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0. Abstract

We linearize the relation between the density and velocity profiles of a layered fluid subject
to a specified surface point traction, and study a precritical projection of its surface motion. We
decompose the resulting linear map into a high-frequency leading term and a lower-order
(smoother) remainder, and show that the spectral analysis of the leading term may be described in
terms of ray geometry. The leading term is generally well-conditioned, but may become poorly
conditioned in low-velocity zones. These results imply stability estimates for the linearized acous-
tic reflection inversion problem as well as for the nonlinear problem and yield insight into the

behaviour of numerical algorithms for the determination of the density and velocity of a layered

fluid from its surface response.
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1. Introduction

The transient response of a (linearly) acoustic fluid to a highly localized source of mechani-
cal energy reflects the mechanical constitution of the fluid. In this paper, we consider the surface
motion of a layered acoustic half-space resulting from a traction applied at a point on the (other-
wise stress-free) surface. We linearize the relation between the density and velocity profiles and
the surface motion, and study the high-frequency asymptotics of this linearized relation. We
show that a strictly precritical projection of the high-frequency response is related to the density
and velocity perturbations by a linear map whose spectral structure (sensitivity analysis) may be

understood in terms of ray geometry. In particular, this map is generally well-conditioned, but

may become ill-conditioned for perturbations in low-velocity zones.

The results are so formulated that they imply stability results for the linearized acoustic
reflection inversion problem and for the nonlinear inverse problem as well. We sketch these

extensions, together with implications for the design of numerical algorithms; detailed discussions

will appear elsewhere.

We state the main results of this analysis in Section 2, after description of the boundary-
value problem of a layered fluid with prescribed surface pressure. In section 3 we discuss the rela-
tion of our results to previous work on the layered acoustic inverse problem, and point out
features such as the role of regularity of the reference profiles in ensuring the validity of the
results, and the importance of proper truncation in the definition of the Radon transform. Section
4 is devoted to the relation between the (suitably) truncated Radon transform of the point-source
field and the solutions of the plane-wave equations: namely, these have the same high-frequency
asymptotics. The plane-wave equations are one (-space)-dimensional scalar hyperbolic boundary
value problems. Their high-frequency asymptotics are derived in Section 5. 'The leading order (in
frequency) behaviour of a precritical projection of the point-source response, defined via the trun-
cated Radon transform, is related in Section 6 to the spectral fmalysis of a 2-by-2 matrix multi-
plication operator. The spectrum of this operator is then estimated in terms of simple ray-

theoretic constructions. Section 7 sketches the implications of the high-frequency analysis for the



broad band linearized problem, the nonlinear inverse problem, and the design of numerical algo-

" rithms. Section 8 restates our main conclusions.

We include two appendices. Appendix A gives the computation of the perturbed plane-
wave equations satisfied by the truncated Radon transform. Appendix B describes the high-
frequency asymptotics of the perturbational point-source response. We use this expansion in sec-

tion 4 to justify our choice of truncation, but it may also be of interest in its own right.
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2. Notations, Statement of Main Results

We write (z,z)=/(z,,2,2) for the Cartesian coordinates of a point in three-dimensional

Euclidean space.

We shall write p for the material density function and X\ for the incompressibility function of

a layered fluid: thus, both p and X depend on z alone.

Formally, the displacement response to a transient pressure load f(z, t) across {z =0} is

the 3-vector solution w to the linear elastic boundary value problem in the limit of vanishing

shear modulus (see Achenbach (1973), p. 78):

pi =vivu, z>0 (2.1a)
M0)w- %(2,0,t) = f(z,t) (2.1b)
x=0, t<<0 (2.1¢)

As ¢ is uniquely determined by (2.1a), (2.1b"), (2.1¢), we can view the surface trace of the normal

velocity 13 (“‘seismogram”) as the response of the medium to the load f: thus we write

F(p,k) = ’23|z=0
F may be viewed as a scattering operator: it associates to the mechanical parameter distribution

a remote measurement of the acoustic field, generated by a known source.

Because the equations of motion (2.1a) are invariant under translation in z and ¢, the

response to a load f is the (z,t}-convolution of f with the response to the point-source impulsive

load

A0)wru(z,0,t) = &z)é(t) (2.1bi)
As the properties of the convolution operator are relatively well understood, we shall concentrate
exclusively on (2.1bi). We call the resulting surface normal veldcity F(p, \)=u4(z =0) the

poinl-source tmpulse-response.

Instead of studying F directly, we shall study its formal linearization DF, defined by means

.

of the perturbational boundary value problem:



p—p+ép
X=X+ 8\

4 — u + by

pORbu -7 Ng7-6u = —(6p0fu ~ VAV ¢)
X\0)y-6v(z,0,t) =0
bu =0, t<<0 .

(We shall assume throughout that §p(0) = 6X(0)=0.). Then set

DF(/’; )‘)(6p) 6>‘) = 616“3(') 0)')
Under suitable conditions, DF is actually the derivative of F, and estimates for DF' deter-

mine the local behaviour of F. See Section 7 for more discussion on this point.

We are particularly interested in the extent ‘to which the response F(p,\) is characteristic
of, or sensitive to, the medium (p,\). That is, when do small changes in p,\ result in small
changes in F(p,\) and vice versa? For linear problems, the simplest and most important measure
of sensitivity is the condition number (see e.g. Golub and Van Loan, 1984, pp. 25 fi.): unfor-
tunately, it will turn out that DF itself is very poorly conditioned (infinite condition number).

Fortunately, a certain “precritical”’ projection of DF is a well-conditioned functional of ép, &X.

This precritical projection is naturally defined in terms of the truncated Radon Transform of

the vertical component of displacement:

U(p,z,7: = fdz us(z,z,7+pz)(|z|,z,7+p'2,p)
(We will henceforth use p to denote the magnitude of the vector slope p.) Here the cutoff func-

tion r;.(r, z,t,p) is suitably smooth in r, z, ¢, and p, and at the surface satisfies

n(r,0,t,p) =1, 0=<r < dyp)
n(r,O,t,p)=0, d2(?)$’

for suitable cutoff radit d;, do. It is important that the cutoff radii d; < dj be allowed to depend
explicitly on the incidence vector {or vector slowness, or ray parameter) p, and that n be allowed

to depend on the time ¢ and on the depth z as well. A suitable dependence is discussed below.



The precritical projection is defined by restricting the truncated Radon Transform to a cer-

tain subset of (r, z, p }-space.

We call a pair (z, p) precritical if

e(z)p <1

where the sound speed ¢ is defined by ¢ =p’1/2>\1/2, and A-precritical for A > 0 if

e(z)p < VI-AT.
(The introduction of A > 0 is necessary to make our results stable against small perturbations in

o c))

We associate to p the vertical travel time function

S{z,p): 2} ds—l—_cc(—;igﬂ

which is well-defined when (z, p) is precritical.
We call a pair (7, p) (A-) precritical if 7 < 25(z,p) and (z,p) is (A-) precritical.
For each p, we define the A-precritical depth by

Za(p) = inflzc(:)p = VI-AY)

and correspondingly the A-precritical time by

Salp) = S(Za(p)p)
Notice that these functions are defined for 0< p < V1—A? when z >0 and ¢(0)=1, which nor-

malization we shall adopt. We shall also have use of the inverse function of Z(p), which by

definition is monotone nonincreasing:

Pa(z) = sup{p:c(z’)p < V1-A% for 0 < 2" < z}

Thus a point (z,p) or (7, p) is A-precritical if

0 < p < Pul2)

or

0 <z < Zalp)

or



0 < r < 25x(p)
We illustrate the functions Pa(z) (figure 1b) and Sa(p) (figure 1c) for a typical (coarsely
blocked) seismic velocity profile (figure 1a).
We are now in position to define the A-precritical projection of the linearized response as

the restriction of the truncated Radon transform of DF to the set of A-precritical (r,p), thus:

E (5}),5)\)(1‘,})) == f dz ’7(‘z I ,0,r+p-z,p)DF(p,)\)'(5p,5)\)(z,‘r+p'z)
for (r,p)ER,: = {(r,p): 0 < 7 < 254(p)}

L (6p,6\)(r,p) =0, (r,p) & Ry

Our first main result is:

If the function 1 is chosen properly, we may decompose L as
L =L +M, (2.2)

where L 1s defined by the solution of the plane-wave equations

(parz"azAaz)U =0
3, U(r,0,p) = §(r)

U=0, 7<0 (2.5)
(p82-8,A8,)6U = -(6p82-8,6A0,)U
3,6U(r,0,p) =0
(2.4)

U=0, 7<0
with

¢(z) = Mz)p(2) 2

Alz,p): = Nz)(1-c*(=)p?)

6A(2,p) = EN(2)(L-e2(2)p%) * + 3 M )L~ e2(2)p%) 7 (BN(2)ol2) - M(=)enl2)p%e(2)



and
8,6U(r,0,p),(r,p)ER
L(sp N p) = { AV O 2 P )ERa
and M is smoothing: precisely, if we assume for bp, 6\ the forms
bp(z) = x(2)e""
EN(z) = x,(2)e'®
where x, and x, are smooth envelopes, then

M(6p,6%) = 0(¢™)
for any N=1,2,3 -+ - .

Thus the high-frequency asymptotics of L and L are exactly the same.

Remark. We shall take advantage of the linearity of the perturbational pfoblem to write §p and

6\ as if they were complex, with the tacit understanding that only the real parts have

significance.

To define the cutoff radii in such a way that the decomposition (2.2) is valid, introduce the

A-precritical exit radius

V4
Xy | e 2
0 Vi-cH2)p?
That is, a ray (of geometric optics) with ray parameter p leaves the slab {0 <z < Za(p)} at a
point (z, Za(p)) with |z | =X4(p). (For this and other material on ray optics in layered media,
see Aki and Richards, pp. 643 fl.). Since we have assumed that the velocity distribution c(z) is

smooth, there is a positive gap Da(p) so that the ray cannot re-enter the slab at a point with x-

coordinate less than

Xa(p)+ Dalp)

(An estimate for D,(p) will be given in Section 4.) Further, a ray with ray parameter p cannot

return to the surface {z =0} at a point with x-coordinate less than



2Xa(p)+Dalr)

This situation is illustrated in Figure 2.

Now define the cutoff radii by

dy(z,p) = 2Xa(p)+ 1D 4(p) ()
do(z,p) = 2Xa(p)+ .9Ds(pP)

This choice of d,, d, gives a correct truncation of the Radon transform at the surface. The

truncation below the surface is more delicate; details are given in section 4.

Our second major result is:

The operator L decomposes as

L=E+K (2.5)

where K s a small perturbation in the sense that we have for the condition numbers

k(L) < Cx(E)

where the constant C depends on the propertics of the reference medium (p, \).

Therefore the stability analysis of L reduces to that of E. The operator E is best described

by introducing the quantities (“reflectivities”)

r=29,logp; | =29,logX
br = 8,(60/p); 81 = B,(6N/N)

as the primary descriptors of the medium and its perturbation. Then E has the form

E(6r,6l)(r,p) = (A6r + B&I)S™ (%, p)) (2.6)

where A(z,p) and B(z, p) are algebraic expressions in p, r(z), I(z), and ¢(z), which we compute

explicitly. Thus E is a multiplication operator followed by a change of variables.

The explicit formulas for the coefficient A and B in (2.6) lead to our third set of results,

concerning the spectral bounds o, and Omax and the condition number x of the operator E:
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(a) these quantities are local: that s, when E is restricted to perturbations (6r,6l) vanish-

ing outside of an interval [z,, z,), they depend only on properties of p, X in [z}, 2,

(b) Jor perturbations vanishing outside [z, z9], Opmin and 01, are functions of

s c(z), inf c(a),

2,<2< 2, 7;<2<z,
L2, o7, and nf (c(2) Pas): = ()

whereas K €5 a function only of the third and fourth of these quantities.

(c) Suppose that the first three of the above quantities are fized. Then:

(1) as vy — 1
Omin — 2, Omay — O

O max
80 K =

- OO
Omin

(1) asy— 0
Omin, Omax — 0 I such a way that x — oo
(iii) For sup|c’(z)| small, as a function of 7, k 1s conver upward and the mintmum

value K,,; =~2.8 at v,,; = .85. As sup|c’(z)| increases, K, increases whereas
op! opt » Nopt

~om decreases.

The quantity v=cP, is identically = V1-4% so long as ¢ increases monotonically. In
intervals [z,,z,] in which ¢(z) is less than sup{c(z):0<2<2}, 7< V1-AZ We call such
regions low-velocity zones. A typical plot of 4 versus z appears as Figure 1(d). Clearly it is pos-

sible that v << V1 —AZin zones of anomalously low velocity.

