


Contemporary
Abstract Algebra




BROOKS/COLE

1 & CENGAGE Learning’

Contemporary Abstract Algebra,
Seventh Edition
Joseph A. Gallian

VP/Editor-in-Chief: Michelle Julet
Publisher: Richard Stratton

Senior Sponsoring Editor: Molly Taylor
Associate Editor: Daniel Seibert

Editorial Assistant: Shaylin Walsh
Managing Media Editor: Sam Subity
Senior Content Manager: Maren Kunert
Executive Marketing Manager: Joe Rogove
Marketing Specialist: Ashley Pickering

Marketing Communications Manager:
Mary Anne Payumo

Senior Content Project Manager, Editorial
Production: Tamela Ambush

Senior Manufacturing Coordinator: Diane
Gibbons

Senior Rights Acquisition Account Manager:

Katie Huha

Production Service: Matrix Productions Inc.

Text Designer: Ellen Pettengell Design
Photo Researcher: Lisa Jelly Smith
Cover Designer: Elise Vandergriff
Cover Image: © Anne M. Burns

Compositor: Pre-PressPMG

Printed in the United States of America

123456712 11 10 09 08

© 2010, 2006 Brooks/Cole, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the
copyright herein may be reproduced, transmitted, stored, or
used in any form or by any means graphic, electronic, or
mechanical, including but not limited to photocopying,
recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval
systems, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without the prior
written permission of the publisher.

For product information and
technology assistance, contact us at Cengage Learning
Customer & Sales Support, 1-800-354-9706

For permission to use material from this text
or product, submit all requests online at
www.cengage.com/permissions. Further permissions
questions can be e-mailed to
permissionrequest@cengage.com.

Library of Congress Control Number: 2008940386

Student Edition:
ISBN-13: 978-0-547-16509-7

ISBN-10: 0-547-16509-9

Brooks/Cole

10 Davis Drive

Belmont, CA 94002-3098
USA

Cengage Learning is a leading provider of customized
learning solutions with office locations around the globe,
including Singapore, the United Kingdom, Australia, Mexico,
Brazil, and Japan. Locate your local office at
www.cengage.com/international.

Cengage Learning products are represented in Canada
by Nelson Education, Ltd.

To learn more about Brooks/Cole, visit
www.cengage.com/brookscole.

Purchase any of our products at your local college store or at
our preferred online store www.ichapters.com.


www.cengage.com/permissions
www.ichapters.com
www.cengage.com/international
www.cengage.com/brookscole

Contents

PART 1

PART 2

Preface xi

Integers and Equivalence Relations 1

0 Preliminaries 3
Properties of Integers 3 | Modular Arithmetic 7 |
Mathematical Induction 12 | Equivalence Relations 15 |
Functions (Mappings) 18
Exercises 21

Computer Exercises 25

Groups 27

1 Introduction to Groups 29
Symmetries of a Square 29 | The Dihedral Groups 32

Exercises 35
Biography of Niels Abel 39

2 Groups 40
Definition and Examples of Groups 40 | Elementary
Properties of Groups 48 | Historical Note 51
Exercises 52

Computer Exercises 55

3 Finite Groups; Subgroups 57
Terminology and Notation 57 | Subgroup Tests 58 |
Examples of Subgroups 61
Exercises 64

Computer Exercises 70



Contents

4 Cyclic Groups 72
Properties of Cyclic Groups 72 | Classification of Subgroups
of Cyclic Groups 77
Exercises 81
Computer Exercises 86
Biography of J. J. Sylvester 89
Supplementary Exercises for Chapters 1-4 91

b Permutation Groups 95
Definition and Notation 95 | Cycle Notation 98 | Properties of
Permutations 100 | A Check Digit Scheme Based on D, 110
Exercises 113
Computer Exercises 118

Biography of Augustin Cauchy 121

6 Isomorphisms 122
Motivation 122 | Definition and Examples 122 | Cayley’s
Theorem 126 | Properties of Isomorphisms 128 |
Automorphisms 129
Exercises 133
Computer Exercise 136
Biography of Arthur Cayley 137

7 Cosets and Lagrange’s Theorem 138
Properties of Cosets 138 | Lagrange’s Theorem and
Consequences 141 | An Application of Cosets to Permutation
Groups 145 | The Rotation Group of a Cube and a Soccer Ball 146
Exercises 149
Computer Exercise 153
Biography of Joseph Lagrange 154

8 External Direct Products 155
Definition and Examples 155 | Properties of External Direct
Products 156 | The Group of Units Modulo 7 as an External Direct
Product 159 | Applications 161
Exercises 167
Computer Exercises 170
Biography of Leonard Adleman 173
Supplementary Exercises for Chapters 5-8 174



Contents

9 Normal Subgroups and Factor Groups 178
Normal Subgroups 178 | Factor Groups 180 | Applications of
Factor Groups 185 | Internal Direct Products 188
Exercises 193

Biography of Evariste Galois 199

10 Group Homomorphisms 200
Definition and Examples 200 | Properties of Homomorphisms
202 | The First Isomorphism Theorem 206
Exercises 211
Computer Exercise 216
Biography of Camille Jordan 217

11 Fundamental Theorem of Finite
Abelian Groups 218
The Fundamental Theorem 218 | The Isomorphism Classes of
Abelian Groups 218 | Proof of the Fundamental Theorem 223
Exercises 226
Computer Exercises 228

Supplementary Exercises for Chapters 9—-11 230

parT3  Rings 23b

12 Introduction to Rings 237
Motivation and Definition 237 | Examples of Rings 238 |
Properties of Rings 239 | Subrings 240
Exercises 242
Computer Exercises 245
Biography of I. N. Herstein 248

13 Integral Domains 249
Definition and Examples 249 | Fields 250 | Characteristic of a
Ring 252
Exercises 255
Computer Exercises 259
Biography of Nathan Jacobson 261

14 Ideals and Factor Rings 262
Ideals 262 | Factor Rings 263 | Prime Ideals and Maximal
Ideals 267
Exercises 269



vi

PART 4

Contents

15

16

17

18

19

Computer Exercises 273

Biography of Richard Dedekind 274

Biography of Emmy Noether 275

Supplementary Exercises for Chapters 12—14 276

Ring Homomorphisms 280

Definition and Examples 280 | Properties of Ring Homomorphisms
283 | The Field of Quotients 285

Exercises 287

Polynomial Rings 293

Notation and Terminology 293 | The Division Algorithm and
Consequences 296

Exercises 300

Biography of Saunders Mac Lane 304

Factorization of Polynomials 305

Reducibility Tests 305 | Irreducibility Tests 308 | Unique
Factorization in Z[x] 313 | Weird Dice: An Application of Unique
Factorization 314

Exercises 316

Computer Exercises 319

Biography of Serge Lang 321

Divisibility in Integral Domains 322

Irreducibles, Primes 322 | Historical Discussion of Fermat’s Last
Theorem 325 | Unique Factorization Domains 328 | Euclidean
Domains 331

Exercises 335

Computer Exercise 337

Biography of Sophie Germain 339

Biography of Andrew Wiles 340

Supplementary Exercises for Chapters 15-18 341

Fields 343

Vector Spaces 345
Definition and Examples 345 | Subspaces 346 | Linear
Independence 347



PART 5

20

21

22

23

Contents vii

Exercises 349
Biography of Emil Artin 352
Biography of Olga Taussky-Todd 353

Extension Fields 354

The Fundamental Theorem of Field Theory 354 | Splitting
Fields 356 | Zeros of an Irreducible Polynomial 362
Exercises 366

Biography of Leopold Kronecker 369

Algebraic Extensions 370

Characterization of Extensions 370 | Finite Extensions 372 |
Properties of Algebraic Extensions 376 |

Exercises 378

Biography of Irving Kaplansky 381

Finite Fields 382

Classification of Finite Fields 382 | Structure of Finite Fields 383 |
Subfields of a Finite Field 387

Exercises 389

Computer Exercises 391

Biography of L. E. Dickson 392

Geometric Constructions 393

Historical Discussion of Geometric Constructions 393 |
Constructible Numbers 394 | Angle-Trisectors and
Circle-Squarers 396

Exercises 396

Supplementary Exercises for Chapters 19-23 399

Special Topics 401

24

Sylow Theorems 403

Conjugacy Classes 403 | The Class Equation 404 | The
Probability That Two Elements Commute 405 | The Sylow
Theorems 406 | Applications of Sylow Theorems 411
Exercises 414

Computer Exercise 418

Biography of Ludwig Sylow 419



viii Contents

25 Finite Simple Groups 420
Historical Background 420 | Nonsimplicity Tests 425 |
The Simplicity of A; 429 | The Fields Medal 430 |
The Cole Prize 430 |
Exercises 431
Computer Exercises 432
Biography of Michael Aschbacher 434
Biography of Daniel Gorenstein 435
Biography of John Thompson 436

26 Generators and Relations 437
Motivation 437 | Definitions and Notation 438 | Free
Group 439 | Generators and Relations 440 | Classification of
Groups of Order Up to 15 444 | Characterization of Dihedral
Groups 446 | Realizing the Dihedral Groups with Mirrors 447
Exercises 449
Biography of Marshall Hall, Jr. 452

27 Symmetry Groups 453
Isometries 453 | Classification of Finite Plane Symmetry
Groups 455 | Classification of Finite Groups of Rotations in R? 456
Exercises 458

28 Frieze Groups and Crystallographic Groups 461
The Frieze Groups 461 | The Crystallographic Groups 467 |
Identification of Plane Periodic Patterns 473
Exercises 479
Biography of M. C. Escher 484
Biography of George Polya 485
Biography of John H. Conway 486

29 Symmetry and Counting 487
Motivation 487 | Burnside’s Theorem 488 | Applications 490 |
Group Action 493
Exercises 494
Biography of William Burnside 497

30 Cayley Digraphs of Groups 498
Motivation 498 | The Cayley Digraph of a Group 498 |
Hamiltonian Circuits and Paths 502 | Some Applications 508



31

32

33

Contents

Exercises 511
Biography of William Rowan Hamilton 516
Biography of Paul Erdos 517

Introduction to Algebraic Coding Theory 518
Motivation 518 | Linear Codes 523 | Parity-Check Matrix
Decoding 528 | Coset Decoding 531 | Historical Note: The
Ubiquitous Reed-Solomon Codes 535

Exercises 537

Biography of Richard W. Hamming 542

Biography of Jessie MacWilliams 543

Biography of Vera Pless 544

An Introduction to Galois Theory 545
Fundamental Theorem of Galois Theory 545 | Solvability of
Polynomials by Radicals 552 | Insolvability of a Quintic 556
Exercises 557

Biography of Philip Hall 560

Cyclotomic Extensions 561

Motivation 561 | Cyclotomic Polynomials 562 |
The Constructible Regular n-gons 566

Exercises 568

Computer Exercise 569

Biography of Carl Friedrich Gauss 570

Biography of Manjul Bhargava 571

Supplementary Exercises for Chapters 24-33 572

Selected Answers Al

Text Credits A40

Photo Credits A42

Index of Mathematicians A43

Index of Terms A45



This page intentionally left blank



Preface

Dear Sir or Madam, will you read my book, it took me years to write, will you
take a look?

JOHN LENNON AND PAUL McCARTNEY, Paperback Writer, single

Although I wrote the first edition of this book more than twenty years
ago, my goals for it remain the same. I want students to receive a solid
introduction to the traditional topics. I want readers to come away with
the view that abstract algebra is a contemporary subject—that its con-
cepts and methodologies are being used by working mathematicians,
computer scientists, physicists, and chemists. I want students to enjoy
reading the book. To this end, I have included lines from popular songs,
poems, quotations, biographies, historical notes, dozens of photographs,
hundreds of figures, numerous tables and charts, and reproductions of
stamps and currency that honor mathematicians. I want students to be
able to do computations and to write proofs. Accordingly, I have
included an abundance of exercises to develop both skills.

Changes for the seventh edition include 120 new exercises, new
theorems and examples, and a freshening of the quotations and biogra-
phies. I have also expanded the supplemental material for abstract alge-
bra available at my website.

These changes accentuate and enhance the hallmark features that
have made previous editions of the book a comprehensive, lively, and
engaging introduction to the subject:

» Extensive coverage of groups, rings, and fields, plus a variety of
non-traditional special topics

* A good mixture of now more than 1750 computational and theoreti-
cal exercises appearing in each chapter and in Supplementary
Exercise sets that synthesize concepts from multiple chapters

* Worked-out examples—now totaling 275—providing thorough
practice for key concepts

» Computer exercises performed using interactive software available
on my website

xi
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* A large number of applications from scientific and computing fields,
as well as from everyday life

* Numerous historical notes and biographies that illuminate the peo-
ple and events behind the mathematics

* Annotated suggested readings and media for interesting further
exploration of topics.

My website—accessible at www.d.umn.edu/~jgallian or through
Cengage’s book companion site at www.cengage.com/math/gallian—
offers a wealth of additional online resources supporting the book,
including:

* True/false questions

* Flash cards

* Essays on learning abstract algebra, doing proofs, and reasons why
abstract algebra is a valuable subject to learn

 Links to abstract algebra-related websites and software packages

e ... and much, much more.

Additionally, Cengage offers the following student and instructor
ancillaries to accompany the book:

* A Student Solutions Manual, available for purchase separately, with
worked-out solutions to the odd-numbered exercises in the book
(ISBN-13: 978-0-547-16539-4; ISBN-10: 0-547-16539-0)

* An online laboratory manual, written by Julianne Rainbolt and me,
with exercises designed to be done with the free computer algebra
system software GAP

* An online Instructor’s Solutions Manual with solutions to the even-
numbered exercises in the book and additional test questions and
solutions

* Online instructor answer keys to the book’s computer exercises and
the exercises in the GAP lab manual.

Connie Day was the copyeditor and Robert Messer was the accuracy
reviewer. | am grateful to each of them for their careful reading of the
manuscript. I also wish to express my appreciation to Janine Tangney,
Daniel Seibert, and Molly Taylor from Cengage Learning, as well as
Tamela Ambush and the Cengage production staff.

I greatly valued the thoughtful input of the following people, who
kindly served as reviewers for the seventh edition:

Rebecca Berg, Bowie State University; Monte Boisen, University of
Idaho; Tara Brendle, Louisiana State University; Jeff Clark, Elon
University; Carl Eckberg, San Diego State University; Tom Farmer,
Miami University; Yuval Flicker, Ohio State University; Ed Hinson,


www.d.umn.edu/~jgallian
www.cengage.com/math/gallian�

Preface xiii

University of New Hampshire; Gizem Karaali, Pomona College; Mohan
Shrikhande, Central Michigan University; Ernie Stitzinger, North
Carolina State University.

Over the years, many faculty and students have kindly sent me valu-
able comments and suggestions. They have helped to make each edition
better. I owe thanks to my UMD colleague Robert McFarland for giv-
ing me numerous exercises and comments that have been included in
this edition. Please send any comments and suggestions you have to me
at jgallian@d.umn.edu.

Joseph A. Gallian
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Preliminaries

The whole of science is nothing more than a refinement
of everyday thinking.

ALBERT EINSTEIN, Physics and Reality

Properties of Integers

Much of abstract algebra involves properties of integers and sets. In this
chapter we collect the properties we need for future reference.

An important property of the integers, which we will often use, is the
so-called Well Ordering Principle. Since this property cannot be proved
from the usual properties of arithmetic, we will take it as an axiom.

Well Ordering Principle

Every nonempty set of positive integers contains a smallest member.

The concept of divisibility plays a fundamental role in the theory of
numbers. We say a nonzero integer ¢ is a divisor of an integer s if there
is an integer u such that s = fu. In this case, we write ¢ | s (read “¢
divides s’). When ¢ is not a divisor of s, we write ¢t 4 s. A prime is a
positive integer greater than 1 whose only positive divisors are 1 and
itself. We say an integer s is a multiple of an integer ¢ if there is an in-
teger u such that s = tu.

As our first application of the Well Ordering Principle, we establish
a fundamental property of integers that we will use often.

I Theorem 0.1 Division Algorithm

Let a and b be integers with b > 0. Then there exist unique integers q
and r with the property that a = bq + r, where 0 = r < b.

PROOF We begin with the existence portion of the theorem. Consider
the set S = {a — bk | kis an integer and a — bk = 0}.1f 0 € S, then b

3
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divides a and we may obtain the desired result with ¢ = a/b and r = 0.
Now assume O & S. Since S is nonempty [ifa > 0,a — b -0 € S;ifa <
0, a — b(2a) = a(l — 2b) € S; a # 0 since 0 & S], we may apply the
Well Ordering Principle to conclude that S has a smallest member, say
r=a— bg. Then a =bg + r and r =0, so all that remains to be
proved is that r < b.

If r=0b,thena—blg + 1)=a—bg—b=r—>b=0, so that
a—blg+ 1)&€ S Buta—>blg + 1)<a-— bg, and a — bg is the
smallest member of S. So, r < b.

To establish the uniqueness of ¢ and r, let us suppose that there are
integers ¢, ¢', r, and r’ such that

a=bg+r, 0=r<b and a=bqg +7r, 0=r <b.

For convenience, we may also suppose that ' =r. Then bg + r =
bg' + r and b(q —q')=7r"—r. So, b divides ¥ —rand 0 =r' — r=
r" < b. It follows that ¥ — r = 0, and therefore ¥’ = rand ¢ = ¢'. |

The integer ¢ in the division algorithm is called the quotient upon di-
viding a by b; the integer r is called the remainder upon dividing a by b.

B EXAMPLE 1 For a = 17 and b = 5, the division algorithm gives
17=5 -3 + 2; for a = —23 and b = 6, the division algorithm gives
—23 =6(—4) + 1. |

Several states use linear functions to encode the month and date of
birth into a three-digit number that is incorporated into driver’s li-
cense numbers. If the encoding function is known, the division algo-
rithm can be used to recapture the month and date of birth from the
three-digit number. For instance, the last three digits of a Florida male
driver’s license number are those given by the formula 40(m — 1) + b,
where m is the number of the month of birth and 4 is the day of birth.
Thus, since 177 = 40 - 4 + 17, a person with these last three digits
was born on May 17. For New York licenses issued prior to
September of 1992, the last two digits indicate the year of birth, and
the three preceding digits code the month and date of birth. For a
male driver, these three digits are 63m + 2b, where m denotes the
number of the month of birth and b is the date of birth. So, since 701 =
63 - 11 + 2 - 4, a license that ends with 70174 indicates that the
holder is a male born on November 4, 1974. (In cases where the for-
mula for the driver’s license number yields the same result for two or
more people, a “tie-breaking” digit is inserted before the two digits
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for the year of birth.) Incidentally, Wisconsin uses the same method
as Florida to encode birth information, but the numbers immediately
precede the last pair of digits.

Definitions Greatest Common Divisor, Relatively Prime Integers

The greatest common divisor of two nonzero integers a and b is the
largest of all common divisors of a and b. We denote this integer by
gcd(a, b). When ged(a, b) = 1, we say a and b are relatively prime.

The following property of the greatest common divisor of two inte-
gers plays a critical role in abstract algebra. The proof provides an ap-
plication of the division algorithm and our second application of the
Well Ordering Principle.

B Theorem 0.2 GCD Is a Linear Combination

For any nonzero integers a and b, there exist integers s and t such that
gcd(a, b) = as + bt. Moreover, gcd(a, b) is the smallest positive integer
of the form as + bt.

PROOF Consider the set S = {am + bn | m, n are integers and
am + bn > 0}. Since S is obviously nonempty (if some choice of m
and n makes am + bn < 0, then replace m and n by —m and —n), the
Well Ordering Principle asserts that S has a smallest member, say,
d = as + bt. We claim that d = gcd(a, b). To verify this claim, use the
division algorithm to write a = dgq + r, where 0 =r <d. If r > 0,
then r=a —dgq=a— (as + bt)g=a — asq — btqg = a(1 — sq) +
b(—tq) € S, contradicting the fact that d is the smallest member of §.
So, r = 0 and d divides a. Analogously (or, better yet, by symmetry),
d divides b as well. This proves that d is a common divisor of @ and b.
Now suppose d’ is another common divisor of a and b and write a =
d'hand b = d'k. Then d = as + bt = (d'h)s + (d'k)t = d'(hs + ki),
so that d' is a divisor of d. Thus, among all common divisors of a and
b, d is the greatest. |

The special case of Theorem 0.2 when a and b are relatively prime is
so important in abstract algebra that we single it out as a corollary.

1 Corollary

If a and b are relatively prime, than there exist integers s and t such
that as + bt = 1.
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B EXAMPLE 2 gcd(4, 15) = 1; ged(4, 10) = 2; ged(2? - 3% - 5,2 - 37 -
7%) = 2 - 32. Note that 4 and 15 are relatively prime, whereas 4 and 10 are
not. Also, 4 -4 + 15(—1) = 1and 4(—2) + 10- 1 = 2. |

The next lemma is frequently used. It appeared in Euclid’s Elements.
I Euclid’sLemma p | ab Impliesplaorplb

If p is a prime that divides ab, then p divides a or p divides b.

PROOF Suppose p is a prime that divides ab but does not divide a. We
must show that p divides b. Since p does not divide a, there
are integers s and ¢ such that 1 = as + pt. Then b = abs + ptb, and since
p divides the right-hand side of this equation, p also divides b. |

Note that Euclid’s Lemma may fail when p is not a prime, since
61(4-3)but6+4and6+ 3.

Our next property shows that the primes are the building blocks for
all integers. We will often use this property without explicitly saying so.

B Theorem 0.3 Fundamental Theorem of Arithmetic

Every integer greater than 1 is a prime or a product of primes. This

product is unique, except for the order in which the factors appear.

Thatis, ifn =p,p,---p,andn = q,q, - - - q, where the p’s and q’s

are primes, then r = s and, after renumbering the q’s, we have p, = q,
foralli.

We will prove the existence portion of Theorem 0.3 later in this
chapter. The uniqueness portion is a consequence of Euclid’s Lemma

(Exercise 27).
Another concept that frequently arises is that of the least common

multiple of two integers.

Definition Least Common Multiple

The least common multiple of two nonzero integers a and b is the
smallest positive integer that is a multiple of both a and b. We will de-
note this integer by lcm(a, b).

We leave it as an exercise (Exercise 12) to prove that every common
multiple of a and b is a multiple of lcm(a, b).
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# EXAMPLE 3 Icm(4, 6) = 12; lem(4, 8) = 8§; lem(10, 12) = 60;
lem(6, 5) = 30; lem(2? - 3%-5,2-33-7%) =22-3%-5- 72, |

Modular Arithmetic

Another application of the division algorithm that will be important to
us is modular arithmetic. Modular arithmetic is an abstraction of a
method of counting that you often use. For example, if it is now
September, what month will it be 25 months from now? Of course, the
answer is October, but the interesting fact is that you didn’t arrive at the
answer by starting with September and counting off 25 months.
Instead, without even thinking about it, you simply observed that
25 =2-12 + 1, and you added 1 month to September. Similarly, if it
is now Wednesday, you know that in 23 days it will be Friday. This
time, you arrived at your answer by noting that 23 = 7 - 3 + 2, so you
added 2 days to Wednesday instead of counting off 23 days. If your
electricity is off for 26 hours, you must advance your clock 2 hours,
since 26 = 2 - 12 + 2. Surprisingly, this simple idea has numerous im-
portant applications in mathematics and computer science. You will see
a few of them in this section. The following notation is convenient.

When a = gn + r, where ¢ is the quotient and r is the remainder
upon dividing a by n, we write @ mod n = r. Thus,

3mod2=1since3=1-2+1,
6mod2 =0since6=3-2+0,
11mod3 =2since 1l =3 -3 + 2,
62 mod 85 = 62 since 62 = 0 - 85 + 62,
—2mod 15 = 13 since —2 = (—1)15 + 13.

In general, if @ and b are integers and n is a positive integer, then
amod n = b mod n if and only if n divides a — b (Exercise 9).

In our applications, we will use addition and multiplication mod n.
When you wish to compute ab mod n or (a + b) mod n, and a or b is
greater than n, it is easier to “mod first.” For example, to compute
(27 - 36) mod 11, we note that 27 mod 11 = 5 and 36 mod 11 = 3, so
(27 - 36) mod 11 = (5 - 3) mod 11 = 4. (See Exercise 11.)

Modular arithmetic is often used in assigning an extra digit to identi-
fication numbers for the purpose of detecting forgery or errors. We pre-
sent two such applications.

B EXAMPLE 4 The United States Postal Service money order shown
in Figure 0.1 has an identification number consisting of 10 digits together
with an extra digit called a check. The check digit is the 10-digit number
modulo 9. Thus, the number 3953988164 has the check digit 2, since
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£ 39539881L42 881018 558041 sx:ﬁm

> THANDS

BERIAL KUMBER YEAR MONTH DAY OFFICE .t

m GHIE 3 {z? STRERT : 1
— . GTATI - A= e 2 =i STATE 3 :
e
1100000800 21 3953988 1Lk 2
Figure 0.1

3953988164 mod 9 = 2.7 If the number 39539881642 were incorrectly
entered into a computer (programmed to calculate the check digit) as,
say, 39559881642 (an error in the fourth position), the machine would
calculate the check digit as 4, whereas the entered check digit would be
2. Thus the error would be detected. |

B EXAMPLE 5 Airline companies, United Parcel Service, and the
rental car companies Avis and National use the modulo 7 values of
identification numbers to assign check digits. Thus, the identification
number 00121373147367 (see Figure 0.2) has the check digit 3 appended

wmwxﬁamwﬂwuﬂ 5 ! e

N PASSENGER RELEIFT = e xm
MATTUWEST AIRI INES >%'m'u-: e HIEF pand m.r‘JUSEF‘H ne
BRERRS"TREE TYL . STORM LAKE ~"~PE=SpsRiEss wi - iy
EATTITN/J0SEFH DR | OSSR aa pftepgomesee i SOWET? M WI025 W ITOVHS

BT VALID FORxx ™THYS 1%0R RELEPT™ © SRR nony WSTTTH NS g!
X TRANSFORTATIONX AT S e K 1902

PEE-BIES/REFUND. WIS F L2 il
FF CHECK /FCILH HU X/WSP i SUX179 09426 N xmsp ; : B
W ILH224.54F26 A0, 63,50 xf-‘nspansps : mmumm-a-!!

mlil(ll llill‘llHilmilllm

P HHH S HFHHHEH H ]l

B0 403. as gl & T R e R i
Nus damarE T i T R BT AT For™TRAVIL
NE . 6.00 20692567618 | 0 D12 13731473K7 3 0002 1573147367 @

%0 450.00 AA146712392

Figure 0.2

"The value of N mod 9 is easy to compute with a calculator. If N = 9g + r, where r is
the remainder upon dividing N by 9, then on a calculator screen N + 9 appears as
q.rrrrr . . ., so the first decimal digit is the check digit. For example, 3953988164 +~ 9 =
439332018.222, so 2 is the check digit. If N has too many digits for your calculator, re-
place N by the sum of its digits and divide that number by 9. Thus, 3953988164 mod 9 =
56 mod 9 = 2. The value of 3953988164 mod 9 can also be computed by searching
Google for 3953988164 mod 9.
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Figure 0.3

to it because 121373147367 mod 7 = 3. Similarly, the UPS pickup
record number 768113999, shown in Figure 0.3, has the check digit 2
appended to it. |

The methods used by the Postal Service and the airline companies do
not detect all single-digit errors (see Exercises 35 and 39). However, detec-
tion of all single-digit errors, as well as nearly all errors involving the trans-
position of two adjacent digits, is easily achieved. One method that does
this is the one used to assign the so-called Universal Product Code (UPC)
to most retail items (see Figure 0.4). A UPC identification number has 12
digits. The first six digits identify the manufacturer, the next five identify
the product, and the last is a check. (For many items, the 12th digit is not
printed, but it is always bar-coded.) In Figure 0.4, the check digit is 8.

€— OPEN AT TOP OF SIDE

0 "121000%65897"" 8

Figure 0.4

To explain how the check digit is calculated, it is convenient to intro-
duce the dot product notation for two k-tuples:

(@, ays o osa) - (W, Wy, oo, w) =aw, +aw, +- - +aw,

2
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An item with the UPC identification number a,a,
condition

(@ ay ... a3, 1,3,1,...,3, 1)mod 10 = 0.

To verify that the number in Figure 0.4 satisfies the condition above, we
calculate

©0-3+2-1+1-3+0-1+0-3+0-1+6-3+5-1
+8:3+9-1+7-3+8:1)mod 10 =90mod 10 = 0.

a, satisfies the

The fixed k-tuple used in the calculation of check digits is called the
weighting vector.

Now suppose a single error is made in entering the number in
Figure 0.4 into a computer. Say, for instance, that 021000958978 is
entered (notice that the seventh digit is incorrect). Then the computer
calculates

0-3+2-1+1:3+40:-1+0:3+0-14+9-3
+5-1+8:-3+9-1+7-3+8-1=099.

Since 99 mod 10 # 0, the entered number cannot be correct.

In general, any single error will result in a sum that is not 0 modulo 10.

The advantage of the UPC scheme is that it will detect nearly all
errors involving the transposition of two adjacent digits as well as all
errors involving one digit. For doubters, let us say that the identifica-
tion number given in Figure 0.4 is entered as 021000658798. Notice
that the last two digits preceding the check digit have been trans-
posed. But by calculating the dot product, we obtain 94 mod 10 # 0,
so we have detected an error. In fact, the only undetected transposi-
tion errors of adjacent digits a and b are those where la — bl = 5. To
verify this, we observe that a transposition error of the form

a1a2 et ada.

Qi1 " A =>a410y " " 4;40;° " Ay,

is undetected if and only if
(a,ay...,a, ., a,...,a.,) (3,1,3,1,...,3,1)mod 10 = 0.
That is, the error is undetected if and only if

Lap)(3,1,3,1,...,3,1) mod 10
Lay) (3,1,3,1,...,3,1) mod 10.

(al,az,...,aiﬂ,a
=(a,ay...,a

P

Apps -

This equality simplifies to either
(Ba,., + a)mod 10 = (3a, + a, ;) mod 10
or

(a,., +3a)mod 10 = (a, + 3a, ) mod 10
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depending on whether i is even or odd. Both cases reduce to 2(a,, , — a;)
mod 10 = 0. It follows that la, |, — al = 5,ifa, | # a,

In 2005 United States companies began to phase in the use of a 13th
digit to be in conformance with the 13-digit product indentification
numbers used in Europe. The weighing vector for 13-digit numbers is
(1,3, 1,3,...,3, 1.

Identification numbers printed on bank checks (on the bottom left
between the two colons) consist of an eight-digit number a,a, - - - a
and a check digit a,, so that

ceag) t(7,3,9,7,3,9,7,3,9) mod 10 = 0.

8

(a,,a

1Y

As is the case for the UPC scheme, this method detects all single-
digit errors and all errors involving the transposition of adjacent digits a
and b except when la — bl = 5. But it also detects most errors of the
form:- - -abc--+-—---cba- - -, whereas the UPC method detects no
errors of this form.

In Chapter 5, we will examine more sophisticated means of assign-
ing check digits to numbers.

What about error correction? Suppose you have a number such as
73245018 and you would like to be sure that even if a single mistake
were made in entering this number into a computer, the computer
would nevertheless be able to determine the correct number. (Think of
it. You could make a mistake in dialing a telephone number but still get
the correct phone to ring!) This is possible using two check digits. One
of the check digits determines the magnitude of any single-digit error,
while the other check digit locates the position of the error. With these
two pieces of information, you can fix the error. To illustrate the idea, let
us say that we have the eight-digit identification number a,a, - - - a,. We
assign two check digits a, and a,, so that

(@, *+a,+ -+ +ay+a,)modll =0
and

(a,a yag, ayy) - (1,2,3,...,10)mod 11 =0

TSR

are satisfied.
Let’s do an example. Say our number before appending the two
check digits is 73245018. Then a, and a,, are chosen to satisfy

(T+3+2+4+5+0+1+8 +a,+a,)mod11 =0 (1)
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and

(7-1+3:2+2:3+4-4+5-5+0-6 )
+1-7+88+a,-9+a, 10)mod 11 =0,

Since7+3+2+4+5+0+1+8 =30 and 30 mod 11 = 8,
Equation (1) reduces to

8 + a, + a,y) mod 11 = 0. (1"

Likewise, since (7-1 + 3:2 + 2:-3 + 4-4 + 5-5 +
0-6+1-7+8-8 mod 11 = 10, Equation (2) reduces to

(10 + 9a, + 10a,,) mod 11 = 0. (2")
Since we are using mod 11, we may rewrite Equation (2') as
(=1 —2a,—a,))mod 11 =0

and add this to Equation (1') to obtain 7 — a, = 0. Thus a, = 7. Now
substituting a, = 7 into Equation (1") or Equation (2'), we obtain
a,, = 7 as well. So, the number is encoded as 7324501877.

Now let us suppose that this number is erroneously entered into a
computer programmed with our encoding scheme as 7824501877 (an
error in position 2). Since the sum of the digits of the received number
mod 11 is 5, we know that some digit is 5 too large or 6 too small
(assuming only one error has been made). But which one? Say the
error is in position i. Then the second dot product has the form a, - 1 +
a2+ -+ (@+5i+a, , G@+1)+--+a, 10=
(aja, ...,a, (1,2, ...,10) + 5i.So,(7,8,2,4,5,0,1,8,7,7) -
(1,2,3,4,5,6,7,8,9,10) mod 11 = 5i mod 11. Since the left-hand
side mod 11 is 10, we see that i = 2. Our conclusion: The digit in posi-
tion 2 is 5 too large. We have successfully corrected the error.

Mathematical Induction

There are two forms of proof by mathematical induction that we will
use. Both are equivalent to the Well Ordering Principle. The explicit
formulation of the method of mathematical induction came in the 16th
century. Francisco Maurolycus (1494—1575), a teacher of Galileo, used
itin 1575 to prove that 1 + 3 +5 + - - - + (2n — 1) = n?, and Blaise
Pascal (1623-1662) used it when he presented what we now call
Pascal’s triangle for the coefficients of the binomial expansion. The
term mathematical induction was coined by Augustus De Morgan.
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I Theorem 0.4 First Principle of Mathematical Induction

Let S be a set of integers containing a. Suppose S has the property that
whenever some integer n = a belongs to S, then the integer n + 1 also
belongs to S. Then, S contains every integer greater than or equal to a.

PROOF The proof is left as an exercise (Exercise 29). |

So, to use induction to prove that a statement involving positive inte-
gers is true for every positive integer, we must first verify that the state-
ment is true for the integer 1. We then assume the statement is true for
the integer n and use this assumption to prove that the statement is true
for the integer n + 1.

Our next example uses some facts about plane geometry. Recall that
given a straightedge and compass, we can construct a right angle.

I EXAMPLE 6 We use induction to prove that given a straightedge, a
compass, and a unit length, we can construct a line segment of length
V/n for every positive integer n. The case when n = 1 is given. Now we
assume that we can construct a line segment of length \V/z . Then use
the straightedge and compass to construct a right triangle with height 1
and base Vn. The hypotenuse of the triangle has length Vn + 1. So,
by induction, we can construct a line segment of length \/z for every
positive integer n. |

§I EXAMPLE 7 DEMOIVRE’S THEOREM We use induction to prove
that for every positive integer n and every real number 6, (cos 6 +
i sin 6)" = cos nf + i sin nf, where i is the complex number V' —1.
Obviously, the statement is true for n = 1. Now assume it is true for n.
We must prove that (cos 6 + i sin 0)"*! = cos(n + 1)6 + i sin(n + 1)6.
Observe that

(cos @ + isin 0)**! = (cos O + i sin 0)"(cos O + i sin 0)
(cos n@ + i sin nf)(cos 6 + i sin 0)
= cos nf cos O + i(sin n6 cos 0

+ sin 6 cos nf) — sin n6 sin 6.

Now, using trigonometric identities for cos(a + ) and sin(a + (), we
see that this last term is cos(n + 1)@ + i sin(n + 1)6. So, by induction,
the statement is true for all positive integers. |

In many instances, the assumption that a statement is true for an in-
teger n does not readily lend itself to a proof that the statement is true
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for the integer n + 1. In such cases, the following equivalent form of
induction may be more convenient. Some authors call this formulation
the strong form of induction.

I Theorem 0.5 Second Principle of Mathematical Induction

Let S be a set of integers containing a. Suppose S has the property that
n belongs to S whenever every integer less than n and greater than or
equal to a belongs to S. Then, S contains every integer greater than or
equal to a.

PROOF The proof is left to the reader. |

To use this form of induction, we first show that the statement is true
for the integer a. We then assume that the statement is true for all inte-
gers that are greater than or equal to a and less than n, and use this as-
sumption to prove that the statement is true for n.

B EXAMPLE 8 We will use the Second Principle of Mathematical
Induction with a = 2 to prove the existence portion of the Fundamental
Theorem of Arithmetic. Let S be the set of integers greater than 1 that
are primes or products of primes. Clearly, 2 € S. Now we assume that
for some integer n, S contains all integers k with 2 = k < n. We must
show that n € S. If n is a prime, then n € S by definition. If n is not a
prime, then n can be written in the form ab, where 1 <a <mnand 1 <
b < n. Since we are assuming that both a and b belong to S, we know
that each of them is a prime or a product of primes. Thus, n is also a
product of primes. This completes the proof. |

Notice that it is more natural to prove the Fundamental Theorem of
Arithmetic with the Second Principle of Mathematical Induction than
with the First Principle. Knowing that a particular integer factors as a
product of primes does not tell you anything about factoring the next
larger integer. (Does knowing that 5280 is a product of primes help you
to factor 5281 as a product of primes?)

The following problem appeared in the “Brain Boggler” section of
the January 1988 issue of the science magazine Discover.

B EXAMPLE 9 The Quakertown Poker Club plays with blue chips
worth $5.00 and red chips worth $8.00. What is the largest bet that
cannot be made?
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To gain insight into this problem, we try various combinations of
blue and red chips and obtain 5, 8, 10, 13, 15, 16, 18, 20, 21, 23, 24, 25,
26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40. It appears that the
answer is 27. But how can we be sure? Well, we need only prove that
every integer greater than 27 can be written in the form a-5 +
b - 8, where a and b are nonnegative integers. This will solve the prob-
lem, since a represents the number of blue chips and b the number of red
chips needed to make a bet of a - 5 + b - 8. For the purpose of contrast,
we will give two proofs—one using the First Principle of Mathematical
Induction and one using the Second Principle.

Let S be the set of all integers greater than or equal to 28 of the form
a-5 + b -8, where a and b are nonnegative. Obviously, 28 € S. Now
assume that some integer n € S, say, n = a +5 + b - 8. We must show
that n + 1 € S. First, note that since n = 28, we cannot have both
a and b less than 3. If a = 3, then

n+1=@-5+b-8)+(-3-5+2-8)
—@—-3)-5+®h+2)-8.

(Regarding chips, this last equation says that we may increase a bet
from n to n + 1 by removing three blue chips from the pot and adding
two red chips.) If b = 3, then

n+l1=@-5+b-8+(5-5-3-8)
=@+5-5+®»—-3)8.

(The bet can be increased by 1 by removing three red chips and adding
five blue chips.) This completes the proof.

To prove the same statement by the Second Principle, we note that
each of the integers 28, 29, 30, 31, and 32 is in S. Now assume that for
some integer n > 32, S contains all integers k with 28 = k < n. We
must show that n € S. Since n — 5 € S, there are nonnegative
integers a and b such that n —5=a-5 + b - 8. But then n =
(a+1)-5+b-8 Thusnisin S. |

Equivalence Relations

In mathematics, things that are considered different in one context may
be viewed as equivalent in another context. We have already seen one
such example. Indeed, the sums 2 + 1 and 4 + 4 are certainly different
in ordinary arithmetic, but are the same under modulo 5 arithmetic.
Congruent triangles that are situated differently in the plane are not the
same, but they are often considered to be the same in plane geometry.
In physics, vectors of the same magnitude and direction can produce
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different effects—a 10-pound weight placed 2 feet from a fulcrum pro-
duces a different effect than a 10-pound weight placed 1 foot from a
fulcrum. But in linear algebra, vectors of the same magnitude and di-
rection are considered to be the same. What is needed to make these
distinctions precise is an appropriate generalization of the notion of
equality; that is, we need a formal mechanism for specifying whether or
not two quantities are the same in a given setting. This mechanism is an
equivalence relation.

Definition Equivalence Relation
An equivalence relation on a set S is a set R of ordered pairs of
elements of S such that

1. (a,a) € Rforalla € S (reflexive property).
2. (a, b) € R implies (b, a) € R (symmetric property).
3. (@, b) € Rand (b, c) € Rimply (a,c) €E R (transitive property).

When R is an equivalence relation on a set S, it is customary to write
aRb instead of (a, b) € R. Also, since an equivalence relation is just a

generalization of equality, a suggestive symbol such as =, =, or ~ is
usually used to denote the relation. Using this notation, the three condi-
tions for an equivalence relation become a ~ a; a ~ b implies

b ~a;and a ~ b and b ~ cimply a ~ c. If ~ is an equivalence relation
on a set S and a € S, then the set [a] = {x € S | x ~ a} is called the
equivalence class of S containing a.

B EXAMPLE 10 Let S be the set of all triangles in a plane. If a, b € S,
define a ~ b if a and b are similar—that is, if @ and b have correspond-
ing angles that are the same. Then, ~ is an equivalence relation on S. il

B EXAMPLE 11 Let S be the set of all polynomials with real coeffi-
cients. If f, g € S, define f ~ g if f' = g, where f' is the derivative of f.
Then, ~ is an equivalence relation on §. Since two polynomials with
equal derivatives differ by a constant, we see that for any fin S, [f] =
{f+ clcisreal}. |

B EXAMPLE 12 Let S be the set of integers and let  be a positive inte-
ger. If a, b € S, define a = b if a mod n = b mod n (thatis, if a — b is
divisible by n). Then, = is an equivalence relation on S and [a] = {a +
kn | k € S}. Since this particular relation is important in abstract alge-
bra, we will take the trouble to verify that it is indeed an equivalence
relation. Certainly, a — a is divisible by n, so that a = a for all a in S.
Next, assume that a = b, say, a — b = rn. Then, b — a = (—r)n, and
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therefore b = a. Finally, assume thata = b and b = ¢, say,a — b =rn
andb — ¢ = sn. Then,wehavea —c=@—b)+ (b —c)=m+sn=
(r + s)n, so that a = c. |

B EXAMPLE 13 Let = be as in Example 12 and let n = 7. Then we
have 16 =2;9 = —5;and 24 = 3. Also, [1] = {..., =20, —13, —6, 1,
8,15, ...}and [4] = {..., —17,—10, —3,4,11, 18, ...}. |

B EXAMPLE 14 Let S={(a, b) | a, b are integers, b # 0}. If
(a, b), (c,d) € S, define (a, b) = (¢, d ) if ad = bc. Then = is an equiv-
alence relation on S. [The motivation for this example comes from frac-
tions. In fact, the pairs (a, b) and (c, d) are equivalent if the fractions a/b
and c/d are equal.]

To verify that = is an equivalence relation on S, note that (a, b) = (a, b)
requires that ab = ba, which is true. Next, we assume that (a, b) = (c, d),
so that ad = bc. We have (c, d) = (a, b) provided that cb = da, which is
true from commutativity of multiplication. Finally, we assume that (a, b) =
(c, d)and (c, d) = (e, f) and prove that (a, b) = (e, f). This amounts to
using ad = bc and cf = de to show that af = be. Multiplying both sides
of ad = bc by fand replacing cf by de, we obtain adf = bcf = bde. Since
d # 0, we can cancel d from the first and last terms. |

Definition Partition

A partition of a set S is a collection of nonempty disjoint subsets of S
whose union is S. Figure 0.5 illustrates a partition of a set into four
subsets.

Figure 0.5 Partition of S into four subsets.

B EXAMPLE 15 The sets {0}, {1,2,3,...},and {..., =3, =2, —1}
constitute a partition of the set of integers. |

B EXAMPLE 16 The set of nonnegative integers and the set of non-
positive integers do not partition the integers, since both contain 0. 1

The next theorem reveals that equivalence relations and partitions
are intimately intertwined.
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I Theorem 0.6 Equivalence Classes Partition

The equivalence classes of an equivalence relation on a set S
constitute a partition of S. Conversely, for any partition P of S, there
is an equivalence relation on S whose equivalence classes are the
elements of P.

PROOF Let ~ be an equivalence relation on a set S. For any a € S, the
reflexive property shows that a € [a]. So, [a] is nonempty and the union
of all equivalence classes is S. Now, suppose that [a] and [b] are distinct
equivalence classes. We must show that [a] N [»] = 0. On the contrary,
assume ¢ € [a] N [b]. We will show that [a] C [b]. To this end, let x € [a].
We then have ¢ ~ a, ¢ ~ b, and x ~ a. By the symmetric property, we
also have a ~ c. Thus, by transitivity, x ~ ¢, and by transitivity again,
x ~ b. This proves [a] C [b]. Analogously, [b] C [a]. Thus, [a] = [b],
in contradiction to our assumption that [a] and [b] are distinct equiva-
lence classes.

To prove the converse, let P be a collection of nonempty disjoint
subsets of S whose union is S. Define @ ~ b if a and b belong to the
same subset in the collection. We leave it to the reader to show that ~ is
an equivalence relation on S (Exercise 55). |

Functions (Mappings)

Although the concept of a function plays a central role in nearly every
branch of mathematics, the terminology and notation associated with
functions vary quite a bit. In this section, we establish ours.

Definition Function (Mapping)

A function (or mapping) ¢ from a set A to a set B is a rule that assigns
to each element a of A exactly one element b of B. The set A is called
the domain of ¢, and B is called the range of ¢. If ¢ assigns b to a, then
b is called the image of a under ¢. The subset of B comprising all the
images of elements of A is called the image of A under ¢.

We use the shorthand ¢p: A — B to mean that ¢ is a mapping from
A to B. We will write ¢(a) = b or ¢: a — b to indicate that ¢ carries
atob.

There are often different ways to denote the same element of a set. In
defining a function in such cases one must verify that the function
values assigned to the elements depend not on the way the elements
are expressed but only on the elements themselves. For example, the
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correspondence ¢ from the rational numbers to the integers given by
¢(a/b) = a + b does not define a function since 1/2 = 2/4 but ¢ (1/2) #
¢ (2/4). To verify that a correspondence is a function, you assume that
X, = x, and prove that ¢ (x,) = (x,).
Definition Composition of Functions
Let ¢: A — B and ¢y: B — C. The composition ;¢ is the mapping from
A to C defined by (¢p)(a) = (¢(a)) for all a in A. The composition
function ¢ can be visualized as in Figure 0.6.

| ﬁ W
S w
Figure 0.6 Composition of functions ¢ and .

In calculus courses, the composition of f with g is written ( fo g)(x) and
is defined by (fo g)(x) = f(g(x)). When we compose functions, we omit
the “circle.”

There are several kinds of functions that occur often enough to be
given names.

Definition One-to-One Function
A function ¢ from a set A is called one-to-one if for every a,, a, € A,
¢(a,) = ¢(a,) implies a, = a,.

The term one-to-one is suggestive, since the definition ensures that
one element of B can be the image of only one element of A. Alternatively,
¢ is one-to-one if a, # a, implies ¢(a,) # ¢(a,). That is, different ele-
ments of A map to different elements of B. See Figure 0.7.

¢ Y
/\ /\
e -
®¢(ay)
¢ is one-to-one 1 is not one-to-one

Figure 0.7
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Definition Function from A onto B

A function ¢ from a set A to a set B is said to be onto B if each element
of B is the image of at least one element of A. In symbols, ¢»: A — B'is
onto if for each b in B there is at least one a in A such that ¢(a) = b.
See Figure 0.8.

¢ y
— T —

-0 (B

¢ is onto ¥ is not onto

Figure 0.8

The next theorem summarizes the facts about functions we will need.

I Theorem 0.7 Properties of Functions

Given functions a: A — B, B: B— C, and y: C — D, then
1. y(Ba) = (vB)a (associativity).
2. If a and B are one-to-one, then B« is one-to-one.
3. If a and B are onto, then Ba is onto.
4. If a is one-to-one and onto, then there is a function o' from B
onto A such that (o« 'a)(a) = aforall ain A and (aa™')(b) = b
forall b in B.

PROOF We prove only part 1. The remaining parts are left as exercises
(Exercise 51). Let a € A. Then (y(Ba))(a) = y((Ba)(a)) = y(B(a(a))).
On the other hand, ((yB)a)(a) = (yB)(«(a)) = y(B(a(a))). So, y(Ba) =
(yBa. i

It is useful to note that if « is one-to-one and onto, the function ™!

described in part 4 of Theorem 0.7 has the property that if a(s) = ¢,
then @~ !(r) = 5. That is, the image of 7 under a ! is the unique element s
that maps to # under a. In effect, @~ ! “undoes” what « does.

B EXAMPLE 17 Let Z denote the set of integers, R the set of real num-
bers, and N the set of nonnegative integers. The following table illus-
trates the properties of one-to-one and onto.
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Domain Range Rule One-to-one Onto
Z Z x—=x Yes No
R R x—=x Yes Yes
Z N x — Ixl No Yes
Z Z x = x? No No

To verify that x — x3 is one-to-one in the first two cases, notice that if
x* = y3, we may take the cube roots of both sides of the equation to ob-
tain x = y. Clearly, the mapping from Z to Z given by x — x> is not
onto, since 2 is the cube of no integer. However, x — x* defines an
onto function from R to R, since every real number is the cube of its
cube root (that is, Vb — b). The remaining verifications are left to
the reader. |

| was interviewed in the Israeli Radio for five minutes and | said that more
than 2000 years ago, Euclid proved that there are infinitely many primes.
Immediately the host interrupted me and asked: “Are there still infinitely
many primes?”

NOGA ALON

1. Forn =5, 8, 12, 20, and 25, find all positive integers less than n
and relatively prime to n.

2. Determine ged(2*- 32-5-7% 2-33-7-11) and Iem(23 - 32 -5,
2-33-7-11).

3. Determine 51 mod 13, 342 mod 85, 62 mod 15, 10 mod 15, (82 - 73)
mod 7, (51 + 68) mod 7, (35 - 24) mod 11, and (47 + 68) mod 11.

4. Find integers s and ¢ such that 1 =7 - s + 11 - £. Show that s and ¢
are not unique.

5. In Florida, the fourth and fifth digits from the end of a driver’s license
number give the year of birth. The last three digits for a male with
birth month m and birth date b are represented by 40(m — 1) + b. For
females the digits are 40(m — 1) + b + 500. Determine the dates of
birth of people who have last five digits 42218 and 53953.

6. For driver’s license numbers issued in New York prior to
September of 1992, the three digits preceding the last two of the
number of a male with birth month m and birth date b are repre-
sented by 63m + 2b. For females the digits are 63m + 2b + 1.
Determine the dates of birth and sex(es) corresponding to the num-
bers 248 and 601.
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7.

8.

10.

11.

12.

13.

14.

15.

16.
17.

18.
19.

20.

21.
22,

23.

24,

25.

Show that if a and b are positive integers, then ab = lem(a, b) -
gcd(a, b).

Suppose a and b are integers that divide the integer c. If a and b are
relatively prime, show that ab divides c. Show, by example, that if
a and b are not relatively prime, then ab need not divide c.

. If a and b are integers and 7 is a positive integer, prove that a mod n =

b mod n if and only if n divides a — b.

Let a and b be integers and d = gcd(a, b). If a = da’ and b = db’,
show that gcd(a’, b') = 1.

Let n be a fixed positive integer greater than 1. If a mod n = a’ and
bmod n = b', prove that (a + b) mod n = (¢’ + b") mod n and
(ab) mod n = (a'b") mod n. (This exercise is referred to in Chapters
6, 8,and 15.)

Let a and b be positive integers and let d = ged(a, b) and m =
lem(a, b). If t divides both a and b, prove that ¢ divides d. If s is a
multiple of both a and b, prove that s is a multiple of m.

Let n and a be positive integers and let d = gcd(a, n). Show that the
equation ax mod n = 1 has a solution if and only if d = 1. (This
exercise is referred to in Chapter 2.)

Show that 5n + 3 and 7n + 4 are relatively prime for all n.

Prove that every prime greater than 3 can be written in the form
6n + 1or6n + 5.

Determine 7' mod 6 and 6'®!' mod 7.

Let a, b, s, and ¢ be integers. If @ mod st = b mod s¢, show that
a mod s = b mod s and @ mod ¢ = b mod ¢. What condition on s
and 7 is needed to make the converse true? (This exercise is referred
to in Chapter 8.)

Determine 842 mod 5.

Show that gcd(a, bc) =1 if and only if ged(a, b) =1 and
gcd(a, ¢) = 1. (This exercise is referred to in Chapter 8.)

Letp,, p,, ..., p, be primes. Show that p, p, - - - p, + 1 is divisi-
ble by none of these primes.

Prove that there are infinitely many primes. (Hint: Use Exercise 20.)
For every positive integer n, prove that 1 + 2 + - - - + n =
n(n + 1)/2.

For every positive integer n, prove that a set with exactly n elements
has exactly 2" subsets (counting the empty set and the entire set).
For any positive integer n, prove that 2"3%* — 1 is always divisible
by 17.

Prove that there is some positive integer n such that n, n + 1,
n+2,...,n+ 200 are all composite.
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(Generalized Euclid’s Lemma) If p is a prime and p divides
a,a, - * - a,, prove that p divides a, for some i.

Use the Generalized Euclid’s Lemma (see Exercise 26) to establish
the uniqueness portion of the Fundamental Theorem of Arithmetic.
What is the largest bet that cannot be made with chips worth $7.00
and $9.00? Verify that your answer is correct with both forms of
induction.

Prove that the First Principle of Mathematical Induction is a conse-
quence of the Well Ordering Principle.

The Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . . In gen-
eral, the Fibonacci numbers are defined by f, = 1, f, = I, and for
n=3, f =f _,+[,_, Prove that the nth Fibonacci number f, sat-
isfies f < 2".

In the cut “As” from Songs in the Key of Life, Stevie Wonder men-
tions the equation 8 X 8 X 8 X 8 = 4. Find all integers n for which
this statement is true, modulo 7.

Prove that for every integer n, n* mod 6 = n mod 6.

If it were 2:00 A.M. now, what time would it be 3736 hours from now?

Determine the check digit for a money order with identification
number 7234541780.

Suppose that in one of the noncheck positions of a money order
number, the digit O is substituted for the digit 9 or vice versa. Prove
that this error will not be detected by the check digit. Prove that all
other errors involving a single position are detected.

Suppose that a money order identification number and check digit
of 21720421168 is erroneously copied as 27750421168. Will the
check digit detect the error?

A transposition error involving distinct adjacent digits is one of the
form ---ab --- — --- ba --- with a # b. Prove that the money
order check digit scheme will not detect such errors unless the
check digit itself is transposed.

Determine the check digit for the Avis rental car with identification
number 540047. (See Example 6.)

Show that a substitution of a digit a," for the digit a; (a," # a)) in
a noncheck position of a UPS number is detected if and only
ifla, — a1l # 7.

Determine which transposition errors involving adjacent digits are
detected by the UPS check digit.

Use the UPC scheme to determine the check digit for the number
07312400508.
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Explain why the check digit for a money order for the number N is
the repeated decimal digit in the real number N + 9.

The 10-digit International Standard Book Number (ISBN-10)
a,a,a,a,a.a,a.d, aya,, has the property (a,, a,, . .., a,,) - (10,9, 8,7,
6,5,4,3,2,1)mod 11 = 0. The digit a,, is the check digit. When
a,, s required to be 10 to make the dot product 0, the character X is
used as the check digit. Verify the check digit for the ISBN-10 as-
signed to this book.

Suppose that an ISBN-10 has a smudged entry where the question
mark appears in the number 0-716?-2841-9. Determine the missing
digit.

Suppose three consecutive digits abc of an ISBN-10 are scrambled as
bca. Which such errors will go undetected?

The ISBN-10 0-669-03925-4 is the result of a transposition of two
adjacent digits not involving the first or last digit. Determine the
correct ISBN-10.

