances must be declared in the for clause.
The for clause is also where the syntax of these parameters is declared.
Two context elements for the map parameter ϕ and the assumptions that it
is order preserving complete the locale declaration.
locale order_preserving =

le: partial_order le + le’: partial_order le’
for le (infixl "v" 50) and le’ (infixl "�" 50) +

fixes ϕ
assumes hom_le: "x v y =⇒ ϕ x � ϕ y"

Here are examples of theorems that are available in the locale:
hom_le: ?x v ?y =⇒ ϕ ?x � ϕ ?y

le.less_le_trans: [[?x @ ?y; ?y v ?z]] =⇒ ?x @ ?z

le’.less_le_trans:

[[le’.less ?x ?y; ?y � ?z]] =⇒ le’.less ?x ?z

While there is infix syntax for the strict operation associated with op v,
there is none for the strict version of op �. The syntax @ for less is only
available for the original instance it was declared for. We may introduce
infix syntax for le’.less with the following declaration:
notation (in order_preserving) le’.less (infixl "≺" 50)

Now the theorem is displayed nicely as le’.less_le_trans:

[[?x ≺ ?y; ?y � ?z]] =⇒ ?x ≺ ?z

There are short notations for locale expressions. These are discussed in the
following.
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6.1 Default Instantiations

It is possible to omit parameter instantiations. The instantiation then de-
faults to the name of the parameter itself. For example, the locale expres-
sion partial_order is short for partial_order le, since the locale’s single
parameter is le. We took advantage of this in the sublocale declarations
of Section 4.

6.2 Implicit Parameters

In a locale expression that occurs within a locale declaration, omitted pa-
rameters additionally extend the (possibly empty) for clause.
The for clause is a general construct of Isabelle/Isar to mark names occur-
ring in the preceding declaration as “arbitrary but fixed”. This is necessary
for example, if the name is already bound in a surrounding context. In
a locale expression, names occurring in parameter instantiations should be
bound by a for clause whenever these names are not introduced elsewhere in
the context — for example, on the left hand side of a sublocale declaration.
There is an exception to this rule in locale declarations, where the for clause
serves to declare locale parameters. Here, locale parameters for which no
parameter instantiation is given are implicitly added, with their mixfix syn-
tax, at the beginning of the for clause. For example, in a locale declaration,
the expression partial_order is short for

partial_order le for le (infixl "v" 50).

This short hand was used in the locale declarations throughout Section 3.

The following locale declarations provide more examples. A map ϕ is a
lattice homomorphism if it preserves meet and join.
locale lattice_hom =

le: lattice + le’: lattice le’ for le’ (infixl "�" 50) +
fixes ϕ
assumes hom_meet: "ϕ (x u y) = le’.meet (ϕ x) (ϕ y)"
and hom_join: "ϕ (x t y) = le’.join (ϕ x) (ϕ y)"

The parameter instantiation in the first instance of lattice is omitted. This
causes the parameter le to be added to the for clause, and the locale has
parameters le, le’ and, of course, ϕ.
Before turning to the second example, we complete the locale by providing
infix syntax for the meet and join operations of the second lattice.
context lattice_hom
begin
notation le’.meet (infixl "u’’" 50)
notation le’.join (infixl "t’’" 50)
end
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partial_order

order_preserving

v7→v

v7→�

lattice

lattice_hom

v7→v

v7→�

lattice_end

v7→v

�7→v

Figure 2: Hierarchy of Homomorphism Locales.

The next example makes radical use of the short hand facilities. A homo-
morphism is an endomorphism if both orders coincide.
locale lattice_end = lattice_hom _ le

The notation _ enables to omit a parameter in a positional instantiation.
The omitted parameter, le becomes the parameter of the declared locale
and is, in the following position, used to instantiate the second parameter of
lattice_hom. The effect is that of identifying the first in second parameter
of the homomorphism locale.

The inheritance diagram of the situation we have now is shown in Figure 2,
where the dashed line depicts an interpretation which is introduced below.
Parameter instantiations are indicated by v7→� etc. By looking at the
inheritance diagram it would seem that two identical copies of each of the
locales partial_order and lattice are imported by lattice_end. This is
not the case! Inheritance paths with identical morphisms are automatically
detected and the conclusions of the respective locales appear only once.

It can be shown easily that a lattice homomorphism is order preserving. As
the final example of this section, a locale interpretation is used to assert
this:
sublocale lattice_hom ⊆ order_preserving
〈proof 〉

Theorems and other declarations — syntax, in particular — from the locale
order_preserving are now active in lattice_hom, for example hom_le:

?x v ?y =⇒ ϕ ?x � ϕ ?y
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This theorem will be useful in the following section.