By combining (a)-(c), we arrive at our major conclusion concerning the spectral analysis of

DF.

If we choose A so that V1-AZ~ .9, the A-precritical projection of the linearized

high-frequency response is well-conditioned ezcept possibly in low-velocity zones.

.

The instability in low-velocity zones is severe: that is, the data is substantially insensitive

to high-frequency perturbations of p and X localized in regions of low velocity. Otherwise put, the
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resolution possible in low-velocity zones is much less than that for the overlying high-velocity

- structure.

The regions of interest in exploration seismology and other applications are often precisely
the low-velocity regions. As the lack of resolution in low-velocity zones is a feature of the prob-
lem, which no amount or type of data processing can ameliorate, we are led to conclude that

other information is necessary to stabilize the layered acoustic inverse problem.

Fortunately, such information is often available. For instance, the density and compres-
sional velocity of sedimentary rocks are highly correlated. Accordingly, we are led to consider the

restriction of the layered acoustic problem by the pointwise constraint

Az) = Gle(2)) (2.)

and its linearization.

Since the constraint (2.7) is local, the problem for highly localized velocity perturbations

becomes automatically well-conditioned, as the point version is scalar. In the limit of small aper-
ture, we recover the stability of the plane-wave response for the velocity perturbation problem.
The low-velocity zone problem persists, in that the precritical response is less sensitive to pertur-
bations localized in low-velocity zones. If the velocity perturbation is weighted according to the
local volume of plane-wave components, however — as is quite natural - the relation becomes
entirely well-conditioned. Details are discussed in Section 6.

Remark. The analysis given in the sequel is valid under the assumptions:

(i) log p, log X infinitely differentiable for 0 < z < co

(i) for suitable real k., k°,

k. <logp(z), logh(z) < k°
forall z,0< 2 <o0.

These assumptions may be weakened somewhat. Indeed, rigorous linkage of the linear and non-
linear problems, and the study of convergenceA of numerical .methods, requires that the properties

of the linearized map depend only on finitely many derivatives of p,X\. The derivation of such
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refined results is technically involved, and will be given elsewhere. We will occasionally point out

the dependence of various constructions on a finite number of derivatives of p, A\ however, when it

is convenient and instructive to do so.



3. Discussion, Relation to Previous Work

The main application of our results is to the study of the reflection inversion problem for a

layered acoustic medium: in the notation of Section 2, given surface trace data g, solve the func-

tional equation

FlpX) =y
for the acoustic parameters p, A, or some related best-fit problem.

This inverse problem has a long history as a model for the interpretation of reflection
seismograms; see Claerbout (1976), Cohen and Bleistein (1979), Clayton and Stolt (1981), for a
small sample. It has also served as a model in ocean acoustics (Frisk 1980), in the theory of ultra- "
sonic biomedical tomography (Greenleaf, 1983) and (with less justification) in the theory of non-

destructive materials evaluation, for which it is flawed because of neglect of shear effects (as is

also the case with seismology).

In the geophysical literature, most work has concerned the velocity model: that is, the velo-
11
city ¢ =X2p ? is allowed to vary with depth, but the density is required to remain constant (and

known): see e.g. Lahlou et al. (1983), Tarantola (1984). A number of authors have considered the
“complete” inverse problem of separate recovery of p and A\: a partial list is Raz (1981a,b), Coen
(19812, b), (1982), Clayton and Stolt (1981), Carrion, Kuo and Stoffa (1984), Howard (1983), Deift

and Stickler (1981), Bregman, Chapman and Bailey (1985), Yagle and Levy (1985), Eiges and Raz
(1985).

The bulk of this work has depended on the use of some transform of the acoustic field in the
horizontal variables to produce a suite of one-dimensional inverse problems, about which a great
deal is known. In our previous papers on this subject (Coen and Symes, 1981 and Santosa and
Symes, 1985) we have studied Coen’s (1981a) suggestion that two plane-wave components (slant
stacks) of the surface data be used to construct the density and velocity profiles of a layered fluid.
Coen’s results imply that a layered fluid is uniquely determine;i by its point source response, and
suggests an algorithm for constructing p(z) and \:). This algorithm has been implemented

numerically (Howard, 1983; Santosa and Symes, 19%5) and appears to be excessively noise-
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sensitive.

Another approach is exemplified by the work of Clayton and Stolt (1981), who study the
linearized problem about some (piecewise) smooth reference profiles. Clayton and Stolt in fact
allow the reference density and sound velocity to depend on all of the spatial coordinates, and
determine the high-frequency asymptotics of the response. In the layered case, the high-frequency
asymptotics of the reference field (“WKBJ” Green’s operators”) may be expressed in closed form
(i.e. via quadratures), and rather explicit expressions relate perturbations in p and X\ to perturba-
tions in the surface trace. Clayton and Stolt note that this method is restricted to precritical
reflected waves, and that ‘... Density is distinguishable from bulk modulus only if a sufficient
range of precritical incidence angles is available” (Clayton and Stolt, 1981, p. 1559 (Abstract); see .
also p. 1563). Because of their straightforward use of the Fourier transform, they are forced to

assume that the data are given on the entire surface {z =0} (i.e. “infinite aperture”) and for all

time (see p. 1560).

In this paper we combine a horizontal transform, which preserves locality in time and depth,
and high frequency asymptotics to give a spectral description of the linearized problem at smooth
p, . We use a truncated version of the Radon transform, which involves only finite data aper-
ture (and manifestly convergent integrals), yet yields the same high-frequency asymptotics as the
formal untruncated (infinite aperture) transform. We also use the full range of precritical data
available for each depth, and give quantitative estimates of the condition of the resulting precriti-
cally projected linearized problem. We find that the sole source of ill-conditioning (i.e. data
insensitivity) in this problem is the possible presence of low-velocity zones: that is, the condition

of the problem is local in depth, and becomes irretrievably poor in low-velocity zones.

It is interesting to compare these results with those obtained via Coen’s (1981a) approach
and similar approaches, which rely (essentially) on a very small part of the data set, e.g. two
plane wave components. As noted above, these methods tend to be excessively noise-sensitive.
The question naturally arises: can the estimation of densit.yAaxgd velocity profiles be stabilized by

use of a larger (hence redundant) subset of the point-source data?
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To explain the source of instability in Coen’s method, we introduce the notions of aperture,
* that is, the solid angle subtended by the normal vectors of the plane wave components in the res-
tricted data set (two components in Coen’s algorithm), and slowness sperture, which is depth-
dependent and consists of the solid angle subtended by the rays corresponding to those plane-
wave components, at each depth. In the typical seismic layered-earth model, the velocity tends to
increase with depth, so that each ray is {on the average) convex upward, and eventually turns,
except for the ray at precisely normal incidence. In Coen’s (1981) algorithm the slab of depth Z
is probed with plane-wave components which are required to be precritical in the entire slab: that
is, the corresponding family of rays is not allowed to turn in the depth interval [0, Z]. If, as is
typical, the wave velbcity increases by a factor of ‘four over the slab, then the aperture (which '
equals the slowness aperture at the surface) is at most .25 for any pair of precritical plane wave

components, one of which is assumed to be normally incident. See Figure 3.

Now in one of the steps in Coen’s algorithm, a quantity extracted from the data is divided
by the square of the slowness aperture, i.e. multiplied by perhaps a factor of 16 (near the surface).
As will be explained below, this quantity has imbedded in it some unavoidable high-frequency
error (phase shift) caused by the travel-time/depth conversion. This error is magnified by the
division just mentioned, and passes through the rest of the computation. Although the error is
confined initially near the surface if the non-normal ray is chosen to be near turning at z = Z (so
that the slowness aperture is relatively large at z=7Z), the computation of the density and

incompressibility profiles is progressive in depth, so that both are contaminated throughout the

slab.

For a detailed analysis of error propagation in Coen’s algorithm, see Coen and Symes (1981),

Santosa and Symes (1985).

We partly remedy this problem by using more of the data. Specifically, we allow the aper-
ture, used to determine the profiles to depth z, to vary with z, so that the slowness aperture
remains as large as possible throughout the slab. Thus a large aperture is used at shallow depths,

where the rays can make a large initial angle with the vertical without turning. As the depth
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increases, we narrow the aperture, so that the plane-wave components used to determine the
profiles are uniformly precritical throughout the slab except in low-velocity zones. As we shall
show, this device restores the maximum possible degree of stability to the inverse problem, at the

price of increasing its computational complexity. See Figure 4.

The bulk of previous work on the layered acoustic inverse problem has depended either on
the special properties of perturbation about a constant background (“Born approximation”) or on
the reduction to a suite of one-dimensional scalar inverse problems, whose solution is relatively
well-understood. The limitations of perturbation about constant background are obvious and
well-documented. On the other hand, the second mode of analysis is unavailable for the problem

of determining a layered elastic medium (i.e. density and Lamé parameters) from either

- A single (e.g. normal) component of surface motion

or

- the response in a fluid layer overlying an elastic half-space.

These problems have great practical interest. Unfortunately, transforms in the horizontal vari-
ables do not decouple this (“P-SV”) problem into scalar inverse problems. The present analysis
was developed precisely to overcome this difficulty. Indeed, Paul Sacks has recently used the
techniques developed here to establish uniqueness and stability results for the determination of
the elastic profiles from the normal component of surface motion. See Sacks (1985), also Sacks

and Symes (1985).

In this paper we restrict our attention to the high-frequency asymptotics of the perturba-
tional relation about smooth reference profiles. We consider only smooth reference profiles for
several reasons. Our analysis extends without much modification to reference profiles with a few
discontinuities, although the ray;optical bookkeeping becomes complicated.. On the other hand,
the geometric optics description of the wavefield as a singular (high-frequency) incident field plus

a smoother (lower-frequency) remainder is no longer valid with any modifications when the

medium attains a certain degree of roughness.
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Second, some degree of smoothness of the profile is required to ensure that the relation
. between coefficients and band-unlimited surface response is differentiable. The precise number of
derivatives of density and velocity (two) follows from arguments similar to those given in Symes
(1983), (1985). Without these restrictions, which happen to be precisely those necessary to ensure
the validity of the first two terms of the geometric optics expansion, the formal linearizations con-
sidered in this paper are not actually derivatives, i.e. do not approximate the coeflicient~-data rela-
tionship locally. The necessity of this restriction flows from the appearance of wave velocity as
an unknown in this problem. Small changes in wave velocity give rise to small (“phase”) shifts in
the travel time map, which have large effect on the relation between high-frequency components
in data and coefficient perturbations. These high-frequency components must therefore be con-
strained a priori, in order that the relationship be differentiable. In effect, the requirement that
the best-fit-to-data be a smooth optimization problem, hence amenable to variants of Newton’s

method, imposes ¢ntrinsic resolution limits on the estimates of density and incompressibility.

Gray (1981) seems to have been the first to point out (a version of) this phase shift

difficulty. It is discussed in detail in Coen and Symes (1981), Section 5.

The restriction to precritical data is also necessary to ensure the differentiability of the
profile/data relation. In fact, near critical incidence, the high-frequency content of the data
changes from enormous to insignificant as the ray parameter passes through its critical value. For
fixed ray parameters very near the critical value, this catastrophe can occur as a result of a small

perturbation in the wave velocity. Therefore, to keep the data smoothly dependent on the model,

we must restrict our attention to the precritical regime.

In the geophysical literature, the fact that only the precritical part of the surface trace
depends differentiably on the medium is often expressed by sentiments such as ‘... the Born

approximation ... is not adequate in the evanescent zone.” (Clayton and Stolt (1981), p. 1563)

Finally, the smoothness restriction turns out to be necessary even in the definition of the
precritical data set. In a way, this is expected, since the notion of precritical reflection is entirely

ray-theoretical. The way in which the requirement arose was a surprise to the authors, however.
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The precritical data set is defined in terms of the Radon transform (‘“‘slant-stack’”). The naive
definition of the Radon transform, common in the geophysical literature, is senseless, i.e. given by
a generally divergent integral, at sufficiently large but still precritical incidence, and so cannot be
used in forming a precritical projection. Instead, we define a truncated Radon transform given by
convergent integrals in the entire precritical regime, whose values have the same high-frequency
asymptotics as the naive definition would lead one to expect. The argument which establishes
this result depends on the geometric optics decomposition, and more generally on certain related

estimates of the reflected field, which in turn depend on bounds on some derivatves of the refer-

ence coefficients.

