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From the Editor

Scott D. Kominers
Harvard University '09
Cambridge, MA 02138

kominers@fas.harvard.edu

This spring, Professor John Duncan, the instructor teaching my algebraic geometry class, as
signed supplementary readings from The Harvard College Mathematics Review (HCMR):

"Alexander Ellis's article gives an excellent taste of the Poincare-Hopf Index Theorem,"

Professor Duncan explained, strongly recommending that all the students read Ellis's article (Dunk
ing donuts: Culinary calculations of the Euler characteristic, HCMR 1 #1 (2007), 3-14) to comple
ment the day's lecture.

In a single year, The HCMR has already reached the status of a teaching tool. Indeed, articles
from The HCMR have appeared not only in Harvard classrooms but also in classes at other schools
(e.g. Professor Ivars Peterson's "Communicating Mathematics" course) and in summer programs
(e.g. Professor Keith Conrad's 2007 PROMYS lectures).

This new step in The HCMR's maturation is truly impressive. The HCMR could never have
reached this level without its scholarly authors, nor could have it even existed without its dedicated
editors, tireless business staff, and sleepless production directors.

Furthermore, the success of The HCMR has been facilitated by the journal's sponsors and ad
visers, both at Harvard and elsewhere. In particular, we at The HCMR are especially indebted to
Professor Benedict H. Gross '71, Professor Peter Kronheimer, and Dr. Alon Amit, who have
advised the journal and to Professor Clifford H. Taubes for his continued support and encourage
ment. We also appreciate the administrative assistance provided by Dean Paul J. McLoughlin II
and Mr. David R. Friedrich as well as the continued, generous support of The Harvard Mathe
matics Department.

This issue is my last as Editor-in-Chief. I am glad to see that The HCMR's future looks so
bright at this juncture.

The incoming Co-Editors-In-Chief, Zachary Abel '10 and Ernest E. Fontes '10, are both
dedicated members of The HCMR's staff. Both are talented mathematicians and energetic leaders,
and both have been deeply involved in the production of this and past issues. I look forward to
seeing The HCMR continue to expand under their joint administration.

On a personal note, I would like to thank those teachers most responsible for my involvement
in the founding of The HCMR, {Mrs. Susan Schwartz Wildstrom, Professor Noam D. Elkies,
Professor Andreea C. Nicoara}, and to wish good luck to the new Co-Editors-In-Chief.

Scott D. Kominers '09
Editor-in-Chief, The HCMR



STUDENT ARTICLE
1

Latin Squares and their Partial
Transversals

Nikolaos Rapanost
Kastritsi High School '08

Patras, Greece
nrapanos@gmail.com

Abstract
We introduce the theory of Latin squares and their partial transversals. Furthermore, we present
the history and some applications of Latin squares. We also prove using elementary methods that
a 6 x 6 Latin square has a partial transversal of length 5. After developing some of the theory of
so-called partial Latin squares we provide a simple proof of a result originally due to Woolbright,
which gives a lower bound for the length of the longest partial transversal in an n x n Latin square.
Followingly we improve slightly the best known lower bound for the length of the longest partial
transversal in an n x n Latin square.

1.1 Introduction
A Latin square of order n is an n x n square matrix whose cells consist of n distinct symbols
such that each symbol appears exactly once in each row and each column. The theory of these
objects has a long history. The earliest written reference of Latin squares is the solution to the
card problem published in 1723 (see [DK] for further information). Euler (1779) initiated the
systematic development of the theory, when he posed 'The Problem of the 36 Officers" in his paper
"Recherches sur une nouvelle espece de quarre magique".1 Later, Cay ley (1877-1890) showed that
the multiplication table of a group is a certain type of a Latin square. Latin squares played an
important role in the foundation of finite geometries, a subject which was also in development at
the turn of the nineteenth century. In the 1930s, a major application of Latin squares was found by
Fisher who used them and other combinatorial structures in the design of statistical experiments.
Latin squares also find applications in computer science and in the construction of error-correcting
telegraph codes.

More on the history and applications of Latin squares can be found in Section 1.2 below. In
Section 1.3 we define the concept of a partial transversal of length j of an n x n Latin square. We
introduce an operation # which will enable us to prove some existence results for partial transver
sals. We then survey some lower bounds on the length of the longest partial transversal in annxn
Latin square. In Section 1.4 we define partial Latin squares and use some of their properties to
prove one of the aforementioned lower bounds. We conclude by sketching how to improve on the
proven bound.

1.2 History and Applications of Latin Squares
Latin squares have a long history, stretching back at least as far as medieval Islam, when they were
used on amulets. Abu 1'Abbas al Buni wrote about them and constructed, for example, 4x4 Latin

t Nikolaos Rapanos has a high school senior at Kastritsi High School in Patras, Greece. He is member of his
National Math team during the last 6 years and he has been distinguished in various math competitions, such
as the IMO-BMO. His mathematical interests include Analysis, Geometry, and Inequalities. Beyond math, his
interests include physics, music, tennis and waterskiing. He plans to study Engineering, although a double
major in mathematics is increasingly likely.

English: Investigations on a new species of magic square.
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squares using letters from a name of God. In his famous etching Melancholia, the fifteenth century
artist Albrecht DUrer portrays a 4 x 4 magic square, a relative of Latin squares, in the background.
Other early references to them concern the problem of placing the 16 face cards of an ordinary
playing deck in the form of a square so that no row, column, or diagonal should contain more than
one card of each suit and each rank. This is known as "The Card Problem."

The systematic treatment of Latin squares started by Leonhard Euler in 1779, when he posed
"The Problem of the 36 Officers." This problem was not solved until the beginning of the twentieth
century. The problem was to arrange 36 officers, each having one of six different ranks and belong
ing to one of six different regiments, in a square formation 6 x 6, so that each row and each file
contained just one officer of each rank and just one from each regiment. Working on this problem,
Euler defined Graeco-Latin—or orthogonal—Latin squares as a pair of n x n Latin squares so
that when one is superimposed on the other, each of the n2 combinations of the symbols (taking
the order of the superimposition into account) occurs exactly once in the n2 cells of the array. "The
Problem of the 36 Officers" can be solved by finding a pair of orthogonal Latin squares of order 6.
Euler knew (c. 1780) that there was not a Graeco-Latin square of order 2 and knew constructions
of Graeco-Latin squares for n odd and for n divisible by 4, but he was unable either to find a pair
of orthogonal Latin squares of order 6 or prove that they did not exist. Based on much experimen
tation, he conjectured that Graeco-Latin squares did not exist for n = 2 (mod 4) (oddly even
integers according to his notation).

In 1901, Gaston Tarry proved (by exhaustive enumeration of the possible cases) that there
exists no Graeco-Latin square of order 6, adding evidence to Euler's conjecture. However, in 1959,
Parker, Bose and Shrikhande were able to construct an order 10 Graeco-Latin square, and provided
a construction for the remaining even values of n that are not divisible by 4 (of course, excepting
n = 2 and n = 6).

Many more applications of Latin squares were developed in the 20th century. Arthur Cayley
continued work on Latin squares and in the 1930s the concept arose again in the guise of multipli
cation tables when the theory of quasi-groups and loops began to be developed as a generalization
of the group concept.

Latin squares played an important role in the foundation of finite geometries, a subject which
was also in development at this time. A large application area for Latin squares was opened by
Fisher who used them and other combinatorial structures in the design of statistical experiments.
Sets of Latin squares that are orthogonal to each other have found an application as error-correcting
codes in situations where communication is disturbed by noise besides simple white noise, such as
when attempting to transmit broadband internet over powerlines. Latin squares are also useful for
scheduling round-robin tournaments. As a matching procedure, Latin squares relate to problems
in graph theory, job assignment (known as the Marriage Problem), and processor scheduling for
massively parallel computer systems. More about applications of Latin squares can be found in
[DK].

An interesting open problem seeks a formula L(n) for the number of nxn Latin squares. The
number of n x n Latin squares is known to increase very fast—in fact L(ri) > YY}=1 j\—but the
exact formula is not yet known.

1.3 Partial Transversals
1.3.1 Definitions
Define a partial transversal of an n x n Latin square to be a set of n cells, one from each row and
column. A partial transversal has length j if it contains j distinct symbols. For j = n the partial
transversal is called a transversal.

We continue with the proof of an elementary fact as an example.

Proposition 1. Every 6x6 Latin square has a partial transversal of length at least 4.

Proof. Assume that there exists a 6 x 6 Latin square whose maximum partial transversal has length
less than 4. Then one can find at least 2 same symbols at every partial transversal of the Latin
square. Thus, we may assume that our Latin square looks like the one in Figure 1.3.1.
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b X y
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Figure 1.1: Every 6x6 Latin square has a partial transversal of length at least 4.

It is clear that symbols x and y are both different than c and at least one of them is different than
a. Without loss of generality, we may examine only the case in which x is different than a, then
one of the gray-colored cells, say the (io, jo), must contain a symbol that is neither a nor x. Note
that all the gray-colored cells contain symbols that are different than c. Therefore it is clear that the
partial transversal consisted of the cells {(1,1), (2,3), (5,5), (io, jo)} and two more (acceptable)
cells and contains at least 4 distinct symbols—or in other words, its length is at least 4. We work
s imi lar ly i f y is d i f ferent than a and f in ish the proof as above. □
1.3.2 The operation #
Given annxn Latin square and a partial transversal T of length n — k with k > 2, one can find
another partial transversal of equal or greater length in the following manner:

1. Choose two cells (ii, ji) and (i2, j2) of T such that T - {(ii, ji), (12,32)} contains n-k
distinct symbols. Since k > 2, there exist two such cells. These two cells can either contain
two distinct duplicated symbols, or two occurrences of the same symbol, if this symbol
appears in the transversal at least three times.

2. Replace these two cells with the cells (h, J2) and (2*2, ji).

Since we chose cells containing duplicated symbols, the new partial transversal has length at least
n - fc, as each of the symbols in the original transversal is represented in one of the unchanged
cells. An example of this operation is given in Figure 1.2. We call this operation #, a notation
chosen for its shape.
Proposition 2. Every 6x6 Latin square has a partial transversal of length at least 5.
Proof This proposition follows directly from Drake's result in [Dr], but we also give another proof
as a motivating example for the use of operation #. Let us assume that there is no partial transversal
of length 5. There exists a partial transversal of length 4 according to Proposition 1, so there will
be a partial transversal containing a multiset2 of symbols either of the form {a, a, b, b, c, d} or the
form {a, a, a, b, c, d}.
Case 3. There is a partial transversal containing symbols of the form {a, a, b, b, c, d}. An illustra
tion for this case is presented in Figure 1.2.

We may assume without loss of generality that this partial transversal is on the diagonal, and
call it T0. We can apply # to the cells (1,1) and (3,3) in T0 to get a new partial transversal Tx.

2 A set whose elements may be repeated is called a multiset.
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a
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i b

b
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Figure 1.2: An example of the operation #. In this case, we replace the cells (1,1) and (3,3)
in the partial transversal on the diagonal with the cells (1,3) and (3,1) to obtain another partial
transversal, also of length 4.

By our hypotheses, the new cells (1,3) and (3,1) in T\ must contain a symbol chosen from the set
c, d. Because of symmetry, we only need to analyze two cases: either both symbols are the same
or there is one c and one d.
Subcase 3.1. Both symbols obtained from the above application of # are c's.

Since both are c s, we can apply # to the cells (1,3) and (5,5) in T\ to obtain a new partial
transversal T2 (as shown in Figure 1.3(a)), and we discover that the symbols in (1,5) and (5,3)
must be chosen from the set {a, b, d}. On the other hand, applying # to the cells (1,1) and (4,4)
in To gives us a partial transversal T3, and we discover that the symbols in (1,4) and (4,1) must
both contain d (see Figure 1.3(b)). We can now apply # to the cells (1,4) and (6,6) in T3 to
obtain T4, and discover that the symbols in (1,6) and (6,4) must be chosen from the set {a, b, c}.
We know that our Latin square looks like Figure 1.3(b), where the #' s are symbols from the set
{a, b, c, d}. The first row contains five distinct symbols from the set {a, b, c, d}, a contradiction by
the pigeonhole principle.
Subcase 3.2. The symbols of the cells (1,3) and (3,1) are different and chosen from the set {c, d}.

Without loss of generality, we can assume that the cell (3,1) contains a c and the cell (1,3)
contains a d. The partial transversal T/ is the one obtained by # to the cells (1,1) and (3,3) in
To . Applying # to the cells (1,1) and (4,4) in To, we obtain a new partial transversal T5. Clearly,
the cell (4,1) must be filled with a d and the cell (1,4) with a c. Note, that cells obtained after an
application of # cannot contain another symbol, say e, because then we would derive directly our
proposition. This is the reason, for which we assume that each cell obtained by # must contain a
symbol from the set {a, b, c, d}. The partial transversal Te contains all three c' s of our Latin square
and the cells (2,2), (4,3) and (6,6). Applying # to the cells (1,3) and (5,5) in Te, we obtain a new
partial transversal T7, and we discover that the cell (1,5) must contain a b. Applying # to the cells
(6,6) and (1,4), we obtain a new partial transversal T& containing the cell (6,1). As we noted above,
this cell obtained by # must contain a symbol from the set {a, b, c, d}. This yields a contradiction,
since the first row already contains these symbols.
Case 4. We are left with the case, in which the partial transversal (we may assume it is the diagonal)
contains symbols of the form {a, a, a, b, c, d}.

We may assume, without loss of generality, that the diagonal contains the symbols {a, a, a, b, c,
d} in this order. Call this partial transversal To. Applying # to the cells (1,1) and (2,2) of To, we
discover that the cells x\ = (1,2) and X2 = (2,1) must contain symbols of the set {b,c,d).
Applying # to the cells (1,1) and (3,3) of To, we discover that the cells X3 = (1,3) and x± = (3,1)
must also contain symbols from the set {b, c, d}. Since x\ ^ X3, we understand that one of these
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a o
k a c d X Xv

a a

c b c b
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u 6 y c

d X d
(a) (b)

Figure 1.3: (a) Another example of the operation #. Here, we replace the cells (1,3) and (5,5)
in the partial transversal indicated in bold with the cells containing symbols x and y. If this Latin
square has no partial transversal of length greater than 4, we must have x G {6, d} and y e {a, d}.
(b) After two more applications of #, we know that if the Latin square had no partial transversal of
length greater than 4, then it would appear as pictured, where the symbols x are chosen from the
set {a, b, c, d}.

two cells contains a different symbol of that in cell x±. Without loss of generality, we assume that
1:3 ^ X4. If we consider the partial transversal containing {#3, #4, (2,2), (4,4), (5,5), (6,6)},
t h e n w e h a v e r e d u c e d t h i s c a s e t o c a s e 3 . □
1.3.3 Open Problems on Latin Squares
Koksma [Ko] showed that an n x n Latin square has a partial transversal of length at least ^ti.
This was improved by Drake [Dr] to ^p and then simultaneously by Brouwer et al. [BdVW]
and Woolbright [Wo] to n — y/n. This was in turn improved by Hatami and Shor [HS] to n —
11.0525(logn)2. We obtain a different lower bound which, while still of order n — O(logn)2,
slightly improves upon Hatami and Shor's constant found in [HS]. Both results fall short of two
conjectures, Ryser's conjecture of n for odd n, and Brualdi's Conjecture of n — 1. The difficulty
of these problems is based on the fact that for large Latin squares, brute force is intractable. In
particular, the two conjectures are stated as follows:
Conjecture 5 (Ryser). Any Latin square of odd order has a transversal.
Conjecture 6 (Brualdi). Any Latin square of order n has a partial transversal of length at least
n - l .

1.4 Partial Latin Squares and a Proof of Woolbright's Theorem
We define a partial Latin square as an n x n square matrix of cells, some of which contain a
symbol such that no symbol appears twice in any row or column. A partial transversal of an
n x n partial Latin square is a set of n filled cells, one from each row and column. We say that
a partial transversal of a partial Latin square is of length j if it contains j distinct symbols. An
mxm subsquare S' of an n x n partial Latin square S is the set of ra2 cells in some subset of ra
rows and some subset of ra columns of the partial Latin square, where some filled cells of S may
possibly be replaced by empty cells in S'.

Consider a Latin square with a partial transversal of maximum length n — k, where k > 2.
By applying # to this partial transversal, we obtain other partial transversals, whose lengths must
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also ben — k and whose set of symbols is the same as the first. Applying # repeatedly to these
partial transversals, we eventually obtain a maximal set of partial transversals closed under #. All
of these partial transversals contain the same set of n - k distinct symbols, so by ignoring all cells
except those in this set of partial transversals, we obtain a partial Latin square S containing n — k
distinct symbols and a set T of partial transversals of S closed under #. We will call this pair (S, T)
a partial Latin square satisfying Ak. More formally we have the following definition.
Definition 7. Ann x n partial Latin square satisfying Ak is an n x n array of cells, some of
which contain a symbol, together with a nonempty set T of partial transversals of length n — k, that
satisfies the following properties:

1. Each filled cell must appear in at least one of the partial transversals in T.

2. The set T of partial transversals must form a connected graph under #.3

3. The set T of partial transversals must be closed under the operation #.

We consider a partial Latin subsquare (S', T') satisfying Ay of a partial Latin square (S, T)
satisfying Ak. In this case, we require that T' be a subset of T restricted to S\ i.e. that

T ' C { r n S ' : T€T } .
Note that the case analysis in the proof of Proposition 2 on Latin squares of size 6 sketched earlier
shows that any partial Latin square satisfying A2 must have size at least 7. Namely, we have already
proved that every 6x6 Latin square has a partial transversal of length at least 5.
Lemma 8. If(S, T) is a partial Latin square satisfying Ak such that no subsquare satisfies AkJhen
no cell is contained in all partial transversals in T. In other words, there is no fixed cell. That is,
given a filled cell (i,j) and a partial transversal containing (i,j), by a sequence of operations #,
one can obtain a partial transversal in T not containing (i, j).
Proof. Suppose there is a cell (i,j) contained in all partial transversals. We will call this a fixed
cell. Let a be the symbol in this cell. If a appears anywhere else in the partial transversal, then there
is a partial transversal containing both a's (the second a appears in some partial transversal since
every filled cell does, and this partial transversal must contain the first a since all partial transversals
do). We can then apply # to this partial transversal to obtain a partial transversal without the fixed
cell, which is a contradiction. We are left with the case in which a does not appear anywhere else
in the partial Latin square. By deleting the row and column containing the a, one finds a subsquare
s a t i s f y i n g A k , a c o n t r a d i c t i o n o f t h e h y p o t h e s i s . □
Proposition 9. Given a minimal partial Latin square (S, T) satisfying Ak and any filled cell, there
exists a partial transversal in T containing both that cell and another one with the same symbol.
Proof. We may assume that there is only one cell containing the symbol a. We already know (from
Definition 7) that there must be a partial transversal in T passing through a. Choose a cell on such
partial transversal and call it T\. By Lemma 8 no cell is fixed, so there is a partial transversal T\
in T that does not pass through a. On the other hand, the set T of partial transversals must form a
connected graph under the operat ion #, which is a contradict ion. □
Corollary 10. Given a minimal partial Latin square (S, T) satisfying Ak, there exists a subsquare
of S satisfying Ak-i.
Proof. We can choose any filled cell, say (1,1) containing a, and a partial transversal To passing
through it that duplicates a. Now consider the set of partial transversals containing at least two
a's, including the one in cell (1,1), which are generated by a sequence of operations # starting with
To. This is exactly the set of partial transversals generated by # starting from the partial transversal
To' = To — (1,1) in the subsquare formed by deleting the first row and column. Taking this set of

3 When we say that the set T of partial transversals must form a connected graph under #, we mean that
any transversal in T can be obtained from any other transversal in T by repeated applications of #.
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partial transversals gives an (n-l) x (n- 1) partial Latin square satisfying Ak-i. Note that this
subsquare may have some empty cells which were filled in the original nxn square. □

We now state a lemma, theorem, and corollary proven by Hatami and Shor [HS]:
Lemma 11. In an (n — 1) x (n — 1) partial Latin square satisfying Ak-i induced as described
above from an n x n partial Latin square satisfying Ak, the partial transversals generated by #
must have a fixed cell,that is some cell that appears in all of these partial transversals.
Theorem 12. In a minimal partial Latin square S satisfying Ak, there are at least nk-i + k filled
cells in each row and column, where nk-i is the size of the smallest subsquare of S satisfying
Ak- i .
Corollary 13. If we let nk = nbe the size of the original partial Latin square satisfying Ak, then

n k > n k - i + 2 k . ( 1 . 1 )

Proof The larger square has nk - k distinct symbols, of which at least nk-i + k appear in each
r o w a n d c o l u m n . □
1.4.1 An elegant proof of Woolbright's Theorem
Based on our previous analysis, we can give a very short and elegant proof for Woolbright's result
[Wo]. Note that the original proof in [Wo] is very complicated.

Let Sk be a partial Latin square satisfying Ak such that no subsquare satisfies Ak. We call such
a partial Latin square minimal. It was shown in Section 1.4 that there must be a subsquare of Sk
satisfying Ak-i. Choose Sk-i to be the smallest subsquare of Sk satisfying Ak-i and, recursively,
Sm to be the smallest subsquare of Sm+i satisfying Amt until the sequence ends at S\. Denote by
nj the size of Sj. In this terminology, Proposition 1 can be expressed as

n 2 > 7 . ( 1 . 2 )

Theorem 14 (Woolbright, 1978). Every nxn Latin square has a partial transversal of length at
least n — y/n.

Proof Suppose that we are given anxn Latin square which does not have a partial transversal
of length more than n — k. It follows from the definition of nk, that n — k > nk — k. We have
already shown that nk — nk-i > 2k in Corollary 13. Adding up, we get:

nk — nk-i > 2-k
n k - i - n k - 2 > 2 - ( f c - l )

n 3 - n 2 > 2 - 3
n 2 — n \ > 2 - 2

▶ nk = 2(1 + 2 + • • • + k) - 2 = k2 + k - 2.

Thus nk > k2, or in other words k < y/n~k~. Consequently, there must be a partial transversal
o f l e n g t h a t l e a s t n — y / n . □

The reader may enjoy trying to derive the following inequality for the sequence {nk}'-
Theorem 15. In Sk as defined above, for all j < k,

(nk -nj)(nk-i +nj - n* + fc) < nj(rij - ra^-i - 2j) + (n* -nj)(nk -k-rtj + j). (1.3)
Note that inequality (1.3) simplifies to

(nk - rij)(2nj -f nk-i - 2nk + 2k - j) < rij(rij - rij-i - 2j). (1.4)

Suppose we have a Latin square, which has no partial transversal of length more than n — I.
By the previous sections, there is a sequence ri2 < n3 < • ■ • < nj satisfying the inequalities (1.2)
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and (1.3) defined earlier. These inequalities hold for 1 < j < k < I. We want to place a lower
bound on the expression n-l. Since n - / > nk - k, it is sufficient to place a lower bound on the
expression nk — k.

Using the above inequalities we can prove that in an n x n Latin square, there is a partial
transversal of length at least n - 11.0368(log n)2. Although for large n we have

n - 11.0368(logn)2 >n-\/n,

for small values of n the inequality flips. Finally we can state that every nxn Latin square has a
partial transversal of length at least

max {n — y/n, n — 11.0368(log n)2 } .

However we omit the proof of this research since it lies outside of the scope of this article.
Now we give an example of a sequence satisfying inequalities (1.2) and (1.3).

Proposition 16. The sequence u2 = 7 and uk = a3Lv^J (a - 6fe"Lv^J J for any k > 2, with
a > 2 3 and b < \, satisfies the inequalities (1.2) and (1.3).

This proposition shows that inequality (1.3) cannot imply anything better than

n - f e )
(logn)2

since the sequence {uk} satisfies all the conditions.
In our research, we only needed to examine the case in which {uk} is an upper bound for

the sequence {nk}. This is because if there exists an N such that nj > Uj for all j > N, then
ftj — j > Uj —j which gives a much better lower bound for the length of a partial transversal than in
the previous case. Furthermore, the slowest growing sequence, that satisfies the inequalities would
be a lower bound for the sequence {nk}. We were not able to find the slowest growing sequence,
but we can show that this sequence is bounded below by 2™ and above by

exp I \lklog - log

for some constant c.
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Abstract
This paper develops several classical algorithms and cryptosystems in cryptography, and develops
the theory of elliptic curves to reveal the improvements provided by elliptic curve cryptography.
The prerequisites to this paper are an understanding of groups, fields, and some elementary number
theory.

2.1 Introduction
Elliptic curve cryptography is not only a surprising application of a deep and powerful area of
number theory to computer science, but as we shall see, is also a very practical technique that is
used today around the world. In this article we present a small taste of cryptography, presenting
some classical cryptographic protocols and factorization methods. After this we describe some of
the mathematical theory of elliptic curves. These are combined in a section that shows how to
use elliptic curves in the earlier protocols, and explains why these represent an improvement over
traditional methods, while citing some limitations to this viewpoint.

It is impossible, of course, to give anything approximating a complete account of these subjects
in a short article. Thus I strive to give an overview of the structure of these fields by including a
few examples from cryptography and developing the theory needed to present the corresponding
elliptic curve cryptosystems. Moreover, the paper is intended for one who is familiar with the
basic properties of groups and fields, as well as elementary number theory, but with no exposure to
cryptography or elliptic curves. Section 2.4 together with Section 2.5.2.2 and Section 2.5.4 sketch
the proofs of some key results that follow from the existence of the Weil pairing, an algebraic
structure defined on an elliptic curve, and require some additional mathematical maturity. Since
Section 2.3 makes no use of Section 2.2, some readers may want to begin with Section 2.3, and use
Section 2.2 as a reference when reading Sections 2.4 and 2.5.

2.2 Cryptography
At the heart of cryptography is security—cryptography allows one to very carefully control the in
formation and powers available in a system to various parties in a way that cannot be manipulated
or broken by dishonest participants. Thus cryptosystems are often tested for resistance to various
"attacks" and required to have a very small probability of being broken. Most of classical cryptog
raphy proves results that are conditional on central assumptions. These assumptions are made to
be general enough so that they do not rely on the difficulty of a specific problem, such as factoring
integers. However, the central assumptions are far from being proven, so cryptography in some
sense rests on fragile ground. This section will describe these assumptions as well as some types of
cryptosystems that can be constructed under these assumptions. It will also present classical cryp
tosystems as concrete examples. These cryptosystems will then be modified to use elliptic curves
later in this paper. The last subsection will explain some of the mathematics behind the problem of

tShrenik Shah, Harvard '09, is a mathematics concentrator and English minor. He is also enrolled in a
concurrent masters program in computer science. He is a founding member of The HCMR and currently serves
as Articles Editor.
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factoring integers and describe classical algorithms that aim to perform this task more efficiently
than the usual brute force methods.

2.2.1 Theory of Computation
The most common formalization for the notion of a "computer" is the Turing machine. For our
purposes, we will instead refer nonrigorously to the notion of an algorithm and assume that all
basic operations, such as addition and multiplication, all take a single time step. These assumptions
serve our purposes because we will not analyze the precise complexity of the algorithms we study.
The time an algorithm takes is measured as a function of the input size, where the input is a string
of binary digits. For the interested reader, [Si] is a good introduction to the formal theory of
computation.

An algorithm can either take as an input a string in binary and output "accept" or "reject," or
take in a string in binary and output another string in binary. An algorithm of the latter sort is
said to be computing a function. Any subset of {0,1}*, the set of all binary strings, is termed a
language. The subset of {0,1}* accepted by an algorithm A is a language said to be decided by
A. The time t(n) taken by the algorithm is measured as the maximum number of time steps for an
input of length n. The class P consists of all languages that can be decided by an algorithm that
runs in polynomial time, meaning that t(n) < p(n) for some polynomial p.

Some languages have the property that there exists some string (specific to a particular string
x G L) with which membership in the language can be verified quickly. For example, those familiar
with basic graph theory will recall the definition of a Hamiltonian path, which is a path that visits
every vertex exactly once. It is conjectured to be a difficult computational problem to determine,
for a given graph G, whether such a path exists. However, given such a path, an algorithm can very
easily verify that it is indeed a Hamiltonian path. The description of the path is called a witness
testifying to the existence of a Hamiltonian path for G.

The class NP consists of all languages L with the following property: There exists a polyno
mial-time algorithm A such that if x G L, then there exists a witness w such that A(x, w) = 1.
However, ifxfiL, then A(x, w) = 0 for all choices of w. It is a very well-known open problem
to determine whether P and NP are equal (or not).

In fact, the problem of determining whether a Hamiltonian path exists is called NP—complete
because it can be proven that for every language L in the class NP, there is a polynomial time
algorithm that maps any x G L to graphs that have a Hamiltonian path and x £ L to graphs
that have none. Thus, if a polynomial time algorithm were ever written to determine whether a
Hamiltonian path exists, an algorithm could be then developed to decide any language in NP. By
contrapositive, if any NP program were ever proven to have no polynomial time algorithm, then
testing for existence of a Hamiltonian path could not be done in polynomial time either.

It seems, then, that proving that P ■=/ NP would be rather powerful, in that it shows that every
NP-complete problem is difficult to solve. Unfortunately, this difficulty is worst-case hardness,
which means that for every algorithm, all that is known is that there exists an input on which it is
wrong, not that no algorithm can solve the problem for most inputs. Thus, although the idea of
basing cryptography on the assumption that P ̂  NP is an attractive notion, especially since these
classes seem "surely" different, a much stronger assumption is needed, as will be seen in the next
section.

The last notions needed are merely some technical definitions: A function v : N —▶ R is
negligible if for any exponent a > 0 there exists a constant ca such that n~a > v(n) for n > ca.
Roughly, if v eventually shrinks faster than any inverse polynomial, then v is negligible. We define
the big-O notation f(n) = 0(g(n)) to mean that there exists N G N and C > 0 such that for
n > N, \f(n)\ < C\g(n)\, and f(n) = S(g(n)) to mean that there exists c, C > 0 such that
c\g(n)\ < |/(n)| < C\g(n)\, again for n > N.

Finally, a probabilistic polynomial time (PPT) algorithm is an algorithm with the additional
property that it may generate uniform random bits whenever it wishes. In order words, a PPT
algorithm may, in addition to following deterministic instructions, flip a fair two-sided coin.
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2.2.2 Central Assumptions
This section details the main assumptions of cryptography. These definitions are taken from [GB].
The main assumption of cryptography is that one-way functions exist. A one-way function / :
{0,1}* —▶ {0,1}* has two properties:

• There is a polynomial-time algorithm that computes the one-way function.

• For any PPT A, on a randomly chosen input x G {0, l}n with uniform distribution, there
exists a negligible function va (allowed to depend on A) such that the probability that
A(ln,f(x)) = z where f(z) = f(x) is less than or equal to VA(n) (for n sufficiently
large). (Note that ln = 1... 1 with 1 repeated n times.)

The second property above is a mouthful, so we'll satisfy ourselves with an imprecise definition:
given the output on a randomly chosen input of a one-way function, a polynomially bounded algo
rithm has a low probability of finding an input that would produce the same output. Note that the
ln in the input to A is to ensure that its running time is based on the size of the space of possible
x, rather than on the output f(x), which could be much smaller.

