
Data Transfer Matters for GPU Computing
Yusuke Fujii∗, Takuya Azumi†, Nobuhiko Nishio†, Shinpei Kato‡ and Masato Edahiro‡

∗Graduate School of Information Science and Engineering, Ritsumeikan University
†College of Information Science and Engineering, Ritsumeikan University

‡School of Information Science, Nagoya University

Abstract—Graphics processing units (GPUs) embrace many-
core compute devices where massively parallel compute threads
are offloaded from CPUs. This heterogeneous nature of GPU
computing raises non-trivial data transfer problems especially
against latency-critical real-time systems. However even the basic
characteristics of data transfers associated with GPU computing
are not well studied in the literature. In this paper, we investigate
and characterize currently-achievable data transfer methods of
cutting-edge GPU technology. We implement these methods using
open-source software to compare their performance and latency
for real-world systems. Our experimental results show that the
hardware-assisted direct memory access (DMA) and the I/O read-
and-write access methods are usually the most effective, while
on-chip microcontrollers inside the GPU are useful in terms of
reducing the data transfer latency for concurrent multiple data
streams. We also disclose that CPU priorities can protect the
performance of GPU data transfers.

Keywords-GPGPU; Data Transfer; Latency; Performance; OS

I. INTRODUCTION

Graphics processing units (GPUs) are becoming more and
more commonplace as many-core compute devices. For exam-
ple, NVIDIA GPUs integrate thousands of processing cores
on a single chip and the peak double-precision performance
exceeds 1 TFLOPS while sustaining thermal design power
(TDP) in the same order of magnitude as traditional multi-
core CPUs [1]. This rapid growth of GPUs is due to recent
advances in the programming model, often referred to as
general-purpose computing on GPUs (GPGPU).

Data-parallel and compute-intensive applications receive
significant performance benefits from GPGPU. Currently a
main application of GPGPU is supercomputing [2] but there
are more and more emerging applications in different fields.
Examples include plasma control [3], autonomous driving [4],
software routing [5], encrypted networking [6], and storage
management [7]–[10]. This broad range of applications raises
the need of further developing GPU technology to enhance
scalability of emerging data-parallel and compute-intensive
applications.

GPU programming inevitably incurs data transfers between
the host and the device memory. This resulting latency could
be a performance stopper of I/O bound GPGPU applications.
In fact, the basic performance and latency issues for GPUs are
not well studied in the literature. Given that compute kernels
are offloaded to the GPU, their performance and latency are
more dominated by compiler and hardware technology. How-
ever an optimization of data transfers must be complemented

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	

(a) Host to Device

0.003	

0.03	

0.3	

3	

30	

300	

1	 KB
	

4	 KB
	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	

4	 M
B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	

(b) Device to Host

Fig. 1. Performance of DMA and I/O read/write for the NVIDIA GPU.

by system software due to the constraint of PCIe devices [9].
Data transfers may also be interfered by competing workload
on the CPU, while offloaded compute kernels are isolated on
the GPU. These data transfer issues must be well understood
and addressed to build low-latency GPU computing.

The data transfer is particularly an important issue for low-
latency GPU computing. Kato et. al. demonstrated that the data
transfer is a dominant property of GPU-accelerated plasma
control systems [3]. This is a specific application where the
data must be transferred between sensor/actuator devices and
the GPU at a high-rate, but is a good example presenting the
impact of data transfers on GPU computing. Since emerging
applications augmented with GPUs may demand a similar
performance requirement, a better understanding of the GPU
data transfer mechanism is desired.

Figure 1 depicts the average data transfer times of hardware-
based direct memory access (DMA) and memory-mapped I/O
read-and-write access, which are obtained on an NVIDIA
GeForce GTX 480 graphics card using the open-source Linux
driver [9]. Apparently the performance characteristics of the
data transfer are not identical for the host-to-device and device-
to-host directions. In previous work, a very elementary issue of
this performance difference has been discussed [9], but there
is no clear conclusion on what methods can optimize the data
transfer performance, what different methods are available.

Currently we pray that the black-box data transfer mecha-
nism of proprietary software, provided by GPU vendors, is
well optimized to meet the performance that programmers
expect, because hardware details of GPUs are not disclosed to
the public. In order to achieve low-latency GPU computing,
we must understand what latency and performance interference
exist when using the GPU.

To some extent, GPUs are suitable for real-time computing
once workload is offloaded, but host-device data transfers

may be affected by some competing workload on the host
computer. Hence a better understanding of data transfers as-
sociated with GPU computing is an essential piece of work to
support latency-critical real-time systems. Unfortunately prior
work [3], [9] did not provide performance characterization in
the context of latency and concurrent workload; they focused
on a basic comparison of DMA and direct I/O access.

