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Abstract— Remaining elusive while navigating to a goal in a 
dynamic environment containing an observer requires taking 
advantage of opportunistic cover as it occurs. A reactive 
navigation approach is needed that recognizes the utility of 
environment features in offering protective cover. We 
present an approach that allows stealthy traverses in 
unknown environments containing dynamic objects. It is a 
frontier-based method that allows a robot to follow in the 
obscuring shadow of objects despite their dynamics, and take 
advantage of more opportunistic cover if it becomes 
available. An analysis of our approach in off-line modeling 
and experiments conducted in simulation and outdoor 
environments demonstrate its effectiveness in achieving high 
quality solutions for stealthy navigation.  
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I. INTRODUCTION 

Enabling robots to be stealthy during navigation 
reduces their risk of exposure to unwanted observers. The 
observers should remain unaware and unaffected by the 
robot’s activities. There are many military and security 
applications for stealthy navigation in areas of 
reconnaissance, scouting and surveillance, or for safe 
autonomous transport of payloads or people in observable 
areas. More benign applications include allowing 
maintenance robots to remain relatively obscure from 
people, such as cleaning robots in public areas. In each of 
these applications, the robot needs to react to the possibly 
unknown environment and its objects. Static objects can 
exist as natural or artificial structures that allow the robot to 
take potentially discrete paths around them. Dynamic 
objects offering reasonable coverage may manifest in the 
environment as vehicles or other robots. The navigation 
algorithm should be able to evaluate and take advantage of 
each of these types of objects if they prove beneficial to the 
robot’s task. 

In our previous work [1], we demonstrated a method 
for stealthy multi-robot navigation in the presence of an 
observer using static objects in outdoor environments. In 
contrast, the goal of the research presented here is to 
determine how robots can take advantage of dynamic 
objects in similar types of environments.  
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Our approach to solving the general case of reactive 
stealthy navigation is to define a cost function that 
embodies the parameters of ‘stealth’ and ‘efficiency’. 
Stealth is defined as the ability to maintain a low profile 
during navigation in the presence of an observer. 
Efficiency is defined in terms of minimizing the length of 
the navigation path to a goal. We encode the cost function 
as parameterized potential fields that model features of the 
environment and the task. This approach has demonstrated 
good results in our previous work, however it does not 
account for dynamic objects in the environment. The 
extension discussed in this paper allows the robot to 
capitalize on mobile objects offering significant cover 
during its traverse. The approach is model-free and makes 
few assumptions about the dynamics of the objects in the 
environment. It is demonstrated in simulation and in 
outdoor environments using a Pioneer AT and a Segway 
Robotic Mobility Platform (RMP). It is also evaluated 
against empirically-defined cost functions that evaluate 
completed paths for their efficiency and stealth 
performance. The results demonstrate our algorithm 
achieves high performance according to the criteria 
outlined in the cost function. 

An analysis of related work is presented in Section II 
followed by a discussion of our approach in Section III. 
Sections IV and V outline the details of experiments 
carried out in simulation and outdoor environments, 
respectively. Section VI provides an evaluation of 
empirically-optimal stealthy and efficient paths for a given 
environment, and how our approach compares. Section VII 
presents a summary of the approach . 

II. RELATED WORK 
There has been little research conducted into low-

visibility path planning for mobile robots in outdoor 
environments. Mostly it involves the use of a priori maps 
and observers with known locations. [2] discretizes the 
environment into cells that are assigned to virtual 
processors. The processors compute the visibility 
constraints of each cell using information about the mobile 
observers in the environment. Combining this information 
allows a reactive path to be determined for the robot. [3] 
analyzes digitized terrain features for visual servoing to a 
goal in the presence of an observer. [4] models observers 
and potential navigation waypoints using virtual springs 
and masses. The system stabilizes to generate a low-
visibility path for an unmanned air vehicle crossing an area 
containing multiple radar sites. [5] uses probabilistic cost 
functions for balancing information gain versus the 

To appear in Proceedings of the International Conference on Intelligent Robots and Systems, Sendai, Japan, Sep-Oct 2004 



probability of exposure in determining static observation 
positions for target surveillance. This concept is also used 
for distributing the sensor load between vehicles in 
formation to maximize observation during navigation. 