Partly due to practical considerations, the deéfinition of the slant-stack (Radon transform)
common in the geophysical literature incorporates finite limits of integration. Our suggestion that
the truncation ought to be tapered by a smooth cutoff function which depends explicitly on the

ray parameter, seems to be new. It is also necessary if the high-frequency asymptotics based on

plane-wave analysis are to be retained.

Throughout this work we assume infinite diflferentiability of the reference profiles, whereas
we merely require the coefficient perturbations to have square-integrable derivatives. For applica-
tion to the nonlinear inverse problem, and for analysis of numerical methods, the smoothness
required for the reference and perturbations must be equilibrated. The technical details of this

extension will be reported elsewhere, and do not materially alter the conclusions presented here.
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4. The Truncated Radon Transform and the Plane Wave Equations

This section is devoted to the proof of the first main result of our paper, that is, that the

truncated Radon transform

sU (p,z,7) = fdz n(z,z,7+p z,p)bug(z, 2,7+ pz)
is identical to the solution of the plane-wave equations (2.4), except for a smooth (low-frequency)

error, provided that the cutoff function 5 is chosen properly.

The principal tool for our analysis is the Radon transform (“‘slant stack”). The usual geo-

physical convention for the definition of the Radon transform is:

U(p,z,7) = [ dz uy(z,z,7+2p) (4.1) .
(See e.g. Chapman, (1978), p. 495.)

This definition requires modification for several reasons. An obvious difficulty is that, even
when the impulsive source is replaced by a localized but smooth pressure source, the convergence
of the integral (4.1) is in doubt, as the integral extends over {-co < 71,72, < oo}. In fact, for the
integral to converge for general precritical p requires hypotheses on the behaviour of p and A as
z — oo in addition to boundedness to ensure the decay of u; at a sufficient rate as |z |, ¢ —+o0.

Since all of our considerations are local, we wish to avoid making such hypotheses.

Suppose u solves the problem (2.1, b”, ¢) with highly localized pressure source f. In view
of the assumed global bounds on log p, log\, we can show rather easily that, for any finite 7, there
exists a ppmax > 0 50 that for p < pmay, the support of the integrand in (4.1) is bounded.v Therefore
convergence is assured for smooth uj, i.e. regular pressure sources, and is easy to justify for singu-

lar sources, i.e. f(z,t)=-8(z)8).

In Santosa and Symes (1985), Appendix, it is shown that if u3'is the vertical component of
the point-source impulse response, i.e. the solution of (2.1a, b, ¢) then its Radon transform (4.1) is

the solution of the plane-wave (impulse-response) equations
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pdRU = 8, A8,U

a: U(P’Ot t) = _6(t) (4’2)
U=0, t<0

where
Alp,2) = Nz)(1-c*(2)p®)"

4

1
e(z) =X %(2)p *(2)
and p is so small that ¢(z)p <1 forall z >0
We would like to extend the definition (4.1) of the Radon transform to the entire A-
precritical set. Unfortunately this extension is generally impossible, as shown by the following

example, for which we are indebted to Paul Sacks. :

We consider a medium with (0 < h << z;)

e(z) =

1, 0<z2< 2,
e>1, zp+h <z

with a smooth monotone transition between z, and zo+ h The support of the impulse-response is
depicted in Figure 5 (see also Aki and Richards (1980), p. 213). The direct and (internally)

refracted arrivals (singularities) are contained in the region {t > |z | }. The head wave region,

given to O(k) by

1 , 1 1
{(:z,t):l:r|>—c-, 1-1—-;-2——-c—2'+?|z|<t<|x|}

contains smoother signals, which decay as |z |2 (Aki and Richards, p. 212). Thus the integral
(4.1) over any plane which has an unbounded intersection with this head wave region is (abso-

lutely) logarithmically divergent.

For this example, we can compute the quantities Za,Sa etc. with acceptable accuracy by

letting h — 0, i.e. assume that the velocity is piecewise constant. Then



Since any plane {t =7+ p-z} has unbounded intersection with the head wave region con-
taining a nonvoid cone if 1 < p <1, we are prevented from extending the Radon transform to
¢

the precritical set without modification.

Since our object is to study the high-frequency part of the response F' and its linearization,
we can settle for a quantity, defined in terms of the response, which differs from the solution of
the plane-wave equations in the precritical region by a smooth (i.e. low-frequency) error, and is

identical to the Radon transform for small p.

A suitable approximation is given by the truncated Radon transform

Ul(p,z2,7)=[[dzn(z,z,7+pz,p)ugz,2,7+p7)
where 1 is a suitable cutoff function.
We shall assume that 5 is infinitely differentiable, although an Hermite cubic piecewise poly-

nomial is adequately smooth.
In Appendix A we derive the modified plane-wave equations satisfied by U:

(parz-azAaz)ﬁ =H

az (-] (p)ox t) = _5(t) . (43)
U=0,t<0 )

The precise form of the inhomogeneous term H is unimportant: it is essential for the following

argument only to know that H is a sum of terms of the forms

-

Q(z,p)fdz Pl(v,at)n(Z,z,T—}-p'z,p)Pg(v)u;(z,Z,‘r-i-p‘z) (4'43')
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and
;
9,Q(z,p) f d‘r'fdz P9z, 2,7 +p-z,p)PyV)u(z,2,7’ +p-z) (4.4b)
-0

Here Q is an algebraic combination of p, X, and p, and P, and P, are differential opera-
tors. It is crucial that P, has no constant term. This is evident from the explicit construction of

H given in Appendix A. As a consequence, the integrands in (4.4a, b) are nonvanishing only

where 1 is nonconstant.

As the first step in the proof of our first main result (2.2), we shall establish that the inho-

mogeneous term H in (4.3) is smooth in the strip

[0,ZA(p)) XR = {(z,7): -0 <7< o0, 0L 2 < Za(p)}

provided that the cutoff function n:
(1) vanishes for large |z | for each (t,z,p);

(i) for each p, vanishes in a neighborhood of the refracted (turned) ray with ray

parameter p, if there is such a ray (terminology explained below).

Granted this result, we see immediately that U and U differ by a smooth function in the

region {(z,7): 0<z < Za(p), ~00 <7<25,(p)-S(z,-p)}. In fact, the difference V=0 -U

satisfies

(patQ”'azA-az)V =H
9, V(p,0,t)=0 (4.5)
V=0, t<<0

Since all of the data, i.e. the r.h.s. in the wave equation, the boundary data, and the initial data,
are smooth in the region {(z,7):7 < 25(p)-5(z,p)}, it follows that V is smooth in this region
also (see Courant and Hilbert (1962), pp. 471 ff.). Thus U and U have the same high-frequency

asymptotics, which is the desired conclusion.
To see how n should be chosen so that H is indeed smooth, we assume that

the forward light cone of the origin is given by an equation
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t = t(z,2)
with y; (the tncident phase) smooth and 73, 70, ezcept at z =0, 2 =0.

The meaning of this assumption is that no caustics develop on the rays of geometric optics
issuing from the origin. Since this assumption is violated in almost all situations of practical
interest, the argument which follows has suggestive value only. Nonetheless, it will lead us to the
correct choice of d;, d,. In Santosa and Symes (1985b), we give a completely rigorous proof of
the smoothness of H for our choice of cutoff, valid for general smooth p, )\‘, regardless of the pres-

ence of caustics.

Under the no-caustics hypothesis, Hadamard’s construction (Courant and Hilbert (1962) pp.
740 f.) leads to the progressing wave expansion for the field u:
u(z,2 t)==a,(z,2)6'(t -¥(z,2))

+ ag(z,2) 6(t - y(z, 2))
+ay(z,z, t)H(t -z, 2))

where the coefficients a; are determined by solving certain transport equations, and are smooth if

p, X are smooth.

A term of the form (4.4a), for instance, becomes a sum of terms of the form

Q(z,p)f dz Py(8,,v)n(z,2,7—p'z,p)a(z,z,7) Po(V)8(7+ p-z - ¥i(z, 2)).

where a is smooth.

The delta distribution can be integrated out, leaving a smooth integrand evaluated on the

smooth hypersurface {t=1);}, provided that the phase gradient is not stationary, i.e. we do not

have

V,(T-i—p'z—d);(z,z)) =Pp -Vﬂbf(z: z) =.O ) (4‘63')

on the intersection of the zero phase surface

z: Yz, z)=71+p'x (4.6b)
with the support of the integrand , -

{(z,2,9: (| wnl®+ |80 |*)(z,2,7) > 0} (4.6¢)
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for z, 7 ranging over the region of interest

Calp): = {(2,7:0 < z < Zu(n)8(z,p) S 7 < 254(p)-S(2,7)}
For instance
fdz f(z,2,n06(r+pz-ni(z,2))

= |P —V¢,~(z,z)|'lf(z,z,t});(z,z)—p'z)

under these conditions for smooth f. See Gel”fand and Shilov (1958), pp. 209-246, for instance.

The comstruction of t;, for which the above conditions are satisfied, depends on the

geometry of bicharacteristics for the wave equation (“ray theory’), which we review briefly.

The Hamiltonian h associated to the wave equation may be taken as
1 "
hz,2, 0,667 = 5 (F- X1 €]+ €)
The bicharacteristic sirips are solutions of Hamilton’s equations:

t = 8h =1
z = Och = —c¥(z)€

;= 8k = —ez)¢

§=-0,h =0
¢=-8,h
5‘=-3,h =0

The forward light cone (t =1;) is made up of the union of rays emanating from the origin,
which are the (z, z, t)-projections of the null (h =0) bicharacteristic strips passing over (0,0,0)

and for which { = 7> 0. Normalizing 7==1, we ob:ain that along the rays, =

=-9¢;, ¢=-0:% (4.7)

This is the principal result of Hamilton-Jacobi theory.

. : d . . .
Since t =1, * == X Because £ is constant along rays, we can parameterize them by £

(this consequence of the z-independence of ¢ is Snell’s law). Since h =0 along the
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bicharacteristics, we obtain

¢=-Ve(z)-[€]7

So long as ¢(z)|&| <1, we obtain from the differential equations for a point (z,z,t) on the ray

parameterized by §:

z = ; Z’ C(Z’E - . 2
{d V1i-c¥z)|€)? Xied)

_z dz’ = T(z

= e e

We introduce the vertical travel time

(which is, of course, just the travel time functional associated with the plane wave equations) and

obtain the extremely useful identity: for (z,z,t) on a ray emanating from the origin in the pre-

critical region,

S(z,8)+ &z =1t

(4.8)

It will be useful to have an extension of the function S beyond the precritical region. Along

the ray with ray parameter &, define
s(t,§) =t-¢=(t)

If |e(2(t))] €] <1for0<1t <t then

As each bicharacteristic lies entirely over the (“O-precritical”) set

{(z,2): e(2)1€] < 1}

we have

§=1-84 =1-c2|€]2>0

i.e. s is monotone nondecreasing, and increases strictly interior to the precritical region.

(4.9)
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It will also be convenient to introduce functions which give the horizontal distance traveled

along a precritical ray as a function of depth: for 0< z < ZA(p),
Xalp) = | X(Zalp) )l

We assert the existence of a positive number D(p ) with the property:
(4.10) the ray with ray parameter p contains no point (z,z,t) with z < Z,(p) and
Xalp) < |z | <2Xa(p)-1X(2,p)| + Dalp) (see Figure 6).

It follows that there exists a smooth cutofl function 5 with the required properties (i) and

(i1), so that

n=1 on the set
{{(z,2,t):0< 2z < Zalp), |z} <2Xalp)- 1 X(z,p)], -oo<t< oo} (4.11)

Then 5 is constant (=1 or=0) in a neighborhood of all components of the intersection of the

ray with ray parameter p and the slab {z < ZA(p)}.

The smoothness of H in Ca(p) follows immediately from (4.10). If (r,z)€ Ca(p) such that

(4.6b) holds, then the point

(z,z,t=1+p"2)
lies on a ray through the origin (since the light cone {¢ =1;} is a union of rays). If (4.6a) holds,

then this ray is the one with ray parameter p. However since z < Z(p), (4.11) now contradicts

(4.6c). Thus the set specified by the conditions (4.6) is void, and we conclude that 7 is smooth.
We now establish the existence of a positive Da(p) for which (4.10) holds.