Suppose the weighting vector for ISBN-10s was changed to (1, 2, 3,
4,5,6,7,8,9, 10). Explain how this would affect the check digit.
Use the two-check-digit error-correction method described in this
chapter to append two check digits to the number 73445860.
Suppose that an eight-digit number has two check digits appended
using the error-correction method described in this chapter and it is
incorrectly transcribed as 4302511568. If exactly one digit is in-
correct, determine the correct number.

The state of Utah appends a ninth digit a, to an eight-digit driver’s
license number a,a, . . . ag so that (9a, + 8a, + 7a, + 6a, + 5a, +
da, + 3a, + 2a4 + az) mod 10 = 0. If you know that the license
number 149105267 has exactly one digit incorrect, explain why the
error cannot be in position 2, 4, 6, or 8.

Complete the proof of Theorem 0.7.

Let S be the set of real numbers. If a, b € S, definea ~ bifa — b
is an integer. Show that ~ is an equivalence relation on S. Describe
the equivalence classes of S.

Let S be the set of integers. If a, b € S, define aRb if ab = 0. Is R an
equivalence relation on S?

Let S be the set of integers. If a, b € S, define aRb if a + b is even.
Prove that R is an equivalence relation and determine the equivalence
classes of S.

Complete the proof of Theorem 0.6 by showing that ~ is an equiva-
lence relation on S.
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56. Prove that none of the integers 11, 111, 1111, 11111, ... is a
square of an integer.

57. (Cancellation Property) Suppose «, 8 and 7y are functions. If ay =
By and vy is one-to-one and onto, prove that a« = 3.

There is nothing more practical than a good theory.
LEONID BREZHNEV

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software checks the validity of a Postal Service money order
number. Use it to verify that 39539881642 is valid. Now enter the
same number with one digit incorrect. Was the error detected? Enter
the number with the 9 in position 2 replaced with a 0. Was the error
detected? Explain why or why not. Enter the number with two dig-
its transposed. Was the error detected? Explain why or why not.

2. This software checks the validity of a UPC number. Use it to verify
that 090146003386 is valid. Now enter the same number with one
digit incorrect. Was the error detected? Enter the number with two
consecutive digits transposed. Was the error detected? Enter the
number with the second 3 and the 8 transposed. Was the error de-
tected? Explain why or why not. Enter the number with the 9 and
the 1 transposed. Was the error detected? Explain why or why not.

3. This software checks the validity of a UPS number. Use it to verify
that 8733456723 is valid. Now enter the same number with one digit
incorrect. Was the error detected? Enter the number with two consecu-
tive digits transposed. Was the error detected? Enter the number with
the 8 replaced by 1. Was the error detected? Explain why or why not.

4. This software checks the validity of an identification number on a
bank check. Use it to verify that 091902049 is valid. Now enter the
same number with one digit incorrect. Was the error detected?
Enter the number with two consecutive digits transposed. Was the
error detected? Enter the number with the 2 and the 4 transposed.
Was the error detected? Explain why or why not.

5. This software checks the validity of an ISBN-10. Use it to verify that
0395872456 is valid. Now enter the same number with one digit in-
correct. Was the error detected? Enter the number with two digits
transposed (they need not be consecutive). Was the error detected?


http://www.d.umn.edu/~jgallian
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6. This software determines the two check digits for the mod 11 dec-
imal error-correction scheme discussed in this chapter. Run the
program with the input 21355432, 20965744, 10033456. Then
enter these numbers with the two check digits appended with one
digit incorrect. Was the error corrected?

Suggested Readings

Linda Deneen, “Secret Encryption with Public Keys,” The UMAP Journal
8 (1987): 9-29.
This well-written article describes several ways in which modular
arithmetic can be used to code secret messages. They range from a
simple scheme used by Julius Caesar to a highly sophisticated scheme
invented in 1978 and based on modular » arithmetic, where n has more
than 200 digits.

J. A. Gallian, “Assigning Driver’s License Numbers,” Mathematics Maga-
zine 64 (1991): 13-22.

This article describes various methods used by the states to assign dri-
ver’s license numbers. Several include check digits for error detection.
This article can be downloaded at http://www.d.umn.edu/~jgallian/
license.pdf

J. A. Gallian, “The Mathematics of Identification Numbers,” The College
Mathematics Journal 22 (1991): 194-202.

This article is a comprehensive survey of check digit schemes that are
associated with identification numbers. This article can be downloaded
at http://www.d.umn.edu/~jgallian/ident.pdf

J. A. Gallian and S. Winters, “Modular Arithmetic in the Marketplace,”
The American Mathematical Monthly 95 (1988): 548-551.

This article provides a more detailed analysis of the check digit
schemes presented in this chapter. In particular, the error detection
rates for the various schemes are given. This article can be downloaded
at http://www.d.umn.edu/~jgallian/marketplace.pdf


http://www.d.umn.edu/~jgallian/license.pdf
http://www.d.umn.edu/~jgallian/license.pdf
http://www.d.umn.edu/~jgallian/ident.pdf
http://www.d.umn.edu/~jgallian/marketplace.pdf

For online student resources, visit this textbook’s website at <&
http://college.hmco.com/PIC/gallian7e b
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Introduction

to Groups

Symmetry is a vast subject, significant in art and nature. Mathematics lies at
its root, and it would be hard to find a better one on which to demonstrate
the working of the mathematical intellect.

HERMANN WEYL, Symmetry

Symmetries of a Square

Suppose we remove a square region from a plane, move it in some way,
then put the square back into the space it originally occupied. Our goal
in this chapter is to describe in some reasonable fashion all possible
ways in which this can be done. More specifically, we want to describe
the possible relationships between the starting position of the square
and its final position in terms of motions. However, we are interested
in the net effect of a motion, rather than in the motion itself. Thus, for
example, we consider a 90° rotation and a 450° rotation as equal, since
they have the same net effect on every point. With this simplifying con-
vention, it is an easy matter to achieve our goal.

To begin, we can think of the square region as being transparent
(glass, say), with the corners marked on one side with the colors blue,
white, pink, and green. This makes it easy to distinguish between mo-
tions that have different effects. With this marking scheme, we are now
in a position to describe, in simple fashion, all possible ways in which
a square object can be repositioned. See Figure 1.1. We now claim that
any motion—no matter how complicated—is equivalent to one of these
eight. To verify this claim, observe that the final position of the square
is completely determined by the location and orientation (that is, face
up or face down) of any particular corner. But, clearly, there are only
four locations and two orientations for a given corner, so there are
exactly eight distinct final positions for the corner.

29
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P W P W
R, =Rotation of 0° (no change in position) R,
0 — 0 5
G B G B
P W W B
R,, = Rotation of 90° (counterclockwise) Ry,
G B >~ P G
P W B G
R4, = Rotation of 180° R,
G B w P
P W G P
R, = Rotation of 270° Ry,
G B ~|B W
P W G B
H =Flip about a horizontal axis ~ Jacaaaad H
G B P W
. ) ) P W W P
V =Flip about a vertical axis ! v
G|B| 7/ = |B G
P, W P G
D =Flip about the main diagonal RN D
> —
G B, W B
) . P W B W
D' =Flip about the other diagonal R4 D'
’
G Bl 7/ |G P

Figure 1.1

Let’s investigate some consequences of the fact that every motion is
equal to one of the eight listed in Figure 1.1. Suppose a square is repo-
sitioned by a rotation of 90° followed by a flip about the horizontal axis
of symmetry. In pictures,

P W W B P G
Ryy — J====-- H
G B P G W B

Thus, we see that this pair of motions—taken together—is equal to
the single motion D. This observation suggests that we can compose
two motions to obtain a single motion. And indeed we can, since the
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eight motions may be viewed as functions from the square region to
itself, and as such we can combine them using function composition.

With this in mind, we may now write HR,, = D. The eight motions R,
Ry, R g0 Ry H, V, D, and D', together with the operation composition,
form a mathematical system called the dihedral group of order 8 (the
order of a group is the number of elements it contains). It is denoted by
D,. Rather than introduce the formal definition of a group here, let’s
look at some properties of groups by way of the example D,.

To facilitate future computations, we construct an operation table or
Cayley table (so named in honor of the prolific English mathematician
Arthur Cayley, who first introduced them in 1854) for D, below. The
circled entry represents the fact that D = HR,,. (In general, ab denotes
the entry at the intersection of the row with a at the left and the column
with b at the top.)

R, Ry, Ryg Ry H v D D
R, R, Ry, Ry Ry H 4 D D'
Ry, Ry, Rig Ry R, D D H 4
Ry | Rig Ry R, Ry, 4 H D D
Ry | Ry R, Ry, Ryg D D 4 H
H H @ 4 D R, Ry Ry, Ry
v 4 D' H D Ry R, Ry Ry,
D D D’ H Ry Ry, R, Ry
D’ D' H D Vv R R R R

90 270

80

=}

Notice how orderly this table looks! This is no accident. Perhaps the
most important feature of this table is that it has been completely filled
in without introducing any new motions. Of course, this is because, as
we have already pointed out, any sequence of motions turns out to be
the same as one of these eight. Algebraically, this says that if A and B
are in D, then so is AB. This property is called closure, and it is one of
the requirements for a mathematical system to be a group. Next, notice
that if A is any element of D, then AR, = RjA = A. Thus, combining
any element A on either side with R yields A back again. An element
R, with this property is called an identity, and every group must have
one. Moreover, we see that for each element A in D, there is exactly
one element B in D, such that AB = BA = R,,. In this case, B is said to
be the inverse of A and vice versa. For example, R, and R,,, are
inverses of each other, and H is its own inverse. The term inverse is a
descriptive one, for if A and B are inverses of each other, then B “un-
does” whatever A “does,” in the sense that A and B taken together in ei-
ther order produce R, representing no change. Another striking feature
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of the table is that every element of D, appears exactly once in each
row and column. This feature is something that all groups must have,
and, indeed, it is quite useful to keep this fact in mind when construct-
ing the table in the first place.

Another property of D, deserves special comment. Observe that
HD # DH but RyR o) = R ¢ Ry, Thus, in a group, ab may or may not
be the same as ba. If it happens that ab = ba for all choices of group
elements a and b, we say the group is commutative or—better yet—
Abelian (in honor of the great Norwegian mathematician Niels Abel).
Otherwise, we say the group is non-Abelian.

Thus far, we have illustrated, by way of D,, three of the four con-
ditions that define a group—namely, closure, existence of an identity,
and existence of inverses. The remaining condition required for a group
is associativity; that is, (ab)c = a(bc) for all a, b, c in the set. To be sure
that D, is indeed a group, we should check this equation for each of the
8% = 512 possible choices of a, b, and c in D,. In practice, however,
this is rarely done! Here, for example, we simply observe that the eight
motions are functions and the operation is function composition. Then,
since function composition is associative, we do not have to check the
equations.

The Dihedral Groups

The analysis carried out above for a square can similarly be done for
an equilateral triangle or regular pentagon or, indeed, any regular n-gon
(n = 3). The corresponding group is denoted by D, and is called the
dihedral group of order 2n.

The dihedral groups arise frequently in art and nature. Many of the
decorative designs used on floor coverings, pottery, and buildings have
one of the dihedral groups as a group of symmetry. Corporation logos
are rich sources of dihedral symmetry [1]. Chrysler’s logo has Dy as a
symmetry group, and that of Mercedes-Benz has D,. The ubiquitous
five-pointed star has symmetry group D.. The phylum Echinodermata
contains many sea animals (such as starfish, sea cucumbers, feather
stars, and sand dollars) that exhibit patterns with D, symmetry.

Chemists classify molecules according to their symmetry. Moreover,
symmetry considerations are applied in orbital calculations, in determin-
ing energy levels of atoms and molecules, and in the study of molecular
vibrations. The symmetry group of a pyramidal molecule such as ammo-
nia (NH,), depicted in Figure 1.2, has symmetry group D,.
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Figure 1.2 A pyramidal molecule with symmetry group D..

Mineralogists determine the internal structures of crystals (that is,
rigid bodies in which the particles are arranged in three-dimensional
repeating patterns—table salt and table sugar are two examples) by
studying two-dimensional x-ray projections of the atomic makeup
of the crystals. The symmetry present in the projections reveals the
internal symmetry of the crystals themselves. Commonly occurring
symmetry patterns are D, and D (see Figure 1.3). Interestingly, it is
mathematically impossible for a crystal to possess a D, symmetry pat-
tern withn = 5orn > 6.

-

Figure 1.3 X-ray diffraction photos revealing D, symmetry patterns in crystals.

The dihedral group of order 2n is often called the group of sym-
metries of a regular n-gon. A plane symmetry of a figure F in a
plane is a function from the plane to itself that carries F onto F and
preserves distances; that is, for any points p and ¢ in the plane, the
distance from the image of p to the image of ¢ is the same as the
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distance from p to g. (The term symmetry is from the Greek word
symmetros, meaning “of like measure.”) The symmetry group of a
plane figure is the set of all symmetries of the figure. Symmetries in
three dimensions are defined analogously. Obviously, a rotation of a
plane about a point in the plane is a symmetry of the plane, and a rota-
tion about a line in three dimensions is a symmetry in three-dimensional
space. Similarly, any translation of a plane or of three-dimensional
space is a symmetry. A reflection across a line L is that function that
leaves every point of L fixed and takes any point g, not on L, to the point
q' so that L is the perpendicular bisector of the line segment joining
q and ¢’ (see Figure 1.4). A reflection across a plane in three dimen-
sions is defined analogously. Notice that the restriction of a 180° rota-
tion about a line L in three dimensions to a plane containing L is a
reflection across L in the plane. Thus, in the dihedral groups, the mo-
tions that we described as flips about axes of symmetry in three dimen-
sions (for example, H, V, D, D') are reflections across lines in two
dimensions. Just as a reflection across a line is a plane symmetry that
cannot be achieved by a physical motion of the plane in two dimen-
sions, a reflection across a plane is a three-dimensional symmetry that
cannot be achieved by a physical motion of three-dimensional space.
A cup, for instance, has reflective symmetry across the plane bisecting
the cup, but this symmetry cannot be duplicated with a physical mo-
tion in three dimensions.

Figure 1.4

Many objects and figures have rotational symmetry but not reflective
symmetry. A symmetry group consisting of the rotational symmetries of
0°, 360°/n, 2(360°)/n, . .., (n — 1)360°/n, and no other symmetries is
called a cyclic rotation group of order n and is denoted by <R360/n>. Cyclic
rotation groups, along with dihedral groups, are favorites of artists, de-
signers, and nature. Figure 1.5 illustrates with corporate logos the cyclic
rotation groups of orders 2, 3, 4, 5, 6, 8, 16, and 20.

Further examples of the occurrence of dihedral groups and cyclic
groups in art and nature can be found in the references. A study of sym-
metry in greater depth is given in Chapters 27 and 28.



1 | Introduction to Groups 35

Figure 1.5 Logos with cyclic rotation symmetry groups.

The only way to learn mathematics is to do mathematics.
PAUL HALMOS, Hilbert Space Problem Book

1. With pictures and words, describe each symmetry in D, (the set of
symmetries of an equilateral triangle).

2. Write out a complete Cayley table for D;.

3. Is D, Abelian?

4. Describe in pictures or words the elements of D, (symmetries of a
regular pentagon).

5. For n = 3, describe the elements of D, . (Hint: You will need to
consider two cases—n even and n odd.) How many elements
does D, have?

6. In D , explain geometrically why a reflection followed by a reflec-
tion must be a rotation.

7. In D , explain geometrically why a rotation followed by a rotation
must be a rotation.

8. In D , explain geometrically why a rotation and a reflection taken
together in either order must be a reflection.

9. Associate the number +1 with a rotation and the number —1 with
a reflection. Describe an analogy between multiplying these two
numbers and multiplying elements of D, .



36

Groups

10. If r,, I,, and r, represent rotations from D, and f,, f,, and f; represent
reﬂections'from D,, determine whether r,r, f,r; f, fir; 18 a rotation
or a reflection.

11. Find elements A, B, and C in D, such that AB = BC but A # C.
(Thus, “cross cancellation” is not valid.)

12. Explain what the following diagram proves about the group D,

1 1 n
/\ F A Rigoim /\

1
n 2 2 n 1 n-1

1 2 2
/\ Rygorn /?\ F

1

n 2 1 3 3 1

13. Describe the symmetries of a nonsquare rectangle. Construct the
corresponding Cayley table.

14. Describe the symmetries of a parallelogram that is neither a rec-
tangle nor a rhombus. Describe the symmetries of a rhombus that
is not a rectangle.

15. Describe the symmetries of a noncircular ellipse. Do the same for
a hyperbola.

16. Consider an infinitely long strip of equally spaced H’s:

Describe the symmetries of this strip. Is the group of symmetries
of the strip Abelian?

17. For each of the snowflakes in the figure, find the symmetry group
and locate the axes of reflective symmetry (disregard imperfections).

Photographs of snowflakes from the Bentley and Humphrey atlas.



18.

19.

20.
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22,
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Determine the symmetry group of the outer shell of the cross sec-
tion of the human immunodeficiency virus (HIV) shown below.

Does an airplane propeller have a cyclic symmetry group or a di-
hedral symmetry group?

Bottle caps that are pried off typically have 22 ridges around the
rim. Find the symmetry group of such a cap.

What group theoretic property do upper-case letters F, G, J, K, L,
P, Q, R have that is not shared by the remaining upper-case letters
in the alphabet?

For each design below, determine the symmetry group (ignore
imperfections).
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23. What would the effect be if a six-bladed ceiling fan were designed
so that the centerlines of two of the blades were at a 70° angle and
all the other blades were set at a 58° angle?

Reference

1. B. B. Capitman, American Trademark Designs, New York: Dover, 1976.

Suggested Reading

Michael Field and Martin Golubitsky, Symmetry in Chaos, Oxford Uni-
versity Press, 1992.

This book has many beautiful symmetric designs that arise in
chaotic dynamic systems.



Niels Abel

He [Abel] has left mathematicians
something to keep them busy for five
hundred years.

CHARLES HERMITE

A 500-kroner bank note first issued
by Norway in 1948.

NIELS HENRIK ABEL, one of the foremost
mathematicians of the 19th century, was
born in Norway on August 5, 1802. At the
age of 16, he began reading the classic math-
ematical works of Newton, Euler, Lagrange,
and Gauss. When Abel was 18 years old, his
father died, and the burden of supporting the
family fell upon him. He took in private
pupils and did odd jobs, while continuing to
do mathematical research. At the age of 19,
Abel solved a problem that had vexed lead-
ing mathematicians for hundreds of years.
He proved that, unlike the situation for equa-
tions of degree 4 or less, there is no finite
(closed) formula for the solution of the gen-
eral fifth-degree equation.

Although Abel died long before the ad-
vent of the subjects that now make up ab-
stract algebra, his solution to the quintic
problem laid the groundwork for many of
these subjects. Just when his work was be-
ginning to receive the attention it deserved,
Abel contracted tuberculosis. He died on
April 6, 1829, at the age of 26.

p. EUROPA

This stamp was issued in 1929
to commemorate the 100th
anniversary of Abel’s death.

In recognition of the fact that there is no
Nobel Prize for mathematics, in 2002 Norway
established the Abel Prize as the “Nobel Prize
in mathematics” in honor of its native son. At
approximately the $1,000,000 level, the Abel
Prize is now seen as an award equivalent to
the Nobel Prize.

To find more information about Abel, visit:

http://www-groups.dcs.st-and
.ac.uk/~history/
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A good stock of examples, as large as possible, is indispensable
for a thorough understanding of any concept, and when | want
to learn something new, | make it my first job to build one.

PAUL R. HALMOS

Definition and Examples of Groups

40

The term group was used by Galois around 1830 to describe sets of
one-to-one functions on finite sets that could be grouped together to
form a set closed under composition. As is the case with most funda-
mental concepts in mathematics, the modern definition of a group that
follows is the result of a long evolutionary process. Although this defi-
nition was given by both Heinrich Weber and Walter von Dyck in 1882,
it did not gain universal acceptance until the 20th century.

Definition Binary Operation
Let G be a set. A binary operation on G is a function that assigns each
ordered pair of elements of G an element of G.

A binary operation on a set G, then, is simply a method (or for-
mula) by which the members of an ordered pair from G combine to
yield a new member of G. This condition is called closure. The most
familiar binary operations are ordinary addition, subtraction, and
multiplication of integers. Division of integers is not a binary opera-
tion on the integers because an integer divided by an integer need not
be an integer.

The binary operations addition modulo n and multiplication mod-
ulo n on the set {0, 1, 2, ..., n — 1}, which we denote by Z , play an
extremely important role in abstract algebra. In certain situations we
will want to combine the elements of Z by addition modulo 7 only;
in other situations we will want to use both addition modulo n and
multiplication modulo n to combine the elements. It will be clear
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from the context whether we are using addition only or addition and
multiplication. For example, when multiplying matrices with entries
from Z , we will need both addition modulo n and multiplication
modulo 7.

Definition Group

Let G be a set together with a binary operation (usually called multipli-
cation) that assigns to each ordered pair (a, b) of elements of G an ele-
ment in G denoted by ab. We say G is a group under this operation if
the following three properties are satisfied.

1. Associativity. The operation is associative; that is, (ab)c = a(bc) for
alla, b, cin G.

2. Identity. There is an element e (called the identity) in G such that
ae = ea = afor alla in G.

3. Inverses. For each element a in G, there is an element b in G
(called an inverse of a) such that ab = ba = e.

In words, then, a group is a set together with an associative opera-
tion such that there is an identity, every element has an inverse, and any
pair of elements can be combined without going outside the set. Be
sure to verify closure when testing for a group (see Example 5). Notice
that if a is the inverse of b, then b is the inverse of a.

If a group has the property that ab = ba for every pair of elements
a and b, we say the group is Abelian. A group is non-Abelian if there
is some pair of elements a and b for which ab # ba. When encounter-
ing a particular group for the first time, one should determine whether
or not it is Abelian.

Now that we have the formal definition of a group, our first job is
to build a good stock of examples. These examples will be used
throughout the text to illustrate the theorems. (The best way to grasp
the meat of a theorem is to see what it says in specific cases.) As we
progress, the reader is bound to have hunches and conjectures that
can be tested against the stock of examples. To develop a better un-
derstanding of the following examples, the reader should supply the
missing details.

B EXAMPLE 1 The set of integers Z (so denoted because the German
word for numbers is Zahlen), the set of rational numbers Q (for quo-
tient), and the set of real numbers R are all groups under ordinary addi-
tion. In each case, the identity is 0 and the inverse of a is —a. |
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B EXAMPLE 2 The set of integers under ordinary multiplication is not
a group. Since the number 1 is the identity, property 3 fails. For exam-
ple, there is no integer b such that 56 = 1. |

B EXAMPLE 3 The subset {1, —1, i, —i} of the complex numbers
is a group under complex multiplication. Note that —1 is its own inverse,
whereas the inverse of i is —i, and vice versa. |

B EXAMPLE 4 The set Q" of positive rationals is a group under ordi-
nary multiplication. The inverse of any a is 1/a = a™ . |

B EXAMPLE 5 The set S of positive irrational numbers together with 1
under multiplication satisfies the three properties given in the definition
of a group but is not a group. Indeed, V2 - V2 = 2, s0 S is not closed
under multiplication. |

b
B EXAMPLE 6 A rectangular array of the form {a d} is called a
c

2 X 2 matrix. The set of all 2 X 2 matrices with real entries is a group
under componentwise addition. That is,

{al bl] n [az bz] B {al +a b + bz}
Cq dl Cy dz Cq + Cy dl + d2

00 b . |—a —b
The identity is {0 0}, and the inverse of [Ccl d} is [_CCI —d} |

B EXAMPLE?7 ThesetZ = {0,1,...,n— 1} forn = 11is a group under
addition modulo n. For any j > 0 in Z, the inverse of j is n — j.
This group is usually referred to as the group of integers modulo n. |

As we have seen, the real numbers, the 2 X 2 matrices with real en-
tries, and the integers modulo n are all groups under the appropriate ad-
dition. But what about multiplication? In each case, the existence of
some elements that do not have inverses prevents the set from being a
group under the usual multiplication. However, we can form a group in
each case by simply throwing out the rascals. Examples 8, 9, and 11
illustrate this.

B EXAMPLE 8 The set R* of nonzero real numbers is a group under
ordinary multiplication. The identity is 1. The inverse of a is 1/a. |
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b
B EXAMPLE 9% The determinant of the 2 X 2 matrix [a d] is the
¢

number ad — bc. If A is a 2 X 2 matrix, det A denotes the determinant
of A. The set

a b
GL(2, R):{L d]

of 2 X 2 matrices with real entries and nonzero determinant is a non-
Abelian group under the operation

[al bIHaz bz} B {alaz + bic, ab, + bldz}
¢, dillcy, d, ca, +dc, cby,+ dd,

a,b,c,d € R,ad — bc # O}

The first step in verifying that this set is a group is to show that the
product of two matrices with nonzero determinant also has nonzero
determinant. This follows from the fact that for any pair of 2 X 2
matrices A and B, det (AB) = (det A)(det B).

Associativity can be verified by direct (but cumbersome) calcula-

) . .. (10 ) a bl .
tions. The identity is ; the inverse of is
01 c d
d —-b
ad — bc ad — bc
—c a

ad — bc ad — bc

(explaining the requirement that ad — bc # 0). This very important
non-Abelian group is called the general linear group of 2 X 2 matrices
over R. |

B EXAMPLE 10 The set of all 2 X 2 matrices with real number entries
is not a group under the operation defined in Example 9. Inverses do
not exist when the determinant is 0. |

Now that we have shown how to make subsets of the real numbers
and subsets of the set of 2 X 2 matrices into multiplicative groups, we
next consider the integers under multiplication modulo 7.

"For simplicity, we have restricted our matrix examples to the 2 X 2 case. However,
readers who have had linear algebra can readily generalize to n X n matrices.
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I EXAMPLE 11 (L. Euler, 1761) By Exercise 13 in Chapter 0, an
integer a has a multiplicative inverse modulo 7 if and only if a and n are
relatively prime. So, for each n > 1, we define U(n) to be the set of all
positive integers less than n and relatively prime to n. Then U(n) is a
group under multiplication modulo n. (We leave it to the reader to
check that this set is closed under this operation.)

For n = 10, we have U(10) = {1, 3, 7, 9}. The Cayley table for
U(10) is

mod 10 ‘ 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

(Recall that ab mod r is the unique integer r with the property a « b =
nqg + r, where 0 = r < n and a + b is ordinary multiplication.) In the
case that n is a prime, U(n) = {1,2,...,n — 1}. |

In his classic book Lehrbuch der Algebra, published in 1899, Heinrich
Weber gave an extensive treatment of the groups U(n) and described
them as the most important examples of finite Abelian groups.

B EXAMPLE 12 The set {0, 1, 2, 3} is not a group under multiplica-
tion modulo 4. Although 1 and 3 have inverses, the elements 0 and 2
do not. |

B EXAMPLE 13 The set of integers under subtraction is not a group,
since the operation is not associative. |

With the examples given thus far as a guide, it is wise for the reader
to pause here and think of his or her own examples. Study actively!
Don’t just read along and be spoon-fed by the book.

# EXAMPLE 14 For all integers n = 1, the set of complex nth roots
of unity

{cosk'360+isink'360 k=0.1.2.....n— 1}

(i.e., complex zeros of x” — 1) is a group under multiplication. (See
DeMoivre’s Theorem—Example 7 in Chapter 0.) Compare this group
with the one in Example 3. |
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The complex number a + bi can be represented geometrically as the
point (a, b) in a plane coordinatized by a horizontal real axis and a ver-
tical i or imaginary axis. The distance from the point a + bi to the ori-
gin is Va?+b?* and is often denoted by |a + bil. For any angle 6, the
line segment joining the complex number cos 6 + i sin § and the origin
forms an angle of 6 with the positive real axis. Thus, the six complex
zeros of x® = 1 are located at points around the circle of radius 1, 60°
apart, as shown in Figure 2.1.

Imaginary
-yt
i I 1 Real
_1_ A3,
2 2t

Figure 2.1
B EXAMPLE 15 The setR" = {(a, a,,...,a,) |a;,ay ...,a, € R}
is a group under componentwise addition [i.e., (a;, a,, ..., a) +
(b, by, ...,b)=(a, +b,a,+by...,a,+b)l |

B EXAMPLE 16 For a fixed point (a, b) in R?, define 7 ,: R> — R?
by (x,y) > (x +a,y + b). Then G = (T, | a, bER}lsagroup
under function composition. Stralghtforward calculations show that
r,T.,= Ta teptrq From this formula we may observe that G is
closed T, 1s the identity, the inverse of T, is T_u _p» and G is Abelian.
Functlon composmon is always assomatlve The elements of G are

called translations. |

B EXAMPLE 17 The set of all 2 X 2 matrices with determinant 1 with en-
tries from Q (rationals), R (reals), C (complex numbers), or Zp (p aprime)
is a non-Abelian group under matrix multiplication. This group is called
the special linear group of 2 X 2 matrices over Q, R, C, or Zp, respectively.
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If the entries are from F, where F is any of the above, we denote this group
by SL(2, F). For the group SL(2, F), the formula given in Example 9 for

b
}. When the matrix
—c a

entries are from Z, we use modulo p arithmetic to compute determi-
nants, matrix products, and inverses. To illustrate the case SL(2, Zj),

b
the inverse of “ J simplifies to {
c

3 4
consider the element A = L 4}. ThendetA =3 -4 —4-4)mod5 =

. ) 4 —4 4 1
—4 mod 5 = 1, and the inverse of A is 4 3 = ) 3.Note

tht{3 4H4 1}—{1 O} hen the arithmetic is d dulo5. 1
atl 31 = 1o 1 when the arithmetic is done modulo 5.

Example 9 is a special case of the following general construction.

# EXAMPLE 18 Let F be any of O, R, C, or Zp (p a prime). The set
GL(2, F) of all 2 X 2 matrices with nonzero determinants and entries
from F is a non-Abelian group under matrix multiplication. As in
Example 17, when F is Zp, modulo p arithmetic is used to calculate
determinants, the matrix products, and inverses. The formula given in

b
Example 9 for the inverse of {a d} remains valid for elements from

c
GL(2, Zp) provided we interpret division by ad — bc as multiplication
by the inverse of ad — bc modulo p. For example, in GL(2, Z,),

4 5
consider [6 3} . Then the determinant (ad — bc) mod 7 is (12 — 30)
mod 7 = —18 mod 7 = 3 and the inverse of 3 is 5 [since (3 - 5)

. 4 5. [3-5 2-5 1 3
mod 7 = 1]. So, the inverse of{ ]15[ ]:{ ]
6 3 1-5 4-5 56
4 5|1 3 1 0
Th der should check that = in GL(2,7.)]. 1
[The reader should chec a{6 3] {5 6] {0 J in GL(2, Z,)]

B EXAMPLE 19 The set {1, 2,...,n — 1} is a group under multipli-
cation modulo 7 if and only if 7 is prime. |

B EXAMPLE 20 The set of all symmetries of the infinite ornamental
pattern in which arrowheads are spaced uniformly a unit apart along
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a line is an Abelian group under composition. Let 7 denote a translation
to the right by one unit, 7! a translation to the left by one unit, and H a re-
flection across the horizontal line of the figure. Then, every member of the
group is of the form xx, - - - x, where each x €

{T, T, H}. In this case, we say that T, T~!, and H generate the group. 1

Table 2.1 summarizes many of the specific groups that we have
presented thus far.

As the examples above demonstrate, the notion of a group is a very
broad one indeed. The goal of the axiomatic approach is to find proper-
ties general enough to permit many diverse examples having these
properties and specific enough to allow one to deduce many interesting
consequences.

The goal of abstract algebra is to discover truths about algebraic
systems (that is, sets with one or more binary operations) that are inde-
pendent of the specific nature of the operations. All one knows
or needs to know is that these operations, whatever they may be, have

Table 2.1 Summary of Group Examples (F can be any of Q, R, C, or Zp; L is a reflection)

Form of
Group Operation Identity Element Inverse Abelian
Z Addition 0 k —k Yes
ot Multiplication 1 m/n, n/m Yes
m,n>0
zZ, Addition mod n 0 k n—k Yes
R* Multiplication 1 X 1/x Yes
GL(2, F) Matrix 10 a b d —b
multiplication [0 1} L , d} ad — be ad — be
e a No
ad — bc #0 ad — bc ad — bc
U(n) Multiplication 1 k, Solution to Yes
mod n ged(k, n) =1 kxmodn =1
R” Componentwise (0,0, ...,0) (a,,a,,...,a,) (=a,, —ay, ..., —a,) Yes
addition
SL(2, F)  Matrix 1 0 a b d —b No
multiplication [O 1 } { c d} {— c a}
ad — bc =1
D, Composition R, R,L Ry L No
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certain properties. We then seek to deduce consequences of these
properties. This is why this branch of mathematics is called abstract
algebra. It must be remembered, however, that when a specific group
is being discussed, a specific operation must be given (at least
implicitly).

Elementary Properties of Groups

Now that we have seen many diverse examples of groups, we wish to
deduce some properties that they share. The definition itself raises
some fundamental questions. Every group has an identity. Could a
group have more than one? Every group element has an inverse. Could
an element have more than one? The examples suggest not. But exam-
ples can only suggest. One cannot prove that every group has a unique
identity by looking at examples, because each example inherently has
properties that may not be shared by all groups. We are forced to
restrict ourselves to the properties that all groups have; that is, we must
view groups as abstract entities rather than argue by example. The next
three theorems illustrate the abstract approach.

I Theorem 2.1 Uniqueness of the Identity

In a group G, there is only one identity element.

PROOF Suppose both e and ¢’ are identities of G. Then,

1. ae = aforall a in G, and
2. ¢la=aforallainG.

The choices of a = ¢’ in (1) and a = ¢ in (2) yield e'e = ¢’ and
e'e = e. Thus, e and e’ are both equal to e¢’e and so are equal to each
other. |

Because of this theorem, we may unambiguously speak of “the iden-

tity” of a group and denote it by “e¢” (because the German word for
identity is Einheit).

B Theorem 2.2 Cancellation

In a group G, the right and left cancellation laws hold; that is,
ba = ca implies b = ¢, and ab = ac implies b = c.



2 | Groups 49

PROOF Suppose ba = ca. Let a’ be an inverse of a. Then, multi-
plying on the right by a’ yields (ba)a’ = (ca)a’. Associativity yields
b(aa") = c(aa’). Then, be = ce and, therefore, b = ¢ as desired. Simi-
larly, one can prove that ab = ac implies b = ¢ by multiplying by a’ on
the left. |

A consequence of the cancellation property is the fact that in a
Cayley table for a group, each group element occurs exactly once in
each row and column (see Exercise 23). Another consequence of the
cancellation property is the uniqueness of inverses.

I Theorem 2.3 Uniqueness of Inverses

For each element a in a group G, there is a unique element b in G
such that ab = ba = e.

PROOF Suppose b and c are both inverses of a. Then ab = e and
ac = e, so that ab = ac. Canceling the a on both sides gives b = ¢, as
desired. |

As was the case with the identity element, it is reasonable, in view
of Theorem 2.3, to speak of “the inverse” of an element g of a group;
in fact, we may unambiguously denote it by g~ !. This notation is sug-
gested by that used for ordinary real numbers under multiplication.
Similarly, when n is a positive integer, the associative law allows us to
use g" to denote the unambiguous product

gg g

-

n factors

We define g° = e. When n is negative, we define g" = (g~ H"l [for ex-
ample, g7° = (g~ ")%]. Unlike for real numbers, in an abstract group we
do not permit noninteger exponents such as g'2. With this notation, the
familiar laws of exponents hold for groups; that is, for all integers m and
n and any group element g, we have g"g" = g"*" and (g"™)" = g"".
Although the way one manipulates the group expressions g"g" and
(g™ coincides with the laws of exponents for real numbers, the laws
of exponents fail to hold for expressions involving two group elements.
Thus, for groups in general, (ab)" # a"b" (see Exercise 15).

Also, one must be careful with this notation when dealing with a
specific group whose binary operation is addition and is denoted by
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+.” In this case, the definitions and group properties expressed in
multiplicative notation must be translated to additive notation. For
example, the inverse of g is written as —g. Likewise, for example, g3

Table 2.2

Multiplicative Group Additive Group
a-borab Multiplication a+b Addition
eorl Identity or one 0 Zero
a’! Multiplicative inverse of a —a Additive inverse of a
a Power of a na Multiple of a
ab™! Quotient a—b Difference

means g + g + g and is usually written as 3g, whereas g~ means
(—g) + (—g) + (—g) and is written as —3g. When additive notation
is used, do not interpret “ng” as combining n and g under the group
operation; n may not even be an element of the group! Table 2.2 shows
the common notation and corresponding terminology for groups un-
der multiplication and groups under addition. As is the case for real
numbers, we use a — b as an abbreviation for a + (—b).

Because of the associative property, we may unambiguously write
the expression abc, for this can be reasonably interpreted as only (ab)c
or a(bc), which are equal. In fact, by using induction and repeated ap-
plication of the associative property, one can prove a general associa-
tive property that essentially means that parentheses can be inserted or
deleted at will without affecting the value of a product involving any
number of group elements. Thus,

a*(bcdb?) = a’b(cd)b* = (a*b)(cd)b*> = a(abcdb)b,
and so on.
Although groups do not have the property that (ab)" = a"b" there is
a simple relationship between (ab) ™' and a~!' and b™'.

I Theorem 2.4 Socks-Shoes Property

For group elements a and b, (ab)™' = b~ 'a™\.

PROOF Since (ab)(ab)™' = e and (ab)(b~'a™") = abb a ! =
aea”' = aa”! = e, we have by Theorem 2.3 that (ab) ™' = b~ la™ . |
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Historical Note

We conclude this chapter with a bit of history concerning the non-
commutativity of matrix multiplication. In 1925, quantum theory was
replete with annoying and puzzling ambiguities. It was Werner
Heisenberg who recognized the cause. He observed that the product of
the quantum-theoretical analogs of the classical Fourier series did not
necessarily commute. For all his boldness, this shook Heisenberg. As
he later recalled [2, p. 94]:

In my paper the fact that XY was not equal to YX was very disagreeable to me. I felt
this was the only point of difficulty in the whole scheme, otherwise I would be per-
fectly happy. But this difficulty had worried me and I was not able to solve it.

Heisenberg asked his teacher, Max Born, if his ideas were worth pub-
lishing. Born was fascinated and deeply impressed by Heisenberg’s new
approach. Born wrote [1, p. 217]:

After having sent off Heisenberg’s paper to the Zeitschrift fiir Physik for publica-
tion, I began to ponder over his symbolic multiplication, and was soon so involved
in it that I thought about it for the whole day and could hardly sleep at night. For I
felt there was something fundamental behind it, the consummation of our endeav-
ors of many years. And one morning, about the 10 July 1925, I suddenly saw light:
Heisenberg’s symbolic multiplication was nothing but the matrix calculus, well-
known to me since my student days from Rosanes’ lectures in Breslau.

Born and his student, Pascual Jordan, reformulated Heisenberg’s ideas
in terms of matrices, but it was Heisenberg who was credited with the
formulation. In his autobiography, Born laments [1, p. 219]:

Nowadays the textbooks speak without exception of Heisenberg’s matrices, Heisen-
berg’s commutation law, and Dirac’s field quantization.

In fact, Heisenberg knew at that time very little of matrices and had to study
them.

Upon learning in 1933 that he was to receive the Nobel Prize
with Dirac and Schrodinger for this work, Heisenberg wrote to Born
[1, p. 220]:

If I have not written to you for such a long time, and have not thanked you for your
congratulations, it was partly because of my rather bad conscience with respect to
you. The fact that I am to receive the Nobel Prize alone, for work done in Géttingen
in collaboration—you, Jordan, and I—this fact depresses me and I hardly know
what to write to you. I am, of course, glad that our common efforts are now appre-
ciated, and I enjoy the recollection of the beautiful time of collaboration. I also be-
lieve that all good physicists know how great was your and Jordan’s contribution to
the structure of quantum mechanics—and this remains unchanged by a wrong deci-
sion from outside. Yet I myself can do nothing but thank you again for all the fine
collaboration, and feel a little ashamed.

The story has a happy ending, however, because Born received the
Nobel Prize in 1954 for his fundamental work in quantum mechanics.
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“For example,” is not proof.

Jewish Proverb

. Give two reasons why the set of odd integers under addition is not

a group.

. Referring to Example 13, verify the assertion that subtraction is not

associative.

. Show that {1, 2, 3} under multiplication modulo 4 is not a group

but that {1, 2, 3, 4} under multiplication modulo 5 is a group.

. Show that the group GL(2, R) of Example 9 is non-Abelian by ex-

hibiting a pair of matrices A and B in GL(2, R) such that AB # BA.

2 6
. Find the inverse of the element [3 5] in GL(2, Z,,).

. Give an example of group elements a and b with the property that

a'ba # b.

. Translate each of the following multiplicative expressions into its

additive counterpart. Assume that the operation is commutative.
a. a’b’

b. a %(b 'c)?

c. (a3t =e

. Show that the set {5, 15, 25, 35} is a group under multiplication
modulo 40. What is the identity element of this group? Can you see
any relationship between this group and U(8)?

10.
11.

12.

List the members of H = {x*|x € D,} and K = {x €D, |x? = e}.
Prove that the set of all 2 X 2 matrices with entries from R and de-
terminant +1 is a group under matrix multiplication.

For any integer n > 2, show that there are at least two elements in
U(n) that satisfy x> = 1.



13.

14.

15.

16.

17.

18.
19.

20.
21.

22,

23.

24,
25.
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An abstract algebra teacher intended to give a typist a list of nine in-
tegers that form a group under multiplication modulo 91. Instead,
one of the nine integers was inadvertently left out, so that the list ap-
peared as 1, 9, 16, 22, 53, 74, 79, 81. Which integer was left out?
(This really happened!)

Let G be a group with the following property: Whenever a, b, and
¢ belong to G and ab = ca, then b = c. Prove that G is Abelian.
(“Cross cancellation” implies commutativity.)

(Law of Exponents for Abelian Groups) Let a and b be elements of
an Abelian group and let n be any integer. Show that (ab)" = a"b".
Is this also true for non-Abelian groups?

(Socks-Shoes Property) Draw an analogy between the statement
(ab)™' = b~ 'a" ! and the act of putting on and taking off your socks
and shoes. Find an example that shows that in a group, it is possible
to have (ab)~% # b~%a2. Find distinct nonidentity elements a and
b from a non-Abelian group such that (ab) ™! = a b,

Prove that a group G is Abelian if and only if (ab)™' = a~'b~! for
all @ and b in G.

Prove that in a group, (a~")~! = a for all a.

For any elements a and b from a group and any integer n, prove
that (a”'ba)* = a~'b"a.

Ifa,a,...,a, belong to a group, what is the inverse of a\a, - - - a,?

The integers 5 and 15 are among a collection of 12 integers that
form a group under multiplication modulo 56. List all 12.

Give an example of a group with 105 elements. Give two examples
of groups with 44 elements.

Prove that every group table is a Latin square'; that is, each ele-
ment of the group appears exactly once in each row and each col-
umn. (This exercise is referred to in this chapter.)

Construct a Cayley table for U(12).

Suppose the table below is a group table. Fill in the blank entries.

QLU o T8 8
|

Latin squares are useful in designing statistical experiments. There is also a close con-
nection between Latin squares and finite geometries.
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26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Prove that if (ab)> = a’b? in a group G, then ab = ba.
Let a, b, and c be elements of a group. Solve the equation axb = ¢
for x. Solve a™'xa = ¢ for x.

Prove that the set of all rational numbers of the form 36", where
m and n are integers, is a group under multiplication.

Let G be a finite group. Show that the number of elements x of G
such that x> = e is odd. Show that the number of elements x of G
such that x2 # e is even.

Give an example of a group with elements a, b, ¢, d, and x such
that axb = cxd but ab # cd. (Hence “middle cancellation” is not
valid in groups.)

Let R be any rotation in some dihedral group and F any reflection
in the same group. Prove that RFR = F.

Let R be any rotation in some dihedral group and F, any reflection
in the same group. Prove that FRF = R™! for all integers k.

Suppose that G is a group with the property that for every choice
of elements in G, axb = cxd implies ab = cd. Prove that G is
Abelian. (“Middle cancellation” implies commutativity.)

In the dihedral group D , let R = R, and let F be any reflection.
Write each of the following products in the form R' or R'F, where
0=i<n.

a. InD,, FR™*FR°

b. In D, R3FR*FR™?

c. In D, FROFR™*F

Prove that if G is a group with the property that the square of every
element is the identity, then G is Abelian. (This exercise is referred
to in Chapter 26.)

Prove that the set of all 3 X 3 matrices with real entries of the form

1 a b
0 1 ¢
0O 0 1

is a group. (Multiplication is defined by

1 a b 1 a b 1 a+a” b'+ac’+b
0 1 ¢ 01 ¢ |=|0 1 c'+c
0 0 1 0 0 1 0 0 1

This group, sometimes called the Heisenberg group after the
Nobel Prize—winning physicist Werner Heisenberg, is intimately re-
lated to the Heisenberg Uncertainty Principle of quantum physics.)
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37. Prove the assertion made in Example 19 that the set {1, 2, ...,
n — 1} is a group under multiplication modulo »n if and only if 7 is
prime.

38. In a finite group, show that the number of nonidentity elements
that satisfy the equation x> = e is a multiple of 4. If the stipulation
that the group be finite is omitted, what can you say about the
number of nonidentity elements that satisfy the equation x> = e?

39. Let G = {{a a}\a ER,a# O}. Show that G is a group under
a a

matrix multiplication. Explain why each element of G has an inverse
even though the matrices have 0 determinant. (Compare with Exam-
ple 10.)

Almost immediately after the war, Johnny [Von Neumann] and | also began
to discuss the possibilities of using computers heuristically to try to obtain
insights into questions of pure mathematics. By producing examples and by
observing the properties of special mathematical objects, one could hope to
obtain clues as to the behavior of general statements which have been
tested on examples.

S. M. ULAM, Adventures of a Mathematician

Software for the computer exercises in this chapter is available at the web-
site:

http://www.d.umn.edu/~jgallian

1. This software prints the elements of U(n) and the inverse of each
element.

2. This software determines the size of U(k). Run the program for
k=29,27,81,243,25, 125,49, 121. On the basis of this output, try
to guess a formula for the size of U(p") as a function of the prime
p and the integer n. Run the program for k = 18, 54, 162, 486, 50,
250, 98, 242. Make a conjecture about the relationship between the
size of U(2p") and the size of U(p"), where p is a prime greater
than 2.

3. This software computes the inverse of any element in GL(2, Zp),
where p is a prime.

4. This software determines the number of elements in GL(2, Zp) and
SL(2, Zp). (The technical term for the number of elements in a group
is the order of the group.) Run the program for p = 3, 5,7, and 11.


http://www.d.umn.edu/~jgallian
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Do you see a relationship between the orders of GL(2, Z ) and
SL(2, Zp) and p — 1? Does this relationship hold for p = 2? Based
on these examples, does it appear that p always divides the order
of SL(2, ZP)? What about p — 1?7 What about p + 1?7 Guess a
formula for the order of SL(2, Zp). Guess a formula for the order
of GL(2, Z).
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Finite Groups;

Subgroups

In our own time, in the period 1960-1980, we have seen particle physics
emerge as the playground of group theory.
FREEMAN DYSON

Terminology and Notation

As we will soon discover, finite groups—that is, groups with finitely
many elements—have interesting arithmetic properties. To facilitate
the study of finite groups, it is convenient to introduce some terminol-
ogy and notation.

Definition Order of a Group
The number of elements of a group (finite or infinite) is called its
order. We will use |G| to denote the order of G.

Thus, the group Z of integers under addition has infinite order,
whereas the group U(10) = {1, 3, 7, 9} under multiplication modulo
10 has order 4.

Definition Order of an Element

The order of an element g in a group G is the smallest positive integer
n such that g" = e. (In additive notation, this would be ng = 0.) If no
such integer exists, we say that g has infinite order. The order of an
element g is denoted by Igl.

So, to find the order of a group element g, you need only compute the
sequence of products g, g%, g°, . . ., until you reach the identity for the first
time. The exponent of this product (or coefficient if the operation is addi-
tion) is the order of g. If the identity never appears in the sequence, then
g has infinite order.

B EXAMPLE 1 Consider U(15) = {1, 2, 4, 7, 8, 11, 13, 14} under
multiplication modulo 15. This group has order 8. To find the order of

57



58

Groups

the element 7, say, we compute the sequence 7! = 7,72 = 4, 73 = 13,
74 =1, so |71 = 4. To find the order of 11, we compute 11! = 11,
112 = 1, so I111 = 2. Similar computations show that |11 = 1, 12| = 4,
4] = 2,181 = 4, 1131 = 4, 114] = 2. [Here is a trick that makes these
calculations easier. Rather than compute the sequence 13!, 132, 133,
134, we may observe that 13 = —2 mod 15, so that 13> = (=2)?> = 4,
133=—-2-4=-8,13*=(—2)(—8) = 1.1 |

B EXAMPLE 2 Consider Z,, under addition modulo 10. Since 1 -2 = 2,
2:2=4,3-2=6,4-2=28,5-2 =0, we know that |2| = 5. Similar
computations show that [0l = 1, 171 = 10, I5| = 2,161 = 5. (Here 2 - 2 is
an abbreviation for 2 + 2, 3 - 2 is an abbreviation for 2 + 2 + 2, etc.) 1

B EXAMPLE 3 Consider Z under ordinary addition. Here every nonzero
element has infinite order, since the sequence a, 2a, 3a, . . . never includes
O whena # 0. |

The perceptive reader may have noticed among our examples of
groups in Chapter 2 that some are subsets of others with the same
binary operation. The group SL(2, R) in Example 17, for instance, is
a subset of the group GL(2, R) in Example 9. Similarly, the group of
complex numbers {1, —1, i, —i} under multiplication is a subset of
the group described in Example 14 for n equal to any multiple of 4.
This situation arises so often that we introduce a special term to de-
scribe it.

Definition Subgroup
If a subset H of a group G is itself a group under the operation of G, we
say that H is a subgroup of G.

We use the notation H = G to mean that H is a subgroup of G. If we
want to indicate that H is a subgroup of G but is not equal to G itself,
we write H < G. Such a subgroup is called a proper subgroup. The
subgroup {e} is called the trivial subgroup of G; a subgroup that is not
{e} is called a nontrivial subgroup of G.

Notice that Z under addition modulo 7 is not a subgroup of Z under
addition, since addition modulo 7 is not the operation of Z.

Subgroup Tests

When determining whether or not a subset H of a group G is a sub-

" The website www.google.com provides a convenient way to do modular arithmetic.
For example, to compute 13* mod 15, just type 134 mod 15 in the search box.


www.google.com
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group of G, one need not directly verify the group axioms. The next
three results provide simple tests that suffice to show that a subset of a
group is a subgroup.

I Theorem 3.1 One-Step Subgroup Test

Let G be a group and H a nonempty subset of G. If ab~"is in H
whenever a and b are in H, then H is a subgroup of G. (In additive
notation, if a — b is in H whenever a and b are in H, then H is a
subgroup of G.)

PROOF Since the operation of H is the same as that of G, it is clear
that this operation is associative. Next, we show that e is in H. Since H
is nonempty, we may pick some x in H. Then, letting a = x and b = x in
the hypothesis, we have ¢ = xx~! = ab~!is in H. To verify that x! is
in H whenever x is in H, all we need to do is to choose ¢ = ¢ and b =
x in the statement of the theorem. Finally, the proof will be complete
when we show that H is closed; that is, if x, y belong to H, we must
show that xy is in H also. Well, we have already shown that y~! is in H
whenever y is; so, lettinga = xand b = y~!, we have xy = x(y 1)~! =
ab~'is in H. |

Although we have dubbed Theorem 3.1 the “One-Step Subgroup
Test,” there are actually four steps involved in applying the theorem.
(After you gain some experience, the first three steps will be routine.)
Notice the similarity between the last three steps listed below and the
three steps involved in the Principle of Mathematical Induction.

1. Identify the property P that distinguishes the elements of H; that is,
identify a defining condition.

2. Prove that the identity has property P. (This verifies that H is
nonempty.)

3. Assume that two elements a and b have property P.

4. Use the assumption that a and b have property P to show that
ab~! has property P.

The procedure is illustrated in Examples 4 and 5.

I EXAMPLE 4 Let G be an Abelian group with identity e. Then H =
{x € G | x> = ¢} is a subgroup of G. Here, the defining property of H
is the condition x> = e. So, we first note that e* = e, so that H is non-
empty. Now we assume that a and b belong to H. This means that a> = e
and b*> = e. Finally, we must show that (ab~')*> = e. Since G is
Abelian, (ab™")? = ab lab™! = a*(b™")? = (B> = ee”! = e.
Therefore, ab™! belongs to H and, by the One-Step Subgroup Test, H
is a subgroup of G. |
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In many instances, a subgroup will consist of all elements that have
a particular form. Then the property P is that the elements have that
particular form. This is illustrated in the following example.

B EXAMPLE 5 Let G be an Abelian group under multiplication with
identity e. Then H = {x*> | x € G} is a subgroup of G. (In words, H is
the set of all “squares.”’) Since e? = e, the identity has the correct form.
Next, we write two elements of H in the correct form, say, a> and b*>. We
must show that a%(b?)~! also has the correct form; that is, a%(b*) ! is the
square of some element. Since G is Abelian, we may write a*(b?) ! as
(ab™1)2, which is the correct form. Thus, H is a subgroup of G. |

Beginning students often prefer to use the next theorem instead of
Theorem 3.1.

I Theorem 3.2 Two-Step Subgroup Test

Let G be a group and let H be a nonempty subset of G. If ab is in H
whenever a and b are in H (H is closed under the operation), and a™'
is in H whenever a is in H (H is closed under taking inverses), then H
is a subgroup of G.

PROOF By Theorem 3.1, it suffices to show that a, b € H implies
ab™! € H. So, we suppose that a, b € H. Since H is closed under
taking inverses, we also have b~! € H. Thus, ab~!' € H by closure un-
der multiplication. |

When applying the “Two-Step Subgroup Test,” we proceed exactly
as in the case of the “One-Step Subgroup Test,” except we use the as-
sumption that a and b have property P to prove that ab has property P
and that a™! has property P.

How do you prove that a subset of a group is not a subgroup? Here
are three possible ways, any one of which guarantees that the subset is
not a subgroup:

1. Show that the identity is not in the set.
2. Exhibit an element of the set whose inverse is not in the set.
3. Exhibit two elements of the set whose product is not in the set.

B EXAMPLE 6 Let G be the group of nonzero real numbers under
multiplication, H = {x € G | x = 1 or x is irrational} and K =
{x € G| x = 1}. Then H is not a subgroup of G, since V2 € H
but V2 -\V2 =2 & H. Also, K is not a subgroup, since 2 € K but
27 E K. |
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When dealing with finite groups, it is easier to use the following
subgroup test.

§I Theorem 3.3 Finite Subgroup Test

Let H be a nonempty finite subset of a group G. If H is closed under
the operation of G, then H is a subgroup of G.

PROOF In view of Theorem 3.2, we need only prove that ™! € H
whenever @ € H. If a = e, then a™! = a and we are done. If a # e,
consider the sequence a, a2, .. .. By closure, all of these elements
belong to H. Since H is finite, not all of these elements are distinct. Say
a = a andi > j. Then, a7/ = e; and since a # e, i — j > 1. Thus,
aa’ /7! = a7/ = e and, therefore, a’ /' =a . But,i —j—1=1
implies @ /~! € H and we are done. |

Examples of Subgroups

The proofs of the next few theorems show how our subgroup tests
work. We first introduce an important notation. For any element a from
a group, we let (a) denote the set {a" | n € Z}. In particular, observe
that the exponents of a include all negative integers as well as 0 and the
positive integers (a’ is defined to be the identity).

I Theorem 3.4 (a) Is a Subgroup

Let G be a group, and let a be any element of G. Then, {a) is a sub-
group of G.