Of the approaches for low-visibility path planning 
without the use of a priori maps, [6] presents a reactive 
method for a robot to use stationary objects in the 
environment for cover while navigating to a goal. [1] 
extends this concept for multiple robots conducting 
sequential traverses. Path quality is improved on successive 
traverses from the integration of environment and path 
information from the preceding robot. 

In each case above, the research was conducted in 
either static environments or environments where the only 
dynamic objects were the robots themselves or the 
observers. In many cases, the researchers indicated that the 
most important criteria for developing low visibility 
traverses in the presence of observers are to determine the 
shortest possible path that offers the least exposure to the 
observers. Our work focuses on these criteria and allows 
the environment to contain dynamic objects beneficial for 
providing cover to the robot during its traverse.  

III. THE APPROACH 
In our previous work [1], task and environment-related 

information is combined to embody the stealth-efficiency 
cost function. This information consists of: 

- objects in the environment modeled on an occupancy 
grid [7] developed during the robot’s traverse,  

- their effect on the robot’s task by means of providing a 
‘shadow’ from the observer’s position for the robot to 
hide in, and  

- task-related information in the environment including 
the distances to the observer, goal, and robot.  

Each element is defined by a parameterized function 
whose value determines its effect on the robot’s path 
planning decisions. The functions are represented as 
potential fields [8][9] which are modeled as either low-
valued attractors (e.g., distance to the goal) or high-valued 
repellors (e.g., distance from the observer) and most have a 
global affect across the environment. By combining fields, 
a task-oriented view of the environment is generated and a 
global minimum is extracted as the next navigation 
waypoint. This minimum is the centroid of the lowest-
valued region. A small region is chosen rather than a point 
to alleviate the canonical local minima and oscillation 
problems inherent in potential field methods, and to filter 
the effects of sensor noise altering the occupancy grid.  

By using potential fields in this manner, the robot is 
able to integrate new information about the environment as 
it is sensed and use it for reactive decisions about the next 
waypoint to traverse to. Previous results [1] demonstrate 
that this approach produces intuitive low-visibility paths in 
unknown static environments. 

The extension discussed in this paper allows the robot 
to reactively take advantage of opportunistic moving cover 
offered by objects in the environment. There are three 

components introduced to the existing algorithm to enable 
this capability: 1) a safety zone in an object’s shadow, 2) a 
frontier timeout that allows the robot to remain stationary 
in this zone for a period of time before continuing, and 3) 
the ability to capitalize on better opportunities as they 
occur.  

Figure 1. The shadow regions are cast behind objects from the 
observer’s position. Safety zones are regions inside shadows for the 
robot to manoeuvre without being exposed by accidentally 
overrunning a frontier. 

1) Safety Zone 
Each object in the environment typically casts a 

coverage ‘shadow’ that represent an area where the robot is 
obscured from the observer. This area is bounded by 
frontiers that separate visible space from obscured. A safety 
zone (Figure 1) is defined as an area within a shadow 
where a robot can safely manoeuvre without fear of 
accidental detection. It is offset from the shadow frontier 
closest to the robot and is wide enough to reduce the effect 
of sensor noise and the possibility of the robot overrunning 
the shadow frontier while stopping or turning. A robot in a 
safety zone will effectively remain at a relative distance 
from the shadow frontier. Therefore, if the object moves, 
so does the zone and the robot dynamically maintains cover 
as long as the object travels within the velocity constraints 
of the robot and in a direction that satisfies the embedded 
stealth-efficiency cost function. 

2) Frontier Timeout 
The purpose of the frontier timeout is to allow the robot 

to remain stationary for a period of time to see if the object 
moves. This allows the robot to utilize an object that stops 
for limited periods of time. Upon a timeout, the robot will 
navigate to its next waypoint. The value of the timeout is 
empirically set for a reasonable waiting time aligned with 
the time-constraints of the traverse.  