The existence of one-way functions implies that P ^ NP, but the converse is not true. The
field of average-case complexity strives to prove such an equivalence. Unfortunately, many of the
results related to this question are pessimistic, and imply that proving an equivalence would require
fairly sophisticated, non-intuitive methods.

Some candidate one-way functions:
• Computing the product n = pq of two prime numbers p, q. We will discuss later in this

paper some algorithms faster than the naive 0(y/n) algorithm for factoring such numbers.
• The discrete logarithm problem:. Given the multiplicative group (Z/pZ)x,gx, and g,

where g is a generator of this group, determine x.

• Computing modular square roots: Given a quadratic residue a mod n, compute a value x
such that x2 = a mod n.

As a notational remark, we will use, as above, a = b mod n for n | (a — b). We will frequently
use = for =, particularly when working in the ring Z/nZ. We will also use (a, b) for the greatest
common divisor of a and b.

Another problem that is conjectured to be hard is the Diffie-Hellman problem. In (Z/pZ)x,
given the generator g together with gx and gv, the problem is to compute gxy. This problem is
important in several protocols that we will discuss later. The hardness of this problem is frequently
assumed by cryptographers. This is known as the Diffie-Hellman assumption. If one has a solution
to the discrete logarithm problem for either g, gx or g, gy, one can certainly compute gxy, so the
Diffie-Hellman assumption is stronger than the assumption that computing discrete logarithms is
hard.

As it turns out, cryptographers do not yet know how to create certain encryption schemes (dis
cussed later) without an even stronger assumption. This is that a trapdoor function / : {0,1}* —▶
{0,1}* exists, with the following properties:

• The function / is one-way.

• There exists a PPT algorithm T so that for every input length n, there exists a tn G {0,1}*
of length bounded by a polynomial p, and for all x G {0, l}n, T(f(x),tn) — z with the
property that f(z) = f(x).

• It is also important that a trapdoor function can be generated together with its trapdoors tn
efficiently.

Trapdoor functions essentially have a built in method to invert the function, which is important if
one party computes the function at a point, while another needs to invert this computation in order
to access information. This occurs in public key encryption, described in the next section.
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2.2.3 Types of Cryptographic Schemes
Cryptographic schemes are simple tasks that represent common tasks requiring security against
a very specific breach. This is in contrast to cryptographic protocols, which are often rather
complex, and composed of many different schemes. Election systems and auction systems are
examples of such protocols. In this section, we describe a few of the most common schemes in a
nonrigorous fashion, followed by examples. Texts such as [Gol] and [GB] are excellent references
for those interested in a formal treatment.
2.2.3.1 Public Key Encryption
In a public key encryption scheme, Alice wants to send a message M to Bob, while an eavesdropper
Eve is listening over the channel. Bob generates a secret decryption key d and publishes a public
key e. Alice computes the encryption C = Ence(M) and sends it to Bob. Bob receives C and
computes M = DeCd(C). We require various minimal properties of this encryption system:

• There should be some efficient algorithm to generate pairs (d, e) of a private key and asso
ciated public key.

• The algorithms Ence(-) and Dec,i(-) should be efficient.

• Knowing e and C should not reveal information about M.

In fact, we can define more properties that guard against more subtle attacks. For example, seeing
many messages sent across this channel should not reveal additional information about any of the
messages. The one-time pad discussed in the next section will illustrate the importance of this
requirement; it is aptly named, as it should only ever be used once. Another example is non-
malleability, and requires that an eavesdropper cannot meaningfully modify the message during
t r a n s m i s s i o n . #
One-time Pad. This does not fit any of the above cryptographic schemes, but is of great historical
significance, predating modern cryptography by over half a century. In these earlier times, actual
books of bits would be distributed physically, and the sender would indicate which bits were to be
used for the decryption. The sheet used would be destroyed after use. The idea is that Alice wants
to send a message M G {0, l}n to Bob, and they have earlier agreed upon a secret one-time pad
s G {0, l}n. Alice sends C — M 0 s to Bob, where 0 denotes the exclusive-or operation, which
is defined as bitwise addition modulo 2 of two given binary strings. For example, for any string
t G {0, l}n,t®t = 0n. Bob computes M = C0s = M0s0s, and both Alice and Bob destroy
all traces of s. If Eve knows no information about s, she knows absolutely nothing about M, even
if she has C.

The "one-time" property, however, is critical. If Alice sends another message M' with the same
key s, then Eve now might have both C = M 0 s and C' = M' 0 s. By computing C 0 C =
M 0 A/', Eve gains some information about the messages M and Af'. Using some algorithm that
perhaps takes advantage of the sparseness of the English language, Eve could possibly decipher M
or M' from this information.
RSA Public Key Encryption. In the RSA (Rivest, Shamir, Adleman) cryptosystem, Alice chooses
two large primes p, q and releases the number n = pq and an exponent e as her public key, so that
(e,<p(n)) = 1. (We define the Euler totient function tp by ip(n) = \{a\(n,a) = 1,0 < a < n}\= \(Z/nZ)x |.) Then she computes d = e~l mod tp(n) as her private key. Bob wants to send the
message M to Alice, and encrypts it using the function C = Encn>e(M) = Me mod n. Finally,
Alice simply computes M = Decd(C) = Cd = Med = Mk*{n)+l = M mod n by Euler's
theorem.

Unfortunately, RSA is vulnerable to some attacks. For example, if the same message is sent
using e different choices of n, the message can be decrypted via simple Chinese remaindering. This
is particularly dangerous when a small e (like 3) is chosen for efficiency purposes. A solution is to
pad all messages with random bits at the end, chosen differently with every encryption. Another
vulnerability is that if the same message is sent using two relatively prime choices of e for the same
value of n, the message can be decrypted using the Euclidean algorithm. A weakness that renders



Shren ik Shah—A Tas te o f E l l i p t i c Curve Cryp tog raphy 17

RSA relatively useless for the purposes of identity-based cryptography is that knowing a pair e, d
of encryption and decryption keys allows one to factor n, which we prove in Corollary 5. See [Bo]
for an excellent survey of the attacks on this cryptosystem.
Elgamal Public Key Encryption. In Elgamal Public Key encryption, Alice chooses a multiplica
tive group Wp , a generator g of this group, and a secret integer x. She computes gA = gx, and
publishes as her public key (¥p ,g,gA). To encrypt 0 < M < p, Bob sends his message by
picking a uniformly random secret integer 0 < y < p — 1 and computing and sending C\ = gy,
C2 = MgA = Mgxy to Alice, who decrypts by computing C2C^X = Mgxyg~xy = M.

The key observation is that all of the operations above could be replicated with any cyclic
group in place of F* above. We will later replace this with a group structure associated to an
elliptic curve.

Cryptographically, this system has a key weakness. The pair (C\, C2) relate to M by the simple
formula M = C2C^X. Thus, if Eve has the ability to modify the message as it is sent to Bob, she
can change M to the known function of M, fk(M) = kM, for some k, without Bob knowing that
any change had been made. Some cryptosystems make it difficult for Eve to control exactly how
her modification might affect the sent message—this property is called non-malleability. RSA is
also malleable, since an encryption of M2 can be computed from an encryption of M.
Theorem 1. If the Diffie-Hellman problem is intractible, then Elgamal Public Key Encryption is
unbreakable.
Proof. Suppose for contradiction that given public key gx, and message (gy, D) (even for only one
such D), one could compute M = g~xyD. Then one could compute M~1D = gxyD~lD = gxy,
v i o l a t i n g t h e i n t r a c t i b i l i t y o f t h e D i f f i e - H e l l m a n p r o b l e m . □
2.2.3.2 Identity-based Encryption
A weakness of public key encryption is that an adversary can pretend to be Bob, the intended re
cipient, and request the message to be encrypted in his public key instead of Bob's—he could then
decrypt the message received. To solve this problem, one might try to design a trusted database that
holds everyone's public keys, but even then, the adversary can intercept communications with the
database. The solution provided by identity-based encryption, proposed by Shamir in [Sham],
is to use some identity-based value that is a function of some unique information about Bob that
anyone sending Bob a message would know. As an example, one might use the output of a pub
licly known hash function (defined in Section 2.2.3.5) on Bob's name, cell phone number, and
address as an identifier. A trusted server provides a decryption key to Bob on some occasion in an
authenticated manner. Bob can then decrypt messages forever afterwards.
2.2.3.3 Digital Signatures
In a digital signature scheme, Alice wants to sign a document M in a way that is verifiable and
unforgeable. She publishes a public key e that anyone can see, and keeps a secret key s. She signs
the message with the function C = Sigs(AT), and sends (Af, C) to the desired recipients. Anyone
can run the verification algorithm Vere(M, C) to test whether the message was indeed signed by
Alice.

There are several levels of information we can assume an adversary might have. In the weakest
case, the adversary Eve might know only the public key e, with no examples. More realistically,
she might know pairs (M, C) that were produced by Alice earlier. The worst case is that Eve may
have forced Alice to sign certain documents of her choice in her efforts to forge a signature on a
document that Alice has not yet signed.

We also can place different requirements on possible forgeries, but for the purposes of this pa
per, we will use the strongest possible requirement, that of existential unforgeability: Eve should
not be able to sign any message for which she has not yet seen a signature. There are weaker levels
of security than this, detailed in [GB].

We finally require, naturally, that Sigs() and Vere(-, •) should be efficiently computable.
In practice, digital signatures are very frequently attached to emails and other forms of elec

tronic correspondence.
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Digital Signature Algorithm. Recall that in a digital signature scheme, Alice wants to equip a
document M with an unforgeable signature. The setup for this algorithm is more complex. Alice
needs to pick a group ¥% and a large prime p such that p \ q — 1, and ^- = e is as small as
possible. The message will be in the range 0 < M < p. She also picks an p G Fj such that g has
order exactly p. By random guesses, exponentiated by a factor of ^-, this can usually be done
quickly. Note that if q = 2p + 1, meaning that p, q are a pair of Sophie-Germaine primes, then
then one can use any nontrivial quadratic residue for g, since the group of residues modulo q is
then of order p. Alice also picks a publicly known hash function H : {0,1}* —» {0,1}£, randomly
chooses a secret integer 0 < a < p, computes gA = ga, and publishes (F* ,p, g, gA,H).

To sign M G {1,..., q - 1}, Alice computes H(M), picks a random integer 0 < k < p, and
computes x = gk mod p (in F* first, then reduced modulo p) and y = k~l(H(M) + ax) mod p,
producing a signed document (M,x,y). The verifier Bob computes c\ = y~1H(M) mod p,
C2 = 2/-1# mod p, and accepts if x = gclgcA2 mod p. A correctly signed document is always
accepted, since x = gk = gv~1(H(M)+ax) = gCl+ac2 mod p

This algorithm is frequently used in practice, though it is in fact an open problem to prove that
the hardness of breaking this cryptosystem follows from the intractibility of the discrete logarithm
problem. On the other hand, the next section describes a provably existentially unforgeable protocol
to compute digital signatures.

Elgamal Digital Signatures. Let q = 2p + 1 be a pair p, q of Sophie-Germaine primes, and G the
group of squares in Z%. Fix a generator g of G. Alice fixes a private key x randomly selected from
{0,... ,p - 1}, computes gA = gx, and publishes the public key (p, g, qa).

To sign M G {1,..., q - 1}, Alice picks y randomly selected from {0,... ,p - 1}, and
computes h = gy. Then Alice computes H(M\\y), where || denotes concatenation, and c =
-xH(M\\h) - y mod p. Finally Alice publishes SIGA(M) = (M, h, c).

Verification simply requires checking that gIAIi"M^h)gch = 1.
Theorem 2. If computing the discrete logarithm x ofgx is hard, and the hash function is a random
oracle, then Elgamal Digital Signatures are existentially unforgeable.

Proof. If an adversary were to compute (M,h,c) meeting the requirements for a fixed message M,
then it would be necessary for the adversary to have obtained H(M\\h) from the oracle, otherwise
the value of gAM"h)gch would be a random value. If the adversary knows H(M\\h), this implies
that M and h are fixed, since it is difficult (in the random oracle model) to find another message
such that H(M\\h) is the same. To forge a single message M, one must be able to determine a value
c and a value c' for at least two possible values a, a' for H(M\\y), since H(M\\y) is a random
value. Thus, the adversary has gAgch = gA 9° h, or gx(a~a > = gc~c . The number a — a' has an
inverse modulo p since it is nonzero, so gx = g^c~c )(a~a ^ yields x = (c—c')(a—a')~l mod p,
thus solving the discrete logarithm problem that was assumed hard. □
2.2.3.4 Key Exchange
Diffie and Hellman developed the notion of a key exchange, wherein Alice and Bob have no
prior shared secret, but they want to be able to send messages via private key cryptography (a
cryptographic scheme we will not discuss in this paper). The desired property is that Alice and
Bob both compute the same value, and that an eavesdropper Eve is unable to determine anything
about that value with high probability. There is a natural generalization to n-partite key exchanges,
where n trusted players want to agree on a single key.

This seems fairly straightforward, though there are some interesting issues that arise. With just
these properties, Eve could impersonate Alice and share a key with Bob. Bob, thinking that Eve is
Alice, will use the shared key to encrypt messages, which Eve can then read. To counter an attack
like this, one needs to use authentication, a topic discussed in detail in [GB] and [MvOV].

From the Diffie-Hellman problem described above, it is not difficult to guess their protocol
for the key exchange. A group F* with generator g is fixed ahead of time. Alice picks oGFpx
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at random, and Bob similarly picks b. Alice sends ga to Bob, who sends gb to Alice. They both
exponentiate to compute gab, which is the shared key.

There is an n-partite version of this protocol, again with a publicly known field ¥p with gen
erator g. Players pi,..., pn pick secrets s\,.. .,sn- In round k, k = 0,..., n — 2, p* sends
gSiSjl ...sjk tQ ajj piavers^ where ji,.-- ,jk are distinct elements of {1,..., i — 1, i + 1,..., n}.
The players then use gsi ",8n as their shared secret.
2.2.3.5 Cryptographic Hash Functions
Hash functions are a useful tool, often used within the earlier-mentioned cryptosystems. A hash
function H : {0,1}* —▶ {0,1}* sends any string of arbitrary length to its hash, of length polyno
mial in the length of the input (though often of constant length, in practice). In the usual definition
of a collision-free hash function, it should be intractible to find a collision in time polynomial in
the input length k, where a collision is a pair of strings s\,S2 such that H(si) — H(s2). H is
usually required to be a one-way function.

The random oracle model of a hash function works as follows: given a message M G {0,1}*,
the random oracle always outputs a random string in {0,1}\ except when a previous query is re
peated, in which case it produces the original output. When using a hash function in a cryptosystem,
one sometimes proves results about the security of the cryptosystem by assuming that the hash func
tion is a random oracle. The assumption that a hash function H is indistinguishable from a random
oracle is stronger than assuming that H is a collision-free hash function.

2.2.4 Miller-Rabin and Pollard's Algorithm
In a sense that the following theorem makes precise, the group (Z/nZ)x contains all the informa
tion about the factorization of n, and this information can be extracted efficiently knowing very
little about this group. In fact, simply knowing a reasonably small multiple of its order suffices to
factor n in polynomial time.
Theorem 3. Suppose that we know n and ktp(n) for some positive integer k. Assume also that
log k = log°^ n. Then n can be factored efficiently.
Proof It suffices to find a single factor, because given a factorization n = n\ - n2, one can run
the algorithm again on n\ and n2, as <p(ni) \ <p(n) (and one can argue that the run time of this
recursive algorithm is still polynomial). One can efficiently check whether n is a prime power, so
assume this is not the case.

In this case, we can design an algorithm as follows. Given a composite input n, we first factor
k(p(n) = 2em where £ G Z is chosen maximally such that m eZ. Next, we pick a random integer
a, where 1 < a < n, and compute (a, n). If (a, n) ^ 1 then we are done, since in this case we
have found a nontrivial factor of n. Otherwise, (a, n) = 1 and

Thus, if we consider

a*(n) = a fc^(n) = a2*m = j_ ^ ^

m 2 m 2 m 2 m _ j _a , a , a , . . . , a m o d n

we have a sequence that eventually becomes 1. For fixed a, consider the largest value of j such
that a?3rn -^ 1 mod n. In Lemma 4, we show that for at least \ of the possible choices of a, we
have that a2'm £ -1 mod n. Then, a2J+1™ - 1 = (a2'm + l)(a2'm - 1) = 0 mod n. Thus,
(a2Jm 4- l)(a2Jm — 1) = sn for some integer s. Also, neither of the factors on the left are 0 or
multiples of n, since we required a2Jrn ^ -1 mod n. So we can compute (a2Jrn + l,n) and
(a23m - 1, n) to obtain a factorization of n into m n2, as desired. By choosing random values for
a until we find one that yields a factorization of n, this algorithm terminates in expected polynomial
t i m e . □
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Lemma 4. In the proof of Theorem 3 above, at least \ of our choices of a have the property that
there exists j such that a23fn ^ 1,-1 mod n while a23 m = 1 mod n. Moreover, we will use
only the fact that a2*™ = 1 mod nfor all a G (Z/nZ)x.
Proof We adapt the proof of correctness of the Miller-Rabin primality test from [CLRS]. Define a
pair (a, j) of integers to be bad if a G (Z/nZ)x, j G {0,1,..., £}, and a2'm = -1 mod n. The
desired result translates into proving that the number of bad pairs (a,j) is at most \\(Z/nZ)x\,
since for any a of the form described in the statement of the lemma, there is a unique value of j
such that (a,j) is bad. Note that since m is odd, (n - 1,0) is bad. Thus there exists at least one
bad pair, so we may pick the largest possible j such that there is a bad pair (a,j), and fix a value
of a so that (a, j) is bad. Note that j < £ since, by assumption, a2 m = 1 mod n for all a. Let

S={xe (Z/nZ)x\x23m = ±1 mod nj.

This set is closed under multiplication modulo n, so it is a subgroup of (Z/nZ)x. Every bad pair
(a,j) has a a member of S, because we picked a to be maximal and we allow x23m = ±1 mod n
in the definition of S. If S also contained numbers a such that (a, j) is not bad, this would be fine,
as we are only proving a bound on the number of bad pairs.

We now prove that S / (Z/nZ)x. Note that n by assumption is not a prime power, so
n = n' - pa for some prime p | n, where a is chosen maximally with pa \ n, and n' ^ 1.
Since a23m = —1 mod n, we have a23m = -1 mod n' by the Chinese Remainder Theorem,
as (n',pa) = 1. Moreover, again by this theorem, there exists b such that b = a mod n',b =
1 modpa. Thus, by our preceding calculation, b23m = -1 mod n',b2Jm = 1 modpa. By
the Chinese Remainder Theorem, b23fn ^ 1 mod n' implies b23m ^ 1 mod n, and b23m ^
-1 mod pa implies b23m ^ -1 mod n. Thus b2'm ^ ±1 mod n, so 6 £ 5.

It suffices, then, to show that b G (Z/nZ)x. Note that since a G (Z/nZ)x, (a,n) = 1, so
(a, n') = 1. Since b = a mod n', (6, n') = 1. Also by definition, 6=1 mod pa, so (b,pa) = 1.
Thus, b is relatively prime to both n' and pa, so b is relatively prime to their product, n. Thus
6 G (Z/nZ)x, as desired. So 5 is strictly contained in (Z/nZ)x, and by Lagrange's theorem, it
h a s o r d e r a t m o s t \ \ ( Z / n Z ) x \ . □
Corollary 5. If we have a pair e, d of corresponding RSA encryption and decryption keys, then we
can factor n.

Proof. Since ed = 1 mod <p(n), ed — 1 is a multiple of </>(n), whereby we can factor n using
T h e o r e m 3 . □

A Carmichael number is a number n such that an_1 = 1 mod n for all integers a such that
(a,n) = 1.
Corollary 6. If we have a bound of \og°^ n on the size of the primes dividing <p(n), or ifn is a
Carmichael number, we can factor n efficiently.
Proof The first statement can be shown by using a weak estimate on the density of primes to find
an upper bound on the product of primes smaller than the bound log°(1) n in order to find a small
multiple of (f(n). The second follows from the theorem that for a prime p dividing a Carmichael
n u m b e r n , p — 1 | n — 1 . □

We can similarly define the Rabin-Miller randomized polynomial-time primality test: Given a
positive integer n, we first check that it is not a perfect power. We then factor n — 1 = 2em, where
£ is maximal, pick a random 1 < a < n, and compute (a, n). If (a, n) ^ 1 then we're done, since
n is then composite. Otherwise, (a, n) = 1. We then check that a2 m = an_1 = 1 mod n, which
can fail only if n is composite. We then consider

m 2 m 2 2 m 2 £ m m i r x * Ma , a , a , . . . , a m o d n ,
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a sequence that eventually becomes 1. If a23rn / ±1 while a23 m = 1, then x2 — 1 has more
than two roots in Z/nZ, so this ring cannot be a field and n cannot be prime.

Corollary 7. If this test outputs composite, it is correct. Ifn is prime, the test outputs prime with
probability > |.
Proof. The first sentence is clear from the algorithm. So suppose n is composite. Note that the
a G (Z/nZ)x with an_1 = 1 mod n form a subgroup T of (Z/nZ)x. We divide into cases,
depending on whether or not T = (Z/nZ)x.

If there exists any x G (Z/nZ)x \ T, then by Lagrange's theorem, at least \ of the choices
of x will have this property, since the smallest possible index for a proper subgroup is 2. If our
algorithm as described above picks any a G (Z/nZ)x \ T, which it does with probability > \, it
correctly classifies n.

If, instead, T = (Z/nZ)x, n - 1 has all of the necessary properties that k<p(n) had in the
proof of Lemma 4 (as remarked in its statement). This lemma then shows that at least \ of the
choices of a will satisfy a?3m ^ — 1 mod n for the largest value of j such that o?3rn ^ 1 mod n,
a n d w i l l t h u s l e a d t h e a l g o r i t h m t o c l a s s i f y n a s c o m p o s i t e . □

We can exploit the fact above by essentially "guessing" the structure of (Z/nZ)x, trying to
pick a multiple of ip(n) by choosing numbers with many small prime divisors. The homomorphism
Z/nZ —> Z/piZ given by sending a to its residue modulo p implies that raising a number a G
(Z/nZ)x such that p \ a to a power that is a multiple of pi — 1 will yield a multiple of pit

This leads to a Pollard's factorization algorithm: We pick an integer 0 < a < n, pick an
integer k that is a multiple of many small primes (say lcm(l,..., ra)), and compute (ak — 1, n).
If (ak — l,n) = n, we use the algorithm above to factor n with k in place of k(p(n), and if
(ak — 1, n) = 1, we pick a larger value of k (or a larger choice of ra). If p* — 1 | k for some but not
all i, (ak — 1, n) is likely to be a proper nontrivial factor of n, as ak — 1 is unlikely to be a multiple
of pj — 1, where pj — l\k (it is not difficult to see that this occurs with probability B(^-j-)). If
(ak — 1, n) = 1, then increasing k is natural, because this could only occur if k were not a multiple
of pi — 1 for any prime p*.

Unfortunately, this algorithm sometimes will be very inefficient, particularly when the pt — 1
are not products of small primes. This observation illustrates the failure of (Z/nZ)x to reveal the
factorization of n easily, even though its order alone would be sufficient to factor n. Although in
most cases, the order ip(n) is a product of mostly small primes, in the worst case, when <p(n) is a
multiple of some very large primes, this approach gives us little hope. Thus Pollard's algorithm is
an efficient way to factor most n, but not all.

We thus see that the general problem of determining the properties of (Z/nZ)x is one that may
be easy for most randomly chosen inputs, but very hard on certain inputs. It would be nice, then,
to have a group that contains all of the information about the factorization of n, yet whose order is
"random." If this were the case, there would be a good chance of being able to factor n by trying
many times on randomly chosen orders, using the same methodology as Pollard's algorithm.

This is where elliptic curves come in handy. Each elliptic curve E over the ring Z/nZ as
sociates to n a group G(E,¥Pi) that, in a sense made precise by Theorem 8, contains the same
information about n as the group (Z/nZ)x. Moreover, we will see that the role of pi — 1 in this
problem is replaced by a number in the interval pi + 1 — 2y/pi < \G(E, ¥Pi)\ < pi -f1 + 2y/p[. It
is rather likely that some number in this range will have small prime factors, and as a consequence,
the algorithm will much more efficiently be able to factor numbers.

2.3 Elliptic Curves
Elliptic curves may be viewed from the perspectives of many fields of mathematics, including
number theory, analysis, and algebraic geometry. Although we'll give a taste of this in Section 2.4,
the focus of this section will be on the special case of elliptic curves over a finite field. Our goal is to
define the group law associated to an elliptic curve over a field and remark upon the generalization
to a ring such as Z/nZ.
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2.3.1 Preliminaries
We first define affine and projective space over a field K. The affine space A# is defined to be the
set Kn, with no vector space structure. The projective space P# is defined, again as a set, to be
{(ao, •.., otn) G Kn+l \ 0} modulo the equivalence relation (ao,..., an) ~ (Aao,..., Aan)
for A G Kx. We will write the equivalence class of (ao,..., an) G P# as [ao,..., an]. Intu
itively, the projective space contains points "at infinity" corresponding to intersections of parallel
hyperplanes in affine space. On the other hand, it is clear from the definition that there are no distin
guished points in projective space, and so there is no preferred affine subset of projective space. A
cover of projective space by subsets "isomorphic" to affine space can be found by considering the
n+l subsets where on = 0 for each i. These are called A^, though the K is often omitted. The
technicalities of defining the structure on these spaces, which are actually varieties, can be found
in [Shaf] or [Ha]. None of these details will be important to the overview in this paper, though it is
occasionally useful to keep in mind that the endomorphisms on elliptic curves we consider in 2.4
are cases of a more general notion.

An elliptic curve is defined over a field or ring. Let the field K have characteristic neither equal
to 2 or 3, an assumption we will hold throughout this paper. Then an elliptic curve E is the set of
points [x, y, z] G P2^ defined by the homogeneous polynomial y2z = x3 4- axz2 4- bz3 over the
projective plane P2K for a,b G K, or the curve y2 = x3 4- ax 4- b defined over the affine plane A2K
together with a point at infinity, corresponding to [0,1,0] in the projective form of the curve. One
should also think of the defining polynomial itself as being part of the information present in E.
Under the conditions on the characteristic, any other object one might call an "elliptic curve" can
be transformed by a simple change of variables into the form given. Over a ring R, the definition
is similar, though in this case, we will require 2,3 G Rx. The projective space P2R will also need
to be redefined, which we do in Section 2.3.3. Note that we say "elliptic curve over K" (or R) to
mean an elliptic curve whose coefficients a, b are in K (or R).

2.3.2 The Group Law
Suppose that we have points Pi = (x\, y\), P2 = (X2,2/2) on an elliptic curve y2 = x3 4- ax 4- b
with a, b G Q (or, more generally, any field K). Then an equation for the line through Pi and
P2 is obtained by taking ra = vxlZVx t0 De tne sl°Pe °f trus une anc* using the formula y =
m(x — x\) 4- 2/1. This line intersects the curve in a third point, which we shall solve for by
substituting this expression for y: (m(x - xi) 4- yi)2 = x3 4- ax 4- b, or

x — ra x 4- (—2myi 4- 2ra x\ 4- a)x — ra xx 4- 2mx\y\ — y\ -f b = 0.

Since the coefficient ra2 is the sum of the roots of the polynomial, while x\, X2 are already roots,
we can find the abscissa of the third point as X3 — ra2 — x\ — X2, and the ordinate from the equation
of the line, yz = m(x3 — x\) 4- y\. We label P3 = (#3,2/3), and we define 0 = Pi 4- P2 + P3 in
the additive group of points on the elliptic curve, so that Pi 4- P2 = — P3. We define the negation
of a point to be its reflection over the #-axis, meaning that — (x, y) = (x, —y). The third point
on this line connecting (x, y) and (—x, y) is the point at infinity, and the identity of this additive
group.

Commutativity and identity properties follow immediately from the above definition, but asso
ciativity is tedious to verify, as it breaks up into cases. We refer a reader interested in the proof to
[ST], though we will provide a somewhat opaque proof of this result for subfields of C when we
motivate the Weil pairing in Section 2.4.

Associated to an elliptic curve E over a field K we have defined an abelian group struc
ture G(E, K) on its points. Moreover, for a field extension L/K, there is a natural injection
G(E, K) <—* G(E, L). Many amazing results in number theory describe various properties of
G(E, Q). Although we will not need them, they are worth mentioning. Mordell's theorem shows
that this group is always finitely generated. Mazur's theorem shows that the torsion subgroup is
either Cn for 1 < n < 10 or n = 12, or C2 x C271 for 1 < n < 4. Determining G(E,¥P) is
generally easier than computing the group law over Q, and in fact, the most important information
about G(E, ¥p) for our purposes will be its order (which is finite).
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2.3.3 Elliptic Curves over;
One can define elliptic curves over rings as well, though to do so requires a more complicated group
law, since division is not permissible and other issues arise. The story is detailed in Lenstra's paper
[Le], which also describes the factoring algorithm we present in Section 2.5.1. There are various
constraints that make the process simpler. We'll avoid delving into the general theory and study
the specific case of Z/nZ, where n is prime to 2 and 3. This will suffice for our purposes, because
our factoring algorithm will specifically check for divisibility by small primes. Over a ring R, the
projective space PR is redefined as

{(a0,...,an) G Pn+1|(a0,...,an) = (1)} /(a0,... ,an) ~ (Aa0,..., Aan), A G Rx,

and it becomes generally more important to consider the elliptic curve within projective space. We
still define the curve as the solutions to the homogeneous equation

2 3 . 2 . i 3y z = x 4- axz + bz

in P2R, though we require that the discriminant -4a3 - 2762 be a unit (which just means nonzero
over a field, so this is consistent).