PROOF Since a € {(a), {a) is not empty. Let a", a" € {(a). Then,
a(a”)~' = a"~™ € (a); so, by Theorem 3.1, {a) is a subgroup of G. |

The subgroup (a) is called the cyclic subgroup of G generated by a. In
the case that G = (a), we say that G is cyclic and a is a generator of G.
(A cyclic group may have many generators.) Notice that although the
list ..., a2 a', d a', @ ... has infinitely many entries, the set
{a" | n € Z} might have only finitely many elements. Also note that,

since ala/ = a'™ = a/*' = dala’, every cyclic group is Abelian.

1 EXAMPLE 7 In U(10), (3) = {3,9, 7, 1} = U(10), for 3! = 3,
32=9,3=7,3=1,3=3.3=1-3,3=3".32=9 . :31=7
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(since 3 -7 =1),372
2

)33 =334=13%=34.31=
1:7,376=3"4-3" =

9,.... |

B EXAMPLE 8 In Z , (2) = {2, 4, 6, 8, 0}. Remember, a" means na
when the operation is addition. |

B EXAMPLE 9 In Z, (—1) = Z. Here each entry in the list ...,
—2(—1), —1(—1),0(—1), 1(—1),2(—1), . . . represents a distinct group
element. |

8 EXAMPLE 10 In D, the dihedral group of order 2n, let R denote a
rotation of 360/n degrees. Then,

n — — n — n+2 — 2
R'=Ry.=e, R*'=R  R*=R

Similarly, R"! = R""1, R™2 = R*2, ..., so that (R) = {e, R, ...,
R""1}. We see, then, that the powers of R “cycle back” periodically
with period n. Visually, raising R to successive positive powers is the
same as moving counterclockwise around the following circle one
node at a time, whereas raising R to successive negative powers is the
same as moving around the circle clockwise one node at a time.

R'=e

R =R R ! =R!

R = R? & o2 o2

In Chapter 4 we will show that I{a)| = lal; that is, the order of the
subgroup generated by a is the order of a itself. (Actually, the definition
of lal was chosen to ensure the validity of this equation.)

We next consider one of the most important subgroups.

Definition Center of a Group
The center, Z(G), of a group G is the subset of elements in G that
commute with every element of G. In symbols,

Z(G) = {a € G | ax = xa for all x in G}.

[The notation Z(G) comes from the fact that the German word for
center is Zentrum. The term was coined by J. A. de Seguier in 1904.]

§ Theorem 3.5 Center Is a Subgroup

The center of a group G is a subgroup of G.
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PROOF For variety, we shall use Theorem 3.2 to prove this result.
Clearly, e € Z(G), so Z(G) is nonempty. Now, suppose a, b € Z(G).
Then (ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab) for all x in G;
and, therefore, ab € Z(G).

Next, assume that a € Z(G). Then we have ax = xa for all x in G.
What we want is a~'x = xa~! for all x in G. Informally, all we need do
to obtain the second equation from the first one is simultaneously to
bring the a’s across the equals sign:

TN
ax = xa
NS

becomes xa~! = a~'x. (Be careful here; groups need not be commuta-
tive. The a on the left comes across as a~! on the left, and the a on the
right comes across as a~! on the right.) Formally, the desired equation
can be obtained from the original one by multiplying it on the left and
right by a™!, like so:

a Yax)a ' = a Y(xa)a !,
(a'ayxa ' = a 'x(aa™"),
exa” ' = a lxe,
xa '=alx.
This shows that a~! € Z(G) whenever a is. |

For practice, let’s determine the centers of the dihedral groups.

§ EXAMPLE 11 Forn = 3,

{Ry, Ri3y} when n is even,

Z(D,) =
(D) {{RO} when n is odd.

To verify this, first observe that since every rotation in D, is a power
of R, rotations commute with rotations. We now investigate when a
rotation commutes with a reflection. Let R be any rotation in D, and let
F be any reflection in D, . Observe that since RF is a reflection we have
RF = (RF)"' = F'R™! = FR'. Thus it follows that R and F commute
if and only if FR = RF = FR™'. By cancellation, this holds if and only if
R=R " ButR=R 'onlywhenR =R orR =R, and R . isin D,
only when n is even. So, we have proved that Z(D ) = {R} when n is

odd and Z(D,) = {R, R g,} when n is even. |

Although an element from a non-Abelian group does not necessarily
commute with every element of the group, there are always some
elements with which it will commute. For example, every element a
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commutes with all powers of a. This observation prompts the next def-
inition and theorem.

Definition CentralizerofainG

Let a be a fixed element of a group G. The centralizer of a in G, C(a), is
the set of all elements in G that commute with a. In symbols, C(a) =
{g€ Glga=ag}

B EXAMPLE 12 In D, we have the following centralizers:

C(R) = D, = C(R,,).
C(Ryy) = (R, Ry R g Ry} = C(Ryy),
CH) = {RO’ H, R180’ V} = C(V),
C(D) = {Ry, D, R i, D'} = C(D'). N

Notice that each of the centralizers in Example 12 is actually a sub-
group of D,. The next theorem shows that this was not a coincidence.

1 Theorem 3.6 C(a) Is a Subgroup

For each a in a group G, the centralizer of a is a subgroup of G.

PROOF A proof similar to that of Theorem 3.5 is left to the reader to
supply (Exercise 25). |

Notice that for every element a of a group G, Z(G) C C(a). Also,
observe that G is Abelian if and only if C(a) = G for all a in G.

The purpose of proof is to understand, not to verify.
ARNOLD ROSS

1. For each group in the following list, find the order of the group
and the order of each element in the group. What relation do you
see between the orders of the elements of a group and the order of
the group?

Z, U0, U12), UQR0), D,

2. Let Q be the group of rational numbers under addition and let O*
be the group of nonzero rational numbers under multiplication.
In Q, list the elements in (3). In Q%*, list the elements in (3 ).



11.

12.

13.

14.

15.

16.

17.

18.
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. Let Q and Q* be as in Exercise 2. Find the order of each element

in Q and in Q%*.

. Prove that in any group, an element and its inverse have the

same order.

. Without actually computing the orders, explain why the two ele-

ments in each of the following pairs of elements from Z, ) must
have the same order: {2, 28}, {8, 22}. Do the same for the follow-
ing pairs of elements from U(15): {2, 8}, {7, 13}.

. Suppose that a is a group element and a® = e. What are the possi-

bilities for |a|? Provide reasons for your answer.

. If a is a group element and a has infinite order, prove that a™ # a”

when m # n.

. Let x belong to a group. If x* # e and x® = ¢, prove that x* # ¢ and

x> # e. What can we say about the order of x?

. Show that if a is an element of a group G, then lal = IGI.
10.

Show that U(14) = (3) = (5). [Hence, U(14) is cyclic.] Is
U(14) = (11)?

Show that U(20) # (k) for any k in U(20). [Hence, U(20) is not
cyclic.]

Prove that an Abelian group with two elements of order 2 must
have a subgroup of order 4.

Find groups that contain elements a and b such that lal = 1bl = 2
and

a. labl =3, b. labl =4, c. labl = 5.
Can you see any relationship among lal, 151, and lab!?

Suppose that H is a proper subgroup of Z under addition and H
contains 18, 30, and 40. Determine H.

Suppose that H is a proper subgroup of Z under addition and that H
contains 12, 30 and 54. What are the possibilities for H?

Prove that the dihedral group of order 6 does not have a subgroup
of order 4.

For each divisor k > 1 of n, let U (n) = {x € U(n) | x mod k = 1}.
[For example, U,(21) = {1,4, 10, 13, 16, 19} and U,(21) = {1, 8}.]
List the elements of U,(20), U(20), U4(30), and U,,(30). Prove that
U,(n) is a subgroup of U(n). Let H = {x € U(10) | xmod 3 = 1}. Is
H a subgroup of U(10)? (This exercise is referred to in Chapter 8.)
If H and K are subgroups of G, show that H N K is a subgroup of
G. (Can you see that the same proof shows that the intersection
of any number of subgroups of G, finite or infinite, is again a
subgroup of G?)
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19.

20.
21.

22,

23.

24.

25.
26.

27.
28.
29.

Let G be a group. Show that Z(G) = N _.C(a). [This means the
intersection of all subgroups of the form C(a).]

Let G be a group, and let a € G. Prove that C(a) = C(a™).

For any group element a and any integer k, show that C(a) C C(a*).
Use this fact to complete the following statement: “In a group, if R
is an integer and x commutes with a, then . . . .’ Is the converse true?

Complete the partial Cayley group table given below.
1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 1 4 3 6 5 8 7
3 3 4 2 1 7 8 6 5
4 4 3 1 2 8 7 5 6
5 5 6 8 7 1
6 ' 6 5 7 8 1
7 7 8 5 6 1
8 8§ 7 6 5 1
Suppose G is the group defined by the following Cayley table.
1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 |2 1 8 7 6 5 4 3
3 /3 4 5 6 7 8 1 2
4 | 4 3 2 1 8 7 6 5
S |5 6 7 8 1 2 3 4
6 | 6 5 4 3 2 1 8 7
717 8 1 2 3 4 5 6
8§ |8 7 6 5 4 3 2 1

a. Find the centralizer of each member of G.

b. Find Z(G).

c. Find the order of each element of G. How are these orders arith-
metically related to the order of the group?

If a and b are distinct group elements, prove that either a> # b* or
a’ # b’
Prove Theorem 3.6.

If H is a subgroup of G, then by the centralizer C(H) of H we mean
the set {x € G | xh = hx for all h € H}. Prove that C(H) is a sub-
group of G.

Must the centralizer of an element of a group be Abelian?
Must the center of a group be Abelian?

Let G be an Abelian group with identity e and let n be some fixed in-
teger. Prove that the set of all elements of G that satisfy the equation



30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
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x" = e is a subgroup of G. Give an example of a group G in which
the set of all elements of G that satisfy the equation x* = e does not
form a subgroup of G. (This exercise is referred to in Chapter 11.)

Suppose a belongs to a group and lal = 5. Prove that C(a) = C(a?).
Find an element a from some group such that lal = 6 and C(a) #
C(ad).

Determine all finite subgroups of R*, the group of nonzero real
numbers under multiplication.

Suppose n is an even positive integer and H is a subgroup of Z .
Prove that either every member of H is even or exactly half of the
members of H are even.

Suppose a group contains elements a and b such that lal = 4,
Ibl = 2, and a®b = ba. Find lab|.

Suppose a and b are group elements such that |a| = 2, b # e, and
aba = b?. Determine |b|.

Let a be a group element of order n, and suppose that d is a posi-
tive divisor of n. Prove that |a?| = n/d.

0 1

] from
-1 -1

SL(2, R). Find |Al, IBI, and |ABI. Does your answer surprise you?

—1
Consider the elements A:[(l) O} and BZ{

11
Consider the element A = L) J in SL(2, R). What is the order of

11
A?If we view A = [0 1] as a member of SL(2, Zp) (p is a prime),

what is the order of A?
For any positive integer n and any angle 6, show that in the group
SL(2, R),

[cos 6 — sin 0]1 B {cos nd — sin ne]

sin 6 cos 0 sin no cos nf

Use this formula to find the order of
cos 60°  — sin 60° cos V2° —sin V2°

Lin 60° cos 600]a [sin 2° cos 2°}'

cosf — sind

(Geometrically, [ .
sin 6 cos 0

] represents a rotation of the plane
0 degrees.)
Let G be the symmetry group of a circle. Show that G has elements

of every finite order as well as elements of infinite order.
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40.

41.
42,
43.
44.

45.

46.

47.

48.

49.
50.

51.

52,

53.

Let x belong to a group and |x| = 6. Find Ix?I, Ix3], Ix*, and 1x°|. Let
y belong to a group and Iyl = 9. Find Iyl fori = 2, 3, ..., 8. Do
these examples suggest any relationship between the order of the
power of an element and the order of the element?

D, has seven cyclic subgroups. List them. Find a subgroup of D, of
order 4 that is not cyclic.

U(15) has six cyclic subgroups. List them.
Prove that a group of even order must have an element of order 2.

Suppose G is a group that has exactly eight elements of order 3.
How many subgroups of order 3 does G have?

Let H be a subgroup of a finite group G. Suppose that g belongs to
G and n is the smallest positive integer such that g" € H. Prove that
n divides Igl.

Compute the orders of the following groups.

a. UQ3), U4), U(12)

b. U(5), U(7), U(35)

c. U4, US), UR0)

d. U@3), U(5), U(15)

On the basis of your answers, make a conjecture about the relation-
ship among U(r)l, 1U(s)!, and 1U(rs)!.

Let R* be the group of nonzero real numbers under multiplication
and let H = {x € R* | x? is rational }. Prove that H is a subgroup of
R*. Can the exponent 2 be replaced by any positive integer and still
have H be a subgroup?

Compute 1U(4)I, 1U(10)I, and [U(40)I. Do these groups provide a
counterexample to your answer to Exercise 46? If so, revise your
conjecture.

Find a cyclic subgroup of order 4 in U(40).

Find a noncyclic subgroup of order 4 in U(40).

b
Let G = { [a d] |a, b, c,d ez } under addition. Let H =
c

b
{[a d} € Glatb+ct+td= O}. Prove that H is a subgroup of G.
c

What if O is replaced by 1?

Let H = {A € GL(2, R)l det A is an integer power of 2}. Show that
H is a subgroup of GL(2, R).

Let H be a subgroup of R under addition. Let K = {29 | a € H}.
Prove that K is a subgroup of R* under multiplication.
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Let G be a group of functions from R to R*, where the operation
of G is multiplication of functions. Let H = {f € G | f(2) = 1}.
Prove that H is a subgroup of G. Can 2 be replaced by any real
number?

0
Let G = GL(22, R) and H = { {g b} | a and b are nonzero inte-

gers ¢ under the operation of matrix multiplication. Prove or

disprove that H is a subgroup of GL(2, R).

LetH = {a + bila,b &R, ab=0}. Prove or disprove that H is a
subgroup of C under addition.

Let H= {a + bila, b € R, a*> + b> = 1}. Prove or disprove that
H is a subgroup of C* under multiplication. Describe the elements
of H geometrically.

The smallest subgroup containing a collection of elements S is the
subgroup H with the property that if K is any subgroup containing
S then K also contains H. (So, the smallest subgroup containing S is
contained in every subgroup that contains S.) The notation for this
subgroup is (S). In the group Z, find

a. (8, 14)

b. (8, 13)

c. (6, 15)

d. {(m, n)

e. (12,18, 45).

In each part, find an integer k such that the subgroup is (k).

Let G = GL(2, R).

cse([1 1)
wrse(} 1)

c. Find Z(G).

Let G be a finite group with more than one element. Show that G
has an element of prime order.

Let a belong to a group and lal = m. If n is relatively prime to m,
show that a can be written as the nth power of some element in the
group.

Let G be a finite Abelian group and let @ and b belong to G. Prove
that the set (a, b) = {a'b/| i, j € Z} is a subgroup of G. What can
you say about l(a, b)| in terms of |al and 1517
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Computer Exercises

A Programmer’s Lament

I really hate this damned machine;
| wish that they would sell it

It never does quite what | want
but only what | tell it.

DENNIE L. VAN TASSEL, The Compleat Computer

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software determines the cyclic subgroups of U(n) generated
by each k in U(n) (n < 100). Run the program for n = 12, 15, and
30. Compare the order of the subgroups with the order of the group
itself. What arithmetic relationship do these integers have?

2. The program lists the elements of Z that generate all of Z —that s,
those elements k, 0 = k = n — 1, for which Z = (k). How does this
set compare with U(n)? Make a conjecture.

3. This software does the following: For each pair of elements a and b
from U(n) (n < 100), it prints lal, |bl, and labl on the same line. Run
the program for several values of n. Is there an arithmetic relation-
ship between labl and lal and 151?

4. This exercise repeats Exercise 3 for Z using a + b in place of ab.

5. This software computes the order of elements in GL(2, Zp). Enter
several choices for matrices A and B. The software returns 1Al, |BI,
IABI, IBAI, IA"'BAI, and I1B~'ABI. Do you see any relationship be-
tween |Al, IBl and 1ABI? Do you see any relationship between |AB|
and |IBAI? Make a conjecture about this relationship. Test your con-
jecture for several other choices for A and B. Do you see any rela-
tionship between 1Bl and IA~'BAI? Do you see any relationship
between |Al and |IB~!ABI? Make a conjecture about this relation-
ship. Test your conjecture for several other choices for A and B.

Suggested Readings

Ruth Berger, “Hidden Group Structure,” Mathematics Magazine 78
(2005): 45-48.


http://www.d.umn.edu/~jgallian
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In this note, the author investigates groups obtained from U(n) by mul-
tiplying each element by some k in U(n). Such groups have identities
that are not obvious.

J. Gallian and M. Reid, “Abelian Forcing Sets,” American Mathematical
Monthly 100 (1993): 580-582.

A set S is called Abelian forcing if the only groups that satisfy (ab)" =
a"b" for all a and b in the group and all n in § are the Abelian ones.
This paper characterizes the Abelian forcing sets.

Gina Kolata, “Perfect Shuffles and Their Relation to Math,” Science 216
(1982): 505-506.

This is a delightful nontechnical article that discusses how group the-
ory and computers were used to solve a difficult problem about shuf-
fling a deck of cards. Serious work on the problem was begun by an
undergraduate student as part of a programming course.

Suggested Software

Allen Hibbard and Kenneth Levasseur, Exploring Abstract Algebra with
Mathematica, New York: Springer-Verlag, 1999.

This book, intended as a supplement for a course in abstract algebra,
consists of 14 group labs, 13 ring labs, and documentation for the
Abstract Algebra software on which the labs are based. The software uses
the Mathematica language, and only a basic familiarity with the program
is required. The software can be freely downloaded at http://www
.central.edu/eaam/ and can be used independently of the book. This arti-
cle can be downloaded at http://www.d.umn.edu/~jgallian/forcing.pdf


http://www.central.edu/eaam/and
http://www.central.edu/eaam/and
http://www.central.edu/eaam/and
http://www.d.umn.edu/~jgallian/forcing.pdf

Cyclic Groups

The notion of a “group,” viewed only 30 years ago as the epitome of
sophistication, is today one of the mathematical concepts most widely
used in physics, chemistry, biochemistry, and mathematics itself.

ALEXEY SOSINSKY, 1991

Properties of Cyclic Groups

72

Recall from Chapter 3 that a group G is called cyclic if there is an ele-
ment a in G such that G = {a" | n € Z}. Such an element a is called a
generator of G. In view of the notation introduced in the preceding
chapter, we may indicate that G is a cyclic group generated by a by
writing G = (a).

In this chapter, we examine cyclic groups in detail and determine
their important characteristics. We begin with a few examples.

B EXAMPLE 1 The set of integers Z under ordinary addition is cyclic.
Both 1 and —1 are generators. (Recall that, when the operation is addi-
tion, 1” is interpreted as

T+ 1+ +1

n terms
when 7 is positive and as

DD+ (D)

Inl terms
when 7 is negative.) |
B EXAMPLE 2 The set Z, = {0, 1, ..., n — 1} forn = 1 is a
cyclic group under addition modulo n. Again, 1 and —1 = n — 1 are
generators. |
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Unlike Z, which has only two generators, Z, may have many genera-
tors (depending on which n we are given).

B EXAMPLE 3 Z; = (1) = (3) = (5) = (7). To verify, for instance, that
Zg = (3), we note that (3) = {3,3 + 3,3 4+ 3 + 3, ...} is the set {3, 6,
1,4,7,2,5,0} = Zg. Thus, 3 is a generator of Zg. On the other hand, 2
is not a generator, since (2) = {0, 2,4, 6} # Zs. |

I EXAMPLE 4 (See Example 11 in Chapter 2.)
U10) = {1, 3, 7,9} = {39 31, 33, 32} = (3). Also, {1, 3, 7,9} =
{7°,73,7', 7%} = (7). So both 3 and 7 are generators for U(10). |

Quite often in mathematics, a “nonexample” is as helpful in under-
standing a concept as an example. With regard to cyclic groups, U(8)
serves this purpose; that is, U(8) is not a cyclic group. How can we ver-
ify this? Well, note that U(8) = {1, 3, 5, 7}. But

(1= {1}

3)=1{31)
G)=1{51)
=171}

so U(8) # (a) for any a in U(8).
With these examples under our belts, we are now ready to tackle
cyclic groups in an abstract way and state their key properties.

I Theorem 4.1 Criterionfora = a/

Let G be a group, and let a belong to G. If a has infinite order, then
a' = & ifand only if i = j. If a has finite order, say, n, then (a) =
{e,a,d? ..., a" "} and a’ = &/ if and only if n divides i —j.

PROOF If a has infinite order, there is no nonzero n such that a” is the
identity. Since a’ = a/ implies @’/ = e, we must have i — j = 0, and the
first statement of the theorem is proved.

Now assume that lal = n. We will prove that (a) = {e, a,...,a" '}.
Certainly, the elements e, a, . . ., a"~ ! are in ().

Now, suppose that a* is an arbitrary member of (a). By the division
algorithm, there exist integers g and r such that

k=gn+r with 0=r<n.
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Then a* = a?"" = a?a” = (a")%a” = ea” = a’, so that a* € {e, a,
a’,...,a" '}. This proves that (a) = {e, a,a?, ...,a" '}.

Next, we assume that ' = a/ and prove that n divides i — j. We
begin by observing that @’ = a/ implies a’/ = e. Again, by the division
algorithm, there are integers g and r such that

i—j=qn+r with O=r<n.

Then a'™7/ = a9""", and therefore e = @'/ = """ = (a")1a” = ela’ =
ea” = a'. Since n is the least positive integer such that a” is the identity,
we must have » = 0, so that n divides i — .

Conversely, if i — j = ng, then @'/ = a"1 = ¢? = ¢, so that
a =a. |

Theorem 4.1 reveals the reason for the dual use of the notation and
terminology for the order of an element and the order of a group.

1 Corollary 1 lal = [{(a)|

For any group element a, lal = Ka)!.

One special case of Theorem 4.1 occurs so often that it deserves
singling out.

1 Corollary 2 a* = e Implies That lal Divides k

Let G be a group and let a be an element of order n in G. If a* = e,
then n divides k.

PROOF Since a* = e = a°, we know by Theorem 4.1 that n divides
k— 0. |

Theorem 4.1 and its corollaries for the case lal = 6 are illustrated in
Figure 4.1.

What is important about Theorem 4.1 in the finite case is that it says
that multiplication in () is essentially done by addition modulo n. That
is, if (i + j) mod n = k, then a’a’ = a*. Thus, no matter what group G
is, or how the element a is chosen, multiplication in (@) works the same
as addition in Z, whenever lal = n. Similarly, if a has infinite order,
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a®=a’=a®
-1_ . 5_ 11
a—S:a:a7 a =a =a
2_ ,4_ 10
at=a2=g8 a“=a"=a
...a’3=a3=a°...
Figure 4.1

then multiplication in {a) works the same as addition in Z, since a'a’ =
a'*/ and no modular arithmetic is done.

For these reasons, the cyclic groups Z, and Z serve as prototypes for
all cyclic groups, and algebraists say that there is essentially only one
cyclic group of each order. What is meant by this is that, although
there may be many different sets of the form {a" | n € Z}, there is
essentially only one way to operate on these sets. Algebraists do not
really care what the elements of a set are; they care only about the
algebraic properties of the set—that is, the ways in which the elements
of a set can be combined. We will return to this theme in the chapter
on isomorphisms (Chapter 6).

The next theorem provides a simple method for computing la*|
knowing only lal, and its first corollary provides a simple way to tell
when {(a’) = {(a/).

I Theorem4.2 {(g*) = (@8dnh)

Let a be an element of order n in a group and let k be a positive
integer. Then {(a¥) = (a&4%) and |a¥| = n/ged(n,k).

PROOF To simplify the notation, let d = gcd(n,k) and let k = dr.
Since af = (a?)", we have by closure that {a*) C (a?). By Theorem 0.2
(the ged theorem), there are integers s and ¢ such that d = ns + kt. So,
a® = a¥th = gva = (a"(d") = e(d’) = (a")' € (a*). This proves
(a?y C {a"). So, we have verified that (aX) = (@20},

We prove the second part of the theorem by showing first that la¢l =
n/d for any divisor d of n. Clearly, (a?)? = a" = e, so that la’l = n/d. On
the other hand, if i is a positive integer less than n/d, then (a)’ # e by de-
finition of lal. We now apply this fact with d = gcd(n,k) to obtain la*l =
a)l = 1{agedmh)| = |gedmb] = p/ged(n k). |

The advantage of Theorem 4.2 is that it allows us to replace one
generator of a cyclic subgroup with a more convenient one. For example,
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if lal = 30, we have (a*0) = (a?), (a®®) = (a), (a®*) = (a?), (a*') = (a®).
From this we can easily see that a**| = 30 and la**| = 15. Moreover, if
one wants to list the elements of, say, (a'), it is easier to list the elements
of {(@®) instead. (Try it doing it both ways!).

Theorem 4.2 establishes an important relationship between the order
of an element in a finite cyclic group and the order of the group.

1 Corollary 1 Orders of Elements in Finite Cyclic Groups

In a finite cyclic group, the order of an element divides the order
of the group.

1 Corollary 2 Criterion for (a’) = (a/)and ld'| = |a/I

Let lal = n. Then {da’) = (a)) if and only if gcd(n, i) = gcd(n, j)
and \d!| = |aJ if and only if gcd(n, i) = ged(n, j) .

PROOF Theorem 4.2 shows that {a’) = (a2d®)) and (a’) = {a2cdt)),
so that the proof reduces to proving that (ad")) = (g&«d)) if and
only if ged(n, i) = gcd(n, j). Certainly, ged(n, i) = gcd(n, j) implies
that (qed®D)y = (geedD)  On the other hand, (a&dD) = (geedni)

implies that 1a2¢d)|= |g2ed™)| 5o that by the second conclusion of
Theorem 4.2, we have n/gcd(n, i) = n/ged(n, j), and therefore ged(n, i) =
ged(n, j). L

The second part of the corollary follows from the first part and
Corollary 1 of Theorem 4.1.

The next two corollaries are important special cases of the preceding
corollary.

I Corollary 3 Generators of Finite Cyclic Groups

Let lal = n. Then {(a) = {a’) if and only if gcd(n, j) = 1 and
lal = Ka’)| if and only if gcd(n, j) = 1.

I Corollary 4 Generators of Z,,

An integer k in Z,, is a generator of Z,, if and only if gcd(n, k) = 1.

The value of Corollary 3 is that once one generator of a cyclic group has
been found, all generators of the cyclic group can easily be determined.
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For example, consider the subgroup of all rotations in Dg. Clearly, one
generator is Rqy. And, since IRq)| = 6, we see by Corollary 3 that the only
other generator is (Rg)’ = Ry Of course, we could have readily deduced
this information without the aid of Corollary 3 by direct calculations. So,
to illustrate the real power of Corollary 3, let us use it to find all genera-
tors of the cyclic group U(50). First, note that direct computations show
that 1U(50)I = 20 and that 3 is one of its generators. Thus, in view of
Corollary 3, the complete list of generators for U(50) is

3 mod 50 = 3, 3" mod 50 = 47,
33 mod 50 = 27, 313 mod 50 = 23,
37 mod 50 = 37, 37 mod 50 = 13,
3% mod 50 = 33, 39 mod 50 = 17.

Admittedly, we had to do some arithmetic here, but it certainly entailed
much less work than finding all the generators by simply determining
the order of each element of U(50) one by one.

The reader should keep in mind that Theorem 4.2 and its corollaries
apply only to elements of finite order.

Classification of Subgroups
of Cyclic Groups

The next theorem tells us how many subgroups a finite cyclic group has
and how to find them.

I Theorem 4.3 Fundamental Theorem of Cyclic Groups

Every subgroup of a cyclic group is cyclic. Moreover, if {a)| = n,
then the order of any subgroup of {a) is a divisor of n; and, for each
positive divisor k of n, the group {a) has exactly one subgroup of
order k—namely, {a"'*).

Before we prove this theorem, let’s see what it means. Understand-
ing what a theorem means is a prerequisite to understanding its proof.
Suppose G = (a) and G has order 30. The first and second parts of the
theorem say that if H is any subgroup of G, then H has the form (a**) for
some k that is a divisor of 30. The third part of the theorem says that G
has one subgroup of each of the orders 1, 2, 3, 5, 6, 10, 15, and 30—and
no others. The proof will also show how to find these subgroups.

PROOF Let G = {a) and suppose that H is a subgroup of G. We must
show that H is cyclic. If it consists of the identity alone, then clearly H is
cyclic. So we may assume that H # {e}. We now claim that H contains
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an element of the form ', where ¢ is positive. Since G = (a), every
element of H has the form a'; and when o' belongs to H with ¢ < 0, then
a~'belongs to H also and —¢ is positive. Thus, our claim is verified. Now
let m be the least positive integer such that a” € H. By closure, (¢™) C H.
We next claim that H = (a™). To prove this claim, it suffices to let b be an
arbitrary member of H and show that b is in (a™). Since b € G = {(a), we
have b = a* for some k. Now, apply the division algorithm to k and m to
obtain integers ¢ and r such that k = mg + r where 0 < r < m. Then a* =
amitr = gMig’, so that " = a ™a*. Since a* = b € H and a ™ =
(a™)"4is in H also, a” € H. But, m is the least positive integer such that
a" € H,and 0 < r < m, so r must be 0. Therefore, b = af = ™ =
(@™ € (a™). This proves the assertion of the theorem that every sub-
group of a cyclic group is cyclic.

To prove the next portion of the theorem, suppose that I{a)l = n and
H is any subgroup of (a). We have already shown that H = (a™), where
m is the least positive integer such that @” € H. Using e = b = a" as in
the preceding paragraph, we have n = mgq.

Finally, let k be any positive divisor of n. We will show that (a"/*) is
the one and only subgroup of (@) of order k. From Theorem 4.2, we see
that (a"*) has order n/ged(n, n/k) = n/(n/k) = k. Now let H be any
subgroup of {(a) of order k. We have already shown above that H = {(a™),
where m is a divisor of n. Then m = gcd(n, m) and k = |a” = 1a=40| =
nlged (n, m) = n/m. Thus, m = n/k and H = {a"¥). |

Returning for a moment to our discussion of the cyclic group {a),
where a has order 30, we may conclude from Theorem 4.3 that the sub-
groups of {a) are precisely those of the form (a™), where m is a divisor
of 30. Moreover, if k is a divisor of 30, the subgroup of order k is
(@®”%y. So the list of subgroups of {a) is:

(a) = {e,a,a? ..., ad*>°) order 30,
(@* = {e,a? a*, ..., a*) order 15,
(@ ={e,a’ a5 ..., a")} order 10,
(@) = {e,a’, a'% a', a®, a®} order 6,
(a® = {e, a% a'?, a'®, a**} order 5,

(a'% = {e, a'%, a®°} order 3,
(@) = {e, a'} order 2,
(@) = {e} order 1.

In general, if (@) has order n and k divides n, then (a"/¥) is the unique
subgroup of order k.

Taking the group in Theorem 4.3 to be Z, and a to be 1, we obtain
the following important special case.
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1 Corollary Subgroups of Z,

For each positive divisor k of n, the set (n/k) is the unique subgroup
of Z,, of order k; moreover, these are the only subgroups of Z,,.

B EXAMPLE 5 The list of subgroups of Z; is

(1)=1{0,1,2,...,29} order 30,
2y =1{0,2,4,...,28} order 15,
(3)=1{0,3,6,...,27} order 10,
(5) = {0, 5, 10, 15, 20, 25} order 6,
(6) = {0, 6,12, 18, 24} order 5,
(10) = {0, 10, 20} order 3,
(15) = {0, 15} order 2,
(30) = {0} order 1. ]

By combining Theorems 4.2 and 4.3, we can easily count the num-
ber of elements of each order in a finite cyclic group. For convenience,
we introduce an important number-theoretic function called the Euler
phi function. Let ¢(1) = 1, and for any integer n > 1, let ¢p(n) denote
the number of positive integers less than n and relatively prime to n.
Notice that by definition of the group U(n), |U(n)l = ¢(n). The first 12
values of ¢(n) are given in Table 4.1.

Table 4.1 Values of ¢(n)
n ‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘

¢(n)‘1‘1‘2‘2‘4‘2‘6‘4‘6‘4 ‘10‘4‘

1 Theorem 4.4 Number of Elements of Each Order in a Cyclic Group

If d is a positive divisor of n, the number of elements of order d in
a cyclic group of order n is ¢(d).

PROOF By Theorem 4.3, the group has exactly one subgroup of
order d—call it (a). Then every element of order d also generates the sub-
group {a) and, by Corollary 3 of Theorem 4.2, an element a* generates
(a) if and only if gcd(k, d) = 1. The number of such elements is precisely

b(d). [
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Notice that for a finite cyclic group of order n, the number of elements
of order d for any divisor d of n depends only on d. Thus, Zg, Zs4,, and
Zsooo0 €ach have ¢(8) = 4 elements of order 8.

Although there is no formula for the number of elements of each
order for arbitrary finite groups, we still can say something important
in this regard.

1 Corollary Number of Elements of Order d in a Finite Group

In a finite group, the number of elements of order d is divisible

by ¢(d).

PROOF If a finite group has no elements of order d, the statement is
true, since ¢(d) divides 0. Now suppose that ¢« € G and lal = d. By
Theorem 4.4, we know that (a) has ¢(d) elements of order d. If all
elements of order d in G are in {a), we are done. So, suppose that there
is an element b in G of order d that is not in {a). Then, {b) also has ¢(d)
elements of order d. This means that we have found 2¢(d) elements of
order d in G provided that {(a) and (b) have no elements of order d in
common. If there is an element ¢ of order d that belongs to both (a) and
(b), then we have (a) = (c¢) = (b), so that b € {a), which is a contradic-
tion. Continuing in this fashion, we see that the number of elements of
order d in a finite group is a multiple of ¢(d). |

On its face, the value of Theorem 4.4 and its corollary seem limited
for large values of n because it is tedious to determine the number of
positive integers less than or equal to n and relatively prime to n
by examining them one by one. However, the following properties of the
¢ function make computing ¢(n) simple: For any prime p, ¢(p") =
p" — p" ! (see Exercise 71) and for relatively prime m and n, ¢(mn)
= ¢(m)¢p(n). Thus, $(40) = ¢B)P(5) =4 -4 =16;¢(75) =
d(5H)P(3) = (25 — 5) - 2 = 40.

The relationships among the various subgroups of a group can be
illustrated with a subgroup lattice of the group. This is a diagram that in-
cludes all the subgroups of the group and connects a subgroup H at one
level to a subgroup K at a higher level with a sequence of line segments
if and only if H is a proper subgroup of K. Although there are many
ways to draw such a diagram, the connections between the subgroups
must be the same. Typically one attempts to present the diagram in an
eye-pleasing fashion. The lattice diagram for Z3 is shown in Figure 4.2.
Notice that (10) is a subgroup of both (2) and (5), but (6) is not a sub-
group of (10).
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<1>,

I

<5>

<2>
<3>
<10>
<6>

<15>

/

<0>

Figure 4.2 Subgroup lattice of Z,,,

The precision of Theorem 4.3 can be appreciated by comparing the
ease with which we are able to identify the subgroups of Z;, with that of
doing the same for, say, U(30) or Ds,. And these groups have relatively
simple structures among noncyclic groups.

We will prove in Chapter 7 that a certain portion of Theorem 4.3
extends to arbitrary finite groups; namely, the order of a subgroup di-
vides the order of the group itself. We will also see, however, that a finite
group need not have exactly one subgroup corresponding to each divisor
of the order of the group. For some divisors, there may be none at all,
whereas for other divisors, there may be many. Indeed, D,, the dihedral
group of order 8, has five subgroups of order 2 and three of order 4.

One final remark about the importance of cyclic groups is appropri-
ate. Although cyclic groups constitute a very narrow class of finite
groups, we will see in Chapter 11 that they play the role of building
blocks for all finite Abelian groups in much the same way that primes
are the building blocks for the integers and that chemical elements are
the building blocks for the chemical compounds.

It is not unreasonable to use the hypothesis.

ARNOLD ROSS

1. Find all generators of Zs, Zg, and Z.

2. Suppose that {(a), (b), and {c) are cyclic groups of orders 6, 8, and
20, respectively. Find all generators of {(a), (b), and {c).

3. List the elements of the subgroups (20) and (10) in Z5,. Let a be a
group element of order 30. List the elements of the subgroups (a*°)
and{a'").
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4.

10.

11.
12.

13.

14.

15.

16.

17.
18.

19.

List the elements of the subgroups (3) and (15) in Z,5. Let a be a
group element of order 18. List the elements of the subgroups (a*)
and (a').

. List the elements of the subgroups (3) and (7) in U(20).
. What do Exercises 3, 4, and 5 have in common? Try to make a gen-

eralization that includes these three cases.

. Find an example of a noncyclic group, all of whose proper sub-

groups are cyclic.

. Let a be an element of a group and let lal = 15. Compute the or-

ders of the following elements of G.

a. a, ab a°, a'?

b. @, a'?

c. a? a*, a8, a

. How many subgroups does Z,, have? List a generator for each of

these subgroups. Suppose that G = (a) and lal = 20. How many
subgroups does G have? List a generator for each of these sub-
groups.

In Z,, list all generators for the subgroup of order 8. Let G = {(a)
and let lal = 24. List all generators for the subgroup of order 8.
Let G be a group and let a € G. Prove that (a~ ') = (a).

In Z find all generators of the subgroup (3). If a has infinite order,
find all generators of the subgroup (a’).

In Z,, find a generator for (21) N (10). Suppose that lal = 24. Find
a generator for (a*') N (a'). In general, what is a generator for the
subgroup (a@™) N {(a™)?

Suppose that a cyclic group G has exactly three subgroups: G
itself, {e}, and a subgroup of order 7. What is IG|? What can you
say if 7 is replaced with p where p is a prime?

Let G be an Abelian group and let H = {g € Gl Igl divides 12}.
Prove that H is a subgroup of G. Is there anything special about 12
here? Would your proof be valid if 12 were replaced by some other
positive integer? State the general result.

Find a collection of distinct subgroups {a,), {a,), . . . , {a,) of Z,
with the property that (a,) C {(a,) C - - - C {a,) with n as large as
possible.

Complete the following statement: |lal = |a?| if and only if lal . . . .

If a cyclic group has an element of infinite order, how many ele-
ments of finite order does it have?

List the cyclic subgroups of U(30).
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Suppose that G is an Abelian group of order 35 and every element

of G satisfies the equation x> = e. Prove that G is cyclic. Does

your argument work if 35 is replaced with 33?

Let G be a group and let a be an element of G.

a. If a'?> = ¢, what can we say about the order of a?

b. If a” = e, what can we say about the order of a?

¢. Suppose that |G| = 24 and that G is cyclic. If a® # e and a'? # e,
show that {a) = G.

Prove that a group of order 3 must be cyclic.

Let Z denote the group of integers under addition. Is every sub-

group of Z cyclic? Why? Describe all the subgroups of Z. Let a be

a group element with infinite order. Describe all subgroups of (a).

For any element a in any group G, prove that (a) is a subgroup of

C(a) (the centralizer of a).

If d is a positive integer, d # 2, and d divides n, show that the num-

ber of elements of order d in D, is ¢(d). How many elements of

order 2 does D,, have?

Find all generators of Z. Let a be a group element that has infinite

order. Find all generators of (a).

Prove that C*, the group of nonzero complex numbers under multi-

plication, has a cyclic subgroup of order n for every positive integer 7.

Let a be a group element that has infinite order. Prove that {(a’) =

(a’) if and only if i = =*j.

List all the elements of order 8 in Zgyyy- How do you know your

list is complete? Let a be a group element such that lal = 8000000.

List all elements of order 8 in {(a). How do you know your list is

complete?

Suppose a and b belong to a group, a has odd order, and aba™! =

b~!. Show that b* = e.

Let G be a finite group. Show that there exists a fixed positive integer

n such that " = e for all a in G. (Note that n is independent of a.)

Determine the subgroup lattice for Z;,.

Determine the subgroup lattice for Z,

primes.

:;» Where p and g are distinct
Determine the subgroup lattice for Zs.

Determine the subgroup lattice for Z,,, where p is a prime and 7 is
some positive integer.

Prove that a finite group is the union of proper subgroups if and
only if the group is not cyclic.

Show that the group of positive rational numbers under multiplica-

tion is not cyclic.
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39.
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48.

49.

50.

51.
52.

Consider the set {4, 8, 12, 16}. Show that this set is a group under
multiplication modulo 20 by constructing its Cayley table. What
is the identity element? Is the group cyclic? If so, find all of its
generators.

Give an example of a group that has exactly 6 subgroups (including
the trivial subgroup and the group itself). Generalize to exactly n
subgroups for any positive integer n.

Let m and n be elements of the group Z. Find a generator for the
group (m) N (n).

Suppose that a and b are group elements that commute and have
orders m and n. If {(a) N (b) = {e}, prove that the group contains an
element whose order is the least common multiple of m and n.
Show that this need not be true if a and » do not commute.

Prove that an infinite group must have an infinite number of sub-
groups.

Let p be a prime. If a group has more than p — 1 elements of order p,
why can’t the group be cyclic?

Suppose that G is a cyclic group and that 6 divides |G|. How many
elements of order 6 does G have? If 8 divides |G|, how many ele-
ments of order 8 does G have? If a is one element of order 8, list
the other elements of order 8.

List all the elements of Z,, that have order 10. Let |x| = 40. List all
the elements of (x) that have order 10.

Reformulate the corollary of Theorem 4.4 to include the case when
the group has infinite order.

Determine the orders of the elements of D;; and how many there
are of each.

If G is a cyclic group and 15 divides the order of G, determine the
number of solutions in G of the equation x> = e. If 20 divides
the order of G, determine the number of solutions of x20 = e.
Generalize.

If G is an Abelian group and contains cyclic subgroups of orders 4
and 5, what other sizes of cyclic subgroups must G contain?
Generalize.

If G is an Abelian group and contains cyclic subgroups of orders 4
and 6, what other sizes of cyclic subgroups must G contain?
Generalize.

Prove that no group can have exactly two elements of order 2.
Given the fact that U(49) is cyclic and has 42 elements, deduce the
number of generators that U(49) has without actually finding any of
the generators.
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Let a and b be elements of a group. If lal = 10 and |b| = 21, show
that {a) N (b) = {e}.

Let a and b belong to a group. If lal and 15| are relatively prime,
show that (a) N (b) = {e}.

Let a and b belong to a group. If lal = 24 and |1bl = 10, what are
the possibilities for [{a) N (b)I?

Prove that U(2") (n = 3) is not cyclic.

Suppose that a group G has at least nine elements x such that x* =
e. Can you conclude that G is not cyclic? What if G has at least five
elements x such that x* = ¢? Generalize.

Prove that Z, has an even number of generators if n > 2. What
does this tell you about ¢(n)?

If Ia°l = 12, what are the possibilities for lal? If la*l = 12, what
are the possibilities for lal?

Suppose that [x| = n. Find a necessary and sufficient condition on
rand s such that (x") C {x*).

Suppose a is a group element such thata®®| = 10 and|a*| = 20.
Determine lal.

Let a be group element such thatlal = 48. For each part find a di-
visor k of 48 such that

a. (a®') = (a")

b. (a") = (d*)

c. {a'®y = (d").

Let p be a prime. Show that in a cyclic group of order p* —1, every
element is a pth power (that is, every element can be written in the
form a” for some a).

Prove that H = {{

GL(2, R).
Let a and b belong to a group. If lal = 12, 1bl = 22, and (@) N (b) #
{e}, prove that a® = b'!.

1 n

0 1] |nEZ} is a cyclic subgroup of

Suppose that G is a finite group with the property that every non-
identity element has prime order (for example, D5 and Ds). If Z(G)
is not trivial, prove that every nonidentity element of G has the
same order.

Let G be the set of all polynomials of the form ax> + bx + ¢ with
coefficients from the set {0, 1, 2}. We can make G a group under
addition by adding the polynomials in the usual way, except that
we use modulo 3 to combine the coefficients. With this operation,
prove that G is a group of order 27 that is not cyclic.
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68. Let r, and r, be rational numbers. Prove that the group G =
{n;r; + nyryIn, and n, are integers} under addition is cyclic. Gen-
eralize to the case where you have ry, r,, . . ., r, rationals.

69. Let a and b belong to some group. Suppose that lal = m and
|bl = n and m and n are relatively prime. If ¢* = b* for some inte-
ger k, prove that mn divides k.

70. For every integer n greater than 2, prove that the group U(n* — 1)
is not cyclic.

71. Prove that for any prime p and positive integer n, ¢(p") =
pn _ pn—l.

72. Give an example of an infinite group that has exactly two elements
of order 4.

Computer Exercises

The nerds are running the world now.

JOE PISCOPO

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software determines if U(n) is cyclic. Run the program for
n = 8§, 32,64, and 128. Make a conjecture. Run the program for n =
3,9,27,81,243,5,25,125,7,49, 11, and 121. Make a conjecture.
Run the program for n = 12, 20, 28, 44, 52, 15, 21, 33, 39, 51, 57,
69, 35, 55, 65, and 85. Make a conjecture.

2. For any pair of positive integers m and n, let Z,, D Z, = {(a, b) |
a€Z,, b€ Z,}. For any pair of elements (a, b) and (¢, d) in Z,, ®
Z,, define (a, b) + (¢, d) = ((a + ¢) mod m, (b + d) mod n). [For
example, in Z; D Z,, we have (1, 2) + (2, 3) = (0, 1).] This soft-
ware checks whether or not Z,, & Z, is cyclic. Run the program for
the following choices of m and n: (2, 2), (2, 3), (2, 4), (2,5), (3, 4),
(3,5),(3,6),(3,7),(3,8),(3,9), and (4, 6). On the basis of this out-
put, guess how m and n must be related for Z,, © Z, to be cyclic.

3. In this exercise, a, b € U(n). Define {(a, by = {a'b/ 1 0 =i < lal,
0 = j < Ibl}. This software computes the orders of {a, b), {a), (b),
and (@) N (b). Run the program for the following choices of a, b,
and n: (21, 101, 550), (21, 49, 550), (7, 11, 100), (21, 31, 100), and


http://www.d.umn.edu/~jgallian
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(63,77, 100). On the basis of your output, make a conjecture about
arithmetic relationships among I{a, b)!, I{a)|, I{b)!, and {a) N (b)I.
. For each positive integer n, this software gives the order of U(n)
and the order of each element in U(n). Do you see any relationship
between the order of U(n) and the order of its elements? Run the
program for n = 8, 16, 32, 64, and 128. Make a conjecture about
the number of elements of order 2 in U(2%) when & is at least 3.
Make a conjecture about the number of elements of order 4 in
U(2%) when k is at least 4. Make a conjecture about the number of
elements of order 8 in U(2¥) when k is at least 5. Make a conjecture
about the maximum order of any element in U(2¥) when k is at least
3. Try to find a formula for an element of order 4 in U(2¥) when k is
at least 4.

. For each positive integer n, this software lists the number of ele-
ments of U(n) of each order. For each order d of some element of
U(n), this software lists ¢(d) and the number of elements of order d.
(Recall that ¢(d) is the number of positive integers less than or
equal to d and relatively prime to d). Do you see any relationship
between the number of elements of order d and ¢(d)? Run the pro-
gram forn = 3,9, 27, 81, 5, 25, 125, 7, 49, and 343. Make a con-
jecture about the number of elements of order d and ¢(d) when n is
a power of an odd prime. Run the program for n = 6, 18, 54, 162,
10, 50, 250, 14, 98, and 686. Make a conjecture about the number
of elements of order d and ¢(d) when n is twice a power of an odd
prime. Make a conjecture about the number of elements of various
orders in U( p*) and U(2p*) where p is an odd prime.

. For each positive integer n, this software gives the order of U(n).
Run the program for n = 9, 27, 81, and 243. Try to guess a formula
for the order of U(3*) when k is at least 2. Run the program for n =
18, 54, 162, and 486. How does the order of U(2 - 3*) appear to be re-
lated to the order of U(3%)? Run the program for n = 25, 125, and
625. Try to guess a formula for the order of U(5%) when k is at least 2.
Run the program for n = 50, 250, and 1250. How does the order of
U(2 - 5) appear to be related to the order of U(5%)? Run the program
for n = 49 and 343. Try to guess a formula for the order of U(7*)
when £ is at least 2. Run the program for n = 98 and 686. How does
the order of U(2 - 7%) appear to be related to the order of U(7%)?
Based on your guesses for U(3%), U(5%), and U(7*), guess a formula
for the order of U(p*) when p is an odd prime and k is at least 2.
What about the order of U(2p*) when p is an odd prime and k is at
least 2. Does your formula also work when & is 1?
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Suggested Reading

Deborah L. Massari, “The Probability of Regenerating a Cyclic Group,”
Pi Mu Epsilon Journal 7 (1979): 3-6.

In this easy-to-read paper, it is shown that the probability of a ran-
domly chosen element from a cyclic group being a generator of the
group depends only on the set of prime divisors of the order of the
group, and not on the order itself. This article, written by an under-
graduate student, received first prize in a Pi Mu Epsilon

Paper Contest.



J. J. Sylvester

| really love my subject.

J. J. SYLVESTER

JAMES JOSEPH SYLVESTER was the most influ-
ential mathematician in America in the 19th
century. Sylvester was born on September 3,
1814, in London and showed his mathemati-
cal genius early. At the age of 14, he studied
under De Morgan and won several prizes for
his mathematics, and at the unusually young
age of 25, he was elected a Fellow of the
Royal Society.

After receiving B.A. and M.A. degrees
from Trinity College in Dublin in 1841,
Sylvester began a professional life that was
to include academics, law, and actuarial ca-
reers. In 1876, at the age of 62, he was ap-
pointed to a prestigious position at the newly
founded Johns Hopkins University. During
his seven years at Johns Hopkins, Sylvester
pursued research in pure mathematics
with tremendous vigor and enthusiasm.
He also founded the American Journal of
Mathematics, the first journal in America
devoted to mathematical research. Sylvester
returned to England in 1884 to a professor-
ship at Oxford, a position he held until his
death on March 15, 1897.

Sylvester’s major contributions to
mathematics were in the theory of equations,
matrix theory, determinant theory, and in-
variant theory (which he founded with
Cayley). His writings and lectures—flowery
and eloquent, pervaded with poetic flights,
emotional expressions, bizarre utterances,
and paradoxes—reflected the personality of
this sensitive, excitable, and enthusiastic

man. We quote three of his students.” E. W.
Davis commented on Sylvester’s teaching
methods.

Sylvester’s methods! He had none. “Three lec-
tures will be delivered on a New Universal
Algebra,” he would say; then, “The course
must be extended to twelve.” It did last all the
rest of that year. The following year the course
was to be Substitutions-Theorie, by Netto. We
all got the text. He lectured about three times,
following the text closely and stopping sharp
at the end of the hour. Then he began to think
about matrices again. “I must give one lecture
a week on those,” he said. He could not con-
fine himself to the hour, nor to the one lecture
a week. Two weeks were passed, and Netto
was forgotten entirely and never mentioned
again. Statements like the following were not
infrequent in his lectures: “I haven’t proved
this, but I am as sure as I can be of anything
that it must be so. From this it will follow,
etc.” At the next lecture it turned out that what
he was so sure of was false. Never mind, he
kept on forever guessing and trying, and
presently a wonderful discovery followed,
then another and another. Afterward he would
go back and work it all over again, and sur-
prise us with all sorts of side lights. He then
made another leap in the dark, more treasures
were discovered, and so on forever.

F. Cajori, Teaching and History of Mathematics in the U.S., Washington, 1890, 265-266.
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Sylvester’s enthusiasm for teaching and his
influence on his students are captured in the
following passage written by Sylvester’s first
student at Johns Hopkins, G. B. Halsted.

A short, broad man of tremendous vitality, . . .
Sylvester’s capacious head was ever lost in
the highest cloud-lands of pure mathematics.
Often in the dead of night he would get his
favorite pupil, that he might communicate

the very last product of his creative thought.
Everything he saw suggested to him some-
thing new in the higher algebra. This transmu-
tation of everything into new mathematics
was a revelation to those who knew him
intimately. They began to do it themselves.

Another characteristic of Sylvester, which
is very unusual among mathematicians, was
his apparent inability to remember mathemat-
ics! W. P. Durfee had the following to say.

90

Sylvester had one remarkable peculiarity. He
seldom remembered theorems, propositions,
etc., but had always to deduce them when he
wished to use them. In this he was the very
antithesis of Cayley, who was thoroughly
conversant with everything that had been
done in every branch of mathematics.

I remember once submitting to Sylvester
some investigations that I had been engaged
on, and he immediately denied my first state-
ment, saying that such a proposition had never
been heard of, let alone proved. To his aston-
ishment, I showed him a paper of his own in
which he had proved the proposition; in fact, I
believe the object of his paper had been the
very proof which was so strange to him.

For more information about Sylvester,

visit:

http://www-groups.dcs.st-and
.ac.uk/~history/


http://www-groups.dcs.st-and.ac.uk/~history/
http://www-groups.dcs.st-and.ac.uk/~history/
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Supplementary Exercises for Chapters 1-4

If you really want something in this life, you have to work for it—Now quiet,
they’re about to announce the lottery numbers!

HOMER SIMPSON

True/False questions for Chapters 1-4 are available on the web at:
http://www.d.umn.edu/~jgallian/ TF

1. Let G be a group and let H be a subgroup of G. For any fixed x in

G, define xHx ™' = {xhx~! | h € H}. Prove the following.

a. xHx!is a subgroup of G.

b. If H is cyclic, then xHx™ ! is cyclic.

c. If H is Abelian, then xHx ! is Abelian.

The group xHx ! is called a conjugate of H. (Note that conjuga-
tion preserves structure.)

2. Let G be a group and let H be a subgroup of G. Define N(H) =
{x € G| xHx™' = H}. Prove that N(H) (called the normalizer of
H) is a subgroup of G."

3. Let G be a group. For each a € G, define cl(a) = {xax 'l x € G}.
Prove that these subsets of G partition G. [cl(a) is called the
conjugacy class of a.]

4. The group defined by the following table is called the group of
quaternions. Use the table to determine each of the following:

a. The center

b. cl(a)

c. cl(b)

d. All cyclic subgroups

e a a2 a b ba ba’>  ba?
e e a a? a? b ba ba*>  ba’
a a a? a e ba® b ba ba?
a2 a? a e a ba? ba? b ba
a a e a a? ba ba? ba®> b
b b ba ba? ba’ a? a e a
ba ba ba? ba’ b a a? a e
ba? ba? ba® b ba e a a? a’
ba? ba® b ba ba? a? e a a?

"This very important subgroup was first used by L. Sylow in 1872 to prove the exis-
tence of certain kinds of subgroups in a group. His work is discussed in Chapter 24.
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10.

11.

12.
13.
14.
15.

16.

17.

18.

19.

20.

. (Conjugation preserves order.) Prove that, in any group, Ixax™ 'l =

lal. (This exercise is referred to in Chapter 24.)

. Prove that, in any group, labl = |bal.
. If a, b, and c are elements of a group, give an example to show that

it need not be the case that labcl = Ichal.

. Let @ and b belong to a group G. Prove that there is an element x in

G such that xax = b if and only if ab = ¢ for some element ¢ in G.

. Prove that if a is the only element of order 2 in a group, then a lies

in the center of the group.

Let G be the plane symmetry group of the infinite strip of equally
spaced H’s shown below.
H H

H H H

1 1

1 1

i i
Axis 1 Axis2

1 1

1 1

Let x be the reflection about Axis 1 and let y be the reflection about
Axis 2. Calculate Ixl, Iyl, and Ixyl. Must the product of elements of
finite order have finite order?

What are the orders of the elements of D,s? How many elements
have each of these orders?

Prove that a group of order 4 is Abelian.

Prove that a group of order 5 must be cyclic.

Prove that an Abelian group of order 6 must be cyclic.