3) Opportunistic Waypoints 
During the robot’s traverse, it constantly interrogates 

the environment to find regions offering better coverage. 
This operation is also active when the robot is stationary in 
a safety zone. If the environment within the robot’s sensor 
range changes to offer a more appealing path, the robot will 
forgo its current cover in lieu of the new opportunity. This 
occurs if the difference in potential value between the 
current waypoint and the one calculated with new 
environment information is beyond a threshold value. The 
threshold is empirically determined to account for small 
perturbations in sensor information. 

The algorithm incorporating these components is 
shown below (Figure 2). By using frontier-following and 
opportunistic waypoints, the robot is highly responsive to 
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changes in the environment that benefit its task. The 
constraints on the usefulness of dynamic objects are that 
they should: 

- offer a potential benefit to the robot’s objective, 
otherwise it will be ignored,  

- move slower than the robot’s maximum velocity, and 

- stop for a shorter amount of time than the robot’s 
frontier timeout, if they stop at all. 

Figure 2. The stealthy navigation algorithm. 

In the following sections, we present results of 
experiments conducted in simulation and outdoor 
environments to validate the approach. The simulation 
results demonstrate the approach in its entirety (i.e., 
frontier-following, frontier timeouts and opportunistic 
waypoint selection) in an environment where the moving 
object has a varying velocity. The real world experiments 
are in similarly configured outdoor environments and 
demonstrate the frontier-following technique and timeouts 
on a Pioneer AT and Segway RMP with an object that 
moves at a constant velocity. In all experiments, the 
observer has infinite range, omni-directional sensing. 

IV. SIMULATION EXPERIMENTS 
The simulation experiments were conducted using 

Player devices and the Stage simulator [10]. The 
environment measures 35m by 35m and is configured as 
shown in Figure 3. It consists of three static and one mobile 
barricade with the linear reversible path shown in the 
figure. The mobile barricade starts where shown and 
reverses for 10m, changes direction and stops at random 
intervals (shown in Figure 3 at 0m, 1m, 3m, 7m and 10m). 
Between stops, the barricade moves with a random velocity 

within the limits shown in Table I. The robot must use the 
mobile barricade for cover to reach the safety of the 
stationary barricades near the goal to efficiently navigate to 
the goal with as little exposure as possible to the observer. 
To achieve this, it has to recognize the mobile barricade as 
offering opportunistic and significant cover, and reactively 
follow in its shadow despite its time-varying velocity and 
stationary periods. Although it appears that the barricade 
provides ample cover for the robot, the ‘shadow’ width 
produced varies with the angle of the barricade relative to 
the observer. Consequently, at the beginning of the robot’s 
traverse, it offers very little cover. This is demonstrated by 
the robot’s position in the shadow of the mobile barricade 
in Figure 1. 

Figure 3. The environment configuration showing important 
locations, barricades, the mobile barricade’s path and its stopping 
locations (broken lines). 

The simulated robot has the dynamics of a two-
dimensional Segway RMP in the sense that it can make a 
zero-radius turn but the sensors are not subject to the 
pitching platform. The parameter settings for the robot and 
the mobile barricade are shown in Table I. The robot’s 
frontier timeout is set arbitrarily longer than the barricade’s 
stationary time period. The distance between the safety 
zone and its shadow frontier is set to 0.8m and the width of 
the safety zone is 1.4m. The robot has accurate localization 
and uses a simulated SICK laser rangefinder for detecting 
and mapping objects in the environment to the occupancy 
grid. The laser is configured for 8m and provides a 180-
degree scan of the environment in front of the robot. 