The ring Z/nZ holds information about its factors within its subgroups, and has the property
that if n = mn2, where (m,n2) = (l),thenZ/nZ = (Z/n\Z)x(Z/n2Z). We can show that this
translates to the elliptic curve as well. Note that for an elliptic curve E over R and an injection (p :
R^> S, G(E, R) C G(E, S). But we can replace the injection <p with any homomorphism, and
apply this map both to the coefficients of E and to R to obtain a homomorphism (p : G(E,R) —>
G(E, S). In particular, for an elliptic curve E over Z/nZ and pi reduction modulo n*, we obtain
maps (pi : G(E, Z/nZ) -> G(E, Z/mZ). We can now prove:
Theorem 8 ([Wa, pp. 65-66]). The map

(fi x q>2 ' G(E,Z/nZ) -> G(E,Z/mZ) x G(E,Z/n2Z)

is an isomorphism.
Proof. Note first of all that the discriminant of E when reduced modulo ni or n2 is still a unit,
since it is relatively prime to n. Thus the groups on the right above are well-defined. Reduction
modulo ni yields, via the Chinese Remainder Theorem,

ipi x ip2 : Z/nZ =■ Z/niZ x Z/n2Z,

and thus a bijection between triples of these elements. This map induces maps on Pl/nZ, which
we'll denote ^i,<?2' smce ^ (xiViz) = (ux ,uy',uz) are equivalent triples, their images are
equivalent via the image of the unit u. When applied to the bijection on triples, this yields a
bijection

if1 X if2 : Pz/nZ —> Pz/niZ X Pz/n2Z-

Finally, y2z = x3 4- axz2 + bz3 mod n implies y2z = x3 4- axz2 4- bz3 mod n* for i = 1, 2.
The converse is true, again by the Chinese Remainder Theorem. Thus the map (p\ x (p2 is a
bijection. That it is a homomorphism can be verified by a tedious but simple computation that we
w i l l o m i t . □

Our last comment is that although we have not specified the exact group law over a ring Z/nZ,
one can use the usual group law over a field K when dealing only with units. This fails to yield
the right answer exactly when a nonzero nonunit appears in one of the coordinates of one of the
points. For the purpose of factoring, however, we actually need not explain how to carry out the
group operation in this situation, as a nonzero nonunit appears exactly when we have successfully
managed to factor n, so the algorithm can terminate at this stage.
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2.4 The Weil Pairing
The Weil pairing is a construction on the n-torsion points of an elliptic curve that is important for
proving theoretical results, such as the analogue of the Riemann Hypothesis for elliptic curves,
as well as for computational applications, discussed in Section 2.5.2.2 and Section 2.5.4. The
progression used in the subsections following the motivation come largely from Chapters 2 to 4 and
11 to 12 of [Wa], though we provide few proofs. Our goal is to sketch the ideas behind the results
on elliptic curves over finite fields most relevant to cryptography. Readers without background in
complex analysis can safely skip Section 2.4.1.

The texts [Sil], [Si2] provide an abstract viewpoint on pairings that is more useful from the
purposes of number theory, while [CFA] provides a comprehensive treatment of the cryptographic
applications of the Weil pairing and the related Tate-Lichtenbaum pairing.
2.4.1 Motivation
For those familiar with either the theory of algebraic curves over C or of compact Riemann surfaces,
the following will serve as motivation for some of the theorems that follow (and provide proofs of
special cases of results we will not prove).

If we view an elliptic curve in P£ as a compact Riemann surface X of genus 1, there exists
a lattice A C C such that X maps biholomorphically to the quotient E = C/A. Indeed, for
the inverse, the Weierstrass p-function defines the map z \-> (p(z), p'(z)) sending C/A to the
solutions of y2 = 4x3 - 60Gf4(A)^ - 140G6(A), where Ga,Gq are the Eisenstein invariants of
the lattice A.

The importance of this perspective comes from the obvious addition law on points in C/A,
which is carried via the isomorphism to yield an abelian group structure on E. This formula is
given by

, v 1 ( p ' ( z 2 ) - p ' ( z i ) \ 2 .
P {Z l+Z2)=4{P(Z2) -P(Z l ) ) - * *> - * * ) .

One can derive the associativity of the group law over subfields of C from this isomorphism. We
also can easily determine the n-torsion points of C/A: if A = Zlji 0 Zu>2, then these are precisely
h^x + £^vf0r o < £u£2 < n. Thus the n-torsion group, which we denote by Gn(E,C), is
isomorphic to Z/nZx_ Z/nZ, for any n. More generally, we let Gn(E, K) denote the subgroup
of G(E, K) (where K denotes the algebraic closure) of points P such that nP = 0. With some
additional technical steps, one can use the case of C to conclude that Gn(E, K) = Z/nZ x Z/nZ
for general fields of characteristic 0.

We denote by Cn = (C) the group of nth roots of unity in C, where C is a primitive root. In
[Ga], a Weil pairing wn : Gn(E, C) x Gn(E, C) -» Cn is defined by the formula:

^i^i , ^2^2 mnJi m2uj2\ {2ni(£im2 — mi£2)\4 - , 4 - = e x p * ' -n n n n ) \ n J
The key properties of this pairing follow directly from this definition. It is linear in each component,
and satisfies wn(0,g) = wn(g, 0) = wn(g,g) = 1 for all g. On the other hand, for g ^ 0, there
exist h, h' such that wn(g, h) ^ 0, wn(h, g) ^ 0—this means that wn is nondegenerate. Finally
Wn(g, h) = wn(h, g)~l. In the terminology of linear algebra, one will easily recognize that these
properties are analogous to those of a nondegenerate skew-symmetric bilinear form.
2.4.2 Endomorphisms
We next study certain maps on elliptic curves. These maps are a general case of regular maps.
Let us consider a curve in affine space, A2K. Then the coordinates x, y themselves define functions
assigning to each point of the curve a value in K. One can generate many functions on the curve
by considering polynomials in x, y. Such maps are examples of regular functions. One can also
define a map r : E —> A2K by defining r(x,y) = (p\(x,y),p2(x,y)) for a pair of regular
functions pi, P2. If the image of an elliptic curve E under a map of this form happens to lie on E,
and the map acts as a group homomorphism on G(E, K), then the map is called a endomorphism.
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We allow, in fact, pi and P2 to be rational functions. Under a map of this form, it is possible for
points of the curve to be sent to the point at infinity.

We can determine a convenient form in which all such maps can be written. Since all points
on the curve E satisfy y2 = x3 4- ax 4- b, we can assume that the numerator and denominator of
pi, p2 have no powers of y larger than 1. In fact, multiplying the denominator by its conjugate with
respect to y (meaning we replace y with -y), we find that pi(x, y) = 9i(x^**)(x)y for functions
qi,Si,U G K(x, y) and i G {1,2}. Since r(x, -y) = r(-(x, y)) = -r(x, y), in fact, we have
si(x) = 0 and q2(x) = 0, so r(x,y) = (n(x),r2(x)y), where ri,r2 G K(x) are rational
functions of x.

If the map r is nonzero, we define the degree of this map to be the larger among the degree
of the numerator and denominator of r\, and if r is zero, we define the degree to be 0. The
sum of endomorphisms defines an endomorphism by summing the images using the group law,
and endomorphisms admit multiplication by an integer in the same way. We denote the identity
endomorphism r(x,y) = (x,y)by 1 and, over ¥q, the Frobenius endomorphism by <pq(x, y) =
(xq,yq), easily checked to be an endomorphism.

Following [Wa], we will use the Weil pairing in the next section to derive the following result:
Theorem 9. Let a, r be endomorphisms and s,t G Z. Then

deg(scr 4- tr) = s2 deg a + t2 deg r 4- st(deg(a + r) — deg a - deg r).

Another way to create new endomorphisms is via composition, for example <pq = (pq o • • -o ,̂
n times. The endomorphism r is defined to be separable if r[ (x) is not identically 0. This rather
technical definition is explained by Lemma 10, which expresses the notion of separability in terms
of the degree and kernel of the map, two seemingly more intrinsic qualities. This lemma can be
proven by carefully keeping track of the roots of the numerator and denominator of n, r2.
Lemma 10. ([Wa], p. 49-50) For r a nonzero endomorphism on an elliptic curve over an alge
braically closed field, deg r > | ker t\, with equality if and only ifr is separable.

Thus, if we wanted to compute the number of points on the curve E over ¥pk, we might
consider yk, which fixes ¥pk and no other elements of Fp. Then the endomorphism (ppk — 1 has
kernel exactly corresponding to the points of E over Fpfc. However, we need to know whether
this endomorphism is separable or not. This question is answered by another lemma, a convenient
condition for separability of certain endomorphisms over ¥pk.
Lemma 11. ([Wa], p. 54) Over ¥pk, where r, s G Z, nppk 4- s is separable exactly when p\ s.

The main idea of the proof is to first reduce to the question of whether s is separable, and to
then answer this by first showing that if n = (n(x), r2(x)y), £^y = n.

These results will be used later to conclude the Hasse bound. The final step simply involves
computing the degree of (fpk — 1 using Theorem 9.

Another result that we will invoke later is:
Theorem 12 ([Wa, p. 95-96]). If \G(E,¥pk)\ = pk + 1 - I then y2pk - £<ppk +■ pk = 0 as
endomorphisms. Moreover, for ra ̂  £, <p2k — nuppk 4- pk ̂  0.

For the first statement, the key idea is to show that <ppk - £<ppk + pk is identically zero on
Gn(E,¥p) for infinitely many choices of n. Then Lemma 10 implies that this endomorphism is
identically zero. The second is easy: If (ppk - vrnppk + pk = 0, then by subtracting ippk - £<ppk 4-
pk = o we find (£ — m)<ppk = 0 as endomorphisms, which can happen only if £ = ra.
2.4.3 The Weil Pairing and its Consequences
We shall state two key theorems, whose proofs are in [Wa].
Theorem 13 ([Wa, p. 75]). //char K \ n or n = 0, then Gn(E, K) ^ Z/nZ x Z/nZ.
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Theorem 14 ([Wa, pp. 83, 334-335]). LetCn CK be the group ofnth roots of unity and E be the
elliptic curve y2 = x3 4- ax 4- b. Then there exists a map wn : Gn(E, K) x Gn(E, K) —> Cn
called the Weil pairing, with the properties that

• The map wn is bilinear and nondegenerate in each variable (as defined in Section 2.4.1).

• Wehavewn(g,g) = landwn(g,h) = wn(h,g)~l forg,h G Gn(E,K).

• Ifip : K —▶ K is an automorphism with a, b as fixed points, wn((f(g),(p(h)) = (p(wn(g,h)).

• If a is an endomorphism ofE, wn(a(g),a(h)) — wn(g, /i)degCT.
If <j is an endomorphism of E, it is easy to see that it restricts to an endomorphism of Gn(E,K).

Using Theorem 13 we can choose a basis ui,u2 for Gn(E,K), so that a is defined by (vi,uj2) »->
(hoJi 4- ^2^2,raia;i 4- m2w2). Then one can show via simple computations (see [Wa]) that
wn(ui,u2) is a primitive n* root of unity and that det (^ ^22) = deg a. As a consequence, one
can prove that Theorem 9 holds over fields of characteristic p by computing the determinants of
both sides as endomorphisms over Gn(E, K) for each n with p\n. One can extend this result to
all n by applying Lemma 10.
2.4.4 The Hasse Bound
Over finite fields, it is possible to very accurately determine the order of the group of points on
an elliptic curve. We will use some of the facts about endomorphisms we stated without proof in
Section 2.4.2.

Let E have coefficients in a finite field Fpfc. By the remarks above, which used Lemma 10 and
l lA^(ypk- l ) = \G(E,¥pk) \ .
Theorem 15 ([Wa, pp. 91-94]). For an elliptic curve E over¥pk, 2y/p^ > pk-\-l-\G(E,¥pk)\ >
~2y ffi .
Proof Define q = pk for simplicity. By the preceding observation, q + 1 - \G(E, ¥q)\ = q 4-1 -
deg((^q — 1), a quantity we will call £. By Theorem 9, for s, t G Z with p \ t,

deg(s<pq -t) = s2 deg(ipq) 4-12 deg(-l) + st(deg(<pq - 1) - deg((pq) - deg(-l))
= qs2 4-12 - 8t£

Since deg(s<pq -t) = qs2 + t2-st£>0,q(z)2-£(z) + l>0. Since { f : p \ i) is dense in
R, this inequality holds for all real r G R in place of |, so qr2 - £r 4-1 > 0. This implies that the
discriminant is nonpositive, so £2 - 4q < 0, or \£\ < 2y/q, as desired. □

This powerful result has many important cryptographic consequences. Several algorithms use
the narrow range of possible orders for G(E, ¥q) given by the Hasse bound in an essential way to
compute the order of the group. We also can use the range for the order to bound the running time
of algorithms, such as those for computing factorizations and discrete logarithms.

2.4.5 The Riemann Hypothesis for Elliptic Curves
Note that the following results are entirely optional, as the they are not used in the remainder of the
paper. The purpose of this section is to prove that the Hasse bound implies an analogue of the Rie
mann hypothesis for curves. This connection is suggestive of a far more general analogy between
points on varieties and primes in number fields. The usual Riemann hypothesis is equivalent to a
statement about the density of primes. In the same sense, the Riemann hypothesis on an elliptic
curve is equivalent to a statement about the number of points on the curve.

The usual Riemann zeta function ((s), given by Yl^Li n~S f°r &e(s) > 1 (and which can be
extended to C \ 1), satisfies the identity

»r(i)«.)-.-*r(l^) «.-.).
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written with pleasing symmetry. A famous conjecture asserts that for s G C \ {-2, -4,... } such
that ((s) = 0, Re(s) = \. For an elliptic curve E over Fpfc, where we will write q = pk and
£ = q + l - \G(E,¥q)\, we define

^.^giaadi,-.)
Theorem 16 ([Wa, pp. 97, 355]). We have:

ql-2s -£q~s + l
Ce(s)

( l - q s ) ( l - q i - s )

which has the evident symmetry (e(s) = (e(1 — s).
Proof. First consider the polynomial x2-£x-\-q = (x-pi)(x-p2). This divides (xn-pi)(xn-
p%) = x2n - (pi 4- p2)xn 4- qn (since p\p2 = q), with quotient we will call f(x).

We have ip2 - £<pq 4- q = 0 by Theorem 12, so 0 = f(<pq)(y>2q - £yq + q) = vf ~ (pi +
P2 )Vq +qn = 0, so by the uniqueness of £ from Theorem 12, p? +■ p% = <T + 1 ~ \G(E,¥q^)\.
(It is easy to see inductively that pi 4- p2 is an integer for all n.) In particular,

& ( 8 ) = e x p p J - i £ ^ £ 2 1 , - U e x p £ g ^ ^ ^ ~ ^ g
n = l

|G(^,F,n)| _ns\ _on(<Sr «?" + 1 - P? - P2 - n s

Using the Taylor expansion log(l - q s) = Y1 ~3~T~> we 0Dtain

Ce(s) = exp (- log(l - q1-*) - log(l - <T*) + log(l - piT) 4- log(l - p2T))
ql~2s -£q~s + 1

l - s ^( l - 9 - ) ( l - 9 :

Moreover, we can verify the Riemann hypothesis in this case.
Theorem 17 ([Wa, p. 357]). //Ce(«) = 0, Re(s) = \.

Proof. Indeed, for the numerator q~2s(q2s - £qs + q) to vanish, we find by the quadratic formula
(treating the numerator as a quadratic in qs) that <f = i±yfl2 ~4q. By the Hasse bound, £2 < 4q,
so the two solutions for qs satisfy \qs\ = \Jt + ^T^ = V^- This implies \qs\ = qRe(s) = y/q,
o r R e ( « ) = | . □
2.5 Elliptic Curve Cryptography
In this section we present the factoring algorithm using elliptic curves. After this we study the
discrete logarithm problem on elliptic curves and study its security. Assuming the hardness of this
problem, we provide elliptic curve variants of several of the cryptosystems mentioned in Section
2.2.3. Finally, we detail the practical implications of using elliptic curves in place of computations
over Fx.

2.5.1 Factoring via G(E, Z/nZ)
It is now very easy to describe the elliptic curve factoring algorithm, since it is a minor modification
of Pollard's algorithm, and uses in a simple way the development of the preceding two sections.
The key difference is that instead of working over Z/nZ, we work over G(E, Z/nZ) for a suitably
chosen elliptic curve E.

We first randomly choose a curve y2 = x3 4- ax 4- b with a point P on it. As Lenstra observes
in [Le], this can be done efficiently by choosing a G Z/nZ randomly, choosing a random pair
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P = (u, v) G (Z/nZ)2, and setting b = v2 -u2 -au mod n, so that P lies on E. Then for some
large integer k with many small prime factors, we compute kP by repeated squaring, using the same
formula as if Z/nZ were a field. (We could, as in Pollard's algorithm, take k = lcm(l, ...,N)
for some large integer N.) Note that inverses modulo n are efficiently computable via Euclid's
algorithm, so this process is computationally efficient. If at any point during this computation,
we fail because an inverse cannot be computed, we have found a nonzero nonunit of Z/nZ, thus
factoring n.

Write Z/nZ = Z/p^Z x • • • x Z/p£fcZ, and consider the induced decomposition of the
elliptic curve given in Theorem 8. Then the failure to compute an inverse by the usual method
occurs whenever P G G(E, Z/p^Z) x • • • x G(E, Z/p£feZ) has a coordinate that is the point
at infinity in G(E,Z/p^Z) for some i. This is essentially the same behavior as in Pollard's
algorithm, except that the component elliptic curves have varying orders. The requirement that k
have many shared factors with <p(n) now changes to having shared factors with the orders of these
component curves. By picking many random curves, it is likely that one of the curves will have
small factors in ip(n).

2.5.2 Elliptic Curve Discrete Logarithm Problem
The elliptic curve discrete logarithm problem is as follows: Given G(E, K), a point P G G(E, K),
and Q = nP, compute n. There are a tremendous number of algorithms that aim to solve this
problem, many for very specific classes of elliptic curves. A short introduction to this can be found
in [Wa] and a thorough treatment can be found in [CFA]. Here we cover general methods developed
by Pollard, as well as a solution using the results of Section 2.4 specific to a certain class of curves.
2.5.2.1 Pollard p and A Algorithms
The Pollard p algorithm is very simple and general; it can be used to compute the discrete loga
rithm in Fx as well. We will write the algorithm here using the notation of arithmetic on an elliptic
curve, with uppercase letters representing points on the curve and lowercase letters representing
integers. Pick a function / : G(E, K) —> G(E, K) of sets that, as [Wa] describes, "behaves rather
randomly." While / need not be an endomorphism, we will require it to be reasonably explicit, in
a sense made precise below. The intuition is that if / were chosen so that its value at every point
was another truly random value of the curve, one would expect iterating P, f(P), f(f(P)), etc. to

repeat a value in roughly J^12iEJ91 steps.
Pick random i0, j0 and define So = PoP 4- <?oQ, where nP = Q is the discrete logarithm

instance we are trying to solve. Also define Si = f(Si-i), but keep track of values pi,qi such
that Si =piP 4- qiQ- This imposes a requirement that / be sufficiently explicit for the image of a
point of the form Si-i = pi-iP 4- qi-iQ to have an efficiently computable representation in the
form piP 4- qiQ- In other words, we need to be able to write the difference f(Si) - Si in the form
pP + qQ- Now suppose that for some integers a ^ (3, Sa = Sp. This will eventually be the case,
since G(E, K) is finite. Then paP-\-qaQ = ppP+qpQ, or P(pa-pp) = Qfap-qa). From here,
there are only k — gcd(qp — qa, \G(E, K)\) different possible choices for the logarithm, so we can
testthemall. This is because modulo ra = lG(^K)l t the value of n is simply (q0-qa)~1(Pa-pp),
and there are only k possible choices modulo \G(E, K)\ that leave this residue modulo ra.

The Pollard A algorithm is a variant on this idea. Instead of having a single starting point So,
this process is simultaneously carried out on an array of values ,So,o, So,i,..., So.fc. Iftnere is a
match between two different paths, we can get a relationship similar to that in the p algorithm, and
again find few possibilities for the logarithm.

Interestingly, as [Wa] explains, the p and A are chosen to match the nature of these algorithms.
In the p algorithm, one searches for a path that loops back to itself, which might look like the Greek
letter p. In the A algorithm, two paths need to converge together, which looks like a A.
2.5.2.2 Reduction via the Weil Pairing
Starting with a result of Menezes, Okamoto, and Vanstone in [MOV], cryptographers have man
aged to use Weil and other pairings on elliptic curves to reduce instances of the elliptic curve
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discrete logarithm problem to instances of the discrete logarithm problem over finite fields, which
are usually much easier to solve.

It is possible to efficiently compute the order of a point as a consequence of Theorem 15, which
can be used to restrict the range of possible orders of the point to just finitely many, each of which
can then be checked. There are faster algorithms, a subject covered in Section 19.4 of [CFA].

Suppose that we need to compute s = logP Q, where P has order n. We have Gn(E, ¥p) C
G(E,¥pk) for some choice of k. One chooses R G G(E,¥pk), and computes
its order ra. Next one computes R' = j^jR € Gn(E,¥p) (since (ra,n) | n), and computes
£ = \ogWn(piRt) wn(Q, R'), a discrete logarithm problem in ¥pk. Then wn(P, R'Y = ™n(£P, R')
= wn(Q,R'), implying that in the subgroup wn(Gn(E,¥p),Rf) = C(m,n) C Cn, we have
£P = Q, which in turn implies that s = £ mod (ra, n). For sufficiently many choices of R, the
values £ mod (ra, n) should allow one to reconstruct s mod n.

Unfortunately, the discrete logarithm problem over ¥pk is difficult if k is large. We define a
curve E over ¥p to be supersingular if \G(E,¥P)\ = p 4- 1 - a where a = 0 mod p. One can
show that k is rather small in the case of such a curve. Following [Wa], we will do this in the
special case of a = 0.
Theorem 18 ([Wa, p. 146]). If\G(E,¥p)\ = p 4- 1, and there exists P G G(E,¥P) of order n,
then we can take k = 2 above.

Proof. Since P has order n, n | p + 1 by Lagrange's theorem, and thus 1 = -p mod n. Let
Q G Gn(E, ¥p). We have <p2p = -p by 12, so y2p(Q) = -pQ = 1 • Q = Q since nQ = 0. Since
V ? 2 f i x e s e x a c t l y G ( E , ¥ p 2 ) , Q G G ( E , ¥ p 2 ) . D

2.5.3 Cryptography

Many of the cryptographic schemes presented in Section 2.2.3 depended upon the hardness of
the discrete logarithm problem in Fx. Resting on the assumption that the elliptic curve discrete
logarithm problem is hard for a class of instances of G(E, R) that can be efficiently generated, we
can develop secure cryptographic protocols. The following are given in [Wa], though the details of
their security are discussed more fully in [CFA]. As in the last subsection, we use lowercase letters
to indicate integers and uppercase letters to denote points on the elliptic curve. In some cases, such
as the Elgamal Public Key Encryption scheme, the message should be encoded as a point on the
curve. In others, such as the Digital Signature Algorithm, it is encoded directly as an integer.

2.5.3.1 Diffie-Hellman Key Exchange
It is an open problem to prove the difficulty of determining the point xyP from P, xP, and yP,
even under the assumption that the discrete logarithm problem is hard. This problem is similar
to that of the Diffie-Hellman problem described in Section 2.2.2, and is called the elliptic curve
Diffie-Hellman problem.

For the protocol, Alice and Bob agree on a choice of E and p so that the elliptic curve Diffie-
Hellman problem is hard for G(E, ¥p), and agree on a point P G G(E, ¥p). Alice secretly chooses
x while Bob secretly chooses y, both integers. Alice sends xP to Bob, who sends yP back. They
both compute xyP, and extract a key from it.

2.5.3.2 Elgamal Public Key Encryption
Suppose that Bob wants to receive a message. He publishes an elliptic curve E over Fp, p, a point
P, and xP, where x is his secret key. Alice encrypts her message M G G(E, ¥p) by picking a
secret integer y and computing and sending C\ = yP, C2 = M 4- y(xP) to Bob, who decrypts
by computing C2 — xC\ = M. It is unclear how an eavesdropper would be able to compute M
without solving the discrete logarithm problem, though in the manner of Theorem 1 one can relate
the hardness of breaking this cryptosystem to the elliptic curve Diffie-Hellman problem. Again, the
modification to produce an elliptic curve algorithm from that given above was simply a matter of
writing the variables additively and using the group of points on a curve E.
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2.5.3.3 Digital Signature Algorithm
Recall that Alice has a document ra G Z that she wishes to sign. Alice picks E over ¥q, where
\G(E,¥q)\ = ep for p a prime and e very small, say 1,2, or 4. She also picks a point P G
G(E, ¥q) of order p, just as in the classical variant. Finally she picks a secret integer s and pub
lishes (E,¥q,p, e, P, sP). Alice picks a random integer 1 < £ < p, computes R = £P = (x, y)
and a = k~ (ra 4- s#) mod p, and produces a signed document (ra, R, a). The verifier Bob com
putes ci = a~1m mod p, C2 = a~lx mod p, and accepts if R = c\P 4- c2(sP). A correctly
signed document is always accepted, since R = /cP = a-1(ra 4- sx)P = cxP 4- C2(sP). As
before, if the discrete logarithm problem is hard, it seems difficult to use the public information,
even with many signed documents, to forge a signature, except perhaps in some special cases. It is
unknown, however, whether the hardness of breaking this algorithm follows from the hardness of
the discrete logarithm.

2.5.4 Cryptosystems Using the Weil Pairing
In [BF], Boneh proposed an identity-based encryption scheme using a type of nondegenerate bilin
ear pairing that can be constructed, for example, from the Weil pairing. In this section, we follow
this paper's construction, though for simplicity we provide only the weakest cryptosystem devel
oped (one that is vulnerable to certain attacks). Moreover, we will define the new pairing only for
the curve E given by y2 = x3 4- 1.

Let p = 2 mod 3 be prime. We choose E as above because the pairing needed has a par
ticularly natural description in terms of the automorphism o : G(E,¥p2) —▶ G(E,¥p2) given
by (x,y) i—▶ (x,£y), where C is a primitive third root of unity. One can show, moreover that
\G(E, ¥p)\ = p 4-1, so the weakness proved in Theorem 18 applies here.

We fix a prime q | p 4- 1 and a point P G G(E,¥P) of order q. Then the modified Weil
pairing is the function wq(Pi, P2) = wq(P\, a(P2)), though we will be interested in its restriction
to S x &(S), where S = (P). The modified pairing, still bilinear, satisfies a different kind of
nondegeneracy property: for P' a generator of Gq(E,¥p), wq(P', P') is a primitive q* root of
unity. We denote by Cq C C the group of qth roots of unity.
Setup. A secret integer s is chosen by the Private Key Generator (PKG), while sP = Q is made
public, together with p, q, and P. Two cryptographic hash functions Hi : {0,1}* —▶ S \ {0} and
H2 : Cn —▶ {0, l}m for some fixed ra are also made public.

Each party comes to collect from the PKG their private key ds, which the PKG generates from
their identifier Ib by the formula ds — sH\(Ib).
Encryption.To send a message ra to Bob, who has identifier Ib, Alice generates r randomly
from Cq, computes the encryption key es = wq(Hi(lB), Q), and computes the cyphertext C =
(rP, ra ®H2(erB)). She sends C to Bob.
Decryption. Given the cyphertext C = (c\,c2), Bob computes

c2 0 H2(wq(dB,ci)) = ra 0 H2(erB) 0 H2(wq(sHi(IB),rP))
= m®H2(wq(Hi(lB),Q)r)eH2(wq(Hi(lB),Q)r) = m

where the second equality is by linearity.
Nondegeneracy is critical in proving the security of this algorithm, which is proved in [BF].
As a final note, a simpler example of the utility of the Weil pairing is in the one-round tripartite

matching protocol proposed by Antoine Joux in [Jo]. In this protocol, parties pi,p2,P3 have a
public non-degenerate (in the sense defined in this section) bilinear map b : G x G —▶ Cn such as
the modified Weil pairing above and generator g G G. They pick random secrets si, s2, S3, and pi
sends Sig to every other player. Finally pi computes b(s2g, S3g)S3 = b(g, g)sis*S3, as do each of
the other players. The value of b(g, g)sis*ss is the established common key.

The theory of pairings is one of the most active and interesting in elliptic curve cryptography.
Indeed, there is an entire conference each year, called Pairing, dedicated solely to their study. There
are additional pairings other than the Weil and modified Weil pairings discussed here, including the
Tate and Tate-Lichtenbaum pairings, and many more applications. One can even define pairings on
more general varieties than elliptic curves.
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2.5.5 Practical Considerations
The value of elliptic curve cryptography, already illustrated by the discussion of pairings in the
previous section, is increased by several more pragmatic considerations.
Security. The primary benefit of elliptic curve cryptography is that seemingly greater security may
be achieved than for cryptosystems implementing the usual discrete logarithm problem. As ex
plained in [HMV], the most efficient algorithms to solve the discrete logarithm problem over
(Z/pZ)x are in subexponential time, far more efficient than the best algorithms to solve the discrete
logarithm problem on general elliptic curves (Pollard's algorithm, discussed in Section 2.5.2.1, is
essentially the best known method).
Efficiency. The Elgamal cryptosystem based on the usual discrete logarithm problem was discussed
in the section on cryptography. This algorithm requires computations that in practice are far more
time consuming than the equivalent computations on elliptic curves, where doubling and addition
tend to be more efficient. Moreover, the security benefit mentioned earlier creates a new source of
efficiency. The integers needed to do elliptic cryptography with comparable security to classical
cryptosystems are usually a tenth of the size, creating a significant speedup in arithmetic on the
curve.
Versatility. Elliptic curves, as illustrated by the factoring algorithm, are numerous for a given
choice of ring Z/nZ. This creates an extra dimension of versatility and functionality missing
in classical algorithms, and explains the huge improvement over Pollard's factoring methods.
Structure. The Weil pairing and other structures defined on elliptic curve provide a rich range of
tools. As Sections 2.5.2.2 and 2.5.4 reveal, the interaction of these structures on the curve can be
helpful for designing cryptosystems or performing computational tasks.
It is not wise to immediately replace all one's cryptosystems by those employing elliptic curve
methods, however. Elliptic curves are very complex objects, and in most algorithms above, the
curve E is published. The discrete log problem has been shown to be much easier on many sub
classes of elliptic curves by results such as Theorem 18, so if one selects a curve with particular
properties, many of which might not be readily apparent, an adversary could crack the cryptosys
tem using "special" techniques specific to that curve. That said, much work has indeed been done
on the selection process to produce a curve with optimal security, and [CFA] and [HMV] provide
substantial coverage of this.

The study of more sophisticated number theory such as modular forms and complex multi
plication can have cryptographic implications, as discussed in [CFA]. A generalization of elliptic
curve cryptography is hyperelliptic curve cryptography, which performs arithmetic on the Jacobian
of hyperelliptic curves. Elliptic curve cryptography is a subject where deep number theory has
direct impact on practical matters, and the results described in Sections 2.4 and 2.5 only scratch the
surface.