7 Conditional Interpretation

There are situations where an interpretation is not possible in the general
case since the desired property is only valid if certain conditions are ful-
filled. Take, for example, the function λi. n * i that scales its argument
by a constant factor. This function is order preserving (and even a lattice
endomorphism) with respect to op ≤ provided n ≥ 0.
It is not possible to express this using a global interpretation, because it is in
general unspecified whether n is non-negative, but one may make an inter-
pretation in an inner context of a proof where full information is available.
This is not fully satisfactory either, since potentially interpretations may be
required to make interpretations in many contexts. What is required is an
interpretation that depends on the condition — and this can be done with
the sublocale command. For this purpose, we introduce a locale for the
condition.
locale non_negative =
fixes n :: int
assumes non_neg: "0 ≤ n"

It is again convenient to make the interpretation in an incremental fashion,
first for order preserving maps, the for lattice endomorphisms.
sublocale non_negative ⊆

order_preserving "op ≤" "op ≤" "λi. n * i"
〈proof 〉

While the proof of the previous interpretation is straightforward from mono-
tonicity lemmas for op *, the second proof follows a useful pattern.
sublocale non_negative ⊆ lattice_end "op ≤" "λi. n * i"
proof (unfold_locales, unfold int_min_eq int_max_eq)

Unfolding the locale predicates and the interpretation equations immedi-
ately yields two subgoals that reflect the core conjecture.

1.
∧

x y. n * min x y = min (n * x) (n * y)
2.

∧
x y. n * max x y = max (n * x) (n * y)

It is now necessary to show, in the context of non_negative, that multipli-
cation by n commutes with min and max.
qed (auto simp: hom_le)

The lemma hom_le simplifies a proof that would have otherwise been lengthy
and we may consider making it a default rule for the simplifier:
lemmas (in order_preserving) hom_le [simp]
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7.1 Avoiding Infinite Chains of Interpretations

Similar situations arise frequently in formalisations of abstract algebra where
it is desirable to express that certain constructions preserve certain prop-
erties. For example, polynomials over rings are rings, or — an example
from the domain where the illustrations of this tutorial are taken from —
a partial order may be obtained for a function space by point-wise lifting
of the partial order of the co-domain. This corresponds to the following
interpretation:
sublocale partial_order ⊆ f: partial_order "λf g. ∀ x. f x v g x"
oops

Unfortunately this is a cyclic interpretation that leads to an infinite chain,
namely

partial_order ⊆ partial_order (λf g. ∀ x. f x v g x) ⊆
partial_order (λf g. ∀ x y. f x y v g x y) ⊆ . . .

and the interpretation is rejected.
Instead it is necessary to declare a locale that is logically equivalent to
partial_order but serves to collect facts about functions spaces where the
co-domain is a partial order, and to make the interpretation in its context:
locale fun_partial_order = partial_order

sublocale fun_partial_order ⊆
f: partial_order "λf g. ∀ x. f x v g x"

〈proof 〉

It is quite common in abstract algebra that such a construction maps a
hierarchy of algebraic structures (or specifications) to a related hierarchy.
By means of the same lifting, a function space is a lattice if its co-domain
is a lattice:
locale fun_lattice = fun_partial_order + lattice

sublocale fun_lattice ⊆ f: lattice "λf g. ∀ x. f x v g x"
〈proof 〉

8 Further Reading

More information on locales and their interpretation is available. For the
locale hierarchy of import and interpretation dependencies see [2]; inter-
pretations in theories and proofs are covered in [3]. In the latter, I show
how interpretation in proofs enables to reason about families of algebraic
structures, which cannot be expressed with locales directly.
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Haftmann and Wenzel [4] overcome a restriction of axiomatic type classes
through a combination with locale interpretation. The result is a Haskell-
style class system with a facility to generate ML and Haskell code. Classes
are sufficient for simple specifications with a single type parameter. The
locales for orders and lattices presented in this tutorial fall into this category.
Order preserving maps, homomorphisms and vector spaces, on the other
hand, do not.
The locales reimplementation for Isabelle 2009 provides, among other im-
provements, a clean integration with Isabelle/Isar’s local theory mechanisms,
which are described in another paper by Haftmann and Wenzel [5].
The original work of Kammüller on locales [7] may be of interest from a his-
torical perspective. My previous report on locales and locale expressions [1]
describes a simpler form of expressions than available now and is outdated.
The mathematical background on orders and lattices is taken from Jacob-
son’s textbook on algebra [6, Chapter 8].
The sources of this tutorial, which include all proofs, are available with the
Isabelle distribution at http://isabelle.in.tum.de.

Revision History. The present fourth revision of the tutorial accommo-
dates minor updates to the syntax of the locale commands and the handling
of notation under morphisms introduced with Isabelle 2016. For the third
revision of the tutorial, which corresponds to the published version, much of
the explanatory text was rewritten. Inheritance of interpretation equations
was made available with Isabelle 2009-1. The second revision accommodates
changes introduced by the locales reimplementation for Isabelle 2009. Most
notably locale expressions were generalised from renaming to instantiation.

Acknowledgements. Alexander Krauss, Tobias Nipkow, Randy Pollack,
Andreas Schropp, Christian Sternagel and Makarius Wenzel have made use-
ful comments on earlier versions of this document. The section on con-
ditional interpretation was inspired by a number of e-mail enquiries the
author received from locale users, and which suggested that this use case
is important enough to deserve explicit explanation. The term conditional
interpretation is due to Larry Paulson.
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Miscellaneous
attr-name ::= name | attribute | name attribute
qualifier ::= name [“?”]

Context Elements
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