TABLE I.  PARAMETER VALUES USED FOR SIMULATION  

 Robot Mobile Barricade 
Velocity 0.7 m/s (max.) 0.1-0.6 m/s 

Timeout 15 s 10 s 

Length 0.5 m 3 m 

 

A. Results 
The experiment was conducted 10 times; an example of 

a completed stealthy traverse is shown in Figure 4 as the 
robot’s path on the potential field. Also shown is a typical 
path taken for navigating directly to the goal.  

 start 
 observer 

 goal 

 dynamic barricade 
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Update the occupancy grid with new sensor data 
Generate and combine potential fields from the 
occupancy grid, observer, goal and robot’s locations 
Extract the lowest-valued region’s centroid as the next 
waypoint 
If assumed detected by the observer 
    Navigate to the next waypoint 
Else 
    If in a safety zone and moving 
        Stop near the shadow frontier 
        Start the frontier timer countdown 

              Save the current waypoint and its potential 
field value 

    Else 
If ((current waypoint value - next waypoint value) > 
threshold) OR (frontier timer = 0) OR (not in the 
safety zone)) 
      Navigate to the next waypoint 

 End 
    End 
End 



Figure 4. An example of stealthy and non-stealthy traverses shown 
on the global potential field. The irregular white objects are the 
barricades. Dark areas represent shadows behind the barricades and 
therefore attractive locations for the robot. The grey area 
surrounding the stealthy path is the accumulated effect of a local 
high-valued potential field that is positioned at the robot’s location 
during the traverse to prevent waypoints being selected too close to 
it. The robot assumes that historical objects in the occupancy grid 
persist in the absence of new sensor data, hence the mobile 
barricade’s appearance as a long object. This effect could be 
removed if the robot knew the size of the barricade or had omni-
directional sensors. 

Initially, while the robot was waiting at the first 
stationary barricade, the mobile barricade came into view. 
This produced a better opportunity for the robot, which 
then navigated to a position in the shadow of the mobile 
barricade. The robot effectively tracked in the barricade’s 
shadow to maintain its position in the safety zone for the 
duration of the barricade’s traverse, regardless of its 
movements. Since the barricade’s timeout was less than the 
robot’s, a frontier timeout only occurred when the robot 
was stopped at the stationary barricades.  

To analyze the effectiveness of the approach, the 
traverses are evaluated by distance (efficiency) and the 
time the robot was visible to the observer (stealth). These 
results are compared to direct navigation traverses to the 
goal and the performance of our previous algorithm for 
static environments. These are annotated as ‘Direct’ and 
‘Static Stealth’, respectively, in Table II. 

TABLE II.  AVERAGE SIMULATION RESULTS 

 Distance 
(m) 

Time 
(s) 

Assumed 
Detected (s) 

Actual 
Detected (s) 

Direct 36.7 51 n/a 47 

Static 
Stealth 46.5 60 35.1 39.2 

Dynamic 
Stealth 45.1 121 16.2 18.9 

 

The ‘Distance’ and ‘Time’ columns denote the total 
distance and time taken for the robot to travel from the start 
location to the goal. The ‘Assumed Detected’ column is the 
time the robot assumed it was being observed. This reflects 
the robot’s internal analysis of the situation, which is prone 
to inconsistent representations due to sensor noise. The 
‘Actual Detected’ column represents the actual amount of 
time the robot was detected by the observer. 

It is obvious that the stealthy traverses produced higher 
stealth and lower efficiency than a direct traverse. 
However, the inability of the Static Stealth approach to 

fully utilize the mobile cover offered by the dynamic 
barricade lead the robot to outpace the barricade and make 
the majority of its traverses exposed to the observer. The 
travel times for the Dynamic Stealth traverses are lengthy 
since they include the mobile barricade’s stopping times 
and the robot’s timeouts at stationary barricades.  

V. REAL ROBOT EXPERIMENTS 
The experiments conducted in the real environments 

validate the simulation results. Whereas the simulation 
experiments demonstrated the algorithm’s dynamic and 
opportunistic features using a barricade with a varying 
velocity, the experiments conducted in the real 
environment use a barricade that is initially located near the 
robot’s start location and travels at a constant velocity 
between stopping locations.  