2.6 Conclusions
For the reader interested in investigating this material further, the following books provide addi
tional information on the topics discussed in this paper:
Cryptography. The approach taken by this paper most closely parallels the philosophy of [MvOV],
which focuses on providing descriptions of real cryptosystems, rather than establishing the founda
tions of the subject. An amazing introduction to foundational cryptography can be found in [Gol]
and [Go2].
Elliptic Curves. Three introductory texts on elliptic curves are [M2], [ST], and [Wa], which to
gether cover all the material here and much more. For a more advanced introduction, look to [Sil]
and [Si2] or [Hu]. For those interested in the complex-analytic aspects of the subject, [La] and [Fo]
are excellent texts. From an algebro-geometric viewpoint, one might look into [Ha] or [Ml].
Elliptic Curve Cryptography. For all-purpose text that is encyclopedic in both its coverage of the
theory and practice of elliptic curve cryptography, look to [CFA]. The text [HMV] focuses on the
practical aspects of the subject and is very readable.
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The group of points on an elliptic curve can be used as a replacement for multiplicative groups
in many situations. As we saw in the factoring algorithm, the key improvement was that factoring n
via Pollard's algorithm could be reduced to "guessing" a number that is either a multiple of <^(n),
or has many factors in common with it, while over an elliptic curve, <p(n) is replaced with the
group order, which can take on many values for fixed n as E varies. This added flexibility gives a
new dimension to the development of cryptographic systems, since, as seen in the examples above,
one can vary the curve E in setting parameters while keeping the field fixed. Although we did not
delve into the more complex algorithms that make more important use of this phenomenon, the
factoring algorithm shows that elliptic curves can provide important computational savings. We
also saw that structures such as the Weil pairing can give rise to cryptosystems for which no simple
implementation using classical methods are known. For their security, efficiency, and versatility, el
liptic curve methods are used for real cryptographic applications every day, revealing their amazing
pervasiveness in both theory and applications within mathematics and computer science.
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Abstract
In the early 1830s, a young French mathematician named Evariste Galois laid the foundations of
group theory, although he never precisely defined groups. Galois studied groups in the context of
sets of arrangements and his ideas were reformulated into a more abstract setting in the twentieth
century. This paper provides precise definitions for constructs closely related to Galois's original
notion of group theory and explores important group properties in that context, demonstrating that
the modern concepts of the group, subgroup, normal subgroup, and solvable group can be expressed
in terms of arrangement sets.

In the early nineteenth century, the theory of polynomials in a single variable was significantly
advanced. Paolo Ruffini (1765-1822) discovered that the general quintic polynomial is not solv
able by radicals and produced a nearly complete proof of this result. Niels Abel (1802-1829) was
able to solve one of the greatest open questions of his day when he provided a correct and complete
proof of Ruffini's discovery. A precocious French mathematician by the name of Evariste Galois
(1811-1832) then made a surprisingly complete advancement, discovering a criterion that deter
mines when a polynomial is solvable by radicals. Along the way, he stumbled upon the branch
of mathematics now known as group theory. Galois associated groups with polynomial equations,
showing that a polynomial equation is solvable by radicals when the associated group has a certain
property now known as solvability.

Interestingly, although Galois was the first to study groups in the abstract setting, his concept
of group bears no superficial resemblance to the more familiar definition that is found in modern
textbooks. Today, a group is defined as a set, together with an associative binary operation, having
both the identity and inverse properties.1 Galois, however, thought of groups in the context of
arrangements. A rigorous study of Galois's arrangement sets and their relation to modern group
theory is not well known and is difficult to find, although such an exposition may be found in [Ti].
This paper reconciles the two definitions of group and studies the relationships between the two
perspectives. Ultimately, we shall determine precisely how the modern definition of solvable group
translates into Galois's terminology.

To begin our journey, we must provide precise definitions for the terminology that Galois used.
First, we define the concept of arrangement key to Galois's formulation of group theory.
Definition 1. Given a nonempty finite set S of n elements, an arrangement of S is an n-tuple
(ai,ei2,... ,an) G Sn such that for every element s G S there exists exactly one i such that
ai = s, 1 < i < n.

In addition, the set of all arrangements of a set S is denoted by Arr(S) and the set of all
permutations on 5 is denoted by Sym(S).

* Matthew Dawson, Union University '08, is a mathematics major who lives in Jackson, TN. Thanks to home
education from his parents, he will be graduating four years early. In addition to mathematics, interests include
physics, computer science, history, and music.

!That is, there is an identity element of the group and every element of the group has an inverse.
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To illustrate this definition, let us consider a simple example. Suppose S = {a, b, c}. We list
the elements of Arr(5), denoting abc rather than (a, b, c) for brevity:

Arr ({a, b, c}) = {abc, acb, bac, bca, cab, cba}.

A permutation on S is simply a one-to-one correspondence mapping S into itself. Using the
cyclic notation for permutations, we have that Sym(S') = {(ab), (be), (ac), (abc), (acb), id}.

The power and versatility of arrangements is demonstrated by our first observation, which
allows us to associate permutations on Arr(S) with permutations on S.

Proposition 2. Let S be a finite set with n elements.

1. Let f G Sym(S), and consider the mapping Pj on Arr(S) such that for each arrangement
Oi = (ai,a2,a3,--.,an) G Arr(S),

Pf(a) = (f(ai),f(a2), f(a3),..., f(an)).

Then P/ is a permutation on Arr(S).

2. For all a,/3 G Arr(S), there exists a unique permutation f G Sym(S) such that P/(a) =

3. For all f,g G Sym(S), Pf o Pg = Pfog.

The third part of Proposition 2 establishes that the map / i-+ P/ is a homomorphism from
Sym(S) to {Pf | / G Sym(S)} C Sym(Arr(S')); the second part tells us that it is an isomor
phism; that is, Pf = Pg if and only if / = g.

The fact that such an isomorphism exists should not be surprising, when Cayley's Theorem is
considered: clearly, if a set S has n elements, then | Sym(5)| = n! and | Arr(S)| = n!. Cayley's
theorem tells us that because Sym(S) has n! elements, it will be isomorphic to a subgroup of
Sn\. Since Sym(Arr(5)) is isomorphic to Sn\, we see that there must be an isomorphism between
Sym(S') and some subgroup of Sym(Arr(5)).

Proposition 2 assures us that the permutations in Sym(S') can be applied to arrangements in
Arr(5) in a well-behaved fashion. Indeed, Proposition 2 sets up a group action of Sym(S') on
Arr(S). It does so because the map / h-> P/ is a homomorphism from Sym(S) to Sym(Arr(S)).
Furthermore, the second part of Proposition 2 implies that the homomorphism is one-to-one, so
that the group action is faithful.

Corollary 3. Let S be a finite set. Then the mapping P : Sym(S') —▶ Sym(Arr(S)) given by
P(f) = pf is a faithful action ofSym(S) on Arr(S).

Henceforth, we will drop the notation P/ and instead use the same notation to denote a,per
mutation on S and the corresponding permutation on Arr(5). In addition, we will denote function
composition by juxtaposition.

Now that a group action has been set up, the concept of orbit may be discussed. The reader
may recall that, given a group G, a set M, and an action of G on M, the orbit of ra G M is defined
to be G(m) = {g(m) \ g G G}.

Now, if a set S and an arrangement a G Arr(S) are considered, then the orbit of a is Arr(5)
(that is, (Sym(5))(a) = Arr(S)). We know this by part two of Proposition 2, which tells us that
given any arrangement in Arr(5), we can find a permutation in Sym(S) that will map a to that
arrangement.

A more general concept similar to that of orbit will be quite useful in this paper; we need to
consider the application of subsets of Sym(-S) on a single arrangement.
Definition 4. Let 5 be a nonempty finite set and let H C Sym(S). Then for all arrangements
a G Arr(S), we define if (a) - {/(a) | / G H}.
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To illustrate this definition, let H = {id, (abc), (acb), (ac)}. In this case, we have

H(abc) = {abc,bca,cab,cba}.

Now suppose we are given a finite set S, an arrangement a of S, and a set M of arrangements
of S. We define:
Definition 5. Let 5 be a nonempty finite set, let C C Arr(5), and let a eC. Then the permuta
tion set of a in C, denoted ixa (C), is the set

Ma(C) = { /€Sym(5) | / (a)€C}.

Let us go back to our previous example, where S = {a, b, c}, C = {abc, bca, cab, cba}, and
a = abc. Then Ma (C) will be the set of all permutations that map abc to some arrangement in C.
The reader can check that txa(C) = {id, (abc), (acb), (ac)}.

As suggested above, the txa(C) construction is the inverse of the H(a) construction. We state
this formally in the following lemma.
Lemma 6. Let S be a nonempty finite set, let H C Sym(S) and M C Arr(S), and let a G M.
Then H(a) = M if and only ifH = MQ(M).
Proof. First suppose that H(a) = M. We wish to show that H = Ma(M). Let / G H. Then
f(a) G H(a) = M and hence / G cxa(M). Thus, H C Ma(M).

Next let h G MQ(M). Thus h(a) e M = H(a), so that h(a) = f(a) for some f e H.
Therefore, by Proposition 2, we know that h = f, so that /i G H. Hence, Ma(M) C #. Thus,
ff = Ma(M).

To prove the other half of the biconditional, suppose that H = txia(M). We must show that
H(a) = M. Let 0 G H(a), so that 0 = /(a) for some / G H = x\a(M). Now / G Ma(M)
implies that /? = /(a) G M. Thus H(a) C M.

Finally let 0 e M. Then by Proposition 2, 0 = g(a) for some p G Sym(S). Clearly
p G tx ]Q(M) = H. Thus, p G H imp l ies tha t /? = g(a) G i / (a ) . □

So far, we have associated a permutation set with each pair (a, M) where a is an arrangement
and M is an arrangement set. We can also define a permutation set directly associated to a given
arrangement set.
Definition 7. Let S be a nonempty finite set, and let C C Arr(5). Then the total permutation
set associated with C (or total permutation set of C), m(C), is the set

txi(C) = {/ G Sym(5) | 3a G C such that /(a) G C}.

By checking the relevant definitions, we see that

M(<7) = |J Ma(C).
ot£C

Hence, we have that tx\a (C) C txj(C) for all a G C.
As before, an example will help to illustrate the definition. We consider again C = {abc, bca,

cab, cba}. Then,

IXl(C) = Mabc(C) U Mbca(C') U Xcab(C) U EXcba(C)
= {id, (abc), (acb), (ac), (ab), (be)} = Sym(S).

Now that we can associate permutation sets with arrangement sets, we are ready to study the
implications of those associated permutation sets having special properties, the most important of
which is described in our next definition.
Definition 8. A set C of arrangements of a nonempty finite set S is a Galois Set of Arrangements
(or (GSA)) if for all / G cxi(C), a G C implies f(a) G C.
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The above definition lays out the single most important concept in this paper, which is a close
approximation to Galois's original concept of the group. Recall that the more familiar definition
states that a group is a set of objects with an associative binary operation such that the set has
an identity element and contains inverses for every element in the set. Galois sets of arrangements
bear no immediate resemblance to this algebraic structure. However, these two concepts are closely
related. We shall soon see that the connection between GSAs and algebraic groups arises through
the permutation sets associated with GSAs.

Before moving any further, let us determine whether C = {abc, bca, cab, cba} is a GSA. First
recall that m(C) = {id, (abc), (acb), (ac), (ab), (be)} = Sym(S). In order for C to be a GSA,
it must be the case that each permutation g G ex(C) maps every arrangement in C to another
arrangement in C. Consider / = (ab), which is an element of \x\(C). Now f(abc) = bac, and
bac £ C. Therefore, because / = (ab) G txj(C) yet abc G C and f(abc) <fc C, we see that C
cannot be a GSA.

Let us consider another example: suppose that M = {abc, acb}. We shall first list out all of
the elements of dxj(M).

abc -^ abc abc -4- acb acb -4> abc acb -L> acb

Hence tx(M) = {id, (be)}. Because all the permutations in txi(M) map both abc and acb to either
abc or acb (this fact can be checked by examining the above diagram), we have that M is a GSA.

The reader may have noticed that txabc(M) = txiacb(M) = cxi(M). The reader may also have
noticed that Mabc(M) forms a group of permutations in the modern sense. These observations lead
us to an interesting, general result.
Lemma 9.IfC is a set of arrangements of a finite set and a G C is such that txia(C) forms a
group under composition, then t>4a(C) = txi(C).
Proof. Suppose that a G C such that txja (C) forms a group under composition. First we show that
txi(C) C txia(C). Let / G m(C). Then by definition of the associated permutation set, there exist
0,7 G C such that f(0) = 7. By Proposition 2, there exists exactly one permutation g G Sym(S)
such that g(a) = 0, and there exists exactly one permutation h G Sym(S) such that h(a) = 7.
Note that by the definition of the permutation set of a in C, g G Ma(C) and h G MQ(C). Consider
the permutation hg~l:

(hg-'m = h(g~l(0)) = h(g-\g(a))) = h(a) = 7.
By Proposition 2, there exists exactly one permutation / such that f(0) = 7. Thus we have
/ = hg~l. But because Ma(C) forms a group under composition, we know that hg~l G cxia(C).
Hence / G Ma(C). Thus, txi(C) C Ma(C).

By the definition of m(C), it is clear that ooa(C) C m(C). Therefore, we have that t<a(C) =
m ( C ) . □

With this last result, we have developed all of the necessary tools to establish the connection
between groups and GSAs.
Theorem 10. Let S be a nonempty finite set, let C C Arr(S), and let a G C. Then C is a Galois
Set of Arrangements if and only if>^a (C) forms a group under composition.
Proof Suppose that C is a Galois Set of Arrangements. Then, for all / G x(C), f(0) G C for
all 0 G C. We wish to show that tx\a(C) forms a group with respect to function composition.

Let f,g G ixia(C). Thus g(a) G C. Also, C is a GSA, so that f(0) G C for all 0 G C. It
follows that (fg)(a) = f(g(a)) G C. Therefore, by the definition of the permutation set of a in
C, fg G \x*a(C). Hence Ma(C) is closed under composition.

Now consider the identity permutation id : S —▶ S. Then id(a) = a, so that id G ixia(C)-
Recall that, since id is the identity permutation, id 0/ = / o id = / for all permutations / G
Sym(S). Therefore, the set Ma(C) contains an identity element.

Next let / G txa(C). Then by the definition of the permutation set of a in C, f(a) = 7
for some 7 G C. Now f~l(j) = a (recall that / is a permutation, so that /_1 exists), so that
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f~l G m(C). Thus, since C is a GSA, f~\0) G C for all 0 G C. Hence, f~x(a) e C so that
/"* G txia (C). Thus, Ma (C) contains an inverse for each element, whence Ma (C) forms a group
with respect to function composition.

By Lemma 9 we know that Ma(C) = m(C). We wish to show that C is a GSA. Let / G
m(C). In order to show that C is a GSA, we must to show that f(0) G C for all 0 e C. Now
/ G Ma(C), since MQ(C) = m(C). Next let /3 G C. By Proposition 2, there exists exactly one
permutation h : S —▶ S such that /i(a) = 0. Clearly, h G Ma(C). But Ma(C) forms a group
under composition, so that fh G MQ(C). In other words, (fh)(a) = f(h(a)) — f(0) G C
T h e r e f o r e , C i s a G S A . D

Let us look at Theorem 10 in light of the examples we have used so far. For the set C =
{abc, bca, cab, cba}, we recall that Mabc(C') = {id, (abc), (acb), (ac)}. Now, Mabc(C) is not a
group. Therefore, Theorem 10 tells us that C is not a GSA, confirming our earlier observation.
Also, for M = {abc, acb}, we saw that txtabc(M) is a group. Theorem 10 then tells us that M is a
GSA, as we determined above.

It should be noted that Theorem 10 finishes the task of reconciling the two group definitions. A
set C of arrangements is a Galois set of arrangements if and only if at least one of the permutations
sets of an arrangement in C is a group. Theorem 10 also implies that if C forms a GSA, then
Ma (C) forms a group for each a G C.

Now, we suppose that Ma(C) forms a group with respect to function composition. Lemma 9
then guarantees that Ma(C) = m(C), so that m(C) is a group. Thus, if C is a GSA, then the
total associated permutation set of C is a group. The converse, however, is not true—the total
permutation set of C may be a group even if C is not a GSA. For instance, we showed that C =
{abc, bca, cab, cba} is not a GSA and also determined that m(C) = Sym(S). From group theory,
we know that Sym(S') is a group that is isomorphic to S3.

Our next priority is to determine how solvability translates to the language of permutation sets.
Before doing that, we state a few more results and give one more definition.
Lemma 11. Let S be a nonempty finite set, let H C Sym(S), and let M be a GSA ofS. Then for
all a G M, H(a) = M if and only ifH = m(M) .
Lemma 12. Let T and V be sets of permutations of a finite set S, and let a be an arrangement of
S. Then T(a) = V(a) if and only ifT = V.

We have already studied how to apply a permutation set to an arrangement. Next, we shall
define the application of a single permutation to an arrangement set.
Definition 13. Let S be a nonempty finite set, and let M C Arr(S). Then for all permutations
g G Sym(S), we define g(M) = {0(7) | 7 G M}.

To illustrate the above definition, let M = {abc, acb} and g = (ab) and consider the following
diagram:

abc ^ bac

acb —▶ bca

Then, we see that g(M) — {bac, bca}.
In what follows, we respectively denote gH and Hg for the left and right cosets of H c G in

G associated tog eG.
Theorem 14. Let N be a GSA of a finite set S, and let H = tx\(N). Then for all permutations
g G Sym(S),

1. The set g(N) is a GSA ofS and tx(g(N)) = gHg~l

2. For all a G N, g(N) = g(H(a)) = (gH)(a).
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Proof First we prove the first statement. Let a G N and let g G Sym(S). Note that because
N is a GSA of S, Theorem 11 assures us that N = H(a). Let 0 = g(a). We first show that
^ ( g ( N ) ) = g H g - \

Let k G M/3(#(A0). Thus, k(0) = 7 for some 7 G g(N). Now, 7 = g(S) for some
S G N. But AT = #(a), so that (5 = h(a) for some /i G H. Thus &(/?) = g(h(a)). But
a = g~x(0), whence k(0) = g(h(g~l(0))). Therefore, by Proposition 2, we have k = ghg'1.
Hence, ix\0(g(N)) C p##_1.

Next let/i G i/ and consider ghg~l G gHg~l. Then (ghg l)(0) = (ghg 1)(g(a)) =
g(h(a)) G g(N). Hence, ^/i^T1 G_M/5(p(AT)). Thus, ptfcT1 C M^(p(iV)).

Therefore, txp(g(N)) = gHg~l. As H is a group under composition, so is gHg l. Thus, by
Theorem 10, g(N) is a GSA. Now, we suppose that MQ(C) forms a group with respect to function
composition. By Lemma 9 we know that m(#(AT)) = gHg'1.

Next, we prove the second component of the theorem. Let g G Sym(S') and a G N. By
Theorem 11, N = H(a), so that g(N) = g(H(a)). It remains to show that g(N) = (gH)(a).
Thus, suppose h G H and consider gh G #//. Note that (gh)(a) = g(h(a)) and that h(a) G AT.
Thus, g(h(a)) G p(AT), whence (gH)(a) C p(AT). Next, let 0 G $(#). Then, /? = 0(7) for
some 7 G AT and so 7 = h(a) for some h e H. Thus, /? = g(h(a)) = (gh)(a), whence
g ( N ) C ( < ? # ) ( a ) , w h e r e b y p ( 7 V ) = ( < ? # ) ( a ) . □

A few simple observations follow directly from Theorem 14. First, applying a permutation to a
GSA yields another GSA. Next, the associated permutation set of the resulting GSA is a conjugate
group of the associated permutation set of the original GSA. Finally, in the second part of Theorem
14, we see that the GSA obtained by applying a single permutation to a GSA can be obtained by
applying a left coset of the original GSA's associated permutation set to an arrangement in the
original GSA.

Thus, the application of a permutation to a GSA results in a GSA that captures the notions of
conjugate groups and left cosets. Rigatelli [Ri, p. 124] noticed that Galois referred to cosets as
"groups," suggesting that the use of this word might confuse people attempting to understand his
work. Perhaps Theorem 14 sheds some light on this issue: the application to an arrangement of the
left coset of a permutation group results in a GSA, which is what Galois would call a "group."

We also state a result similar to Theorem 14, which relates right cosets to the application of a
permutation group to an arrangement.
Theorem 15. Let N be a GSA of a finite set S, let H = \x\(N), and let a G N. Then for all
geSym(S),H(g(a)) = (Hg)(a).

Before we can study solvability, we must first study normal subgroups. To that end, we shall
refine our focus and work more specifically towards establishing a criterion which determines when
a given GSA has an associated permutation set that is a normal subgroup of the permutation set of
another GSA.

A question immediately arises: if one GSA is a subset of another GSA, is the permutation set
of the former GSA a subgroup of the permutation set of the latter GSA? That is, suppose that M
and N are GSAs of a finite set S, N C M, and let G = m(M) and H = m(JV). One would
expect that, since N C M,\t must be true that H < G as groups. To establish the truth of this
statement, suppose that / G H. Then, there exists a G N such that f(a) G N. Since N C M,
we have that f(a) G M. Thus, by definition of total associated permutation set, / G G. Thus,
H C G. Because M and N are GSAs, we know by Lemma 9 and Theorem 10 that G and H form
groups. Therefore, H < G.

In order to establish a criterion that establishes when GSAs have associated permutation sets
where one is a normal subgroup of the other, we need three lemmas and an intermediate theorem.
The proofs of the lemmas are straightforward.
Lemma 16. Let M and N be GSAs of a finite set S, N C M, and let G = m(M) and H = m( N).
Then for all g e G and a e N, (Hg)(a) C M and (gH)(a) C M.
Lemma 17. Let M and N be GSAs of a finite set S such that N C M, let G = m(M) and
H = \x\(N), and let a G N. Then, the following equalities hold:
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1. {H(0) \0eM} = {(Hg)(a) \ g G G}

2. {g(N)\geG} = {(gH)(a)\geG}.

Lemma 18. Let S be a finite set, let A C Arr(S) and B C Arr (S), and let a G Arr(S). Then
(A fl B)(a) = A(a) n B(a) and (A U B)(a) = A(a) U B(a).
Theorem 19. Let M and N be GSAs of a finite set S, N C M, and let G = m(M) and H =
m(AT). Then, the following sets are partitions of M:

PR(M,N) = {H(0) \0eM},
PL(M,N) = {g(N)\geG}.

These sets are known, respectively, as the right and left partitions of M by N.
Proof. We must show that the sets Pr(M, N) and Pl(M, N) are partitions of M. By Lemma 17,
we know that for all a G N, PR(M,N) = {(Hg)(a) \ g G G} and PL(M,N) == {(gH)(a) \
g e G } .

We know from group theory that {gH \ g G G} forms a partition of G and that {Hg | g G G}
forms a partition of G. Hence, for all f,g G G, fH n gH = 0 and Hf C\ Hg = 0. Also,
C = UgecgH and G = UgeGHg.

Let f,g eG. Then, we have by Lemma 18 that (fH)(a) n (gH)(a) = (fH n p#)(a) =
(0)(a) = 0. Similarly, (#/)(a) n (#p)(a) = (#/ n ify)(a) = (0)(a) = 0. Hence,
Pl(M, AT) and Pr(M, N) are pairwise disjoint.

Finally, Lemma 18 implies that UgeG((gH)(a)) = (UgeGgH)(a) = G(a) = M. Similarly,
UgeG((Hg)(a)) = (UgeGHg)(a) = G(a) = M. Since we know by Lemma 16 that gH C M
and Hg C M for all g G G, we have that PL(M, N) and PR(M, N) are partitions of M. n

As an example, let M = {abc, acb, bac, bca, cab, cba} and let N = {abc, acb}. Note that M
and N are both GSAs. Now, let H = \x\(N) = {id, (6c)}. Then, H(abc) = {abc, acb} = N and
H(bac) = {bac, cab} and H(cba) = {cba, bca}. Note that

{H(abc), H(bac), H(cba)} = {{abc, acb}, {bac, cab}, {cba, bca}}

forms a partition of M. This partition is the right partition of M by N, denoted Pr(M, N).
Also, note that [id](AT) = N = {abc,acb}, [(ac)](N) = {cba,cab}, and [(ab)](N) =

{bac, bca}. The reader can check that {[id](AT), [(ac)](N), [(ab)](N)} forms a partition of M.
This partition is the left partition of M by N, denoted Pl(M, N). With this notation, we now
continue.
Theorem 20. Let M and N be GSAs of a finite set S, N C M, and let G = m(M) and H =
m(A0. Then H<G if and only ifPL(M, N) = PR(M, N).

IfH<G, we shall say that N is a normal subset of M.
Proof. Let M and N be GSAs of a finite set S, N C M, and let G = m(M) and H = m(AT).
First, we show that H < G implies Pl(M, N) = PR(M, N). Thus, suppose that H < G. Then
Hg = gH for all g G G, so that by Lemma 12, (Hg)(a) = (gH)(a) for all a G N, g G C.
Suppose that (Hg)(a) G Pr(M,N), for some g e G, a e N\ then, (Hg)(a) = (gH)(a) G
PL(M,N). Similarly, suppose that (gH)(a) G PL(M,N), for some g e G, a e N; thus
(pff)(a) = (#<?)(<*) G Pr(M, AT). Hence, P«(M, AT) = PL(M, AT).

Next, suppose that PL(M,N) = PR(M,N). Then for all # G <3,a G AT, we know that
(gH)(a) G PL(M,N) and hence (gH)(a) G PR(M,N). Therefore, there exists /?EM such
that (gH)(a) = H(0). Now Theorem 14 tells us that (gH)(a) is a GSA and that w((gH)(a)) =
£//£-1. Thus, by Theorem 11, we know that (gH)(a) = (gHg'1)^) for all 7 G (gH)(a) =
H(0). Therefore, since 0 G H(0) (recall that /? = id(/3), where id is the identity permutation in
if), we have that H(0) = (^)(q) = (gHg-1)^) and since ff(/?) = gHg-{(0), Lemma 12
assures us that # = gHg'1. Hence, since # = gHg~l for all g €G,we have that H <G. □



Matthew G. Dawson—Bridging the Group Def ini t ion Gap 41

We have now translated the concept of normal subgroups into the language of arrangement sets.
Now that normality is understood in terms of arrangement sets, it would seem natural to consider
quotient groups.

As cyclic quotient groups are deeply important to the concept of solvability, our final result
establishes a criterion which determines when the quotient group of the associated permutation
sets of two arrangement sets is cyclic.
Theorem 21. Let M and N be GSAs of a finite set S, N C M, let G = m(M) and H = m(AT),
such that H <G, and let a G N. Then the quotient jjOfGbyH is cyclic if and only if there exists
a permutation f G G such that there exists n G Nfor each T G Pl(M, N) = Pr(M, N) with
T=(fnH)(a) = fn(N).
Proof. Let M and N be GSAs of a finite set S, N C M, and let G = m(M) and H = tx(N),
such that H < G. Also, let a e N. Because H<G,we know that PL(M, N) = PR(M, N).

Next, suppose that § is cyclic; then, there exists / G G such that § is ^ = (fH), the cyclic
group generated by fH. Thus, we know that there exists ra £ N such that bH = (fH)n for
each bH £ §. Also, by the definition of quotient group, bH = (fH)n = (fn)H. Consider an
arbitrary arrangement set T £ Pl(M, N) = Pr(M, N). We know by Lemma 17 and Theorem
15 that there exists k e G such that T = (kH)(a). But we already know that there exists n G N
such that kH = fnH, whence T = (fnH)(a).

To show the converse, suppose that there exists f £ G such that there exists for each arrange
ment set T G PL(M,N) = PR(M,N) an n G N such that T = (fnH)(a). Then, for each
b e G, there exists n G N such that (bH)(a) = (fnH)(a), whence we have by Lemma 12 that
b H = f n H = ( f H ) n . T h e r e f o r e , § = ( f H ) , w h e r e b y § i s c y c l i c . □

Theorem 21 gives us all that we need to completely describe solvability in terms of GSAs.
According to the modern definition of solvability, a group H0 is solvable if there exists a normal
chain of groups

Hn = {id} < Hn-x < • • ■ < Hi < G = H0,

wnere j£l- is cyclic for 0 < i < n. All of the pieces of this definition now have analogs in the
language of GSAs.

However, more work can be done on the relationship between GSAs and groups. A complete
description of quotient groups in terms of GSAs has not been provided; it is possible that Galois's
language of arrangement sets is not abstract enough to completely describe quotient groups.

Galois never provided a satisfactory definition of group in his memoir. However, it is clear that,
to Galois, groups were always sets of permutations (Galois actually used the word "substitution"
instead of "permutation"), and that Galois's permutation groups were always assumed to act upon
arrangements. Thus, he would denote a particular group of permutations by writing the list of
arrangements created when that permutation group was applied to a single arrangement.

The GSA definition provided by this paper provides a precise definition for the group concept
expressed by Galois. Notice that a set of arrangements must meet only one property to be a GSA,
compared to the three or four properties required by the modern group definition. The property met
by GSAs is loosely related to closure, which Galois recognized was essential to his group concept.
The modern group properties are immediately met by the permutation set associated with a GSA,
as Theorem 10 shows.

At the end of his memoir, Galois listed out all of the arrangements of a set with four elements.
He then proceeded to show that the permutation group associated with that set of arrangements is
solvable; he repeatedly partitioned his list of arrangements until he had a list of arrangements that
contained only one arrangement. Similarly, he showed that the permutation group associated with
the set of all arrangements of five elements is not solvable, thereby showing that the general quintic
polynomial is not solvable. While this fact was known prior to Galois's work, Galois was able to
use his more general machinery to very quickly arrive at this result.

Galois greatly advanced in the knowledge of the theory of equations, at the same time rev
olutionizing modern algebra. It took others, however, to provide a satisfactory definition of the
concepts Galois originated. Abstract groups today are studied in a more general context than were
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Galois's permutation groups. It shall forever be true, however, that arrangement sets are key to the
development of modern algebra.
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Abstract
In this paper we investigate a general class of solutions to various partial differential equations
known as solitons or stable solitary wave solutions. We introduce necessary background by consid
ering general solutions of the classical wave equation and some of its variants, focusing on features
of linearity, non-linearity, dissipation and dispersion. The Korteweg-de Vries (KdV) equation is
presented as an iconic non-linear dispersive wave equation that admits soliton solutions. How soli-
ton solutions are approximated motivates an introduction to the Pad6 approximation, which seeks
convergence by expressing a solution as a quotient G/F of polynomials of exponentially decaying
functions. The Pad6 approximation motivates a substitution that decouples the KdV equation into a
pair of equations on the polynomials G and F. The decoupled version of the KdV equation is then
greatly simplified by introducing a bilinear differentiation operator known as Hirota's D-operator.
Another substitution allows Hirota's D-operator to express the KdV equation in a single bilinear
form. This final form illustrates how the perturbation method can be used to produce exact soliton
and multi-soliton solutions. The generation of multi-solition solutions in an almost additive fash
ion with this method is summarized as a non-linear superposition principle. Connections between
Hirota's method, Kac-Moody algebras and quantum field theory are briefly mentioned.

4.1 Introduction
The study of the dynamical behavior of physical systems has been, and continues to be, a major
source of mathematical inspiration. The twentieth century in particular has initiated a deep inquiry
into a variety of non-linear systems and their unifying themes. In the spectrum of dynamics, two
opposites have attracted considerable attention: chaos and solitons. Chaos theory has demonstrated
that both partial and ordinary differential equations can exhibit incredibly rich behavior, allowing
some deterministic systems to be exponentially unpredictable for increasing time. On the other
extreme, soliton theory provides several important examples of non-linear systems behaving in a
stable, quasi-linear fashion.

In this paper, we explore this second extreme and build up a concrete introduction to solitons
via an inspection of the Korteweg-de Vries (KdV) equation—a non-linear dispersive equation,
which is effective for describing surface waves in a shallow water domain. The existence of stable
"solitary waves"—the precursors for the term "soliton"—was first discovered experimentally in
1834 by J. Scott Russell, who chased on horseback a one foot high and 30 feet long wave generated
by a stopping canal boat, traveling at eight to nine miles an hour for nearly two miles in unaltered
form. This solitary wave solution was re-discovered as a solution to the KdV equation in 1895
[DJ]. Since then, stable solitary wave solutions have featured prominently in many other non-linear
partial differential equations (PDEs) and the methods for generating soliton solutions have led to
many deep ideas in mathematics and physics.