Contribution: In this paper, we clarify the performance
characteristics of currently-achievable data transfer methods
for GPU computing while unveiling several new data transfer
methods other than the well-known DMA and I/O read-and-
write access. We reveal the advantage and disadvantage of
these methods in a quantitative way leading a conclusion that
the typical DMA and I/O read-and-write methods are the
most effective in latency even in the presence of compelling
workload, whereas concurrent data streams from multiple
different contexts can benefit from the capability of on-chip
microcontrollers integrated in the GPU. To the best of our
knowledge, this is the first evidence of data transfer matters for
GPU computing beyond an intuitive expectation, which allows
system designers to choose appropriate data transfer methods
depending on the requirement of their latency-sensitive GPU
applications. Without our findings, none can reason about
the usage of GPUs minimizing the data transfer latency and
performance interference. These findings are also applicable
for many PCIe compute devices rather than a specific GPU.
We believe that the contributions of this paper are useful for
low-latency GPU computing.

Organization: The rest of this paper is organized as fol-
lows. Section II presents the assumption and terminology
behind this paper. Section III provides an open investigation
of data transfer methods for GPU computing. Section IV
compares the performances of the investigated data transfer
methods. Related work are discussed in Section V. We provide
our concluding remarks in Section VI.

II. ASSUMPTION AND TERMINOLOGY

We assume that the Compute Unified Device Architecture
(CUDA) is used for GPU programming [11]. A unit of code
that is individually launched on the GPU is called a kernel.
The kernel is composed of multiple threads that execute the
code in parallel.

CUDA uses a set of an application programming interface
(API) functions to manage the GPU. A typical CUDA program
takes the following steps: (i) allocate space to the device
memory, (ii) copy input data to the allocated device memory
space, (iii) launch the program on the GPU, (iv) copy output
data back to the host memory, and (v) free the allocated
device memory space. The scope of this paper is related to
(ii) and (iv). Particularly we use the cuMemCopyHtoD() and
the cuMemCopyDtoH() functions provided by the CUDA
Driver API, which correspond to (ii) and (iv) respectively.
Since an open-source implementation of these functions is
available [9], we modify them to accommodate various data
transfer methods investigated in this paper. While they are
synchronous data transfer functions, CUDA also provides

CPU$$

PCI$Bridge$

GPU$Board$
$

$
$
$
$
$
$
$Host$Interface$

GPU$Chip$
$
$
$
$

$
$
$

Device$
M
em

ory�

���	���
�

Microcontrollers�

������
�

Host$Memory$

DMA$Engines�

GPC$
$

$
$

CUDA$Cores$
Microcontroller$

GPC$
$

$
$

CUDA$Cores$
Microcontroller$

GPC$
$

$
$

CUDA$Cores$
Microcontroller$

GPC$
$

$
$

CUDA$Cores$
Microcontroller$

Fig. 2. Block diagram of the target system.

asynchronous data transfer functions. In this paper, we restrict
our attention to the synchronous data transfer functions for
simplicity of description, but partly similar performance char-
acteristics can also be applied for the asynchronous ones. This
is because both techniques are using the same data transfer
method. The only difference is synchronization timing.

In order to focus on the performance of data transfers
between the host and the device memory, we allocate a data
buffer to the pinned host memory rather than the typical heap
allocated by malloc(). This pinned host memory space is
mapped to the PCIe address and is never swapped out. It is
also accessible to the GPU directly.

Our computing platform contains a single set of the CPU
and the GPU. Although we restrict our attention to CUDA and
the GPU, the notion of the investigated data transfer methods is
well applicable to other heterogeneous compute devices. GPUs
are currently well-recognized forms of the heterogeneous
compute devices, but emerging alternatives include the Intel
Many Integrated Core (MIC) and the AMD Fusion technology.
The programming models of these different platforms are
almost identical in that the CPU controls the compute devices.
Our future work includes an integrated investigation of these
different platforms.

Figure 2 shows a summarized block diagram of the target
system. The host computer consists of the CPU and the host
memory communicating on the system I/O bus. They are
connected to the PCIe bus to which the GPU board is also
connected. This means that the GPU is visible to the CPU
as a PCIe device. The GPU is a complex compute device
integrating a lot of hardware functional units on a chip. This
paper is only focused on the CUDA-related units. There are
the device memory and the GPU chip connected through a
high bandwidth memory bus. The GPU chip contains graphics
processing clusters (GPCs), each of which integrates hundreds
of processing cores, a.k.a, CUDA cores. The number of GPCs
and CUDA cores is architecture-specific. For example, GPUs
based on the NVIDIA GeForce Fermi architecture [12] used
in this paper support at most 4 GPCs and 512 CUDA cores.
Each GPC is configured by an on-chip microcontroller. This
microcontroller is wimpy but is capable of executing firmware
code with its own instruction set. There is also a special
hub microcontroller, which broadcasts the operations on all
the GPC-dedicated microcontrollers. In addition to hardware

Host	 Memory	

Data	 Area	Data	 Area	
	
	
	

Device	 Memory	GPU	 DMA	 Engines	

DMA Transfer	

Start/End 	

Fig. 3. Standard DMA.