Let G be an Abelian group and let n be a fixed positive integer. Let
G" = {g" | g € G}. Prove that G" is a subgroup of G. Give an ex-
ample showing that G" need not be a subgroup of G when G is
non-Abelian. (This exercise is referred to in Chapter 11.)

Let G = {a + b\/2}, where a and b are rational numbers not
both 0. Prove that G is a group under ordinary multiplication.
(1969 Putnam Competition) Prove that no group is the union of
two proper subgroups. Does the statement remain true if “two” is
replaced by “three”?

Prove that the subset of elements of finite order in an Abelian
group forms a subgroup. (This subgroup is called the rorsion sub-
group.) Is the same thing true for non-Abelian groups?

Let p be a prime and let G be an Abelian group. Show that the set
of all elements whose orders are powers of p is a subgroup of G.

Suppose that a and b are group elements. If 15| = 2 and bab = a*,
determine the possibilities forlal.
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Suppose that a finite group is generated by two elements a and b
(that is, every element of the group can be expressed as some prod-
uct of a’s and b’s). Given that a’= b? = e and ba? = ab, construct
the Cayley table for the group. We have already seen an example
of a group that satisfies these conditions. Name it.

If a is an element of a group and lal = n, prove that C(a) = C(d"
when £ is relatively prime to n.

Let x and y belong to a group G. If xy € Z(G), prove that xy = yx.

Suppose that H and K are nontrivial subgroups of Q under addi-
tion. Show that H N K is a nontrivial subgroup of Q. Is this true if
Q is replaced by R?

Let H be a subgroup of G and let g be an element of G. Prove that
N(gHg ") = gN(H)g~'. See Exercise 2 for the notation.

Let H be a subgroup of a group G and let Igl = n. If g" belongs to
H and m and n are relatively prime, prove that g belongs to H.

Find a group that contains elements a and b such that lal = 2,
bl = 11, and labl = 2.

Suppose that G is a group with exactly eight elements of order 10.
How many cyclic subgroups of order 10 does G have?

(1989 Putnam Competition) Let S be a nonempty set with an asso-
ciative operation that is left and right cancellative (xy = xz implies
y =z, and yx = zx implies y = z). Assume that for every a in S the
set {a"ln=1,2,3,...}is finite. Must S be a group?

Let H,, H,, H;, . . . be a sequence of subgroups of a group with the
property that H; C H, C H; . ... Prove that the union of the se-
quence is a subgroup.

Let R* be the group of nonzero real numbers under multiplication
and let H ={g € R*| some nonzero integer power of g is a rational
number }. Prove that H is a subgroup of R*.

Suppose that a and b belong to a group, a and b commute, and lal
and 1b| are relatively prime. Prove that labl = lallbl. Give an exam-
ple showing that labl need not be lallbl when a and b commute but
lal and |b! are not relatively prime. (Don’t use a € (b).)

Let H = {A € GL(2, R) | det A is rational }. Prove or disprove that
H is a subgroup of GL(2, R). What if “rational” is replaced by “an
integer”?

Suppose that G is a group that has exactly one nontrivial proper
subgroup. Prove that G is cyclic and |G| = p?, where p is prime.
Suppose that G is a group and G has exactly two nontrivial proper
subgroups. Prove that G is cyclic and |Gl = pq, where p and g are
distinct primes, or that G is cyclic and |G| = p3, where p is prime.
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38.

39.

40.
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42.

43.

44.

45.

46.

47.

48.

If la®l = 1b?1, prove or disprove that lal = |bl.

(1995 Putnam Competition) Let S be a set of real numbers that is
closed under multiplication. Let 7 and U be disjoint subsets of S
whose union is S. Given that the product of any three (not neces-
sarily distinct) elements of 7 is in T and that the product of any
three elements of U is in U, show that at least one of the two sub-
sets T and U is closed under multiplication.

If p is an odd prime, prove that there is no group that has exactly p
elements of order p.

Give an example of a group G with infinitely many distinct sub-
groups H, H,, Hs, . . . suchthat H; C H, C H;. . ..

Suppose a and b are group elements and b # e. If a~'ba = b? and
lal = 3, find 1bl. What is b1, if lal = 5?7 What can you say about
Ibl in the case where lal = k?

Let a and b belong to a group G. Show that there is an element g in
G such that g~ abg = ba.

Suppose G is a group and x*y3 = y3x* for every x and y in G. Let
H = {x € Gl Ixl is relatively prime to 3}. Prove that elements of H
commute with each other and that H is a subgroup of G. Is your
argument valid if 3 is replaced by an arbitrary positive integer n?
Explain why or why not.

Let G be a finite group and let S be a subset of G that contains
more than half of the elements of G. Show that every element of G
can be expressed in the form s,s, where s, and s, belong to S.

Let G be a group and let f be a function from G to some set. Show
that H = {g € Gl f(xg) = f (x) for all x € G} is a subgroup of G.
In the case that G is the group of real numbers under addition and
f(x) = sin x, describe H.

Let G be a cyclic group of order n and let H be the subgroup of
order d. Show that H = {x € Gl Ix| divides d}.

Let a be an element of maximum order from a finite Abelian group
G. Prove that for any element b in G, 15! divides lal. Show by
example that this need not be true for finite non-Abelian groups.
Define an operation * on the set of integers by a *b =a + b — 1.
Show that the set of integers under this operation is a cyclic group.
Let n be an integer greater than 1. Find a noncyclic subgroup of
U(4n) of order 4 that contains the element 2n — 1.



Permutation Groups

Wigner’s discovery about the electron permutation group was just the
beginning. He and others found many similar applications and nowadays
group theoretical methods—especially those involving characters and
representations—pervade all branches of quantum mechanics.

GEORGE MACKEY, Proceedings of the
American Philosophical Society

Definition and Notation

In this chapter, we study certain groups of functions, called permutation
groups, from a set A to itself. In the early and mid-19th century, groups
of permutations were the only groups investigated by mathematicians.
It was not until around 1850 that the notion of an abstract group was in-
troduced by Cayley, and it took another quarter century before the idea
firmly took hold.

Definitions Permutation of A, Permutation Group of A

A permutation of a set A is a function from A to A that is both one-
to-one and onto. A permutation group of a set A is a set of permuta-
tions of A that forms a group under function composition.

Although groups of permutations of any nonempty set A of objects
exist, we will focus on the case where A is finite. Furthermore, it is
customary, as well as convenient, to take A to be a set of the form
{1,2,3,...,n} for some positive integer n. Unlike in calculus, where
most functions are defined on infinite sets and are given by formulas,
in algebra, permutations of finite sets are usually given by an explicit
listing of each element of the domain and its corresponding functional
value. For example, we define a permutation « of the set {1, 2, 3,4} by
specifying

a(l) =2, a(2) =3, a3) =1, a(d) = 4.

95
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A more convenient way to express this correspondence is to write « in

array form as
{1 23 4}
a = .
231 4

Here a(j) is placed directly below j for each j. Similarly, the permuta-
tion B of the set {1, 2, 3,4, 5, 6} given by

B) =5, B2)=3, BB =1, BA =06, BO) =2, B(6)=4
is expressed in array form as

[123456}

P=l5 31624

Composition of permutations expressed in array notation is carried
out from right to left by going from top to bottom, then again from top
to bottom. For example, let

'12345}
0’:

2 4 3 5 1
and
_'12345}
Y7541 23/
then
— D 1
12345]i[12345
| 1 2345
o iy -
| 42135
5412324351

On the right we have 4 under 1, since (yo)(1) = y(a(1)) = y(2) = 4,
so yo sends 1 to 4. The remainder of the bottom row yo is obtained in
a similar fashion.

We are now ready to give some examples of permutation groups.

I EXAMPLE 1 Symmetric Group S, Let §; denote the set of all one-
to-one functions from {1, 2, 3} to itself. Then S, under function com-
position, is a group with six elements. The six elements are

{123} [123} ) {123}
&€ = 5 a = 5 a” = 5
123 2 31 312
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(123 1203 L 123
B_Lsz}’ “B_LlJ’ O‘B—[szl]'

1 3
Note that Ba = [3 ) J = a’B # af, so that S, is non-Abelian. |

The relation Ba = a8 can be used to compute other products in AN
without resorting to the arrays. For example, Ba? = (Ba)a = (a?B)a =
a*(Ba) = aX(@’p) = a'B = ap.

Example 1 can be generalized as follows.

B EXAMPLE 2 SymmetricGroupS, LetA = {1,2,...,n}. The set
of all permutations of A is called the symmetric group of degree n and is
denoted by S . Elements of §_have the form

1 2 ... n
a(l) a(2) ...a(n) ]

It is easy to compute the order of S . There are n choices of a(1). Once
a(1) has been determined, there are n — 1 possibilities for a(2) [since
« is one-to-one, we must have a(1) # «(2)]. After choosing a(2), there
are exactly n — 2 possibilities for a(3). Continuing along in this fashion,
we see that § hasn(n — 1) - - -3 -2 -1 = n! elements. We leave it to the
reader to prove that S, is non-Abelian when n = 3 (Exercise 41). |

The symmetric groups are rich in subgroups. The group §, has 30
subgroups, and S, has well over 100 subgroups.

I EXAMPLE 3 Symmetries of a Square As a third example, we
associate each motion in D, with the permutation of the locations of each
of the four corners of a square. For example, if we label the four corner
positions as in the figure below and keep these labels fixed for reference,
we may describe a 90° counterclockwise rotation by the permutation

3 2

4 1

_{1234]
P23 41/
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whereas a reflection across a horizontal axis yields

123 4
¢_{2143]'

These two elements generate the entire group (that is, every element is
some combination of the p’s and ¢’s).

When D, is represented in this way, we see that it is a subgroup
of §,. |

Cycle Notation

There is another notation commonly used to specify permutations. It is
called cycle notation and was first introduced by the great French math-
ematician Cauchy in 1815. Cycle notation has theoretical advantages in
that certain important properties of the permutation can be readily de-
termined when cycle notation is used.

As an illustration of cycle notation, let us consider the permutation

_[123456}
““ 21465 3

This assignment of values could be presented schematically as follows:

1 3 5
o o
o o
6 4
5 \/
o o

Although mathematically satisfactory, such diagrams are cumber-
some. Instead, we leave out the arrows and simply write a = (1, 2)
(3,4, 6)(5). As a second example, consider

'8_[123456}
531624/

In cycle notation, B can be written (2, 3, 1, 5)(6, 4) or (4, 6)(3, 1, 5, 2),
since both of these unambiguously specify the function 3. An expres-
sion of the form (a,, a,, ..., a,) is called a cycle of length m or an
m-cycle.

2’
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A multiplication of cycles can be introduced by thinking of a cycle
as a permutation that fixes any symbol not appearing in the cycle.
Thus, the cycle (4, 6) can be thought of as representing the
1 23456

1 23654
by thinking of them as permutations given in array form. Consider the
following example from Sg. Let a = (13)(27)(456)(8) and B =
(1237)(648)(5). (When the domain consists of single-digit integers, it is
common practice to omit the commas between the digits.) What
is the cycle form of «B? Of course, one could say that a8 =
(13)(27)(456)(8)(1237)(648)(5), but it is usually more desirable to ex-
press a permutation in a disjoint cycle form (that is, the various cycles
have no number in common). Well, keeping in mind that function com-
position is done from right to left and that each cycle that does not con-
tain a symbol fixes the symbol, we observe that: (5) fixes 1; (648) fixes 1;
(1237) sends 1 to 2; (8) fixes 2; (456) fixes 2; (27) sends 2 to 7; and (13)
fixes 7. So the net effect of @8 is to send 1 to 7. Thus we begin
af=(17"---)---.Now, repeating the entire process beginning with 7,
we have, cycle by cycle, righttoleft, 7 > 7—>7—>1->1—>51—>1->3,
so that ¢ = (173 - - -) - - - . Ultimately, we have a8 = (1732)(48)(56).
The important thing to bear in mind when multiplying cycles is to “keep
moving” from one cycle to the next from right to left. (Warning: Some au-
thors compose cycles from left to right. When reading another text, be
sure to determine which convention is being used.)

To be sure you understand how to switch from one notation to the
other and how to multiply permutations, we will do one more example
of each.

If array notations for « and 3, respectively, are

{12345} [12345]
and
21354 54123

then, in cycle notation, o = (12)(3)(45), B
(12)(3)(45)(153)(24).

To put af in disjoint cycle form, observe that (24) fixes 1; (153)
sends 1 to 5; (45) sends 5 to 4; and (3) and (12) both fix 4. So, 3 sends
1 to 4. Continuing in this way we obtain a8 = (14)(253).

One can convert a3 back to array form without converting each
cycle of @f3 into array form by simply observing that (14) means 1 goes
to 4 and 4 goes to 1; (253) means 2 - 5,5 — 3,3 — 2.

One final remark about cycle notation: Mathematicians prefer not to
write cycles that have only one entry. In this case, it is understood that any

permutation { } In this way, we can multiply cycles

(153)(24), and a8 =
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missing element is mapped to itself. With this convention, the permutation
« above can be written as (12)(45). Similarly,

{12345}
a:
32415

can be written a = (134). Of course, the identity permutation consists
only of cycles with one entry, so we cannot omit all of these! In this
case, one usually writes just one cycle. For example,

_{12345}
12345

can be written as € = (5) or € = (1). Just remember that missing
elements are mapped to themselves.

Properties of Permutations

We are now ready to state several theorems about permutations and
cycles. The proof of the first theorem is implicit in our discussion of
writing permutations in cycle form.

I Theorem 5.1 Products of Disjoint Cycles

Every permutation of a finite set can be written as a cycle or as a
product of disjoint cycles.

PROOF Let o be a permutation on A = {1, 2, ..., n}. To write « in
disjoint cycle form, we start by choosing any member of A, say a,, and let

a, = a(a),  a; = ala(a)) = aay),

and so on, until we arrive at a, = a"(a,) for some m. We know that such
an m exists because the sequence a,, a(a,), az(al), .. . must be finite;
so there must eventually be a repetition, say a'(a,) = a/(a,) for some
i and j with i <. Then a; = a"(a,), where m = j — i. We express this
relationship among a,, a,, . . ., a, as

a=(a;,a,...,a,)" "".

The three dots at the end indicate the possibility that we may not have
exhausted the set A in this process. In such a case, we merely choose
any element b, of A not appearing in the first cycle and proceed to cre-
ate a new cycle as before. Thatis, we let b, = a(b,), by = ozz(bl), and so
on, until we reach b, = ak(bl) for some k. This new cycle will have no
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elements in common with the previously constructed cycle. For, if so,
then a’(a,) = a/(b,) for some i and j. But then a’~/(a,) = b, and there-
fore b, = a, for some ¢. This contradicts the way b, was chosen.
Continuing this process until we run out of elements of A, our permuta-
tion will appear as

a=(a,a,...,a)b,b, ....,b) - (c,cp...,C).

In this way, we see that every permutation can be written as a product
of disjoint cycles. 1

§I Theorem 5.2 Disjoint Cycles Commute

If the pair of cycles a = (a, a,, ..., a,)and B = (b,,b,, ..., b,)
have no entries in common, then o3 = Ba.

PROOF For definiteness, let us say that o and 8 are permutations of
the set

S={a,ay,...,a,b,b,....b,c,c,...,c}

where the ¢’s are the members of S left fixed by both « and 3 (there
may not be any ¢’s). To prove that a3 = Ba, we must show that (a3)(x) =
(Ba)(x) for all x in S. If x is one of the a elements, say a,, then

(@B)(a) = a(B(a)) = a(a) = a,,,

since B fixes all a elements. (We interpret @, | as a, if i = m.) For the
same reason,

(Ba)(a) = Bla(a)) = Bla,,,) = a,,,.

Hence, the functions of a3 and Ba agree on the a elements. A similar
argument shows that «f3 and Ba agree on the b elements as well.
Finally, suppose that x is a ¢ element, say c,. Then, since both @ and 8
fix ¢ elements, we have

(aB)(c) = a(B(c)) = alc) = ¢,

and

Ba)(c) = Bla(c)) = B(c) = c;.
This completes the proof. |

In demonstrating how to multiply cycles, we showed that the
product (13)(27)(456)(8)(1237)(648)(5) can be written in disjoint cycle
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form as (1732)(48)(56). Is economy in expression the only advantage
to writing a permutation in disjoint cycle form? No. The next theorem
shows that the disjoint cycle form has the enormous advantage of
allowing us to “eyeball” the order of the permutation.

B Theorem 5.3 Order of a Permutation (Ruffini—1799)

The order of a permutation of a finite set written in disjoint cycle
form is the least common multiple of the lengths of the cycles.

PROOF First, observe that a cycle of length n has order n. (Verify this
yourself.) Next, suppose that o and 8 are disjoint cycles of lengths m
and n, and let k be the least common multiple of m and n. It follows from
Theorem 4.1 that both o and B* are the identity permutation & and, since
a and B commute, (aB)* = a*B¥ is also the identity. Thus, we know by
Corollary 2 to Theorem 4.1 (a* = e implies that lal divides k) that the
order of af3—Ilet us call it ~—must divide k. But then (aB)’ = a/B" = &,
so that &’ = 37". However, it is clear that if & and 8 have no common
symbol, the same is true for a” and 87, since raising a cycle to a power
does not introduce new symbols. But, if «’ and 87 are equal and have
no common symbol, they must both be the identity, because every sym-
bol in «' is fixed by 8~ and vice versa (remember that a symbol not ap-
pearing in a permutation is fixed by the permutation). It follows, then,
that both m and n must divide ¢. This means that &, the least common
multiple of m and n, divides ¢ also. This shows that k = .

Thus far, we have proved that the theorem is true in the cases
where the permutation is a single cycle or a product of two disjoint
cycles. The general case involving more than two cycles can be han-
dled in an analogous way. |

Theorem 5.3 is an enomously powerful tool for calculating the or-
ders of permuations. We demonstrate this in the next example.

I EXAMPLE 4 To determine the orders of the 5040 elements of S,, we
need only consider the possible disjoint cycle structures of the
elements of S;. For convenience, we denote an n-cycle by (r). Then, ar-
ranging all possible disjoint cycle structures of elements of S,
according to longest cycle lengths left to right, we have
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Now, from Theorem 5.3 we see that the orders of the elements of S,
are 7, 6, 10, 5,12, 4, 3, 2, and 1. To do the same for the 10! = 3,628,800
elements of S;, would be nearly as simple. |

As we will soon see, a particularly important kind of permutation is
a cycle of length 2—that is, a permutation of the form (ab) where
a # b. Many authors call these permutations transpositions, since the
effect of (ab) is to interchange or transpose a and b.

I Theorem 5.4 Product of 2-Cycles

Every permutation in S, n > 1, is a product of 2-cycles.

PROOF First, note that the identity can be expressed as (12)(12), and
so it is a product of 2-cycles. By Theorem 5.1, we know that every per-
mutation can be written in the form

(a]a2 [N ak)(ble [N bt) .« o (C1C2 [N Cs)'
A direct computation shows that this is the same as

(a,a)(a,a,_,) -+ (a,a,)(b,b)(D\b,_,) - + - (D,b,)
s (ee)lee ) (e

This completes the proof. |

The decompositions in the following example demonstrate this technique.
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§I EXAMPLES

(12345) = (15)(14)(13)(12)
(1632)(457) = (12)(13)(16)(47)(45) N

The decomposition of a permutation into a product of 2-cycles given
in the proof of Theorem 5.4 is not the only way a permutation can be
written as a product of 2-cycles. Although the next example shows that
even the number of 2-cycles may vary from one decomposition to an-
other, we will prove in Theorem 5.5 (first proved by Cauchy) that there
is one aspect of a decomposition that never varies.

§ EXAMPLE 6

(12345) = (54)(53)(52)(51)
(12345) = (54)(52)(21)(25)(23)(13) |

We isolate a special case of Theorem 5.5 as a lemma.

Ife = B,B, - - - B,, where the B’s are 2-cycles, then r is even.

PROOF Clearly, r # 1, since a 2-cycle is not the identity. If r = 2, we
are done. So, we suppose that r > 2, and we proceed by induction.
Since (ij) = (ji), the product B, _, 8, can be expressed in one of the fol-
lowing forms shown on the right:

e = (ab)(ab)
(ab)(bc) = (ac)(ab)
(ac)(cb) = (bc)(ab)
(ab)(cd) = (cd)(ab).

If the first case occurs, we may delete 8, B8, from the original product
to obtain € = 3,8, * - - B,_,. In the other three cases, we replace the
form of B, _, B, on the right by its counterpart on the left to obtain a new
product of r 2-cycles that is still the identity, but where the rightmost
occurrence of the integer a is in the second-from-the-rightmost 2-cycle
of the product instead of the rightmost 2-cycle. We now repeat the proce-
dure just described with B,_,B,_,, and, as before, we obtain a product of
(r — 2) 2-cycles equal to the identity or a new product of r 2-cycles,
where the rightmost occurrence of a is in the third 2-cycle from the right.
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Continuing this process, we must obtain a product of (r — 2) 2-cycles
equal to the identity, because otherwise we have a product equal to the
identity in which the only occurrence of the integer a is in the leftmost 2-
cycle, and such a product does not fix a, whereas the identity does. Hence,
by the Second Principle of Mathematical Induction, » — 2 is even, and r
is even as well. |

B Theorem 5.5 Always Even or Always Odd

If a permutation « can be expressed as a product of an even (odd)
number of 2-cycles, then every decomposition of « into a product of
2-cycles must have an even (odd) number of 2-cycles. In symbols, if

a:BIBZ...Br and a:fylfy2...fys’

where the B’s and the y’s are 2-cycles, then r and s are both even or
both odd.

PROOF Observe that 3,8, - - - B, = v,v, - * - v, implies

e = 7172 e ’)/XBr_l e ,82_131_1
=YYy VB BBy

since a 2-cycle is its own inverse. Thus, the lemma on page 104 guar-
antees that s + r is even. It follows that r and s are both even or both
odd. |

Definition Even and Odd Permutations

A permutation that can be expressed as a product of an even number
of 2-cycles is called an even permutation. A permutation that can

be expressed as a product of an odd number of 2-cycles is called an
odd permutation.

Theorems 5.4 and 5.5 together show that every permutation can be
unambiguously classified as either even or odd. The significance of this
observation is given in Theorem 5.6.

I Theorem 5.6 Even Permutations Form a Group

The set of even permutations in S, forms a subgroup of S,

PROOF This proof is left to the reader (Exercise 13). |

The subgroup of even permutations in S, arises so often that we give
it a special name and notation.
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Definition Alternating Group of Degree n
The group of even permutations of n symbols is denoted by A, and is
called the alternating group of degree n.

The next result shows that exactly half of the elements of S (n > 1)
are even permutations.

B Theorem5.7

Forn > 1, A, has order n!/2.

PROOF For each odd permutation «, the permutation (12)« is even
and (12)a # (12)8 when a # B. Thus, there are at least as many even
permutations as there are odd ones. On the other hand, for each
even permutation «, the permutation (12)« is odd and (12)a # (12)8
when « # 3. Thus, there are at least as many odd permutations as there
are even ones. It follows that there are equal numbers of even and odd
permutations. Since IS | = n!, we have IA | = n!/2. |

The names for the symmetric group and the alternating group of degree
n come from the study of polynomials over n variables. A symmetric
polynomial in the variables x;, x,, . . ., x, is one that is unchanged under
any transposition of two of the variables. An alternating polynomial is
one that changes signs under any transposition of two of the variables. For
example, the polynomial x, x,x, is unchanged by any transposition of two
of the three variables, whereas the polynomial (x, —x,)(x, = x)(x,— x;)
changes signs when any two of the variables are transposed. Since every
member of the symmetric group is the product of transpositions, the sym-
metric polynomials are those that are unchanged by members of the sym-
metric group. Likewise, since any member of the alternating group is the
product of an even number of transpositions, the alternating polynomials
are those that are unchanged by members of the alternating group and
change sign by the other permutations of § .

The alternating groups are among the most important examples of
groups. The groups A, and A, will arise on several occasions in later
chapters. In particular, A has great historical significance.

A geometric interpretation of A is given in Example 7, and a multi-
plication table for A, is given as Table 5.1.

I EXAMPLE 7 ROTATIONS OF A TETRAHEDRON The 12 rota-
tions of a regular tetrahedron can be conveniently described with the
elements of A,. The top row of Figure 5.1 illustrates the identity and
three 180° “edge” rotations about axes joining midpoints of two edges.
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Table 5.1 The Alternating Group A, of Even Permutations of {1, 2, 3, 4}

(In this table, the permutations of A, are designated as «|, @, . . .
the table represents «,. For example, a; ag = a.)

, @, and an entry k inside

@ o e @ @ & @ G Gy G Gy G

MW=a, | 1 2 3 4 5 6 7 8 9 10 11 12
(12)(34) = a, 2 1 4 3 6 5 8 7 10 9 12 11
aedH=ea, | 3 4 1 2 7 8 5 6 11 12 9 10
a9e)H=e, | 4 3 2 1 8 7 6 5 12 11 10 9
3)=e, | 5 8 6 7 9 12 10 1 1 4 2 3
(243) = o 6 7 5 8 10 11 9 12 2 3 1 4
(142) = a, 7 6 8 5 11 10 12 9 3 2 4 1
B4)=e, | 8 5 7 6 12 9 11 10 4 1 3 2
32)=e, | 9 11 12 10 1 3 4 2 5 7 8 6
4)=a,| 10 12 11 9 2 4 3 1 6 8§ T 5
@)=a,| 11 9 10 12 3 1 2 4 7 5 6 8
24=a,| 12 10 9 11 4 2 1 3 8 6 5 1

1 1 1 1
(1) (12)(34) (13)(24) (14)(23)
— A k \
5 Y
5 4 5 b 4 ) E 4 5 4
3 3 3 3

)

(142)

;

2

(123)
! 4
3

Figure 5.1 Rotations of a regular tetrahedron.

1
(134)
:
3
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The second row consists of 120° “face” rotations about axes joining a ver-
tex to the center of the opposite face. The third row consists of —120° (or
240°) “face” rotations. Notice that the four rotations in the second row can
be obtained from those in the first row by left-multiplying the four in the
first row by the rotation (123), whereas those in the third row can be ob-
tained from those in the first row by left-multiplying the ones in the first
row by (132). |

Many molecules with chemical formulas of the form AB,, such as
methane (CH,) and carbon tetrachloride (CCl,), have A, as their sym-
metry group. Figure 5.2 shows the form of one such molecule.

Many games and puzzles can be analyzed using permutations.

Figure 5.2 A tetrahedral AB, molecule.

I EXAMPLE 8 (Loren Larson) A Sliding Disk Puzzle
Consider the puzzle shown below (the space in the middle is empty).

By sliding disks from one position to another along the lines
indicated without lifting or jumping, can we obtain the following
arrangement?
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To answer this question, we view the positions as numbered in the
first figure above and consider two basic operations. Let r denote the
following operation: Move the disk in position 1 to the center position,
then move the disk in position 6 to position 1, the disk in position 5 to
position 6, the disk in position 4 to position 5, the disk in position 3 to
position 4, then the disk in the middle position to position 3. Let s
denote the operation: Move the disk in position 1 to the center position,
then move the disk in position 2 to position 1, then move the disk in po-
sition 3 to position 2, and finally move the disk in the center to position 3.
In permutation notation, we have r = (13456) and s = (132). The
permutation for the arrangement we seek is (16523). Clearly, if we can
express (16523) as a string of r’s and s’s, we can achieve the desired
arangement. Rather than attempt to find an appropriate combination of
r’s and s’s by hand, it is easier to employ computer software that is de-
signed for this kind of problem. One such software program is GAP (see
Suggested Software at the end of this chapter). With GAP, all we need to
do is use the following commands:

gap> G := SymmetricGroup(6);
gap>r:= (1,3,4,5,6); s := (1, 3, 2);
gap> K := Subgroup(G,[r,s]);
gap>> Factorization(K,(1,6,5,2,3));

The first three lines inform the computer that our group is the
subgroup of S, generated by r = (13456) and s = (132). The fourth
line requests that (16523) be expressed in terms of r and s. The re-
sponse to the command

gap>> Size (K);

tells us that the order of the subgroup generated by r and s is 360. Then,
observing that r and s are even permutations and that 14| = 360, we
deduce that r and s can achieve any arrangement that corresponds to an
even permutation. |
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GAP can even compute the 43,252,003,274,489,856,000 (43+ quin-
tillion) permutations of the Rubik’s Cube! Labeling the faces of the
cube as shown here,

1

6

2
top
7

9
12
14

10
left
15

11
13
16

17
20
22

18
front
23

19
21
24

25
28
30

26
right
31

27
29
32

33
36
38

34
rear
39

35
37
40

41
44
46

42
bottom
47

43
45
48

the group of permutations of the cube is generated by the following ro-
tations of the six layers:

top = (1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)

left = (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)

front = (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)

right = (25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)

rear = (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)

bottom = (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)
(16,24,32,40)

A Check Digit Scheme Based on D,

In Chapter 0, we presented several schemes for appending a check digit
to an identification number. Among these schemes, only the Interna-
tional Standard Book Number method was capable of detecting all
single-digit errors and all transposition errors involving adjacent digits.
However, recall that this success was achieved by introducing the al-
phabetical character X to handle the case where 10 was required to
make the dot product 0 modulo 11.

In contrast, in 1969, J. Verhoeff [2] devised a method utilizing the
dihedral group of order 10 that detects all single-digit errors and all
transposition errors involving adjacent digits without the necessity of
avoiding certain numbers or introducing a new character. To describe
this method, consider the permutation o = (01589427)(36) and the di-
hedral group of order 10 as represented in Table 5.2. (Here we use 0
through 4 for the rotations, 5 through 9 for the reflections, and * for the
operation of D.)
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Table 5.2 Multiplication for D,

* 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 0 6 7 8 9 5
2 2 3 4 0 1 7 8 9 5 6
3 3 4 0 1 2 8 9 5 6 7
4 4 0 1 2 3 9 5 6 7 8
5 5 9 8 7 6 0 4 3 2 1
6 6 5 9 8 7 1 0 4 3 2
7 7 6 5 9 8 2 1 0 4 3
8 8 7 6 5 9 3 2 1 0 4
9 9 8 7 6 5 4 3 2 1 0

Verhoeft’s idea is to view the digits 0 through 9 as the elements of the
group D, and to replace ordinary addition with calculations done in D..
In particular, to any string of digits a,a, . . . a,_,, we append the check
digit a, so that o(a)) * o*(a,) * -+ * " *a,_,) * 0" Ya,_)) *
o"(a,) = 0. [Here 0%(x) = 0 (0(x)), 0°(x) = o(0*(x)), and so on.]
Since o has the property that o’ (a) # o (b) if a # b, all single-digit er-
rors are detected. Also, because

a*o(b) #b*o(a) ifa # b, (1)

as can be checked on a case-by-case basis (see Exercise 49), it follows
that all transposition errors involving adjacent digits are detected [since
Equation (1) implies that o(a) * o'*'(b) # o(b) * " (a) if a # b].

From 1990 until 2002, the German government used a minor modi-
fication of Verhoeft’s check-digit scheme to append a check digit to the
serial numbers on German banknotes. Table 5.3 gives the values of the
functions o, o2, . . ., 0'” needed for the computations. [The functional
value o/ (j) appears in the row labeled with -’ and the column labeled j.]
Since the serial numbers on the banknotes use 10 letters of the alphabet in
addition to the 10 decimal digits, it is necessary to assign numerical val-
ues to the letters to compute the check digit. This assignment is shown in
Table 5.4.

To any string of digits a,a, . . . a,, corresponding to a banknote serial
number, the check digit a, is chosen such that o (a,) * az(az) doeee ok
%(ay) * 0'%a,,) * a,, = 0 [instead of o'(a,) * 0%(a,) * - + - * 0'%a,,) *
a'!(a,;) = 0 as in the Verhoeff scheme].
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Table 5.3 Powers of o

0 1 2 3 4 5 6 7 8 9
o 1 5 7 6 2 8 3 0 9 4
o? 5 8 0 3 7 9 6 1 4 2
ol 8 9 1 6 0 4 3 5 2 7
ot 9 4 5 3 1 2 6 8 7 0
o’ 4 2 8 6 5 7 3 9 0 1
af 2 7 9 3 8 0 6 4 1 5
o’ 7 0 4 6 9 1 3 2 5 8
ol 0 1 2 3 4 5 6 7 8 9
o’ 1 5 7 6 2 8 3 0 9 4
ol? 5 8 0 3 7 9 6 1 4 2

Table 5.4 Letter Values

A D G K L N S U Y zZ

0 1 2 3 4 5 6 7 8 9

To trace through a specific example, consider the banknote (featur-
ing the mathematician Gauss) shown in Figure 5.3 with the number
AG8536827U7. To verify that 7 is the appropriate check digit, we ob-
serve that o (0) * a2(2) * 03(8) * o*(5) * d3(3) * 0®(6) * o7(8) *
o3 %N *xc'%(T)*T=1%0%2%2%x6%6%x5%«2%0*] =
7 = 0, as it should be. [To illustrate how to use the multiplication table
for Dy, we compute 1 # 0 * 2 %2 = (1 %0)*2%2=1%2%2=
(1x2)*x2=3%2=0.]

AGB536827U7

ZEHN DEUTSCHE MARK

Figure 5.3 German banknote with serial number AG8536827U and check digit 7.

One shortcoming of the German banknote scheme is that it does not
distinguish between a letter and its assigned numerical value. Thus, a
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substitution of 7 for U (or vice versa) and the transposition of 7 and U
are not detected by the check digit. Moreover, the banknote scheme
does not detect all transpositions of adjacent characters involving the
check digit itself. For example, the transposition of D and 8 in posi-
tions 10 and 11 is not detected. Both of these defects can be avoided by
using the Verhoeff method with D, the dihedral group of order 36, to
assign every letter and digit a distinct value together with an appropri-
ate function o (see Gallian [1]). Using this method to append a check
character, all single-position errors and all transposition errors involv-
ing adjacent digits will be detected.

1. Find the order of each of the following permutations.
a. (14)
b. (147)
c. (14762)
d. (aay - @)
2. Write each of the following permutations as a product of disjoint
cycles.
a. (1235)(413)
b. (13256)(23)(46512)
c. (12)(13)(23)(142)
3. What is the order of each of the following permutations?
a. (124)(357)
b. (124)(3567)
(124)(35)
. (124)(357869)
. (1235)(24567)
f. (345)(245)

-]
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4.

10.

11.

12.
13.
14.

15.

16.

17.

What is the order of each of the following permutations?
{1 2345 6}
215463

b[1234567}
17612345

. What is the order of the product of a pair of disjoint cycles of

lengths 4 and 67

. Show that A  contains an element of order 15.
. What are the possible orders for the elements of S, and A,? What

about A,? (This exercise is referred to in Chapter 25.)

. What is the maximum order of any elementin A ,?
. Determine whether the following permutations are even or odd.

a. (135)

b. (1356)

c. (13567)

d. (12)(134)(152)

e. (1243)(3521)

Show that a function from a finite set S to itself is one-to-one if and
only if it is onto. Is this true when S is infinite? (This exercise is re-
ferred to in Chapter 6.)

Let n be a positive integer. If n is odd, is an n-cycle an odd or an
even permutation? If n is even, is an n-cycle an odd or an even per-
mutation?

If « is even, prove that o~ ! is even. If « is odd, prove that o~ ! is odd.
Prove Theorem 5.6.

In S , let a be an r-cycle, B an s-cycle, and y a r-cycle. Complete
the following statements: «f3 is even if and only if r + s is ;
afByisevenifand onlyif r + s + tis

Let « and B belong to S, . Prove that af is even if and only if «
and 3 are both even or both odd.

Associate an even permutation with the number +1 and an odd
permutation with the number —1. Draw an analogy between the
result of multiplying two permutations and the result of multiply-
ing their corresponding numbers +1 or —1.

Let

[123456} {123456}
o= and B = .
213546 6 1 2 435



18.

19.

20.

21.

22,

23.

24.

25.

26.
27.
28.
29.

30.
31.

32,

““1234517386
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Compute each of the following.
a. a!

b. Ba

c. af

Let

12345678} {12345678
= and B = .
1 387 6524

Write «, 3, and af3 as

a. products of disjoint cycles,

b. products of 2-cycles.

Show that if H is a subgroup of § , then either every member of H
is an even permutation or exactly half of the members are even.
(This exercise is referred to in Chapter 25.)

Compute the order of each member of A,. What arithmetic rela-
tionship do these orders have with the order of A,?

Give two reasons why the set of odd permutations in §, is not a
subgroup.

Let a and B belong to S . Prove that a !B~ 'af is an even
permutation.

Use Table 5.1 to compute the following.

a. The centralizer of a; = (13)(24).

b. The centralizer of a;, = (124).

How many elements of order 5 are in S.,?

How many elements of order 4 does S¢ have? How many elements
of order 2 does S have?

Prove that (1234) is not the product of 3-cycles.

Let B € S, and suppose B* = (2143567). Find B.

Let B = (123)(145). Write 8% in disjoint cycle form.

Find three elements o in S9 with the property that o3 =
(157)(283)(469).

What cycle is (a,a, * = - a ) '?

Let G be a group of permutations on a set X. Let a € X and define
stab(a) = {a € Gla(a) = a}. We call stab(a) the stabilizer of a in
G (since it consists of all members of G that leave a fixed). Prove
that stab(a) is a subgroup of G. (This subgroup was introduced by
Galois in 1832.) This exercise is referred to in Chapter 7.
LetB=(1,3,5,7,9,8, 6)(2, 4, 10). What is the smallest positive
integer n for which g* = 77
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33.

34.

35.
36.

37.

38.
39.

40.

41.
42,

43.

44.
45.
46.

47.

48.
49.

50.

51.

52,

Leta = (1,3,5,7,9)(2, 4, 6)(8, 10). If a™ is a 5-cycle, what can
you say about m?

Let H = {B € §IB(1) = 1 and B(3) = 3}. Prove that H is a sub-
group of S.. How many elements are in H? Is your argument valid
when 5 is replaced by any n = 3? How many elements are in H
when 5 is replaced by any n = 3?

How many elements of order 5 are there in A;?

In S, find a cyclic subgroup of order 4 and a noncyclic subgroup
of order 4.

Suppose that B8 is a 10-cycle. For which integers i between 2 and
10 is B/ also a 10-cycle?

In S, find elements « and B such that lal = 2, 1Bl = 2, and laBl = 3.
Find group elements « and B such that lal = 3, I8l = 3, and
laBl = 5.

Represent the symmetry group of an equilateral triangle as a group
of permutations of its vertices (see Example 3).

Prove that S is non-Abelian for all n = 3.

Let o and 3 belong to S . Prove that BaB~" and « are both even or
both odd.

Show that A5 has 24 elements of order 5, 20 elements of order 3, and
15 elements of order 2. (This exercise is referred to in Chapter 25.)
Find a cyclic subgroup of Ag that has order 4.

Find a noncyclic subgroup of Ag that has order 4.

Suppose that H is a subgroup of S, of odd order. Prove that H is a
subgroup of A,,.

Show that every element in A for n = 3 can be expressed as a
3-cycle or a product of three cycles.

Show that for n = 3, Z(S) = {&}.

Verify the statement made in the discussion of the Verhoeff check
digit scheme based on D, that a s o(b) # b * o (a) for distinct a and
b. Use this to prove that oi(a) = o™'(b) # ci(b) + o'(a) for all i.
Prove that this implies that all transposition errors involving adjacent
digits are detected.

Use the Verhoeff check-digit scheme based on D to append a
check digit to 45723.

Prove that every element of § (n > 1) can be written as a product
of elements of the form (1k).

(Indiana College Mathematics Competition) A card-shuffling ma-
chine always rearranges cards in the same way relative to the order
in which they were given to it. All of the hearts arranged in order



53.
54.

55.

56.

57.

58.

59.
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from ace to king were put into the machine, and then the shuffled
cards were put into the machine again to be shuffled. If the cards
emerged in the order 10, 9, Q, 8, K, 3,4, A, 5,7J, 6, 2, 7, in what
order were the cards after the first shuffle?

Show that a permutation with odd order is an even permutation.

Let G be a group. Prove or disprove that H = {g? | g € G} is a sub-
group of G. (Compare with Example 5 in Chapter 3.)

Determine integers n for which H = {@ € A,la* = &} is a sub-
group of A,,.

Given that 8 and vy are in S, with By = (1432), yB = (1243) and
B(1) = 4, determine 3 and .

Why does the fact that the orders of the elements of A, are 1, 2, and
3 imply that 1Z(A I = 1?7

Label the four locations of tires on an automobile with the labels
1,2, 3, and 4, clockwise. Let a represent the operation of switching
the tires in positions 1 and 3 and switching the tires in positions
2 and 4. Let b represent the operation of rotating the tires in posi-
tions 2, 3, and 4 clockwise and leaving the tire in position 1 as is.
Let G be the group of all possible combinations of a and b. How
many elements are in G?

Shown below are four tire rotation patterns recommended by the
Dunlop Tire Company. Explain how these patterns can be repre-
sented as permutations in S, and find the smallest subgroup of §,
that contains these four patterns. Is the subgroup Abelian?

X Tires to
the Driven Axle
Rear Wheel Drive Front Wheel Drive
Vehicles Vehicles
fl eronT ) fl rroNT )
Modified Modified X

X

4 Wheel Drive
Vehicles Alternate Pattern

fl eronT ff) | oM |

X Normal
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Computer Exercises

Science is what we understand well enough to explain to a computer.
Art is everything else we do.
DONALD KNUTH, The Art of Computer Programming, 1969

Software for Computer Exercise 1 in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software determines whether the two permutations (1x) and
(123 ... n) generate S, for various choices of x and n (that is,
whether every element of S can be expressed as some product of
these permutations). For n = 4, run the program for x = 2, 3, and
4. For n = 5, run the program for x = 2, 3, 4, and 5. For n = 6, run
the program for x = 2, 3, 4, 5, and 6. For n = 8, run the program
forx =2,3,4,5,6,7, and 8. Conjecture a necessary and sufficient
condition involving x and n for (1x) and (123 . . . n) to generate S, .

2. Use a software package (see Suggested Software on page 120) to
express the following permutations in terms of the » and s given in
Example 8. (For GAP, the prompt brk> means that the permuta-
tion entered is not in the group. In this situation, use Control-D to
return to the main prompt. Be advised that GAP composes permu-
tations from left to right as opposed to our method of right to left.)
a. (456)

b. (23)
c. (12)(34)
d. (12)(34)(56)
3. Repeat Example 8 for the puzzle shown here.


http://www.d.umn.edu/~jgallian
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Augustin Cauchy

You see that little young
man? Well! He will supplant
all of us in so far as we are
mathematicians.
Spoken by Lagrange
to Laplace About the
11-year-old Cauchy

AUGUSTIN Louis CAUCHY was born on
August 21, 1789, in Paris. By the time
he was 11, both Laplace and Lagrange had
recognized Cauchy’s extraordinary talent
for mathematics. In school he won prizes for
Greek, Latin, and the humanities. At the age
of 21, he was given a commission in
Napoleon’s army as a civil engineer. For the
next few years, Cauchy attended to his engi-
neering duties while carrying out brilliant
mathematical research on the side.

In 1815, at the age of 26, Cauchy was
made Professor of Mathematics at the Ecole
Polytechnique and was recognized as the
leading mathematician in France. Cauchy
and his contemporary Gauss were among
the last mathematicians to know the whole
of mathematics as known at their time, and
both made important contributions to nearly

This stamp was issued by France
in Cauchy’s honor.

every branch, both pure and applied, as well
as to physics and astronomy.

Cauchy introduced a new level of rigor
into mathematical analysis. We owe our
contemporary notions of limit and continu-
ity to him. He gave the first proof of the
Fundamental Theorem of Calculus. Cauchy
was the founder of complex function theory
and a pioneer in the theory of permutation
groups and determinants. His total written
output of mathematics fills 24 large volumes.
He wrote more than 500 research papers
after the age of 50. Cauchy died at the age of
67 on May 23, 1857.

For more information about Cauchy,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Isomorphisms

The basis for poetry and scientific discovery is the ability to comprehend
the unlike in the like and the like in the unlike.

JACOB BRONOWSKI

Motivation

Suppose an American and a German are asked to count a handful of ob-
jects. The American says, “One, two, three, four, five, . ..,” whereas the
German says “Eins, zwei, drei, vier, fiinf, . . .” Are the two doing different
things? No. They are both counting the objects, but they are using differ-
ent terminology to do so. Similarly, when one person says: “Two plus
three is five” and another says: “Zwei und drei ist fiinf,” the two are in
agreement on the concept they are describing, but they are using different
terminology to describe the concept. An analogous situation often occurs
with groups; the same group is described with different terminology. We
have seen two examples of this so far. In Chapter 1, we described the sym-
metries of a square in geometric terms (e.g., R), whereas in Chapter 5 we
described the same group by way of permutations of the corners. In both
cases, the underlying group was the symmetries of a square. In Chapter 4,
we observed that when we have a cyclic group of order n generated by a,
the operation turns out to be essentially that of addition modulo n, since
a'a* = dk, where k = (r + s5) mod n. For example, each of U(43) and U(49)
is cyclic of order 42. So, each has the form {(a), where a’a* = a " 9mod42,

Definition and Examples

122

In this chapter, we give a formal method for determining whether two
groups defined in different terms are really the same. When this is the
case, we say that there is an isomorphism between the two groups. This
notion was first introduced by Galois about 175 years ago. The term
isomorphism is derived from the Greek words isos, meaning “same” or
“equal,” and morphe, meaning “form.” R. Allenby has colorfully
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defined an algebraist as “a person who can’t tell the difference between
isomorphic systems.”

Definition Group Isomorphism -

An isomorphism ¢ from a group G to a group G is a one-to-one map-
ping (or function) from G onto G that preserves the group operation.
That is,

¢(ab) = p(a)p(b) for alla, bin G.

If there is an isomorphism from G onto G, we say that G and G are
isomorphic and write G = G.

This definition can be visualized as shown in Figure 6.1. The pairs
of dashed arrows represent the group operations.

P(a)p(b)

Figure 6.1

It is implicit in the definition of isomorphism that isomorphic
groups have the same order. It is also implicit in the definition of
isomorphism that the operation on the left side of the equal sign is that
of G, whereas the operation on the right side is that of G. The four
cases involving - and + are shown in Table 6.1.

Table 6.1
G Operation G Operation Operation Preservation
: ¢dla - b) = ¢P(a) - $(b)
: + dla - b) = dla) + $(b)
+ : dla +b) = ¢a) - $(b)
+ + dla +b) = ¢la) + d(b)

There are four separate steps involved in proving that a group G is
isomorphic to a group G.

Step 1 “Mapping.” Define a candidate for the isomorphism; that is, de-
fine a function ¢ from G to G.

Step 2 “1-1.” Prove that ¢ is one-to-one; that is, assume that ¢(a) =
¢(b) and prove that a = b.
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Step 3 “Onto.” Prove that ¢ is onto; that is, for any element g in G,
find an element g in G such that ¢(g) = g.

Step 4 “O.P”” Prove that ¢ is operation-preserving; that is, show that
d(ab) = ¢p(a)¢p(b) for all a and b in G.

None of these steps is unfamiliar to you. The only one that may appear
novel is the fourth one. It requires that one be able to obtain the same
result by combining two elements and then mapping, or by mapping
two elements and then combining them. Roughly speaking, this says
that the two processes—operating and mapping—can be done in either
order without affecting the result. This same concept arises in calculus
when we say

lim(f(x) - g(x)) = limf(x) limg(x)

or

b b b
f<f+g>dx - dex ; Jgdx.

a

Before going any further, let’s consider some examples.

B EXAMPLE 1 Let G be the real numbers under addition and let G be
the positive real numbers under multiplication. Then G and G are iso-
morphic under the mapping ¢(x) = 2*. Certainly, ¢ is a function from
G to G. To prove that it is one-to-one, suppose that 2* = 2”. Then log, 2* =
log, 2%, and therefore x = y. For “onto,” we must find for any positive
real number y some real number x such that ¢(x) = y; that is, 2* = y.
Well, solving for x gives log, y. Finally,

Plx +y) =270 =220 = P(0)P(y)

for all x and y in G, so that ¢ is operation-preserving as well. |

B EXAMPLE 2 Any infinite cyclic group is isomorphic to Z. Indeed, if
a is a generator of the cyclic group, the mapping a* — k is an
isomorphism. Any finite cyclic group (a) of order n is isomorphic
to Z under the mapping a* — k mod n. That these correspondences are
functions and are one-to-one is the essence of Theorem 4.1. Obviously,
the mappings are onto. That the mappings are operation-preserving
follows from Exercise 11 in Chapter O in the finite case and from the
definitions in the infinite case. |
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B EXAMPLE 3 The mapping from R under addition to itself given by
¢(x) = x* is not an isomorphism. Although ¢ is one-to-one and onto, it
is not operation-preserving, since it is not true that (x + y)* = x3 + 3
for all x and y. 1

I EXAMPLE 4 U(10) = Z, and U(5) = Z,. To verify this, one need
only observe that both U(10) and U(5) are cyclic of order 4. Then ap-
peal to Example 2. |

# EXAMPLE 5 U(10) # U(12). This is a bit trickier to prove. First,
note that x> = 1 for all x in U(12). Now, suppose that ¢ is an isomor-
phism from U(10) onto U(12). Then,

$9) = ¢3 - 3) = $3)Pp3) =1

and

o) = (1 - 1) = (DHp(1) = 1.

Thus, ¢(9) = ¢(1), but 9 # 1, which contradicts the assumption that
¢ is one-to-one. |

B EXAMPLE 6 There is no isomorphism from Q, the group of rational
numbers under addition, to Q", the group of nonzero rational numbers
under multiplication. If ¢ were such a mapping, there would be a ra-
tional number a such that ¢(a) = —1. But then

—1 = ¢(a) = ¢p(za + 30) = pGa)b(za) = [PpGa)]
However, no rational number squared is —1. |

B EXAMPLE 7 Let G = SL(2, R), the group of 2 X 2 real matrices
with determinant 1. Let M be any 2 X 2 real matrix with determinant 1.
Then we can define a mapping from G to G itself by ¢, (A) = MAM ™!
for all A in G. To verify that ¢,, is an isomorphism, we carry out the
four steps.

Step 1 ¢,, is a function from G to G. Here, we must show that ¢, (A)
is indeed an element of G whenever A is. This follows from properties
of determinants:

det (MAM™") = (det M)(det A)(det M) ' =1-1-1"1=1.

Thus, MAM~'is in G.

Step 2 ¢,, is one-to-one. Suppose that ¢, (A) = ¢, (B). Then MAM ! =
MBM ™! and, by left and right cancellation, A = B.
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Step 3 ¢,, is onto. Let B belong to G. We must find a matrix A in G
such that ¢, (A) = B. How shall we do this? If such a matrix A is to ex-
ist, it must have the property that MAM~! = B. But this tells us exactly
what A must be! For we can solve for A to obtain A = M~ 'BM and
verify that ¢, (A) = MAM~' = M(M~'BM)M~' = B.

Step 4 ¢,,is operation-preserving. Let A and B belong to G. Then,

$,(AB) = M(ABYM™" = MA(M~'M)BM ™"
= (MAM~"YMBM™") = ¢, (A)d,(B).

The mapping ¢,, is called conjugation by M. |

Cayley’s Theorem

Our first theorem is a classic result of Cayley. An important generaliza-
tion of it will be given in Chapter 25.

I Theorem 6.1 Cayley’s Theorem (1854)

Every group is isomorphic to a group of permutations.

PROOF To prove this, let G be any group. We must find a group G of
permutations that we believe is isomorphic to G. Since G is all we have
to work with, we will have to use it to construct G. For any g in G,
define a function T, from G to G by

Tg(x) = gx for all x in G.

(In words, T, is just multiplication by g on the left.) We leave it as an
exercise (Exercise 23) to prove that Tg is a permutation on the set of
elements of G. Now, let G = {Tg | g € G}. Then, G is a group under
the operation of function composition. To verify this, we first observe
that for any g and /2 in G we have TgTh(x) =T g(Th(x)) = Tg(hx) = g(hx) =
(gh)x = h(x) so that T T, = T . From this it follows that T, is the
identity and (T )yl = T (see Exermse 9). Since function composition
is associative, we have verlﬁed all the conditions for G to be a group.

The isomorphism ¢ between G and G is now ready-made. For every
g in G, define ¢(g) = T,. If I, =T, then Tg(Q = T,(e) or ge = he.
Thus, g = h and ¢ is one-to-one. By the way G was constructed, we
see that ¢ is onto. The only condition that remains to be checked is that
¢ is operation-preserving. To this end, let a and b belong to G. Then

P(ab) =T, =TT, = d(a)p(b). |
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The group G constructed above is called the left regular representa-
tion of G.

B EXAMPLE 8 For concreteness, let us calculate the left regular repre-
sentation U(12) for U(12) = {1, 5, 7, 11}. Writing the permutations of
U(12) in array form, we have (remember, 7 is just multiplication by x)

[15711} {15 711]
T1= P T5= 9

157 11 51 11 7
T_[l 5711} T_{15711]
Tol7 11 50 "l 75 1)

It is instructive to compare the Cayley table for U(12) and its left regu-
lar representation U(12).

vz | 1 5 7 Uy, or,oT, T,
1 1 5 7 11 T, |1, T, T, T,

5 5 T B 7 r |7 7 T T
7 7 11 1 5 5 5 1 11 7
T7 T7 Tl] Tl TS

1 | 7 1 e - T T

N
w

It should be abundantly clear from these tables that U(12) and U(12)
are only notationally different. |

Cayley’s Theorem is important for two contrasting reasons. One is
that it allows us to represent an abstract group in a concrete way. A sec-
ond is that it shows that the present-day set of axioms we have adopted
for a group is the correct abstraction of its much earlier predecessor—a
group of permutations. Indeed, Cayley’s Theorem tells us that abstract
groups are not different from permutation groups. Rather, it is the
viewpoint that is different. It is this difference of viewpoint that has
stimulated the tremendous progress in group theory and many other
branches of mathematics in the 20th century.

It is sometimes very difficult to prove or disprove, whichever the
case may be, that two particular groups are isomorphic. For example, it
requires somewhat sophisticated techniques to prove the surprising fact
that the group of real numbers under addition is isomorphic to the
group of complex numbers under addition. Likewise, it is not easy
to prove the fact that the group of nonzero complex numbers under
multiplication is isomorphic to the group of complex numbers with ab-
solute value of 1 under multiplication. In geometric terms, this says
that, as groups, the punctured plane and the unit circle are isomorphic.
(See reference 1.)
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Properties of Isomorphisms

Our next two theorems give a catalog of properties of isomorphisms
and isomorphic groups.

I Theorem 6.2 Properties of Isomorphisms Acting on Elements

Suppose that ¢ is an isomorphism from a group G onto a group G.
Then

1. ¢ carries the identity of G to the identity of G.

2. For every integer n and for every group element a in G, ¢(a") =
[¢(@)]".

3. For any elements a and b in G, a and b commute if and only if
¢(a) and ¢(b) commute.

4. G = {(a) if and only if G = {p(a)).

5. lal = I¢p(a)l for all ain G (isomorphisms preserve orders).

6. For a fixed integer k and a fixed group element b in G, the
equation x* = b has the same number of solutions in G as does
the equation x* = ¢(b) in G.

7. If G is finite, then G and G have exactly the same number of
elements of every order.

PROOF We will restrict ourselves to proving only properties 1, 2, and 4,
but observe that property 5 follows from properties 1 and 2, property 6
follows from property 2, and property 7 follows from property 5. For
convenience, let us denote the identity in G by e and the identity in G
by e. Then, since e = ee, we have

P(e) = dlee) = d(e)d(e).

Also, because ¢(e) € G, we have d(e) = ed(e), as well. Thus, by can-
cellation, e = ¢ (e). This proves property 1.