+ Justin Curry is a current senior in mathematics at the Massachusetts Institute of Technology. His research
interests involve geometry, integrable systems, and mathematical physics. He plans on entering a PhD program
in mathematics in Fall 2008.
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The goal of this paper is to provide an intuition for some of these results. We begin with
a simple description and definition of classical linear wave equations in Section 4.2. The one-
dimensional wave equation is solved using d'Alembert's method in Section 4.2.1. Explicit plane
wave solutions to the wave equation are described in Section 4.2.2 and the relevant terminology
of dispersion relations, phase and group velocities are defined in Section 4.2.3. Once this relevant
background is covered, we consider in Section 4.2.4 a lesser-known class of solutions to the wave
equation that cannot be approximated by plane waves, called solitary waves or solitons.

Pursuant to our objective to understand which PDEs admit soliton solutions, we consider in
Section 4.3 generalized wave equations that more accurately model various physical phenomena.
In particular, we stress the effects of linearity, non-linearity, dispersion and dissipation on solutions
to the corresponding PDEs in Sections 4.3.1,4.3.2,4.3.3 and 4.3.4.

Finally, we focus on the aforementioned KdV equation in Section 4.4. We first outline some
of the nice properties of the KdV equation and the conservation laws it obeys in Section 4.4.1. It
is stated, but not proved, that the KdV equation satisfies infinitely many conservation laws and this
relates to its integrability. Our focus then returns to solitary wave solutions to the KdV equation.
The fact that these solutions cannot be approximated by plane wave solutions leads us to introduce
the Pade approximation in Section 4.4.2, which will motivate us to decouple the KdV equation
into two equations whose solutions are polynomials of exponentially decaying functions. Pade
approximation will lead us to consider in Section 4.4.3 how the perturbation method can approxi
mate solutions to the KdV equation. Our attempt to unite Pade approximation and the perturbation
method via a decoupled pair of equations will be our way of motivating and introducing Hirota's
method in Section 4.4.4. A change of variables suggested by Hirota's method will allow us to
put the KdV equation into a very elegant bilinear form. Before further exploring this new form,
we graphically demonstrate the notion of a two-soliton solution in Section 4.4.5, and qualitatively
motivate the desire to produce multi-soliton solutions to the KdV equation. The substitution sug
gested by the Pade approximation is then abandoned in Section 4.4.6 in favor of another change of
variables for the KdV equation. This alternative bilinear form will then allow us to apply the per
turbation method of Section 4.4.3 to produce exact (not approximate) multi-soliton solutions to the
KdV equation in Section 4.4.7. The relationship of this powerful method to deep ideas involving
Kac-Moody algebras and quantum field theory are then mentioned briefly in Section 4.5.

Special thanks must be extended to Professor Aliaa Barakat at the Massachusetts Institute of
Technology for guiding the author through the rich mathematical vistas involved in integrable sys
tems. Without her direction and support, the current paper would be non-existent.

4.2 The Wave Equation(s)
Definition 1. An equation (or system of equations) is linear if, whenever it has solutions m and
u2, it also has am + bu2 as a solution, where a and b are scalar coefficients.
Definition 2. The classical wave equation that describes a wave propagating with constant speed
c is given by the following linear partial differential equation

d 2 U 9 „ 9
^ = c 2 W ( 4 . 1 )

In one dimension, equation (4.1) models the height of a plucked string as a function of space
and time. More specifically, the one-dimensional wave equation

— = c 2 ^ ( 4 2 )
d t 2 d x 2 ( '

is an idealized model derived from using force balance and Newton's laws.
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4.2.1 d'Alembert's Solution to the 1-D Wave Equation
Putting n = x - ct and £ = x + ct we have that

d 2 u _ 2 d 2 u 2 d 2 u 2 d 2 u
d t2 ~C dn2 d£dn de '
d ^ u _ ^ u 8 2 u d 2 u
dx2 ~ 8n2 + dt&n + de '

Substituting into equation (4.2), we find

d2u = 0,
d^dn

and integrating twice, we have that solutions take the form

where / and g are arbitrary functions. This corresponds to solutions propagating in the left and
right directions. If we take equation (4.2) and factor accordingly

( £ - • £ ) ( £ + * £ ) « - ( £ - ' £ ) ■ - « *

then d'Alembert's solution tells us that if we consider solutions to the simplified wave equation

u t + c u x = 0 , ( 4 . 4 )

we are left with right-traveling solutions only, i.e.

u(x,t) = f(n) = f(x-ct).

4.2.2 Plane Wave Solutions
Definition 3. A plane wave is a solution to equation (4.1) that takes the form

u ( S , t ) = A e * U ' * - u t ) ( 4 . 5 )

where i is the imaginary unit, k is the wave vector, u is the angular frequency, and A is the (possibly
complex) amplitude.

For the remainder of this paper, we will restrict our attention to one-dimensional wave equa
tions, in which case k and x are treated as scalar-valued quantities. If x is thought of as having
units of length (say meters ra), then k must have units that are the corresponding inverse (ra-1). It
is common to call k the wave number.

In the theory of differential equations it is common to "guess" the solution to a given equation
by substituting in a function that has certain required properties (most notably it solves the provided
differential equation given certain constraints). We call such an assumed form for a solution an
ansatz for the differential equation. For example, plane waves can be taken as a good ansatz for a
solution to many dierent wave equations. If we consider equation (4.4) and assume it has a solution
of the form (4.5), u(x, t) = e^*-^ then we find that the angular frequency and wave number
must satisfy the relation

u = c k . ( 4 . 6 )

This is an example of a dispersion relation.
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4.2.3 Dispersion Relations, Phase and Group Velocities
Definition 4. A dispersion relation is a relation between the energy of a system and its momen
tum.

Since energy in waves is proportional to frequency u and the wave number k is proportional
to momentum, equation (4.6) is an example of a dispersion relation. These sorts of relations will
be very valuable when considering how fast certain Fourier components in the initial profile of a
wave travel and how fast energy dissipates for the given system. One distinguishes between these
notions by defining two types of velocities.

To motivate the first definition of velocity, imagine that we are watching an animation of of
a one-dimensional wave equation u(x,t) that can be written as function f(kx — wt) for k and
u constant. Now imagine we are following a crest of the wave and we notice that at a specific
point in time to and point in space xo, the wave has a height H = u(xo,to) = /(Co) where
Co = kxo — u;to. If we allow a short amount of time At to elapse, we see that the point H on the
curve has traveled a small distance Ax, so that u(xq + Ax,to + At) — H. For A* and Ax small
enough, we see that this can only be the case if

kx§ — wto = Co = k(xo + Ax) — u)(to -f At),

e.g. the point that gets mapped to H is the same point after the wave has traveled a small distance.
This is only true if

• a a . A x ukAx = uAt =>• —— = —.A t k
This is known as the phase velocity of the wave.
Definition 5. For a wave of the form u(x, t) = f(kx - ut) where k and uj are constants, the phase
velocity cph is defined as the constant

c p h : = | . ( 4 . 7 )

Although the phase velocity can be defined more generally, where cph determines the speed
at which any one frequency component travels, we will restrict ourselves to the definition given
above.
Definition 6. The propagation of energy in a system is given by the velocity of wave packets,
known as the group velocity, which is given by

c 3 r : = w ( 4 . 8 )

In the case of equation right-traveling waves f(x — ct) (4.4), we determined the linear disper
sion relation w = ck (4.6). Applying the definitions for the group (4.8) and phase (4.7) velocities,
we see that in this instance

c k d u
Cph~ k " k ~~~ dk ~~gr'

Definition 7. A non-dispersive wave is a wave which is governed by a linear dispersion relation.
For linear equations, differentiation of u gives the coefficient of k, which is similarly achieved

by division. Thus a linear relation implies equality of cph and cgr. Conversely, imagine that the
equation cph = cgr holds. Treating a; as a function only of k, we can separate variables and solve
the differential equation as follows:

dw
~dk ~ k
duo dk

k
)gU = log k + c.
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Figure 4.1: Plot of a Solitary Wave Solution

Exponentiating both sides of the equation we obtain the linear dispersion relation u — Ck where
C = ec. Dispersive waves have unequal phase and group velocities, while non-dispersive waves
have equal phase and group velocities.

4.2.4 Solitary Wave Solutions
Plane wave solutions are not the only solutions to the classical linear wave equations presented in
equations (4.1), (4.2), (4.4). For example, Figure 4.1 shows a completely different solution that is
not of this plane wave form. Letting

u ( x , t ) = s e c h 2 ( x - c t ) , ( 4 . 9 )
and calculating

m = — 2csech2(x — ct) tanh(x — ct),
ux — 2 sech2(x — ct) tanh(x — ct),

we have thus verified that a wave of the form (4.9) satisfies our simplified right-traveling linear
wave equation (4.4).

Although not obvious at this point, a solution of the form (4.9) is an example of a solitary wave
solution or soliton.
Definition 8. ([DJ], [ZK]) A solitary wave solution or soliton is a solution to any wave equation
that satisfies the following three properties:

1. retains its shape (initial profile) for all time,

2. is localized (asymptotically constant at ±oo or obeys periodicity conditions imposed on the
original equation),

3. can pass through other solitons and retain size and shape.
As we will see in the next few sections, other types of wave equations either permit or dismiss

the possibility of solitary wave solutions. Of particular interest will be the case when the wave
equation under consideration is non-linear. Certain non-linear equations will allow solitary wave
solutions. In these instances, the third condition in Definition 8 will become especially important
as many localized solutions tend to scatter off of one another irreversibly. This is in sharp contrast
to linear equations, where two waves can pass through each other without change. Since solitons
exhibit at most a phase change after interaction, we will be able to "add" (in a well-defined way
to be described later) two soliton solutions to obtain a third one, achieving in effect a non-linear
superposition principle!
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4.3 Generalized Wave Equations
In the previous section, we considered an example of a linear, non-dispersive wave equation and
the types of solutions it allows. However, these sorts of equations are often inadequate for describ
ing the rich dynamical behavior of the universe. Physical models for vibrations, gravity waves,
internal waves, surface waves and a broad range of related phenomena require a mix of dissipative,
dispersive and nonlinear behavior. In this section we will consider various combinations of these
features and discuss whether or not they support stable solitary wave solutions.

4.3.1 Linear Dispersive Waves
Let us consider a partial differential equation with odd spatial derivatives, such as

u t + c q u x + S u x x x = 0 , ( 4 . 1 0 )

where Co and S are constant. Here we are using subscript notation where ux := |^, uxx := §^f
and so on. Taking as our ansatz the plane wave solution u(x, t) = e*(fca;-wt\ we get the following
non-linear dispersion relation between the frequency u and the wave number k

u = cok — 5k3.

Applying the definitions for phase and group velocities we find that

£ 7 2 V / d u o n 2Cq — ok = 7- = Cph 7* cgr = -~r — co - odk .

If 6 > 0 we then have that
Cgr 5: C"ph'

If we assume that the Fourier transform of u(x, 0)—call it A(k)—has a continuum of wave num
bers in its initial profile, then the evolution of the profile is given by

/ o o A(k)ei{
-oo

i(kx—u(k)t) dk

and the Fourier components literally "disperse" or separate out according to their wave numbers.
This example demonstrates that a linear dispersive wave does not exhibit stable solitary wave so
lutions since an initial profile consisting of many superposed wave numbers breaks apart into indi
vidual components instead of retaining its shape.

4.3.2 Linear Dissipative Waves
What is interesting to note is that we get real dispersion relations for u; whenever we have odd order
derivatives for our spatial variable x. If we consider the alternative equation

the dispersion relation then is

We thus have the solution

u t + c q u x - 8 u x x = 0 , ( 4 . 1 1 )

u = cok — iSk .

u(x,t) = e~k *+*fc<*-*)j
which decays exponentially with time.
Definition 9. A dissipative wave is a wave whose energy decreases as time increases.
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In Section 4.2.3 we noted that energy in waves is proportional to frequency. This statement is
true for a given amplitude, but energy is also proportional to a wave's amplitude. Although energy
is a difficult concept to define generally, for a wave periodic in x with period T we may define the
energy E of a wave u(x, t) as

2 Jo Hx,t)\2
For the above example, we find that

which clearly goes to zero as t
Ecxe~2k'

4.3.3 Non-Linear Non-Dispersive Waves
A common feature of equations (4.1), (4.10), and (4.11) is their linearity. With such systems, once
two solutions are produced their sum is guaranteed to be a solution, and we can find a basis for the
space of all solutions—the tools of linear algebra are at our disposal. Non-linear systems are much
harder to study precisely for this reason. Let us consider a simple example where the wave's speed
c depends on its amplitude. The equation

u t + c ( u ) u x - 0 , ( 4 . 1 2 )

where c(u) = Co + bun for b a constant is one such example. It is clearly non-linear, because if we
consider two solutions u and v and we substitute their sum into equation (4.12), we obtain

ut + vt + co 4- b(u + v)n(ux + vx) = 0

if and only if (u + v)n = 0, which is not true in general.
Surprisingly, the solution to equation (4.12) follows (almost) precisely d'Alembert's solution,

except that c in the solution u(x, t) = f(x - ct) for equation (4.4) is replaced by the function c(u).
This has important implications, because if c(u) is increasing, then the wave travels faster as its
amplitude increases, until finally the wave steepens and breaks (where "breaking" in mathematical
terms is multi-valuedness).

4.3.4 Non-Linear Dispersive Waves
The upshot of the previous few subsections has been that neither linear dispersive nor non-linear
non-dispersive wave equations admit solitary wave solutions. In those cases, a wave profile either
has the tendency to break up according to wave number (dispersive) or steepen to multi-valuedness
(non-linearity). One might imagine that a mix of these two behaviors would yield even more wild
behavior, but it is surprising that these two effects can actually neutralize each other to produce
soliton solutions.

We wish to provide an intuitive argument that a wave equation of the form

u t + c q u x + b u n u x + S u x x x = 0 ( 4 . 1 3 )

has a solitary wave solution that retains its shape. If we suppose that equation (4.13) has a solitary
wave solution as depicted in Figure 4.2, then a necessary assumption for the wave to retain its shape
is the condition

^top = V bottom = V,

where vtop and ^bottom denote the speed at the top and bottom respectively. If we move to a
coordinate system that travels with the wave we can hopefully simplify the analysis. Putting \ —
£x - Qt where v = Q/£, so that at x ~ x t = 0 and forx~ x — vt for all other times, we are left
with a problem in terms of x-

If Umax = A, the amplitude of the wave, then we can approximate our solution in a neighbor
hood of the top as

u ~ A(l — const x x2)-
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A

x — vt = 0

Figure 4.2: Solitary Wave Solution: Intuitive Argument

We then have that uxxx ~ 0 in this neighborhood, so equation (4.13) reduces to exactly the equation
we had in Section 4.3.3: •

Accordingly,

ut 4- (co + bun)ux ~ 0.

vtop = co + bAn,
and if b > 0, then vtop > co.

At the bottom of the wave un ~ 0, and thus we can neglect the non-linear term, reducing
equation (4.13) to

u t + c 0 u x + 5 u x x x ~ 0 . ( 4 . 1 4 )
Since this is exactly equation (4.10), we know that

cph = cq — Sk = Vbo (4.15)

and if 5 > 0, then bottom < c0. This would lead us to conclude that the velocity at the top of the
wave is larger than the velocity at the bottom, and thus our wave will steepen and break. But this
contradicts the stability of a solitary wave solution! Where did we go wrong in our analysis? The
answer is that the expression (4.15) assumes that at the bottom u has a plane wave form! If instead
we use e±x as our ansatz for (4.10), we derive the following non-linear dispersion relation

which in turn implies

n = Co£ + S£3

f t 2
^bottom = -T = Co + S£ .

We now have the important result that

^top = ^bottom <=> S£2 = bAn.

The above argument demonstrates several important lessons:

• A non-linear dispersive wave equation of the form (4.13) has a solitary wave solution which
moves at constant speed v while preserving its shape.
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• A solitary wave solution to a non-linear wave equation cannot be approximated by a plane
wave solution u ~ e*(fc*-<*>*) ̂  ̂ ut ramer requires an exponentially decaying solution of the
form u ~ e±(ex-Qt) where v = Q/£.

Later in this paper we will expand on the details for the second point when we introduce a per
turbation method for generating soliton solutions. To further motivate and focus our discussion
we will restrict our attention to a historically important example of a non-linear dispersive wave
equation, which admits soliton solutions, known as the KdV equation. After introducing the KdV
equation and illustrating some of its properties, we will dive deeper into just how it produces soliton
solutions.

4.4 The Korteweg-de Vries (KdV) Equation
One of the first PDEs for which soliton solutions were discovered is the Korteweg-de Vries (KdV)
equation,

ut + 6uux + uxxx = 0.
As described in the introduction, this equation is useful for describing surface waves in a shallow
water domain. It is straightforward to verify that

u(x,t) = l— sech2 (|) , x = tx ~ ta, ft = t\ (4-16)

is a traveling wave solution to the KdV equation.
4.4.1 Conservation Laws
One of the nice features of the KdV equation (and deeply connected to its integrability) is that it
admits infinitely many conservation laws. The two bottom rungs on this conservation ladder are
conservation of mass and energy. If we require the KdV equation to obey the periodicity condition

u(x + l,t) = u(x,t),
then we can prove that the "mass"

and the "energy"

M := / u(x,t)dx
Jo

E:= j ^(u(x,t))2dx==0
are independent of time. Simply differentiating with respect to time we have

-— = / ut= -6uux - uxxx = [-3u2]J - [uxx\o = 0

if u and uxx are assumed to be periodic in x. Using the same conditions on w, we see that

d E f 1 f \ 2 f 1= / uut = — / bu ux — uuxxx
J o J o J odt

- [ l= " I! Tx (2̂  - / ̂{uUxx) + / UxUxx = [lul = 0.
0

Both M and E are also independent of time if we do not enforce periodicity, but rather require
u, ux,uxx —*• 0 as x —> ±oo and where M and E are integrated on the whole real line. However,
this is the case with square-integrable functions, so the demand is not too strict.
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4.4.2 Pade Approximation
Although the infinity of conservation laws already points to some of the deeper aspects of the
KdV equation, we are primarily concerned with how the KdV equation generates soliton solutions.
As detailed in an earlier section, solitary wave solutions cannot be approximated by plane wave
solutions and instead require exponentially decaying solutions of the form e±x, where x = to—Qt.
In particular, we need to expand u in terms of e exp(x) where e is small. Unfortunately, the right-
hand side in the expression

u ( x , t ) ~ e a i e x p ( x ) 4 - e 2 a 2 e x p ( 2 x ) H ( 4 . 1 7 )

may diverge for large x, contrary to the behavior required by a solitary wave solution. Indeed, as
suggested by Figure 4.2, we expect that as x —▶ +°o,

u(x,t) ~exp(-x).
One way to achieve convergence is to find the Pade approximation u = G/F of (4.17), where G
and F are polynomials in exp(x).
Definition 10. Given that a function f(x) is ra + n times differentiable, the Pade approximant
of order (ra, n) is the rational function

R, x = Po 4- pix 4- P2X2 H h PmXm _ G(x)
qo 4- qix 4- q2X2 H h qnxn F(x)

which agrees with f(x) to the highest possible order, i.e.

/(0) = R(0)
/'(<>) = R'(0)

f(m+n\0) = R{m+n)(0)

Example 11. Suppose
f(x) = x - x3 4- x5 - x7 H

which converges for |x| < 1. Factoring, we obtain an alternating geometric series in terms of x2

x ( l - ( x 2 ) 1 + ( x 2 ) 2 - ( x 2 ) 3 + - . . ) = — ^ F ( 4 . 1 8 )1 4- xz

and thus f(x) ~ x~x as x —> oo. Substituting exp(x) for x in (4.18) gives

ext)( ~v)
/(exp(x)) = exp(x) - exp(3X) 4- exp(5x) = x + e^ % ) ~ ex^~^

as x —^ co.
4.4.3 Perturbation Method
Considering again the KdV equation

u t + 6 u u x + u x x x = 0 , ( 4 . 1 9 )
and applying the perturbation method one expands u as a power series in a small parameter e to
obtain an infinite sequence of linear equations on the components of the expansion as follows. We
substitute the following expression for u in (4.19)

u = e m 4 - 2 U 2 4 - e 3 u 3 4 - • • • , ( 4 . 2 0 )
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and by collecting like powers of e we obtain the following series of equations:

! + 6)wl = 0' (421)
m + d x ^ ) U 2 = - 6 u i ^ ' ( 4 2 2 )(

(di + w)U3=-6{U2^x-+Ul-dx-)

As explained in Section 4.13, we need to choose an exponentially decaying solution for u. Let

ui=aiexp(x), X — fa ~ ^> Q = £,

where ai and £ are arbitrary. Substituting this solution into (4.22), we determine that

u2 = a2exp(2x), a2 = -^-.

Proceeding successively, we can thus find all the Wj's in (4.20), obtaining a power series in e exp(x)
as in (4.17). However, as already mentioned, this expression will diverge for large x, which we can
try to circumvent via a Pade approximation. The trouble with this approach is that there is no
simple way to determine the required functions G and F. One potential trick is to reverse engineer
a known solitary wave solution so that it takes the form G/F. In the case of (4.19) the one-soliton
solution (4.16) is

£ 2 2 ( X \ £ 2 2 ^
u(x, t)-- seen ^-) - x + ^^ - 2 + exp(x) + exp(_x)'

so
G _ 2 £ 2 e x p ( x ) 2 £ 2 e x p ( x )
F ~ 1 + 2 exp(x) 4- exp(2x) (1 4- exp(x))2 ' (4.23)

The problem with reverse engineering is that (4.23) is an artificial byproduct of a solution we
already know. What would be better is to develop a method which determines the functions G and
F without a priori having the solution u. This approach is embodied by Hirota's method.

4.4.4 Hirota's Method
Our practice with the perturbation method and Pade approximations suggests that making the sub
stitution u(x, t) = G[exp(£x - Qt)]/F[exp(£x - Qt)] in (4.19) to obtain equations for G and F
may be a fruitful undertaking. We first calculate:

U = F

ut =

G
F
GtF - GFt

F2
_ GXF — GFX

_ G^x _ SGXXFX + 3GXFXX + GFXXX GXF2 + GFXXFX _ GF3U X X X — p 2 4 " O ^ 3 ^ 4 •
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Substituting into the KdV equation (4.19), we obtain the following complicated equation

G t F - G F t , n G G x F - G F xut 4- 6uux 4- uxxx = — (- 6

+
x x x p 2 i ^ p p 2

GXXXF — 3GXXFX — 3GXFXX — GFXX

+ 6 F G X F 2 + F G F F X - G F 3 X = 0 ^r
At first glance equation (4.24) has only made things worse. We could try to decouple this equation
into a simpler set of equations. Re-expressing the 6uux term with F3 in the denominator as one
with F4 in the denominator, we could require that individually the term with F2 in the denominator
and F4 in the denominator are both zero:

GtF - GFt 4- GXXF - 3GXXFX - 3GXFXX - GFXXX = 0 (4.25)
GGXF2 - G2FFX + GXFF2 4- GFFXFXX - F3G = 0. (4.26)

Unfortunately, the G and F we derived in (4.23) do not satisfy (4.25) and (4.26), but only by
a missing factor of 6GXFXX. Changing the minus sign in front of 3GXFXX to a plus sign and
transferring the remainder to the numerator of the F4 term, the KdV equation (4.19) becomes

GtF — GFt 4- GXXF — 3GXXFX 4- 3GXFXX — GFXXX i
p 2 +

6(GXF - GFX)GF ~ (F£*x ~ Fx) = 0.

Setting the terms with denominators F2 and F4 equal to zero, we obtain the decoupled equations:

GtF - GFt + GXXF - 3GXXFX + 3GXFXX - GFXXX = 0 (4.27)
GF - (FFXX - F2) = 0 . (4 .28)

We have done a great deal of work, but it doesn't appear to have paid off. However, careful anal
ysis of the pattern of derivatives suggests that (4.27) and (4.28) can be written even more simply.
Introducing a new bilinear differentiation operator, Hirota's D-operator, will greatly simplify these
expressions once and for all.
Definition 12. The Hirota D-operator for two n-times differentiable functions / and g is defined
by:

Dnx i ' 9 = (dX l - dX2)n f (x i )g (x2 ) \X l=X2=x (4 .29)

Example 13. We determine the following quantities

Dtf - g = ftg - fgt,
Dxf g = fxg- fgx,
Dlf ' 9 = fxxg - 2fxgx + gxxf,
D2xf-f = 2fxxf-2f2,
&xf • 9 = fxxxg - 3fxxgx 4- 3fxgxx — fgxxx.

With the Hirota D-operator in hand, we then immediately recognize that equations (4.27) and
(4.28) for G and F reduce to the following quadratic, also called bilinear, form:

( D t + D 3 x ) G F = 0 , ( 4 . 3 0 )
2 G F - D 2 X F F = 0 . ( 4 . 3 1 )
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Figure 4.3: Two-Soliton Solution for Various Times

Equations (4.30) and (4.31) are the culmination of this section. Not only is the form aesthet
ically pleasing, but we will soon see how such a form enables one to produce soliton solutions in
an almost trivial manner. Before this method for producing such solutions is presented, we would
like to first understand what it means for the KdV equation to admit a multi-soliton, or AT-soliton,
solution.

4.4.5 AT-Soliton Solutions
In Section 4.2.4 we outlined the defining characteristics of a soliton solution. In particular, we
noted how the third condition in Definition 8 gives rise to a non-linear superposition principle. So
far, we did nothing to illustrate this principle graphically, nor did we explain how an equation might
admit multiple soliton solutions. In Figure 4.3 we have graphed the following two-soliton solution
to the KdV equation (4.19) for six different times (p.75 [DJ]):

3 + 4 cosh(2a? - St) 4- cosh(4a? - 64t)
u(x, t) - 12 j3cosh(x _ 2gt) + cosh(3a. _ 36t)]2 • (4.32)

One of the striking features of Figure 4.3 is that the tall wave actually catches up to, and passes
right through, the smaller wave in an almost linear fashion. Careful inspection and exploration
by the reader will reveal that after the interaction, the short wave has actually been pushed back
and the tall wave has advanced forward relative to where they would have been if the waves had
evolved individually, without interaction. This phase-shift is the trademark of the non-linearity
of the KdV equation. Aside from this small difference, the ability for individual solitary waves
to interact strongly and retain their shape is the defining characteristic of solitons. How multiple
soliton solutions such as (4.32) are produced for the KdV equation in a more direct, algebraic
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fashion is the objective of the final few sections. In particular, we will find that reformulating the
KdV equation into another bilinear form will allow us to simplify our analysis considerably.
4.4.6 Logarithmic Substitution for the KdV Equation
We motivated the decoupling of the KdV equation into two equations involving G and F by in
troducing the Pade approximant and asking for a better method to produce these polynomials in
exp(x). We could conceivably try to express G and F in terms of a power series like (4.20), sub
stituting into the two bilinear equations (4.30) and (4.31) and obtaining pairs of equations analogous
to equations (4.21), (4.22), and so on. This, however, turns out to be a rather complicated approach
as it stands, so in this section we will introduce an alternative substitution that reduces the KdV
equation to another single equation in bilinear form. This will allow us to apply the perturbation
method to produce exact multi-soliton solutions.

Instead of taking u = G/F, let us make the substitution

« = 2^Iog/.

Then (4.19) can be written as

2(log/)xxt 4- 3dx(u) 4- uxxx = 0,
which upon integrating once by x becomes

2 ( l o g f ) x t 4 - 3 u 2 + u x x = 0 . ( 4 . 3 3 )

We now calculate the relevant quantities:

w2=4(^y+4(^y-8&.,
„ . _ i n / J x \ , 0 / f J x J x x a ( J x x \ q J x J x x x n J x x x xu°>--12[j) +24-T~6{t) "8_p~ + 2"7"'

2 ( l o g / ) x l = - 2 M + 2 ^ .

After substituting into (4.33), simplifying and multiplying by /2/2, we obtain the equation

f f x t - f x f t + 3 f x x - 4 f x f x x x 4 - f f x x x x = 0 . ( 4 . 3 4 )

We are now ready to put the KdV equation into an alternate bilinear form involving the Hirota
D-operator defined in equation (4.29). In example 13 we calculated several quantities using the
-D-operator. We now add the following two calculations:

D x D t f . f = 2 ( f t x f - f t f x ) ( 4 . 3 5 )
Dxf - f = 2( f fxxxx - Afx fxxx 4- 3 f2x) . (4 .36)

If we compare equations (4.35) and (4.36) with the transformed KdV equation (4.34) we can im
mediately deduce the alternate bilinear form

D x ( D t + D 3 x ) f . f = 0 . ( 4 . 3 7 )

Compared against (4.30) and (4.31), equation (4.37) is a simpler equation. In particular, we will
find that the perturbation method produces multi-soliton solutions in a direct manner from this
equation.
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4.4.7 Producing Af-Solitons via the D-Operator
We are now in a position to reapply the perturbation method of Section 4.4.3. It is important to
note that when we try to solve PDEs such as the KdV equation via the perturbation method, we
usually have an expansion of infinite order, whose coefficients we must determine successively.
Truncating the solution leaves us with only approximate solutions to the original PDE. In contrast,
we will find that applying the perturbation method to equations in bilinear form and choosing our
early components wisely will force our infinite expansion to truncate at finite order. This will allow
us to produce exact, rather than approximate, solutions via an expansion (4.20) of finite order in e.

First, we take the one-soliton solution (4.16) and write for £ = 2, Q — £3, the solution in terms
of the transformed equation for /:

o / 2 x - S t \ o 2

u(x, t) = 2sech2(.r - 4*) = 4- (1 + e2g_8tj = ^ Ml + ^~M).

If for notational convenience we write

B[ f ,g] :=Dx(Dt + Dl) f .g,

we determine that for / = 1 4- e2x~8t

B[f, f] = B[l, 1] + B{1, e2x-8t] 4- B[e2x~8t, 1} + B[e2x~8t, e2x~8t} = 0,

which checks that this is indeed a solution to (4.37). We wish to generalize this solution to account
for j/V-soliton solutions.

We assume that, like in Section 4.4.3, / can be expanded in positive powers of e from which we
can obtain an infinite sequence of equations on the components of the expansion. More precisely,
we write

oo

/ = l + ^ £ n / n ( x , ( ) ,
n = l

and substitute this expression into (4.37), which upon collecting powers of e becomes

B[l, 1] + e(B[l,fi] + B[j\, 1]) 4- e2(B[l, f2] + B[fi, fi] + £[/2, !]) + ••.