DMA engines, this paper investigates how these detailed
hardware components operate and interact with each other to
support data transfers in GPU computing.

III. DATA TRANSFER METHODS

In this section, we investigate data transfer methods for
GPU computing. The most intuitive data transfer method uses
standard hardware DMA engines on the GPU, while direct
read and write accesses to the device memory of the GPU are
allowed through PCIe base address registers (BARs). NVIDIA
GPUs as well as most other PCIe devices expose BARs to the
system, through which the CPU can access specific areas of
the device memory. There are several BARs depending on the
target device. NVIDIA GPUs typically provide six to seven
BARs. Often the BAR0 is used to access the control registers
of the GPU while the BAR1 makes the device memory visible
to the CPU.

We may also use microcontrollers integrated on the GPU to
send and receive data across the host and the device memory.
Unfortunately, only a limited piece of these schemes has been
studied in the literature. Our investigation and open imple-
mentations of these schemes provide a better understanding of
data transfer mechanisms for the GPU. Note that we restrict
our attention to the NVIDIA GPU architecture, but applicable
to any PCIe-connected compute devices.

A. Standard DMA (DMA)

The most typical method for GPU data transfers is to
use standard DMA engines integrated on the GPU. There
are two types of such DMA engines for synchronous and
asynchronous data transfer operations respectively. We focus
on the synchronous DMA engines, which always operate in a
sequential fashion with compute engines.

Figure 3 shows a concept of this standard DMA method.
To perform this DMA, we write GPU commands to an on-
board DMA engine. Upon a request of GPU commands, the
DMA engine transfers a specified data set between the host
and the device memory. Once a DMA transfer starts, it is non-
preemptive. To wait for the completion of DMA, the system
can either poll a specific GPU register or generate a GPU
interrupt. This method is often the most effective to transfer
a large size of data. The details of this hardware-based DMA
mechanism can be found in previous work [9], [13].

B. Microcontroller-based Data Transfer (HUB,GPC,GPC4)

The GPU provides on-board microcontrollers to control
GPU functional units (compute, DMA, power, temperature,
encode, decode, etc.). Albeit tiny hardware, these microcon-
trollers are available for GPU resource management beyond

Host	 Memory	

Data	 Area	

Device	 Memory	GPU	 	
Micro	 Controllers	

Read/Write		
Data	 Area	

	
	
	

Fig. 4. Microcontroller-based data transfer.

just controlling the functional units. Each microcontroller sup-
ports special instructions to transfer data in the data sections
to and from the host or the device memory. The data transfer
is offloaded to the microcontroller, i.e., DMA, but is controlled
by the microcontroller itself. Leveraging this mechanism, we
can provide data communications between the host and the
device memory.

Figure 4 shows a concept of this microcontroller-based
data transfer method. Since there is no data path to directly
copy data between the host and the device memory using a
microcontroller, each data transfer is forced to take two hops:
(i) the host memory and microcontroller and (ii) the device
memory and microcontroller. This is non-trivial overhead but
the handling of this DMA is very light-weight as compared to
the standard DMA method.

The microcontroller executes firmware loaded by the device
driver. We modify this firmware code to employ an interface
for the data communications. The firmware task invokes only
when the device driver sends a corresponding command from
the CPU through the PCIe bus. The user program first needs to
communicate with the device driver to issue this command to
the microcontroller. Our implementation uses ioctl system
calls to achieve this user and device driver communication.
The firmware command can be issued by poking a specific
MMIO register. We have also developed an open-source C
compiler for this GPU microcontroller. It may be downloaded
from http://github.com/cs005/guc.

A constraint of this microcontroller approach is that the
size of each data transfer is limited by 256 bytes. If the data
transfer size exceeds 256 bytes, we have to split a transac-
tion into multiple chunks. Although this could be additional
overhead to the data transfer time, we can also use multiple
microcontrollers to send these separate chunks in parallel. This
parallel transaction can improve the makespan of the total data
transfer time.

There are three; HUB, GPC and GPC4. HUB is used a
hub microcontroller designed to broad cast among the actual
microcontrollers of graphics processing clusters (GPCs), i.e.,
CUDA core clusters. GPC is used a single GPC microcon-
troller. GPC4 is used four different GPC microcontrollers in
parallel. We can split the data transfer into four pieces and
make the four microcontrollers work in parallel.