Since along the ray

dlz] oy ZR 5o,

dt |z |

we can use z:== |z | as a coordinate along the ray. Set

Xp(p) = inflz:2(z) < Z4 (p), 2 > Xa(p)}



27

Possibly Xg(p)=o0, i.e. the ray never returns to the slab 0<:z < ZA(p). In this case
* (4.10) will hold with D,(p) chosen to be any convenient positive number. Note that this is the

case for sufficiently small p.
Otherwise, by symmetry consideration

d(Xr (r)) = -dXa(r))

Since & = ¢2—p2 and ¢(Z4(p))p = V1- A%,

L
2(c*(Za(p))-2%)? = ——\/IA_—pp
— [ (X (p)) - dXa(p))]
X alp) Xalp)
= 7 L8 — z LI 8
|X};’;p)d I |X;!;p)d P z-pl

(XR()Q(}));;\)(P)) {sz:p( e (2)”_;:1_'_( Cl'2 _pz)}

IN

where ¢, =infc(z). Since c. < ¢(Za(p)),

1 1 1-A?
—=-p'S
Ce Cs [4
Thus
Xr(p)-Xalp) = KpXalp) > 0 (4.12)

where K is a positive function of A and of global bounds on log ¢ and its derivative.
Now choose Da(p) to be less than the r.h.s. of (4.12).
Suppose z,z,t lies on the ray with ray parameter p. “Then either |z | < Xa(p),

|z | > Xg(p), or z > Za(p). In the first and third cases (2, z) manifestly lies outside of the set

described by (4.10). In the second case, note that
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ZA(P)

lz| = Xe(p)+p { dz’ _1-15\/'_:(_:)‘_—);»2-

= 2Xa(p)- | X(z,p)| +(Xr(p)-Xalp))
> 2Xa(p)- | X(2,p)| +Dalp)

from (4.12).
This completes the proof of (4.10), hence of the smoothness of H.

We now turn to the proof of the first main result. In the notation of section 2 and (4.5), we

see that

M(8p,8)) = 8,6V | ;=g
where 6V solves the perturbational equation
(p32-9,A8,)6V = -(6p67f-8,6A8,)V +6H (4.13a)

3,6V=0 for 2z=0 or t <<0. (4.13Db)

Because of the results on V and H previously derived, we see that the r.hs. is a sum of

terms either of the form

a{z)F(z,7,p) (4.14)
or of the form

b(Z,p)f dz Pl(Vyat)’?(zy2,T+P'fI,P)PQ(V)‘S“i(Z;Z,T‘*'P“'-’) (415)
where a(z) is 8p(z), 8X(z), or 6\"(z), b(z,p) is smooth, F(z,7,p) is smooth in {(z,7): 2 £ Za(p),
r<25A(p)-S(z,p)}, and P(V), Po(V) are differential operators as before.

We aim to show that

M(6p,8)) = O(¢™), ¢—o0

for any N, when

bp, 6\ ~ x(z)e'*
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with x a smooth envelope. This will follow if we show a similar result for the trace of the solu-

- tion of (4.13) with the r.h.s. replaced by either of the forms (4.14) or (4.15).
Accordingly, suppose first that W solves
(p(2)82-8,A(2)3,) W(z,7) = x(2)e'* F(z,7)

with F smooth in {(z,7):z2 < Z,(p),7<25,(p)-S(z,p)} (we have suppressed p where con-

venient).

We shall show that, for any smooth function ®(r) which vanishes for 7> 25,(p), and

satisfies
25 A(p)
[ 4r181%) <1 (4.162)
0
we have
fdrd(r)e, w(o,7) = o(s") (4.16b)

The estimates (4.16) imply that 8,W(0,-) is 0(¢™") in the mean-square sense, which is adequate

for our purposes.

To establish (4.16), we use a Green’s identity argument, which will be used again in Section
5: suppose that @ solves the backwards or “‘adjoint’”” Neumann problem
(Patﬂ‘az Aaz)Q =0
3,Q(0,7) =&(7); Q@ =0, 7> 25,(p)

Then integration by parts shows that

A0,p) [ dr¥(r)a, W(0,7) (4.17)

ot— 8§ 0+ §

dz [ d78,Q(z,7) [p(z)af-a,A(z,p)a,] W(z,7)

dz [ d78.Q(z, ) x(2)e'" F(z,7)

The provenance of F assures that F(z,7)=0for 0 < z <Z(p), 7< S(z,p), whereas @ =0
for 7> 255(p)~-S(z,p) by domain-of-dependence. Thus the integrand vaniches outside the dou-

ble light cone
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Calp):={(z,7:0< 2 S Za(p):0 S 7S 254(p)-S(2,p)}
For convenience, we also assume that x(z)=0 for z in some interval about z =0; the boundary

terms thus eliminated in the following integrations-by-parts can be estimated by a slightly more

sophisticated argument.

Write ¢ =(i¢)VdNe'* under the integral sign and integrate by parts N times in ¢ to

obtain for the r.h.s. of (4.17)
N .
=N Y [dz [dr Gz, 7)e'" 010,Q(z,7)
J=0 0
where in the sequel G,(K) will denote functions smooth in Ca(p) and vanishing for 7< §(z,p),

0<:z< Zx(p). Now eliminate all z-derivatives of Q higher than the first by repeated applica- .

tion of the wave equation in the form

82Q = £87Q -8,10g40,Q

to obtain

N (> . .
=N Y rfdzfd‘r G,(g)(z,r)c"’ %1 Q(z,7)
s=0%0

o0
+ [dz [ dr G (z,7)e'" 6,’5’8,@(:,7)}
0

=N [d: [dre'® (GU(z,18,Q(:,7) + G¥z,7) 8, Q(z,7))
0

after integration by parts in 7. Now the a priorf estimate for the Neumann problem

QSA(P)

[ | dzdr[|6,Q|*+18.Q|7 <K [ dr|®|? (4.18)
CA(P) 0 .

and the Cauchy-Schwartz inequality immediately give (4.17).

The a priori estimate (4.18) follows from some basic estimates for the one-dimensional Neu-

mann problem which are proved in the spirit of Symes (1985), Section 1.

This estimates the contribution to M(ép, 6}) from that part of the r.h.s. of (4.13) which

looks like (4.4). To estimate the contribution from terms of the form (4.15), we see we need to
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estimate integrals

f dz Py(7,0:)n(z, 2,7+ p z,p) Po(V)bu;(2,2, 7+ p2)

for (z,7)€ Ca(p) 2nd so we need some information concerning the 3-dimensional perturbational

field 6u. Under the standing no-caustics hypothesis, the necessary information is embodied in the

asymptotic series

x n' 2,2, :
bu(z,z,t) = [E bk(z,z,t)g"‘]c Gilet) L Y odi(z,z,t)¢cFe' (4.19)
k=0 b=l

which is derived in Appendix B.

We shall indulge in formal manipulation of this series. As stated above, a completely
rigorous proof of oux-' result, which takes full account of the presence of caustics, is given in San-
tosa and Symes (1985b). Also, as in Appendix B, we shall take advantage of the method of images
to account for reflections from the free surface {z = 0}.

Substituting (4.19) in (4.15), we see that we need to show

¢, (z,2,7+p3)

f dz g(z,z,7+p'z,pe = o(c™) (4.20a)
where ¢ is smooth and supported in the set
{(z,2,t,p) (2, t—p-z) € Calp), (Ivn|?+ |8:n|*)z,2,¢,p) > 0} (4.20b)

This is equivalent to the non-existence of stationary points of the phase in (4.20a) in the set

(4.20b). These stationary points are the solutions of
0=v,¢,(z,z,7+p'z)+8,:¢,(z,2,7+p"2)p , (4.21)

From Appendix B, we have the following equations for the phase gradient:

P8¢, 1°-N Ve, |*=0 | (4.22a)
1

%o = 5500 (4.22b)

Vo, = ¢, —(28211);')-1 A2 (422C)

where ¢, =(0,0,1)7, (4.22b), (4.22¢) hold only on the inciden{ wavefront {t =1;}, and (4.22a) is
simply the eikonal equation. As indicated in Appendix B, the phase ¢, is uniquely determined by

(4.22). The construction is entirely ray-theoretical, however, and is possible even when caustics
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are present. To clarify the nature of the reflected phase, then, and to provide the ray-geometric

step in the rigorous proof of Santosa and Symes (1985b), we reinterpret (4.22) in purely ray-

theoretic terms.
Over a point, (z, 2, t) for which t = ¢;(z, z), the phase point

(I,Z,t, V‘f’.’(Z,Z), 1)
lies on a null bicharacteristic passing over the origin:
(zl'(t)9 zﬂ'(t)7 t, E-‘(t)r g:'(t)y 1)
We construct the initial conditions for the reflected ray according to (4.22) and to the Hamilton

Jacobi identity &, =<7:¢,, ¢ =08.6¢,: with the t-component of momentum normalized to 1 as

before, we obtain

&r(t) = ei(t)
gr(t) = —gc'(t)

(In deriving these equalities remember that the incident phase has the form t-—1t;, so that

(4.23)

& =-V,¥;, & =-0.%;).

The reflected null bicharacteristic is the solution of Hamilton’s equations the initial condi-

tions (4.23), and the reflected ray is its (z,z2,t)-projection. These are further reflected from the

free surface {z =0}.

Now we see that (4.21) means that (z,z,7+ p-z) lies on a reflected ray with ray parameter
p-(=¢,), which according to (4.23) and the Hamilton equation €=0 comes from reflection of an

incident ray with the same ray parameter.

Suppose first that the reflection point, ie. the point at which (4.23) holds, lies in
{z > Za(p)}. Then the incident ray must include a point (20, Za(p),to) With |zo| = Xa(p); see
figure 6. The reflected ray must also include a point (z,, ZA(p); t,), necessarily with
|z;] > Xa(p); in fact choose |z;| to be the largest such, so that the entire ray segment from ¢,

to 7+ p-z lies in [0, Z5(p)]. Now

tl = 5(t1,?)+p'zl
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where s is defined by (4.9) along the broken trajectory obtained by combining the incident and

~reflected rays in the obvious way. In particular, s is nondecreasing, and since Za(p) is strictly

precritical
a(tl:p) > s(tO:p) = SA(p)
Similarly,
ZA(P)
, Vi-c4z")p?
s(r+pz,p)=1s(t,p)+ dz :
{ e(z")
= &(ty,p)+Salp)-S(z,p)
But

r=1t-pz=s(r+pz,p)>25(p)-5(z,p)
which puts (z,z,7+ p-z) outside the support (4.20b) of the integrand in (4.20a).

On the other hand, suppose that the reflection point (z,,z,,t,) lies in {z < Za(p)} (see

figure 8). Let R, be the set specified by

z,z,t)E R, if (z,2,t) lies on a reflected ray originating at a
p g

reflection point (z,,2, t,):2,2, S Zp(p), and t-p 2z <254(p)-S{z,p)

That is, R, is the union of all reflected ray segments in the slab {z < Z,(A)} along which
s <255(p)-5(z,p). Note that R, is a compact set, since t — p -z increases strictly along any ray
in 2 < Z(p)-

We claim that R, is disjoint from that part of the incident ray lying in {1z|>Xalp)}, ie.
the refracted ray. This is obvious, of course, if the incident ray is not refracted. Otherwise, sup-
pose that for some reflection point (z,,z,,t,) with z, < Z,(p), the reflected ray contains a point

(21, 21, t;) on the incident (refracted) ray. Suppose that the turning point on the refracted ray

occurs at depth z.,; (> Za(p)). Then .

lz,] = 2X(zert, p) - | X(21,p)|
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ty = 2T (zerie, p)- T(21,P)
sO
ti=p 2y = 2T (zerit, p) =P X(2erit, 2)) = (T(21,2)-p - X(21, p)
= 25(2¢,p)-S(21,9)

> 25A(p)-5(z1,p)

whence (z,21,t,)§R,.

It follows that we can construct a function 5 which satisfies

n =1 on the union of R, and the sct (4.11);

= 0 near the refracted ray and for large |z |

In particular, no reflected ray passes through a point (z,2z,7+pz) with z < Zx(p) and
7<255(p)-S(z,p) at which n is non-constant. Therefore the stationary points in the phase of

(4.22a) are disjoint from the support (4.20b) of the integrand, whence follows the estimate (4.22a).

We note that, at the surface z =0, a point (z,0, t) on a reflected ray with z, < Za(p) obvi-
ously satisfies |z | < 2Xa(p) (see figure 7). Thus the intersection R, N{z =0} is the same as the

intersection of (4.11) with {z =0}, so we can choose 7 so that additionally

(-0, ) =1 on {(z,1): [z]| < 2Xa(p)}

n(,0,,,) =0 on {(z,t):]z| = 2Xa(p)+ Dalr)}
This completes the proof of the result (2.2), for the case of caustic-free incident wavefront.

For the general case, see Santosa and Symes 1985b.