+*r ( £ Blf™,fr-m)) + • • • = 0. (4.38)
\ m = 0 /

Expression (4.38) then reduces to a series of equations, where each term with common power of e
is required to be zero. We see, using (4.35) and (4.36), that the equation for fi reduces to

which we will rewrite using the following notation:

K d t d x 3 J ' d x '
The first few equations from (4.38) then become

D / i - 0 ( 4 . 3 9 )
2 D f 2 = - B [ fi , fi ] ( 4 . 4 0 )
2 D f 3 = - B [ fi , f 2 ] - B [ f 2 , fi } . ( 4 . 4 1 )
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We can then easily check that, for /i = exp(xi) where x% = ^x - £3t 4- ai for £i and ai arbitrary
constants,

D/i=0, B[/ i , / i ] = 0, and Df2 = 0.
Accordingly, we may choose fn = Oforn = 2,3, ...in expression (4.38) and we regain the solitary
wave solution.

It is at this point that we make the very important observation that equation (4.39) is linear!
This linearity, as we will now explain, is the key to generating multi-soliton solutions to the KdV
equation. Let us assume that

/ i = e x p ( x i ) 4 - e x p ( x 2 ) ( 4 . 4 2 )
where \i is defined above. Since (4.39) is linear we know Dfi = 0. From (4.40) we have that

2 D f 2 = - B [ f u fi ]
= - £[exp(xi),exp(xi)] - 5[exp(xi),exp(x2)]

- #[exp(x2),exp(xi)] - £[exp(x2),exp(x2)].

Noting the fact that only terms involving both xi and X2 are non-zero, we find that

2D}2 = -2{(h - £2)(£32 - *?) + (*i - ^2)4}exp(xi + X2). (4.43)

Equation (4.43) has a solution of the form

/2 = ,42exp(xi+X2),
and upon substituting into (4.43), we find that

Proceeding to equation (4.41), we substitute our expressions for f2 and /1 and determine that

2Df3 = - ,42£[exp(xi),exp(xi 4- X2)] - A2B[exp(xi 4- X2),exp(xi)]
- A2B[exp(x2), exp(xi + X2)] - A2B[exp(xi + X2), exp(x2)]

= - 2A2{(-£2)£32 4- (-^2)4}exp(2xi + X2)
- 2A2{(-£i)£\ 4- (-^i)4} exp(2Xi 4- X2)

= 0.

Notice that in contrast to our one-soliton solution, assuming /1 has the form (4.42) allows us to
truncate (4.38) by putting fn = 0 for n > 3. Putting e = 1, we now have an exact two-soliton
solution to the KdV equation:

(£. — £2\2J-^Tf) exP(*i +X2).
The method developed above generalizes to any exact Af-soliton solution simply by putting

N

/ i = ] T e x p ( x O ( 4 . 4 4 )

and the expansion (4.38) is guaranteed to terminate after the /W term. Although this termination can
be proven, we will not do so here. It is important to note that expression (4.44) and its corresponding
exact solution give us a non-linear superposition principle. The ability to take one-soliton solutions
and combine them to form multi-soliton turns out to be an important feature of integrable systems.
We could, in fact, take this as a definition of integrability.

A2
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Definition 14. ([Hi] p. 101) A set of equations written in Hirota bilinear form is Hirota integrable,
if one can combine any number N of one-soliton solutions into an iV-soliton solution.

The fact that (4.44) generates an ./V-soliton solution to the KdV equation (4.37) is testament to
its Hirota integrability. In all cases known so far, Hirota integrability has turned out to be equivalent
to more conventional definitions of integrability [Hi].

Although other methods for finding exact multi-soliton solutions exist, the Hirota jD-operator
is considered to be the most direct and algebraic method for doing so. The geometric and deeper
connections of Hirota's method with some other areas of mathematics and physics will be discussed
briefly in the next section.

4.5 Directions Forward
The field of integrable systems has seen many spectacular developments in the past several decades.
This growth can largely be attributed to the fruitful exchange that occurs at the nexus of mathemat
ics and physics—a nexus occupied by the study of Riemann surfaces, Kac-Moody algebras, twistor
theory and quantum field theory. It is our hope that in this paper we have illustrated, starting with
simple physical phenomenon, some of the beautiful mathematical structure that lies behind our
models of the universe.

Historically speaking, Hirota's method was discovered by some of the very same brute-force
calculations and by-hand manipulations carried out here [Ba]. It was only later, through the work
of the Japanese mathematicians Date, Jimbo, Miwa, Kashiwara, Sato and Sato, that the deep con
nections between Hirota's bilinear form for non-linear PDEs and Kac-Moody algebras were dis
covered.

The seemingly arbitrary substitutions made to reduce the KdV equation to its bilinear form,
either the rational substitution u = G/F or the logarithmic substitution u = 2(\ogf)xx, are
actually part of a broader class of functions known as r-functions. The discovery that the partition
functions of several important quantum field theories are r-functions of non-linear PDEs is a major
theme of current research in theoretical physics [Ba].
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Abstract
We explain an approach, due originally to Barnes, to tiling problems using some commutative
algebra. We investigate in particular the occurence of coloring arguments in tiling problems. The
only prerequisites are linear algebra and familiarity with rings and ideals.

5.1 A Recreational Problem
Consider the collection R of squares obtained from the chessboard by removing two opposite
corners:

Can this configuration be covered with the vertical and horizontal dominoes

B CD
so that every square is covered by exactly one domino? In other words, can R be tiled by vertical
and horizontal dominoes?

The coloring gives away the answer to this well-known problem. The region R has 32 black
squares and 30 white squares. Since each domino covers exactly one black and one white square,
no tiling is possible. The aim of this article is to explain a way to tackle tiling problems using a little
commutative algebra. More precisely, we will explain how to obtain coloring arguments, similar
to the above chessboard coloring, in a systematic way. I will assume that the reader is familiar with
linear algebra and has seen rings and ideals before.

5.2 Tiles, Regions, and Tiling Problems
Let N = {0,1,2,...} denote the natural numbers. A tile or region is a finite subset of N2 consid
ered as a collection of boxes in the first quadrant.1 The tiling problems that we shall consider are of
the following form: given a (possibly infinite) set T of tiles and a region R, can R be tiled (that is,
covered with tiles so that each square in R is covered once)? Each tile r e T can be translated any
where within N2 and used as many times as desired but we shall insist that rotations and reflections

t Thomas Lam was born in Hong Kong and grew up in Australia. He earned his BSc in 2001 from University
of New South Wales (Australia) and received his PhD in 2005 from MIT, studying with Richard Stanley. He
has been Benjamin Peirce Assistant Professor at Harvard University since then.

ĥe interested reader will have no trouble generalizing our statements to higher dimensions.
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are not allowed. If we want to allow rotations of a tile then they must be added to T separately.
Because we may translate tiles as much as we like, we will also assume that each tile r G T has
been translated as far southwest as possible, so that it touches the x- and ?/-axes. Thus, in the above
chessboard problem, T consists of two elements: the vertical domino V = {(0,0), (0,1)} and
horizontal domino H = {(0,0), (1,0)}.

C such that
5.3 Coloring Arguments
Let T be a set of tiles. A coloring argument for T is a function / : N2

(o,6)€k

for any kCN2 which is a translate of a tile in T. It is not difficult to check that the set of coloring
arguments for T forms a vector space over C, which we denote O(T) and shall call the coloring
space.

If R c N2 is some region, then we say that a coloring argument / e O(T) forbids R
if f(R) ̂  0. If a coloring argument / forbids R then one immediately deduces that R is not
tileable by T. If we replace black and white by 4-1 and -1, then the chessboard coloring gives the
following coloring argument

- 1 4-1 - 1 4-1

+1 - 1 -hi - 1

- 1 4-1 - 1 +1

+1 - 1 4-1 - 1

(which has formula f(a, b) = (-l)a+6) for the tile set T = {V", H} consisting of the two domi
noes.

5.4 Tile Polynomials
Let us consider the polynomial ring C[x,y] in two variables, where C denotes the complex num-

«.,*>.bers. To each box (a, b) G N2 in the first quadrant we associate the monomial xay[

y3 xy3 x y x3y3

y2 xy2 *v x3y2

y xy x2y x3y

l X x2 x3

To each region R (or tile r) we associate the region (or tile) polynomial

PR(x,y)= Yl x<xyb eClx>y]-
(a,b)eR
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Thus, pv (x, y) = 1 + y and ph(x,v) = 1 4- x.
We note that translating a tile r in the direction (a, b) corresponds to multiplying the tile poly

nomial by xayb. Our assumption that the tiles r € T are southwest-justified means that each
pT (x, y) is not divisible by a monomial.2

When is a region R tileable by T? This happens exactly when

p R ( x , y ) = ] T x a y b p r ( x , y ) , ( 5 . 1 )
(a,6),r

where the summation is over some collection of translated tiles.

5.5 Tile Ideal
Let us define the tile ideal JT C C[x, y] to be the ideal generated by the tile polynomials pT as r
varies over the tiles in T. A typical element of p(x, y) G It is thus a finite linear combination

p(x,y) = qi(x,y)pT1(x,y) + • • • 4- qk(x,y)pTk(x,y), (5.2)

where n G T are tiles and qi(x, y) G C[x, y\. In particular, if a region R is tileable by T then
looking at (5.1) we see that pr G It- However, the converse is not true. The polynomials qi(x, y)
in (5.2) may involve negative signs which would allow one to "remove" tiles. Let us say that a
region R is tileable by T over C if pR G It- Tileability over C is a much easier problem, as we
shall soon see.

For example, letting R = {(0,0), (0,1), (0,2), (1,1), (2,1), (3,0), (3,1), (3,2)}, we obtain:

_nz_
It is easy to see that R is not tileable by the dominoes T = {V, H}. However we have

pR(x, y) = 1 4- y + y2 4- xy 4- x2y 4- x3 4- x3y 4- x3y2
= (1 + 2/ + 2/2 4-z2 + x2y + x2y2 - x - xy2)pH(x,y) G It,

so R is tileable by dominoes over C.

5.6 Reduction to Finite Sets of Tiles
A basic theorem in commutative algebra is the Hilbert Basis Theorem. In our setting, it states that
Theorem 1 (Hilbert Basis Theorem). Every ideal I in a polynomial ring C[xi,x2, ...,xn] is
finitely generated. Furthermore, if S C I is any possibly infinite set of generators, then a finite
subset S' C S will generate I.
Corollary 2. Any possibly infinite set T of tiles can be replaced by a finite subset T'cT of tiles,
so that tileability by T over C is the same as tileability by T' over C.
P r o o f A p p l y T h e o r e m 1 t o t h e t i l e i d e a l J T C C [ x , y ] . □

5.7 Tiling Over C and Coloring Arguments
Proposition 3. We have an isomorphism ofC-vector spaces

0(T)-Homc(C[a?,y]//T,C).
2We can avoid having to make these assumptions by using the ring C[x,y,x~l,y~1} instead, but that

makes other things somewhat more complicated.
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Proof Let / G O(T). We define a C-linear map (j): C[x, y] -> C by the formula

cj>(xayh) = f(a,b)

and extending by linearity. Since / is a coloring argument, the map 4> descends to a well-defined
map 4>: C[x, y]/IT -> C. This defines a C-linear map O(T) -> Homc(Cta, y]/IT, C).

In the other direction, let 0 G Homc(C[:r, y]/Ir, C). We define / : N^ -> C by the formula

/(a, 6) = 4>(xayb mod /T).

This / lies in O(T) and the resulting map Homc(C[:r, y]/lT, C) -> O(T) is inverse to the one in
t h e p r e v i o u s p a r a g r a p h . □

It is now time for one of the main results in this article.
Theorem 4. A region R C N2 is tileable by T over C if and only if no coloring argument f G
Q(T) forbids R.
Proof. The "only if" statement is obvious. To prove the "if" direction, we suppose that R is not
tileable by T over C so that pR(x, y) £ It- But this means the image pR(x, y) G C[x, y]/IT is a
non-zero vector in the C-vector space C[x, v}/It- There is thus a map 0 G Homc(C[a:, 2/]//t, C)
such that (I>(Pr) ^ 0. Using the isomorphism of Proposition 3 this gives a coloring argument
/ G O ( T ) s u c h t h a t f ( R ) ^ 0 . □

5.8 Nullstellensatz and Varieties
Let J C C[x, y] be an ideal. We define the variety V(I) of I to be

V(I) = {(a,0) G C2 | p(a,0) = 0 for every p(x,y) G /}.

If X C C2 is a set of points in the plane we define the ideal I(X) c C[x, y] of X by

I(X) = {p(x, y) G C[x, y] \ p(a, 0) = 0 for every (a, 0) G X}.

(One can obviously make these definitions in dimensions more than two.)
An ideal 7 in a commutative ring B is called radical if for any b G B such that bn G I we have

bei. For example, the ideal (l + x,l + y) C C[x, y] that we have previously seen is radical. A
fundamental result in commutative algebra and algebraic geometry is Hilbert's Nullstellensatz.
Theorem 5 (Nullstellensatz). Let I C C[x i, x2,..., xn] be an ideal not equal to the whole poly
nomial ring. Then V(I) is non-empty. Furthermore, if I is radical then we have I(V(I)) = I.

5.9 Tile Variety
Theorem 4 is satisfying theoretically, but to solve our favorite tiling problems it would be nice to
exhibit an explicit basis for O(T). By Proposition 3, the dimension of O(T) is equal to that of
Homc(C[x, y]/IT,C). If C[x, v]/It is infinite-dimensional over C (it will always be of countable
dimension), then Romc(C[x,y]/lT,C) will be of uncountable dimension. As an example, take
T = {V} to consist of only the vertical domino. Then C[x, y]/IT - C[x] is infinite-dimensional
over C. For simplicity we will assume that C[x,y]/IT and thus O(T) is a finite-dimensional
C-vector space.3

Define the tile variety VT = V(It) C C2 to be the variety associated to the ideal 7T. For
example, if T = {V, H} then Vt is given by the set of common zeroes of 14- x and 1 + y. Thus
VT = {(-1, -1)}. It will follow from Theorem 6 below that if C[x, y]/IT is finite-dimensional
over C then Vt is a finite set of points.

3The description we now give will not lead to a basis for O(T) in the infinite-dimensional case, but other
techniques such as Grobner bases can still tackle the general case.
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For a point (a, 0) G Vt define a map 4>a,p G Homc(C[x, v]/It, C) by evaluating polynomi
als at (a, 0):

<P«,p(p(x>y)) = p(<*,0).
Note that this equations is well-defined exactly because (a,0) G Vt. These elements of
Homc(C[x,2/]//T,C) are very special: they are not just linear maps, but also C-algebra homo-
morphisms of C[x, v]/It to C Under the isomorphism of Proposition 3, (j>a^ corresponds to the
coloring argument / : N2 —▶ C given by fa,p(a, b) = aa 0b.

Perhaps you now see where we are heading. If we take T = {V, H} to consist of the two
dominoes, and (a,0) = (-1,-1) then /_if_i(a, 6) = (-l)a+6 is just the black-white chess
board coloring!

5.10 A Basis for the Coloring Space
Theorem 6. Suppose C[x,v]/It has dimension n over C and It is a radical ideal. Then Vt =
{(ai,/3i),..., (an,0n)} consists of n points and the set {/Q.,^ G O(T)} forms a basis of the
coloring space O(T).
Proof. We claim that an element p(x,y) G C[x,y]/IT is completely determined by its values
p(ai,0i) on Vt- This follows from Theorem 5: if p, q G C[x, y] take the same values everywhere
on Vt then the difference p - q lies in I(VT) and thus in IT by the Nullstellensatz. In particular,
we have

dimc(C[a:,y]//T)<|VT|.
But if {(ai,0i),...,(am,0m)} C Vrandj G [l,ra] is fixed let us pick for each i ^ j in [l,ra]
a polynomial

( j ) , v x - a i ( j \ y — 0 i^ {x'y)=̂ ^ or 4 (x'y)=fr%'
insisting that we choose an expression such that the denominator is non-zero (most of the time
either one will do). Then the product

q(J)(x,y) = l[[q^(x,y)eC[x,y}

takes the value 1 at (aj,0j) and the value 0 at every other (a*, 0i). These ra polynomials give ra
linearly independent elements of C[x, v]/It- Thus,

dimc(C[x,2/]//T)>|VT|
and we conclude that n = dimc(C[x, y]/IT) = |VT|. In particular, we have shown that Vt =
{(ai,/?i),..., (an,0n)} is finite. One checks that the maps {0^,^} C Homc(C[x,y]/7T,C)
form a dual-basis to {q(j)(x, y)} c C[x, j/]//t, to complete the proof. □

For T = {V, H}, we have remarked that It is radical so Theorem 6 says that the chessboard
coloring is essentially the only coloring argument. There is also a version of Theorem 6 which
applies even when It is not radical.

5.11 Summary of Strategy
Let us summarize our approach to a tiling problem. We are given a set T of tiles and a region
R. First, we convert each tile r G T into a polynomial pT(x,y). We (try to) solve all these
polynomials simultaneously, to find the tile variety Vt C C2. If Vt = 0 then every region R is
tileable by T over C.

We suppose Vt consists of a finite set of points. Next we evaluate pR(x, y) at each point (a,0)
of Vt- If for some point we have pR (a,0) ^ 0 then we have found a coloring argument fa^ which
forbids R. If not, but in addition we know that It is radical, then we can conclude from Theorem 6
that no coloring argument can show that R is not tileable. Of course, to completely resolve whether
R is tileable by T is a much harder problem.

Furthermore, all the results so far work in any number of dimensions.
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5.12 Final Comments
Essentially all of what we have presented so far is a simplification of work of Barnes [Bl, B2].
However, much more can be said if we are willing to restrict our class of tiling problems. Let us
now assume that all the tiles and regions that we consider are bricks. In two-dimensions, bricks
are just rectangles. In d-dimensions, they are regions of the form [ai, bi] x • • x [a^, bd\-

A fundamental result is an analogue of the Hilbert Basis Theorem over N, due to de Bruijn and
Klarner.
Theorem 7 ([dBK]). When considering tiling problems of bricks by bricks, any collection of brick
tiles can be replaced by a finite subcollection.

For brick tiling problems, tiling over C and usual tilings are not too different. Barnes proved:
Theorem 8 ([B2]). Let T be a finite set of brick tiles. Then there is some constant K such that
every brick region R with all dimensions greater than K can be tiled by T if and only if it can be
tiled by T over C

Together with Ezra Miller and Igor Pak, I have been studying some computational issues for
tilings. I now describe some of our results. Let us say that a set S of bricks has a finite description
if it is a finite union S = U*Si of brick classes Si such that each class is of one of the following
forms:

1. {(/i,...,/d) \li = a]

2 . { ( h , . . - , l d ) \ l i > a }

3. {(h,..., Id) | h > a and U = b mod c

for integers a, b and c.
Proposition 9 ([LMP]). Let T be a set of bricks. Then the set S of bricks which can be tiled by T
admits a finite description.
Theorem 10 ([LMP]). Suppose we are in d = 2 dimensions and T is a finite set of bricks. Then it
is possible to compute a finite description for the set S of bricks tileable by T.

Surprisingly, we conjecture that Theorem 10 fails in higher dimensions. That is, when d > 3,
a finite description for the set S of bricks tileable by T is not computable.
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Abstract
Determining when two links are equivalent is one of the central goals of knot theory. This paper
describes the Conway polynomial, a link invariant that offers one approach to this problem. When
calculating the Conway polynomial of the (n, 2) torus knots, we encounter the familiar patterns of
Pascal's triangle and the Fibonacci sequence.

6.1 Introduction
Pick up a piece of string. Tangle it up, twist it around, knot it up, and then attach the ends. The result
is a mathematical knot. Suppose a friend does the same thing. Try to twist, stretch, or otherwise
deform the two tangled loops, without cutting the strings, so that they look exactly the same. If
this is possible, then the knots are said to be equivalent. Determining whether or not two knots are
equivalent is one of the central questions in knot theory.

Mathematically, a knot is a continuous closed curve in space that does not intersect itself. A
link is the disjoint union of finitely many knots, where the number of components of the link is
determined by the number of knots. If each component is assigned a direction, then the link is
oriented. Two oriented links are equivalent if one can be deformed into the other in such a way
that the orientation is preserved. A two-dimensional picture of a link is called a projection.

Figure 6.1: Do these two oriented link projections represent equivalent links?

Knot theorists use link invariants to distinguish between different links. If two links are equiv
alent, then calculating the link invariant for each link produces the same result, despite the fact that
the link projections may appear to be drastically different.

One example of a link invariant is the Conway polynomial. Given a projection of an oriented
link L, we can assign a polynomial V(L), described using the variable z. The polynomial is defined

*Dana Rowland has been teaching in the mathematics department at Merrimack College since 2001, where
she is now an associate professor. She earned her doctorate in mathematics in 2001 at Stanford University under
Ralph Cohen, in the area of algebraic topology. As an undergraduate, she majored in both mathematics and
English at the University of Notre Dame. Her current research interests include knot theory and graph theory.
When she is not doing mathematics, Dr. Rowland enjoys playing bassoon and valve trombone in the Merrimack
College jazz ensemble and being constantly surprised by her amazing children Ben (4 years) and Michela (21
months).
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so that no matter how the link is twisted around in space, the polynomial will not change—any two
projections of the same link will have the same Conway polynomial.

The Conway polynomial of a particular projection is calculated recursively by applying the
following two definitions.
Definition 1. If L is equivalent to a single unknotted circle ("the unknot"), then its Conway poly
nomial is equal to 1; that is,

O)- (6.1)

) (

Figure 6.2: These three link projections are identical outside of the region shown.

Definition 2. Suppose L+, L_, and L0 are three oriented link projections that are identical except
near one crossing of L+, where they appear as in Figure 6.2. Then their Conway polynomials
satisfy the relation

2 V ( L o ) = V ( L + ) - V ( L _ ) . ( 6 - 2 )

These two defintions, together with the requirement that two projections of the same link must
have the same Conway polynomial, suffice for calculating the Conway polynomial of any knot or
link. We can always unknot a link by changing finitely many crossings. By applying Definition
2 at one of these crossings and appropriately assigning the roles of L+, L_, and L0, we can find
the Conway polynomial of a given link in terms of the Conway polynomials of links with fewer
crossings. We can eliminate all crossings by repeating this process, resulting in only the trivial knot
or trivial links.

By Definition 1, we know V I I J ] = 1. The Conway polynomial of a trivial link is 0. To

see this, label the trivial link as L0 and form L+ and L_ by joining two of the components using a
positive and negative crossing respectively. Applying (6.2) gives

-(00)-(00)-(00)
-(OMo:
= 0.

The following example illustrates how these two definitions are used to calculate the Conway
polynomial of the trefoil knot.
Example 3. The Conway polynomial of the trefoil knot is 1 +■ z2.
Proof. Select one crossing in the trefoil knot. Since the crossing is a positive crossing, label the
trefoil knot as L+ and replace the region near the chosen crossing as shown in Figure 6.2 to obtain



68 The Harvard College Mathematics Review 2.1

Figure 6.3: The trefoil knot.

L- and L0. Then use (6.2).

* (<§)W(§)Wc3>
-(O + 2V

The Conway polynomial of the unknot is 1. To find the Conway polynomial of the link, select
another crossing and apply (6.2) again.

+ zV

+ lz

Since the Conway polynomial of the trivial link is 0, we see that

-(00MO)

= 0+12 = 2

and the Conway polynomial of the trefoil is 1 + z(z) = 1 + z2, as claimed. □
Before continuing, we urge the reader to try a problem or two.

Exercise 4. A different projection of the trefoil knot is shown in Figure 6.4. Make this knot out of
string and manipulate the string to show that this knot is equivalent to the one used in Example 3.
Verify that calculating the Conway polynomial starting with this projection also results in 1 + z2.

Figure 6.4: Another projection of the trefoil knot

Exercise 5. Show that the Conway polynomial of the figure-eight knot, shown in Figure 6.5, is
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Figure 6.5: The figure-eight knot.

6.2 Torus Links
Suppose you have two strings, side by side, and the tops of the strings are fixed. Twist the right
string over the left string n times, and orient both strings in the same direction. Without introducing
any additional crossings, attach the bottoms of the strings to the tops, as shown in Figure 6.6. The
resulting knot or link is known as an (n, 2) torus link, because it lies flat on a torus, wrapping
around twice longitudinally and n times through the center.1

Figure 6.6: An (n, 2) torus link.

Now we explore what happens when we calculate the Conway polynomials of these links. Let
Cn denote the (n, 2) torus link. Notice that £i is the unknot, C2 is the link from Example 3, and
£3 is the trefoil. When n is odd, Cn is a knot. When n is even, £n is a two-component link.
Furthermore, for n > 3, changing a single crossing in the (n, 2) torus link results in a projection
of the (n - 2,2) torus link. See Figure 6.7.

Figure 6.7: Applying (6.2) to torus links with L+ = £n, L- = £n-2, and Lo = Cn-i-

lSee [Ad, Section 5.1] for a general description of (n, ra) torus knots and links.
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Using the definitions for calculating the Conway polynomial, we observe that for all n > 3,

V ( £ n ) = V ( £ n - 2 ) + z V ( C n - i ) . ( 6 . 3 )
This quickly leads to a table of Conway polynomials:

V(£i) = 1
V(£2) = z
V(£3) = l + 22
V(£4) = 2z + z3
V(£5) = l + 3z2-+z4
V(£6) = 3z 4 4z3 4 /
V(£7) = 1 4- 6z2 4- 5z4 4- *6
V(£8) = 4z + IO23 4 6*5 4- /
V(£9) = 1 4- I0z2 4 15*4 4 7z6 4- *8

6.3 Pattern Recognition and Formulas
If we look at the table of Conway polynomials, we can immediately make a few observations.
First, the degree of the polynomial for the (n, 2) torus link is n - 1. The polynomials are all
monic, meaning that the highest order term has 1 as its coefficient. When n is odd, the constant
term of the polynomial is 1 and the polynomial contains only even powers of z. When n is even,
the polynomial contains only odd powers of z, and the coefficient of the z term is n/2.

These observations begin to reveal the behavior of the Conway polynomial of the (n, 2) torus
link, but we can do better by taking a closer look at the pattern formed by all the coefficients:

V ( £ i
V(£2
V(£3
V(£4
V(£5
V(£6
V(£7
V(£8
V(£9

= 1
= \ z
= 14- l*2
= 2 z 4 - l z 3
= 1 4- 3z2 4 lz4

3z + 4z3 4 lz5
= 14 6z2 + 5z4 + lz6
= 42 + 10z3 4 6z5 + lz7
= 1 4 IO22 4 15z4 4 7*6 4- lz8

Notice the appearance of Pascal's triangle along the diagonals of the Conway polynomial coeffi
cients! Alternatively, we can find these coefficients of the Conway polynomials within Pascal's
triangle, as seen in Figure 6.8.

Recall that the entries in Pascal's triangle are the binomial coefficients. This suggests the
following formulae.
Theorem 6. The Conway polynomial of the (2n 4 1,2) torus knots is given by the equation

V(£2n+i) =

j = 0

+<TK+n2W' + 2n\ 2n
2n }e

(6.4)
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Figure 6.8: The coefficients of the Conway polynomials of the (n, 2) torus knots and links can be
found within Pascal's triangle.

and the Conway polynomial of the (2n, 2) torus links is given by

v(«-i?).+n'K+ nrw ■ ♦ £ : : » -

E
3=0

n + j \ 2j+i
2j + l z

(6.5)

Proof. We prove (6.4) and (6.5) using the principle of mathematical induction. Since £i is the
unknot, we know that V(£i) = 1 = Q. In Example 3, we showed that V(£2) = z= Qz, so
the results are valid when n = 0.

Assume we know the formulae hold for all positive integers less than ra. We prove the formula
holds when ra = 2n is even. (The case for ra odd is similar, and is left to the reader.) We have

V(£2n) = V(£2n-2) 4- zV(C2n-i)

j = o
n - 2= £
3=0
n - l= £
j = 0

n- '14- j
2j + lE(",~irK'*' + *E
n - 1 + j

2j + l

n + j \ 2 j + l
2j + l]Z

4

3=0

n - l + j
2 j

n - 1 4 j \ 2j
2 3 U

2j + l . 2n-lz - 4- Z

The sudden appearance of Pascal's triangle allowed us to conjecture and prove a result about
the Conway polynomials of mathematical knots. As frequently occurs in mathematics, results from
a seemingly unrelated field can be utilized where least expected.
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6.4 Torus Links and the Fibonacci Sequence
In [Ka], Kauffman observed another relationship: If we evaluate the Conway polynomials of these
torus links at z = 1, then we obtain the Fibonacci sequence.

Recall that the Fibonacci sequence {/n} is defined by the following recursive relation.

/i = l
f2 = l
fn — fn-2 4" J n-l

When z = 1, we see that V(£i)\z=i = 1, V(£2)|2=i = 1, and the recursive relation from
(6.3) becomes

V(£n)|2=1 = V(£n-2)|2=1 4 1 • V(Cn-i)\z = 1 ,
which establishes the identity

V ( £ n ) U = / n .
Combining this with (6.4) and (6.5), we obtain the identities

^ - t h A ( 6 - 6 )3=0
n - l n + j

2j + l/'3 = 0

The fact that the Fibonacci numbers occur as sums of the diagonals of Pascal's triangle shown
in Figure 6.8 was discovered by Edouard Lucas in 1876. See [Ko] for a direct proof.

6.5 Conclusion
Since the polynomials given in (6.4) and (6.5) are distinct, we know that the (n, 2) torus knots and
links are distinct for different values of n. The Conway polynomial can be a useful tool for telling
many knots and links apart, including those in Figure 6.1.
Exercise 7. Use the Conway polynomial to prove that the oriented link projections in Figure 6.1
do not represent equivalent links.

The Conway polynomial is equivalent to a normalized version of the very first polynomial
for knots and links, which was invented by J. Alexander in 1928. Alexander defined his original
polynomial using the Seifert matrix constructed from a surface spanning an oriented link, and
in 1969 John Conway discovered the polynomial could be derived more simply using the above
definitions. The Alexander-Conway polynomial was one of the major tools used for distinguishing
knots for the next 60 years.

However, the Conway polynomial cannot distinguish between all knots or links. Two knots
or links can have the same Conway polynomials even if they are not equivalent. For example,
splittable links are links that can be deformed so that the components lie on different sides of a
plane in R3.
Exercise 8. Show that the Conway polynomial of any splittable link is 0. (Hint: Label the splittable
link as Lo.)

Another example which illustrates the limitations of the Conway polynomial is the 11-crossing
Conway knot, shown in Figure 6.9. This knot has Conway polynomial 1, even though it cannot be
unknotted.

In fact, given any knot, there are infinitely many other knots with the same Conway polynomial
(c/[Cr,p. 164]).
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Figure 6.9: This 11 crossing knot has the same Conway polynomial as the unknot.

In 1984, Vaughan Jones discovered a connection between von Neumann algebras and braid
groups, which led to a new polynomial for knots and links. The Jones polynomial has the advan
tage that there are no known examples of knots that have the same Jones polynomial as the trivial
knot. Jones' discovery encouraged other mathematicians to search for more knot polynomials.
This quickly led to the discovery of the Homfly polynomial, a two-variable generalization of both
die Alexander-Conway and Jones polynomials which was developed independently by Jim Hoste,
Adrian Ocneanu, Raymond Lickorish and Ken Millett, Peter Freyd and David Yetter, and Jozef
Przytycki and Pawel Traczyk. Still other polynomial invariants grew out of a surprising connection
between knot theory and theoretical physics.