C. Memory-mapped Read and Write (IORW)

The aforementioned two methods are based on DMA func-
tions. DMA is usually high-throughput but it inevitably incurs
overhead in the setup. A small size of data transfers may
encounter severe latency problems due to this overhead. One of
good examples can be found in the plasma control system [3].

Host	 Memory	

I/O	 Register	 	

Device		
	
	
	
	
	
	
	
	
	
	
	

Mapping	

Device	 Memory	

CPU	

Read/Write	
PCI	 BAR1	

PCI	 BAR0	

Data	 Area	

Fig. 5. Memory-mapped read and write.

If low-latency is required, this direct I/O read and write
method is more appropriate than the hardware-based DMA
method. Since the GPU as a PCIe-connected device provides
memory-mapped regions upon the PCI address space, the CPU
can directly access the device memory without using bounce
buffers on the host memory.

Figure 5 shows a concept of this memory-mapped read and
write method. This direct read and write method is pretty
simple. We create virtual address space for the BAR1 region
and set its leading address to a specific control register.
Thus the BAR1 region can be directly accessed by the GPU
using the unified memory addressing (UMA) mode, where all
memory objects allocated to the host and the device memory
can be referenced by the same address space. Once the BAR1
region is mapped, all we have to do is to manage the page
table of the GPU to allocate memory objects from this BAR1
region and call the I/O remapping function supported by the
OS kernel to remap the corresponding BAR1 region to the
user-space buffer.

D. Memory-window Read and Write (MEMWND)

The BAR0 region is often called memory-mapped I/O
(MMIO) space. This is the main control space of the GPU,
through which all hardware engines are controlled. Its space is
sparsely populated with areas representing individual hardware
engines, which in turn are populated with control registers. The
list of hardware engines is architecture-dependent. The MMIO
space contains a special subarea for indirect device and host
memory accesses, separated from the control registers. This
plays a role of windows that make the device memory visible
to the CPU in a different way than the BAR1 region.

Figure 6 shows a concept of this memory-window read
and write method. To set the memory window, we obtain
the leading physical address of the corresponding memory
object and set it to a specific control register. By doing so,
a limited range of the memory object becomes visible to the
CPU through a specific BAR0 region. In case of NVIDIA
GPUs, the size of this range is 4MB Once the window is set,
we can read and write this BAR0 region to access data on the
device memory.

IV. EMPIRICAL COMPARISON

We now provide a detailed empirical comparison for the
advantage and disadvantage of the data transfer methods
presented in Section III. Our experimental setup is composed
of an Intel Core i7 2600 processor and an NVIDIA GeForce

Host	 Memory	

I/O	 Register	 	

Device	

Mapping	

0x00000000	
Virtual Address	

CPU	

Read/Write	

0x70000000	

PCI	 BAR1	

User	 Specified	 Area	
	
	
	
	
	

DeviceMemory	

Data	 Area	

PCI	 BAR0	

Fig. 6. Memory-window read and write.

GTX 480 graphics card. We use the vanilla Linux kernel
v2.6.42 and Gdev [9] as the underlying OS and GPGPU
runtime/driver software respectively. This set of open-source
platforms allows our implementations of the investigated data
transfer methods.

The test programs are written in CUDA [11] and are com-
piled using the NVIDIA CUDA Compiler (NVCC) v4.2 [14].
Note that Gdev is compatible with this binary compiler toolkit.
We exclude compute kernels and focus on data transfer func-
tions in this empirical comparison. While the test programs
uniformly use the same CUDA API functions, we provide
different internal implementations according to the target data
transfer methods.

We prepared two test programs. One is Gdev memcpy
benchmark1 to measure Basic Performance and Interfered
Performance. The other which is an extended version of the
first one calls to a data transfer API two times, we used the
second program to measure Concurrent Performance.

The scope of measurement is limited to the corresponding
data size from 16B to 64MB, since data transfers with the
data size greater than 64MB exibit similar performance char-
acteristics for each method. Time stamps for the measurement
are recorded within a test program itself, including interfered
intervals during user-space memory copies. We present the
average data transfer time obtained from 1000 times mea-
surements for each data size and each method. Each data
stream between the host and the device memory is provided
by a single GPU context. The performance interference among
multiple GPU contexts is considered here. We evaluate the
data transfer performance for both real-time and normal tasks.
In particular, we use the SCHED_FIFO scheduling policy for
real-time tasks while normal tasks are scheduled by the default
policy. The real-time tasks are always prioritized over the
normal tasks. The real-time capability relies on the default
performance of the real-time scheduling class supported by
the Linux kernel. We observe whether it is possible to reduce
the competing noise by utilizing real-time tasks. We believe
that this setup is sufficient for our experiments given that
we execute at most one real-time task in the system while
multiple data streams may be produced by this task. Overall
the scheduling performance issues are outside the scope of this
paper.