5. High-frequency Asymptotics for the Plane-Wave Equations

Because of the result of the last section, the computation of the high-frequency asymptotics

of the perturbational field 6u reduces (partly) to that of the solution 8U of the plane wave equa-

tions. These are hyperbolic systems in one space dimension, and their high-frequency behaviour is

relatively easy to compute. We shall use the details of this intermediate result in the proof in

Section 6 of our remaining major results.

Denote by U and 6U the solutions of the problems (2.3) and (2.4), which we display again

for convenience:

pU-8,A8,U =0

3, U(0,7) = &)

U=0, <0

p6U -8,A0,6U = -6pU+8,608,U
3,6U(0,n =0

§U=0, r<0.

In this section, we shall generally suppress dependence on p.

Recall that p and A are smooth. Then U is singular only along the wavefront

LL
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where ¢ =p 2 A? is the wave speed. Define the admittance A by

A=cAl.
Then U admits a progressing wave expansion
Uz, 1) = c(o)A?(z){H(.—_S(z))
+ [%C(O) 3,log A(0)+ -‘11- c(z)9,log A(z)
Lpo el (a1 a(s -
-5 [ 452 (0,108 A= 5(2) f{(I-S(z))}

+R(z,7)
where R(z,7)=0((r— S(z))?), and R =0 for r < S(z).

(5.1a)
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This expansion is completely standard; the general principles are explained for instance in
Courant and Hilbert, pp. 618 fl. For a detailed calculation involving the same wave equation with

different boundary conditions, see Symes (1981), Theorem A and preceding discussion.

More concisely, we collect the last two terms in (5.2), thus:

1
U(z,7) = c(0)A%(z) H(r- S(2))+ J(z, 7).
We shall not need the detailed properties of J in this paper; see however the discussion in Part 7.

A convenient way to obtain the decomposition of 8,6 U | ;=0 mentioned in Section 2 (2.5) is

through the integration-by-parts identity (Green’s Theorem)

f dzfdt [(8,wl) W wy+ (9, wy) le]'= fth(O)(&,w,8,w2+8,w28,wl) (5.3)
220

valid when w, and w; are smooth and have supports which intersect in a bounded set, and W is

the wave operator

W = pd2-0,A8,
We shall use (5.3) also with certain distribution arguments. This (ab-) use can be justified by
easy limiting arguments, which we omit.

The principal identity is obtained by setting in (5.3)

w; = 5U
wy(z,t) = U(z,7~t)

Note that w, depends on 72> 0 as a parameter.

Now (5.1), (5.2), and (5.3) imply

A0)8,6U(0,7) = [ dz [ dtd, U(z,,-—t)[ap(z)aw(z,z)-a,(m(z)a, U(z,t))]

>0

ST

= dzfdt(/i

220

(z)8(r—t-S(2))+8:J(z,7-t))

(Gp(z)(A Z(2)6(t-S(z)+82I(z.1))-0.(6A(z) 8, (A

=

() H(t-S(z)+ J(z, 1))

where we have written
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Expanding the expression in (5.4), we get
" A(0), 6U(0,7) =

1 -1
[dz [t {/{ 2(z)&(-r—t-~'S'(z))+3,.1(2,7'——t)}{&p(z)(A 2(z)6°(t- T(2))+82J(z,¢t)

1 1

_A 2(z) ez 6A(2)6" (t - S(2))- A ?(z)c-l(z)(a,aA(z)-aA(z)[ °c'((:)) -+ jl’(:)) }6(t - 5(z))
) . .o , 2
_A 2(:)(-;-6,51«.(2)%((21)1%1\(2)[% AA(Z(;) _-‘11-[ “;((z’))] )-H(t—S(z))

_8,6A()3,J(z, )~ 6A(2)02J(z, :))}

= [dz [dt {A (2)(6p(2)-¢™(2)6A(2)) 6(r—t - S(2))-67(t -5(2))

+A (2)e™(2)8,8A(2)8(r-t = S(2)) 6" (¢ - 5(z))+ A (2)c™(2)8,6A(2)8(r-t - S(2))-6(t - S(2))}

+ (remainder)

where (remainder) represents the remaining terms, which are less singular than the terms listed

explicitly in the last férmula, in a sense to be made precise below.
To compute the leading integral, introduce
X =1t-5(z)

Y =r-t-5(z)
Then

a(t, z) -1 -
at,z) _ 1 (-1 1)
(X, Y) 2 ‘¢ ¢

o(t,z) | _
det 30X, V) \ = ¢

so the integral becomes
[faxay £ { 1A (p-c26A) E(Y)E"(X) + A ¢710,6A & Y)é(X)}

L 8 (A (6p-c 1
—{ 5 aX(c:A (6p— ¢ %6A)) + 2A 6:6A}X=Y=O
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Now,
S _0:0 o0to 1 o
83X 06X dz a8xX ot 2 ‘oz

for functions depending only on z, and

A (6p-c7lon) = c(OFNL-T)

A 8, 6A = c(0)2c A3, 6A

o

~ <(0f [ . (8. & %ﬁ]

Finally, X =Y =0if t = S(z), r=25(2), i.e., 2 =S“(%), whence the integral becomes

{—cz(O) a( +—)+ ¢*(0)c —f—aTA}(S"( =)

which suggest the introduction of new independent variables

r=2J,logp , e=23,logA

or=0,%L | s —=0,%%.
p A

Regarding 8,6U(0, 1) as a functional of ér and e rather than of 6p and 6A, we obtain

A(0)3,6U(0,7) = -‘11— c%(0) ¢ (67 + be )(S"(-;—-))-i— (remainder). (5.6)

Here the terms denoted by (remainder) in (5.6) include the quantity

SA 9:A

(30088 2 sty (w0 o

together with the terms represented by (remainder) in (5.5). As there are quite a few of these

s (5.7)

latter, we shall only analyse a representative sample.

One of the terms not represented explicitly in (5.3) is

L
A2

dz [dt A (2)8(r—t-S(2)) ép(z) 82 (2, t)

o— 8

. |
- jdzfdz i’ )5(7-t-—S(z))5p(z){-i—-( (0)0, 105 A(0) + % ()7, log A(2)
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o0

& [ dtA
5(z)

l
2(

b(6)80(5) eyt

s3)
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1} e
5{ d¢ 7(% [azlosA(s)]z} §(t - S(2))

§(r—t-S(z))6p(2)82J(z,t)

s4(3)

[

0

[ dz k(z,7)ér(z)
0

1

dz A 2(z2)02J(z,7- 5(2)) 6p(2)

where we have used (5.2) and written b and k for combinations of derivatives of the reference

coefficients and of J..In particular, k is a smooth kernel.

after integration by parts in ¢ and manipulations similar to those above.

Another such term is

— [dz [dt 8,J(z,7-1) A 2(2)c*(2)6A(2)6" (t - 5(2))

. 1
— [ dz [ dt 82(z,7-2) A 2(2)c™(2) 6A(2) 6(t - S(2))

1
2

sz
= = [ dzk(z,7)6¢e(z)
0

All other such terms may be analysed in similar fashion. Moreover, the size of the integral

kernels appearing in the final expressions may be related to L%norms of various derivatives of

p,\, using energy estimates in the spirit of Symes (1985).

We summarize this analysis:

Suppose that r and ¢ (hence p and A) are given on the depth interval [0,Z]. Then

for0 < r<25(z),

A(0)3,6U(0,

7)) =

% e3(0) ¢ (6r + 6e)(S™H( L)

sHg) .
+ f dz {k.(r, 2)5r( )+ ko(r, 2) 8e(2)}

(5.8)
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where

Z
sup | k.(s,2)|, sup|k.(s,2)| < F f|rlz+|r'
0

4

D JUel*+1e”1?)
0

Here the suprema are taken over the sct

{(s,2):0< 2 < §7(3), 0= r<L28(2))

and F is a universal continuous function of two (non-negative) variables.



6. High-frequency Asymptotics of the Linearized Map in the A-precritical region

In this section we use the results on plane-wave asymptotics derived in Section 5 to give a
complete asymptotic treatment of the precritically projected perturbational point source response.

This allows us to complete the proofs of all of the major results discussed in Section 2.

For the coefficients of the Radon-transformed problem we have (recall p = |p |)

r(z = r(z)=20,logp(z) = p'(z
( »P) ( ) 8,1 gP( ) p(Z)

e(z,p) = 8. logA(z,p) =

= 3, log x(z)-a, log (1- cz(z)p2)

— [ J_l l [ (2) X(Z)p’(d)

>‘(2 p(2)
_ (22 _Mz2) Mz) (X(2) _p'(2)
+91-35 ”l o(2) 5 Xz) ,,(,)l
Introduce
2} — X (z
I(z): NO)
Then
e(z,p) = l(z)(l—cz(z)p?)‘l—r(z)t:"’(z)|§|2(1—-c2(z)132)'1
whereas

c(z) = exp%_g(l—r)

For the perturbations, we obtain

be(z,p) = 8l(2) + 21— cX(2)p?) X(2)(61(z) ~br (2)
+ (p4(1(2) = (r())(B1(2) - 6r (2)) ez )(1 - cp?)2
— (1= cX(2)p2) {1+ P )1 - X(2)p?) I (2) - (2)81(2)
—pPe(e)(1- ()P (1 + P - e (1(2) - (26 ()
Set

B(r,p) = p2c¥(z)(1- c*(z)pd) {1+ p°((2) = r(2))(1- ¢*(=)P%)7)
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Then
6r(z)+6be(z,p)=(1 +B(z,p))8l(2)+ (1 -B(z,p))ér(2) (6.1)

In using the expressions derived in the last section, we need to replace the velocity ¢ by the

vertical wave speed at incidence p:

1
i
o)

v(zr )= (Z) A(Z, )
P p P A (6.2)
= ()1 cHe)p?) ?

We remind the reader that p and X have been normalized so that

A0) = p(0) = -c(O) =1.
Thus

ol

v(0,p) = (1-p?%) 2. (6.3)

Then from (5.8), (6.2) and (6.3) we have

1
1 ———
L(br, 80)(r, p) = (1-p%) * [v((1+B)ol +(1-B)6r)}(S7(5p))
5Zp)
+ [ dz{K,(r,z,p)ér(2)+ Kilr, 2,p)61(2)}.
0
Now let T be the A-precritical region for p, ), as in Section 2:

T = {(r,p):0<7<255(p),0< p < Proa}
Define for (6r,8l)€(L?[0, Z])?

E(6r,6l)(r,p) = %(1-{") e ((1+ )6l + (1-B)r (S (5 )

s )
K(6r,8l)r,p) = { dz {K,(r,2z,p)6r(z)+ Ki(7,2,p)6l(2)}

so that

L(6r,81) = (E = K)(ér,8l)
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This is the decomposition (2.5), our second main result. The property claimed of K, namely

K(L) < Cx(E)
follows from well-known facts about (matrix) Volterra integral operators with smooth kernels,

together with bounds for E. We now establish the latter. In order to make the computations

tractable, we will first investigate the operator E with the weighted norm

1 E(67,81)] '[2,2(T,(1-p"’)dr,dp)

— <= [ [ drdp ¥(1+ B+ (1-B)6r (8 p)
T
ZA(P)

=< dp [ dro(a)(1+ Az, p))8l(2)+ (1= Az, p)br(2))

p<Vi-a? 0

where Z, is defined, as before:

Zpy=min|[Z,inf{z > 0:c(z)p = V1-4%}.
Now, Z, is monotone in p, hence has a (possibly discontinuous) monotone inverse Pa(z) defined

on 0 <z < Z. Interchanging the order of integrations, we have

z
| |E(6r,60)| |2 = fdz {Ey(z,A)60%(2)

+2E,(z,A)81(2)6r(2)+ E,. (2, A)6r*(2)}

where we define

By(,8) = ¢ f v(z,p)(L+ Bz, p))
p< P

Eu(s,8) = 3 <f dpv(z,p)(1- 8%z, p))

En(z,8) =3 e =)

Let

[I(A)= Eilgle [(Eu(z, A)I[2+2E1,(Z, A)Il z, +E,.,.(Z,A)1’,.2]

z,9+z =1

= zet[r(lllex E( )
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where \_ is the smaller eigenvalue of the matrix E(z)

_ Eﬂ Elr
E= Elr Err]
Then,
| TEGr, 80| | Far,1opanapy = #(A) 187,811 Lo 71 (6.4)

We proceed by evaluating the entries in E:

1
BueA) =5 [ dpel)i-ee)p?) T (L gt He)p)”
(L+p2U(2) - r(2))(1- e*(2)p) )"
P A2) 1
=-} _!; dooc(z)(1-c¥2)0?) 2 [1+ Y z)o*(1-c¥z)0?)
[1+0%(1(2)-r(2))1-cXz)o?) '
) 2 2 ]
_ T . S 8 _A(z)-r(2) s
4¢(z) { ’ V1-s? 1+ 1-42 H c¥(z) 1-s?
=" [ drl+(r2-1)(1+a(z)(72-1))"
4c(z)\/;’-—2(7)-
= 0 1-_Zz(z)dr(l+u(z,7'))
where

o(z) = (I(z)-r(z)) ¢7(2)
Uz, 7) = (P-1)(1-a(2)(2-1))
and +(z) = ¢(2)Pa(z) as defined earlier.