The connections between knot polynomials and previously unrelated fields of mathematics led
to renewed interest in the mathematical theory of knots and links, and rapid advances in the subject.
Still, none of these polynomials provides a complete invariant—infinitely many examples exist of
pairs of non-equivalent knots that still have the same knot polynomials. Knot theorists continue to
search for more ways to distinguish knots and links.

We refer the interested reader to [Ad, Cr, Sc] for more about knot theory and to [BQ, En] for
additional properties of Pascal's triangle and the Fibonacci sequence. We conclude with a final
problem.

Take a rubber band, and twist it n times while holding onto two ends of the rubber band. Link
the ends together using a clasp with two crossings so that the resulting knot is alternating. The
result is a twist knot, pictured in Figure 6.10. Note that the figure-eight knot in Figure 6.5 is an
example of a twist knot.

Figure 6.10: A twist knot

Exercise 9. Find a formula for the Conway polynomials of the twist knots. Use this to conclude that
the twist knots are distinct for different values of n, and that none of the twist knots are equivalent
to (n, 2) torus knots.
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Recall that the derivative of a real-valued function g : R —> R is given by

g'(z) = lim g(z + h)-g(z)^* v ; h - > o h

While this definition implies continuity, woe be unto the real analyst1 who tries to differentiate the
function

h l i x ) = \ x2 x>0

twice, even though he may do so once. Indeed, many a differentiable, real-valued function is not
twice differentiable.

We define the complex derivative of a function / : C —> C as

f{z) = lim f±±]±zmJ v ' h - + o h

where h ranges over complex numbers (if this limit exists). Although this definition looks similar
to that of the real derivative, the real and complex derivatives are wildly different beasts. For
example, we have the following, which shows that—unlike real-differentiable functions—complex-
differentiable functions are always multiply differentiable.
Theorem 1 (Cauchy's Integral Formula [SS, Cor. 4.2] [La, Ch. Ill Thm. 7.7]). Any complex func
tion f : C -▶ C that is differentiable near z0 € C is infinitely differentiable there. Furthermore,

* Zachary Abel, Harvard '10, is a computer science and mathematics concentrator. He is an avid problem
solver and researcher, with interests in such varied fields as computational geometry, number theory, partition
theory, category theory, and applied origami. He is a founding member of The HCMR and currently serves as
Problems Editor/Graphic Artist, and Issue Production Director.

t Scott D. Kominers, Harvard '09, is a mathematics concentrator, ethnomusicology minor, and economics
enthusiast. He is an enthusiastic researcher, working in a range of fields including number theory, computa
tional geometry, category theory, mathematical economics, urban economics, law and economics, and historical
musicology. He is a founding member of The HCMR and has served as Editor-in-Chief since The HCMR's
inception.

!real analyst, ('riial aenalist), noun. (1) A mathematician who studies the analytic properties of the real
numbers. (2) An analyst who is not fake.
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we may explicitly calculate these values:

f (zo) = TT^ f 7— L+i dzi2m J (z - z0)n+1

where 7 is any sufficiently small loop around zo.
Not only is a complex differentiable function twice differentiable, it is actually smooth! Further
more, it has a convenient power series representation:
Theorem 2 ([SS, Thm. 4.4] [La, Ch. IV Thm. 7.3]). /// is complex-differentiable near z0, then f
is analytic near zo, i.e. it has a power series expansion

0 0

fc=0

in an open neighborhood ofzo-
In light of Theorem 1, we can take Theorem 2 even further, explicitly calculating the power

series coefficients: ck = ^f(n)(z0) = ^ /7 {J}%f*+i • This is a far cry from the real-analytic
case, where even an infinitely differentiable function may not have a power series expansion. The
function

h2(x) = < _i
ye * x>0.

is a classic example of a smooth function h2 : R -▶ R with no power series expansion at x = 0.
(See if you can prove this!)

For any differentiable function g : R -+ R, the image set g(R) is simply an interval.2 With our
trusty i, however, we can see far more about the shape of the image:
Theorem 3 (Liouville's Theorem [SS, Cor. 4.5] [La, Ch. HI, Thm. 7.5]). If f : C -+ C is an
analytic function such that the image /(C) is bounded, then f is constant.

Whereas in the real case we could only describe the image of a function as an interval, in the
complex case we know instead that the image is bounded if and only if it is a single point. We
furthermore have control over the images of complex analytic functions with unbounded images:
Theorem 4 (Picard's Little Theorem [SS, Exer. 6.11] [La, Ch. XII, Thm. 2.8]). If an analytic
function f : C —▶ C is nonconstant, then its image omits at most one value. That is, /(C) is either
CorC\ {p}for some peC.

So much power in one little i!
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8.1 Introduction
A stock option grant is a contract made between a corporation and another entity in which, on
a specified exercise date, the corporation agrees to buy or sell a specified number of shares of
its stock for a fixed price called the exercise price. Such a contract can be quite valuable if the
difference between the exercise price and the stock's trading price on the exercise date is large. For
example, suppose that a company executive received the option of purchasing 100,000 shares of a
company at an exercise price of $35 on January 31. If the stock trades at $55 a share on January
31, then this contract is worth 100,000 x ($55 - $35) = $2,000,000. Thus, it is to the executive's
advantage for his options to have a low exercise price, coupled with a high share market price on
the exercise date. The latter point is the purpose of the stock option grants—such grants incentivize
executives to increase the fundamental value of their companies. The former point is the root of the
options backdating debacle.

Options backdating is the practice of marking the grant date of an option with a date prior
to date on which the decision to grant the option was made. This is not in general a problem—
companies have the right to enter into any agreement and award any compensation according to
their internal compensation policies so long as they properly report such awards to their sharehold
ers and the IRS. So that options grants are not counted against company earnings, they must be
issued with exercise prices at or above the stock price on the grant date. In the vernacular, these
are called out-of-the-money (or at-the-money) option grants. By contrast, options have a positive
value on their grant date are counted against earnings and are called in-the-money grants.

Executives desire higher compensation. However, by receiving stock options with grant dates
on which stock prices were at a minimum, executives are able to obtain maximal compensation
without having to report reduced earnings. Of course, it is difficult to predict stock price minima in
the short-term before they occur. Unsurprisingly, however, it is easy to determine such minima ex
post.

Prior to the 2002 Sarbanes-Oxley reforms, stock option grants could be reported months after
the actual grant date, leaving a situation ripe for abuse. The empirical evidence of Lie [L2] demon
strates that, statistically speaking, the probability that such abuse did not occur is impossibly small.
Although initial studies such as Yermack [Ye] suggested that executives used insider information to
inform the scheduling of option grant dates, Lie's analysis shows conclusively that this explanation
is not sufficient to explain the data and that the only reasonable possibility proposed so far is that
many option grants were backdated in order to maximize executive compensation. This analysis
will be the subject of the remainder of this article.

t Robert W. Sinnott, Harvard '09, is a statistics concentrator.
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Figure 8.1: Used with permission from Lie [LI].

8.2 Evidence of Option Backdating
Several studies including Chauvin and Shenoy [CS], Yermack [Ye], and Aboody and Kasznik [AK]
examined the periods around stock option grants, yielding conflicting results regarding abnormal
stock returns before and after stock option grants. However, all of these studies focused on sched
uled stock option grants, making their data less reactive to the opportunistic behavior of company
executives. Lie [L2] innovatively focused on unscheduled grants during the period from 1992-
2002, i.e., those grants which were not dated within a week of the grant dates from the previous
year.

Lie [L2] sought to answer two questions:

1. Were stock prices on days surrounding stock option grants abnormal?

2. If so, could this abnormality be explained by company executives having inside information
about the future returns of their stock?

A negative answer to the second of these questions implies the practice of option backdating.
The first question is reasonably straight forward to answer. Lie used the three factor Fama-

French model (see [FF]) to create a baseline for each stock's expected market returns and then
compared each company's actual returns to those predicted by the model. This allowed Lie to
test whether the stock price was significantly lower at the option grant date than the market would
otherwise predict. Abnormal returns in this test would prove that abnormal returns occurred around
the grant date but not whether insider information was being used. After all, abnormal returns
are being compared to the market, so relative returns are specific to individual companies. The
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literature has not shown whether or not company executives can accurately predict short term stock
price patterns.

The Fama-French three factor model (8.1) was proposed in 1993 by Eugene Fama and Ken
French [FF] as a generalization to the widely known Capital Asset Pricing Model (CAPM):

Rs-Rf=0ix (Km - Rf) I fcx (SMB) + 03 x (HML) + a (8.1)

It predicts a stock's returns Rs by a regression of previous returns against overall market returns
Rm, the difference between high book-value to price and low book-value to price stock returns
HML and the difference in returns between small and large cap stocks SMB (after standardizing
using the riskless interest rate Rf). The intercept term for the stock returns is denoted a. As SMB
and HML are differenced terms, the Rf standardization cancels out in both cases. This model (8.1)
is widely accepted; it is effective as an approximate prediction of returns for individual stocks given
knowledge of the returns of other stocks and of general market behavior.

Lie calculated the regression coefficients using the stock price information from the year prior
to fifty days before the option grant date. He then used these coefficients to calculate predicted
stock prices during the interval surrounding the stock option grant, using standard linear regression
techniques. These estimates theoretically allow for a reasonable comparison between the actual
stock value and the overall behavior of the market, allowing Lie to isolate firm-specific trends from
overall market behavior.

The graph in Figure 8.2 shows the dramatic statistical deviation of average stock prices from
their predicted levels around the option grant date for nonscheduled option grants before and after
the 2002 Sarbanes-Oxley reforms regulating the use of stock options for executive compensation.
The interpretation of the observed patterns is unmistakable. Grants are frequently awarded on dates
which correspond to local minima of stock prices and are correlated with the reporting requirements
of their corresponding firms. We thus have an answer to the first question: stock prices on days
surrounding stock option grants are statistically abnormal.

Having answered the first question, Lie then turned to the second. Could Yermack's [Ye] theory
of executive insider information and option grant timing explain the apparent predictive ability of
the executives receiving the stock grants? In order to test this, Lie used a logistic regression to
determine the factors defining the choice to grant stock options on a particular day, regressing
against not only the individual stock's returns but also the returns of the market as a whole. The
logic was simple: If executives are working off of inside information, they should be able to predict
changes in returns that on the individual firm level but not those on the market level. If, however,
the grant appears to be decided not only by the individual stock returns but also by the returns of
the market as a whole, the executive options must have been granted ex post.

In general, a logistic regression is used when a binary outcome (0 or 1) is being determined.
In this case, the binary decision is whether to grant options on a particular date. For the dataset,
Lie used the actual option grant dates, and then randomly selected five dates in the six-month range
surrounding the option grant for each company (resulting in a total of 10,003 observations) and set
the dependent variable equal to 1 for the actual grant dates and to 0 for the random dates.

For regression coefficients, Lie used both the abnormal (stock-specific) stock market returns
and the predicted (market level) stock returns for the intervals of 30-10 days before, 10-5 days
before, 5-2 days before, 2-0 days before, 0-2 days after, 2-5 days after, 5-10 days after, and
10-30 days after the grant. He controlled for seasonality by adding dummy variables for each
month of the year (eight actual return variables, eight predicted return variables, and eleven month
variables in total). In the equation (8.2) below, (MONTHS) is the column vector of seasonal
dummy controls, (ABNORMAL) is the column vector of stock-specific returns for each of the
listed intervals, and (PREDICT) is the column vector of predicted (market level) stock returns,
and X = (xij) is a data matrix with observations as rows, with the appropriate values for each
observation component.
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Abnormal Stock Returns around ESO Grants
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Figure 8.2: Used with permission from Lie [LI].

logit(pi In Pi
I - P i

: 0o + (MONTHS)- (xid,...,xihj)

+ (ABNORMAL) • (xi2j, - - - ,xi<u)
+ (PREDICT) • (.220,;, • • • ,*27,j)

(8.2)

Using the estimates derived from this regression, Lie found that the abnormal returns for the
regressed intervals to be significant in predicting the "decision" to grant options. He also deter
mined that the overall market predicted returns were very significant in the four days surrounding
the option grants. This result conclusively showed that unless executives can effectively predict
market level fluctuations in stock price, they must be backdating the options to minimize the grant
date price.

8.3 Conclusion
By using standard OLS regression in the Fama-French model and then using logistic regression
on the stock returns surrounding the dates of option grants to model the option grant decision, Lie
was able to uncover a multi-billion dollar fraud that was occurring in a recently estimated 18.9% of
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all ESO grants. These simple applications of statistical models have sent Shockwaves through the
corporate landscape, reinforcing the need for the Sarbanes-Oxley reforms of 2002.
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9.1 Shamir's Secret Sharing Scheme
In this column, I will discuss Shamir's secret sharing protocol [Sn]. The motivation for this pro
tocol is the desire for individual privacy while computing an aggregate piece of data. For example,
suppose that, to prevent corruption, no employee of a bank is allowed to access the security vault
alone. Instead, each employee is given a piece of the password to the vault. When k employees
get together, they can reconstruct the password and access the vault. However, k - 1 of them will
have insufficient information about the password, so that no k - 1 corrupt employees can steal the
bank's money.

You can encode a piece of information as a binary £-bit number a^_i2^_1 -f- h 2ai + a0
where a* G {0,1}. If the message you want to share is too long, you can split it up into smaller
messages so that each takes less than £ bits to write. Without loss of generality, we may assume
that the message can be written as an ̂ -bit number.

Then we can interpret the message as an element of the finite field F2* -1 If you have a message
x G F2£, you can compute any polynomial c0 + c\x +■ h cnxn G F2* and use Lagrange's
interpolation theorem: If F is a field and (xi, yi),..., (xn, yn) are pairs of points in F2, then there
exists a unique polynomial p(x) = cn-ixn-1 + • • • + co of degree n-l such that p(xi) = yi for
i = 1,... ,n.

What does this have to do with sharing secrets? Well, suppose that you encode a secret s
as an ̂ -bit number in W2p and suppose that you want to distribute s among n people numbered
1,..., n. You want them to be able to reconstruct s if k people get together and cooperate, but get
no information if fewer than k people pool their knowledge. Now, generate k - 1 random numbers
ci,..., Ck-i uniformly from F2£ and consider the polynomial f(x) = s + cix -\ h Ck-ix ~ .
To each person i, give the share f(i).

Players h,...,ik can get together and pool their shares to obtain the set {(ii,f(ii)), - - -,
(u, f(ik))} of distinct points. With these k points, they can use Lagrange's interpolation theorem
to reconstruct the polynomial /. Reconstructing / is equivalent to reconstructing its coefficients.
In particular, all k players get knowledge of the secret s, which is the constant coefficient of /.

Furthermore, if k - 1 players get together they do not learn anything about s. To see this,
consider the following argument: given a set of coefficients (ci,..., ck-i) G F^-1 and a fixed
secret s, we can generate the polynomial f(x) = s +■ cix -f • • • + Ck-ixk~x and the vector of

tPablo Azar, Harvard 09, is an applied mathematics concentrator from Buenos Aires, Argentina. He is also
enrolled in a concurrent masters program in computer science. He is a founding member of The HCMR and
currently serves on The HCMRs staff.1 You can construct this field if you know an irreducible polynomial f(x) of degree t with coefficients in F2.
The field is given by the quotient F2* := ¥2[X]/f(X). The elements of this field are polynomials of degree
less than t with coefficients in F2, with all operations conducted modulo f(X). Such polynomials require £
bits to encode.
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shares (f(ii),..., f(ik-i)) G F^"1. This gives us a map

M:Ffc_1 ->Ffc_1
M(c i , . . . ,ck- i ) = ( f ( i i ) , . . . , f ( ik - i ) ) -

This map is bijective by Lagrange's interpolation theorem: given a vector of shares (a^,...,
aik_1), there exists a unique polynomial of degree k - 1 with constant coefficient s that inter
polates the points {(0,s), (ii,^),..., (ik-i,aik_1)}. This polynomial is characterized by its
non-constant coefficients ci,..., Ck-i.

Therefore, there is a bijection between coefficients (ci,... ,Ck-i) and shares (ai,.. .,ak-i).
But remember that the dealer chose the coefficients ci,..., Ck-1 to be uniformly and independently
distributed. This implies that the shares (ai,... ,ak-i) are also uniformly and independently
distributed. Given the secret s, the players ii,...,ik-i can get any possible combination of k - 1
shares with equal probability. This shows that k - 1 shares do not reveal anything valuable about
the secret.

9.2 Multi-Party Protocols, Corrupt Players and Corrupt Dealers
The scheme proposed above is very elegant, but the assumptions on the dealer and the honesty of
the players may be too strong for applications. The first problem that arises is that there may be
no dealer. In this case, each of the players may have a secret si,..., sn, and all of them want
to compute a function f(si,... ,sn) without revealing any information about their corresponding
secrets besides what is known from f(si, ...,sn) [Ya]. Furthermore, some of the players may
be malicious or faulty and give fake or incorrect shares to the other participants. To detect which
players are being dishonest, the concept of information checking was introduced by Rabin and
Ben-Or [RB]. Their work expands the secret sharing protocol so that, when more than half the
players are honest and there are appropriate communication channels, any multiparty computation
can be performed by the honest parties.

Another problem may be that of a corrupt dealer. That is, the dealer may be distributing shares
si,...,sn to the players so that when players ii,..., ik put their shares together, they get the
secret s, but when players ji,... ,jk put their shares together, they get the secret s' ^ s. A dealer
is honest if and only if the secret reconstructed by any combination of k players is the same. In this
case, we say that the players' shares are consistent.

To address this second problem, the concept of Verifiable Secret Sharing was introduced by
Chor, Goldwasser, Micali and Awerbuch [CGMA]. In a Verifiable Secret Sharing scheme, the
dealer can broadcast some information, revealing as little information as possible about the shares
so that the players can verify that their shares are consistent/ A particularly elegant scheme for
doing this was introduced by Feldman [Fe]. In this scheme, the dealer takes a cyclic group G with
publicly known generator g, such that obtaining the value of x if one knows gx is computationally
intractable. If \G\ is a prime p, all shares in this scheme are in Fp. If the dealer uses the polynomial
f(x) = s + cix H (- Ck-ixk~x mod p, she can post g,gs,gCl,..., gCk~l, gfih\- - -, gf(in)
on a bulletin board. This way, every player with share f(ij) can check that gf(i^ as com
puted by them is equal to the posted gf^ and all players check that the posted #/(ij) equals

9.3 Two-Party Protocols and Applications
These secret sharing and multi-party computation protocols lead to important applications. A toy
example is the salary problem, in which n people learn their average salary without revealing
anything about their own salaries except what is learned from knowing the sum of all the salaries.

2 In practice, such groups are constructed by taking primes p, q such that q = 2p + 1 and taking G =
Sq(Zq ), the group of all non-zero squares in the finite field of order q. It is conjectured that there are an
infinite number of primes of the form q = 2p + 1 where p is prime. Such primes are called Sophie Germain
primes.
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Many applications consider computations with only two parties. Since the multi-party protocol
relying on secret sharing needs more than half the players to be honest, it does not apply to two-
party computation. Some of these applications (described below), rely on a two-party primitive
called Oblivious Transfer [Ra, NP], which was introduced by Michael Rabin in 1981.3 In the
Oblivious Transfer protocol, there is one sender and one receiver. The sender has N messages,
and the receiver chooses one of them. The protocol is designed so that the sender does not know
which message was chosen, and the receiver does not learn anything about any of the other N-l
messages.

One important example is private querying of databases. Say Alice has a large database,
which Bob pays to use on a per-query basis. However, Bob does not want Alice to know what
he is querying. Furthermore, since Alice derives her profit from Bob's queries, she does not want
anything revealed to Bob except the results of his query.

Another application is privacy preserving data mining. Suppose that two rival companies
have datasets Di and D2, on which they want to perform data mining. However, they want to
reveal as little as possible about their proprietary data to their rival. Lindell and Pinkas [LP] sug
gest such a protocol, showing that one can get aggregate data about Di U D2 revealing as little
^formation as possible about Di or D2 individually. An important lesson from their work is that
iheoretical protocols may not be the most efficient and that they may need to be modified to acco
modate resource constraints. When the databases in question are large, one may want to minimize
communication between the parties so as to limit the amount of bandwidth used. The reader inter
ested in the practical applications of multi-party computations is encouraged to look at the report
by Du and Atallah [DA], where many interesting problems—including these—are presented.

Shamir's original secret sharing scheme is both simple and applicable. While the generaliza
tions and applications depend on some difficult concepts, the basic secret sharing scheme relies
solely on linear algebra in finite fields. It is yet another example demonstrating that mathematics
can be modern, elegant, and useful.
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The problem I intend to discuss here was mentioned in the prior HCMR—in particular, author
Zachary Abel [Ab, p. 79] stated that "the set {v^ | n G N is squarefree} is linearly independent
over rationals." More formally:
Problem. Letni,n2,... ,nk be distinct squarefree integers. Show that ifai,a2,...,ak £ Z are
not all zero, then the sum S = a\ y/h~[ 4- a2 yjn^ 4- ... 4- ak y^fc is non-zero.

Note that this problem is equivalent to Abel's statement, since we may clear denominators to
obtain coefficients in Z.

10.1 Preliminary Analysis
By setting Ai = a2m, the problem can be restated as follows: if

fc
^ ± ^ = 0 ,

then at least one of the expressions Ai/Aj must be a perfect square. Indeed, in our case none of
the expressions Ai/Aj = (ai/a3)2ni/n3- is a perfect square, so the sum

fc
aiyjnl, + a2sjn2~4- - - - + aky/nk = ^2±y/A~i

i = l

must not be zero. The converse follows similarly.
In this form, the problem can be tackled for small values of k by simply squaring. For example,

if k = 2, we have \fAl - \fM = 0, so y/M = ^/M- Squaring gives Ai = A2 and thus
Ai/A2 = 1, which is a perfect square. If k = 3 we have WLOG that \fM = ±\fM 4- \fM,
and so again squaring gives A\ = A2 + A3 ± 2\/A2A3. Hence \fMM = ±(A2 + A3 - Ai)/2,
which implies A2A3 = (A2 +■ A3 - Ai)2/4 is a perfect square, and so

A 2 A 2 A 3
A 3 / 1 3

i2A3 = (A2 + A3-Aiyy
A 2 V 2 ^ 3 )

For k = 4 we may rewrite the problem as ±\fM±y/M = ± \fM ± \fM- Then by squaring we
have A\ 4- A2 - A3 - A4 ± 2y/AxA2 ± 2sJ'A3A4 = 0 and we handle this using the previously
established case k — 3.

t Iurie Boreico, Harvard ' 11, is a prospective mathematics concentrator residing in Weld. His mathematical
knowledge is yet too vague to define his interests, but they tend towards number theory. When not doing math,
he usually misses his home country, Moldova, or wastes his time in some other way.
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Unfortunately, this approach does not extend to k > 4, for however we rearrange the given
expressions, squaring only increases the number of radicals. In fact, as an olympiad-style problem,
this problem is very hard, and probably very few would be successful in solving it. With enough
patience and creativity, however, several solutions are possible.

10.2 Solutions
Solutionlfrom[Kv]. Letpi,p2,...,pN be all the primes dividing mn2--nk- We will prove
the following statement by induction on AT:

Recall that S = aiy/n~[ 4- a2y/n2~ + ... 4- aky/h~k. Then there exists an expression S' =
h y/m\ + b2y/rfi2 + ... + bi y/rrfi where rai, m2,..., mi are squarefree integers with prime factors
among the pi,p2,... ,pN and 6* are integers, such that SS' is a non-zero integer (in particular,
S ̂  0, as desired).

For N = 0 this is obvious, as in this case k = 1, m = 1 and we get S = ax ^ 0 so we can set
S' = 1. For N = 1 we either have S = aiy/pl, in which case we may let S' = y/pl, or we have
S = aiy/]*[ + a2. In the last case we may take S' = -aiy/pl + a2, so SS' = a2 - a\pi. This is
non-zero as a\ is divisible by an even power of pi, whereas a\pi is divisible by an odd power of
pi, so the two cannot be equal.

Now we perform the induction step. Assume that the theorem is true for N < ra; we prove it
for N = ra 4- 1. Let pN = pn+1 = p. We may write S = Si + S2y/p where the primes appearing
in the radicals in 5i, S2 are among px,..., pn, and further, neither S\ nor S2 is identically 0 (else
we would already be done, as p would be irrelevant). So there exists a sum S2 of the form given in
the claim such that S2S2 is a non-zero integer k.

The intermediate product SS2 can then be written as S4 + ky/p where the primes appearing in
the radicals in S4 are also among pi,...,pn.We may thus multiply it by S4 - ky/p to get S2 - k2p.
Finally, it is easy to see that all prime factors of radicals of S2 - k2p are among pi,... ,pn, so,
assuming this number is not itself zero, the induction hypothesis implies that there exists a non
zero weighted sum of radicals S5 whose prime factors appear among pi,p2,...,pn such that
(Si - k2p)S5 is a non-zero integer. So we obtain the desired representation SS2(S4 - ky/p)S5 e
Z \ {0} where Sf = S2(S4 - ky/p)S5 is a sum of radicals of the desired type.

Thus, we are done if we manage to prove we do not run into trouble when multiplying £4 -
ky/p, as the product could become zero at that step (e.g. if S4 - ky/p = 0). It is sufficient to
prove that S2 - k2p ^ 0. If S4 is an integer this is clear, and if S4 is of form u^/q this also true
because u2q ^ k2p, as p does not divide q. Otherwise, S4 contains at least two distinct radicals
in its canonical expression (if we consider y/l as a radical),1 and we can assume without loss of
generality that pn appears in one of these two radicals but not in the other. So S4 = S6 + S7y/p^
where S6, S7 are sums of radicals with prime factors among pi,p2,... ,pn-i, and S6,S7 ^ 0.
Therefore S24 - k2p = S% 4- 2S6S7y^+ S^pn - k2p. As S6S7 ̂  0, by expanding the expression
S4 - k2p we will get at least one radical containing pn. But then by the induction hypothesis, the
e x p r e s s i o n i s n o n - z e r o a s c l a i m e d . □

This solution, even if it might seem somewhat unnatural and tedious, is completely logical in
its construction. By starting from the well-known idea of multiplication by a conjugate (the case
N = 1 above), the idea is to actually produce a sort of "conjugate" expression for more complicated
sums involving radicals, i.e. something involving the same radicals which when multiplied by the
original produces an integer. The (somewhat unappealing) induction step is just a set of technical
manipulations that help realize this idea.

!By the canonical representation of an expression involving radicals we mean its simplest possible form—
that is, the form obtained by extracting the squares out of the radicals and grouping together the terms which
have the same square-free numbers under the radicals. For example, (\/2 4 \/l0)2 = 24 2v̂ 2 • \7l0 4 10
would be brought to 2 4 4\/5 410 = 1244\/5. The statement of the problem is just the fact that the canonical
representation is indeed "canonical," that is, the same number can not be written as such a sum in two different
ways (otherwise subtracting the two expressions would produce a counterexample).
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If one takes as a starting point the mentioned idea of conjugate expressions, one might consider
the following question:
Question. What is the expression conjugate to y/ai 4- y/ai + ... 4- y/a~n~?

We know that for ra = 2 the conjugate is y/a~[ - y/ai. Of course we could have chosen some
other combination of signs, like -y/a[ - y/ai or -y/a[ 4- y/ai, but we do not get anything new
from them, as these two expression are just the original ones with the opposite sign. Given this
example, we might thnk that the expression y/al 4- y/ai 4- • • • + y/aZ has many conjugates, and
that they represent all expressions of form ±y/a{± y/ai±... ± y/aZ for all combinations of pluses
and minuses. Again, we need to ensure that the same expression does not occur twice, the second
time with opposite sign, which can be realized by requiring that the sign of y/a~[ is always positive.
We get a family of 2n~ * alike sums: y/al ± y/ai ± y/ai ±...± y/aZ. This might suggest that the
product of this entire family could in fact be the required non-zero integer we sought in Solution 1,
but unfortunately while it is indeed possible that this product is an integer, there is no obvious way
to handle this huge expression directly and prove that it is non-zero.

These considerations inspire the next solution:
Solution 2. Consider the linear expression L(xi, x2,..., xn) = aixi 4- a2x2 4-... 4- anxn. We
will also consider its conjugate expressions of form L'(x\, x2,..., xn) = a\x\± a2x2 ± a3x3 ±
...±anxn- There are 2n_1 such expressions. Now take a variable T and consider the polynomial

FL,x1,x2,...,xn (T) = J3 (T - L'(xi,x2,..., xn)) = JJ (T - aixi ± a2x2 ± ... ± anxn),
v

where the product is taken over all conjugate expressions L' (including L).
Note that FL,Xl,X2,...,Xn (T) is written as a polynomial in T, but can be considered as a poly

nomial in xi, x2,..., xn - Also note that changing the signs of any of x2, x3,..., xn will not affect
F because doing so only permutes the set {L'}. Therefore

i?L,xi,x2,...,xn(71) = Fl,x1,±x2,±x3,---,±Xti(T)-

In particular, if we expand the product representation of F into a sum of monomials, each
monomial term will contain only even powers of xk (k = 2,..., ra), because otherwise changing
the sign of xk would change the sign of the monomial. Note that this is not true for xi, as doing so
sends the set {Z/} to the set {-£'}. But by expanding F into a sum of monomials and grouping
the monomials with odd and even powers of xi we can write

FL,x1,x2,...,xn(T) = XiP(x2i,X2,X3, . . . ,Xn,T) + Q(x2i,X2,X3, . . . ,Xn,T).

As we have seen above, P and Q do involve only monomials with even powers of x2, x3,..., xn,
and so they depend only on x\, x\,..., x2n. So we can actually write

Fl,x1,x2>...,*„(T)=^

It is also clear that if ai are integers then all the coefficients of P and Q will be integers.
Now let us return to the problem. We actually prove a different version of it: that is, that no

non-zero integer M can be represented as a nontrivial canonical sum of radicals. To see that this
implies the original problem, assume that ££=1 aiv/ra7 = 0. Then, by multiplying by y/h~k~, we
get YllZl aiy/nmk~ = -aknk, which is a contradiction if we prove that no non-zero integer can
be represented as a canonical sum of radicals. So let us prove this version, by induction on k. The
base case, k = 1, is clear.