Henceforth we use the labels that explained in Section III,
to denote the investigated data transfer method respectively.

1https://github.com/shinpei0208/gdev/tree/master/test/cuda/user/memcpy

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	 MEMWND	 HUB	 GPC1	 GPC4	

(a) Host to Device

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	 MEMWND	 HUB	 GPC1	 GPC4	

(b) Device to Host

Fig. 7. The average performance of the investigated data transfer methods
using a real-time task.

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	 MEMWND	 HUB	 GPC1	 GPC4	

(a) Host to Device

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	 MEMWND	 HUB	 GPC1	 GPC4	

(b) Device to Host

Fig. 8. The worst-case performance of the investigated data transfer methods
using a real-time task.

A. Basic Performance

Figure 7 shows the average performance of the investigated
data transfer methods when using a real-time task alone.
Even with this most straightforward setup, there are several
interesting observations. Performance characteristics of the
host-to-device and the device-to-host communications are not
identical at all. In particular the performance of standard
DMA exhibits a 10x difference between the two directions
of communications. We believe that this is due to hardware
capabilities that are not documented to the public. We also
find that the performances of different methods are diverse
but either DMA or IORW can derive the best performance
for any data size. As shown in Figure 1 earlier, the small
data ranging from 16B to 8MB prefers IORW for the host-
to-device direction, while DMA outperforms IORW for larger
data than 8MB. Figure 7 shows that the other methods are
almost always inferior to either of DMA or IORW. The most
significant finding is that IORW becomes very slow for the
device-to-host direction. This is due to a design specification
of the GPU. It is designed so that the GPU can read data
fast from the host computer but compromise write access
performance. Another interesting observation is that using
multiple GPC microcontrollers to parallelize the data transfer
is less effective than a single GPC or HUB controller when the
data size is small. This is attributed to the fact that the runtime
management of multiple microcontrollers incurs additional
overhead as compared to a single microcontroller, which does
not pay for transferring small data sets.

Figure 8 shows the worst-case performance in the same

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	 MEMWND	 HUB	 GPC1	 GPC4	

(a) Host to Device

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	 MEMWND	 HUB	 GPC1	 GPC4	

(b) Device to Host

Fig. 9. The average performance of the investigated data transfer methods
using a real-time task under high CPU load.

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	 MEMWND	 HUB	 GPC1	 GPC4	

(a) Host to Device

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	 MEMWND	 HUB	 GPC1	 GPC4	

(b) Device to Host

Fig. 10. The worst-case performance of the investigated data transfer methods
using a real-time task under high CPU load.

setup as the above experiment. It is important to note that we
acquire almost the same results as those shown in Figure 7,
though there is some degradation in the performance of DMA
for the host-to-device direction. These comparisons lead to
some conclusion that we may be able to optimize the data
transfer performance by switching between DMA and IORW
at an appropriate boundary. This boundary value however may
depend on the system and device.

We omit the results of normal tasks in this setup, because
they are almost equal to those of real-time tasks shown above.
However, real-time and normal tasks behave in a very different
manner in the presence of competing workload. This will be
discussed in the next subsection.

B. Interfered Performance

Figure 9 shows the average performance of the investi-
gated data transfer methods when a real-time task encounters
extremely high workload on the CPU. All the methods are
successfully protected from performance interference due to
the real-time scheduler. One may observe that DMA shows
a better performance than the previous experiments despite
the presence of competing workload. This is due to the
Linux real-time scheduler feature. DMA is launched by GPU
commands, which could impose a suspension on the caller
task. In the Linux kernel, a real-time task is awakened in a
more responsive manner when switched from a normal task
than from an idle task. Therefore when the CPU is fully
loaded by normal tasks, a real-time task is more responsive.
The same is true for the worst-case performance as shown in
Figure 10. We learn from these experiments that CPU priorities

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	 MEMWND	 HUB	 GPC1	 GPC4	

(a) Host to Device

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	 MEMWND	 HUB	 GPC1	 GPC4	

(b) Device to Host

Fig. 11. The average performance of the investigated data transfer methods
using a normal task under high CPU load.

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	 MEMWND	 HUB	 GPC1	 GPC4	

(a) Host to Device

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	 MEMWND	 HUB	 GPC1	 GPC4	

(b) Device to Host

Fig. 12. The worst-case performance of the investigated data transfer methods
using a normal task under high CPU load.

can protect the performance of data transfer for the GPU. Note
that Gdev uses a polling approach to wait for completions
of data transfers. An interrupt approach is also worth being
investigated.