Similarly, we get
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From these expressions, it is clear that the matrix elements of E are rational functions of

1
¢(z) and (1-~%(2))?, with coeflicients which are polynomial in a(z). All these coefficients, hence

the eigenvalues, are scaled by the factor 4;{2). It follows that the condition number, which

governs relative errors, is a function of 7{z) and a(z) only, whereas the eigenvalues A (z) and

X.(z), which govern absolute errors, are additionally linear in ¢™'(z).

Suppressing the dependence on 2 and using the abbreviation m = V1 —?, we obtain for the

discriminant

1 1 1
(2B By~ B) = 4[] 12 [ A= ([ ) 2 0.

The sharp form of the Cauchy-Schwarz inequality implies that the above quantity is strictly posi-
tive, unless the functions v and 1 are collinear on the interval [m,1], As v is non-constant, this

is impossible, and we conclude that the matrix E is invertible, and so likewise the operator E. In

particular p(A) > 0.

Suppressing for the moment the scale factor __1_r___’ we obtain for the eigenvalues

4¢(z)

xi=fu+wH{uu+fﬁ4m,m”w-qmﬂg

m

To leading order in m™!

b

pi=Ju~ 17
™

7727 0’%0

m

z:= [F ~ 1,
3m® .

Thus as m —0,
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z —+00, yz ' —0

For the eigenvalues we obtain

i
Ae = [(1-m)+z]2{[1-m)+2]*-4[(1-m)z -y} *

=[(l—m)+z]{l:h\/ —1—mi—”—}

1-m)+z)?

in particular, for m small (so z >> y),

~(1em)tz _ (1-m)z-y°
A= [1-m)+ ]{1:t[1 2[(1_m)+z}2]}

Thus -
2
201_ a 40
m'
Ap~22 =) o
a=0 6.52
3m? ( )
z - y?
Ao=2 =2 foradl «.
l1+z

For the condition number of E, we obtain

VT2
= ;a m™% for a5£0
K= T+- = 1 , as m —0 (6.5b)
-1.5
- for a==0
"

This estimate (6.5) gives the maximum-aperture limiting behaviour.

Concerning the limiting behaviour as m — 1, i.e. v— 0 (narrow, aperture), clearly

u(r) = o)

SO
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and

[

B A7 [(1-m)+2y+z (1-m)-z
- (1-m)-= (1-m)-2y+z

2m [1 1]

—_ 0
~7|1 1) +00)
a.sl—m=—;-'r+0(’72),'y—*0. Thus

4
Ay~ '777"7"'0(’?)

Ao~ 0(¥)

(6.6a)
and

L

K ~ 07 ?) (6.6b)

as v— 0.

We draw a number of conclusions from these bounds, which together constitute our third

major set of results.

Suppose first that y=cP, remains well away from zero for 0<2<2Z,, so that
m =V1-~2 remains close to zero (hence A close enough to zero since m = A). Then according

to (6.4) and the estimate A\_~2 > 1 (6.5a), we have

| 1E(6r,80)] |2 > ([ 1er | |2+ [ 18l]]%).
Hence, we have absolute stability for the linear map involving plane waves in the precritical
region, provided that the slowness aperture remains near its maximal value, in the language of

Section 3.

-

Concerning spectral bounds for E, we can be somewhat more precise by localizing the per-

turbations 6r, 8. If
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supp br | supp 6l C (21,29,

then

| |E(r,8)| | < sup (0 (B(2)) 21 < 2 < 23} | |(6r,80) ||
and
| |E(6r,80)| | = inf{A(E(2)):21 < z < 2o} | |(6r,80)] |
Since E and its spectrum depend smoothly on z, we conclude that for perturbations localized near

z, k(E) ~ k(E(z2)).

In figures (8a-f) we have plotted the condition number of E as a function of the product

~=c(z)Pp(z) for several values of a(z). Note that

a(z) = ¢™*(z)(I(z)-r(2))

= ¢z o M
( )azl g p(z)

= 2¢3(z) ¢ " (2)
measures the slope of the local wave velocity at depth z.

From the plots (and from the asymptotics of displays (6.5), (6.6)) we conclude that for per-
turbations localized near z, for fixed o the condition number x(E) attains an optimal value

Kopt(@) at some optimal y= (). For a=0, K,y =28 1is attained at -,y == .85.

For a0, apparently the interval of 4 for which « is close to optimal is smaller than for
a =0 (see figures 8a-f). This is easy to understand, as when a{zo) 740, there is a point z close to
2o for which ¢(z) > ¢(20). Thus a smaller localized perturbation in ¢ is needed to make a near-

critical p post-critical for z near zq than is the case if ¢ has no slope at zp.

We see that k — oo while \_—2 as v— 1, i.e. as the slowness aperture approaches the full
critical range. This appears somewhat counterintuitive: the informatién content seems to
degrade as more data is added! In fact, this ill-conditioning near critical incidence reflects the
lack of diflerentiability of the map F, as men}tioned in the introduction -- or, otherwise put, the
unboundedness of DF, or the “failure of the Born approximation.” The physical source of the

explosion is the phase shift caused by small velocity perturbations, as mentioned in Section 3.
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The fact that A_—2 hints that some perturbations in p, A\ do cause well-behaved data perturba-

- ‘tions; we shall see below that these are exactly the perturbations preserving the velocity.

On the other hand, the fact that x — co as v— 0 also tells us that some perturbations are
better represented than others for narrow slowness aperture. From (6.6), A\ =0(1-m)=0() for

small 4. If we weight the norm used to measure E(8r,8!) by the local aperture, i.e.

HSL

LAT 7 HSTHZN0 - p%) dp d7)

) (6.7)
- fj; dp dT (S FN1-2) 11 (P, )|

then the normal operator for E becomes the matrix multiplication operator

7(2)E(2)
and now X is uniformly bounded away from zero, whereas \_=0(~). If we take A close enough
to 1, then P, becomes independent of z (i.e. the entire aperture is precritical - the case covered
by the work of Coen and others). The limit A —1 corresponds to y— 0, and in this limit one
component of the perturbation in p,\ corresponding to A, is perfectly represented in the data,

whereas an orthogonal component, corresponding to A_— 0, is not represented at all.

For more information on these limiting cases we must make use of the eigenvectors of E.

For y— 1 (i.e. m —0).

1 _:1_.
E 3m® 3m?d o 1 )
P~ + ———
__1 i me

3m® 3m?3

(for a == 0; similar conclusions for a£0 ) so that the eigenvector @, corresponding to A, is

oom gl o am )

Thus perturbations with ér =6l are the only ones which do not yield very large data pertur-

bations near critical angle. Since .
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z

e(z) = expf(r -1)

0

2
Sc(z) = lf(&r—&l)} e(z)
0
these are exactly those perturbations which do not yield a perturbation in the velocity. This pre-

cisely justifies our earlier (part 3) assertion that velocity perturbations make this problem ill-

conditioned for large apertures, because of the possible transition from pre- to post-critical

incidence.

In the other direction, for v— 0, hence m — 1,the expression preceding (6.6) shows that

1 1 1
Q+—7§'(1), Q W(‘l]
i.e. after scaling by 4}, the perturbations with ér - é/ =0 produce vanishing data perturbations

as y— 0. These are precisely the perturbations which fix the admittance

11
A = p2N? =71)-expfr+l

A = (6r=6l) A

As the scaled limit yv— 0 is essentially the problem of a single normally incident plane wave,
this is an unsurprising result: it is well-known that only the admittance or an equivalent quantity

can be determined from plane wave data at normal incidence (see e.g. Bamberger et al. (1979)).

Finally, suppose that we constrain the problem by a relation between p and X. In fact, this
is quite reasonable in many applications. A widely used phenomenological relation in exploration
geophysics is, for instance,

1 .
p~ket . _ (6.8)

which seems to hold for a wide range of sedimentary rocks with suitable constant k (see Gardner

et al. (1974)).

Accordingly, suppose :

log p(:) = G (log ¢(z)) (6.9)
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identically in E. Then

bp , 5
- (log c)

op .
8r=6,—p-—8, G logc)-—

where Gy(c) is a combination of G, ¢, and their derivatives.

Since 8¢ is an integral of ér—él, the second summand plays no role in the leading order

asymptotics. To higilest order in frequency, then, (6.9) is equivalent to

5r = %G'(lag ¢)(61 - 6r)

meaning that

if G’ (log ¢)50, else

In either case, the projection onto the “good” eigenvector Vo (1, l)T is nonzero provided that

G (log ¢)# -1

For the sedimentary relation (6.8), G* == —, so the acoustic parameters are well-determined

N

in that case by the scaled data (6.7), even when the aperture becomes small.
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7. Implications for the Nonlincar Inverse Problem

In this section we discuss the consequences of our high-frequency perturbational analysis for

the nonlinear inverse problem, and for the design of numerical algorithms. We shall be very brief:
extended discussion will appear elsewhere.

To begin with, we note that the precritical projection of the linearized map, L ,is an isomor-
phism onto its range. That the solution map for the plane-wave equations, L, is an isomorphism,

follows from the decomposition

L=F+K,
the Volterra nature of K, and the isomorphic character of E, proved in the last section. On the

other hand

L =L-M
and the estimates established for M in section 4 show that M is compact (in fact, smoothing).
Therefore L is an isomorphism onto its range if and only if L (6p, 6X) =0 implies fp=48\=0.
The injectivity of L follows from the fact that, for small p, the truncated Radon transform is the
same as the untruncated transform inside the double light cone, as pointed out in section 4. That

is, for small p

L (8p,8M)(r,p) = L(ép,EN)(r,p)

However L is injective, even when restricted to a small range of p’s (this is just the linearized

version of Coen’s uniqueness theorem). Thus L is injective, and so it is an isomorphism.

We consider next the case of non-impulsive point sources. Sources distributed also in z may

be treated similarly.

Thus suppose that the boundary condition is replaced by

£O0) 7 u(z,0,¢) = §(z)w(t)

Then the time-invariance of the equation of moticn implies that the precritical projection of the

perturbational response is given by

”
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=w *(E+K+ M)

. -From the last section,

E(sr,81)(r,p) = (c,6r + i61)(S™ (5 p), p)
for suitable functions e,(z,p), ¢(z,p). Thus

(w * E)ér,6l)(r, p)
1 (7.1)

— 2 [ dz w(r-25(z,p))e (=) (1= cX2)p)2 e, (2, p)67 () + er(z, p )61 2)]
The general analysis of operators such as (7.1) is beyond the scope of this article. Suppose

however that §r and 8z are supported in a region [z9-6z, 29+ 6z] on which p, ), hence ¢, are con- |

stant. Then for |z-zo| < 6z

V1-c¥(z0)p*

S(z,p) = S(20,p)+ ————(2-29)
¢(z0)

and we obtain

(w * E)6r,8l)r,p) =c (p)w , *ér(r)+ ¢ i(p)w , *8l(r)

where ¢ ,, ¢ ; are coefficients in (7.1) evaluated at z = z;, and

V1-cX(z0)p" .
¢(2o)

If, as is typical in seismology and other applications, w has a passband. i.e. a range

w (t)= wl

0, < |w| £, of frequencies for which

| (w)| 2k >0
0, < Jwl £Q
then the passband for w , has limits

() o i,
V1-e¥(z0)p? o b 7

If the lower bandlimit of wy, i.e. ;, is sufficiently high, then w # K and w * M are small opera-
tors, so for perturbations ér, 6§l supported near zy, whose Fourier transforms have most of their

energy in the passbands (7.2),the size of w # L (67, 61) will bound (ér, &!).
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To make these considerations precise requires relations between the bandlimits and the
smoothing properties of K and M, and also arguments which give “passband’’ results similar to

those above when ¢ is nonconstant on the supports of &p, 6. These matters will be discussed else-

where.