If we assume that an expression of form a iy/m 4- a2y/ni+.. .4- aky/rtk equals M £ Z\{0},
then the polynomial FL,vArr,v^,...,v^r(^) would vanish at T = M. But we saw the polynomial
can be written simply as

y/n{P2(rii,n2,... ,nk,T) + Q2(ni,n2,... ,nk,T),
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so we
nk
so we have

we would have y/mP2(m,n2,... ,nfc, M) 4- Q2(m,n2, - - - ,nk, M) = 0. But P2(ni,...,
, T) and Q2 (m,..., nk, T) are integers. By the base case, A+By/n~{ = 0 implies A = B = 0,
we have

P(m,n2,...,nk,M) = Q(m,n2,... ,nk,M) = 0.
Hence,

-y/mP(ni,n2,...,rafc, M) 4- Q(ni,n2,...,rafc, M) = 0,
/.*. FM,-ynT,v^2-,...,v^(M) = 0. Thus,

J}(M 4- ai VraT ± a2 v^ ± a3y/h~i ±...±ak y/rtk) = 0,

and so M = —aiy/h~i± a2y/h~i ± ... ± aky/n~k for some combination of signs. However, we
already have M = aiy/n~[ 4- a2y/h~i + ... 4- aky/n~k, and summing these two equalities gives

2M = (o2 ± a2)y/ni 4- (o3 ± a3) y^ 4-.. • 4- (ak ± ak)y/nZ.

This cannot happen by the induction hypothesis, and we have reached our contradiction. □

10.3 Further Ideas
Now I will explain why I like this problem. The essential reason is that the solutions hint at many
important concepts in algebra and number theory, let us talk about some of them:
The primitive element theorem. The primitive element theorem states that any finite separable
field extension L/K contains a primitive element, i.e. an element that generates the whole exten
sion. This problem allows us to explicitly find a primitive element (in fact many of them) for the
extension Q[y/pi, y/pi, ---, y/Pk}/Q, where pi,p2,... ,Pk are distinct primes.

The field Q[y/pl, y/pi,..., y/p£\ consists of all combinations £ a< y/^i where ca G Q and
ni,n2,...,n2k are all possible products that can be formed with pi,p2,... ,Pk- As we have
proven that y/nl, y/ni,..., y/hZ are independent over Q, it follows that the degree of the extension
over Q is 2k. Thus to find a primitive element means to find an element 6 in Q[y/pi, ■.., y/Pk]
which is a root of an irreducible polynomial of degree 2k. We claim our friend y/pi + y/pi+... 4-
y/Pk (or any of its conjugates) can be taken as 6.

Assume P G Q[X] and P(6) = 0, with P irreducible over Q. We can expand each power
of 0 in P(6) and write it as a sum of radicals, and then combine these radicals to obtain P(6) =
ai y/n~[ 4- a2y/h~i 4-... 4- a2k y/n~k- The results proven above tell us that P(0) = 0 if and only if
all ai are 0. Let us take now a conjugate of 0, say 0' = eiyfpi 4- t2y/pi + - - - 4- eky/pk where
c» G {-1,1}. We claim P(0') = 0. Indeed, if we expand <9'\ the coefficient of y/nl will either
be the same as the coefficient of y/n~i in 0k, or it will be the additive inverse of that coefficient,
depending on how many of pj with e3 = -1 divide y/nl. We thus get P(0') = £\ anny/hl
where pi = UPj\ni eJ- As a11 ai are zero» we get P(9') = 0. Hence P has as roots all the
conjugates of ±6, of which there are 2k,soP has degree at least 2k. In fact it must have degree 2k
because 6 lies in an extension of degree 2fc, so 6 is indeed a primitive element.

It is also clear now that P(X) = neie{-i,i}(X ~ ^yfvl-^y/pi- ---- eky/pk~). The fact
that this polynomial has rational coefficients follows from the fact that

P(X) = FL.^Vpa."..^ W * FL-Vin,Vp5,-,VPk-(X)

(we keep the notations of Solution 2) and this has integer coefficients from Solution 2.
The degree of extensions of radicals. We noted above that [Q(y/pT, y/pi,..., y/pk) : Q] = 2k
when pi,p2,...,pk are distinct primes. It would be interesting to show that [Qfy^T, y/pi,...,
y/Pk) : Q] = 2h with a constraint weaker than that pi be primes. The degree of this extension is
trivially at most 2fc, but it may be less than that. For example we might have y/pi G Q(y/pi, y/pi)
if y/pi = my/prpi, where m G Q, in which case adjoining p3 would not alter the extension. We
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will prove that these are exactly the "uncomfortable" cases. Namely, let us take from pi, p2,..., Pk
a maximal sequence pi,...,pi which is multiplicatively independent, by which we mean that the
product of any nonempty subset of elements in the sequence is not a perfect square. More explicitly,
pi,p2,...,pi is multiplicatively independent, but for any j > I, there exist 1 < h,.. .,ir < I
such that PjPixPi2 - • • Pir = a2 is a perfect square. This means

y /P j = y /PhP i2 - 'P i r € Q(y / l> l , y /p i , • • • , y /p i ) ,
P i i P i 2 - - P i r

and so Q(y/pl, y/pi,---, y/pi, y/pj) = Q(y/pl, y/pi, • • •, y/pi). It is easy to see that [Q(y/pl,
y/pi, • • •, y/pi) : Q] = 2', by arguments similar to those in previous paragraph, as the numbers
Pi, P2 •. • Pi have distinct squarefree parts and so are linearly independent over Q. (If they did not,
they could be multiplied to obtain perfect squares). Also, as above, y/pl + y/^i 4- ... 4- y/pi is
a primitive element of the extension, so the primitive element theorem is verified explicitly in this
case.

Note that y/pl, y/pi,..., y/pk with the operation of multiplication (and division) generate an
abelian group A. Let Qx be the multiplicative group (Q, •)• Tne grouP G = AQX satisfies
[G : Qx] = 2l, with y/nl, yfh~i,..., y/h~i forming a complete set of representatives for G/Qx,
where the m are all the possible 2l products IIi€Jc{i,2,...,i} P<- (The Quotient G/®X is generated
by the images of y/nl, yfh~i,..., y/hl and is isomorphic to (Z/2Z)'). Therefore the result obtained
in this section can be rewritten as [Q(y/pl, y/pi, ---, y/pk) : Q] = [G : Qx]. In this abstract form,
the result is easier to generalize.
Galois groups. The freedom with which one interchanged signs in front of radicals may suggest
in fact that there is no visible difference between y/p and -y/p, and they can be interchanged in
expressions when one is concerned with rationals. This idea leads to the Galois groups. Indeed,
ifpi,p2,---,pi are multiplicatively independent then in any expression F(y/pl, y/pi,..., y/pk)
with F G Q[Xi ,X2,---,Xk] one may change the signs to get F(±y/pl, ±y/^i, ---, ±y/Pk), and
the new expression will be conjugate to the original. In particular, it will equal 0 if and only if the
original equals 0. We thus have 2l isomorphisms of Q(y/pl, y/pi, y/pi, • • •, y/pi) for any choices
of signs €1, e2, - - -, ei G {-1,1}, characterized by sending y/pi to eiy/pl. As the extension is
normal (since Q(y/pl, y/pi, ---, y/pi) is the splitting field of (X2 - pi)(X2 - p2)... (X2 - pi))
and has degree 2l, we have found the Galois group of the extension: (Z/2Z)'.
Higher powers. The natural question is whether the statement of the problem can be extended
to radicals of any degree. Specifically, we prove that if ai,a2,... ,an,bi,b2,... ,bn G Q+ and
ky/bl are not all rational, then £"=1 ai ky/bl is not rational. The solution is a generalization of

Solution 2. Firstly, we may assume all the ki equal, as otherwise we can replace them by their
least common multiple and adjust the bi accordingly. So we need to prove that a sum of form
YH=\ ai $* = M eZ cannot occur if at least one of the bi is not a perfect k-lh power. Again,
we use induction on ra.

Consider £ a primitive k-ih root of unity. Take the polynomial

P(X, b) = Yl(x-b- C2a2 Vol-...- Clan VK)

with ai rational, where the product is taken over all choices of i2,i3,... ,in G {0,1,..., k — 1}.
As replacing y/bl by £ y/bi in the above expression preserves P, we conclude that P can be written
as a polynomial in X and b with coefficients in Q[b2,b3,...,bn) = Q (we did not argue this
rigorously since it is completely similar to the argument used in the original problem). Now if
Af G Q can be written as £"=1 a{ y/bl then P(M, ai y/bl) = 0. Let d \ k, d > 1 be the smallest
integer such that y/bf G Q; then P(M, x) can be written as

qo(xd) + xqi(xd) + ... 4- xd~Xqd-i(xd)
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where q0, qi,..., qd-i G Q[X]. So if (a\ y/bl)d = ueQwe have

qo(u) + qi(u)y/u + ... 4- qd-i(u) \Zud~l = 0.

Now note that 1, ^u,..., y/ud~l are independent over Q, because fyu is the root of the irre
ducible polynomial Xd - u. (To see that this polynomial is irreducible, note that the roots of
Xd - u have absolute value $/\u\, so if f(x) \ Xd - u has degree ra, then |/(0)| = y/\u\m.
But for 0 < ra < d this is not rational, for if it were then (a\ y/bi)m = ± y/\u\m would be
rational, contradicting the minimality of d. So Xd - u does not have proper factors in Q[X] and is
irreducible.) Therefore we conclude that q0(u) = qi(u) = q2(u) = ... = qd-i(u) = 0. If e is a
primitive d-th root of unity we may conclude that

P(M, eu) = qo(u) + qi(u)e^+ ... 4- ^-lW^'1 V/^ri = 0,

soM = 6^u + Y/l=2 £lia* y/bl for some {/*}. But then

n n
€ ^ 5 + 5 ^ ^ 0 * ^ = v ^ 4 - ^ a i ^ .

i = 2 i = 2

This is impossible as each of the terms in the left-hand side has real part less than or equal to the
corresponding term of the right-hand side (which a positive real of the same absolute value), and
the inequality is strict for the first term.
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Problems
The HCMR welcomes submissions of original problems in any fields of mathe
matics, as well as solutions to previously proposed problems. Proposers should
direct problems to hcmr-problems@hcs.harvard.edu or to the address on
the inside front cover. A complete solution or a detailed sketch of the solution
should be included, if known. Solutions to previous problems should be directed to
hcmr-solutions@hcs.harvard.edu or to the address on the inside front cover.
Solutions should include the problem reference number, as well as the solver's name,
contact information, and affiliated institution. Additional information, such as general
izations or relevant bibliographical references, is also welcome. Correct solutions will
be acknowledged in future issues, and the most outstanding solutions received will be
published. To be considered for publication, solutions to the problems below should be
postmarked no later than September 15, 2008. An asterisk beside a problem or part of a
problem indicates that no solution is currently available.

S08 - 1. It is known that there are 6670903752021072936960 square matrices M of order 9 with
entries in {1,..., 9} that show valid sudoku grids.1 How many of them have the property that the
symmetric matrix M 4- MMs positive definite?

Proposed by Noam D. Elkies (Harvard University).

S08 - 2. Professor Perplex is at it again! This time, he has gathered his ra > 0 combinatorial
electrical engineering students and proposed:

"I have prepared a collection of r > 0 identical rooms, each of which is empty except
for s > 0 switches. You will be let into the rooms at random, in such a fashion that
no two students occupy the same room at the same time and every student will visit
each room arbitrarily many times. Once one of you is inside a room, he or she may
toggle any of the s switches before leaving. This process will continue until some
student chooses to assert that all the students have visited all the rooms at least v > 0
times each. If this student is right, then there will be no final exam this semester.
Otherwise, I will assign a week-long final exam on the history of the light switch."

What is the minimal value of s (as a function of ra, r, and v) for which the students can
guarantee that they will not have to take an exam?

Proposed by Scott D. Kominers '09, Paul Kominers (Walt Whitman HS '08), and Justin Chen
(Caltech '09).

S08 - 3. Let k > 1 be a natural number. Find all integer solutions to the diophantine equation

a.2*+l+a.** + . 2 , . 1 2 f c + l■ 4-z 4-a; 4- 1 = 2/

Proposed by Ovidiu Furdui (University of Toledo).

!The proposer points out that this calculation is detailed in Bertram Felgenhauer and Frazer Jarvis:
Enumerating possible Sudoku grids (2005), http: / /www. af jarvis . staff. shef. ac. uk/sudoku/
sudoku.pdf, athough it was independently computed by user "QSCGZ" on the rec.puzzle Google group,
thread "combinatorial question on 9x9," 21 Sep. 2003.
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S08 - 4. Consider a, b, c three arbitrary positive real numbers. Prove that

b + cEV^ 'E 1 + (g + fr)(o + c)(c + g)- Sabc
b + c ) Y 4 ^ c a ( o 4 6 J ( a 4 c )

Proposed by Cosmin Pohoata (Bucharest, Romania).

S08 - 5. Let ABC be a non-isosceles triangle with ZA = 60°. Let H be its orthocenter and /
its incenter. Let Bi and d the points such that the equilateral triangles ABd and ABiC intersect
the interior of ABC. Define Be and Ce similarly, so that ABCe and ABeC are equilateral and
disjoint from the interior of ABC.

Show that the lines through HI, Bid and BeCe do not concur, and that the triangle they form
is isosceles.

Proposed by Daniel Campos Salas (Costa Rica).

The following problem from the Fall 2007 issue received no submissions. Since this
problem defied solution, we are rereleasing it for one more issue.

F07 - 5. For i = 1,..., ra, let /» : (Z/raZ U {*})n -▶ (Z/raZ U {*})n be given by

fi((xi,...,xn)) = <

( * , x 2 - \ - l , x 3 , . . . , x n ) i = l a n d # i = 1 ,
(xi,...,Xi-i 4- 1,*,Xi+i 4-1,.. -,xn) 1 < i < nmdxi = 1,
( x i , . . . , x n - 2 , x n - i 4 - 1 , * ) i = r a a n d ^ n = 1 ,
( x i , . . . , x n ) o t h e r w i s e ,

where • 4-1 = •. Find necessary and sufficient conditions on (xi,..., xn) G (Z/raZ)n such that
there exists a sequence {ik}k=i for which

/*«(•' • CMtei, • • .,xn)))) = (•,... ,•).

Proposed by Paul Kominers (Walt Whitman HS '08), Scott D. Kominers '09, and
Zachary Abel' 10.
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Solutions

Projective Paranoia

S07 - 3. The incircle ft abc of a triangle ABC is tangent to BC, CA, AB at P, Q, R respectively.
Rays PQ and BA intersect at M, rays PR and CA intersect at N, and the incircle ftMNP of
triangle MNP is tangent to MN and NP at X and Y respectively. Given that X, Y and B are
collinear, prove:

(a) Circles ft abc and CImnp are congruent, and

(b) these circles intersect each other in 60° arcs.

Proposed by Zachary Abel '10.

Solution by the proposer. Let cr(Ai, A2; A3,A4) denote the cross ratio ^ffi^* of four col
linear points A\, A2, A3, A4. Let p and r denote the polar maps through circles ft abc and Qmnp
respectively, and let J and J be the respective centers of these two circles.

Let Qmnp touch MP at Z, and define MN n BC = S. We first show that X, Z, and C are
collinear. As p(S) = AF, it follows that cr(P, Q; S, RQnAB) = -1, and hence by perspectivity
through A, cr(B, C; S, P) = -1. An identical argument proves that cr(N, M, MN n YZ, X) =
-1. Letting C = XZ n BC, we may calculate

cr(B, C'; S, P) = cr(Y, Z; MAT n YZ, XP n YZ) = cr(N, M; MAT n YZ, X) = -1

where the notation = indicates that equality follows by a perspectivity about point J. Since
cr(P, C; 5, P) = cr(P, C; S, P), it follows that C = C, as claimed.

By Pascal's theorem on hexagon BXCNPM, we find that Y, A, and Z are collinear. Then by
the converse of Brianchon's theorem on hexagon RYNMZQ, there must be some conic tangent
to line RN at Y, tangent to QM at Z, and tangent to lines MN and QR. Such a conic is uniquely
determined by the first three of these four facts and must therefore coincide with circle Qmnp,
hence QR is tangent to this circle. Label this point of tangency T. By well-known properties
of circumscribed quadrilaterals, lines XY, MR, and ZT are concurrent, i.e. T lies on line ZB.
Likewise, T is collinear with Y and C.

We may apply similar arguments to circle ft abc- Letting U = CTnAB and V = BTnAC,
the converse of Brianchon's Theorem proves that UV is tangent to circle ft abc at some point W.
Also as above, RW must pass through Z and QW passes through Y.

Note that
p<uc) = p(U) n p(C) = rwhpq = z

and likewise p(VB) = Y, so p(T) = p(UC n V£) = YZ. In particular, JT _L YZ, and hence
/T || PJ. Similarly, r(A) is the join of r(NQ) = XYC\TZ = B and r(MR) - XZnYT = C,
hence J A _L BC. Let line JA meet BC and the top of circle ftMNP at D and £ respectively.

By Pascal's theorem on hexagon PPQQRR in circle ftpQR, point S lies on line QP. As
Z.JTS = ZJDS = 90°, quadrilateral JTDS is cyclic. Using a, /3, and 7 for the angles of
A ABC, we may calculate

ZJET = \ZDJT = \ZDST = \ (180° - ZRQP - ZQPS) = 45° - f - \

and, with YZ n PC = P,
ZPPZ = ZCPZ - ZPZP = (90° - I) - (45° + f) = ZJPT.

95
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This is enough to conclude that ET _L YZ, i.e. that ETI are collinear and furthermore lie on a
line parallel to PJ. Thus, JEIP is a parallelogram, and as long as it is not degenerate, we may
conclude that \JE\ = \IP\, i.e. that Qabc = ftpQR.

If it is degenerate, then triangle ABC must be isosceles with A at its vertex. In this case, line
MN is parallel to BC, so from XNY ~ BPY we find that \BP\ = \PY\. And since BI _L PY
and BP 1 PJ, it follows that right triangles BPI and PY J are congruent. Thus \PI\ = \YJ\,
and again the two circles are congruent.

Let r be the common radius length. To prove part (b), it suffices to show that d = \IJ\ = ry/3.
Consider the inversion i through Qmnp- The points i(P), t(Q), and t(R) correspond to the
midpoints of ZY,YT, and TZ respectively, so i(ftABc) is the nine-point-circle of triangle YTZ.
In particular, the radius of t(ft abc) is half the radius of Qmnp, ie., \.

Let IJ intersect ft abc at H and K, so that \JH\ = d - r and \JK\ = d 4- r. Then
\l(HK)\ = \l(JH)\ - \t(JK)\ = £ - £-r. But l(HK) is a diameter of t(flABc), and
therefore has length r. This indeed gives d — ry/3, as needed for part (b). □

Euler and Napoleon

F07 - 1. Consider A.4PC an arbitrary triangle and P a point in its plane. Let D, E, and F
be three points on the lines through P perpendicular to the lines BC, CA, and AB, respectively.
Prove that if ADEF is equilateral and if P lies on the Euler line of A,4PC, then the center of
ADEF also lies on the Euler line of A ABC.

Proposed by Cosmin Pohoata (Bucharest, Romania) and Darij Grinberg (Germany).
Solution by Yasuhide Minoda (Tetsu Ryoku-Kai, Japan). Let O be the circumcenter of A.4PC.
By parallel translation, it suffices to consider the case P = 0 (see Figure 12.1(a)).

Let A', B' , C' be centers of equilateral triangles outside of A,4PC, drawn on sides PC,
CA, AB, respectively. It is well known that AA/B'C is equilateral (the outer Napoleon triangle).
[Editor's note: if AABC and ADEF have opposite orientation, we should instead take A', B',
and C as the centers of equilateral triangles drawn inward on the three sides of A,4PC, so that
AAlB'C' is the inner Napoleon triangle, which is also equilateral.]
Lemma 1. AA'B'C' and ADEF are similar with respect to O. In particular, the center of
AA'B'C', the center of ADEF and O are collinear.

(a) Without loss, we may assume P = O.

Figure 12.1: Figures for Problem F07 - 1.

(b) The centroids of AABC and
AA'B'C coincide.
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Proof. Without loss of generality, we can assume ZBAC ^ 27r/3. Scale up or down ADEF
with respect to O to form AD'E'F' so that D' coincides with A'. We want to show E' — B' and
F' = C.

Rotate line OB' by n/3 [or -tt/3 depending on orientation] around A' and denote it by £. B'
and E' are moved on I by this rotation. On the other hand, B' and E' are moved to C and E',
respectively, and these points are both on line OC. Thus, F' and C must be the intersection of
line OC and £ (note that these lines intersect at one point because ZBAC ^ 27r/3).

Therefore, C = F' and B' = E'. It follows that AA'B'C and ADEF are similar with
r e s p e c t t o O . O
Lemma 2. The center of AA'B'C coincides with the centroid of AABC.
Proof. Let K be a point symmetric to A' with respect to line BC (see Figure 12.1(b)). Triangles
AB'KC and A,4PC are similar with a ratio 1 : ^/3. In addition, AC : AB = 1 : y/3. Thus,
AC = B'K. Similarly, AB' = CK. So AC KB' is a parallelogram.

Let the center of AC KB' be M, and the midpoint of BC be N. The centroid C of AA'B'C
lies on MA' and MC : G'A' = 1:2. Thus,

A ' N K A M C _ I f 2 \ 1 _ 1
aO? 'am ' c7^7 " i v ly 2

So, by Menelaus' theorem, C lies on the median ~AN of AAPC. Similarly, C also lies on other
m e d i a n s o f A A B C . T h e l e m m a i s p r o v e d . □

By Lemma 1 and Lemma 2, the centroid of ADEF is on line OG, namely the Euler line of
A A B C . □
Also solved by the proposers.

Dastardly Haberdashery

F07 - 2. Professor Perplex has rounded up his ra > 0 hat-game seminar students and made the
following ominous announcement:

"I have assigned each of you a hat according to a uniform probability distribution,
which I will put on your head after allowing you time to discuss a strategy. Hats
come in h > 0 different colors, but some colors might be reused and others might
not be used at all. Each student will be given a list of the h colors. Nobody will
be able to see his or her own hat, but everyone will have the opportunity to observe
all the other hats. Then, you will all be instructed to simultaneously write down
one of the colors. If any student correctly identifies the color of his or her own hat,
then there will be no final exam this semester. Otherwise, I will assign a week-long
haberdashery final."

What is the probability that the students have to take a final, assuming best play?
Proposed by John Hawksley (Massachusetts Institute of Technology '08) and Scott D. Kominers'09.

Solution by Charlie Pasternak (Takoma Park Middle School). A student cannot deduce any in
formation about his own hat color from what he sees alone. This means that the probability of a
student making a correct guess, and the expected number of correct guesses over time, remains
constant, so the students' best strategy is to spread out the correct guesses as thinly as possible to
"waste" as few as possible.

This best strategy is: if ra > h, take h students and assign them a numbers {0,1,..., h - 1},
and if ra < h, assign the students the numbers {0,..., ra - 1}. Then, assign each color a number
from 0 to h - 1. When the hats are put on, each student sums up the colors of the hats seen, then
writes for his own hat color the color corresponding to the difference between his assigned number
and the sum of the hats he sees, modulo h.
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If a student's assigned number is the sum modulo h of the colors, his guess will be correct. If
ra > h, at least one person's assigned number is the sum modulo h of the colors, so at least one
guess will be right. If ra < h, then the chance that one of the students' assigned numbers is the sum
modulo h of the colors is ̂ , as is the chance of a correct guess.

Therefore, the chance of the students taking a final is max(0,1 - £). □
Also solved by Sherry Gong '11, Arnav Tripathy' 11, Ray C. He (Massachusetts Institute of Technology '07), and the proposers.

Restricted Roots' Radii

F07 - 3. Find all integer monic polynomials f(x) such that

(i) fix) = /(l - x) and

(ii) all complex zeros of / lie in the disk \z\ < \pl.

Proposed by Vesselin Dimitrov '09.

Solution by Noam D. Elkies (Harvard University). The polynomials f0(x) = x2 - x and fi(x)
= x2 - x 4-1 satisfy both conditions (the latter has roots of absolute value 1 at the primitive sixth
roots of unity). Therefore so does fo(x)a° fi(x)ai for any nonnegative integers a0 and a\. We
claim that these are the only such polynomials, indeed the only polynomials satisfying (i) whose
roots lie in \z\ < r := 1.3 (note that 21/5 < 1.15 < r).

Let / be any polynomial satisfying both conditions, and let a be a complex zero of /. Then
1 - a is also a complex zero of /, so a lies in the intersection of the open discs of radius r about 0
and 1. We claim:
Lemma 3. If z is a complex number such that \z\ < r and |1 - z\ < r, then J/o(^)2/i (^)3| < 1.

Assuming this lemma, it follows that the algebraic integer y := fo(a)2fi (af has the property
that y and all its conjugates (which are also values of fofi at roots of /) have absolute value less
than 1. But then the norm of y, which is the product of those conjugates, is a rational integer of
absolute value less than 1. Therefore y is an algebraic number of norm zero, whence y = 0. This
means that a is a root of either f0 or /i. Moreover, for each j = 0,1 the two roots of f3 are
switched by the involution x <-> 1 - x of C, and thus have the same multiplicity as complex zeros
of /. Letting a3 be this common multiplicity, we find that / = fo(x)a°fi (x)ai, as claimed.

We prove the lemma via the following explicit calculation. Let R be the intersection of the
closed discs \z\ < r and |1 - z\ < r. Let y(z) := fo(z)2fi(z)3. We claim \y(z)\ < 1 for all
z G R. The function y is analytic; hence by the maximum principle it suffices to prove \y(z)\ < 1
on the boundary of R. By symmetry about the real axis and the vertical line Re(z) = 1/2, we
may assume z = x + iy/r2 - x2 for some x G [1/2, r}. For lack of a better idea, we expand
|2/(2)|2, obtaining a polynomial P8(x) G <Q[x] of degree 8. A numerical plot suggests that this
polynomial does not exceed 0.9 on [1/2, r}. Since Ps(l/2) = r8(l - r2)6 < 0.9, we can prove
that Pg(x) < 0.9 for all x G [1/2, r] by checking that this interval contains no roots of P8 - 0.9,
and this is confirmed using Sturm's method (implemented in gp as polsturm). This completes
the proof of the lemma and the solution of F07-3.
Remark. We could likewise use /0(a)60/1(a)61 for any positive integers bo,61. The simple choice
bo = bi = 1 suffices to solve problem F07-3 as stated, but would only let us improve r from about
1.15 to about 1.27. The choice (bo, h) = (2,3) is not quite optimal either, but can be used for any
r less than the positive root r0 = 1.304+ of xl6-3x8 + 3x6 -x4 -1 (for which fo(z)2 fi(zf 4-1
has roots with \z\ — |1 — z\ — ro), and numerical experimentation suggests that this ro is very
nearly as far as this technique can be pushed. At any rate we cannot take ro > 1.3503 because the
tenth-degree polynomial /o /1 4-1 satisfies condition (i) and has a pair of complex roots of absolute
value 1.350255424-.
Remark. While we would get a worse bound had we used (bo,bi) = (1,1) instead of the exponents
(2,3) in our Lemma, the proof would be a routine albeit tedious calculus exercise, because instead
of the octic Ps we would have only a cubic polynomial to maximize. This would still be enough
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to solve problem F07-3 as stated, or even with the bound 21/5 raised to 21/3 = 1.25994-. (The
cutoff value r0 would then be the positive root 1.2724- of xA - x2 - 1.) We do not know whether
the p roposer ' s cho ice o f 21 /5 a l lows fo r a more e legan t p roo f . □
Editor's note. Indeed, the proposer's solution uses a similar method with bo = &i = 1. His choice
of \/2 allows for a clean proof of the requisite lemma: From the identity b(x2 - x) (x2 - x 4-1) =
x5 4- (1 - x)5 - 1, the inequality

\fo(a)fi(a)\ = i |a5 + (1 - a)5 - l| < \ (|a|5 + |1 - a|5 + l) = 1

follows immediately.
Also solved by the proposer.

A Surprisingly Constant Limit

F07 - 4. Let a, b > 0 be two nonnegative numbers. Find the limit
n 1

l i m V ^ - = = = = = = .n^°° t~L n + k + b+ y/n2 4- /era 4- a

Proposed by Ovidiu Furdui (University of Toledo).
Solution by Paolo Perfetti (Universita degli studi di Tor Vergata Roma, Math. Dept). The key is
to observe that the limit in independent of a and b. In view of this fact we compute the limit taking
a = b = 0, getting

l i m y ^ , — l i m — V ^ . = / 1n-00 ^ n + k 4- \Jn2 4- nk »-°° n ~[ \ 4. k 4. \ 4. is. Jo 1 4- x + VI 4- x
dx

r 2 1 c ^ 2 1= / — L - d t = 2 — - d y = 2 \ n
J 1 t + y / i J 1 1 + 2 /

1 W2
2

Now we prove that the limit is independent of a and b. First of all we write

1 1 1

and

r + b+y/nTTa~ r 4- b4- s/nTy/TT^ r 4- b + y/hT(l + 0(£))

-^r-T-(' + °(-))r 4 - 6 4 - y / n r \ \ n r j )

2n

r = n - f - l r = n + l N ' x

where the limit of the above expression as n approaches oo is zero. Thus,
2 n - . 2 n . .

l i m y ^ - . = l i m V ^ — — 7 = .n^oo *-^ ^ r 4- b 4- vrar 4- g n^°° ,, r + 0 4- v?ir
r = n - fl  v r = n + l

Similarly,

v - 1 y - 1 = y - ( l - f O ^ 1 ) )
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and
2 n j ~ , _ i \ 2 n

lim V )r -L = lim Y 0(r~2) - lim ra • 0(n~2) = 0,
r = n + l v r = n + l

SO
2n

l i m V ^ — = = l i m y ^ ■= = .
n-+oo *—* r4o4 y/nr n-+oo ^-^ r 4- Jnr

r = n + l v r = n + l v
As this is independent of a and b, the proof is complete.
Also solved by The Northwestern University Math Problem Solving Group and the proposer.
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Math Has This Funny Property
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Our Mathematical Minutiae article, "i Has This Funny Property" (this HCMR, p. 75), details
the analytic power of the complex numbers C. Once we adjoin a single square root of -1 to the
real numbers R, we obtain startling results: Cauchy's Theorem, Liouville's Theorem, The Cauchy
Integral Formula....

, some of
L do not

Integral Formula....
But if we add just a few more square roots of -1 to obtain the quaternions EI D C, so

the underlying structure breaks down. In the standard presentation, the roots {i, j, k] of -1 <
even commute:

ij = k = -ji, jk = i = -kj, ik = -j = -ki.

Since H is not commutative, it is not necessarily true that [q(z)]n is "H-analytic" when q(z)
is. Thus, we figured, everything should break down once we pass from C to H.

The endpaper would be called "j and k Have This Funny Property." We would give all the standard
counterexamples from quaternionic analysis, proving in a tour-de-force of mathematical irony how
two new roots could devolve the entire analytic system of C below its foundations.

We raced to the references. We read. We re-read. We—
We were wrong.
No counterexamples. In the late 1930s, Fueter obtained quaternionic analogues of Cauchy's

Theorem, Liouville's Theorem, and even of power series developments. Our ironic tour-de-force
was ruined before we were even born.

We despaired, until we thought to add four more square roots of -1 to obtain the octonions O D
H D C. We thought, this extension ofC is not even associative—there is no way octonionic analysis
could be well-behaved!

We raced to the references. We read. We—
Math is funny like that.

*See biographical information in this HCMR, p. 75.
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