For reference, Figure 11 and 12 show the average and
the worst-case performance achieved by a normal task when
the CPU encounters extremely high workload same as the
preceding experiments. Apparently the data transfer times
increase by orders of magnitude as compared to those achieved
by a real-time task. We guess spikes factor is affected by long
polling wait time which is caused by high CPU load.

DMA shows a low performance for small data sets while it
can be sustained for large data sets. This is attributed to the
fact that once a DMA command is fired, the data transfer does
not have to compete with CPU workload. The other methods
are more or less controlled by the CPU, and thus are more
affected by CPU workload. This finding provides a design
choice for the system implementation such that the hardware-
assisted DMA method is preferred in fair-scheduled systems.

We evaluate the performance of each data transfer method
under high memory pressure, creating another task that eats
up host memory space. Although we use pinned host mem-
ory space to allocate buffers while the memory pressure is
supposed to compel the paged host memory space, it could
still impose indirect interference on real-time tasks [15], [16].
Particularly for the I/O read-and-write method, the data must
be read from and written to the host memory. Therefore
the impact of memory pressure needs to be quantified and
it is worth conducting this experiment. As demonstrated in

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	 MEMWND	 HUB	 GPC1	 GPC4	

(a) Host to Device

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	 MEMWND	 HUB	 GPC1	 GPC4	

(b) Device to Host

Fig. 13. Average performance of each data transfer method with a real-time
task under high memory pressure.

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	 MEMWND	 HUB	 GPC1	 GPC4	

(a) Host to Device

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	 MEMWND	 HUB	 GPC1	 GPC4	

(b) Device to Host

Fig. 14. Worst-case performance of each data transfer method with a real-
time task under high memory pressure.

Figure 13 and 14, the impact of memory pressure on the data
transfer performance is negligible. This means that all the data
transfer methods investigated in this paper require not much
paged host memory space. Otherwise they must be interfered
by memory workload.

Figure 15 and 16 show the average and the worst-case
performance of the investigated data transfer methods re-
spectively, when a misbehaving hackbench process coexists.
hackbench is a tool that generates many processes executing
I/O system calls with pipes. The results are all similar to the
previous ones. Since the Linux real-time scheduler is now well
enhanced to protect a real-time task from such misbehaving
workload, these results are obvious and trivial in some sense,
but we can lead to a conclusion from a series of the above
experiments that the data transfer methods for the GPU can
be protected by the traditional real-time scheduler capability.
This is a useful finding to facilitate an integration of real-time
systems and GPU computing.

C. Concurrent Performance

So far we have studied the capabilities of the investigated
data transfer methods and their causal relation to a real-
time task. We now evaluate the performance of concurrent
two data streams using different combinations of the data
transfer methods as shown in Figure 17 and 18. This is a
very interesting result. For the host-to-device direction, the
best performance is obtained when both the two tasks use
IORW. In this case, the two data streams are not overlapped
but are processed in sequential due to the use of the same

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	 MEMWND	 HUB	 GPC1	 GPC4	

(a) Host to Device

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	 MEMWND	 HUB	 GPC1	 GPC4	

(b) Device to Host

Fig. 15. Average performance of each data transfer method with a real-time
task in the presence of hackbench.

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	 MEMWND	 HUB	 GPC1	 GPC4	

(a) Host to Device

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA	 IORW	 MEMWND	 HUB	 GPC1	 GPC4	

(b) Device to Host

Fig. 16. Worst-case performance of each data transfer method with a real-
time task in the presence of hackbench.

IORW path. Nonetheless it outperforms the other combina-
tions because the performance of IORW is way higher than
the other methods as we have observed in a series of the
previous experiments. However, the device-to-host direction
shows a different performance. Since IORW becomes slow
when the CPU reads the device memory as mentioned in
Section IV-A, IORW/IORW is not the best performer any
longer. Instead using the microcontroller(s) provides the best
performance until 2MB. This is attributed to the fact that the
microcontroller-based data transfer method can be overlapped
with any other data transfer methods. From 16B to 16KB, a
combination of the microcontroller and IORW is the fastest,
while that of the microcontroller and DMA is the fastest from
16KB to 2MB. Note that from 16B to 16KB the performance
is aligned with the slow IORW curve. Therefore the choice
of HUB, GPC, and GPC4 does not really matter to the
performance. However, from 16KB to 2MB the performance
is improved by using four microcontrollers in parallel (i.e.,
GPC4), since DMA is faster than the microcontroller and
thereby the performance is aligned with the microcontroller
curve. We learn from this experiment that the microcontroller
is useful to overlap concurrent data streams with DMA or
IORW, and using multiple microcontrollers in parallel can
further improve the performance of concurrent data transfers.