Remark. One could paraphrase this result as follows: ‘“The inverse problem is well-posed in the
passband of the data.” (This paraphrase is due to Professor Norman Bleistein.) One must be
rather careful in the interpretation of this paraphrase, however. It applies to the linearized prob-
lem only. Thus the reference profiles (usually taken to be the out-of-passband trends in the den-
sity and velocity) must be correct in order for small bandlimited data perturbations to correspond
to small bandlimited parameter changes. This is ok;vious, as otherwise even the ‘‘passbands” (7.2)
in which the perturbations (6r,él) are well-determined are not even necessarily the same as they

may depend explicitly on the out-of-passband components of the velocity (i.e. the trends).

One would like to pass directly from well-posedness results concerning the linearized prob-
lem to similar statements about the nonlinear inverse problem, via the Implicit Mapping
Theorem. Indeed, under the suitable assumptions concerning the reference profiles (ro, /o have
square-integrable derivatives) the linearized map DF actually is the Frechet derivative of F (res-
tricted, of course, to precritical data). Unfortunately, the lower bound for DF is in a weaker
norm, so the Implicit Mapping Theorem does not apply. In fact, the nonlinear inverse problem is
quite ill-posed, and must be set as an optimization with the additional smoothness conditions on
r,! imposed as a priori bounds. To conclude that such problems have stable solutions, one also
needs control over the second derivative D2F, which implies even more a priori smoothness (con-

strained upon the second derivatives of r,/ in the mean-square sense).

The necessary machinery for establishing well-posed versions of the Anonlinear problem is
sketched in Symes (1985b), which treats the recovery of the velocity from plane-wave data at a
single (precritical) incidence, in the presence of known density. The arguments given there carry
over with inessential modifications to the layered acoustic inverse problem. These arguments

involve estimation of the second derivative of the precritically projected map which in turn
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requires estimates of the remainder in the progressing wave expansion (5.8).

For numerical solution of the linearized precritically projected problem

Lr,6l)=g¢

or a least-squares version appropriate for inconsistent data:

min | | L (6r,60)-g | | }oz
a version of conjugate gradient-iteration seems especially attractive. Note that matrix methods
are essentially useless for these problems, as access to the matrix elements involves computing the
perturbational acoustic field over an entire basis of perturbations in p and . One would hope to

obtain good estimates of 6p, 6\ at far less cost.

On the other hand, a very good approximate inverse is available at high frequencies. Set

1
C = (E'E)?
(This square root is well-defined by the spectral theorem, as E°E is self-adjoint positive-definite).

Then

clL *L)c?
= CYE'E+E'(K+M)+(K+M)'E+(K+M)(K+ M) c?
=I+K,
where K, is compact, as follows from the nature of K and M. Thus the preconditioned conjugate
gradient method (see e.g. Golub and Van Loan (1983), secton 10.3) with (E°E)™ as precondition-

ing matrix is superlinearly convergent (Daniels (1970), section 2).

To carry out such a preconditioned iteration, it is merely necessary to solve equations such

(E*E)(6r,61) = (67, 6])
This is trivial, however, as E°E is simply the multiplication operator by the matrix E of section
6. Thus our problem can be effectively preconditioned by imversion of a 2X2 matrix (-valued

function)!
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In general, the perturbation K is merely compact, not small, and the precénditioned prob-
* lem is guaranteed to be well-conditioned only on the complement of some finite -(but possibly
large -) dimensional subspace. On the other hand, with band-limited (ponimptﬂsive) sources and
appropriate bandlimits on ér,6!, K and M, hence K, may be regarded as small. Thus we expect

the p.c.g. procedure to be very effective for solution of appropriately regularized bandlimited

problems.

Note that Clayton and Stolt (1981) suggest (essentially) that use of (E°E)'E”, composed
with suitable bandlimiting filters, should yield an adequate least-squares solution. This amounts
to the first step of preconditioned conjugate gradients. We expect that further steps will improve
the output at inberm;diate frequencies. This is unimportant when the background (r,!) is accu-
rate and the aim is the location of high-frequency energy (‘‘migration problem”), but is crucial

when attempting to make genuine changes in the background in solving the nonlinear problem.

The nonlinear version of our problem should be phrased as follows:

min | |Tla(p, N(F(e,N)=9)| |2 (7.3)
where TT5(p, \) denotes the precritical projector as defined in section 4. The most notable feature
of this problem is that the definition of the data, i.e. the projection II, depends on p, A. That is,

the very definition of “precritical” depends on the reference medium.

Here the importance of allowing the “margin of safety” A > 0 in the definition of the pre-
critical data set is manifest. In fact, ITo(p,)\) is still a preeritical projector for p, A in an entire
neighborhood of pg,A\g. This allows us to replace the functional (7.3) by an appropriate quadratic

model and to use techniques from smooth optimization.

Unfortunately, a large initial error in p,\ lezds to a large initial error in the projector IL.
Such a substantial projection error makes local improvement of (7.3) very difficult. The way out
of this impasse is to localize the problem in space-time. On the one hand, the smoothness con-
straints on p,\ necessary for linearization to be valid, allow us to eztrapolate the velocity ¢ from
the surface to a small depth without significant error. Siﬁce small depths correspond to small

times, we can predict the restriction of I, to smal 7 with confidence. The restricted residual can
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then be made small, which yields an estimate of ¢ which is fmproved to small depth. Once again,
smoothness allows us to estimate ¢ to a somewhat larger depth, reliably compute I1, for a some-

what greater range of 7, and obtain substantial decrease in the restricted residual.

It is possible to show that this “layer stripping’ process succeeds, in computing a good
approximate solution, provided that the residual at the minimum is suitably small. (Otherwise, it

computes a local minimum, which is all one can expect in large residual problems).

A similar “layer stripping” nonlinear least-squares procedure is described in Symes (1985b)

for the problem of recovering ¢ (constant p) from normal incidence plade-wave data.

As indicated abeve, the bandlimited linearized problem, roughly speaking, yields informa- °
tion only about the components of §p, é\ in a corre.sponding “passband.” For the nonlinear prob-
lem, this means that the out-of-passband components at the solution must be given with consider-
able accuracy. As the “passband” itself depends on the velocity structure, this is unlikely to be

the case for an initial guess.

It has often been said that the redundancy of multidimensional data would overcome the
lack of low-frequency content in seismic data. A counterexample to this supposition is presented
in Bube, Santosa, and Symes (1985). This counterexample involves constant (and known) back-
ground velocity, so that the “passband” is also known. On the other hand, numerical experi-
ments due to Chavent et al. (1985) and McAuley (1985) indicate that high-frequency surface data
determines a layered velocity profile, including its trends (i.e. “‘out-of-band” components). These
calculations thus appear to combine the velocity analysis procedure of exploration seismology with
the solution of the inverse problem. Understanding this relationship constitutes the most impor-

tant currently open problem in the study of inverse problems in wave propagation.



8. Conclusion

We have shown that the high-frequency precritical surface response of an acoustic wavefield
to perturbations in the acoustic parameters p,\, may be analysed by means of the truncated
Radon transform. We have used the plane-wave equations, satisfied by the Radon-transformed
field up to a smooth error, to compute the spectral properties of the perturbational relationship.
We have shown that this relationship is well-conditioned in the absence of low-velocity zones, but
that the presence of such zones leads to unavoidable instability, which we have quantified pre-
cisely. Finally, we have used this detailed picture of the response to suggest analytical and com-

putational approaches to the inverse problem of identifying the acoustic parameters from the

response.
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Appendiz A. Derivation of the Modified Plane Wave Equations

Temporarily define U by

ﬁ(p,z,r) = fdz n(z,z,7+pz,p)u(z,z,7+p z)
Then for 1=1,2

p(z)a,? U ,'(P,Z,T)

= [dz p{nafu;+28n73:u.'+3?n'u;}(z,2,r+p'z,p)
= fdz{kna,'v‘-u +p(28,r)8,u,-+6,2n'u,-)}(z,z,1'+p'z,p)
= Xz) [ dz n(z,z,f+p'z,p){az‘[vu(z,z,T+p‘z')]-p.- d|vu(z,z,7-p z)

+p(z)f dz (20:n0,y; + 0wz, 2,7+ p°2,p)

=-Mz) [ dz (3. n(z,z,7+pz,p)+n(z, 2,7+ pz,p)p; 5:)
[(3,1—})13,)(111(2,z,1’+p'z))+(a,z—pzaf)(ug(z,z,T+p'z))

+8,u3(z,z,7+p'z)]+p(z)f dz (28,3, u; + 02y v )z, 2,7+ p z,p)
2
=X\z) Y [dz {8,'_6,J(n(z,z,r+y-z,p)
i=1
+((az,v'l(2,zyT+P'z,P)Pj+3z]-7l('~',2yT+P'37P)P:‘)ar
+17(I,Z,T+p'z,p)p.~pj(9,2} ilij,Z,T"}'p‘I)
+p(z) [ dz (20¢nB¢u; + 3inw; )z, 2,7+ p z,P)

_X(Z)f dz{az‘ﬂ(z:Z,T'*P‘I;P)*"?(z:Z,T+P"-"yP)P.'8f}

8,u3(z,z,7',+p':r)
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+p(z) [ dz (28,8, u; +8u)z,2,7—pz,p)

2 -
= )\(Z) E pinQaTQU J'(p;z:T)

J=1

~-X(2)p; 8,0, U 3

+K,-(p,z,1')

whereby K, and K, are defined.

This system of equations may be solved for 82U, 8,2U,:

- Ap . “hpl N
anUI _ le . 8,0, T ¢+ p P22 ‘- P1P22 K,
p—X\p plo-Xp?) plp-2p°)
- Ap2 - Ap1p2 p~Xpi
62U g == 8,32U3+ -+ Kg
" p-N2py plo->p%) " plp-Xp?)
Similarly,

p(2)82 U 3(p,2,7)

- fd:cn(z,z,T+p'z,p)B,)\(z){(a,l—pla,)(ul(z,z,1'+p'z))
+(8:,- PO )uz, 2,7+ pz))
+3,u3(z,z,r+p'z)}
-’.—p(z)f dz (28,n0,us+ 8fn us)(z, 2,7+ p'z,p)
=-[dz [(azln(z,z,f+p‘z,p)+n(z,:,f—p'z,p)pxaf)
8, (M2)uy(z, 2,7+ pz)+ @0z, 2,7+ p 2. p)+

n(z,z,7+pz,p)pe8)3,(M2)us(z, 2,7+ p 'r))]

(A1)

(A.2)
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+az>‘(z)az 03(?;277)
—fdzaz(k(z)ua(z,z,T+p'z)6,n(z,z,r+p-z,p))
+p(2) [ dz (20,18, us+ O us)(z, 2,7+ p'z,p)

2 -
=-Y) 8, Mz2)p;0,U ;(p,z2,7)
J=1
+8,M2)8. Us(p,2,7)

+H3(p,Z,T)

with

Hy(p,z,7) =
-fdz {[a,ln(z,z,r+ pz,p)0.(M2)uy(z, 2,7+ p-z)
+[8z,m(z, 2,7+ p2,p)0:(N2) usx(z, 2,7+ p2))]
+8,(Mz) uy(z,z,7+p2))8, n(z,z,r+p'z,p)}

p(z) [ dz (20,9-8,us+8%nus)(z,z, 7+ p 2, p)

Integrate (A.2) in 7, using the vanishing of U for r<< 0 to obtain 8,U;, 1+ =1,2, in terms

of 8,U; and K, K,, then substitute in {A.1) to obtain

p8.2Us = 8,A8,Us+ H
with

Az, p) = Nz)(1-c%p?)?
and

~~
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T
H = Hy+ 28, ((p-2p?)" [ d7’(p1 K1+ p2K>)

With U « U, these are the modified plane-wave equations of section 4.
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Appendiz B. Asymptotic Expansion of the Reflected Wave

We derive an asymptotic expansion of the form

0 .
fu(z,z,t)~ 1 3] bk(z,z,t)f_k} oY lent)
k=-1

for (z, z, t) interior to the light cone, where ¢, is a solution of the eikonal equation

plat¢r |2 = )‘|V¢r IQ
associated to a reflected ray family, and b, d, are slowly varying amplitudes which solve certain

transport equations.