For positive integers, property 2 follows from the definition of an

isomorphism and mathematical induction. If n is negative, then —n is
positive, and we have from property 1 and the observation about the
positive integer case that e = ¢(e) = P(g"g") = P(g)P(g™") =
b (g")(p(g))". Thus, multiplying both sides on the right by (¢$(g))", we
have (¢(g))" = ¢(g"). Property 1 takes care of the case n = 0.
__ To prove property 4, let G = {a) and note that, by closure, (¢(a)) C
G. Because ¢ is onto, for any element b in G, there is an element a* in
G such that ¢(a*) = b. Thus, b = (¢(a))* and so b € (P(a)). This
proves that G = (¢(a)).

Now suppose that G = (¢(a)). Clearly, (a) C G. For any element
b in G, we have ¢(b) € (¢p(a)). So, for some integer k we have
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d(b) = (p(a))* = P(a*). Because ¢ is one-to-one, b = a*. This proves
that (@) = G. |

When the group operation is addition, property 2 of Theorem 6.2 is
d(na) = n¢(a); property 4 says that an isomorphism between two
cyclic groups takes a generator to a generator.

Property 6 is quite useful for showing that two groups are not iso-
morphic. Often b is picked to be the identity. For example, consider C*
and R*. Because the equation x* = 1 has four solutions in C* but only
two in R*, no matter how one attempts to define an isomorphism from
C* to R*, property 6 cannot hold.

I Theorem 6.3 Properties of Isomorphisms Acting on Groups

Suppose that ¢ is an isomorphism from a group G onto a group G.
Then

1. ¢~1is an isomorphism from G onto G.

2. G is Abelian if and only if G is Abelian.

3. Gis cyclic if and only if G is cyclic.

4. If K is a subgroup of G, then $(K) = {¢p(k) |k E K} isa
subgroup of G.

PROOF Properties 1 and 4 are left as exercises (Exercises 21 and 22).
Property 2 is a direct consequence of property 3 of Theorem 6.2.
Property 3 follows from property 4 of Theorem 6.2 and property 1 of
Theorem 6.3. |

Theorems 6.2 and 6.3 show that isomorphic groups have many prop-
erties in common. Actually, the definition is precisely formulated so
that isomorphic groups have all group-theoretic properties in common.
By this we mean that if two groups are isomorphic, then any property
that can be expressed in the language of group theory is true for one if
and only if it is true for the other. This is why algebraists speak of iso-
morphic groups as “equal” or “the same.” Admittedly, calling such
groups equivalent, rather than the same, might be more appropriate, but
we bow to long-standing tradition.

Automorphisms

Certain kinds of isomorphisms are referred to so often that they have
been given special names.
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Definition Automorphism
An isomorphism from a group G onto itself is called an automorphism
of G.

The isomorphism in Example 7 is an automorphism of SL(2, R).
Two more examples follow.

B EXAMPLE 9 The function ¢ from C to C given by ¢(a + bi) =
a — bi is an automorphism of the group of complex numbers under
addition. The restriction of ¢ to C* is also an automorphism of the
group of nonzero complex numbers under multiplication. (See
Exercise 25.) 1

B EXAMPLE 10 Let R? = {(a, b) | a, b € R}. Then ¢(a, b) = (b, a)
is an automorphism of the group R? under componentwise addition.
Geometrically, ¢ reflects each point in the plane across the line y = x.
More generally, any reflection across a line passing through the
origin or any rotation of the plane about the origin is an automor-
phism of R?. |

The isomorphism in Example 7 is a particular instance of an auto-
morphism that arises often enough to warrant a name and notation of
its own.

Definition Inner Automorphism Induced by a
Let G be a group, and let a € G. The function ¢, defined by ¢ (x) =
axa~! for all x in G is called the inner automorphism of G induced by a.

We leave it for the reader to show that ¢ is actually an automor-
phism of G. (Use Example 7 as a model.)

B EXAMPLE 11 The action of the inner automorphism of D, induced
by R, is given in the following table.

PRy,

x = RyxRy™
Ry = RyRRy™" =R,
Ry = RyRyRo ™" = Ry,
Rigy = RoRgRoy™' = Rigg
Ryp = RyRyoRog ™ = Ry
H — RyHR, '=V
V> R,VR,'=H
D - RyDR,'=D'

’ ’ -1 —
D" — RyD'Ry,~' =D |
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When G is a group, we use Aut(G) to denote the set of all auto-
morphisms of G and Inn(G) to denote the set of all inner automor-
phisms of G. The reason these sets are noteworthy is demonstrated by
the next theorem.

1 Theorem 6.4 Aut(G) and Inn(G) Are Groups’

The set of automorphisms of a group and the set of inner
automorphisms of a group are both groups under the operation
of function composition.

PROOF The proof of Theorem 6.4 is left as an exercise (Exercise 15).
|

The determination of Inn(G) is routine. If G = {e, a, b, c. . . .}, then
Inn(G) = {¢,, . ¢,, ¢, .. .}. This latter list may have duplications,
however, since ¢, may be equal to ¢, even though a # b (see Exercise
33). Thus, the only work involved in determining Inn(G) is deciding
which distinct elements give the distinct automorphisms. On the other
hand, the determination of Aut(G) is, in general, quite involved.

I EXAMPLE 12 Inn(D4)

To determine Inn(D,), we first observe that the complete list of inner
automorphisms is ¢, . ¢, b, P . by, by, G, and ¢ .. Our job is
to determine the repetitions in this list. Since Ry, € Z(D,), we have
b ) = RigoxR (7" = x, so that ¢, = ¢, . Also, ¢ (x) =
Ry7gXRy50 ™" = RygR g0 XR 5" 'Ryy ™" = RygxRy, ™! = ¢y (x). Similarly,
since H = R,V and D" = R (D, we have ¢, = ¢, and ¢, = ¢,,.
This proves that the previous list can be pared down to ¢ R b Roy? by
and ¢,. We leave it to the reader to show that these are distinct

(Exercise 13). |

B EXAMPLE 13 Aut(Z,)

To compute Aut(Z, ), we try to discover enough information about an
element a of Aut(Z, ) to determine how @ must be defined. Because Z
is so simple, this is not difficult to do. To begin with, observe that once
we know a(1), we know a(k) for any k, because

"The group Aut(G) was first studied by O. Holder in 1893 and, independently, by
E. H. Moore in 1894.
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ak)=a(l+1+---+1)
k terms
=a(l) +a(l) + -+ a(l) = ka(l).

k terms

So, we need only determine the choices for «(1) that make « an
automorphism of Z, . Since property 5 of Theorem 6.2 tells us that
la(1)l = 10, there are four candidates for a(1):

a(l) =1; a(l) = 3; a(l) =17, a(l) =9.

To distinguish among the four possibilities, we refine our notation by
denoting the mapping that sends 1 to 1 by &, 1 to 3 by ar;, 1 to 7 by a,
and 1 to 9 by a,. So the only possibilities for Aut(Z, ) are «,, a5, a,, and
a,. But are all these automorphisms? Clearly, «, is the identity. Let us
check a;. Since x mod 10 = y mod 10 implies 3x mod 10 = 3y mod 10,
a3 is well defined. Moreover, because a;(1) = 3 is a generator of Z,, it
follows that a, is onto (and, by Exercise 10 in Chapter 5, it is also one-
to-one). Finally, since a;(a + b) = 3(a + b) = 3a + 3b = ay(a) + a,(b),
we see that a is operation-preserving as well. Thus, a; € Aut(Z,). The
same argument shows that a; and a, are also automorphisms.

This gives us the elements of Aut(Z, ) but not the structure. For in-
stance, what is a,a,? Well, (a;a)(1) = a3(3) =3 -3 =9 = ay(1), so
a0, = ay. Similar calculations show that o = a, and a,* = a, s0
that la,| = 4. Thus, Aut(Z,) is cyclic. Actually, the following Cayley
tables reveal that Aut(Z,) is isomorphic to U(10).

7

U(10) ‘ 1 3 9 Aut(Z,) ‘ a, a, a, a,
1 1 3 7 9 a, a a, a, a,
3 3 9 1 7 a, a, a, a, a
7 7 1 9 3 a, a, a, a, a
9 9 7 3 1 a, a a, a, a,

[ |

With Example 13 as a guide, we are now ready to tackle the group
Aut(Z ). The result is particularly nice, since it relates the two kinds of
groups we have most frequently encountered thus far—the cyclic
groups Z and the U-groups U(n).

I Theorem 6.5 Aut(Z ) = U(n)

For every positive integer n, Aut(Z) is isomorphic to U(n).
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PROOF As in Example 13, any automorphism « is determined by the
value of «a(1), and a(1) € U(n). Now consider the correspondence
from Aut(Z ) to U(n) given by T: @ — a(1). The fact that a(k) = ka(1)
(see Example 13) implies that 7 is a one-to-one mapping. For if @ and
B belong to Aut(Z ) and a(1) = B(1), then a(k) = ka(1) = kB(1) =
B(k) for all kin Z , and therefore a = B.

To prove that T is onto, let » € U(n) and consider the mapping a
from Z to Z defined by a(s) = sr (mod n) for all s in Z . We leave it as
an exercise to verify that a is an automorphism of Z (see Exercise 17).
Then, since T(a) = a(1) = r, T is onto U(n).

Finally, we establish the fact that 7 is operation-preserving. Let «,
B € Aut(Z). We then have

T(aP) = (@B)() = aB(1) =a(l + 1+ ---+1)

B(1) terms
=a(l) +all) + -+ al) = a(1)B(1)

B(1) terms
= T()T(B).

This completes the proof. |

Being a mathematician is a bit like being a manic depressive: you spend
your life alternating between giddy elation and black despair.
STEVEN G. KRANTZ, A Primer of Mathematical Writing

1. Find an isomorphism from the group of integers under addition to
the group of even integers under addition.

2. Find Aut(Z).

3. Let R* be the group of positive real numbers under multiplication.
Show that the mapping ¢(x) = V/x is an automorphism of R*.

4. Show that U(8) is not isomorphic to U(10).

5. Show that U(8) is isomorphic to U(12).

6. Prove that the notion of group isomorphism is transitive. That is, if
G, H, and K are groups and G = H and H = K, then G = K.

7. Prove that S, is not isomorphic to D,,.

8. Show that the mapping a —log,ya is an isomorphism from R*
under multiplication to R under addition.

9. In the notation of Theorem 6.1, prove that T, is the identity and

-1 —
that (Tg) =T,.
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10.

11.
12.
13.

14.
15.
16.

17.

18.

19.

20.

21.
22,
23.

24.
25.

26.

Let G be a group. Prove that the mapping a(g) = g~ ! forall gin G
is an automorphism if and only if G is Abelian.

For inner automorphisms (bg, ¢,, and qﬁgh, prove that qﬁgqﬁh = (bgh.
Find two groups G and H such that G # H, but Aut(G) = Aut(H).
Prove the assertion in Example 12 that the inner automorphisms
d)RO, qugo, ¢, and ¢, of D, are distinct.

Find Aut(Zy).

If G is a group, prove that Aut(G) and Inn(G) are groups.

Prove that the mapping from U(16) to itself given by x — x* is an
automorphism. What about x — x> and x — x’? Generalize.

Let r € U(n). Prove that the mapping a: Z — Z defined by a(s) =
srmod n for all s in Z is an automorphism of Z . (This exercise is
referred to in this chapter.)

1 a
The group { L) J

What if Z is replaced by R?

If ¢ and y are isomorphisms from the cyclic group (a) to some
group and ¢(a) = y(a), prove that p = y.

Suppose that ¢: Z5, — Zs, is an automorphism with ¢(11) = 13.
Determine a formula for ¢ (x).

Prove Property 1 of Theorem 6.3.
Prove Property 4 of Theorem 6.3.

Referring to Theorem 6.1, prove that Tg is indeed a permutation on
the set G.

Prove or disprove that U(20) and U(24) are isomorphic.

ac Z} is isomorphic to what familiar group?

Show that the mapping ¢(a + bi) = a — bi is an automorphism of
the group of complex numbers under addition. Show that ¢ pre-
serves complex multiplication as well—that is, ¢(xy) = d(x)d(y)
for all x and y in C. (This exercise is referred to in Chapter 15.)

Let
G = {a + bV/2 | a, b rational }

{7
H =

b a
Show that G and H are isomorphic under addition. Prove that G
and H are closed under multiplication. Does your isomorphism

preserve multiplication as well as addition? (G and H are examples
of rings—a topic we will take up in Part 3.)

and

a, b rational }



27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
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Prove that Z under addition is not isomorphic to Q under addition.

Prove that the quaternion group (see Exercise 4, Supplementary Exer-
cises for Chapters 1-4) is not isomorphic to the dihedral group D,.

Let C be the complex numbers and
{5
M=
b a
Prove that C and M are isomorphic under addition and that C* and
M*, the nonzero elements of M, are isomorphic under multiplication.
Let R" = {(a, a,, ..., a,) | a, € R}. Show that the mapping ¢:
(a,,a,, ...,a)—>(—a,, —a,, ..., —a,)is an automorphism of

the group R” under componentwise addition. This automorphism
is called inversion. Describe the action of ¢ geometrically.

Consider the following statement: The order of a subgroup divides
the order of the group. Suppose you could prove this for finite
permutation groups. Would the statement then be true for all finite
groups? Explain.

Suppose that G is a finite Abelian group and G has no element of
order 2. Show that the mapping g — g? is an automorphism of G.
Show, by example, that if G is infinite the mapping need not be an
automorphism.

Let G be a group and let g € G. If z € Z(G), show that the inner
automorphism induced by g is the same as the inner automorphism
induced by zg (that is, that the mappings qbg and qbzg are equal).

a,bER}.

If a and g are elements of a group, prove that C(a) is isomorphic to
C(gag ™).

Suppose that g and % induce the same inner automorphism of a
group G. Prove that h~'g € Z(G).

Combine the results of Exercises 33 and 35 into a single “if and
only if” theorem.

Let a belong to a group G and let lal be finite. Let ¢, be the auto-
morphism of G given by ¢ (x) = axa™'. Show that I¢ | divides lal.
Exhibit an element a from a group for which 1 <'I¢ | <lal.

Let G = {0, =2, *4, £6, ...} and H = {0, £3, £6, =9, .. .}.
Show that G and H are isomorphic groups under addition. Does
your isomorphism preserve multiplication? Generalize to the case
when G = (m) and H = (n), where m and n are integers.
Suppose that ¢ is an automorphism of D, such that ¢p(Roy) = R,
and ¢ (V) = V. Determine ¢ (D) and ¢(H).

In Aut(Z,), let «; denote the automorphism that sends 1 to i where
ged(i, 9) = 1. Write a; and ¢ as permutations of {0, 1,...,8} in
disjoint cycle form. [For example, a, = (0)(124875)(36).]
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41.

42,

43.

44.

45.

46.

47.

Write the permutation corresponding to Ry, in the left regular rep-
resentation of D, in cycle form.

Show that every automorphism ¢ of the rational numbers Q under
addition to itself has the form ¢(x) = x¢(1).

Prove that Q*, the group of positive rational numbers under multi-
plication, is isomorphic to a proper subgroup.

Prove that Q, the group of rational numbers under addition, is not
isomorphic to a proper subgroup of itself.

Prove that every automorphism of R*, the group of nonzero real
numbers under multiplication, maps positive numbers to positive
numbers and negative numbers to negative numbers.

Let G be a finite group. Show that in the disjoint cycle form of the
right regular representation 7,(x) = xg of G each cycle has
length|g|.

Give a group-theoretic proof that Q under addition is not isomor-
phic to R* under multiplication.

Reference

1.

J. R. Clay, “The Punctured Plane Is Isomorphic to the Unit
Circle,” Journal of Number Theory 1 (1964): 500-501.

Computer Exercise

There is only one satisfying way to boot a computer.

J. H. GOLDFUSS

Software for the computer exercise in this chapter is available at the
website:

1.

http://www.d.umn.edu/~jgallian

This software computes the order of Aut(D ). Run the program for
n =13,5,7, and 11. Make a conjecture about the order when 7 is
prime. Run the program for n = 4, 8, 16, and 32. Make a conjecture
about the order when # is a power of 2. Run the program when n =
6, 10, 14, and 22. Make a conjecture about the order when # is twice
a prime. Run the program for n = 9, 15, 21, and 33. Make a conjec-
ture about the order when n is 3 times a prime. Try to deduce a gen-
eral formula for the order of Aut(D,).
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Arthur Cayley

Cayley is forging the weapons for future
generations of physicists.
PETER TAIT

ARTHUR CAYLEY was born on August 16,
1821, in England. His genius showed itself at
an early age. He published his first research
paper while an undergraduate of 20, and in
the next year he published eight papers.
While still in his early twenties, he originated
the concept of n-dimensional geometry.

After graduating from Trinity College,
Cambridge, Cayley stayed on for three years
as a tutor. At the age of 25, he began a 14-
year career as a lawyer. During this period,
he published approximately 200 mathemati-
cal papers, many of which are now classics.

In 1863, Cayley accepted the newly es-
tablished Sadlerian professorship of mathe-
matics at Cambridge University. He spent
the rest of his life in that position. One of his
notable accomplishments was his role in the
successful effort to have women admitted to
Cambridge.

Among Cayley’s many innovations in
mathematics were the notions of an abstract
group and a group algebra, and the matrix
concept. He made major contributions to
geometry and linear algebra. Cayley and his
lifelong friend and collaborator J. J. Sylvester
were the founders of the theory of invariants,
which was later to play an important role in
the theory of relativity.

Cayley’s collected works comprise 13
volumes, each about 600 pages in length.
He died on January 26, 1895.

To find more information about Cayley,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Cosets and Lagrange's

Theorem

It might be difficult, at this point, for students to see the extreme
importance of this result [Lagrange’s Theorem]. As we penetrate the subject
more deeply they will become more and more aware of its basic character.

I. N. HERSTEIN, Topics in Algebra

Properties of Cosets

In this chapter, we will prove the single most important theorem in finite
group theory—Lagrange’s Theorem. But first, we introduce a new and
powerful tool for analyzing a group—the notion of a coset. This notion
was invented by Galois in 1830, although the term was coined by
G. A. Miller in 1910.

Definition Cosetof HinG

Let G be a group and let H be a subset of G. For any a € G, the set

{ah | h € H} is denoted by aH. Analogously, Ha = {ha | h € H} and
aHa ' = {aha ' | h € H}. When H is a subgroup of G, the set aH is called
the left coset of H in G containing a, whereas Ha is called the right coset
of H in G containing a. In this case, the element a is called the coset
representative of aH (or Ha). We use laH| to denote the number of ele-
ments in the set aH, and |Hal to denote the number of elements in Ha.

B EXAMPLE1 Let G = Syand H = {(1), (13)}. Then the left cosets of
Hin G are

(DH = H,
(12)7 = {(12), (12)(13)} = {(12), (132)} = (132)H,
(I3)H = {(13), (D} = H,
(23)H = {(23), (23)(13)} = {(23), (123)} = (123)H. i

138
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B EXAMPLE 2 Let# = {R, R y,} in D,, the dihedral group of order 8.

Then,
R =K,
Ry = {Ryp, Ryzy} = Ry,
R H = {R g0 Ry} =,
VI ={V,H} = HX,
DX ={D,D'} = D'¥. |

B EXAMPLE3 Let H = {0, 3, 6} in Z; under addition. In the case that
the group operation is addition, we use the notation a + H instead of
aH. Then the cosets of H in Z, are

0+H=1{0,3,6=3+H=6+H,
1+H={1,4,7)=4+H=7+H,
2+H=1{258=5+H=8+H. N

The three preceding examples illustrate a few facts about cosets that
are worthy of our attention. First, cosets are usually not subgroups.
Second, aH may be the same as bH, even though a is not the same as b.
Third, since in Example 1 (12)H = {(12), (132)} whereas H(12) =
{(12), (123)}, aH need not be the same as Ha.

These examples and observations raise many questions. When does
aH = bH? Do aH and bH have any elements in common? When does
aH = Ha? Which cosets are subgroups? Why are cosets important? The
next lemma and theorem answer these questions. (Analogous results
hold for right cosets.)

I Lemma Properties of Cosets

Let H be a subgroup of G, and let a and b belong to G. Then,

1. a € aH,

2. aH = Hifand only ifa € H,

3. aH = bH if and only ifa € bH

4. aH = bH oraH N bH = J,

5. aH = bH ifand only ifa™'b € H,

6. laH| = |bH|,

7. aH = Ha if and only if H = aHa ',

8. aH is a subgroup of G if and only if a € H.

PROOF

1. a = ae € aH.
2. To verify property 2, we first suppose that aH = H. Then a =
ae € aH = H. Next, we assume that ¢« € H and show that aH C H
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and H C aH. The first inclusion follows directly from the closure of
H.To show that H C aH, let h € H. Then, sincea € Hand h € H, we
know that a='h € H. Thus, h = eh = (aa"Yh = a(a™'h) € aH.

3. If aH = bH, then a = ae € aH = bH. Conversely, if a € bH we have
a = bh where h € H, and therefore aH = (bh)H = b(hH) = bH.

4. Property 4 follows directly from property 3, for if there is an ele-
ment ¢ in aH N bH, then cH = aH and cH = bH.

5. Observe that aH = bH if and only if H = a~'bH. The result now
follows from property 2.

6. To prove that laH| = |bH|, it suffices to define a one-to-one map-
ping from aH onto bH. Obviously, the correspondence ah — bh
maps aH onto bH. That it is one-to-one follows directly from the
cancellation property.

7. Note that aH = Ha if and only if (aH)a™' = (Ha)a ' = H(aa™") =
H—that is, if and only if aHa ' = H.

8. If aH is a subgroup, then it contains the identity e. Thus, aH N
eH # 0; and, by property 4, we have aH = eH = H. Thus, from
property 2, we have a € H. Conversely, if a € H, then, again by
property 2, aH = H. |

Although most mathematical theorems are written in symbolic form,
one should also know what they say in words. In the preceding lemma,
property 1 says simply that the left coset of H containing a does contain a.
Property 2 says that the H “absorbs” an element if and only if the ele-
ment belongs to H. Property 3 shows that a left coset of H is uniquely
determined by any one of its elements. In particular, any element of a
left coset can be used to represent the coset. Property 4 says—and this is
very important—that two left cosets of H are either identical or disjoint.
Property 5 shows how we may transfer a question about equality of left
cosets of H to a question about H itself and vice versa. Property 6 says
that all left cosets of H have the same size. Property 7 is analogous to
property 5 in that it shows how a question about the equality of the left
and right cosets of H containing a is equivalent to a question about the
equality of two subgroups of G. The last property of the lemma says that
H itself is the only coset of H that is a subgroup of G.

Note that properties 1, 4, and 6 of the lemma guarantee that the left
cosets of a subgroup H of G partition G into blocks of equal size.
Indeed, we may view the cosets of H as a partitioning of G into equiva-
lence classes under the equivalence relation defined by a ~ b if
aH = bH (see Theorem 0.6).

In practice, the subgroup H is often chosen so that the cosets parti-
tion the group in some highly desirable fashion. For example, if G is
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3-space R? and H is a plane through the origin, then the coset (a, b, ¢) +
H (addition is done componentwise) is the plane passing through the
point (a, b, ¢) and parallel to H. Thus, the cosets of H constitute a par-
tition of 3-space into planes parallel to H. If G = GL(2, R) and
H = SL(2, R), then for any matrix A in G, the coset AH is the set of all
2 X 2 matrices with the same determinant as A. Thus,

20
{0 J H is the set of all 2 X 2 matrices of determinant 2

and
1 2 ) . )
) 1 H is the set of all 2 X 2 matrices of determinant —3.

Property 4 of the lemma is useful for actually finding the distinct
cosets of a subgroup. We illustrate this in the next example.

B EXAMPLE 4 To find the cosets of H = {1, 15} in G = U32) =
{1,3,5,7,9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31} we begin with
H = {1, 15}. We can find a second coset by choosing any element not
in H, say 3, as a coset representative. This gives the coset 3H = {3, 13}.
We find our next coset by choosing a representative not already appear-
ing in the two previously chosen cosets, say 5. This gives us the coset SH =
{5, 11}. We continue to form cosets by picking elements from U(32)
that have not yet appeared in the previous cosets as representatives of
the cosets until we have accounted for every element of U(32). We then
have the complete list of all distinct cosets of H. |

Lagrange’s Theorem and Consequences

We are now ready to prove a theorem that has been around for more
than 200 years—Ilonger than group theory itself! (This theorem was not
originally stated in group theoretic terms.) At this stage, it should come
as no surprise.

B Theorem 7.1 Lagrange’s Theorem': |H| Divides |G]|

If G is a finite group and H is a subgroup of G, then |H| divides |G|.
Moreover, the number of distinct left (right) cosets of Hin G is |G| /|HI.

fLagrange stated his version of this theorem in 1770, but the first complete proof was
given by Pietro Abbati some 30 years later.
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PROOF LetaH, a,H, ..., a H denote the distinct left cosets of H in
G. Then, for each a in G, we have aH = a,H for some i. Also, by prop-
erty 1 of the lemma, a € aH. Thus, each member of G belongs to one
of the cosets a,H. In symbols,

G=aHU"---UaH.
Now, property 4 of the lemma shows that this union is disjoint, so that
|Gl = la,H! + la,H| + - -+ + la _HI.
Finally, since la,H| = |H| for each i, we have |Gl = rlHI. |

We pause to emphasize that Lagrange’s Theorem is a subgroup can-
didate criterion; that is, it provides a list of candidates for the orders of
the subgroups of a group. Thus, a group of order 12 may have sub-
groups of order 12, 6, 4, 3, 2, 1, but no others. Warning! The converse
of Lagrange’s Theorem is false. For example, a group of order 12 need
not have a subgroup of order 6. We prove this in Example 5.

A special name and notation have been adopted for the number of
left (or right) cosets of a subgroup in a group. The index of a subgroup
H in G is the number of distinct left cosets of H in G. This number
is denoted by |G:HI. As an immediate consequence of the proof of
Lagrange’s Theorem, we have the following useful formula for the
number of distinct left (or right) cosets of H in G.

1 Corollary 1 |G:H| = |G|/|H]|

If G is a finite group and H is a subgroup of G, then |G:H| = |G|/|H|.

1 Corollary 2 |a| Divides |G|

In a finite group, the order of each element of the group divides the
order of the group.

PROOF Recall that the order of an element is the order of the subgroup
generated by that element. |

I Corollary 3 Groups of Prime Order Are Cyclic

A group of prime order is cyclic.
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PROOF Suppose that G has prime order. Let a € G and a # e. Then,
l{a)! divides |G| and I{a)| # 1. Thus, I{a)l = |G| and the corollary
follows. |

1 Corollary4 a°l=e

Let G be a finite group, and let a € G. Then, a'°' = e.

PROOF By Corollary 2, IG| = lalk for some positive integer k. Thus,
a\GI — a\a\k — €k = e. |

I Corollary 5 Fermat’s Little Theorem

For every integer a and every prime p, a’? mod p = a mod p.

PROOF By the division algorithm, a = pm + r, where 0 = r < p.
Thus, a mod p = r, and it suffices to prove that ¥ mod p = r. If r = 0,
the result is trivial, so we may assume that r € U(p). [Recall that
Ulp) ={1,2,...,p — 1} under multiplication modulo p.] Then, by the
preceding corollary, 7»~! mod p = 1 and, therefore, r” mod p = r. |

Fermat’s Little Theorem has been used in conjunction with comput-
ers to test for primality of certain numbers. One case concerned the
number p = 2?7 — 1. If p is prime, then we know from Fermat’s Little
Theorem that 10” mod p = 10 mod p and, therefore, 107" mod p =
100 mod p. Using multiple precision and a simple loop, a computer
was able to calculate 107! mod p = 102" mod p in a few seconds.
The result was not 100, and so p is not prime.

B EXAMPLE 5 The Converse of Lagrange’s Theorem Is Falsef
The group A, of order 12 has no subgroups of order 6. To verify this,
recall that A, has eight elements of order 3 (a through «,, in the nota-
tion of Table 5.1) and suppose that H is a subgroup of order 6. Let a be
any element of order 3 in A,. Since H has index 2 in A, at most two of
the cosets H, aH, and a*H are distinct. But equality of any pair of these
three implies that aH = H, so that a € H. (For example, if H = a’H,
multiply on the left by a.) Thus, a subgroup of A, of order 6 would have
to contain all eight elements of order 3, which is absurd. |

"The first counterexample to the converse of Lagrange’s Theorem was given by Paolo
Ruffini in 1799.
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For any prime p > 2, we know that Z2p and Dp are nonisomorphic
groups of order 2p. This naturally raises the question of whether there
could be other possible groups of these orders. Remarkably, with just
the simple machinery available to us at this point, we can answer this
question.

I Theorem 7.2 Classification of Groups of Order 2p

Let G be a group of order 2p, where p is a prime greater than 2. Then
G is isomorphic to Z, » OT D -

PROOF We assume that G does not have an element of order 2p and
show that G = Dp. We begin by first showing that G must have an
element of order p. By our assumption and Lagrange’s Theorem, any
nonidentity element of G must have order 2 or p. Thus, to verify our as-
sertion, we may assume that every nonidentity element of G has order 2.
In this case, we have for all a and b in the group ab = (ab) ' = b~ la™ ' =
ba, so that G is Abelian. Then, for any nonidentity elements a, b € G
with a # b, the set {e, a, b, ab} is closed and therefore is a subgroup of
G of order 4. Since this contradicts Lagrange’s Theorem, we have
proved that G must have an element of order p; call it a.

Now let b be any element not in {a). Then b{a) # (a) and G =
(a) U b{a). We next claim that |b| = 2. To see this, observe that since
(a) and b{a) are the only two distinct cosets of (a) in G, we must have
bXa) = {(a) or b¥a) = b{a). We may rule out bXa) = b{a), for then b{a) =
{(@). On the other hand, b*a) = {a) implies that b*> € {a) and, therefore,
Ib?l = 1 or |b*l = p. But 1b?| = p and bl # 2p imply that Ib| = p. Then
(b) = (b*) and therefore b € (a), which is a contradiction. Thus, any
element of G not in {(a) has order 2.

Next consider ab. Since ab & (a), our argument above shows that
labl = 2. Then ab = (ab)™' = b~ la~! = ba~'. Moreover, this relation
completely determines the multiplication table for G. [For example,
a*(ba*) = a*(ab)a* = a*(ba™Ya* = a(ab)a® = a(ba™")a®> = (ab)a* =
(ba~")a* = ba.] Since the multiplication table for all noncyclic groups
of order 2p is uniquely determined by the relation ab = ba™!, all
noncyclic groups of order 2p must be isomorphic to each other. But of
course, D , the dihedral group of order 2p, is one such group. |

As an immediate corollary, we have that S, the symmetric group of
degree 3, is isomorphic to D;.
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An Application of Cosets
to Permutation Groups

Lagrange’s Theorem and its corollaries dramatically demonstrate the
fruitfulness of the coset concept. We next consider an application of
cosets to permutation groups.

Definition Stabilizer of a Point
Let G be a group of permutations of a set S. For each i in S, let stab (i) =
{¢ € G| (i) = i}. We call stab (i) the stabilizer of i in G.

The student should verify that stab (i) is a subgroup of G. (See
Exercise 31 in Chapter 5.)

Definition Orbit of a Point

Let G be a group of permutations of a set S. For each s in S, let orb(s) =
{¢(s) | ¢ € G}. The set orb(s) is a subset of S called the orbit of s
under G. We use lorb(s)! to denote the number of elements in orb(s).

Example 6 should clarify these two definitions.
I EXAMPLE 6 Let

G = {(1), (132)(465)(78), (132)(465), (123)(456),
(123)(456)(78), (78)}.

Then,

orby(1) = {1,3,2},  staby(1) = {(1), (78)},
orby(2) = {2, 1,3}, staby(2) = {(1), (78)},
orb (4) = {4,6,5),  staby(4) = {(1), (78)},
orb(7) = {7, 8}, stab(7) = {(1), (132)(465), (123)(456)}. W

B EXAMPLE 7 We may view D, as a group of permutations of a
square region. Figure 7.1(a) illustrates the orbit of the point p under D,,
and Figure 7.1(b) illustrates the orbit of the point g under D,. Observe

that stab,, (p) = {R,, D}, whereas stab,, () = {R,}. |
4 4
P o (] ° .
[ ) L]
L 2] [ ]
(@) (b)
Figure 7.1

The preceding two examples also illustrate the following theorem.
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B Theorem 7.3 Orbit-Stabilizer Theorem

Let G be a finite group of permutations of a set S. Then, for
any i from S, |G| = lorb(i)! Istab(i)!.

PROOF By Lagrange’s Theorem, IGl/Istab (i)l is the number of dis-
tinct left cosets of stab(i) in G. Thus, it suffices to establish a one-
to-one correspondence between the left cosets of stab (i) and the
elements in the orbit of i. To do this, we define a correspondence T
by mapping the coset ¢stab (i) to (i) under T. To show that T'is a well-
defined function, we must show that astab (i) = Bstab(i) implies a(i) =
B(i). But astab (i) = Bstab,(i) implies a’lB € stab(i), so that
(a~'B) (i) = i and, therefore, B(i) = a(i). Reversing the argument from
the last step to the first step shows that 7' is also one-to-one. We conclude
the proof by showing that 7'is onto orb(i). Let j € orb(i). Then a(i) = j
for some a € G and clearly T(astab(i)) = a(i) = j, so that T'is onto. B

We leave as an exercise the proof of the important fact that the orbits
of the elements of a set S under a group partition S (Exercise 33).

The Rotation Group of a Cube
and a Soccer Ball

It cannot be overemphasized that Theorem 7.3 and Lagrange’s Theorem
(Theorem 7.1) are counting theorems.” They enable us to determine the
numbers of elements in various sets. To see how Theorem 7.3 works, we
will determine the order of the rotation group of a cube and a soccer ball.
That is, we wish to find the number of essentially different ways in
which we can take a cube or a soccer ball in a certain location in space,
physically rotate it, and then still occupy its original location.

B EXAMPLE 8 Let G be the rotation group of a cube. Label the six
faces of the cube 1 through 6. Since any rotation of the cube must carry
each face of the cube to exactly one other face of the cube and different
rotations induce different permutations of the faces, G can be viewed as
a group of permutations on the set {1, 2, 3, 4, 5, 6}. Clearly, there is
some rotation about a central horizontal or vertical axis that carries face
number 1 to any other face, so that lorb (1)l = 6. Next, we consider
stab(1). Here, we are asking for all rotations of a cube that leave face
number 1 where it is. Surely, there are only four such motions—
rotations of 0°, 90°, 180°, and 270°—about the line perpendicular to

TPeople who don’t count won’t count (Anatole France).



7 | Cosetsand Lagrange’s Theorem 147

the face and passing through its center (see Figure 7.2). Thus, by
Theorem 7.3, |G| = lorb (1)l Istab (1)l = 6 - 4 = 24. |

A
1
I
I

<

Figure 7.2 Axis of rotation of a cube.

Now that we know how many rotations a cube has, it is simple to de-
termine the actual structure of the rotation group of a cube. Recall that
S, s the symmetric group of degree 4.

I Theorem 7.4 The Rotation Group of a Cube

The group of rotations of a cube is isomorphic to S,,.

PROOF Since the group of rotations of a cube has the same order as
S,» we need only prove that the group of rotations is isomorphic to a
subgroup of §,. To this end, observe that a cube has four diagonals and
that the rotation group induces a group of permutations on the four di-
agonals. But we must be careful not to assume that different rotations
correspond to different permutations. To see that this is so, all we need
do is show that all 24 permutations of the diagonals arise from rota-
tions. Labeling the consecutive diagonals 1, 2, 3, and 4, it is obvious
that there is a 90° rotation that yields the permutation o = (1234); an-
other 90° rotation about an axis perpendicular to our first axis yields
the permutation 8 = (1423). See Figure 7.3. So, the group of permuta-
tions induced by the rotations contains the eight-element subgroup
{e, a, &2, &, B2, BPa, B*a?, B*a’} (see Exercise 37) and af3, which has
order 3. Clearly, then, the rotations yield all 24 permutations since the
order of the rotation group must be divisible by both 8 and 3. |

B EXAMPLE 9 A traditional soccer ball has 20 faces that are regular
hexagons and 12 faces that are regular pentagons. (The technical term
for this solid is truncated icosahedron.) To determine the number of ro-
tational symmetries of a soccer ball using Theorem 7.3, we may choose
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our set S to be the 20 hexagons or the 12 pentagons. Let us say that S is
the set of 12 pentagons. Since any pentagon can be carried to any other
pentagon by some rotation, the orbit of any pentagon is S. Also, there
are five rotations that fix (stabilize) any particular pentagon. Thus, by
the Orbit-Stabilizer Theorem, there are 12 - 5 = 60 rotational symme-
tries. (In case you are interested, the rotation group of a soccer ball is
isomorphic to A,.) |

In 1985, chemists Robert Curl, Richard Smalley, and Harold Kroto
caused tremendous excitement in the scientific community when they
created a new form of carbon by using a laser beam to vaporize graphite.
The structure of the new molecule is composed of 60 carbon atoms
arranged in the shape of a soccer ball! Because the shape of the new mol-
ecule reminded them of the dome structures built by the architect
R. Buckminster Fuller, Curl, Smalley, and Kroto named their discovery
“buckyballs.” Buckyballs are the roundest, most symmetrical large mol-
ecules known. Group theory has been particularly useful in illuminating
the properties of buckyballs, since the absorption spectrum of a molecule
depends on its symmetries and chemists classify various molecular states
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according to their symmetry properties. The buckyball discovery spurred
a revolution in carbon chemistry. In 1996, Curl, Smalley, and Kroto
received the Nobel Prize in chemistry for their discovery.

| don’t know, Marge. Trying is the first step towards failure.

oo

10.

11.

12.

13.

14.

HOMER SIMPSON

. Let H = {(1), (12)(34), (13)(24), (14)(23)}. Find the left cosets of

Hin A, (see Table 5.1 on page 107).

. Let H be as in Exercise 1. How many left cosets of H in S, are

there? (Determine this without listing them.)
Let H = {0, =3, =6, =9, .. .}. Find all the left cosets of H in Z.

. Rewrite the condition a~'b € H given in property 5 of the lemma

on page 139 in additive notation. Assume that the group is Abelian.

. Let H be as in Exercise 3. Use Exercise 4 to decide whether or not

the following cosets of H are the same.
a. 11+ Hand 17+ H
b. -1+ Hand5+ H
c. 7+ Hand23 + H

. Let n be a positive integer. Let H = {0, £n, =2n, £3n, .. .}. Find

all left cosets of H in Z. How many are there?
Find all of the left cosets of {1, 11} in U(30).

. Suppose that a has order 15. Find all of the left cosets of {(@°) in {(a).

Let lal = 30. How many left cosets of {(a*) in {a) are there? List them.

Let a and b be nonidentity elements of different orders in a group
G of order 155. Prove that the only subgroup of G that contains
a and b is G itself.

Let H be a subgroup of R”, the group of nonzero real numbers un-
der multiplication. If R* C H C R*, prove that H = R* or H = R".
Let C* be the group of nonzero complex numbers under multiplica-
tion and let H = {a + bi € C*| a*>+ b> = 1}. Give a geometric de-
scription of the coset (3 + 4i)H. Give a geometric description of the
coset (¢ + di)H.

Let G be a group of order 60. What are the possible orders for the
subgroups of G?

Suppose that K is a proper subgroup of H and H is a proper sub-
group of G. If IKI = 42 and |G| = 420, what are the possible
orders of H?
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15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.
29.

30.

31.

32,

Let G be a group with |Gl = pg, where p and g are prime. Prove
that every proper subgroup of G is cyclic.

Recall that, for any integer n greater than 1, ¢p(n) denotes the num-
ber of positive integers less than n and relatively prime to n. Prove
that if @ is any integer relatively prime to n, then a®® mod n = 1.
Compute 5'° mod 7 and 7' mod 11.

Use Corollary 2 of Lagrange’s Theorem (Theorem 7.1) to prove
that the order of U(n) is even when n > 2.

Suppose G is a finite group of order n and m is relatively prime to 7.
If g € Gand g" = e, prove that g = e.

Suppose H and K are subgroups of a group G. If |1Hl = 12 and
IKI = 35, find IH N KI. Generalize.

Suppose that H is a subgroup of S, and that H contains (12) and
(234.) Prove that H = §,.

Suppose that H and K are subgroups of G and there are elements
a and b in G such that aH < bK. Prove that H € K.

Suppose that G is an Abelian group with an odd number of elements.
Show that the product of all of the elements of G is the identity.
Suppose that G is a group with more than one element and G has
no proper, nontrivial subgroups. Prove that |Gl is prime. (Do not
assume at the outset that G 1is finite.)

Let IGI = 15. If G has only one subgroup of order 3 and only one
of order 5, prove that G is cyclic. Generalize to |Gl = pg, where p
and g are prime.

Let G be a group of order 25. Prove that G is cyclic or g° = e for
all gin G.

Let |Gl = 33. What are the possible orders for the elements of G?
Show that G must have an element of order 3.

Let IGI = 8. Show that G must have an element of order 2.

Can a group of order 55 have exactly 20 elements of order 11?
Give a reason for your answer.

Determine all finite subgroups of C*, the group of nonzero com-
plex numbers under multiplication.

Let H and K be subgroups of a finite group G with H C K C G.
Prove that IG:HI| = |G:K!| |K:H|.

Show that Q, the group of rational numbers under addition, has no
proper subgroup of finite index.



33.

34.

35.

36.

37.

38.
39.

40.

41.

42,

43.

44.

45.

46.
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Let G be a group of permutations of a set S. Prove that the orbits of
the members of S constitute a partition of S. (This exercise is re-
ferred to in this chapter and in Chapter 29.)

Prove that every subgroup of D of odd order is cyclic.

Let G = {(1), (12)(34), (1234)(56), (13)(24), (1432)(56), (56)(13),
(14)(23), (24)(56)}.

a. Find the stabilizer of 1 and the orbit of 1.

b. Find the stabilizer of 3 and the orbit of 3.

c. Find the stabilizer of 5 and the orbit of 5.

Let G be a group of order p” where p is prime. Prove that the center
of G cannot have order p"~ .

Prove that the eight-element set in the proof of Theorem 7.4 is a
group.

Prove that a group of order 12 must have an element of order 2.
Suppose that a group contains elements of orders 1 through 10.
What is the minimum possible order of the group?

Let G be a finite Abelian group and let n be a positive integer that
is relatively prime to |GI. Show that the mapping a — a" is an au-

tomorphism of G.

2

Show that in a group G of odd order, the equation x* = a has a

unique solution for all a in G.

Let G be a group of order pgr, where p, g, and r are distinct primes.
If H and K are subgroups of G with |Hl = pqg and |K| = gr, prove
that |[H N K1 = q.

Let G = GL(2,R) and H = SL(2, R). Let A € G and suppose that
det A = 2. Prove that AH is the set of all 2 X 2 matrices in G that
have determinant 2.

Let G be the group of rotations of a plane about a point P in the
plane. Thinking of G as a group of permutations of the plane, de-
scribe the orbit of a point Q in the plane. (This is the motivation for
the name “orbit.”)

Let G be the rotation group of a cube. Label the faces of the cube
1 through 6, and let H be the subgroup of elements of G that carry
face 1 to itself. If o is a rotation that carries face 2 to face 1, give a
physical description of the coset Ho.

The group D, acts as a group of permutations of the square regions
shown on the following page. (The axes of symmetry are drawn for
reference purposes.) For each square region, locate the points in
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the orbit of the indicated point under D,. In each case, determine
the stabilizer of the indicated point.

47. Let G = GL(2, R), the group of 2 X 2 matrices over R with nonzero
determinant. Let H be the subgroup of matrices of determinant = 1.
If a, b € G and aH = bH, what can be said about det (a) and
det (b)? Prove or disprove the converse.

48. Calculate the orders of the following (refer to Figure 27.5 for illus-
trations):

a. The group of rotations of a regular tetrahedron (a solid with
four congruent equilateral triangles as faces)

b. The group of rotations of a regular octahedron (a solid with
eight congruent equilateral triangles as faces)

c. The group of rotations of a regular dodecahedron (a solid with
12 congruent regular pentagons as faces)

d. The group of rotations of a regular icosahedron (a solid with 20
congruent equilateral triangles as faces)

49. If G is a finite group with fewer than 100 elements and G has sub-
groups of orders 10 and 25, what is the order of G?

50. A soccer ball has 20 faces that are regular hexagons and 12 faces
that are regular pentagons. Use Theorem 7.3 to explain why a soc-
cer ball cannot have a 60° rotational symmetry about a line through
the centers of two opposite hexagonal faces.
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Computer Exercise

In the fields of observation chance favors only the prepared mind.
LOUIS PASTEUR

Software for the computer exercise in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software determines when Z is the only group of order n in
the case that n = pg where p and ¢ are distinct primes. Run the
software forn =3-5,3-7,3-11,3-13,3-17,3-31,5-7,5-11,
5-13,5-17,5-31,7-11,7-13,7-17,7-19, and 7 - 43. Conjec-
ture a necessary and sufficient condition about p and ¢ for qu to
be the only group of order pg, where p and ¢ are distinct primes.


http://www.d.umn.edu/~jgallian

Joseph Lagrange

Lagrange is the Lofty Pyramid of the
Mathematical Sciences.

NAPOLEON BONAPARTE

JosepH Louts LAGRANGE was born in Italy of
French ancestry on January 25, 1736. He be-
came captivated by mathematics at an early
age when he read an essay by Halley on
Newton’s calculus. At the age of 19, he be-
came a professor of mathematics at the Royal
Artillery School in Turin. Lagrange made sig-
nificant contributions to many branches of
mathematics and physics, among them the
theory of numbers, the theory of equations,
ordinary and partial differential equations, the
calculus of variations, analytic geometry,
fluid dynamics, and celestial mechanics. His
methods for solving third- and fourth-degree
polynomial equations by radicals laid the
groundwork for the group-theoretic approach
to solving polynomials taken by Galois.
Lagrange was a very careful writer with a
clear and elegant style.

At the age of 40, Lagrange was appointed
Head of the Berlin Academy, succeeding
Euler. In offering this appointment, Frederick
the Great proclaimed that the “greatest king
in Europe” ought to have the “greatest mathe-
matician in Europe” at his court. In 1787,
Lagrange was invited to Paris by Louis XVI
and became a good friend of the king and his
wife, Marie Antoinette. In 1793, Lagrange
headed a commission, which included
Laplace and Lavoisier, to devise a new system
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This stamp was issued by
France in Lagrange’s honor
in1958.

of weights and measures. Out of this came
the metric system. Late in his life he was
made a count by Napoleon. Lagrange died on
April 10, 1813.

To find more information about Lagrange,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/


http://www-groups.dcs.st-and.ac.uk/~history/
http://www-groups.dcs.st-and.ac.uk/~history/

External Direct

Products

The universe is an enormous direct product of representations
of symmetry groups.
STEVEN WEINBERGT

Definition and Examples

In this chapter, we show how to piece together groups to make larger
groups. In Chapter 9, we will show that we can often start with one
large group and decompose it into a product of smaller groups in much
the same way as a composite positive integer can be broken down into
a product of primes. These methods will later be used to give us a sim-
ple way to construct all finite Abelian groups.

Definition External Direct Product

Let G, G,, ..., G, be afinite collection of groups. The external direct
product of G, G,, ...,G,  writtenas G, ® G, D - - - ® G, is the set of
all n-tuples for which the ith component is an element of G, and the
operation is componentwise.

In symbols,
GDPG,D--- DG, ={(g.8----8) 08 E G},
where (g, &5, - . ., g)(&}, & - . ., &) is defined to be (gg}.
8,85 - - - » &,8,)- It is understood that each product g,g’ is performed

with the operation of G,. We leave it to the reader to show that the
external direct product of groups is itself a group (Exercise 1).

This construction is not new to students who have had linear algebra or
physics. Indeed, R?> = R ® R and R?* = R @ R © R—the operation being
componentwise addition. Of course, there is also scalar multiplication, but

"Weinberg received the 1979 Nobel Prize in physics with Sheldon Glashow and Abdus
Salam for their construction of a single theory incorporating weak and electromagnetic
interactions.

155



156 Groups

we ignore this for the time being, since we are interested only in the group
structure at this point.

I EXAMPLE 1

U®) @ U10) = {(1, 1), (1,3),(1,7),(1,9), (3, 1), (3, 3),
(3.7),3,9),65,1,(5,3), 5,7, 5,9),
(7, D),(7,3),(7,7), (7,9}

The product (3, 7)(7, 9) = (5, 3), since the first components are com-
bined by multiplication modulo 8, whereas the second components are
combined by multiplication modulo 10. |

I EXAMPLE 2
Z,®Z, = {(0,0),(0, 1),(0,2),(1,0), (1, 1), (1, 2)}.

Clearly, this is an Abelian group of order 6. Is this group related to an-
other Abelian group of order 6 that we know, namely, Z,? Consider the
subgroup of Z, @© Z, generated by (1, 1). Since the operation in each com-
ponent is addition, we have (1, 1) = (1, 1), 2(1, 1) = (0, 2), 3(1, 1) =
(1, 0), 4(1, 1) = (0, 1), 5(1, 1) = (1, 2), and 6(1, 1) = (0, 0). Hence
Z,® Z, is cyclic. It follows that Z, © Z, is isomorphic to Z. 1

In Theorem 7.2 we classified the groups of order 2p where p is an
odd prime. Now that we have defined Z, © Z,, it is easy to classify the
groups of order 4.

I EXAMPLE 3 Classification of Groups of Order 4

A group of order 4 is isomorphic to Z, or Z, @ Z,. To verify this, let G =
{e, a, b, ab}. If G is not cyclic, then it follows from Lagrange’s Theorem
that |a| = |b| = |ab| = 2. Then the mapping ¢ — (0, 0), a — (1, 0),
b— (0, 1), and ab — (1, 1) is an isomorphism from G onto Z, ® Z,. |

We see from Examples 2 and 3 that in some cases Z,, D Z,, is isomor-
phic to Z,,, and in some cases it is not. Theorem 8.2 provides a simple
characterization for when the isomorphism holds.

Properties of External Direct Products

Our first theorem gives a simple method for computing the order of an
element in a direct product in terms of the orders of the component
pieces.
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B Theorem 8.1 Order of an Element in a Direct Product

The order of an element in a direct product of a finite number of
finite groups is the least common multiple of the orders of the
components of the element. In symbols,

(g 8,5 - - -5 8! = lem(ig,l, Ig,l, ..., Ig D).
PROOF Denote the identity of G, by e.. Let s = lem(lg |, Ig,l, ..., Ig )
and t =I(g, g, . . ., &,). Because s is a multiple of each Ig;| implies that

(81 8p----8)=10(g,8%....8)=(e,e,...,e), weknow thatt =s.On
the other hand, from (g, g, .. ..8) = (8,8, -..,8) =(e,e, ..., e) we
see that 7 is a common multiple of Ig,1, Ig,1, ..., lg,|. Thus, s = 1. |

The next two examples are applications of Theorem 8.1.

I EXAMPLE 4 We determine the number of elements of order 5 in
Z,s © Z,. By Theorem 8.1, we may count the number of elements
(a, b) in Z, © Z, with the property that 5 = I(a, b)l = lem(lal, |bl).
Clearly this requires that either lal = 5 and Il = 1 or 5, or 1ol = 5 and
lal = 1 or 5. We consider two mutually exclusive cases.

Case 1 lal = 5 and bl = 1 or 5. Here there are four choices for a
(namely, 5, 10, 15, and 20) and five choices for . This gives 20 ele-
ments of order 5.

Case 2 lal = 1 and |bl = 5. This time there is one choice for a and four
choices for b, so we obtain four more elements of order 5.

Thus, Z,, D Z, has 24 elements of order 5. |

I EXAMPLE 5 We determine the number of cyclic subgroups of order
10in Z,,, @ Z,. We begin by counting the number of elements (a, b) of
order 10.

Case 1 lal = 10 and Ibl = 1 or 5. Since Z,,, has a unique cyclic sub-
group of order 10 and any cyclic group of order 10 has four generators
(Theorem 4.4), there are four choices for a. Similarly, there are five
choices for b. This gives 20 possibilities for (a, b).

Case 2 lal = 2 and Ibl = 5. Since any finite cyclic group of even order
has a unique subgroup of order 2 (Theorem 4.4), there is only one
choice for a. Obviously, there are four choices for b. So, this case
yields four more possibilities for (a, b).
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Thus, Z,, (&) Z,5 has 24 elements of order 10. Because each cyclic
subgroup of order 10 has four elements of order 10 and no two of the
cyclic subgroups can have an element of order 10 in common, there
must be 24/4 = 6 cyclic subgroups of order 10. (This method is analo-
gous to determining the number of sheep in a flock by counting legs
and dividing by 4.) |

The direct product notation is convenient for specifying certain sub-
groups of a direct product.

B EXAMPLE 6 For each divisor r of m and s of n the group Z, D Z,
has a subgroup isomorphic to Z.b Z; (see Exercise 17). To find a sub-
group of say Z;, Z,, isomorphic to Z;P Z, we observe that (5) is a
subgroup of Zy, of order 6 and (3) is a subgroup of Z,, of order 4, so
(5) @ (3) is the desired subgroup. |

The next theorem and its first corollary characterize those direct
products of cyclic groups that are themselves cyclic.

I Theorem 8.2 Criterion for G @ H to be Cyclic

Let G and H be finite cyclic groups. Then G ® H is cyclic if and only
if |Gl and |H| are relatively prime.

PROOF Let IGl = mand |HI = n, so that |G © HI = mn. To prove the
first half of the theorem, we assume G @ H is cyclic and show that
m and n are relatively prime. Suppose that gcd(m, n) = d and (g, h) is a
generator of G @ H. Since (g, h)™¢ = ((g™)", (h")"?) = (e, e), we
have mn = (g, h)| = mn/d. Thus, d = 1.

To prove the other half of the theorem, let G = (g) and H = (h) and
suppose ged(m, n) = 1. Then, I(g, )| = lem(m, n) = mn = 1G D HI,
so that (g, &) is a generator of G & H. |

As a consequence of Theorem 8.2 and an induction argument, we
obtain the following extension of Theorem 8.2.

I Corollary 1 Criterionfor G, © G,® - - - © G, to Be Cyclic
An external direct product G, © G, © - - - © G, of a finite number

of finite cyclic groups is cyclic if and only if 1G,| and G| are relatively
prime when i # j.
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B Corollary2 Criterionforz = ~2Z ©7Z ©---©Z

Letm = nn, - - - n,. Then Z_ is isomorphic to Z, SY an@ 000 @an
if and only if n, and n;are relatively prime when i +# j.

By using the results above in an iterative fashion, one can express
the same group (up to isomorphism) in many different forms. For ex-
ample, we have

Z,82,®2,PZ,~2,®Z®Z ~7Z,DZ,
Similarly,
2,02, D2, DZ,~2,DZ, D Z
~2,DZ2,DZ,DZ,~7Z DZ,
Thus, Z, ® Z,, =~ Z, ® Z,,. Note, however, that Z, ® Z, ) # Z.

The Group of Units Modulo n As
An External Direct Product

The U-groups provide a convenient way to illustrate the preceding
ideas. We first introduce some notation. If k is a divisor of n, let

Umn) = {x€ Umn)l xmodk = 1}.

For example, U,(105) = {1, 8, 22,29, 43, 64, 71, 92}. It can be readily
shown that U,(n) is indeed a subgroup of U(n). (See Exercise 17 in
Chapter 3.)

I Theorem 8.3 U(n) as an External Direct Product
Suppose s and t are relatively prime. Then U(st) is isomorphic to the
external direct product of U(s) and U(t). In short,
U(st) = U(s) © U(¢).

Moreover, U (st) is isomorphic to U(t) and U (st) is isomorphic to U(s).

PROOF An isomorphism from U(st) to U(s) & U(r) is x — (x mod s,
x mod ¢); an isomorphism from U (st) to U(%) is x — x mod #; an isomor-
phism from U (s?) to U(s) is x — x mod s. We leave the verification that
these mappings are operation-preserving, one-to-one, and onto to the
reader. (See Exercises 11, 17, and 19 in Chapter O; see also [1].) |

As a consequence of Theorem 8.3, we have the following result.
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Corollary
Letm = nn, - - - n,, where gcd(n,, nJ.) = 1fori +# j. Then,
U(m) ~ Un,) ® Uny) @ - - - ® U(n,).