D. Lessons Learned

We identified that the maximum data transfer performance
for GPU computing can obtain from a combination of the
hardware-assisted DMA and the I/O read-and-write access
methods depending on the data size. The small data should

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA/DMA	 HUB/DMA	 GPC/DMA	 GPC4/DMA	
IORW/IORW	 HUB/IORW	 GPC/IORW	 GPC4/IORW	

(a) Host to Device

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA/DMA	 HUB/DMA	 GPC/DMA	 GPC4/DMA	
IORW/IORW	 HUB/IORW	 GPC/IORW	 GPC4/IORW	

(b) Device to Host

Fig. 17. The average performance of the combined data transfer methods
for concurrent real-time tasks.

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA/DMA	 HUB/DMA	 GPC/DMA	 GPC4/DMA	
IORW/IORW	 HUB/IORW	 GPC/IORW	 GPC4/IORW	

(a) Host to Device

0.003	

0.03	

0.3	

3	

30	

300	

16	 B
	
64	 B

	
256	

B	 1	 KB
	
4	 KB

	
16	 K

B	
64	 K

B	
256	

KB	 1	 M
B	
4	 M

B	
16	 M

B	
64	 M

B	

Da
ta
	 T
ra
ns
fe
r	 T

im
e	
(m

s)
	

Data	 Size	 	

DMA/DMA	 HUB/DMA	 GPC/DMA	 GPC4/DMA	
IORW/IORW	 HUB/IORW	 GPC/IORW	 GPC4/IORW	

(b) Device to Host

Fig. 18. The worst-case performance of the combined data transfer methods
for concurrent real-time tasks.

be transferred using the I/O read-and-write access while the
large data should benefit from the hardware-assisted DMA. It
is important to find the data size boundary where the better
performer changes. We made a significant optimization for
the I/O read-and-write access implementation over previous
work [9] whereas the hardware-assisted DMA has nothing
to do with software optimization. It turned out that the I/O
read-and-write access has an advantage until the data size
reaches a few mega bytes, while the previous work reported
that the hardware-assisted DMA performs better for a few kilo
bytes of data using the same hardware device. This explains
that a fine-grained tuning of the data transfer could dominate
the performance of GPU computing, which has never been
unveiled in previous work.

The novel findings also include that CPU workload could
affect the performance of data transfers associated with GPU
computing. This is because the I/O read-and-write access is
performed by the CPU and the hardware-assisted DMA is also
triggered by the commands sent from the CPU. To protect their
performance from competing CPU workload, therefore, a real-
time CPU scheduler plays a vital role. Although this result is
intuitively apparent, this paper demonstrated it quantitatively
using real-world systems.

Finally we provided a new approach to data transfers using
on-chip microcontrollers integrated inside the GPU. While
this approach does not provide a performance benefit for a
single stream of the data transfer, we found that it is useful
to support concurrent multiple streams overlapping their data
transfers. The Helios project [17] showed that the integrated

microcontroller is useful to offload the packet processing job
of the network interface card and mentioned that GPUs and
compute devices could also benefit from microcontrollers,
though there was no actual development. We revealed a way
of using microcontrollers to hide the latency of the data
transfer associated with GPU computing, and demonstrated
its effectiveness. We believe that this is a novel idea toward
the development of low-latency GPU computing technology.

V. RELATED WORK

The zero-copy data transfer methods for low-latency GPU
computing were developed for plasma control systems [3].
The authors argued that the hardware-based DMA transfer
method does not meet the latency requirement of plasma con-
trol systems. They presented several zero-copy data transfer
methods, some of which is similar to the memory-mapped
I/O read and write method investigated in this paper. However,
this previous work considered only a small size of data. This
specific assumption allowed the I/O read and write method to
perform always better than the hardware-based DMA method.
We demonstrated that these two methods outperform each
other depending on the target data size. In this regard, we
provided more general observations of data transfer methods
for GPU computing.

The performance boundary of the hardware-based DMA
and the I/O read and write methods was briefly discussed
in the Gdev project [9]. They showed that the hardware-
based DMA method should be used only for large data. We
provided the same claim in this paper. However, we dig into
the causal relation of these two methods more in depth and also
expanded our attention to the microcontroller-based method.
Our findings complement the results of the Gdev project.

The scheduling of GPU data transfers was presented to
improve the responsiveness of GPU computing [18], [19].
These work focused on making preemption points for burst
non-preemptive DMA transfers with the GPU, but the under-
lying system relied on the proprietary closed-source software.
On the other hand, we provided open-source implementations
to disclose the fundamental of GPU data transfer methods.
We found that the hardware-based DMA transfer method is
not necessarily the best choice depending on the data size
and workload. Since the I/O read and write method is fully
preemptive and the microcontroller-based method is partly
preemptive, the contribution of this paper provides a new
insight to these preemptive data transfer approaches.