Actually we shall simplify the calculations immensely by computing a similar expansion for

the perturbation év in the pressure field

v=AT'Y
which satisfies the scalar wave equation
1 v = V'l AV
A p
v=2_§(z,t) onz=0
v=20 t << 0
and its perturbational version
1 2 1 X 2 5p
{Tat -V';V} by = - ?at‘VFV v

Sv=0 z=0 or t<<0

From the expansion for év we can pass immediately to an expansion for u wvia the relations
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pofu = Qv

pOfu = gbv-épdfu

= vév—a—‘OVU
p

To simplify the calculations still further we will assume that p=1 and ép =20, and adopt as
in section 4

% = x(z)e'*

where x is 2 smooth envelope function, which is assumed to vanish for small z.
An essential restriction in this derivation is that the ray family emanating from the space-

time origin develops no caustics. Under this condition, Hadamard’s construction (Courant and
Hilbert, (1962, vol. II, pp. 740 fl.) and the method of images yields the progressing wave expansion
v = a_,&'(t —¢,:)+ agb(t -d);)+ GJH(t ~¢;)

where the a’s are certain explicit functionals of X.

t e t .
Define w =f ds f drv to be the second time primitive of v, likewise 5w=f ds f drév.

Then

(8 -2\v)bw = é;— v

(B.1)
Sw=0 forz=0 or t<<0
We adopt for §w the ansatz
bw = ¢ (¢ —11).-)5"“' +e¢ H(t -x,,“,-)e'-w' + e H(t —1;)e's
where ¢, ¢, €, are asymptotic series in g,
Nk
co == Y, ¢5(ig)
k=1
- k
¢y = 3, ci(ig) . (B2)
k=0
Ak £
er = Y, ei(ve)

»~
I
[
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and cg is independent of t. Substitution of the ansatz in the differential equation (B.1) results in

the condition

(a6 (t =v;) + agh(t )+ a H(t - ;) x e’
= {[2(8, + AT V) e1 + AV €1 + 20ND Yy e ] 8(t - )+ (87 -A7D)e,~2i¢N0, ¢,
+ e | H(t - ;) e’
+{[2ATY: T co+ AV i co+ 208 b, + ATV VP, )eo] 67 (8 —1y)
+[-ATPeo+ 2 + AVt T)e 1+ AV €,
+ (876, -\ V*9, )eo+ 22V, T co (B3)
+2(0: ¢, + AV "V, )c1)
~((8:¢: -2 |96, |*)eo 8(t - i)
+[(@2- 21 +id(87¢, -2, )ey
+2(8, 6,8, - \T8, V1) - (B b N T, |Dea) H(t - ) e ™

where we have used the eikonal equation for ¥; to eliminate §” ° terms.

The condition that a distribution of the form

S a6 (t=vi)+ S ob(t —i) + 1 H(t —;)

vanish is

fa =0
on t=¢;
fo-8f1 =0

S1=0 t >4

(B.4)

The first condition implies that for t = ;

z—¢,)

xa_te' = AU Veo+ AV co+ 20(8: 8, + AV T, )eo on {t =1}

We substitute for ¢ its assumed asymptotic expansion (B.2) and obtain

xae T = 28,6, + ATUve,)ed +0(¢) for t =1 (B.5)

from which we conclude that ¢, =2z when t =1, i.e.

¢,(I,Z,‘§/)|',(I,Z)) =z

Differentiating this relation, we obtain

Vo, + 08,6, 00 =e, for t=1

~~
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where ¢, = (0,1)7. Thus

VYV, = 8,9; =04, | V¥ |2
=9,¥% =Xt 0,4,

using the eikonal equation for ¢;. Thus

09, + A\VY;'Vo, = N,v; > 0

This last holds by virtue of the Hamilton-Jacobi relation

z = -cgaz(t-"rbi)

= >‘az¢|'

valid along the rays associated to the phase t-1;, and the assumed absence of turning points (i.e.

i >0).

Consequently we can solve (B.5) for ¢g:

cd = (200,¢;) xa., (B.6)
The remaining terms in (B.5) constitute a recursion formula for the coefficients of ¢q: for k 2 1,

t= ¢|’ ’
eh*l = — (278, 9;)(2AT Y ve§ + AV ch) (B.7)
Looking forward, we see that the quantity

(8:¢, -2 |ve, |*

occurs as the coeffient of ¢ in both 6 and H-terms. It seems reasonable to require that this vanish

identically, i.e. require that ¢, satisfy the eikonal equation. This justifies our calling ¢, the

reflected phase.
In interpreting the second condition in (B.4), we take advantage of hindsight to see that the
values of the coefficients of ¢, are determined directly in terms of the coefficient a¢; and the

envelope function x. This will be shown in the last stages of the calculation. Accordingly we

regard e, as known at this point. Thus the second condition (B.4) implies
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AG2eq+ 1¢Beg+ 2804, 70, Y; ¢o
+ Ticy+ 2008, ¢:¢, = xa, (B.8)
=200 + 2VYi Ve - AV Y e+ iND, Y ¢y)

where

B = (0% -2’6,)-20,(3:¢, + AV 'V, ) - 0: 6, AV; - 2)0,

and

T; = 2(8, + A\ v¥; V) + V2

so that T is the transport operator along the incident ray family.

Since

) S
ey =3, ci(ig)

k=0

the highest order term (0)(¢)) in (B.8) gives

2xaz¢ic§) = 2at¢r>‘az¢icc}

SO

el = (8,¢,)ed on {t =1} (B.9)
The next term (0(1)) gives

Bed ~208,6,8,9icd + Tic{ + 209, ¢} = xa,

which determines ¢ on {t =1;}.
The remaining terms in (B.8) yield the recursion

AV%cé + Bef*! —208,6,0, ¢; ck+?
+ Tiek + 200, ¢kt = 23,9 et !
-2(8; + A 7)ek AT ek

which determines the remaining coeflicients of ¢; on {t =1;}.

The last condition in (B.4) is

{(6F-AT%)er++isT,e1)e™™
+{(82-2ve;~2iNT, e, + Phe, et (B.10)
= axe'" i {t>%)
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Here

Tr = 2(at¢r'at -)‘v¢rV) + (at2¢r _>‘v2¢7)
is the transport operator along the reflected ray family, i.e. the ray family associated to the

reflected phase ¢,. The ray equations are

t = 8,0,
k = -\ ax.or
z = -)d,¢,

We shall see that these rays are precisely those given by the equal-angles law of reflection, applied
to theincident rays (associated with ;) at a horizontal interface.

We temporarily denote (z,2z)—z. Then:

E4
along the incident rays

T = AV
along the reflected rays
z = —')‘V,ér

(The sign for the incident rays results from our definition of ¢ —1; as the incident phase).

The eikonal equations read

>\|V¢.|2= 1

A wé, |2 =108:¢.|°

Thus the unit velocity vectors along the incident and reflected rays are given respectively by

1 1
v = >\2V¢; ’ vy = ~-X 2(8t¢r)-1v¢r
Recall that the first condition (B.4) implied that o, =2z on the incident wavefront {t= 1},
whence by differentiation

v¢r +6t¢r"7¢i = €

1 1
= A Qat‘:)rvi‘)‘ 2at.ér'vr
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Thus v, - v; is parallel to ¢, at the incident wavefront (¢ =1);}, where the incident and reflected
rays intersect. This is exactly the equal-angles law of reflection. Note that the normal to the

incident wavefront {¢t =1;} is

(lr"vtﬁi)

whereas the velocity vector along the reflected ray family is

(at ¢r7 —XV%)

Thus the scalar product is

Ot dr + AVY;' VP, = N0,9%; > 0
as noted above. Thus the reflected rays are transverse to the incident wavefront, as a conse-

quence of the absence of turning points.

We return to (B.10). The highest order term in (B.10) (0(¢)) is
T,c =0 (B.11)
which is just the usual transport equation along the reflected rays. The initial conditions on

{t =1,} are given by (B.9). As noted above, the reflected rays are transverse to {¢t =1}, so

that the initial value problem (B.11), (B.9) has a unique solution.

The transport operator T, is a first-order operator along rays. For a suitable choice of

parameter 7, we can write

We select 7 so that 7=0 defines a point on {t =1;}. We regard all of the functionsin (B.10),

restricted to a particular reflected ray, as functions of 7, and write

®(7) = 2(7) - ¢+ (t(7),2(7), (7))
Then (B.10) is solved for ¢; by

o~
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¢y(r) = exp(—{m)cl(O)

T

+ (5¢) fdvexp( [ m}{(w?-87)ey + (A0 -8)e,

4

+ 2000, 61+ (10N ey + a1’

(B.12)

Note that

_dd—q‘:- = (at¢r at k‘7‘)&"7)(2 —d’r) = _>‘al¢'

Since no turning points occur along the incident ray, a simple symmetry argument shows
that no turning point occurs along the deflected ray either, at least until after it reflects from the

free surface. Thus ®* 5£0, and we can write

= f oe .-fm ___.—-f(o) .._d_ isd{o)
[aoert-m) a7y 307 ©
= T‘é%%exp{i@(a)—fm} =

o

_-l_f oex _fm __/_ﬂ. C‘.ﬁb(")
is{;d p(£ )T'(é’(o)]

The last summand is an integral of the same form. Applying this rule recursively and using

®(0) =0 (since t =0 defines a point of {t = PHIi} and $=72 -4,),

fdaexp(-f m) [ (c)e )

S & (0
k=0

2l
FEomPIACREL

where
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i__';  (ig* = 55 exp(-[ m) et 09

k=0

5 fdoexp( [ -2t o)) s

+—-—'fo— S TE(AT2=82)e, + 2iAd, €1 + (1 hey + ayx)()(ie)y* (B.13)
(1%@ () ¥=o

exp(- fm) -
- (‘S')2¢ g F(NE-02)e; + 2108, e+ (19N e  + a x)(0)(i¢)*

The coefficient of ¢*S® must vanish identically. Inserting the asymptotic expansion of e, we

obtain

o= Y TH(Aw?-8)) E "’+2>\Eac{ AR
k=0 i=2 i=2
oo
X Y e{ (i P+ ax)(ig)*
=2

= 3 (T*(ex)+ 2 TEI+2(Ne{) + E 7+ (208, ¢{)

k=0 J= =2
+ E THI(Ng?-8P)e{ )(ig)*
I=2

For k =0, we obtain

a,x+Xef =0
which determines e?.
For k =1,
Tayx + T(hef)+ xef +209,ef =0 -

which determines ¢J.

For k > 2,
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. E+l .
0 = TH(a;x)+ Ned*2 + 3 7572 Xef

=2
k31 ok .
+ 3 PG, ef + Y T (AwP-87)e]
y=2 §=2
which determines ¢¥*2. Thus ¢, is completely determined in terms of a,x and the operator T*,

as promised earlier.

In particular, the values of ¢* on r=0 are determined. Since the values of ¢f on {t =1},
j.e. 7==0, have already been determined (B.8, B.9, and following), we can rewrite B.13 as
oo 0o T 7
Y (gt = Y [doexp(- [ m)((Aw?-8D)ef @)+ -
k=0 k=10 o
where the ellipses represent terms already determined. This equation is in obvious recursive form; a

since ¢? is already determined (B.11), the rest of the coeflicients in ¢, follows.

Finally, we extract the desired series for §u by taking the gradient, as indicated above.



Figure 1

{a) Velocity profile with low-velocity zones

(b) A-precritical slowness P, as function of depth z, A =01

(c) A-precritical two-way time S as function of slowness p

(d) A-precritical velocity-slowness product 7y as function of depth 2. Note that v <<1
in low-velocity zones, otherwise 4== 1. High-frequency features are caused by
numerical interpolation errors.

(¢) A-precritical depth Z 4 as function of slowness p

Figure 2
Construction of cutoff radii for the truncated Radon transform at slowness p.

Figure 3

The aperture of the ray depicted is the angle a. The slowness aperture is the depth-dependent an-
gle subtended with the verticle, as illustrated by angle b.

Figure 4

At the indicated depths, the various rays share the same slowness aperture. The aperture required
to achieve a given slowness aperture thus depends on depth.

Figure 5
Arrival times vs. offset for a layer over a half-space:

direct arrival

head wave front

posteritical reflections

(section of) integration domain for Radon integral: t =7+p-2

W

a
b
¢
d

As the integration domain has an unbounded intersection with the head-wave region (above line
b), the Radon integral is logarithmically divergent, even though (7, p) is a precritical pair.

~—r

Figure 6

o R
(]
e,

+Dalp)- 1 X(2,9)1}

-

Figure 7

If the reflecting depth z, satisfies z, < Z(p), then any point (2,0, t) on the reflected ray with
|z ] <2|X(zent, )| satisfies [z ] < 2XA(p).

~s



Figure 8

Eigenvalues M_(lambda min), A, (lambda maz), and condition number (condition) of E(z) plot-
ted as function of  for various values of afz):

(a) a=0
(b) a=.1
(¢) a=1
(d) =10
() a=-1
(f) a=-10
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