The environments consisted of two separate grassy 
areas measuring approximately 35m by 25m. The 
experiments were conducted three times with a Pioneer AT 
and a Segway RMP using the parameters listed in Table III. 
Demonstration on different platforms indicates the 
generality of the approach.  

TABLE III.  PARAMETER VALUES FOR THE REAL ROBOT 
EXPERIMENTS 

 AT / RMP Mobile Barricade  
(AT / RMP) 

Velocity 0.7 m/s 0.3 m/s 

Timeout 7 s / 15 s 5 s / 10 s 

Length �0.5 m 2.25 m 

 

The dynamics of the two robots vary significantly. The 
Pioneer AT (right image in Figure 5) is a skid-steered four-
wheel-drive robot with a limited turning radius while 
moving and a maximum velocity of 0.7 m/s. The Segway 
RMP (left image in Figure 5) is a two-wheel drive robot 
with zero-radius turning capability and can travel up to 3.5 
m/s. It was limited to 0.7 m/s in the experiments for 
consistency. Its dynamics are based on an inverted 
pendulum controller so it pitches to move forward or 
backward. This consequently tilts the sensors whose 
readings were adjusted to compensate. 

Figure 5. The Segway RMP and the mobile barricade (left) and the 
Pioneer AT (right) during a traverse. 

Each robot carried a sensor suite consisting of a Garmin 
16A GPS unit used in conjunction with a 3DMG IMU and 
the robot’s odometry that provided localization accurate to 
within 2m. Each also carried a SICK laser rangefinder 
configured for 8m for obstacle avoidance and for mapping 
environment objects into their occupancy grid 
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representation. The distance between the safety zone and 
the shadow frontier was set to 1.1m and the width of the 
safety zone was 1.4m for all experiments. 

The barricade configuration was similar to the 
simulation experiment except the mobile barricade’s start 
location. The mobile barricade consisted of three boxes 
fixed to a Pioneer AT base as shown in Figure 5. It travels 
for 10m stopping at 1m, 3m, 7m and 10m. Its parameters 
for the experiments are shown in Table III. 

Figure 6. An example potential field from an AT traverse.  

 

Figure 7. An example of the occupancy grid generated during an 
RMP traverse. 

Examples of completed robot traverses are shown in 
Figure 6 and Figure 7 for the AT and RMP, respectively. 
Inconsistencies in the barricades’ representations are a 
result of sensor noise overwriting the occupancy grid. This 
was more prevalent for the RMP.  

TABLE IV.  AVERAGE REAL ROBOT RESULTS 

 Dist. 
(m) 

Time 
(s) 

Assumed 
Detected (s) 

Actual 
Detected (s) 

AT Direct 42.3 61 n/a 51 

AT Stealth 54.9 154 38 32 

RMP Direct 31.7 55 n/a 48 

RMP Stealth 49.9 193 37 29 

 

The average statistics for each experiment are shown in 
Table IV. Consistent with the simulation annotation, 
‘Time’ and ‘Dist.’ are the robot’s reported time and 
distance traveled. ‘Assumed Detected’ refers to the amount 
of time the robot assumed it was being detected. The actual 
detection times were determined from video taken from the 

observer’s location. The discrepancy between the assumed 
and actual detection times are a result of sensor noise 
making the robot erroneously believe it was exposed or 
obscured at times. In each environment, direct navigation 
traverses to the goal (annotated as ‘<robot type> Direct’ in 
Table IV) were conducted for comparison. 

VI. MODEL-BASED ANALYSIS 

Figure 8. A potential field view with the most efficient (lower broken 
line), stealthiest (upper broken line) and our approach’s (solid line) 
paths superimposed. Exposed/observable areas are grey and hidden 
areas are black. 

While the simulation and real robot results indicate that 
our stealthy navigation algorithm achieves low visibility to 
an observer, it does not provide a qualitative indication. In 
this section, we compare our approach with those 
determined as providing empirically optimal stealth and 
efficiency for a given environment.  