VI. CONCLUSION

In this paper, we have presented the performance charac-
teristics of data transfers for GPU computing. We found that
the hardware-assisted DMA and the I/O read-and-write access
methods are the most effective to maximize the data transfer
performance for a single stream, while the microcontroller-
based method can overlap data transfers with the DMA and the
IO read-and-write access methods reducing the total makespan
of multiple data streams.

We also showed that the standard real-time CPU scheduler
can shield the performance of data transfers from competing
workload. They are novel findings and useful contributions to
the development of low-latency GPU-accelerated systems.

The implementations of the investigated data transfer meth-
ods are provided in the Gdev project at http://github.com/
cs005/gdev/.

In future work, we will investigate how to determine the
choice of data transfer methods depending on the target system
and workload. Since data transfers are abstracted by the API in
terms of user programs, the runtime system must understand
environments and choose appropriate data transfer methods to
meet the performance and latency requirements of workload.

REFERENCES

[1] NVIDIA, “NVIDIA’s next generation CUDA computer architecture:
Kepler GK110,” http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf, 2012.

[2] Top500 Supercomputing Sites, http://www.top500.org/.
[3] S. Kato, J. Aumiller, and S. Brandt, “Zero-Copy I/O Processing for

Low-Latency GPU Computing,” in Proc. of the IEEE/ACM International
Conference on Cyber-Physical Systems, 2013 (to appear).

[4] M. McNaughton, C. Urmson, J. Dolan, and J.-W. Lee, “Motion Planning
for Autonomous Driving with a Conformal Spatiotemporal Lattice,” in
Proc. of the IEE International Conference on Robotics and Automation,
2011, pp. 4889–4895.

[5] S. Hand, K. Jang, K. Park, and S. Moon, “PacketShader: a GPU-
accelerated software router,” in Proc. of ACM SIGCOMM, 2010.

[6] K. Jang, S. Han, S. Han, S. Moon, and K. Park, “SSLShader: cheap
SSL acceleration with commodity processors,” in Proc. of the USENIX
Conference on Networked Systems Design and Implementation, 2011.

[7] P. Bhatotia, R. Rodrigues, and A. Verma, “Shredder: GPU-accelerated
incremental storage and computation,” in Proc. of the USENIX Confer-
ence on File and Storage Technologies, 2012.

[8] A. Gharaibeh, S. Al-Kiswany, S. Gopalakrishan, and M. Ripeanu, “A
GPU-accelerated storage system,” in Proc. of the ACM International
Symposium on High Performance Distributed Computing, 2010, pp.
167–178.

[9] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt, “Gdev: First-Class
GPU Resource Management in the Operating System,” in Proc. of the
USENIX Annual Technical Conference, 2012.

[10] W. Sun, R. Ricci, and M. Curry, “GPUstore: harnessing GPU computing
for storage systems in the OS kernel,” in Proc. of Annual International
Systems and Storage Conference, 2012.

[11] NVIDIA, “CUDA Documents,” http://docs.nvidia.com/cuda/, 2013.
[12] ——, “NVIDIA’s next generation CUDA computer architecture:

Fermi,” http://www.nvidia.com/content/PDF/fermi white papers/
NVIDIA Fermi Compute Architecture Whitepaper.pdf, 2009.

[13] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “TimeGraph:
GPU Scheduling for Real-Time Multi-Tasking Environments,” in Proc.
of the USENIX Annual Technical Conference, 2011.

[14] NVIDIA, “CUDA TOOLKIT 4.2,” http://developer.nvidia.com/cuda/
cuda-downloads, 2012.

[15] S. Kato, Y. Ishikawa, and R. Rajkumar, “CPU Scheduling and Memory
Management for Interactive Real-Time Applications,” Real-Time Sys-
tems, 2011.

[16] T. Yang, T. Liu, E. Berger, S. Kaplan, and J.-B. Moss, “Redline: First
Class Support for Interactivity in Commodity Operating Systems,” in
Proc. of the USENIX Symposium on Operating Systems Design and
Implementation, 2008, pp. 73–86.

[17] E. Nightingale, O. Hodson, R. Mcllory, C. Hawblitzel, and G. Hunt,
“Helios: Heterogeneous Multiprocessing with Satellite Kernels,” in Proc.
of the ACM Symposium on Operating Systems Principles, 2009.

[18] C. Basaran and K.-D. Kang, “Supporting Preemptive Task Executions
and Memory Copies in GPGPUs,” in Proc. of the Euromicro Conference
on Real-Time Systems, 2012, pp. 287–296.

[19] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and
R. Rajkumar, “RGEM: A Responsive GPGPU Execution Model for
Runtime Engines,” in Proc. of the IEEE Real-Time Systems Symposium,
2011, pp. 57–66.