To see how these results work, let’s apply them to U(105). We obtain
U(105) = U(7) & U(15)
U(105) = U21) & U(5)
U(105) = U3) @ U(5) & U(7).

Moreover,

U(T) = U,4(105) = {1, 16, 31, 46, 61, 76)

U(15) = U,(105) = {1, 8,22, 29,43, 64,71, 92}

UQ1) = UL105) = {1, 11, 16, 26, 31,41, 46, 61, 71,76, 86, 101}
U(5) = U, (105) = {1, 22, 43, 64}

UB) = U,(105) = {1,71}.

Among all groups, surely the cyclic groups Z have the simplest
structures and, at the same time, are the easiest groups with which to
compute. Direct products of groups of the form Z are only slightly
more complicated in structure and computability. Because of this, al-
gebraists endeavor to describe a finite Abelian group as such a direct
product. Indeed, we shall soon see that every finite Abelian group can
be so represented. With this goal in mind, let us reexamine the
U-groups. Using the corollary to Theorem 8.3 and the facts (see
[2, p. 93]), first proved by Carl Gauss in 1801, that

u2)y={0}, UH=2z, U2Y=Z,®Z,. forn=3,
and

Up" =2

r— for p an odd prime,

we now can write any U-group as an external direct product of cyclic
groups. For example,

U105 =U0Q3-5-7)=UQB)D US) D UT)
~72,DZ,DZ,
and
U(720) = U(16 - 9 - 5) = U(16) D U(©9) ® U(5)
~72,072,0ZDZ,
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What is the advantage of expressing a group in this form? Well, for one
thing, we immediately see that the orders of the elements U(720) can
only be 1, 2, 3, 4, 6, and 12. This follows from the observations that an
element from Z, © Z, © Z, @ Z, has the form (a, b, ¢, d), where
lal=1or2,1bl =1,2,0r4d,lcl =1,2,3,0r6,and |dl =1, 2, or 4, and
that I(a, b, ¢, d)| = lem(lal, 1bl, Icl, Idl). For another thing, we can read-
ily determine the number of elements of order 12, say, that U(720) has.
Because U(720) is isomorphic to Z, © Z, © Z, @ Z,, it suffices to cal-
culate the number of elements of order 12 in Z, © Z, ® Z, @ Z,. But
this is easy. By Theorem 8.1, an element (a, b, ¢, d) has order 12 if and
only if lem(lal, 151, Icl, Idl) = 12. Since lal = 1 or 2, it does not matter
how a is chosen. So, how can we have lem(lb1, Icl, Idl) = 12?7 One way
is to have 1bl = 4, Icl = 3 or 6, and d arbitrary. By Theorem 4.4, there
are two choices for b, four choices for ¢, and four choices for d. So, in
this case, we have 2 - 4 - 4 = 32 choices. The only other way to have
Iem(1bl, Icl, Idl) = 12 is for Idl = 4, Icl = 3 or 6, and |1bl = 1 or 2 (we
exclude 1ol = 4, since this was already accounted for). This gives 2 - 4 -
2 = 16 new choices. Finally, since a can be either of the two elements
in Z,, we have a total of 2(32 + 16) = 96 elements of order 12.

These calculations tell us more. Since Aut(Z,,) is isomorphic to
U(720), we also know that there are 96 automorphisms of Z, of
order 12. Imagine trying to deduce this information directly from
U(720) or, worse yet, from Aut(Z,,,)! These results beautifully illus-
trate the advantage of being able to represent a finite Abelian group as
a direct product of cyclic groups. They also show the value of our the-
orems about Aut(Z) and U(n). After all, theorems are labor-
saving devices. If you want to convince yourself of this, try to prove
directly from the definitions that Aut(Z,,,) has exactly 96 elements of
order 12.

Applications

We conclude this chapter with five applications of the material pre-
sented here—three to cryptography, the science of sending and deci-
phering secret messages, one to genetics, and one to electric circuits.

Data Security

Because computers are built from two-state electronic components,
it is natural to represent information as strings of Os and 1s called
binary strings. A binary string of length n can naturally be thought of
as an element of Z, ® Z, @ - - - @ Z, (n copies) where the parenthe-
ses and the commas have been deleted. Thus the binary string
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11000110 corresponds to the element (1, 1,0,0,0,1,1,0)inZ, ® Z, D
2,972, D7, D7, D Z, D Z, Similarly, two binary strings a,a, - - - a,
and bb, - - - b, are added componentwise modulo 2 just as their
corresponding elements in Z, ® Z, ® - - - @ Z, are. For example,

11000111 + 01110110 = 10110001

and

10011100 + 10011100 = 00000000.
The fact that the sum of two binary sequences a,a, - - - a, + bb, - - -
b, =00 - - - 0if and only if the sequences are identical is the basis for

a data security system used to protect internet transactions.

Suppose that you want to purchase a compact disc from www
.Amazon.com. Need you be concerned that a hacker will intercept
your credit-card number during the transaction? As you might expect,
your credit-card number is sent to Amazon in a way that protects the
data. We explain one way to send credit-card numbers over the Web
securely. When you place an order with Amazon the company sends
your computer a randomly generated string of 0’s and 1’s called a key.
This key has the same length as the binary string corresponding to
your credit-card number and the two strings are added (think of this
process as “locking” the data). The resulting sum is then transmitted
to Amazon. Amazon in turn adds the same key to the received string
which then produces the original string corresponding to your credit-
card number (adding the key a second time “unlocks” the data).

To illustrate the idea, say you want to send an eight-digit binary string
such as s = 10101100 to Amazon (actual credit-card numbers have very
long strings) and Amazon sends your computer the key
k = 00111101. Your computer returns the string s + k£ = 10101100 +
00111101 = 10010001 to Amazon, and Amazon adds £ to this string to
get 10010001 + 00111101 = 10101100, which is the string represent-
ing your credit-card number. If someone intercepts the number
s + k= 10010001 during transmission it is no value without knowing k.

The method is secure because the key sent by Amazon is randomly
generated and used only one time. You can tell when you are using an en-
cryption scheme on a web transaction by looking to see if the web ad-
dress begins with “https” rather than the customary “http.” You will also
see a small padlock in the status bar at the bottom of the browser window.

Application to Public Key Cryptography

In the mid-1970s, Ronald Rivest, Adi Shamir, and Leonard Adleman
devised an ingenious method that permits each person who is to
receive a secret message to tell publicly how to scramble messages
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sent to him or her. And even though the method used to scramble the
message is known publicly, only the person for whom it is intended
will be able to unscramble the message. The idea is based on the fact
that there exist efficient methods for finding very large prime numbers
(say about 100 digits long) and for multiplying large numbers, but no
one knows an efficient algorithm for factoring large integers (say
about 200 digits long). So, the person who is to receive the message
chooses a pair of large primes p and g and chooses an integer r with
1 <r<m,where m =lcm(p — 1, g — 1), such that r is relatively prime
to m (any such r will do). This person calculates n = pg and announces
that a message M is to be sent to him or her publicly as M" mod n.
Although r, n, and M" are available to everyone, only the person who
knows how to factor n as pg will be able to decipher the message.

To present a simple example that nevertheless illustrates the princi-
pal features of the method, say we wish to send the message “YES.” We
convert the message into a string of digits by replacing A by 01, B by
02, ..., Z by 26, and a blank by 00. So, the message YES becomes
250519. To keep the numbers involved from becoming too unwieldy,
we send the message in blocks of four digits and fill in with blanks
when needed. Thus, the message YES is represented by the two blocks
2505 and 1900. The person to whom the message is to be sent has
picked two primes p and ¢, say p = 37 and ¢ = 73 (in actual practice,
p and g would have 100 or so digits), and a number r that has no prime
divisors in common with lem(p — 1, ¢ — 1) = 72, say r = 5, and has
published n = 37 - 73 = 2701 and r = 5 in a public directory. We will
send the “scrambled” numbers (2505)° mod 2701 and (1900)° mod
2701 rather than 2505 and 1900, and the receiver will unscramble them.
We show the work involved for us and the receiver only for the block
2505. The arithmetic involved in computing these numbers is simpli-
fied as follows:

2505 mod 2701 = 2505
(2505)% mod 2701 = 602
(2505)* mod 2701 = (602)(602) mod 2701 = 470.

So, (2505)° mod 2701 = (2505)(470) mod 2701 = 2415.7

"To determine 25052 mod 2701 with a calculator, enter 2505 X 2505 to obtain
62750025, then divide 6275025 by 2701 to obtain 2323.2228. Finally, enter 6275025 —
(2323 X 2701) to obtain 602. Provided that the numbers are not too large, the Google
search engine at http://www.google.com will do modular arithmetic. For example, en-
tering 25052 mod 2701 in the search box yields 602. Be careful, however, because en-
tering 250575 mod 2701 computes the wrong value since 25057 is too large. Instead, we
can use Google to compute smaller powers such as 25053 mod 2701 (which yields 852)
and 2505% mod 2701 and then compute (852 X 602) mod 2701 = 2415.
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Thus, the number 2415 is sent to the receiver. Now the receiver must
take this number and convert it back to 2505. To do so, the receiver
takes the two factors of 2701, p = 37 and ¢ = 73, and calculates the
least common multiple of p — 1 = 36 and ¢ — 1 = 72, which is 72.
(This is where the knowledge of p and ¢ is necessary.) Next, the re-
ceiver must find s = r~! in U(72)—that is, solve the equation 5 - s = 1
mod 72. This number is 29. (There is a simple algorithm for finding
this number.) Then the receiver takes the number received, 2415, and
calculates (2415)* mod 2701. This calculation can be simplified as fol-
lows:

2415 mod 2701 = 2415
(2415)> mod 2701 = 766
(2415)* mod 2701 = (766)> mod 2701 = 639
(2415)8 mod 2701 = (639)> mod 2701 = 470
(2415)'6 mod 2701 = (470)> mod 2701 = 2119

So, (2415)® mod 2701 = (2415)'%(2415)8(2415)*%2415) mod 2701 =
(2119)(470)(639)(2415) mod 2701 = ((2119)(470) mod 2701 X
(639)(2415) mod 2701) mod 2701 = (1962)(914) mod 2701 = 2505. [We
compute the product (2119)(470)(639)(2415) in two stages so that we
may use a hand calculator.]

Thus the receiver correctly determines the code for “YE.” On the
other hand, without knowing how pq factors, one cannot find the modu-
lus (in our case, 72) that is needed to determine the intended message.

The procedure just described is called the RSA public key encryption
scheme in honor of the three people (Rivest, Shamir, and Adleman) who
discovered the method. It is widely used in conjunction with web servers
and browsers, e-mail programs, remote login sessions, and electronic fi-
nancial transactions. The algorithm is summarized below.

Receiver

1. Pick very large primes p and ¢ and compute n = pq.

2. Compute the least common multiple of p — 1 and ¢ — 1; let us call
it m.

3. Pick r relatively prime to m.

4. Find s such that s mod m = 1.

S. Publicly announce # and r.

Sender

1. Convert the message to a string of digits. (In practice, the ASCII
code is used.)
2. Break up the message into uniform blocks of digits; call them M,

My, ..., M,
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3. Check to see that the greatest common divisor of each M, and n is
1. If not, n can be factored and our code is broken. (In practice, the
primes p and g are so large that they exceed all M,, so this step may
be omitted.)

4. Calculate and send R, = M," mod n.

Receiver

1. For each received message R, calculate Ri‘Y mod 7.
2. Convert the string of digits back to a string of characters.

Why does this method work? Well, we know that U(n) = U(p) D
U(g) = prl ® qul. Thus an element of the form x™ in U(n) corre-
sponds under an isomorphism to one of the form (mx,, mx,) in Z, D
Z,_\ Since m is the least common multiple of p — 1 and ¢ — 1, we
may write m = u(p — 1) and m = v(q — 1) for some u and v. Then
(mx,, mx,) = (u(p — Dx;, v(g — Dx,) = (0,0) in prl S qul, and it
follows that x™ = 1 for all x in U(n). So, because each message M, is
an element of U(n) and r was chosen so that rs = 1 + tm for some ¢,

we have, modulo n,
Ris — (Ml_r)s — Mirs = Mi1+tm = (Mim)tMi = ltMi = Mi_

In 2002, Ronald Rivest, Adi Shamir, and Leonard Adleman received
the Association for Computing Machinery A. M. Turing Award which
is considered the “Nobel Prize of Computing” for their contribution to
public key cryptography.

The software for Computer Exercise 5 in this chapter implements
the RSA scheme for small primes.

Digital Signatures

With so many financial transactions now taking place electronically, the
problem of authenticity is paramount. How is a stockbroker to know that
an electronic message she receives that tells her to sell one stock and buy
another actually came from her client? The technique used in public key
cryptography allows for digital signatures as well. Let us say that person
A wants to send a secret message to person B in such a way that only B
can decode the message and B will know that only A could have sent it.
Abstractly, let E, and D, denote the algorithms that A uses for encryp-
tion and decryption, respectively, and let £, and D, denote the algo-
rithms that B uses for encryption and decryption, respectively. Here
we assume that E, and E, are available to the public, whereas D, is
known only to A and D, is known only to B and that D FE, and E,D,
applied to any message leaves the message unchanged. Then A sends
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a message M to B as E, (D,(M)) and B decodes the received message
by applying the function E,D, to it to obtain

(E,Dy) (Ex(D,(M)) = E,(DyEL)D,(M)) = E,(D,(M)) = M.

Notice that only A can execute the first step [i.e., create D ,(M)] and
only B can implement the last step (i.e., apply E,D, to the received
message).

Transactions using digital signatures became legally binding in the
United States in October 2000.

Application to Genetics’

The genetic code can be conveniently modeled using elements of Z, ©
Z,® - D Z, where we omit the parentheses and the commas and
just use strings of Os, 1s, 2s, and 3s and add componentwise modulo 4.
A DNA molecule is composed of two long strands in the form of a
double helix. Each strand is made up of strings of the four nitrogen
bases adenine (A), thymine (T), guanine (G), and cytosine (C). Each
base on one strand binds to a complementary base on the other strand.
Adenine always is bound to thymine, and guanine always is bound to
cytosine. To model this process, we identify A with 0, T with 2, G with 1,
and C with 3. Thus, the DNA segment ACGTAACAGGA and its com-
plement segment TGCATTGTCCT are denoted by 03120030110 and
21302212332. Noting thatinZ,,0 +2=2,2+2=0,1 + 2 = 3,and
3 + 2 = 1, we see that adding 2 to elements of Z, interchanges 0 and 2
and 1 and 3. So, for any DNA segment a,a, - - - a, represented by ele-
ments of Z, ®Z, @ - - - © Z,, we see that its complementary segment
is represented by a,a, - - - a, + 22+ - 2.

Application to Electric Circuits

Many homes have light fixtures that are operated by a pair of switches.
They are wired so that when either switch is thrown the light changes
its status (from on to off or vice versa). Suppose the wiring is done so
that the light is on when both switches are in the up position. We can
conveniently think of the states of the two switches as being matched
with the elements of Z, @ Z, with the two switches in the up position
corresponding to (0, 0) and the two switches in the down position cor-
responding to (1, 1). Each time a switch is thrown, we add 1 to the
corresponding component in the group Z, © Z,. We then see that the
lights are on when the switches correspond to the elements of the sub-
group ((1, 1)) and are off when the switches correspond to the elements

"This discussion is adapted from [3].
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in the coset (1, 0) + ((1, 1)). A similar analysis applies in the case of
three switches with the subgroup {(0, 0, 0), (1, 1, 0), (0, 1, 1), (1,0, 1)}
corresponding to the lights-on situation.

What's the most difficult aspect of your life as a mathematician, Diane
Maclagan, an assistant professor at Rutgers, was asked. “Trying to prove
theorems,” she said. And the most fun? “Trying to prove theorems.”

1.

11.

12.

13.

14.

15.

Prove that the external direct product of any finite number of
groups is a group. (This exercise is referred to in this chapter.)

. Show that Z, @ Z, ® Z, has seven subgroups of order 2.
. Let G be a group with identity ¢ and let H be a group with iden-

tity e,,. Prove that G is isomorphic to G @ {e,,} and that H is iso-
morphic to {e.} ® H.

. Show that G ©® H is Abelian if and only if G and H are Abelian.

State the general case.

. Prove or disprove that Z & Z is a cyclic group.
. Prove, by comparing orders of elements, that Z; © Z, is not iso-

morphic to Z, ® Z,.

. Prove that G, @ G, is isomorphic to G, © G,. State the general

case.

. Is Z, ®© Z, isomorphic to Z,,? Why?
. Is Z, ® Z, isomorphic to Z,;? Why?
10.

How many elements of order 9 does Z, © Z, have? (Do not do this
exercise by brute force.)

How many elements of order 4 does Z, © Z, have? (Do not do this
by examining each element.) Explain why Z, @ Z, has the same
number of elements of order 4 as does Zg,,1000 © Z,00000- GeNeEral-
izetothecase Z, ®Z, .

The dihedral group D, of order 2n (n = 3) has a subgroup of n ro-
tations and a subgroup of order 2. Explain why D cannot be iso-
morphic to the external direct product of two such groups.

Prove that the group of complex numbers under addition is iso-
morphic to R ® R.

Suppose that G, = G, and H, = H,. Prove that G, D H, = G, ©
H,. State the general case.

If G @ H is cyclic, prove that G and H are cyclic. State the general
case.
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16. In Z,, @ Z,, find two subgroups of order 12.
17. If r is a divisor of m and s is a divisor of n, find a subgroup of Z

18.
19.

20.

21.

22,

23.

24.

25.

26.

27.
28.
29.
30.
31.
32,
33.

34.

@ Z, isomorphicto Z D Z..

Find a subgroup of Z , @ Z,, isomorphic to Z,  Z,.

Let G and H be finite groups and (g, h) € G & H. State a neces-
sary and sufficient condition for {(g, h)) = (g) D (h).

Determine the number of elements of order 15 and the number of
cyclic subgroups of order 15in Z,, © Z,,,.

What is the order of any nonidentity element of Z, © Z, © Z.?
Generalize.

Let m > 2 be an even integer and let n > 2 be an odd integer. Find
a formula for the number of elements of order 2in D, © D, .

Let M be the group of all real 2 X 2 matrices under addition. Let
N =R D R D R D R under componentwise addition. Prove that
M and N are isomorphic. What is the corresponding theorem for
the group of m X n matrices under addition?

The group S, © Z, is isomorphic to one of the following groups:
ZZ D Z,, A, D,. Determine which one by elimination.

Let G be a group, and let H = {(g, g) | ¢ € G}. Show that H is a
subgroup of G & G. (This subgroup is called the diagonal of
G @ G.) When G is the set of real numbers under addition, de-
scribe G @ G and H geometrically.

Find a subgroup of Z, @ Z, that is not of the form H © K, where H
is a subgroup of Z, and K is a subgroup of Z,.

Find all subgroups of order 3 in Z, © Z..

Find all subgroups of order 4in Z, ® Z,.

What is the largest order of any element in Z,, @ Z,?
How many elements of order 2 are in Z, ;1,100 D Z,000000°
Find a subgroup of Zy,, ® Z,,, that is isomorphic to Z, © Z,.

Find a subgroup of Z , © Z, © Z,, that has order 9.

? Generalize.

Prove that R* € R* is not isomorphic to C*. (Compare this with
Exercise 13.)
Let
1 a b
H=<|0 1 0llab€&Ez
0 0 1

(See Exercise 36 in Chapter 2 for the definition of multiplication.)
Show that H is an Abelian group of order 9. Is H isomorphic to Z,
orto Z, ® Z,?



35.

36.

37.
38.
39.

40.

41.

42,
43.

44.
45.
46.
47.
48.

49.

50.

51.

52,

53.

54.

55.

56.

57.
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Let G = {3™6" | m, n € Z} under multiplication. Prove that G is isomor-
phic to Z & Z. Does your proof remain valid if G = {3"9" | m,n € Z}?
Let(a;,a, ...,a)EG DG, D DG, Give anecessary and
sufficient condition for I(a, a,, . .., a )l = .

Prove that D, ® D, # D ,® Z,.

Determine the number of cyclic subgroups of order 15 in Zy, @ Z, ..
If a group has exactly 24 elements of order 6, how many cyclic
subgroups of order 6 does it have?

For any Abelian group G and any positive integer n, let G" = {g" |
g € G} (see Exercise 15, Supplementary Exercises for Chapters
1-4). If H and K are Abelian, show that (H & K)" = H* ® K".

Express Aut(U(25)) in the formZ @ Z .
Determine Aut(Z, ® Z,).
Suppose that n, n,, ..., n, are positive even integers. How many

elements of order 2 does Z EB Z D---DZ have ? How many are
there if we drop the requlrement t211at n, , n, must be even?

52, 92,8Z,~2,DZ DZ?
s2,,92,Z,~272,D2,DZ,?

Find an isomorphism from Z , to Z, ® Z..

How many isomorphisms are there from Z , to Z, © Z,?

Suppose that ¢ is an isomorphism from Z, 69 Zs to Z,5 and
¢(2, 3) = 2. Find the element in Z, S¥ Z, that maps to 1.

Let (a, b) belong to Z @ Z . Prove that |(a, b)| divides lem(m, n).
LetG={ax*+ bx+cla,b,cE Z,}. Add elements of G as you
would polynomials with integer coefficients, except use modulo 3
addition. Prove that G is isomorphic to Z, @ Z, @ Z,. Generalize.
Use properties of U-groups to determine all cyclic groups that have
exactly two generators.

2,..

Explain a way that a string of length » of the four nitrogen bases A,
T, G, and C could be modeled with the external direct product of n
copies of Z, ® Z,.

Let p be a prime. Prove that Zp s> ZP has exactly p + 1 subgroups
of order p.

Give an example of an infinite non-Abelian group that has exactly
six elements of finite order.

Give an example to show that there exists a group with elements a
and b such that lal = o, |b| = o and labl = 2.

Express U(165) as an external direct product of cyclic groups of
the form Z .

Express U(165) as an external direct product of U-groups in four
different ways.
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58.

59.

60.

61.
62.

63.

64.

65.

66.
67.

68.
69.

70.
71.

72.
73.

74.

75.

Without doing any calculations in Aut(Z,,), determine how many
elements of Aut(Z,)) have order 4. How many have order 2?7

Without doing any calculations in Aut(Z,,), determine how many
elements of Aut(Z,,) have order 6.

Without doing any calculations in U(27), decide how many sub-
groups U(27) has.

What is the largest order of any element in U(900)?

Let p and g be odd primes and let m and n be positive integers.
Explain why U(p™) © U(g") is not cyclic.

Use the results presented in this chapter to prove that U(55) is
isomorphic to U(75).

Use the results presented in this chapter to prove that U(144) is
isomorphic to U(140).

For every n > 2, prove that U(n)*> = {x*> | x € U(n)} is a proper
subgroup of U(n).

Show that U(55) = {x* | x € U(55)} is U(55).

Find an integer n such that U(n) contains a subgroup isomorphic to
Z, D Z,.

Find a subgroup of order 6 in U(700).

Show that there is a U-group containing a subgroup isomorphic
toZ, D Z,.

Show that no U-group has order 14.

Show that there is a U-group containing a subgroup isomorphic
toZ,,.

Show that no U-group is isomorphic to Z, © Z,.

Show that there is a U-group containing a subgroup isomorphic to
Z,d2z,

Using the RSA scheme with p = 37, ¢ = 73, and r = 5, what num-
ber would be sent for the message “RM”?

Assuming that a message has been sent via the RSA scheme with
p =137,q="173,and r = 5, decode the received message “34.”

Computer Exercises

The geek shall inherit the earth.

LEV GROSSMAN

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian
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1. This software lists the elements of U(st), where s and ¢ are rela-
tively prime. Run the program for (s, t) = (5, 16), (16, 5), (8, 25),
(5,9),9,5), (9, 10), (10, 9), and (10, 25).

2. This software computes the elements of the subgroup U(n)* =
{x¥1 x € U(n)} of U(n) and its order. Run the program for (1, k) =
(27, 3), (27, 5), (27, 7), and (27, 11). Do you see a relationship
connecting |U(n)| and 1U(n)*l, ¢(n), and k? Make a conjecture.
Run the program for (n, k) = (25, 3), (25, 5), (25, 7), and (25, 11).
Do you see a relationship connecting |U(n)! and |U(n)*l, ¢(n), and
k? Make a conjecture. Run the program for (n, k) = (32, 2), (32,
4), and (32, 8). Do you see a relationship connecting 1U(n)| and
|U(n)¥, ¢(n), and k? Make a conjecture. Is your conjecture valid
for (32, 16)? If not, restrict your conjecture. Run the program for
(n, k) =(71,2),(77,3),(77,5), (77, 6), (77, 10), and (77, 15)? Do
you see a relationship among U(77, 6), U(77, 2), and U(77, 3)?
What about U(77, 10) U(77, 2), and U(77, 5)? What about U(77,
15), U(77, 3), and U(77, 5)? Make a conjecture. Use the theory
developed in this chapter about expressing U(n) as external direct
products of cyclic groups of the form Z to analyze these groups
to verify your conjectures.

3. This software implements the algorithm given on page 160 to ex-
press U(n) as an external direct product of groups of the form Z,.
Run the program forn =3-5-7,16-9-5,8-3-25,9-5-11,
and 2 - 27 - 125.

4. This software allows you to input positive integers 7,, Mgs oo es My
where k = 5, and compute the number of elements in Z S
Z ©---DZ, of any specified order m. Use this software to ver-
1fy the values obtamed in Examples 4 and 5 and in Exercise 20.
Run the software for n, = 6, n, = 10, n, = 12, and m = 6.

5. This program implements the RSA public key cryptography
scheme. The user enters two primes p and ¢, an r that is relatively
prime tom = lcm (p — 1, ¢ — 1), and the message M to be sent.
Then the program computes s, which is the inverse of » mod m,
and the value of M" mod pg. Also, the user can input those num-
bers and have the computer raise the numbers to the s power to ob-
tain the original input.

6. This software determines the order of Aut(Zp ) Zp), where p is a
prime. Run the software for p = 3, 5, and 7. Is the result always
divisible by p? Is the result always divisible by p — 17 Is the result
always divisible by p + 1? Make a conjecture about the order of
Aul(Z, @ Z,) for all primes p.
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7. This software determines the order of Aut(Zp D Zp () Zp), where p
is a prime. Run the software for p = 3, 5, and 7. What is the highest
power of p that divides the order? What is the highest power of p — 1
that divides the order? What is the highest power of p + 1 that di-
vides the order? Make a conjecture about the order of
Au(Z, Y A Y Z) for all primes p.
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Leonard Adleman

“...Dr. Adleman [has played] a central role
in some of the most surprising, and
provocative, discoveries in theoretical
computer science.”

GINA KOLATA, The New York Times,

13 December 1994.

LEONARD ADLEMAN grew up in San Francisco.
He did not have any great ambitions for him-
self and, in fact, never even thought about be-
coming a mathematician. He enrolled at the
University of California at Berkeley intending
to be a chemist, then changed his mind and
said he would be a doctor. Finally, he settled
on a mathematics major. “I had gone through a
zillion things and finally the only thing that
was left where I could get out in a reasonable
time was mathematics,” he said.

Adleman graduated in five years, in
1968, “wondering what I wanted to do with
my life.” He took a job as a computer pro-
grammer at the Bank of America. Then he
decided that maybe he should be a physicist,
so he began taking classes at San Francisco
State College while working at the bank.
Once again, Adleman lost interest. “I didn’t
like doing experiments, I liked thinking
about things,” he said. Later, he returned to
Berkeley with the aim of getting a Ph.D. in
computer science. “I thought that getting a
Ph.D. in computer science would at least
further my career,” he said.

But, while in graduate school, something
else happened to Adleman. He finally under-
stood the true nature and compelling beauty
of mathematics. He discovered, he said, that
mathematics “is less related to accounting
than it is to philosophy.”

“People think of mathematics as some
kind of practical art,” Adleman said. But, he
added, “the point when you become a mathe-
matician is where you somehow see through
this and see the beauty and power of mathe-
matics.” Adleman got his Ph.D. in 1976 and
immediately landed a job as an assistant pro-
fessor of mathematics at the Massachusetts
Institute of Technology. There he met Ronald
Rivest and Adi Shamir, who were trying to
invent an unbreakable public key system.
They shared their excitement about the idea
with Adleman, who greeted it with a polite
yawn, thinking it impractical and not very in-
teresting. Nevertheless, Adleman agreed to
try to break the codes Rivest and Shamir pro-
posed. Rivest and Shamir invented 42 coding
systems, and each time Adleman broke the
code. Finally, on their 43rd attempt, they hit
upon what is now called the RSA scheme.

Adleman’s mode of working is to find
something that intrigues him and to dig in.
He does not read mathematics journals, he
says, because he does not want to be influ-
enced by other people’s ideas.

Asked what it is like to simply sit and
think for six months, Adleman responded,
“That’s what a mathematician always does.
Mathematicians are trained and inclined to
sit and think. A mathematician can sit and
think intensely about a problem for 12 hours

173



a day, six months straight, with perhaps just For more information about Adleman,
a pencil and paper.” The only prop he needs,  visit:
he said, is a blackboard to stare at. A
Adapted from an article by Gina Kolata, http://www.wikipedia.com
The New York Times, 13 December 1994.
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My mind rebels at stagnation. Give me problems, give me work, give me
the most obstruse cryptogram, or the most intricate analysis, and | am in
my own proper atmosphere.

SHERLOCK HOLMES, The Sign of Four

True/False questions for Chapters 5-8 are available on the Web at:
www.d.umn.edu/~jgallian/TF

1. A subgroup N of a group G is called a characteristic subgroup if
¢(N) = N for all automorphisms ¢ of G. (The term characteristic
was first applied by G. Frobenius in 1895.) Prove that every sub-
group of a cyclic group is characteristic.

2. Prove that the center of a group is characteristic.

3. The commutator subgroup G' of a group G is the subgroup gener-
ated by the set {x"'y"!xy | x, y € G}. (That is, every element of G’
has the form a/'a, - - - a,’*, where each a; has the form x~ 'y~ lxy,
each [ ==*l, and k is any positive integer.) Prove that G’ is a char-
acteristic subgroup of G. (This subgroup was first introduced by
G. A. Miller in 1898.)

4. Prove that the property of being a characteristic subgroup is transi-
tive. That is, if N is a characteristic subgroup of K and K is a char-
acteristic subgroup of G, then N is a characteristic subgroup of G.

S5.LetG =27, D Z, ® Z, and let H be the subgroup of SL(3, Z,)
consisting of

H =

[ R R
S = Q

b
0 a,bcEZ3
1


www.d.umn.edu/~jgallian/TF
http://www.wikipedia.com

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.
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(See Exercise 36 in Chapter 2 for the definition of multiplication.)
Determine the number of elements of each order in G and H. Are G
and H isomorphic? (This exercise shows that two groups with the
same number of elements of each order need not be isomorphic.)

. Let H and K be subgroups of a group G and let HK = {hk | h € H,

k€ K} and KH = {kh | k € K, h € H}. Prove that HK is a group if
and only if HK = KH.

. Let H and K be subgroups of a finite group G. Prove that

[H] K]

HK| = .
HKI =g

(This exercise is referred to in Chapters 10, 11, and 24.)

. The exponent of a group is the smallest positive integer n such that

x" = e for all x in the group. Prove that every finite group has an ex-
ponent that divides the order of the group.

. Determine all U-groups of exponent 2.
10.

Suppose that H and K are subgroups of a group and that |H| and K|
are relatively prime. Show that H N K = {e}.

Let R™ denote the multiplicative group of positive real numbers and
let T = {a + bi € C*| a> + b> = 1} be the multiplicative group of
complex numbers of norm 1. Show that every element of C* can be
uniquely expressed in the form rz, where r € R andz € T.

Use a group-theoretic proof to show that O* under multiplication is
not isomorphic to R* under multiplication.

Use a group-theoretic proof to show that Q under addition is not
isomorphic to R under addition.

Prove that R under addition is not isomorphic to R* under
multiplication.

Show that Q" (the set of positive rational numbers) under multipli-
cation is not isomorphic to Q under addition.

Suppose that G = {e, x, x>, y, yx, yx*} is a non-Abelian group with
IxI = 3 and |yl = 2. Show that xy = yx2.

Let p be an odd prime. Show that 1 is the only solution of x?~2 = 1
in U(p).

Let G be an Abelian group under addition. Let n be a fixed positive
integer and let H = {(g, ng) | g € G}. Show that H is a subgroup of
G @ G. When G is the set of real numbers under addition, describe
H geometrically.

Find five subgroups of Z, ® Z, + Z,, isomorphic to Z, © Z..

Suppose that G = G, ® G, © - -+ © G,. Prove that Z(G) =
ZG)DZLUG,)D - - - DZG,).
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21.
22,

23.

24,

25.

26.
217.
28.

29.
30.
31.
32.

33.

34.
35.
36.

37.

38.

39.

40.

41.
42.

43.
44.
45.

Exhibit four nonisomorphic groups of order 18.
What is the order of the largest cyclic subgroup in Aut(Z.,)? (Hint:
It is not necessary to consider automorphisms of Z,,.)

Let G be the group of all permutations of the positive integers. Let
H be the subset of elements of G that can be expressed as a product
of a finite number of cycles. Prove that H is a subgroup of G.

Let H be a subgroup of G. Show that Z(G)H is a subgroup of G.
Show that D, © Z, # D, © Z,,. (This exercise is referred to in
Chapter 24.)

Show that D, # D, D Z,. (This exercise is referred to in Chapter 24.)
Show that D, # D, @ Z,,. (This exercise is referred to in Chapter 24.)
Exhibit four nonisomorphic groups of order 66. (This exercise is
referred to in Chapter 24.)

Prove that IInn(G)!I = 1 if and only if G is Abelian.

Prove that x'% = 1 for all x in U(1000).

Find a subgroup of order 6 in U(450).

List four elements of Z,, @ Z, @ Z that form a noncyclic
subgroup.

In S, let B = (13)(17)(265)(289). Find an element in S, that com-
mutes with 8 but is not a power of S.

Prove or disprove that Z, ® Z . = Z D Z,,.

Prove or disprove that D, = Z, ® D,.

Describe a three-dimensional solid whose symmetry group is iso-
morphic to D..

Let G = U(15) © Z,, D S,. Find the order of (2, 3, (123)(15)). Find
the inverse of (2, 3, (123)(15)).

LetG=ZDZ,andlet H= {g € Gl gl = ©orIgl = 1}. Prove
or disprove that H is a subgroup of G.

Let G be an infinite group of the form G, @ G, D - - - © G where
each G, is a nontrivial group and n > 1. Prove that G is not cyclic.
For any o in S, and any k-cycle (i,i, - - - i) in S, prove that o°(i i, . . .
ot =o@)o@,)...o@).

Find an element of order 10 in A,.

In the left regular representation for D, write Ty, and 7', in matrix
form and in cycle form.

How many elements of order 6 are in S,?

Prove that S, @ S, is not isomorphic to a subgroup of S,.

Find a permutation 8 such that 82 = (13579)(268).



46.

47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

57.

58.

59.
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In R ©@© R under componentwise addition, let H = {(x, 3x) | x € R}.
(Note that H is the subgroup of all points on the line y = 3x.) Show
that (2, 5) + H is a straight line passing through the point (2, 5) and
parallel to the line y = 3x.

In R @ R, suppose that H is the subgroup of all points lying on a
line through the origin. Show that any left coset of H is either H or
a line parallel to H.

Let G be a group of permutations on the set {1, 2, ..., n}. Recall
that stab (1) = {a € G I a(1) = 1}. If y sends 1 to k, prove that
v stab (1) = {B € G| B(1) = k}.

Let H be a subgroup of G and let a, b € G. Show that aH = bH if
and only if Ha™! = Hb™ 1.

Suppose that G is a finite Abelian group that does not contain a
subgroup isomorphic to Z, ¥ Z, for any prime p. Prove that G is
cyclic.

Let p be a prime. Determine the number of elements of order p in
Z;, D Zy.

Show that Z,» © Z,» has exactly one subgroup isomorphic to Z © Z .
Let p be a prime. Determine the number of subgroups of Z, @ Z
isomorphic to Z,.

Find a group of order 32 - 5% - 72 - 23 that contains a subgroup iso-
morphic to Ag.

Let p and ¢ be distinct odd primes. Let n = lem(p — 1, g — 1).
Prove that x* = 1 for all x € U(pq).

Prove that D is not isomorphic to a subgroup of §,.

Prove that the permutations (12) and (123 . . . n) generate S, . (That
is, every member of S can be expressed as some combination of
these elements.

Suppose that n is even and o is an (n — 1)-cycle in S, . Show that o
does not commute with any element of order 2.

Suppose that n is odd and o is an n-cycle in S . Prove that o does
not commute with any element of order 2.



Normal Subgroups

and Factor Groups

It is tribute to the genius of Galois that he recognized that those subgroups
for which the left and right cosets coincide are distinguished ones. Very
often in mathematics the crucial problem is to recognize and to discover
what are the relevant concepts; once this is accomplished the job may be
more than half done.

I. N. HERSTEIN, Topics in Algebra

Normal Subgroups
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As we saw in Chapter 7, if G is a group and H is a subgroup of G, it is not
always true that ald = Ha for all a in G. There are certain situations where
this does hold, however, and these cases turn out to be of critical impor-
tance in the theory of groups. It was Galois, about 175 years ago, who first
recognized that such subgroups were worthy of special attention.

Definition Normal Subgroup
A subgroup H of a group G is called a normal subgroup of G if aH =
Ha for all a in G. We denote this by H < G.

Many students make the mistake of thinking that “H is normal in G”
means ah = ha fora € G and h € H. This is not what normality of H
means; rather, it means that if « € G and & € H, then there exist ele-
ments 4" and /4" in H such that ah = h'a and ha = ah”. Think of it this
way: You can switch the order of a product of an element from the group
and an element from the normal subgroup, but you must “fudge” a bit on
the element from the normal subgroup by using 4’ or A" rather than A. (It
is possible that 2" = h or A" = h, but we may not assume this.)

There are several equivalent formulations of the definition of nor-
mality. We have chosen the one that is the easiest to use in applications.
However, to verify that a subgroup is normal, it is usually better to use
Theorem 9.1, which is a weaker version of property 7 of the lemma in
Chapter 7. It allows us to substitute a condition about two subgroups of
G for a condition about two cosets of G.
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i Theorem 9.1 Normal Subgroup Test

A subgroup H of G is normal in G if and only if xHx ! C H
forall xin G.

PROOF If His normal in G, then for any x € G and & € H there is an i’
in H such that x4 = h'x. Thus, xhx~! = h’, and therefore xHx™! C H.
Conversely, if xHx™! C H for all x, then, letting x = a, we have
aHa™' C H or aH C Ha. On the other hand, letting x = a~!, we have
a 'Ha "' =a '"Ha C Hor Ha C aH. |

# EXAMPLE 1 Every subgroup of an Abelian group is normal. (In this
case, ah = ha for a in the group and / in the subgroup.) |

B EXAMPLE 2 The center Z(G) of a group is always normal. [Again,
ah = ha for any a € G and any h € Z(G).] |

B EXAMPLE 3 The alternating group A, of even permutations is a nor-
mal subgroup of S, . [Note, for example, that for (12) € § and (123) €
A, we have (12)(123) # (123)(12) but (12)(123) = (132)(12) and
(132) € A,] |

B EXAMPLE 4 The subgroup of rotations in D, is normal in D,. (For
any rotation r and any reflection f, we have fr = r~!f, whereas for any
rotations r and ', we have rr’ = r'r.) |

B EXAMPLE 5 The group SL(2, R) of 2 X 2 matrices with determinant
1 is a normal subgroup of GL(2, R), the group of 2 X 2 matrices with
nonzero determinant. To verify this, we use the normal subgroup test
given in Theorem 9.1. Let x € GL(2, R) = G, h € SL(2, R) = H and
note that det xAx~! = (det x)(det h)(det x)~! = (det x)(det x)~! = 1. So,
xhx~' € H, and, therefore, xHx ' C H. |

B EXAMPLE 6 Referring to the group table for A, given in Table 5.1 on
page 107, we may observe that H = {«,, «,, a;, @,} is a normal
subgroup of A,, whereas K = {a,, a,, ay} is not a normal subgroup
of A,. To see that H is normal, simply note that for any Bin A,, BHB ' is
a subgroup of order 4 and H is the only subgroup of A, of order 4
since all other elements of A, have order 3. Thus, BHB~! = H. In con-
trast, a,a,0,' = @, so that a,Ka,”' € K. |
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Factor Groups

We have yet to explain why normal subgroups are of special significance.
The reason is simple. When the subgroup H of G is normal, then the set
of left (or right) cosets of H in G is itself a group—called the factor group
of G by H (or the quotient group of G by H). Quite often, one can obtain
information about a group by studying one of its factor groups. This
method will be illustrated in the next section of this chapter.

I Theorem 9.2 Factor Groups (O. Hélder, 1889)

Let G be a group and let H be a normal subgroup of G. The set
G/H = {aH | a € G} is a group under the operation (aH)(bH) = abH."

PROOF Our first task is to show that the operation is well defined; that
is, we must show that the correspondence defined above from G/H X
G/H into G/H is actually a function. To do this we assume that for
some elements a, a’, b, and b' from G, we have aH = a'H and bH =
b'H and verify that aHbH = a'Hb'H. That is, verify that abh = a'b'H.
(This shows that the definition of multiplication depends only on the
cosets and not on the coset representatives.) From aH = a’H and bH =
b'H , we have a' = ah, and b’ = bh, for some h,, h, in H, and therefore
a'b’H = ah,bh,H = ah,bH = ah,Hb = aHb = abH. Here we have made
multiple use of associativity, property 2 of the lemma in Chapter 7, and
the fact that H <\ G. The rest is easy: eH = H is the identity; a~'H is the
inverse of aH; and (aHbH)cH = (ab)HcH = (ab)cH = a(bc)H =
aH(bc)H = aH(bHcH). This proves that G/H is a group. |

Although it is merely a curiosity, we point out that the converse of
Theorem 9.2 is also true; that is, if the correspondence aHbH = abH
defines a group operation on the set of left cosets of H in G, then H is
normal in G.

The next few examples illustrate the factor group concept.

B EXAMPLE7Z7 Let4Z = {0, =4, £8, .. .}. To construct Z/4Z, we first
must determine the left cosets of 4Z in Z. Consider the following four
cosets:

0+4Z =47 = {0, =4, 8, ...},
14+42=1{1,5,9,...; -3, -7, —11,...},

"The notation G/H was first used by C. Jordan.
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24+4Z=1{2,6,10,...; -2, —6,—10, ...},
34+4Z=1{3,7,11,...;—1,-5,-9,...}.

We claim that there are no others. For if k € Z, then k = 4g + r, where
0 = r < 4; and, therefore, k + 4Z = r + 4q + 4Z = r + 4Z. Now that
we know the elements of the factor group, our next job is to determine
the structure of Z/4Z. Its Cayley table is

‘ 0+4Z 1+4Z 2+ 47 3+4Z
0+ 4Z 0+4z 1+4Z 2+47 3+4Z
1+4Z 1+4Z 2+4Z 3+4Z 0+4z
2+47 2+4Z 3+4Z 0+4z 1+4Z
3+4Z 3+4Z 0+4z 1+4Z 2+4Z

Clearly, then, Z/4Z ~ Z,. More generally, if for any n > 0 we let nZ =
{0, =n, £2n, £3n, ...}, then Z/nZ is isomorphic to Z . |

B EXAMPLE8 Let G = Z g and let H = (6) = {0, 6, 12}. Then G/H =
{0+H, 1 +H,2+H 3+ H 4+ H 5+ H}. To illustrate how the
group elements are combined, consider (5 + H) + (4 + H). This
should be one of the six elements listed in the set G/H. Well, (5 + H) +
4G4+H=5+4+H=9+H=3+6+H=3+ H, since H ab-
sorbs all multiples of 6. |

A few words of caution about notation are warranted here. When H
is a normal subgroup of G, the expression laH| has two possible inter-
pretations. One could be thinking of aH as a set of elements and laH|
as the size of the set; or, as is more often the case, one could be think-
ing of aH as a group element of the factor group G/H and laH| as the
order of the element aH in G/H. In Example 8, for instance, the set 3 +
H has size 3, since 3 + H = {3, 9, 15}. But the group element
3+ Hhasorder2,since(3+ H) + 3+ H) =6+ H=0+ H.Asis
usually the case when one notation has more than one meaning, the ap-
propriate interpretation will be clear from the context.

B EXAMPLE 9 Let X = {R, R .}, and consider the factor group of
the dihedral group D, (see page 31 for the multiplication table for D,)

D /% = (%, Ry, H¥, DK}

The multiplication table for D,/J{ is given in Table 9.1. (Notice that
even though Ry H = D', we have used D in Table 9.1 for HI{ R K
because D'H = DIH.)
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Table 9.1
% Ry X HY DX
X % Ry H D
Ry X Rk % D H
HX HX DX H Ry, Jt
DX DX HX Ry, Jt J

D /3 provides a good opportunity to demonstrate how a factor
group of G is related to G itself. Suppose we arrange the heading of the
Cayley table for D, in such a way that elements from the same coset of
J{ are in adjacent columns (Table 9.2). Then, the multiplication table
for D, can be blocked off into boxes that are cosets of J, and the sub-
stitution that replaces a box containing the element x with the coset xJ{
yields the Cayley table for D, /K.

For example, when we pass from D, to D,/J{, the box

H Vv
Vv H

in Table 9.2 becomes the element HX in Table 9.1. Similarly, the box

D D
D" D

becomes the element DI, and so on.

Table 9.2

0 Rig Ry Ry H 14 D D’
R, R, Ry Ry, Ry H 4 D ’ D'
Rigp | Rigo R, Ry Ry, 14 H D D
Ry, Ry, Ry Ry R, D’ D ’ H v
Ryo | Rypo Ry, R, Ryg D D 4 H
H H 4 D D' R, Ryg Ry, Ry
v v H D' D Ry R, Ry Ry,
D D D' v H Ry Ry, R, R
D’ D' D H Vv Ry, Ry Ry R,
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In this way, one can see that the formation of a factor group G/H
causes a systematic collapse of the elements of G. In particular, all the
elements in the coset of H containing a collapse to the single group el-
ement aH in G/H.

B EXAMPLE 10 Consider the group A, as represented by Table 5.1
on page 107. (Here i denotes the permutation a,.) Let H = {1, 2, 3, 4}.
Then the three cosets of H are H, 5H = {5, 6,7, 8}, and 9H = {9,
10, 11, 12}. (In this case, rearrangement of the headings is unneces-
sary.) Blocking off the table for A, into boxes that are cosets of H
and replacing the boxes containing 1, 5, and 9 (see Table 9.3) with
the cosets 1H, SH, and 9H, we obtain the Cayley table for G/H given

in Table 9.4.
Table 9.3
1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 4 5 6 7 8 9 10 11 12
2 2 1 4 3 6 5 8 7 10 9 12 11
3 3 4 1 2 7 8 5 6 11 12 9 10
4 4 3 2 1 8 7 6 5 12 11 10 9
5 5 8 6 7 9 12 10 11 1 4 2 3
6 6 7 5 8 10 11 9 12 2 3 1 4
7 7 6 8 5 11 10 12 9 3 2 4 1
8 8 5 7 6 12 9 11 10 4 1 3 2
9 9 11 12 10 1 3 4 2 5 7 8 6
10 | 10 12 11 9 2 4 3 1 6 8 7 5
11 | 11 9 10 12 3 1 2 4 7 5 6 8
12 |12 10 9 11 4 2 1 3 8 6 5 7
Table 9.4
1H SH 9H
1H 1H 5H 9H
SH SH 9H 1H
9H 9H 1H 5SH

This procedure can be illustrated more vividly with colors. Let’s say
we had printed the elements of H in green, the elements of 5SH in red,
and the elements of 9H in blue. Then, in Table 9.3, each box would
consist of elements of a uniform color. We could then think of
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the factor group as consisting of the three colors that define a group
table isomorphic to G/H.

Green Red Blue
Green Green Red Blue
Red Red Blue Green
Blue Blue Green Red

It is instructive to see what happens if we attempt the same proce-
dure with a group G and a subgroup H that is not normal in G—that is,
if we arrange the headings of the Cayley table so that the elements
from the same coset of H are in adjacent columns and attempt to block
off the table into boxes that are also cosets of H to produce a Cayley
table for the set of cosets. Say, for instance, we were to take G to be A,
and H = {1, 5, 9}. The cosets of H would be H, 2H = {2, 6, 10},
3H = {3,7,11}, and 4H = {4, 8, 12}. Then the first three rows of the
rearranged Cayley table for A, would be

1 5 9 2 6 10 3 7 11 4 8 12
1 1 5 9 2 6 10 3 7 11 4 12
5 9 1 12 4 6 10 7 11 3
9 9 1 5 11 3 7 12 4 8 10 6

But already we are in trouble, for blocking these off into 3 X 3 boxes
yields boxes that contain elements of different cosets. Hence, it is im-
possible to represent an entire box by a single element of the box in the
same way we could for boxes made from the cosets of a normal sub-
group. Had we printed the rearranged table in four colors with all
members of the same coset having the same color, we would see multi-
colored boxes rather than the uniformly colored boxes produced by a
normal subgroup. |

In Chapter 11, we will prove that every finite Abelian group is
isomorphic to a direct product of cyclic groups. In particular, an
Abelian group of order 8 is isomorphic to one of Z,, Z, © Z,, or Z, ©
Z, D Z,. In the next two examples, we examine Abelian factor groups
of order 8 and determine the isomorphism type of each.

B EXAMPLE 11 LetG=U(32)={1,3,5,7,9,11,13,15,17, 19, 21,
23,25,27,29,31} and H = U (32) = {1, 17}. Then G/H is an Abelian
group of order 16/2 = 8. Which of the three Abelian groups of order 8
is it—Z,, Z, ® Z,, or Z, ® Z, D Z,? To answer this question, we need
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only determine the elements of G/H and their orders. Observe that the
eight cosets

1H={1,17}, 3H={3,19}, S5H=1{521}, 7H=1{7,23},
9H = {9,25}, 11H = {11,27}, 13H = {13,29), 15H = {15, 31}

are all distinct, so that they form the factor group G/H. Clearly,
(3H)> = 9H # H, and so 3H has order at least 4. Thus, G/H is not
Z,® Z, ® Z,. On the other hand, direct computations show that both
7H and 9H have order 2, so that G/H cannot be Z, either, since a cyclic
group of even order has exactly one element of order 2 (Theorem 4.4).
This proves that U(32)/U | (32) = Z, @ Z,, which (not so incidentally!)
is isomorphic to U(16). |

B EXAMPLE12 Let G = U(32)and K = {1, 15}. Then IG/K| = 8, and
we ask, which of the three Abelian groups of order 8 is G/K? Since
(3K)* = 81K = 17K # K, I3K| = 8. Thus, G/K ~ Z,. |

It is crucial to understand that when we factor out by a normal sub-
group H, what we are essentially doing is defining every element in H
to be the identity. Thus, in Example 9, we are making R, i = J{ the
identity. Likewise, R,, ;K = Ry R, J{ = R, Ji. Similarly, in Example 7,
we are declaring any multiple of 4 to be 0 in the factor group Z/4Z. This
iswhy5S +4Z=1+4+4Z =1+ 4Z, and so on. In Example 11, we
have 3H = 19H, since 19 = 3 - 17 in U(32) and going to the factor
group makes 17 the identity. Algebraists often refer to the process of

creating the factor group G/H as “killing” H.

Applications of Factor Groups

Why are factor groups important? Well, when G is finite and H # {e},
G/H is smaller than G, and its structure is usually less complicated than
that of G. At the same time, G/H simulates G in many ways. In fact, we
may think of a factor group of G as a less complicated approximation
of G (similar to using the rational number 3.14 for the irrational
number 7). What makes factor groups important is that one can often
deduce properties of G by examining the less complicated group G/H
instead. We illustrate this by giving another proof that A, has no sub-
group of order 6.

I EXAMPLE 13 A, Has No Subgroup of Order 6
The group A, of even permutations on the set {1, 2, 3, 4} has no sub-
group H of order 6. To see this, suppose that A, does have a subgroup H
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of order 6. By Exercise 7 in this chapter, we know that H <IA,. Thus,
the factor group A,/H exists and has order 2. Since the order of an
element divides the order of the group, we have for all « € A, that o
H = (aH)* = H. Thus, o € H for all « in A,. Referring to the main
diagonal of the group table for A, given in Table 5.1 on page 107, how-
ever, we observe that A, has nine different elements of the form o2, all
of which must belong to H, a subgroup of order 6. This is clearly
impossible, so a subgroup of order 6 cannot exist in A,.t |

The next three theorems illustrate how knowledge of a factor group
of G reveals information about G itself.

I Theorem 9.3 The G/Z Theorem

Let G be a group and let Z(G) be the center of G. If GIZ(G) is cyclic,
then G is Abelian.

PROOF Let gZ(G) be a generator of the factor group G/Z(G), and let
a, b € G. Then there exist integers i and j such that

aZ(G) = (8Z(G)) = g'Z(G)
and
bZ(G) = (8Z(G))! = ¢'Z(G).

Thus, a = gix for some x in Z(G) and b = g/y for some y in Z(G). It fol-
lows then that

ab = (gx)(gly) = g'(xg/)y = g'(g’x)y

= (8'g)(xy) = (g/8H(x) = (g/y)(g'x) = ba. "

A few remarks about Theorem 9.3 are in order. First, our proof shows

that a better result is possible: If G/H is cyclic, where H is a subgroup of

Z(G), then G is Abelian. Second, in practice, it is the contrapositive of

the theorem that is most often used—that is, if G is non-Abelian, then

G/Z(G) is not cyclic. For example, it follows immediately from this

statement and Lagrange’s Theorem that a non-Abelian group of order

pq, where p and g are primes, must have a trivial center. Third, if G/Z(G)
is cyclic, it must be trivial.

THow often have I said to you that when you have eliminated the impossible, whatever
remains, however improbable, must be the truth. Sherlock Holmes, The Sign of Four
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B Theorem9.4 G/Z(G) = Inn(G)

For any group G, G/Z(G) is isomorphic to Inn(G).

PROOF Consider the correspondence from G/Z(G) to Inn(G) given by
T:gZ(G) - qbg [where, recall, d)g(x) = gxg~ ! for all x in G). First, we
show that T 1is well defined. To do this, we assume that
gZ(G) = hZ(G) and verify that ¢, = ¢,. (This shows that the image
of a coset of Z(G) depends only on the coset itself and not on the ele-
ment representing the coset.) From ¢gZ(G) = hZ(G), we have that
h~'g belongs to Z(G). Then, for all x in G, h~'gx = xh~'g. Thus,
gxg~' = hxh™! for all x in G, and, therefore, ¢, = ¢, Reversing this
argument shows that 7"is one-to-one, as well. Clearly, T is onto.

That T is operation-preserving follows directly from the fact that
d)gd)h = d)gh for all g and 4 in G. |

As an application of Theorems 9.3 and 9.4, we may easily determine
Inn(D,) without looking at Inn(D,)!

§ EXAMPLE 14 We know from Example 11 in Chapter 3 that
IZ(Dg)! = 2. Thus, ID,/Z(Dy)! = 6. So, by our classification of groups
of order 6 (Theorem 7.2), we know that Inn(Dy) is isomorphic to D,
or Z.. Now, if Inn(D,) were cyclic, then, by Theorem 9.4, D//Z(D,)
would be also. But then, Theorem 9.3 would tell us that D is Abelian.
So, Inn(D,) is isomorphic to D,. |

The next theorem demonstrates one of the most powerful proof tech-
niques available in the theory of finite groups—the combined use of
factor groups and induction.

1 Theorem 9.5 Cauchy’s Theorem for Abelian Groups

Let G be a finite Abelian group and let p be a prime that divides the
order of G. Then G has an element of order p.