The comparison is made to a completed stealthy 
traverse from simulation as the control case. This traverse 
is typical for the robot in an unknown environment and is 
the base image in Figure 8. The comparison approaches are 
derived from the resultant occupancy grid generated by this 
traverse. In this analysis, the focus is on the path through 
the known environment with the dynamic barricade 
considered as an extended static object.  

The most efficient path is simply defined as the shortest 
achievable path to the goal. This is determined by selecting 
a waypoint closest to the end of the barricade at the start 
location that would allow the robot to traverse safely 
around it. The same determination is made at the goal 
barricade. The resulting path is shown by the lower broken 
line in Figure 8. 

The stealthiest path is determined by selecting 
waypoints on frontiers that represent the shortest distance 
through the observable areas to the goal location. Once 
again, this is offset from the barricades to represent a 
realistic obstacle-free traverse. The resulting path produces 
the minimum achievable observability and is shown by the 
upper broken line in Figure 8. 

The example for our approach represents typical 
decisions the robot makes through an environment based 
on the parameter values chosen for the potential fields. Its 
distance measurement was derived using the straight line 
distances between each point where the path crossed a 
frontier. This removes the wandering effects of the robot’s 
navigation (mainly when tracking the moving barricade) 
which generates longer paths, and provides a fair 
comparison to the derived paths. 
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1) Evaluation 
Each path in this analysis is evaluated according to its 

stealth and efficiency relative to the stealthiest (p_stealth) 
and most efficient (p_efficient) paths above. A completed 
path p consists of an observable part pobs and a hidden part 
phid which represents the length of the path that was 
exposed to and hidden from the observer respectively. The 
criteria for determining a paths’ stealth is based on 
comparing its observability to p_stealth as shown in (1). 
This is a more intuitive measure than comparing the 
lengths of the paths obscured in shadows since they could 
be arbitrarily long.  

Stealth = length(p_stealthobs)/length(pobs)           (1) 

A path’s efficiency is simply a comparison of its length 
compared to p_efficient as shown in (2).  

Efficiency = length(p_efficient)/length(p)           (2) 

Together, these stealth and efficiency metrics provide 
evidence of the path’s quality. The results of applying each 
metric to the p_stealth, p_efficient, and our algorithm’s 
paths are shown in Table V. 

TABLE V.  ANALYSIS OF PATH QUALITY 

 Efficiency Stealth 

Shortest Path 100% 36% 

Stealthiest Path 86% 100% 

Our Approach 84% 91% 

 

The results indicate that our approach provides a high 
quality stealthy path according to the evaluation function. 
This is encouraging considering that this analysis is 
conducted with a known environment and the traverse from 
our approach was from an unknown environment. Stealth 
occurs from the potential fields effectively pushing the 
robot’s path away from the observer to behind the 
barricades. The robot chooses an efficient path as a result 
of being attracted to the goal and to the shadows. The 
combination of these effects rationalize using potential 
fields to encode the stealth-efficiency cost function and as 
an intuitive approach for reactive stealthy navigation. 

VII. SUMMARY 
We have presented an approach for stealthy reactive 

navigation in unknown dynamic environments in the 
presence of an observer. For a robot to be stealthy under 
these constraints, it needs to take advantage of coverage 
opportunities as they occur, particularly since a dynamic 
object offering beneficial cover may only persist briefly. 
Our algorithm is a frontier-based method that allows the 
robot to reactively hide behind a mobile object and 
dynamically adjust its position according to the movement 
of the object. Thus the method is capable of handle varying 
object velocities or even objects that stop for limited time 

periods. As such, our approach makes very few 
assumptions as to the nature of the dynamics of the objects. 
If the objects traveled in repeatable patterns, higher level 
assessments of them could be made and models created to 
assist the robot with stealthier subsequent traverses. It 
cannot be assumed that objects with these characteristics 
will be present in an unknown environment and hence a 
more reactive approach provides a higher utility in general. 
We have validated and evaluated our reactive approach in 
simulation and outdoor environments using an object with 
varying dynamics. High quality stealthy efficient paths are 
produced that compare well with empirically-determined 
optimal solutions generated through offline analysis. 
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