PROOF Clearly, this statement is true for the case in which G has
order 2. We prove the theorem by using the Second Principle of Math-
ematical Induction on |GI. That is, we assume that the statement is true
for all Abelian groups with fewer elements than G and use this assump-
tion to show that the statement is true for G as well. Certainly, G has
elements of prime order, for if IxI = m and m = gn, where ¢ is prime,
then Ix"l = g. So let x be an element of G of some prime order ¢, say. If
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q = p, we are finished; so assume that ¢ # p. Since every subgroup of
an Abelian group is normal, we may construct the factor group G =
G/{x). Then G is Abelian and p divides IGl, since |G| = |Gl/g. By
induction, then, G has an element—call it y(x)—of order p. The con-
clusion now follows from Exercise 65. |

Internal Direct Products

As we have seen, the external direct product provides a way of putting
groups together into a larger group. It would be quite useful to be able
to reverse this process—that is, to be able to start with a large group
and break it down into a product of smaller groups. It is occasionally
possible to do this. To this end, suppose that H and K are subgroups of
some group G. We define the set HK = {hk | h € H, k € K}.

B EXAMPLE 15 In U(24) = {1, 5,7, 11, 13, 17, 19, 23}, let H =
{1,17} and K = {1, 13}. Then, HK = {1, 13,17,5},since 5 = 17 - 13
mod 24. |

B EXAMPLE 16 In S,, let H = {(1), (12)} and K = {(1), (13)}. Then,
HK = {(1), (13), (12), (12)(13)} = {(1), (13), (12), (132)}. 1

The student should be careful not to assume that the set HK is a sub-
group of G; in Example 15 it is, but in Example 16 it is not.

Definition Internal Direct Product of H and K
We say that G is the internal direct product of H and K and write
G = H X K if H and K are normal subgroups of G and

G=HK and HNK = {e}.

The wording of the phrase “internal direct product” is easy to justify.
We want to call G the internal direct product of H and K if H and K are
subgroups of G, and if G is naturally isomorphic to the external direct
product of H and K. One forms the internal direct product by starting
with a group G and then proceeding to find two subgroups H and K
within G such that G is isomorphic to the external direct product of H
and K. (The definition ensures that this is the case—see Theorem 9.6.)
On the other hand, one forms an external direct product by starting with
any two groups H and K, related or not, and proceeding to produce the
larger group H @ K. The difference between the two products is that the
internal direct product can be formed within G itself, using subgroups
of G and the operation of G, whereas the external direct product can be
formed with totally unrelated groups by creating a new set and a new
operation. (See Figures 9.1 and 9.2.)
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G

Figure 9.1 For the internal direct product,
H and K must be subgroups of the same group.

H K
Figure 9.2 For the external

direct product, H and K can
be any groups.

Perhaps the following analogy with integers will be useful in clari-
fying the distinction between the two products of groups discussed in
the preceding paragraph. Just as we may take any (finite) collection of
integers and form their product, we may also take any collection of
groups and form their external direct product. Conversely, just as we
may start with a particular integer and express it as a product of cer-
tain of its divisors, we may be able to start with a particular group and
factor it as an internal direct product of certain of its subgroups.

B EXAMPLE 17 In D, the dihedral group of order 12, let F denote
some reflection and let R, denote a rotation of k degrees. Then,

Dy = {Ry, Rys0 Ry Fs RyoFs RyyoF) X {Ry Ry )- N

120° 7 7240° 120 240

Students should be cautioned about the necessity of having all con-
ditions of the definition of internal direct product satisfied to ensure
that HK ~ H © K. For example, if we take

G =25, H = ((123)), and K = ((12)),

then G = HK, and H N K = {(1)}. But G is not isomorphic to H D K,
since, by Theorem 8.2, H @ K is cyclic, whereas §, 18 not. Note that K
is not normal.

A group G can also be the internal direct product of a collection of
subgroups.
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Definition Internal Direct ProductH X H, X - - - X H_
Let H, H,, ..., H, be a finite collection of normal subgroups of G. We
say that G is the internal direct product of H,, H,, . . ., H and write
G=H XH,X---XH,if

EH)

I.G=HH, --H,={hh, --h, |h, ;
2.(HH,---H)NH,_  ={ejfori=1,2,...,n— 1

This definition is somewhat more complicated than the one given for
two subgroups. The student may wonder about the motivation for it—
that is, why should we want the subgroups to be normal and why is it
desirable for each subgroup to be disjoint from the product of all previ-
ous ones? The reason is quite simple. We want the internal direct prod-
uct to be isomorphic to the external direct product. As the next theorem
shows, the conditions in the definition of internal direct product were
chosen to ensure that the two products are isomorphic.

i Theorem9.6 H X H, X :--XH ~H ©OH,D---OH,

If a group G is the internal direct product of a finite number of
subgroups H, H,, . . ., H,, then G is isomorphic to the external
direct productof H, H,, ..., H,.

n

PROOF We first show that the normality of the H’s together with the
second condition of the definition guarantees that 4’s from different
H_’s commute. For if &, € H, and hj €H, with i # j, then

(hhh O '€Hh '=H

A I i J

and

hi(h;h,"'h™") € hH, = H,.
Thus, hlhjhlflh]f1 EH N HJ = {e} (see Exercise 3), and, therefore,
hih]. = h].hi. We next claim that each member of G can be expressed
uniquely in the form 7,4, - - - h , where h, € H,. That there is at least one

such representation is the content of condition 1 of the definition. To
prove uniqueness, suppose that g = hh, - -+ h and g = h{h) - - h/,

where h. and hl’ belong to H fori = 1, ..., n. Then, using the fact that
the /’s from different H;’s commute, we can solve the equation
h1h2"'hn:h’1h,2"'h:1 (1)

for hr’z h”_1 to obtain

h’nhnil = (h1,)7]h1(h2’)71h2 T (h:z—l)ilhn—l‘
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But then
’ -1 _
hnhn €EHH,---H_,NH = {e},

so that h’nhn_l = e and, therefore, i/ = h . At this point, we can cancel
h, and K from opposite sides of the equal sign in Equation (1) and repeat
the preceding argument to obtain 2, _, = A’ ,. Continuing in this fash-
ion, we eventually have h, = h;. fori =1, ..., n. With our claim estab-
lished, we may now define a function ¢ from Gto H, O H,D - - - D H,
by ¢(h,hy - - h) = (h, h,, ..., h). We leave to the reader the easy ver-
ification that ¢ is an isomorphism. |

The next theorem provides an important application of Theorem 9.6.
B Theorem 9.7 Classification of Groups of Order p*

Every group of order p?, where p is a prime, is isomorphic to Z, or
Z DZ.
P P

PROOF Let G be a group of order p?, where p is a prime. If G has an
element of order p?, then G is isomorphic to Z,. So, by Corollary 2 of
Lagrange’s Theorem, we may assume that every nonidentity element of
G has order p. First we show that for any element a, the subgroup (a) is
normal in G. If this is not the case then there is an element b in G such
that bab~" is not in {(a). Then {(a) and {(bab~"') are distinct subgroups of
order p. Since {(a) M (bab™ ') is a subgroup of both (a) and {(bab™ '),
we have that (a) M (bab™') = {e}. From this it follows that the distinct
left cosets of (bab~') are (bab~'), a{bab™'), a*(bab™"), . . .,
a’~'(bab™'). Since b~! must lie in one of these cosets, we may write
b~ lin the form b~' = a'(bab™ 'Y = a'ba’b™" for some i and j. Cancel-
ing the b~! terms, we obtain e = a'bd’ and therefore b = a~' "~/ € (a).
This contradiction verifies our assertion that every subgroup of the form
(a) is normal in G. To complete the proof, let x be any nonidentity ele-
ment in G and y be any element of G not in (x). Then, by comparing or-
ders and using Theorem 9.6, we see that G = (x) X (y) =Z, D Z,. i

As an immediate corollary of Theorem 9.7, we have the following
important fact.

I Corollary

If G is a group of order p?, where p is a prime, then G is Abelian.
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We mention in passing thatif G = H, @ H, D - - - © H , then G can
be expressed as the internal direct product of subgroups isomorphic to
H, H,, ..., H_.Forexample, if G = H @ H,, then G = H, X H,,
where H, = H, © {e} and H, = {e} © H,.

The topic of direct products is one in which notation and terminol-
ogy vary widely. Many authors use H X K to denote both the internal
direct product and the external direct product of H and K, making no
notational distinction between the two products. A few authors define
only the external direct product. Many people reserve the notation
H @ K for the situation where H and K are Abelian groups under addi-
tion and call it the direct sum of H and K. In fact, we will adopt this ter-
minology in the section on rings (Part 3), since rings are always
Abelian groups under addition.

The U-groups provide a convenient way to illustrate the preceding
ideas and to clarify the distinction between internal and external direct
products. It follows directly from Theorem 8.3 and its corollary and

Theorem 9.6 that if m = n,n, - - - n,, where ged(n, nj) = 1 fori # j, then

U(m) = Um/nl(m) X Um/nz(m) XX Um/nk(m)
~Un)DUmn) DD Un,).

Let us return to the examples given following Theorem 8.3.

U(105) = U(15 - 7) = U,(105) X U,(105)
= {1, 16, 31,46, 61,76} X {1,8,22,29,43,64, 71,92}
~ U(T) ® U(15),
U(105) = U5 - 21) = U(105) X U,,(105)
= {1, 11, 16, 26, 31, 41, 46, 61, 71, 76, 86, 101}
X {1,22,43, 64} = UQ1) & U(5),
U(105) = U3 - 5+ 7) = U,(105) X U,,(105) X U,((105)
= {1,71} X {1,22, 43,64} X {1, 16, 31, 46, 61, 76}
~ UQ3) @ U(5) @ U(T).
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Understanding is a kind of ecstasy.

10.
11.

12.
13.
14.

15.

16.

wen s

CARL SAGAN

. Let H = {(1), (12)}. Is H normal in §,?
. Prove that A is normalin §,.
. Show that if G is the internal direct product of H, H,, . .., H and

i#Fjwithl=i=n,1=j=n,then H N H] = {e}. (This exercise
is referred to in this chapter.)

a,b,d € R, ad # 0}. Is H a normal sub-

group of GL(2, R)?

. Let G = GL(2, R) and let K be a subgroup of R*. Prove that H =

{A € Gl det A € K} is a normal subgroup of G.

. Viewing (3) and (12) as subgroups of Z, prove that (3)/(12) is iso-

morphic to Z,. Similarly, prove that (8)/(48) is isomorphic to Z.
Generalize to arbitrary integers k and n.

. Prove that if H has index 2 in G, then H is normal in G. (This exer-

cise is referred to in Chapters 24 and 25 and this chapter.)

. Let H = {(1), (12)(34)} in A,.

a. Show that H is not normal in A,.

b. Referring to the multiplication table for A, in Table 5.1 on page
107, show that, although a H = «,H and o H = «, H, it is not
true that a¢gayH = a,a, H. Explain why this proves that the left
cosets of H do not form a group under coset multiplication.

. Let G = Z, ® U(4), H = ((2, 3)), and K = (2, 1)). Show that G/H

is not isomorphic to G/K. (This shows that H ~ K does not imply
that G/H ~ G/K.)

Prove that a factor group of a cyclic group is cyclic.

Let H be a normal subgroup of G. If H and G/H are Abelian, must
G be Abelian?

Prove that a factor group of an Abelian group is Abelian.

If H is a subgroup of G and a, b € G, prove that (ab)H = a(bH).
What is the order of the element 14 + (8) in the factor group
Z,,/(8)?

What is the order of the element 4U,(105) in the factor group
U(105)/U4(105)?

Recall that Z(D,) = {R,, R 4,}. What is the order of the element
R, Z(Dy) in the factor group D/Z(Dy)?
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17.
18.
19.
20.
21.
22,
23.
24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.
35.

36.

Let G = Z/{20) and H = (4)/{20). List the elements of H and G/H.
What is the order of the factor group Z,/(15)?

What is the order of the factor group (Z,, ® U(10))X(2, 9))?
Construct the Cayley table for U(20)/U,(20).

Prove that an Abelian group of order 33 is cyclic.

Determine the order of (Z D Z)/{(2, 2)). Is the group cyclic?
Determine the order of (Z ©® Z)/{(4, 2)). Is the group cyclic?

The group (Z, ® Z,,){(2, 2)) is isomorphic to one of Z, Z, D Z,, or
Z,® Z, ® Z,. Determine which one by elimination.

Let G = U(32) and H = {1, 31}. The group G/H is isomorphic to
one of Z,, Z, ® Z,, or Z, ® Z, © Z,. Determine which one by
elimination.

Let G be the group of quarternions given by the table in Exercise 4
of the Supplementary Exercises for Chapters 1-4 on page 91, and
let H be the subgroup {e, a*}. Is G/H isomorphic to Z, or Z, ® Z,?
Let G = U(16), H = {1, 15}, and K = {1, 9}. Are H and K iso-
morphic? Are G/H and G/K isomorphic?
LetG=2,DZ,H={0,0),(2,0),(0,2),(2,2)},and K = ((1, 2)).
Is G/H isomorphic to Z, or Z, @ Z,? Is G/K isomorphic to Z, or
Z,DZ,?

Prove that A, © Z; has no subgroup of order 18.

Express U(165) as an internal direct product of proper subgroups
in four different ways.

Let R* denote the group of all nonzero real numbers under multi-
plication. Let R™ denote the group of positive real numbers under
multiplication. Prove that R* is the internal direct product of R*
and the subgroup {1, —1}.

Prove that D, cannot be expressed as an internal direct product of
two proper subgroups.

Let H and K be subgroups of a group G. If G = HK and g = hk,
where 4 € H and k € K, is there any relationship among Igl, 1Al,
and |klI? What if G = H X K?

InZ, let H = {5) and K = (7). Prove that Z = HK. Does Z = H X K?
Let G = {3%"10¢ | a, b, ¢ € Z} under multiplication and H =
{3%6°12¢ | a, b, ¢ € Z} under multiplication. Prove that G = (3) X
(6) X (10), whereas H # (3) X (6) X (12).

Determine all subgroups of R* (nonzero reals under multiplica-
tion) of index 2.



37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

47.

48.

49.

50.

S1.
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Let G be a finite group and let H be a normal subgroup of G. Prove
that the order of the element gH in G/H must divide the order
of gin G.

Let H be a normal subgroup of G and let a belong to G. If the ele-
ment aH has order 3 in the group G/H and |Hl =10, what are the
possibilities for the order of a?

If H is a normal subgroup of a group G, prove that C(H), the cen-
tralizer of H in G, is a normal subgroup of G.

An element is called a square if it can be expressed in the form b?
for some b. Suppose that G is an Abelian group and H is a sub-
group of G. If every element of H is a square and every element of
G/H is a square, prove that every element of G is a square. Does
your proof remain valid when “square” is replaced by “nth power,”
where 7 is any integer?

Show, by example, that in a factor group G/H it can happen that
aH = bH but lal # |bl. (Donotusea = eorb = e.)

Observe from the table for A, given in Table 5.1 on page 107 that
the subgroup given in Example 6 of this chapter is the only sub-
group of A, of order 4. Why does this imply that this subgroup
must be normal in A,? Generalize this to arbitrary finite groups.
Let p be a prime. Show that if H is a subgroup of a group of order
2p that is not normal, then H has order 2.

Show that D5 is isomorphic to Inn(D3).

Suppose that NV is a normal subgroup of a finite group G and H is a
subgroup of G. If |G/N]| is prime, prove that H is contained in N or
that NH = G.

If Gisagroup and|G: Z(G)| = 4, prove that G/Z(G) = Z, D Z,.
Suppose that G is a non-Abelian group of order p?, where p is a
prime, and Z(G) # {e}. Prove that IZ(G)| = p.

If IGI = pgq, where p and ¢ are primes that are not necessarily dis-
tinct, prove that 1Z(G)l = 1 or pq.

Let N be a normal subgroup of G and let H be a subgroup of G. If
N is a subgroup of H, prove that H/N is a normal subgroup of G/N
if and only if H is a normal subgroup of G.

Let G be an Abelian group and let H be the subgroup consisting of
all elements of G that have finite order (See Exercise 18 in the
Supplementary Exercises for Chapters 1-4). Prove that every non-
identity element in G/H has infinite order.

Determine all subgroups of R* that have finite index.
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52.

53.

54.

55.

56.

57.

58.

Let G = {*1, =i, *j, ¥k}, where > = j> = k* = —1, —i = (—1)i,

1’=(-1?=1,ij= —ji=k jk=—kji=i,and ki = —ik = j.

a. Construct the Cayley table for G.

b. Show that H = {1, —1} <G.

c. Construct the Cayley table for G/H. Is G/H isomorphic to Z, or
Z,® Z,?

(The rules involving i, j, and k can be remembered by using the cir-

cle below.

Going clockwise, the product of two consecutive elements is the
third one. The same is true for going counterclockwise, except that
we obtain the negative of the third element.) This is the group of
quaternions that was given in another form in Exercise 4 in the
Supplementary Exercises for Chapters 1-4. It was invented by
William Hamilton in 1843. The quaternions are used to describe
rotations in three-dimensional space, and they are used in physics.
The quaternions can be used to extend the complex numbers in a
natural way.

InD,,letK = {R,, D} andlet L = {R,, D, D', R 4,}. Show that K <]
L <1 D,, but that K is not normal in D,. (Normality is not transitive.
Compare Exercise 4, Supplementary Exercises for Chapters 5-8.)

Show that the intersection of two normal subgroups of G is a nor-
mal subgroup of G. Generalize.

Let N be a normal subgroup of G and let H be any subgroup of G.
Prove that NH is a subgroup of G. Give an example to show that
NH need not be a subgroup of G if neither N nor H is normal. (This
exercise is referred to in Chapter 24.)

If N and M are normal subgroups of G, prove that NM is also a nor-
mal subgroup of G.

Let N be a normal subgroup of a group G. If N is cyclic, prove that
every subgroup of N is also normal in G. (This exercise is referred
to in Chapter 24.)

Without looking at inner automorphisms of D , determine the num-
ber of such automorphisms.
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60.

61.

62.

63.
64.

65.

66.

67.

68.
69.
70.

71.
72.
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Let H be a normal subgroup of a finite group G and let x € G. If
gcd(Ixl, IG/HI) = 1, show that x € H. (This exercise is referred to
in Chapter 25.)

Let G be a group and let G’ be the subgroup of G generated by the

set S = {x"'yxy | x, y € G}. (See Exercise 3, Supplementary

Exercises for Chapters 5-8, for a more complete description of G'.)

. Prove that G’ is normal in G.

. Prove that G/G’ is Abelian.

If G/N is Abelian, prove that G' =< N.

. Prove that if H is a subgroup of G and G’ = H, then H is normal
in G.

If N is a normal subgroup of G and IG/NI = m, show that x € N

for all x in G.

an T

Suppose that a group G has a subgroup of order n. Prove that the
intersection of all subgroups of G of order 7 is a normal subgroup
of G.

If G is non-Abelian, show that Aut(G) is not cyclic.

Let IGl = p"m, where p is prime and gcd(p, m) = 1. Suppose that
H is a normal subgroup of G of order p”. If K is a subgroup of G of
order p¥, show that K C H.

Suppose that H is a normal subgroup of a finite group G. If G/H
has an element of order n, show that G has an element of order n.
Show, by example, that the assumption that G is finite is necessary.
(This exercise is referred to in this chapter.)

Recall that a subgroup N of a group G is called characteristic if
¢(N) = N for all automorphisms ¢ of G. If N is a characteristic
subgroup of G, show that N is a normal subgroup of G.

In D, let J{ = {R,, H}. Form an operation table for the cosets Jt,
DI, VI, and D'J. Is the result a group table? Does your answer
contradict Theorem 9.2?

Show that S, has a unique subgroup of order 12.

If IGI = 30 and 1Z(G)| = 5, what is the structure of G/Z(G)?

If H is a normal subgroup of G and |HI = 2, prove that H is con-
tained in the center of G.

Prove that A cannot have a normal subgroup of order 2.

Let G be a finite group and let H be an odd-order subgroup of G of
index 2. Show that the product of all the elements of G (taken in
any order) cannot belong to H.
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73. Let G be a group and p a prime. Suppose that H = {g”|g € G}isa
subgroup of G. Show that H is normal and that every nonidentity
element of G/H has order p.

74. Suppose that H is a normal subgroup of G. If |H| = 4 and gH has
order 3 in G/H, find a subgroup of order 12 in G.

75. Let G be a group and H a subgroup of G of index 2. Show that H
contains every element of G of odd order.
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.edu/~jgallian/quotient_structures.pdf
Tony Rothman, “Genius and Biographers: The Fictionalization of Evariste
Galois,” The American Mathematical Monthly 89 (1982): 84—106.

The author convincingly argues that three of the most widely read
accounts of Galois’ life are highly fictitious.

Paul F. Zweifel, “Generalized Diatonic and Pentatonic Scales: A Group-
theoretic Approach,” Perspectives of New Music, 34 (1996): 140-161.

The author discusses how group-theoretic notions such as subgroups,
cosets, factor groups, and isomorphisms of Z,, and Z, relate to musical
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Evariste Galois

Galois at seventeen was making discover-
ies of epochal significance in the theory of
equations, discoveries whose conse-
quences are not yet exhausted after more
than a century.

E. T. BELL, Men of Mathematics

This French stamp was issued as part of
the 1984 “Celebrity Series” in support of
the Red Cross Fund.

EVARISTE GALOIS (pronounced gal-WAH)
was born on October 25, 1811, near Paris.
Although he had mastered the works of
Legendre and Lagrange at age 15, Galois
twice failed his entrance examination to
I’Ecole Polytechnique. He did not know
some basic mathematics, and he did mathe-
matics almost entirely in his head, to the
annoyance of the examiner.

At 18, Galois wrote his important research
on the theory of equations and submitted it to
the French Academy of Sciences for publica-
tion. The paper was given to Cauchy for ref-
ereeing. Cauchy, impressed by the paper,
agreed to present it to the academy, but he
never did. At the age of 19, Galois entered a

paper of the highest quality in the competi-
tion for the Grand Prize in Mathematics,
given by the French Academy of Sciences.
The paper was given to Fourier, who died
shortly thereafter. Galois’s paper was never
seen again.

Galois spent most of the last year and a
half of his life in prison for revolutionary po-
litical offenses. While in prison, he attempted
suicide and prophesied that he would die in a
duel. On May 30, 1832, Galois was shot in a
duel and died the next day at the age of 20.

Among the many concepts introduced by
Galois are normal subgroups, isomorphisms,
simple groups, finite fields, and Galois theory.
His work provided a method for disposing
of several famous constructability problems,
such as trisecting an arbitrary angle and dou-
bling a cube. Galois’s entire collected works
fill only 60 pages.

To find more information about Galois,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Group

Homomorphisms

All modern theories of nuclear and electromagnetic interactions are based
on group theory.

ANDREW WATSON, New Scientist

Definition and Examples

200

In this chapter, we consider one of the most fundamental ideas of
algebra—homomorphisms. The term homomorphism comes from the
Greek words homo, “like,” and morphe, “form.” We will see that a ho-
momorphism is a natural generalization of an isomorphism and that
there is an intimate connection between factor groups of a group and
homomorphisms of a group. The concept of group homomorphisms
was introduced by Camille Jordan in 1870, in his influential book
Traité des Substitutions.

Definition Group Homomorphism

A homomorphism ¢ from a group G to a group G is a mapping
from G into G that preserves the group operation; that is, ¢p(ab) =
d(a)p(b) for all a, b in G.

Before giving examples and stating numerous properties of
homomorphisms, it is convenient to introduce an important subgroup
that is intimately related to the image of a homomorphism. (See
property 4 of Theorem 10.1.)

Definition Kernel of a Homomorphism

The kernel of a homomorphism ¢ from a group G to a group with
identity e is the set {x € G | ¢(x) = e}. The kernel of ¢ is denoted by
Ker ¢.
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# EXAMPLE 1 Any isomorphism is a homomorphism that is also onto
and one-to-one. The kernel of an isomorphism is the trivial subgroup. 1

B EXAMPLE 2 Let R* be the group of nonzero real numbers under
multiplication. Then the determinant mapping A — det A is a
homomorphism from GL(2, R) to R*. The kernel of the determinant
mapping is SL(2, R). |

B EXAMPLE 3 The mapping ¢ from R* to R*, defined by ¢(x) = Ixl,
is a homomorphism with Ker ¢ = {1, —1}. |

§ EXAMPLE 4 Let R[x] denote the group of all polynomials with real
coefficients under addition. For any fin R[x], let f* denote the deriva-
tive of f. Then the mapping f— f" is a homomorphism from R[x] to it-
self. The kernel of the derivative mapping is the set of all constant poly-
nomials. |

B EXAMPLE 5 The mapping ¢ from Z to Z , defined by ¢p(m) = m
mod 7, is a homomorphism (see Exercise 11 in Chapter 0). The kernel
of this mapping is (n). 1

B EXAMPLE 6 The mapping ¢(x) = x*> from R*, the nonzero real
numbers under multiplication, to itself is a homomorphism, since
d(ab) = (ab)* = a*b* = P(a)p(b) for all a and b in R*. (See Exercise 5.)
The kernelis {1,-1}. |

B EXAMPLE 7 The mapping ¢(x) = x> from R, the real numbers
under addition, to itself is not a homomorphism, since ¢(a + b) =
(a + b)> = a> + 2ab + b?, whereas ¢(a) + ¢(b) = a’> + b |

When defining a homomorphism from a group in which there are
several ways to represent the elements, caution must be exercised to en-
sure that the correspondence is a function. (The term well-defined is
often used in this context.) For example, since 3(x + y) = 3x + 3y in
Z, one might believe that the correspondence x + (3) — 3x from Z/(3) to
Z, is a homomorphism. But it is not a function, since 0 + (3) = 3 +
(3)inZ/(3)but3 -0+ 3-3inZ.

For students who have had linear algebra, we remark that every
linear transformation is a group homomorphism and the nullspace is
the same as the kernel. An invertible linear transformation is a group
isomorphism.
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Properties of Homomorphisms

I Theorem 10.1 Properties of Elements Under Homomorphisms

Let ¢ be a homomorphism from a group G to a group G and let g be
an element of G. Then

1. ¢ carries the identity of G to the identity of G.

. d(g") = (Pp(g)" forallnin Z.

. If'|gl is finite, then |¢(g)| divides 1g|.

. Ker ¢ is a subgroup of G.

. ¢(a) = ¢(b) if and only if aKer ¢ = bKer ¢.

- Ifp(g) = g', then ¢7'(g) = {x EG | p(x) = g'} = gKer ¢.

AU B Wi

PROOF The proofs of properties 1 and 2 are identical to the proofs of
properties 1 and 2 of isomorphisms in Theorem 6.2. To prove property 3,
notice that properties 1 and 2 together with g” = e imply that e =
d(e) = d(g") = (Pp(g))". So, by Corollary 2 to Theorem 4.1, we have
lp(g)! divides n.

By property 1 we know that Ker ¢ is not empty. So, to prove prop-
erty 4, we assume that a, b € Ker ¢ and show that ab™! € Ker ¢.
Since ¢(a) = e and p(b) = e, we have Pp(ab™!) = Pp(a)p(b™") =
d(a)(p(b) ! =ee ! =e.So,ab™ ! € Ker ¢.

To prove property 5, first assume that ¢(a) = ¢(b). Then
e = (p(b) 'Pp(a) = (b~ "p(a) = d(b~'a), so that b~ 'aE€ Ker ¢.
It now follows from property 5 of the lemma in Chapter 7 that
bKer ¢ = aKer ¢. Reversing this argument completes the proof.

To prove property 6, we must show that ¢~ '(g') C gKer ¢ and that
gKer ¢ C ¢ '(g’). For the first inclusion, let x € ¢~ '(g’), so that
¢(x) = g'. Then ¢(g) = ¢(x) and by property 5 we have gKer ¢ =
xKer ¢ and therefore x € gKer ¢. This completes the proof that
¢ (g") C gKer ¢. To prove that gKer ¢ C ¢~ '(g"), suppose that k €
Ker ¢. Then ¢(gk) = p(g)p(k) = g'e = g'. Thus, by definition, gk €
¢7'(g"). i

Since homomorphisms preserve the group operation, it should not be
a surprise that they preserve many group properties.
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I Theorem 10.2 Properties of Subgroups Under Homomorphisms

Let ¢ be a homomorphism from a group G to a group G and let H be
a subgroup of G. Then
1. ¢(H) = {¢(h) | h € H} is a subgroup of G.
. If H is cyclic, then ¢(H) is cyclic.
[ H is Abelian, then ¢(H) is Abelian.
If H is normal in G, then ¢(H) is normal in ¢(G).
. If IKer ¢| = n, then ¢ is an n-to-1 mapping from G onto ¢(G).
If |H| = n, then |¢p(H)| divides n.
. IfK is a subgroup of G, then ¢ '(K) = {k € G | p(k) E K}
is a subgroup of G.
8. If K is a normal subgroup of G, then ¢~ (K) = {k € G |
¢(k) € K} is a normal subgroup of G.
9. If ¢ is onto and Ker ¢ = {e}, then ¢ is an isomorphism
from GtoG.

=N I O

PROOF First note that the proofs of properties 1, 2, and 3 are identi-
cal to the proofs of properties 4, 3, and 2, respectively, of Theorem
6.3, since those proofs use only the fact that an isomorphism is an
operation-preserving mapping.

To prove property 4, let ¢p(h) € ¢(H) and ¢(g) € H(G). Then
d(@)p(M)P(2) ' = P(ghg™") € ¢(H), since H is normal in G.

Property 5 follows directly from property 6 of Theorem 10.1 and the
fact that all cosets of Ker ¢ = ¢~!(e) have the same number of elements.

To prove property 6, let ¢, denote the restriction of ¢ to the
elements of H. Then ¢, is a homomorphism from H onto ¢(H).
Suppose [Ker ¢,| = 1. Then, by property 5, ¢,, is a t-to-1 mapping. So,
lp(H)It = |HI.

To prove property 7, we use the One-Step Subgroup Test. Clearly,
e € ¢~!(K), so that ¢~ !(K) is not empty. Let k, k, € ¢~ '(K). Then,
by the definition of ¢~ !(K), we know that o(k,), ¢(k,) € K. Thus,
$(k,)"' € K as well and ¢(k k, ') = ¢p(k,)p(k,) "' € K. So, by definition
of ¢~'(K), we have k k, ' € ¢~ '(K).

To prove property 8, we use the normality test given in Theorem 9.1.
Note that every element in x¢p~'(K)x ! has the form xkx™!, where ¢ (k) €
K. Thus, since K is normal in G, ¢(xkx™ ') = px)pk)(p(x))~' € K,
and, therefore, xkx™ ! € ¢~ 1(K).

Finally, property 9 follows directly from property 5. |
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A few remarks about Theorems 10.1 and 10.2 are in order. Students
should remember the various properties of these theorems in words. For
example, properties 2 and 3 of Theorem 10.2 say that the homomorphic
image of a cyclic group is cyclic and the homomorphic image of an
Abelian group is Abelian. Property 4 of Theorem 10.2 says that the ho-
momorphic image of a normal subgroup of G is normal in the image of
G. Property 5 of Theorem 10.2 says that if ¢ is a homomorphism from
G to G, then every element of G that gets “hit” by ¢ gets hit the same
number of times as does the identity. The set ¢~ !(g’) defined in prop-
erty 6 of Theorem 10.1 is called the inverse image of g’ (or the pullback
of g’). Note that the inverse image of an element is a coset of the kernel
and that every element in that coset has the same image. Similarly, the
set ¢~ '(K) defined in property 7 of Theorem 10.2 is called the inverse
image of K (or the pullback of K).

Property 6 of Theorem 10.1 is reminiscent of something from linear
algebra and differential equations. Recall that if x is a particular solu-
tion to a system of linear equations and S is the entire solution set of the
corresponding homogeneous system of linear equations, then x + S is
the entire solution set of the nonhomogeneous system. In reality, this
statement is just a special case of property 6. Properties 1 and 6 of
Theorem 10.1 and property 5 of Theorem 10.2 are pictorially repre-
sented in Figure 10.1. -

The special case of property 8 of Theorem 10.2, where K = {e}, is
of such importance that we single it out.

1 Corollary Kernels Are Normal

Let ¢ be a group homomorphism from G to G. Then Ker ¢ is a nor-
mal subgroup of G.

The next two examples illustrate several properties of Theorems 10.1
and 10.2.

B EXAMPLE 8 Consider the mapping ¢ from C* to C* given by
$(x) = x* Since (xy)* = x** ¢ is a homomorphism. Clearly,
Ker ¢ = {x | x* =1} = {1, —1, i, —i}. So, by property 5 of Theorem
10.2, we know that ¢ is a 4-to-1 mapping. Now let’s find all elements
that map to, say, 2. Certainly, qb(% ) = 2. Then, by property 6 of
Theorem 10.1, the set of all elements that map to 2 is /2 Ker ¢ =
{2, V2 3¥2i, —V2i}.
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Kerg=97'(e) gKer ¢ =¢~'(g")

Figure 10.1

Finally, we verify a specific instance of property 3 of Theorem 10.1
and of property 2 and property 6 of Theorem 10.2. Let H =
(cos 30° + i sin 30°). It follows from DeMoivre’s Theorem (Example 7
in Chapter 0) that |Hl = 12, ¢(H) = (cos 120° + i sin 120°), and
lp(H)I = 3. |

B EXAMPLE 9 Define ¢:Z,, — Z , by ¢(x) = 3x. To verify that ¢ is a
homomorphism, we observe that in Z ,, 3(a + b) = 3a + 3b (since the
group operation is addition modulo 12). Direct calculations show that
Ker ¢ = {0, 4, 8}. Thus, we know from property 5 of Theorem 10.2 that
¢ is a 3-to-1 mapping. Since ¢$(2) = 6, we have by property 6 of
Theorem 10.1 that ¢~ 1(6) = 2 + Ker ¢ = {2, 6, 10}. Notice also that (2)
is cyclic and ¢((2)) = {0, 6} is cyclic. Moreover, 12| = 6 and 1$(2)| =
161 = 2, so Ip(2)l divides 12 in agreement with property 3 of Theorem
10.1. Letting K= {0, 6}, we see that the subgroup ¢~ '(K) = {0, 2, 4, 6,
8, 10}. This verifies property 7 of Theorem 10.2 in this particular case. il

The next example illustrates how one can easily determine all homo-
morphisms from a cyclic group to a cyclic group.

I EXAMPLE 10 We determine all homomorphisms from Z, to Z,,.
By property 2 of Theorem 10.1, such a homomorphism is completely
specified by the image of 1. That is, if 1 maps to a, then x maps to xa.
Lagrange’s Theorem and property 3 of Theorem 10.1 require that lal di-
vide both 12 and 30. So, lal = 1, 2, 3, or 6. Thus, a = 0, 15, 10, 20,
5, or 25. This gives us a list of candidates for the homomorphisms. That
each of these six possibilities yields an operation-preserving, well-
defined function can now be verified by direct calculations. [Note that
gcd(12, 30) = 6. This is not a coincidence!] |
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B EXAMPLE 11 The mapping from S, to Z, that takes an even permu-
tation to 0 and an odd permutation to 1 is a homomorphism. Figure 10.2
illustrates the telescoping nature of the mapping. |

-’-‘I.A
A-.."‘v

<7
\Y4

AN

Y X
N

Figure 10.2 Homomorphism from S, to Z,.

The First Isomorphism Theorem

In Chapter 9, we showed that for a group G and a normal subgroup H,
we could arrange the Cayley table of G into boxes that represented the
cosets of H in G, and that these boxes then became a Cayley table for
G/H. The next theorem shows that for any homomorphism ¢ of G and
the normal subgroup Ker ¢, the same process produces a Cayley table
isomorphic to the homomorphic image of G. Thus, homomorphisms,
like factor groups, cause a systematic collapse of a group to a simpler
but closely related group. This can be likened to viewing a group
through the reverse end of a telescope—the general features of the
group are present, but the apparent size is diminished. The important
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relationship between homomorphisms and factor groups given below is
often called the Fundamental Theorem of Group Homomorphisms.

§ Theorem 10.3 First Isomorphism Theorem (Jordan, 1870)

Let ¢ be a group homomorphism from G to G. Then the mapping
from G/Ker ¢ to ¢(G), given by gKer ¢ — ¢(g), is an isomorphism.
In symbols, G/Ker ¢ ~ $(G).

PROOF Let us use ¢ to denote the correspondence gKer¢ — ¢(g).
That ¢ is well defined (that is, the correspondence is independent of
the particular coset representative chosen) and one-to-one follows
directly from property 5 of Theorem 10.1. To show that ¢ is operation-
preserving, observe that y(xKer ¢ yKer ¢p) = (xyKer ¢) = d(xy) =
(x) d(y) = P(xKer p)ip(yKer ). i

The next corollary follows directly from Theorem 10.3, property 1 of
Theorem 10.2, and Lagrange’s Theorem.

1 Corollary

If ¢ is a homomorphism from a finite group G to G, then |¢(G)|
divides |G| and |G .

# EXAMPLE 10 To illustrate Theorem 10.3 and its proof, consider the
homomorphism ¢ from D, to itself given by

R R 180 R9O R27O H 14 D D’

VSN N N

R, H R, Vv

Then Ker ¢ = {R, R4}, and the mapping ¢ in Theorem 10.3 is
RKer ¢ — R, RyKer ¢ — H, HKer ¢ — R, DKer ¢ — V. It is
straight-forward to verify that the mapping s is an isomorphism. |

Mathematicians often give a pictorial representation of Theorem
10.3, as follows:

4

CG— 96

N
G/Ker ¢
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where y:G — G/Ker ¢ is defined as y(g) = gKer ¢. The mapping y
is called the natural mapping from G to G/Ker ¢. Our proof of
Theorem 10.3 shows that )y = ¢. In this case, one says that the pre-
ceding diagram is commutative.

As a consequence of Theorem 10.3, we see that all homomorphic im-
ages of G can be determined using G. We may simply consider the various
factor groups of G. For example, we know that the homomorphic image of
an Abelian group is Abelian because the factor group of an Abelian group
is Abelian. We know that the number of homomorphic images of a cyclic
group G of order n is the number of divisors of 7, since there is exactly one
subgroup of G (and therefore one factor group of G) for each divisor of n.
(Be careful: The number of homomorphisms of a cyclic group of order n
need not be the same as the number of divisors of n, since different homo-
morphisms can have the same image.)

An appreciation for Theorem 10.3 can be gained by looking at a few
examples.

B EXAMPLE 13 Z/(N)~Z,,
Consider the mapping from Z to Z defined in Example 5. Clearly, its
kernel is (n). So, by Theorem 10.3, ZKn) ~ Z . [ |

I EXAMPLE 14 The Wrapping Function

Recall the wrapping function W from trigonometry. The real number
line is wrapped around a unit circle in the plane centered at (0, 0) with
the number 0 on the number line at the point (1, 0), the positive reals
in the counterclockwise direction and the negative reals in the
clockwise direction (see Figure 10.3). The function W assigns to each
real number a the point a radians from (1, 0) on the circle. This map-
ping is a homomorphism from the group R under addition onto the
circle group (the group of complex numbers of magnitude 1 under
multiplication). Indeed, it follows from elementary facts of trigonom-
etry that W(x) = cos x + i sinx and W(x + y) = W(x)W(y). Since W is
periodic of period 27, Ker W = (27). So, from the First [somorphism
Theorem, we see that R/(27) is isomorphic to the circle group. |

W(2)

W(l)

W(3) / \(A W(0)

Q//
W(=1)

Figure 10.3
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Our next example is a theorem that is used repeatedly in Chapters 24
and 25.

I EXAMPLE 15 The N/C Theorem

Let H be a subgroup of a group G. Recall that the normalizer of H in
Gis N(H) = {x € G | xHx ! = H} and the centralizer of H in G is
C(H) = {x € G | xhx~' = hfor all hin H}. Consider the mapping from
N(H) to Aut(H) given by g — ng, where q,’)g is the inner automorphism of
H induced by g [that is, d)g(h) = ghg~! for all h in H]. This mapping is a
homomorphism with kernel C(H). So, by Theorem 10.3, N(H)/C(H) is
isomorphic to a subgroup of Aut(H). |

As an application of the N/C Theorem, we will show that every
group of order 35 is cyclic.

B EXAMPLE 16 Let G be a group of order 35. By Lagrange’s
Theorem, every nonidentity element of G has order 5, 7, or 35. If
some element has order 35, G is cyclic. So we may assume that all
nonidentity elements have order 5 or 7. However, not all such
elements can have order 5, since elements of order 5 come 4 at a time
(f IxI = 5, then Ix*l = Ix’] = Ix* = 5) and 4 does not divide 34.
Similarly, since 6 does not divide 34, not all nonidentity elements can
have order 7. So, G has elements of order 7 and order 5. Since G has
an element of order 7, it has a subgroup of order 7. Let us call it H. In
fact, H is the only subgroup of G of order 7, for if K is another sub-
group of G of order 7, we have by Exercise 7 of the Supplementary
Exercises for Chapters 5-8 that IHK| = |HIIKI/IH N K| =7 -7/1 = 49.
But, of course, this is impossible in a group of order 35. Since for every
ain G, aHa ' is also a subgroup of G of order 7 (see Exercise 1 of the
Supplementary Exercises for Chapters 1-4), we must have aHa™' = H.
So, N(H) = G. Since H has prime order, it is cyclic and therefore
Abelian. In particular, C(H) contains H. So, 7 divides |C(H)| and
IC(H)! divides 35. It follows, then, that C(H) = G or C(H) = H. If
C(H) = G, then we may obtain an element x of order 35 by letting
x = hk, where h is a nonidentity element of H and k has order 5. On the
other hand, if C(H) = H, then IC(H)| = 7 and IN(H)/C(H)| = 35/7 = 5.
However, 5 does not divide |Aut(H)! = |Aut(Z,)! = 6. This contradic-
tion shows that G is cyclic. |

The corollary of Theorem 10.2 says that the kernel of every homo-
morphism of a group is a normal subgroup of the group. We conclude
this chapter by verifying that the converse of this statement is also true.
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1 Theorem 10.4 Normal Subgroups Are Kernels

Every normal subgroup of a group G is the kernel of a homomor-
phism of G. In particular, a normal subgroup N is the kernel
of the mapping g — gN from G to GIN.

PROOF Define y:G — G/N by y(g) = gN. (This mapping is called the
natural homomorphism from G to G/N.) Then, y(xy) = (xy)N = xNyN =
v(x)y(y). Moreover, g € Ker v if and only if gN = y(g) = N, which is
true if and only if g € N (see property 2 of the lemma in Chapter 7). 1§

Examples 13, 14, and 15 illustrate the utility of the First [somorphism
Theorem. But what about homomorphisms in general? Why would one
care to study a homomorphism of a group? The answer is that, just as
was the case with factor groups of a group, homomorphic images of a
group tell us some of the properties of the original group. One measure
of the likeness of a group and its homomorphic image is the size of the
kernel. If the kernel of the homomorphism of group G is the identity,
then the image of G tells us everything (group theoretically) about G (the
two being isomorphic). On the other hand, if the kernel of the homomor-
phism is G itself, then the image tells us nothing about G. Between these
two extremes, some information about G is preserved and some is lost.
The utility of a particular homomorphism lies in its ability to preserve
the group properties we want, while losing some inessential ones. In this
way, we have replaced G by a group less complicated (and therefore eas-
ier to study) than G; but, in the process, we have saved enough informa-
tion to answer questions that we have about G itself. For example, if G is
a group of order 60 and G has a homomorphic image of order 12 that is
cyclic, then we know from properties 5, 7, and 8 of Theorem 10.2 that G
has normal subgroups of orders 5, 10, 15, 20, 30, and 60. To illustrate
further, suppose we are asked to find an infinite group that is the union of
three proper subgroups. Instead of attempting to do this directly, we first
make the problem easier by finding a finite group that is the union
of three proper subgroups. Observing that Z, © Z, is the union of H, =
(1,0), H, =0, 1), and H, = (1, 1), we have found our finite group. Now
all we need do is think of an infinite group that has Z, ® Z, as a homo-
morphic image and pull back H,, H,, and H,, and our original problem is
solved. Clearly, the mapping from Z, ® Z, @ Z onto Z, @ Z, given by
¢(a, b, c) = (a, b) is such a mapping, and therefore Z, © Z, @ Z is the
union of ¢ '(H,) = {(a,0,¢c,) 1 a €EZ,,c €EZ}, ¢ '(H) = {(0,b,¢) | b
€Z,cEZ},and¢p '(H) = {(a,a,c) la EZ,c EZ}.
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Although an isomorphism is a special case of a homomorphism, the
two concepts have entirely different roles. Whereas isomorphisms
allow us to look at a group in an alternative way, homomorphisms act as
investigative tools. The following analogy between homomorphisms
and photography may be instructive.” A photograph of a person cannot
tell us the person’s exact height, weight, or age. Nevertheless, we may
be able to decide from a photograph whether the person is tall or short,
heavy or thin, old or young, male or female. In the same way, a homo-
morphic image of a group gives us some information about the group.

In certain branches of group theory, and especially in physics and
chemistry, one often wants to know all homomorphic images of a group
that are matrix groups over the complex numbers (these are called group
representations). Here, we may carry our analogy with photography one
step further by saying that this is like wanting photographs of a person
from many different angles (front view, profile, head-to-toe view, close-
up, etc.), as well as x-rays! Just as this composite information from the
photographs reveals much about the person, several homomorphic im-
ages of a group reveal much about the group.

The greater the difficulty, the more glory in surmounting it. Skillful pilots
gain their reputation from storms and tempests.

EPICURUS

Prove that the mapping given in Example 2 is a homomorphism.
Prove that the mapping given in Example 3 is a homomorphism.
Prove that the mapping given in Example 4 is a homomorphism.
Prove that the mapping given in Example 11 is a homomorphism.
Let R* be the group of nonzero real numbers under multiplication,
and let r be a positive integer. Show that the mapping that takes x
to x" is a homomorphism from R* to R* and determine the kernel.
Which values of r yield an isomorphism?

6. Let G be the group of all polynomials with real coefficients under ad-
dition. For each fin G, let [f denote the antiderivative of f that passes
through the point (0, 0). Show that the mapping f— [ffrom G to G is
a homomorphism. What is the kernel of this mapping? Is this map-

ping a homomorphism if [f denotes the antiderivative of f that passes
through (0, 1)?

Nk wbd =

TAll perception of truth is the detection of an analogy. Henry David Thoreau, Journal.
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7.

10.

11.
12.
13.
14.

15.

16.
17.
18.

19.

20.

21.

If ¢ is a homomorphism from G to H and o is a homomorphism
from H to K, show that o is a homomorphism from G to K. How
are Ker ¢ and Ker o¢ related? If ¢ and o are onto and G is finite,

describe [Ker o¢: Ker ¢] in terms of |H| and IKI.

. Let G be a group of permutations. For each o in G, define

{+1 if o is an even permutation,

sgn(o) = e .

—1 if o is an odd permutation.

Prove that sgn is a homomorphism from G to the multiplicative
group {+1, —1}. What is the kernel? Why does this homomor-
phism allow you to conclude that A, is a normal subgroup of S, of
index 2?

. Prove that the mapping from G D H to G given by (g, h) — g is a

homomorphism. What is the kernel? This mapping is called the
projection of G & H onto G.

Let G be a subgroup of some dihedral group. For each x in G, define

+1 1if xis a rotation,

d(x) = {

—1 if x is a reflection.

Prove that ¢ is a homomorphism from G to the multiplicative
group {+1,— 1}. What is the kernel?

Prove that (Z® Z)/({(a, 0)) X {(0, b))) is isomorphic to Z D Z,.
Suppose that & is a divisor of n. Prove that Z /(k) ~ Z,.
Prove that (A & B)/(A © {e}) ~B.

Explain why the correspondence x — 3x from Z, to Z,, is not a ho-
momorphism.

Suppose that ¢ is a homomorphism from Z, to Z, and Ker ¢ =
{0, 10, 20}. If ¢p(23) = 9, determine all elements that map to 9.

Prove that there is no homomorphism from Z, © Z, onto Z, © Z,.
Prove that there is no homomorphism from Z,, © Z, onto Z, ® Z,.
Can there be a homomorphism from Z, © Z, onto Z,? Can there be
a homomorphism from Z,; onto Z, © Z,? Explain your answers.
Suppose that there is a homomorphism ¢ from Z,, to some group
and that ¢ is not one-to-one. Determine ¢.

How many homomorphisms are there from Z, , onto Z,? How many
are there to Z,?

If ¢ is a homomorphism from Z,, onto a group of order 5, deter-
mine the kernel of ¢.
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23.

24,

25.

26.
27.
28.

29.

30.

31.

32,

33.

34.

35.

36.
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Suppose that ¢ is a homomorphism from a finite group G onto G
and that G has an element of order 8. Prove that G has an element
of order 8. Generalize.

Suppose that ¢ is a homomorphism from Z, to a group of order 24.

a. Determine the possible homomorphic images.

b. For each image in part a, determine the corresponding kernel of ¢.

Suppose that ¢: Z, — Z, 5 is a group homomorphism with ¢(7) = 6.

a. Determine ¢(x).

b. Determine the image of ¢.

¢. Determine the kernel of ¢.

d. Determine ¢~ '(3). That is, determine the set of all elements
that map to 3.

How many homomorphisms are there from Z,, onto Z ,? How

many are there to Z,?

Determine all homomorphisms from Z, to Z, © Z,.

Determine all homomorphisms from Z to itself.

Suppose that ¢ is a homomorphism from S, onto Z,. Determine

Ker ¢. Determine all homomorphisms from S, to Z,.

Suppose that there is a homomorphism from a finite group G onto

Z,,- Prove that G has normal subgroups of indexes 2 and 5.

Suppose that ¢ is a homomorphism from a group G onto Z, ® Z,

and that the kernel of ¢ has order 5. Explain why G must have nor-

mal subgroups of orders 5, 10, 15, 20, 30, and 60.

Suppose that ¢ is a homomorphism from U(30) to U(30) and

that Ker ¢ = {1, 11}. If ¢(7) = 7, find all elements of U(30) that

map to 7.

Find a homomorphism ¢ from U(30) to U(30) with kernel {1, 11}

and ¢(7) = 7.

Suppose that ¢ is a homomorphism from U(40) to U(40) and that

Ker ¢ = {1,9, 17,33}. If ¢(11) = 11, find all elements of U(40)

that map to 11.

Find a homomorphism ¢ from U(40) to U(40) with kernel {1, 9,

17,33} and ¢(11) = 11.

Prove that the mapping ¢: Z® Z — Z given by (a,b) >a — bis a

homomorphism. What is the kernel of ¢? Describe the set ¢~ 1(3)

(that is, all elements that map to 3).

Suppose that there is a homomorphism ¢ from Z @ Z to a group G

such that ¢((3, 2)) = a and ¢((2, 1)) = b. Determine ¢((4, 4)) in

terms of a and b. Assume that the operation of G is addition.
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37.

38.

39.

40.

41.

42,

43.
44.

45.

46.

47.

48.

49.

Prove that the mapping x — x® from C* to C* is a homomorphism.
What is the kernel?

For each pair of positive integers m and n, we can define a homo-
morphism from Zto Z D Z by x — (x mod m, x mod n). What is
the kernel when (m, n) = (3, 4)? What is the kernel when (m, n) =
(6, 4)? Generalize.

(Second Isomorphism Theorem) If K is a subgroup of G and N is
a normal subgroup of G, prove that K/(K N N) is isomorphic
to KN/N.

(Third Isomorphism Theorem) If M and N are normal subgroups of
G and N = M, prove that (G/N)/(M/N) =~ G/M.

Let ¢(d) denote the Euler phi function of d (see page 79). Show
that the number of homomorphisms from Z to Z, is 2.¢(d), where
the sum runs over all common divisors d of n and k. [It follows
from number theory that this sum is actually ged(n, k).]

Let k be a divisor of n. Consider the homomorphism from U(n) to
U(k) given by x — x mod k. What is the relationship between this
homomorphism and the subgroup U, (n) of U(n)?

Determine all homomorphic images of D, (up to isomorphism).

Let N be a normal subgroup of a finite group G. Use the theorems
of this chapter to prove that the order of the group element gN in
G/N divides the order of g.

Suppose that G is a finite group and that Z,; is a homomorphic
image of G. What can we say about |G|? Generalize.

Suppose that Z,, and Z ; are both homomorphic images of a finite
group G. What can be said about |G|? Generalize.

Suppose that for each prime p, Zp is the homomorphic image of a
group G. What can we say about |GI? Give an example of such a
group.

(For students who have had linear algebra.) Suppose that x is a
particular solution to a system of linear equations and that S is the
entire solution set of the corresponding homogeneous system of
linear equations. Explain why property 6 of Theorem 10.1 guaran-
tees that x + S is the entire solution set of the nonhomogeneous
system. In particular, describe the relevant groups and the homo-
morphism between them.

Let N be a normal subgroup of a group G. Use property 7 of
Theorem 10.2 to prove that every subgroup of G/N has the form
H/N, where H is a subgroup of G. (This exercise is referred to in
Chapter 24.)
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Show that a homomorphism defined on a cyclic group is com-
pletely determined by its action on a generator of the group.

Use the First Isomorphism Theorem to prove Theorem 9.4.

Let a and 8 be group homomorphisms from G to G and let H =
{g € G|a(g) = B(g)}. Prove or disprove that H is a subgroup of G.
Let Z[x] be the group of polynomials in x with integer coefficients
under addition. Prove that the mapping from Z[x] into Z given by
fix) — f(3) is a homomorphism. Give a geometric description of
the kernel of this homomorphism. Generalize.

Prove that the mapping from R under addition to GL(2, R) that
takes x to

[ CcoS X sin x]

—sinx cosSx

is a group homomorphism. What is the kernel of the homomorphism?
Suppose there is a homomorphism ¢ from G onto Z, @ Z,. Prove
that G is the union of three proper normal subgroups.

If H and K are normal subgroups of G and H N K = {e}, prove that
G is isomorphic to a subgroup of G/H & G/K.

Suppose that H and K are distinct subgroups of G of index 2. Prove
that H N K is a normal subgroup of G of index 4 and that G/(H N K)
is not cyclic.

Suppose that the number of homomorphisms from G to H is n.
How many homomorphisms are there from Gto HOH® - - - © H
(s terms)? When H is Abelian, how many homomorphisms are there
fromGDGD - - - D G (s terms) to H?

Prove that every group of order 77 is cyclic.

Determine all homomorphisms from Z onto S,. Determine all
homomorphisms from Z to S

Suppose G is an Abelian group under addition with the property
that for every positive integer n the set nG ={nglg € G} = G.
Show that every proper subgroup of G is properly contained in a
proper subgroup of G. Name two familiar groups that satisfy the
hypothesis.

Let p be a prime. Determine the number of homomorphisms from
Z, ® Z,into Z,.
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Computer Exercise

A computer lets you make more mistakes faster than any invention in
human history—with the possible exceptions of handguns and tequila.
MITCH RATLIFFE

Software for the computer exercise in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software determines the homomorphisms from Z to Z .
(Recall that a homomorphism from Z_ is completely determined by
the image of 1.) Run the program for m = 20 with various choices
for n. Run the program for m = 15 with various choices for n. What
relationship do you see between m and n and the number of homo-
morphisms from Z to Z ? For each choice of m and n, observe the
smallest positive image of 1. Try to see the relationship between this
image and the values of m and n. What relationship do you see be-
tween the smallest positive image of 1 and the other images of 1?
Test your conclusions with other choices of m and n.


http://www.d.umn.edu/~jgallian

Camille Jordan

Although these contributions [to
analysis and topology] would have been
enough to rank Jordan very high among
his mathematical contemporaries, it is
chiefly as an algebraist that he reached
celebrity when he was barely thirty; and
during the next forty years he was
universally regarded as the undisputed
master of group theory.

J. DIEUDONNE, Dictionary of
Scientific Biography

CAMILLE JORDAN was born into a well-to-do
family on January 5, 1838, in Lyons, France.
Like his father, he graduated from the Ecole
Polytechnique and became an engineer.
Nearly all of his 120 research papers in
mathematics were written before his retire-
ment from engineering in 1885. From 1873
until 1912, Jordan taught simultaneously at
the Ecole Polytechnique and at the College
of France.

In the great French tradition, Jordan was
a universal mathematician who published in
nearly every branch of mathematics. Among
the concepts named after him are the Jordan
canonical form in matrix theory, the Jordan
curve theorem from topology, and the
Jordan-Holder theorem from group theory.

His classic book Traité des Substitutions,
published in 1870, was the first to be de-
voted solely to group theory and its applica-
tions to other branches of mathematics.

Another book that had great influence
and set a new standard for rigor was his
Cours d’analyse. This book gave the first
clear definitions of the notions of volume
and multiple integral. Nearly 100 years after
this book appeared, the distinguished
mathematician and mathematical historian
B. L. van der Waerden wrote, “For me, every
single chapter of the Cours d’analyse is a
pleasure to read.” Jordan died in Paris on
January 22, 1922.

To find more information about Jordan,

visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Fundamental

Theorem of Finite
Abelian Groups

By a small sample we may judge of the whole piece.

MIGUEL DE CERVANTES, Don Quixote

The Fundamental Theorem

In this chapter, we present a theorem that describes to an algebraist’s
eye (that is, up to isomorphism) all finite Abelian groups in a stan-
dardized way. Before giving the proof, which is long and difficult, we
discuss some consequences of the theorem and its proof. The first
proof of the theorem was given by Leopold Kronecker in 1858.

I Theorem 11.1 Fundamental Theorem of Finite Abelian Groups

Every finite Abelian group is a direct product of cyclic groups of
prime-power order. Moreover, the number of terms in the product
and the orders of the cyclic groups are uniquely determined by the

group.

Since a cyclic group of order n is isomorphic to Z , Theorem 11.1
shows that every finite Abelian group G is isomorphic to a group of
the form

Zp1n1 @ szn2 @ R @ Zpknk’

where the p’s are not necessarily distinct primes and the prime-
powers p,", p,”, ..., p/™ are uniquely determined by G. Writing a
group in this form is called determining the isomorphism class of G.

The Isomorphism Classes
of Abelian Groups
The Fundamental Theorem is extremely powerful. As an application,

we can use it as an algorithm for constructing all Abelian groups of any
order. Let’s look at groups whose orders have the form p¥, where p is
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prime and k < 4. In general, there is one group of order p* for each set
of positive integers whose sum is & (such a set is called a partition of k);
that is, if k£ can be written as

k=n +n,+ -+ +n,
where each n, is a positive integer, then
Zm®Znm® - - DZn

is an Abelian group of order p*.

Possible direct

Order of G Partitions of k products for G
p 1 Z,
p? 2 z,
1+1 Zp D Zp
P 3 Z,
2+ 1 sz D Zp
1+1+1 ZPGBZP@ZP
p 4 Z,
3+ 1 Zp3 D Zp
2+2 Z,9Z,
2+1+1 sz@Zp@Zp
1+1+1+1 ZP@ZP@ZP@ZP

Furthermore, the uniqueness portion of the Fundamental Theorem
guarantees that distinct partitions of k yield distinct isomorphism
classes. Thus, for example, Z, @ Z, is not isomorphic to Z, ® Z, ® Z,.
A reliable mnemonic for comparing external direct products is the can-
cellation property: If A is finite, then

ADB~=ADC if and only if B~C (see[l)).

Thus Z, © Z, is not isomorphic to Z, @ Z, @ Z, because Z, is not
isomorphic to Z, ® Z,.

To appreciate fully the potency of the Fundamental Theorem, contrast
the ease with which the Abelian groups of order p*, k = 4, were
determined with the corresponding problem for non-Abelian groups.
Even a description of the two non-Abelian groups of order 8 is a chal-
lenge (see Chapter 26), and a description of the nine non-Abelian
groups of order 16 is well beyond the scope of this text.

Now that we know how to construct all the Abelian groups of prime-
power order, we move to the problem of constructing all Abelian
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groups of a certain order n, where n has two or more distinct prime
divisors. We begin by writing n in prime-power decomposition form
n = p/Mp,"> -+ - p,«. Next, we individually form all Abelian groups of
order p,™, then p,">, and so on, as described earlier. Finally, we form all
possible external direct products of these groups. For example, let n =
1176 = 23 - 3 - 72. Then, the complete list of the distinct isomorphism
classes of Abelian groups of order 1176 is

YAy

2,92,92,92,,
72,82,02,072,DZ,,
72, 2,02 7,
2,02,02,02,02,
72,82,82,072,02,®Z,

If we are given any particular Abelian group G of order 1176, the
question we want to answer about G is: Which of the preceding six iso-
morphism classes represents the structure of G? We can answer this
question by comparing the orders of the elements of G with the orders of
the elements in the six direct products, since it can be shown that two fi-
nite Abelian groups are isomorphic if and only if they have the same
number of elements of each order. For instance, we could determine
whether G has any elements of order 8. If so, then G must be isomorphic
to the first or fourth group above, since these are the only ones with ele-
ments of order 8. To narrow G down to a single choice, we now need
only check whether or not G has an element of order 49, since the first
product above has such an element, whereas the fourth one does not.

What if we have some specific Abelian group G of order p "ip,"
-+ - p, where the p/’s are distinct primes? How can G be expressed as
an internal direct product of cyclic groups of prime-power order? For
simplicity, let us say that the group has 2" elements. First, we must
compute the orders of the elements. After this is done, pick an element
of maximum order 2’, call it a,. Then <a1) is one of the factors in the
desired internal direct product. If G # (al), choose an element a, of
maximum order 2° such that s = n — r and none of a,, a,?, a,*, ...,
4122H is in (a,). Then (a,) is a second direct factor. If n # r + s, select
an element a, of maximum order 2’ such that# = n — r — s and none of
a, al at, ..., a4 'is in (a) XAay) =f{ala/ 10=i<2,0=
j < 2%}. Then (a3) is another direct factor. We continue in this fashion
until our direct product has the same order as G.

A formal presentation of this algorithm for any Abelian group G of
prime-power order p” is as follows.
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Greedy Algorithm for an Abelian Group of Order p"

1. Compute the orders of the elements of the group G.

2. Select an element a, of maximum order and define G, = (a,).
Seti=1.

3. If IGI = 1G/, stop. Otherwise, replace i by i + 1.

4. Select an element g, of maximum order p¥such that p* =
|GI/IG,_,| and none of a;, a,”, aif’z,- . ai"H isin G,_,, and define
G, =G,_, X{a,).

5. Return to step 3.

In the general case where |Gl = p,"'p,"> - - - p, ", we simply use the
algorithm to build up a direct product of order p,"!, then another of
order p,"2, and so on. The direct product of all of these pieces is the
desired factorization of G. The following example is small enough that
we can compute the appropriate internal and external direct products
by hand.

I EXAMPLE1 LetG = {1,8,12,14, 18, 21, 27, 31, 34, 38, 44,47, 51,
53, 57, 64} under multiplication modulo 65. Since G has order 16, we
know it is isomorphic to one of

Zl()’
Z,92,
2,92,

2,872,872,
2,82,82,87,

To decide which one, we dirty our hands to calculate the orders of the
elements of G.

Element‘l‘S 12‘14‘18‘21‘27‘31‘34‘38‘44‘47‘51‘53‘57‘64

|
order |114lalalalalalalalalalalalalalo

From the table of orders, we can instantly rule out all but Z, ® Z, and
Z, ® Z, D Z, as possibilities. Finally, we observe that since this latter
group has a subgroup isomorphic to Z, @ Z, @ Z,, it has more than
three elements of order 2, and therefore we must have G~ Z, ®Z "
Expressing G as an internal direct product is even easier. Pick an el-
ement of maximum order, say the element 8. Then (8) is a factor in the
product. Next, choose a second element, say a, so that a has order 4 and
a and a® are not in (8) = {1, 8, 64, 57}. Since 12 has this property, we
have G = (8) X (12). |
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Example 1 illustrates how quickly and easily one can write an Abelian
group as a direct product given the orders of the elements of the group.
But calculating all those orders is certainly not an appealing prospect!
The good news is that, in practice, a combination of theory and calcula-
tion of the orders of a few elements will usually suffice.

§ EXAMPLE 2 Let G = {1, 8, 17, 19, 26, 28, 37, 44, 46, 53, 62,
64, 71,73, 82, 89,91, 98, 107, 109, 116, 118, 127, 134} under multi-
plication modulo 135. Since G has order 24, it is isomorphic to
one of

Z,®Z,~7,,
Z,®Z,®72,~7,D7,
Z,DZ,®Z,BZ~7, DL, DZ,

Consider the element 8. Direct calculations show that 8¢ = 109 and 8% =
1. (Be sure to mod as you go. For example, 8 mod 135 = 512 mod
135 = 107, so compute 8* as 8 - 107 rather than 8 - 512.) But now we
know G. Why? Clearly, |81 = 12 rules out the third group in the list. At
the same time, 11091 = 2 = 134! (remember, 134 = —1 mod 135) im-
plies that G is not Z,, (see Theorem 4.4). Thus, GR Z, D Z,, and G =
(8) X (134). [ |

Rather than express an Abelian group as a direct product of cyclic
groups of prime-power orders, it is often more convenient to combine
the cyclic factors of relatively prime order, as we did in Example 2, to
obtain a direct product of the formZ, ©Z © ---©® Z , where n, di-
vides n._,. For example, Z, ® Z, © Z ‘D Z, 3 Z, €B Z, would be written
as leo @ Z, D Z, (see Exermse 11) The algorlthm above is easily
adapted to accomplish this by replacing step 4 by 4': select an element a;
of maximum order m such that m = IGl/IG,_,! and none of a, a, 2.,
a,;" 'isin G,_, and define G, = G,_, X {(a)).

As a consequence of the Fundamental Theorem of Finite Abelian
Groups, we have the following corollary, which shows that the converse
of Lagrange’s Theorem is true for finite Abelian groups.

I Corollary Existence of Subgroups of Abelian Groups

If m divides the order of a finite Abelian group G, then G has a
subgroup of order m.

It is instructive to verify this corollary for a specific case. Let us say
that G is an Abelian group of order 72 and we wish to produce a subgroup
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of order 12. According to the Fundamental Theorem, G is isomorphic to
one of the following six groups:

7, @7, 7, 82,87,
Z,®2,®7, 2,02,9Z,® 7,
2,82,92,®2, 2,82,92,87Z,dZ,

Obviously, Z, D Z,~Z,and Z, D Z, D Z, D Z, = Z, D Z, both
have a subgroup of order 12. To construct a subgroup of order 12 in Z,
@ Z, D Z,, we simply piece together all of Z, and the subgroup of order
3in Zg; thatis, {(a,0,b) la € Z,, b € {0, 3, 6}}. A subgroup of order
12in Z, ® Z, D Z, is given by {(a, b, 0) 1 a € {0,2,4,6},b € Z,}. An
analogous procedure applies to the remaining cases and indeed to any
finite Abelian group.

Proof of the Fundamental Theorem

Because of the length and complexity of the proof of the Fundamental
Theorem of Finite Abelian Groups, we will break it up into a series of
lemmas.

I Lemmal

Let G be a finite Abelian group of order p"m, where p is a pri"me that
does not divide m. Then G = H X K, where H = {x € G | x? = e}
and K = {x € G | x™ = e}. Moreover, |Hl = p".

PROOF Itis an easy exercise to prove that H and K are subgroups of G
(see Exercise 29 in Chapter 3). Because G is Abelian, to prove that G =
H X K we need only prove that G = HK and H N K = {e}. Since we
have ged(m, p") = 1, there are integers s and ¢ such that 1 = sm + tp”.
For any x in G, we have x = x! = x"*?" = x"x" and, by Corollary 4
of Lagrange’s Theorem (Theorem 7.1), x*" € H and x?" € K. Thus,
G = HK. Now suppose that some x € H N K. Then x”" = ¢ = x™ and,
by Corollary 2 to Theorem 4.1, Ix| divides both p” and m. Since p does
not divide m, we have |x| = 1 and, therefore, x = e.

To prove the second assertion of the lemma, note that p'm =
IHK! = |HIIKI/IH N K| = |HIIKI (see Exercise 7 in the Supplementary
Exercises for Chapters 5-8). It follows from Theorem 9.5 and
Corollary 2 to Theorem 4.1 that p does not divide IK| and therefore
Hl = p". |

Given an Abelian group G with |Gl = p,"1p," - - - p "+, where the
p’s are distinct primes, we let G(p,) denote the set {x € G | xPi" = el.
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It then follows immediately from Lemma 1 and induction that G =
G(p,) X G(py) X - -+ X G(p,) and IG(p)| = p,". Hence, we turn our
attention to groups of prime-power order.

Let G be an Abelian group of prime-power order and let a be an
element of maximal order in G. Then G can be written in the form
(a) X K.

PROOF We denote |G| by p" and induct on n. If n = 1, then G =
(a) X {(e). Now assume that the statement is true for all Abelian
groups of order p¥, where k < n. Among all the elements of G, choose
a of maximal order p™. Then x”" = e for all x in G. We may assume
that G # (a), for otherwise there is nothing to prove. Now, among all
the elements of G, choose b of smallest order such that b & (a). We
claim that (a) N (b) = {e}. Since |1b”| = |bl/p, we know that b? € {a)
by the manner in which b was chosen. Say b” = a'. Notice that e =
br" = (bP)P"" = (a’)?""', so la’l = p™~!. Thus, a' is not a generator of
(a) and, therefore, by Corollary 3 to Theorem 4.2, ged(p™, i) # 1.
This proves that p divides i, so that we can write i = pj. Then b? =
a' = a”’. Consider the element ¢ = a/b. Certainly, c¢ is not in {a), for
if it were, b would be, too. Also, ¢” = a Pb? = a~'b? = b PbP = e.
Thus, we have found an element ¢ of order p such that ¢ & (a). Since
b was chosen to have smallest order such that b & {(a), we conclude
that b also has order p. It now follows that (a) N (b) = {e} because
any nonidentity element of the intersection would generate (b) and
thus contradict b & {(a). B

Now consider the factor group G = G/(b). To simplify the notation,
we let X denote the coset x(b) in G. If lal < lal = p™ then a”" ' = e. This
means that (a(b))?"" = a?" (b) = (b), so that &’ ' € (a) N {b) = {e},
contradicting the fact that lal = p™. Thus, lal = lal = p™, and therefore
a is an element of maximal order in G. By induction, we know that G
can be written in the form (@) X K for some subgroup K of G. Let K be
the pullback of K under the natural homomorphism from G to G (that
is, K = {x € G | x € K}). We claim that (a) N K = {e}. Forif x € (a)
N K, thenx € (a) N K = {e} = (b) and x € {a) N (b) = {e}. It now
follows from an order argument (see Exercise 33) that G = (@)K, and
therefore G = (a) X K. |

Lemma 2 and induction on the order of the group now give the
following.
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A finite Abelian group of prime-power order is an internal direct
product of cyclic groups.

Let us pause to determine where we are in our effort to prove the
Fundamental Theorem of Finite Abelian Groups. The remark following
Lemma 1 shows that G = G(p,) X G(p,) X - -+ X G(p,), where each
G( p,) is a group of prime-power order, and Lemma 3 shows that each of
these factors is an internal direct product of cyclic groups. Thus, we have
proved that G is an internal direct product of cyclic groups of prime-
power order. All that remains to be proved is the uniqueness of the factors.
Certainly the groups G( p,) are uniquely determined by G, since they
comprise the elements of G whose orders are powers of p,. So we must
prove that there is only one way (up to isomorphism and rearrangement of
factors) to write each G( p,) as an internal direct product of cyclic groups.

Suppose that G is a finite Abelian group of prime-power order. If
G=H XH,X:--XH_ andG =K, XK, X - XK, where the
H’s and K’s are nontrivial cyclic subgroups with |H|| = |H)| = - - - =
IH land IK|| = IK,| = - - - = IK||, then m = nand |[H| = IK|
foralli.

PROOF We proceed by induction on |GI. Clearly, the case where |Gl =
p is true. Now suppose that the statement is true for all Abelian groups
of order less than |GI. For any Abelian group L, the set L” = {x” | x €
L} is a subgroup of L (see Exercise 15 in the Supplementary Exercises
for Chapters 1-4) and, by Theorem 9.5, is a proper subgroup if p
divides ILI. It follows that G? = Hlp X Hzp X+ XH P and GP =
K,? X K,” X -++ X K ?where m" is the largest integer i such that
IH| > p, and n’ is the largest integer j such that IKJ.I > p. (This ensures
that our two direct products for G” do not have trivial factors.) Since 1G?|
< IGl, we have, by induction, m" = n’ and |IH,l = IK. "I fori =1, ...,
m'. Since |H| = plH,”!, this proves that [H| = |IK| foralli =1,...,m".
All that remains to be proved is that the number of H, of order p equals
the number of K of order p; that is, we must prove that m — m =n—n'
(since n" = m’). This follows directly from the facts that |H,IIH,| - - -
\H lp"™ =Gl = IK,IIK,| - - - IK Ip"™",|H| = |K|,andm’ = n'. 1
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You know it ain’t easy, you know how hard it can be.

10.
11.

12.

13.

14.

JOHN LENNON AND PAUL MCCARTNEY,
“The Ballad of John and Yoko”

What is the smallest positive integer n such that there are two non-
isomorphic groups of order n? Name the two groups.

What is the smallest positive integer n such that there are three
nonisomorphic Abelian groups of order n? Name the three groups.
What is the smallest positive integer n such that there are exactly
four nonisomorphic Abelian groups of order n? Name the four
groups.

Calculate the number of elements of order 2 in each of Z,, Z, © Z,,
Z,D7,,and Z, ® Z, D Z,. Do the same for the elements of order 4.
Prove that any Abelian group of order 45 has an element of order 15.
Does every Abelian group of order 45 have an element of order 9?
Show that there are two Abelian groups of order 108 that have ex-
actly one subgroup of order 3.

Show that there are two Abelian groups of order 108 that have ex-
actly four subgroups of order 3.

Show that there are two Abelian groups of order 108 that have ex-
actly 13 subgroups of order 3.

Suppose that G is an Abelian group of order 120 and that G has
exactly three elements of order 2. Determine the isomorphism class
of G.

Find all Abelian groups (up to isomorphism) of order 360.

Prove that every finite Abelian group can be expressed as the
(external) direct product of cyclic groups of orders n, n,, ..., n,
where n,_ | divides n, fori = 1,2, ..., ¢ — 1. (This exercise is re-
ferred to in this chapter and in Chapter 22.)

Suppose that the order of some finite Abelian group is divisible by
10. Prove that the group has a cyclic subgroup of order 10.

Show, by example, that if the order of a finite Abelian group is di-
visible by 4, the group need not have a cyclic subgroup of order 4.

On the basis of Exercises 12 and 13, draw a general conclusion
about the existence of cyclic subgroups of a finite Abelian group.



15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.
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How many Abelian groups (up to isomorphism) are there

of order 67

of order 157

of order 427

of order pg, where p and ¢ are distinct primes?

of order pgr, where p, ¢, and r are distinct primes?

Generalize parts d and e.

How does the number (up to isomorphism) of Abelian groups of
order n compare with the number (up to isomorphism) of Abelian
groups of order m where

n=3>and m = 5*?

n=2%and m = 5%?

n = p"and m = ¢q", where p and g are prime?

n = p"and m = p’q, where p and g are distinct primes?

n = p"and m = p’q? where p and g are distinct primes?

-e R0 T

O

The symmetry group of a nonsquare rectangle is an Abelian group
of order 4. Is it isomorphic to Z, or Z, ® Z,?

Verify the corollary to the Fundamental Theorem of Finite
Abelian Groups in the case that the group has order 1080 and the
divisor is 180.

The set {1, 9, 16, 22, 29, 53, 74,79, 81} is a group under multipli-
cation modulo 91. Determine the isomorphism class of this group.
Suppose that G is a finite Abelian group that has exactly one sub-
group for each divisor of 1GIl. Show that G is cyclic.

Characterize those integers n such that the only Abelian groups of
order n are cyclic.

Characterize those integers n such that any Abelian group of order
n belongs to one of exactly four isomorphism classes.

Refer to Example 1 in this chapter and explain why it is unneces-
sary to compute the orders of the last five elements listed to deter-
mine the isomorphism class of G.

LetG = {1,7,17, 23,49, 55, 65,71} under multiplication modulo
96. Express G as an external and an internal direct product of cyclic
groups.

Let G = {1,7,43,49,51,57,93,99, 101, 107, 143, 149, 151, 157,
193, 199} under multiplication modulo 200. Express G as an exter-
nal and an internal direct product of cyclic groups.

Theset G = {1,4, 11, 14, 16, 19, 26, 29, 31, 34, 41, 44} is a group
under multiplication modulo 45. Write G as an external and an in-
ternal direct product of cyclic groups of prime-power order.
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27.

28.

29.

30.

31.

32,

33.

34.

35.

36.
37.

Suppose that G is an Abelian group of order 9. What is the maxi-
mum number of elements (excluding the identity) of which one
needs to compute the order to determine the isomorphism class of
G? What if G has order 187 What about 16?

Suppose that G is an Abelian group of order 16, and in computing
the orders of its elements, you come across an element of order 8
and two elements of order 2. Explain why no further computations
are needed to determine the isomorphism class of G.

Let G be an Abelian group of order 16. Suppose that there are ele-
ments a and b in G such that lal = |bl = 4 and a*> # b*. Determine
the isomorphism class of G.

Prove that an Abelian group of order 2”(n = 1) must have an odd
number of elements of order 2.

Without using Lagrange’s Theorem, show that an Abelian group of
odd order cannot have an element of even order.

Let G be the group of all n X n diagonal matrices with =1 diago-
nal entries. What is the isomorphism class of G?

Prove the assertion made in the proof of Lemma 2 that G = (a)K.
Suppose that G is a finite Abelian group. Prove that G has order p”,
where p is prime, if and only if the order of every element of G is a
power of p.

Dirichlet’s Theorem says that, for every pair of relatively prime in-
tegers a and b, there are infinitely many primes of the form ar + b.
Use Dirichlet’s Theorem to prove that every finite Abelian group is
isomorphic to a subgroup of a U-group.

Determine the isomorphism class of Aut(Z, © Z, © Zy).

Give an example to show that Lemma 2 is false if G is non-Abelian.

The purpose of computation is insight, not numbers.

RICHARD HAMMING

Software for the computer exercises in this chapter is available at the
website:

1.

http://www.d.umn.edu/~jgallian

This software lists the isomorphism classes of all finite Abelian
groups of any particular order n. Run the program for n = 16, 24,
512, 2048, 441000, and 999999.


http://www.d.umn.edu/~jgallian
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2. This software determines how many integers in a given interval are
the order of exactly one Abelian group, of exactly two Abelian
groups, and so on, up to exactly nine Abelian groups. Run your pro-
gram for the integers up to 1000. Then from 10001 to 11000. Then
choose your own interval of 1000 consecutive integers. Is there
much difference in the results?

3. This software expresses a U-group as an internal direct product of
sub-groups H, X H, X - + - X H,, where |H| divides |[H,_ |. Run the
program for the groups U(32), U(80), and U(65).
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Every prospector drills many a dry hole, pulls out his rig, and moves on.

JOHN L. HESS

True/false questions for Chapters 9—11 are available on the Web at:

10.
11.

12.

http://www.d.umn.edu/~jgallian/TF

Suppose that H is a subgroup of G and that each left coset of H in
G is some right coset of H in G. Prove that H is normal in G.

Use a factor group-induction argument to prove that a finite
Abelian group of order n has a subgroup of order m for every posi-
tive divisor m of n.

Let diag(G) = {(g, g) | g € G}. Prove that diag(G) < G @ G if
and only if G is Abelian. When G is finite, what is the index of
diag(G) in G & G?

Let H be any group of rotations in D . Prove that H is normal in D, .
Prove that Inn(G) < Aut(G).

Let H be a subgroup of G. Prove that H is a normal subgroup if and
only if, for all @ and b in G, ab € H implies ba € H.

The factor group GL(2, R)/SL(2, R) is isomorphic to some very
familiar group. What is the group?

Let k be a divisor of n. The factor group (Z/{n))/({k)/{n)) is isomor-
phic to some very familiar group. What is the group?

Let

1 a b
H = 01 ¢ a,b,c € Q0
0 0 1

under matrix multiplication.

a. Find Z(H).

b. Prove that Z(H) is isomorphic to Q under addition.

¢. Prove that H/Z(H) is isomorphic to Q & Q.

d. Are your proofs for parts a and b valid when Q is replaced by
R? Are they valid when Q is replaced by Z, where p is prime?

Prove that D,/Z(D,) is isomorphic to Z, ® Z,.

Prove that Q/Z under addition is an infinite group in which every

element has finite order.

Show that the intersection of any collection of normal subgroups of

a group is a normal subgroup.
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Let n > 1 be a fixed integer and let G be a group. If the set H =
{x € GI x| = n} together with the identity forms a subgroup of
G, prove that it is a normal subgroup of G. In the case where such
a subgroup exists, what can be said about n? Give an example of
a non-Abelian group that has such a subgroup. Give an example
of a group G and a prime n for which the set H together with the
identity is not a subgroup.

Show that Q/Z has a unique subgroup of order n for each positive
integer n.

If H and K are normal Abelian subgroups of a group and H N K =
{e}, prove that HK is Abelian.

Let G be a group of odd order. Prove that the mapping x — x? from
G to itself is one-to-one.

Suppose that G is a group of permutations on some set. If |Gl = 60
and orb(5) = {1, 5}, prove that stab(5) is normal in G.

Suppose that G = H X K and that N is a normal subgroup of H.
Prove that N is normal in G.

Show that there is no homomorphism from Z, © Z, ® Z, onto
Z,DZ,

Show that there is no homomorphism from A, onto a group of
order 2, 4, or 6, but that there is a homomorphism from A, onto a
group of order 3.

Let H be a normal subgroup of S, of order 4. Prove that S,/H is iso-
morphic to S,

Suppose that ¢ is a homomorphism of U(36), Ker ¢ = {1, 13, 25},
and ¢(5) = 17. Determine all elements that map to 17.

Let n = 2m, where m is odd. How many elements of order 2
does D /Z(D,) have? How many elements are in the subgroup
(R360/”>/Z(Dn)? How do these numbers compare with the number
of elements of order 2in D ?

Suppose that H is a normal subgroup of a group G of odd order and
that IHl = 5. Show that H C Z(G).

Let G be an Abelian group and let n be a positive integer. Let G, =
{glg"=e}and G" = {g" | g € G}. Prove that G/G,, is isomorphic
to G".

Let R* denote the multiplicative group of positive reals and let 7 =
{a + bi € Cl @* + b* = 1} be the multiplicative group of complex
numbers of norm 1. Show that C* is the internal direct product of R*
and 7.
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29.
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36.

37.

38.

Let G be a finite group and let p be a prime. If p?> > |Gl, show that
any subgroup of order p is normal in G.

Let G =Z® Zand H = {(x, y)| x and y are even integers}. Show
that H is a subgroup of G. Determine the order of G/H. To which
familiar group is G/H isomorphic?

Let n be a positive integer. Prove that every element of order n in
QO/Z is contained in {(1/n + Z).

(1997 Putnam Competition) Let G be a group and let ¢ : G — G be
a function such that

(gD (8)b(g3) = p(h)d(hy)d(hy)

whenever g,g,¢, = ¢ = h h,h,. Prove that there exists an element a
in G such that ¥/(x) = a¢(x) is a homomorphism.

Prove that every homomorphism from Z @ Z into Z has the form
(x, y) = ax + by, where a and b are integers.

Prove that every homomorphism from Z © Z into Z © Z has the
form (x, y) — (ax + by, cx + dy), where a, b, ¢, and d are integers.
Prove that Q/Z is not isomorphic to a proper subgroup of itself.
Prove that for each positive integer n, the group Q/Z has exactly
¢(n) elements of order n (¢ is the Euler phi function).

Show that any group with more than two elements has an automor-
phism other than the identity mapping.

A proper subgroup H of a group G is called maximal if there is no
subgroup K such that H C K C G. Prove that Q under addition has
no maximal subgroups.

Let G be the group of quaternions as given in Exercise 4 of the
Supplementary Exercises for Chapters 1-4 and H = (a*). Determine
whether G/H is isomorphic to Z, or Z, & Z,. Is G/H isomorphic to a
subgroup of G?

Write the dihedral group Dy as {Ry, Rys, Roo, Ri3s, Rig0, Raos, Rono,
Ryjs, Fy, Fo, Fa, Fy, Fs, Fo, Fy, Fg and let N = {Ry, Roo, R0, Ry}
Prove that N is normal in Dg. Given that F\N = {F,, F,, F3, F,} de-
termine whether Dg/N is cyclic.
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40.

41.
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1
Let G be the group {{0 Z} | where a, b € R, b # 0} and

1
H= { [0 ﬂ | where x € R}. Show that H is a subgroup of G. Is

H a normal subgroup of G? Justify your answer.

Find a subgroup H of sz D Zp2 such that (sz ©® Zpg)/H is isomorphic
0Z SZ,

Recall that H is a characteristic subgroup of K if ¢(H) = H for
every automorphism ¢ of K. Prove that if H is a characteristic sub-
group of K, and K is a normal subgroup of G, then H is a normal
subgroup of G.
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Introduction

to Rings

Example is the school of mankind, and they will learn at no other.
EDMUND BURKE, On a Regicide Peace

Motivation and Definition

Many sets are naturally endowed with two binary operations: addition
and multiplication. Examples that quickly come to mind are the inte-
gers, the integers modulo 7, the real numbers, matrices, and polynomi-
als. When considering these sets as groups, we simply used addition
and ignored multiplication. In many instances, however, one wishes to
take into account both addition and multiplication. One abstract con-
cept that does this is the concept of a ring.” This notion was originated
in the mid-nineteenth century by Richard Dedekind, although its first
formal abstract definition was not given until Abraham Fraenkel pre-
sented it in 1914.

Definition Ring
A ring R is a set with two binary operations, addition (denoted by
a + b) and multiplication (denoted by ab), such that for all a, b, c in R:

l.a+b=>b+a.

2.(at+b)y+c=a+®d+o).

3. There is an additive identity 0. That is, there is an element 0 in R
such thata + 0 = a for all @ in R.

4. There is an element —a in R such thata + (—a) = 0.

5. a(bc) = (ab)c.

6. a(b +c)=ab + acand (b + c¢)a = ba + ca.

So, a ring is an Abelian group under addition, also having an asso-
ciative multiplication that is left and right distributive over addition.
Note that multiplication need not be commutative. When it is, we say
that the ring is commutative. Also, a ring need not have an identity

"The term ring was first applied in 1897 by the German mathematician David Hilbert
(1862-1943).

237
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under multiplication. A unity (or identity) in a ring is a nonzero element
that is an identity under multiplication. A nonzero element of a com-
mutative ring with unity need not have a multiplicative inverse. When it
does, we say that it is a unit of the ring. Thus, a is a unit if a~! exists.

The following terminology and notation are convenient. If @ and b
belong to a commutative ring R and a is nonzero, we say that a divides
b (or that a is a factor of b) and write a | b, if there exists an element ¢
in R such that b = ac. If a does not divide b, we write a + b.

Recall that if a is an element from a group under the operation of
addition and # is a positive integer, na means a + a + - - - + a, where
there are n summands. When dealing with rings, this notation can cause
confusion, since we also use juxtaposition for the ring multiplication.
When there is the potential for confusion, we will use n - a to mean
a+ a+ -+ + a(nsummands).

For an abstraction to be worthy of study, it must have many diverse
concrete realizations. The following list of examples shows that the
ring concept is pervasive.

Examples of Rings

B EXAMPLE 1 The set Z of integers under ordinary addition and
multiplication is a commutative ring with unity 1. The units of Z are

1 and —1. |
B EXAMPLE 2 The set Z = {0, 1, ..., n — 1} under addition and
multiplication modulo n is a commutative ring with unity 1. The set of
units is U(n). |

B EXAMPLE 3 The set Z[x] of all polynomials in the variable x with
integer coefficients under ordinary addition and multiplication is a
commutative ring with unity f{x) = 1. |

B EXAMPLE 4 The set M,(Z) of 2 X 2 matrices with integer entries

- o . . |10
is a noncommutative ring with unity {O J . |

B EXAMPLE 5 The set 2Z of even integers under ordinary addition
and multiplication is a commutative ring without unity. |

B EXAMPLE 6 The set of all continuous real-valued functions of a
real variable whose graphs pass through the point (1, 0) is a commuta-
tive ring without unity under the operations of pointwise addition and



12 | Introduction to Rings 239
multiplication [that is, the operations ( f + g)(a) = fla) + g(a) and
(f8)(a) = fla)g(a)]. |

B EXAMPLE7?7 LetR,R,, ..., R, berings. We can use these to con-
struct a new ring as follows. Let

ROR,D--- DR ={(a,a,...,a)la ER}

and perform componentwise addition and multiplication; that is, define

(al,az,...,an) + (b, b,,...,b)=(a, +b,a,+b,...,a +bn)
and
(a,ay...,a)b,b,...,b)=(ab,,ab,, ... ab).
This ring is called the direct sum of R, R,, ..., R . |

Properties of Rings

Our first theorem shows how the operations of addition and multiplica-
tion intertwine. We use b — ¢ to denote b + (—c¢).

I Theorem 12.1 Rules of Multiplication

Let a, b, and c belong to a ring R. Then

1. a0 =0a = 0.

2. a(—b) = (—a)b = —(ab).

3. (—a)(—b) = ab.’

4. ab—c)=ab—ac and (b— c)a = ba — ca.
Furthermore, if R has a unity element 1, then

5. (—1a = —a.
6. (—D(-1)=1.

PROOF We will prove rules 1 and 2 and leave the rest as easy exercises
(see Exercise 11). To prove statements such as those in Theorem 12.1, we
need only “play off” the distributive property against the fact that R is a
group under addition with additive identity 0. Consider rule 1. Clearly,

0+ a0 =a0 = a0 + 0) = a0 + a0.
So, by cancellation, 0 = 0. Similarly, Oa = 0.

"Minus times minus is plus.
The reason for this we need not discuss.
W. H. Auden
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To prove rule 2, we observe that a(—b) + ab = a(—b + b) =
a0 = 0. So, adding —(ab) to both sides yields a(—b) = —(ab). The re-
mainder of rule 2 is done analogously. |

Recall that in the case of groups, the identity and inverses are unique.
The same is true for rings, provided that these elements exist. The proofs
are identical to the ones given for groups and therefore are omitted.

I Theorem 12.2 Uniqueness of the Unity and Inverses

If a ring has a unity, it is unique. If a ring element has a multipli-
cative inverse, it is unique.

Many students have the mistaken tendency to treat a ring as if it were
a group under multiplication. It is not. The two most common errors are
the assumptions that ring elements have multiplicative inverses—they
need not—and that a ring has a multiplicative identity—it need not. For
example, if a, b, and ¢ belong to aring, @ # 0 and ab = ac, we cannot
conclude that b = ¢. Similarly, if > = a, we cannot conclude that a = 0
or 1 (as is the case with real numbers). In the first place, the ring need
not have multiplicative cancellation, and in the second place, the ring
need not have a multiplicative identity. There is an important class of
rings wherein multiplicative identities exist and for which multiplica-
tive cancellation holds. This class is taken up in the next chapter.

Subrings

In our study of groups, subgroups played a crucial role. Subrings, the
analogous structures in ring theory, play a much less prominent role than
their counterparts in group theory. Nevertheless, subrings are important.

Definition Subring

A subset S of a ring R is a subring of R if S is itself a ring with the
operations of R.

Just as was the case for subgroups, there is a simple test for subrings.

I Theorem 12.3 Subring Test

A nonempty subset S of a ring R is a subring if S is closed under
subtraction and multiplication—that is, ifa — b and ab are in S
whenever a and b are in S.
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PROOF Since addition in R is commutative and S is closed under sub-
traction, we know by the One-Step Subgroup Test (Theorem 3.1) that S
is an Abelian group under addition. Also, since multiplication in R is
associative as well as distributive over addition, the same is true for
multiplication in S. Thus, the only condition remaining to be checked
is that multiplication is a binary operation on S. But this is exactly what
closure means. |

We leave it to the student to confirm that each of the following ex-
amples is a subring.

B EXAMPLE 8 {0} and R are subrings of any ring R. {0} is called the
trivial subring of R. |

# EXAMPLE 9 {0, 2, 4} is a subring of the ring Z, the inte-
gers modulo 6. Note that although 1 is the unity in Z, 4 is the unity in
{0,2,4}. ]
B EXAMPLE 10 For each positive integer n, the set

nZ = {0, =n, £2n, =3n, ...}

is a subring of the integers Z. |

B EXAMPLE 11 The set of Gaussian integers
Zlil={a+bila,beZ}

is a subring of the complex numbers C. |

B EXAMPLE 12 Let R be the ring of all real-valued functions of a sin-
gle real variable under pointwise addition and multiplication. The sub-
set S of R of functions whose graphs pass through the origin forms a
subring of R. |

# EXAMPLE 13 The set

o s)erer)

of diagonal matrices is a subring of the ring of all 2 X 2 matrices
over Z. |

We can picture the relationship between a ring and its various sub-
rings by way of a subring lattice diagram. In such a diagram, any ring
is a subring of all the rings that it is connected to by one or more up-
ward lines. Figure 12.1 shows the relationships among some of the
rings we have already discussed.
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C

ZIi1={a + bi| a, b € 7} 0(2)={a + b2 | a, b € Q)

I
|
—7 \\

TN\
VAVAVA

1272 187

Figure 12.1 Partial subring lattice diagram of C

In the next several chapters, we will see that many of the fundamen-
tal concepts of group theory can be naturally extended to rings. In par-
ticular, we will introduce ring homomorphisms and factor rings.

There is no substitute for hard work.
THOMAS ALVA EDISON, Life

1. Give an example of a finite noncommutative ring. Give an exam-
ple of an infinite noncommutative ring that does not have a unity.

2. The ring {0, 2, 4, 6, 8} under addition and multiplication modulo
10 has a unity. Find it.

3. Give an example of a subset of a ring that is a subgroup under
addition but not a subring.

4. Show, by example, that for fixed nonzero elements a and b in a
ring, the equation ax = b can have more than one solution. How
does this compare with groups?

5. Prove Theorem 12.2.

6. Find an integer n that shows that the rings Z need not have the fol-
lowing properties that the ring of integers has.

a. > = aimpliesa =0ora = 1.

b. ab = 0 impliesa = 0or b = 0.
¢c. ab=acanda # 0imply b = c.
Is the n you found prime?
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. Show that the three properties listed in Exercise 6 are valid for Z,

where p is prime.

. Show that a ring is commutative if it has the property that ab = ca

implies b = ¢ when a # 0.

. Prove that the intersection of any collection of subrings of a ring R

is a subring of R.

Verify that Examples 8 through 13 in this chapter are as stated.
Prove parts 3 through 6 of Theorem 12.1.

Let a, b, and c be elements of a commutative ring, and suppose that
a is a unit. Prove that b divides c if and only if ab divides c.
Describe all the subrings of the ring of integers.

Let a and b belong to a ring R and let m be an integer. Prove that
m - (ab) = (m - a)b = a(m - b).

Show that if m and n are integers and ¢ and b are elements from a
ring, then (m - a)(n - b) = (mn) - (ab). (This exercise is referred to
in Chapters 13 and 15.)

Show that if n is an integer and a is an element from a ring, then
n-(—a)=—-a).

Show that a ring that is cyclic under addition is commutative.

Let a belong to aring R. Let S = {x € R | ax = 0}. Show that S is
a subring of R.

Let R be a ring. The center of R is the set {x € R | ax = xa for all
a in R}. Prove that the center of a ring is a subring.

Describe the elements of M,(Z) (see Example 4) that have multi-
plicative inverses.

Suppose that R, R,, . .., R are rings that contain nonzero ele-
ments. Show that R, © R, @ - - - @ R has a unity if and only if
each R, has a unity.

Let R be a commutative ring with unity and let U(R) denote the set
of units of R. Prove that U(R) is a group under the multiplication of
R. (This group is called the group of units of R.)

Determine U(Z[i]) (see Example 11).

If R, R), ..., R are commutative rings with unity, show that
UR,OR,D - DR)=UR)DUR)D---DUR).
Determine U(Z[x]). (This exercise is referred to in Chapter 17.)
Determine U(R[x]).

Show that a unit of a ring divides every element of the ring.

InZ, show that4 | 2; in Z, show that 3 1 7; in Zs show that 9 | 12.
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Suppose that a and b belong to a commutative ring R with unity. If
a is a unit of R and b*> = 0, show that a + b is a unit of R.

Suppose that there is an integer n > 1 such that x” = x for all elements
x of some ring. If m is a positive integer and @™ = 0 for some a, show
thata = 0.

Give an example of ring elements a and b with the properties that
ab = 0 but ba # 0.

Let n be an integer greater than 1. In a ring in which x" = x for all x,
show that ab = 0 implies ba = 0.

Suppose that R is a ring such that x* = x for all x in R. Prove that
6x = O forall xin R.

Suppose that a belongs to a ring and a* = 4. Prove that a®* = a
foralln = 1.

Find an integer n > 1 such that ¢" = a for all a in Z. Do the same
for Z, . Show that no such n exists for Z when m is divisible by the
square of some prime.

2

Let m and n be positive integers and let k be the least common mul-
tiple of m and n. Show that mZ N nZ = kZ.

Explain why every subgroup of Z under addition is also a subring
of Z .

Is Z, a subring of Z ,?

Suppose that R is a ring with unity 1 and « is an element of R such
that a> = 1. Let S = {ara | r € R}. Prove that S is a subring of R.
Does S contain 1?

Let M,(Z) be the ring of all 2 X 2 matrices over the integers and let R =
{ [ a a+ b}
a+b b

of M(Z).

Let M(Z) be the ring of all 2 X 2 matrices over the integers and let R =
a a—»>b

(B

ring of M,(2).

= {3

of M,(2).
LetR=ZDZD Zand S = {(a,b,c) ER I a + b= c}. Prove or
disprove that S is a subring of R.

a,be”z } Prove or disprove that R is a subring

a, b e Z}. Prove or disprove that R is a sub-

a,be”z } Prove or disprove that R is a subring

Suppose that there is a positive even integer n such that a” = a for
all elements a of some ring. Show that —a = a for all a in the ring.
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Let R be a ring with unity 1. Show that S = {n - 11 n € Z} is a sub-
ring of R.

Show that 2Z U 3Z is not a subring of Z.

Determine the smallest subring of Q that contains 1/2. (That is,
find the subring S with the property that S contains 1/2 and, if T is
any subring containing 1/2, then T contains S.)

Determine the smallest subring of Q that contains 2/3.

Let R be a ring. Prove that a> — b> = (a + b)(a — b) for all a, b in
R if and only if R is commutative.

Suppose that R is a ring and that a®> = a for all a in R. Show that R
is commutative. [A ring in which a> = a for all a is called a
Boolean ring, in honor of the English mathematician George Boole
(1815-1864).]

Give an example of a Boolean ring with four elements. Give an ex-
ample of an infinite Boolean ring.

Theory is the general; experiments are the soldiers.

LEONARDO DA VINCI

Software for the computer exercises in this chapter is available at the
website:

1.

http://www.d.umn.edu/~jgallian

This software finds all solutions to the equation x> + y> = 0 in z,
Run the software for all odd primes up to 37. Make a conjecture
about the existence of nontrivial solutions in Zp (p a prime) and the
form of p.

. LetZ [i] = {a + bil a, bbelong to Z , i> = —1} (the Gaussian inte-

gers modulo 7). This software finds the group of units of this ring
and the order of each element of the group. Run the program for
n = 3,7, 11, and 23. Is the group of units cyclic for these cases? Try
to guess a formula for the order of the group of units of Z [i] as a
function of n when 7 is a prime and » mod 4 = 3. Run the program
for n = 9 and 27. Are the groups cyclic? Try to guess a formula for
the order when n = 3*. Run the program for n = 5, 13, 17, and 29.
Is the group cyclic for these cases? What is the largest order of any
element in the group? Try to guess a formula for the order of the
group of units of Z [i] as a function of n when n is a prime and
n mod 4 = 1. Try to guess a formula for the largest order of any
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element in the group of units of Z [i] as a function of n when n is a
prime and n mod 4 = 1. On the basis of the orders of the elements
of the group of units, try to guess the isomorphism class of the
group. Run the program for n = 25. Is this group cyclic? Based on
the number of elements in this group and the orders of the elements,
try to guess the isomorphism class of the group.

. This software determines the isomorphism class of the group of

units of Z [i]. Run the program for n = 5, 13, 17, 29, and 37. Make
a conjecture. Run the program for n = 3, 7, 11, 19, 23, and 31.
Make a conjecture. Run the program for n = 5, 25, and 125. Make
a conjecture. Run the program for n = 13 and 169. Make a conjec-
ture. Run the program for n = 3, 9, and 27. Make a conjecture. Run
the program for n = 7 and 49. Make a conjecture. Run the program
forn = 11 and 121. Make a conjecture. Make a conjecture about
the case where n = p* where p is a prime and p mod 4 = 1. Make
a conjecture about the case where n = p* where p is a prime and
pmod4 = 3.

. This software determines the order of the group of units in the ring

of 2 X 2 matrices over Z (that is, the group GL(2, Z)) and the sub-
group SL(2, Z ). Run the program for n = 2, 3, 5,7, 11, and 13.
What relationship do you see between the order of GL(2, Z ) and the
order of SL(2, Z ) in these cases? Run the program for n =16, 27,
25, and 49. Make a conjecture about the relationship between the or-
der of GL(2, Z ) and the order of SL(2, Z ) when n is a power of a
prime. Run the program for n = 32. (Notice that when you run the
program for n = 32, the table shows the orders for all divisors of 32
greater than 1.) How do the orders of the two groups change each
time you increase the power of 2 by 1? Run the program for n = 27.
How do the orders of the two groups change each time you increase
the power of 3 by 1? Run the program for n = 25. How do the orders
of the two groups change when you increase the power of 5 by 1?
Make a conjecture about the relationship between |SL(2, Z,)! and
ISL(2, Z ..,)|. Make a conjecture about the relationship between
IGL(2, Zp,)l and IGL(2, Zp,ﬂ)l. Run the program for n = 12, 15, 20,
21, and 30. Make a conjecture about the order of GL(2, Z)) in terms
of the orders of GL(2, Z ) and GL(2, Z) where n = st and s and ¢ are
relatively prime. (Notice that when you run the program for sz, the
table shows the values for st, s, and t.) For each value of n, is the or-
der of SL(2, Z ) divisible by n? Is it divisible by n + 1? Is it divisible
byn — 17

. In the ring Z , this software finds the number of solutions to the

equation x* = — 1. Run the program for all primes between 3 and 29.
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How does the answer depend on the prime? Make a conjecture about
the number of solutions when # is a prime greater than 2. Run the
program for the squares of all primes between 3 and 29. Make a con-
jecture about the number of solutions when n is the square of a
prime greater than 2. Run the program for the cubes of primes be-
tween 3 and 29. Make a conjecture about the number of solutions
when 7 is any power of an odd prime. Run the program for n = 2, 4,
8, 16, and 32. Make a conjecture about the number of solutions
when 7 is a power of 2. Run the program for n = 12, 20, 24, 28,
and 36. Make a conjecture about the number of solutions when 7 is a
multiple of 4. Run the program for various cases where n = pq and
n = 2pq where p and g are odd primes. Make a conjecture about the
number of solutions when n = pg or n = 2pq where p and g are odd
primes. What relationship do you see among the numbers of solu-
tions for n = p, n = g, and n = pq? Run the program for various
cases where n = pqr and n = 2pqr where p, g, and r are odd primes.
Make a conjecture about the number of solutions when n = pgr or
n = 2pqr where p, g, and r are odd primes. What relationship do you
see among the numbers of solutions whenn = p,n =g, andn = r
and the case that n = pgr?

6. This software determines the number of solutions to the equation
X* = —I where X is a2 X 2 matrix with entries from Z and I is the
identity. Run the program for n = 32. Make a conjecture about the
number of solutions when n = 2f where k > 1. Run the program
forn =3, 11, 19, 23, and 31. Make a conjecture about the number
of solutions when 7 is a prime of the form 4¢ + 3. Run the pro-
gram for n = 27 and 49. Make a conjecture about the number of
solutions when n has the form p’ where p is a prime of the form
4g + 3. Run the program for n = 5, 13, 17, 29, and 37. Make a
conjecture about the number of solutions when 7 is a prime of the
form 4¢g + 1. Run the program for n = 6, 10, 14, 22, 15, 21, 33, 39,
30, 42. What seems to be the relationship between the number of
solutions for a given n and the number of solutions for the prime
power factors of n?

D. B. Erickson, “Orders for Finite Noncommutative Rings,” American
Mathematical Monthly 73 (1966): 376-377.

In this elementary paper, it is shown that there exists a noncommutative ring
of order m > 1 if and only if m is divisible by the square of a prime.



I. N. Herstein

A whole generation of textbooks and an entire
generation of mathematicians, myself included,
have been profoundly influenced by that text
[Herstein’s Topics in Algebra].

GEORGIA BENKART

I. N. HERSTEIN was born on March 28, 1923,
in Poland. His family moved to Canada
when he was seven. He grew up in a poor and
tough environment, on which he commented
that in his neighborhood you became either a
gangster or a college professor. During his
school years he played football, hockey, golf,
tennis, and pool. During this time he worked
as a steeplejack and as a barber at a fair.
Herstein received a B.S. degree from the
University of Manitoba, an M.A. from the
University of Toronto, and, in 1948, a Ph.D.
degree from Indiana University under the su-
pervision of Max Zorn. Before permanently
settling at the University of Chicago in 1962,
he held positions at the University of Kansas,
the Ohio State University, the University of
Pennsylvania, and Cornell University.
Herstein wrote more than 100 research
papers and a dozen books. Although his
principal interest was noncommutative ring
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theory, he also wrote papers on finite
groups, linear algebra, and mathematical
economics. His textbook Topics in Algebra,
first published in 1964, dominated the field
for 20 years and has become a classic.
Herstein had great influence through his
teaching and his collaboration with col-
leagues. He had 30 Ph.D. students, and
traveled and lectured widely. His nonmath-
ematical interests included languages and
art. He spoke Italian, Hebrew, Polish, and
Portuguese. Herstein died on February 9,
1988, after a long battle with cancer.

To find more information about Herstein,
visit:

http://www-groups.dcs.st-
and.ac.uk/~history/
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Integral Domains

Don't just read it! Ask your own questions, look for your own examples,
discover your own proofs. Is the hypothesis necessary? Is the converse

true? What happens in the classical special case? Where does the proof
use the hypothesis?

PAUL HALMOS

Definition and Examples

To a certain degree, the notion of a ring was invented in an attempt to
put the algebraic properties of the integers into an abstract setting. A
ring is not the appropriate abstraction of the integers, however, for too
much is lost in the process. Besides the two obvious properties of com-
mutativity and existence of a unity, there is one other essential feature
of the integers that rings in general do not enjoy—the cancellation
property. In this chapter, we introduce integral domains—a particular
class of rings that have all three of these properties. Integral domains
play a prominent role in number theory and algebraic geometry.

A zero-divisor is a nonzero element a of a commutative ring R such

| Definition Zero-Divisors
that there is a nonzero element b € R with ab = 0.

Definition Integral Domain
| An integral domain is a commutative ring with unity and no

zero-divisors.

Thus, in an integral domain, a product is 0 only when one of the
factors is 0; that is, ab = 0 only when a = 0 or b = 0. The following
examples show that many familiar rings are integral domains and some
familiar rings are not. For each example, the student should verify the
assertion made.

B EXAMPLE 1 The ring of integers is an integral domain. |

249
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B EXAMPLE 2 The ring of Gaussian integers Z[i] = {a + bila,b € Z}
is an integral domain. i

B EXAMPLE 3 The ring Z[x] of polynomials with integer coefficients
is an integral domain. |

B EXAMPLE 4 The ring Z[V2] = {a + b\/2 | a, b € Z} is an integral
domain. |

B EXAMPLE 5 The ring Z, of integers modulo a prime p is an integral
domain. |

B EXAMPLE 6 The ring Z, of integers modulo 7 is not an integral do-
main when 7 is not prime. |

B EXAMPLE 7 The ring M,(Z) of 2 X 2 matrices over the integers is
not an integral domain. |

I EXAMPLE 8 Z @ Zis not an integral domain. |

What makes integral domains particularly appealing is that they have
an important multiplicative group-theoretic property, in spite of the fact
that the nonzero elements need not form a group under multiplication.
This property is cancellation.

B Theorem 13.1 Cancellation

Fields

Let a, b, and c belong to an integral domain. If a # 0 and ab = ac,
then b = c.

PROOF From ab = ac, we have a(b — ¢) = 0. Since a # 0, we must
have b — ¢ = 0. |

Many authors prefer to define integral domains by the cancellation
property—that is, as commutative rings with unity in which the cancel-
lation property holds. This definition is equivalent to ours.

In many applications, a particular kind of integral domain called a field
is necessary.

Definition Field
A field is a commutative ring with unity in which every nonzero
element is a unit.
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To verify that every field is an integral domain, observe that if a and
b belong to a field with a # 0 and ab = 0, we can multiply both sides
of the last expression by a~! to obtain b = 0.

It is often helpful to think of ab~! as a divided by b. With this in
mind, a field can be thought of as simply an algebraic system that
is closed under addition, subtraction, multiplication, and division
(except by 0). We have had numerous examples of fields: the complex
numbers, the real numbers, the rational numbers. The abstract theory
of fields was initiated by Heinrich Weber in 1893. Groups, rings, and
fields are the three main branches of abstract algebra. Theorem 13.2
says that, in the finite case, fields and integral domains are the same.

I Theorem 13.2 Finite Integral Domains Are Fields

A finite integral domain is a field.

PROOF Let D be a finite integral domain with unity 1. Let a be any
nonzero element of D. We must show that a is a unit. If a = 1, a is its
own inverse, so we may assume that a # 1. Now consider the following
sequence of elements of D: a, a®, a°, . . .. Since D is finite, there must
be two positive integers i and j such that i > j and a’ = a/. Then, by can-
cellation, @'/ = 1. Since a # 1, we know that i — j > 1, and we have
shown that a’ 7~ is the inverse of a. |

B Corollary Z,Is aField

For every prime p, Z,, the ring of integers modulo p, is a field.

PROOF According to Theorem 13.2, we need only prove that Z, has
no zero-divisors. So, suppose that a, b € Z, and ab = 0. Then ab = pk
for some integer k. But then, by Euclid’s Lemma (see Chapter 0), p
divides a or p divides b. Thus, in Z,, a = 0 or b = 0. |

Putting the preceding corollary together with Example 6, we see that
Z, is a field if and only if n is prime. In Chapter 22, we will describe
how all finite fields can be constructed. For now, we give one example
of a finite field that is not of the form Z,.

B EXAMPLE 9 Field with Nine Elements
Let Z3[l] = {a + bi | a, b e Z3}
={0,1,2,i, 1 +i,2+i,2i, 1 +2i,2 + 2i},
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where i> = —1. This is the ring of Gaussian integers modulo 3. Ele-
ments are added and multiplied as in the complex numbers, except that
the coefficients are reduced modulo 3. In particular, —1 = 2. Table 13.1
is the multiplication table for the nonzero elements of Z;[i]. |

Table 13.1 Multiplication Table for Z,[i]*

1 2 i 1+i 2+i 2i 142 2+2i
1 1 2 i 1+i 2+i 2 1+2i 2+2i
2 2 1 2i 242 142 i 240 1+
i i 2i 2 240 242 1 1+i  1+2i
T4i | 1+i 242 2+i 2 1 1+2i 2 i
240 | 240 142 2+2 1 i 1+i 2 2
2i 2i i 1 1+2 1+i 2 242 2+i
142 | 1+2i 2+i 1+i 2 2i 242 i 1
242 | 242 1+i 142 i 2 240 1 2i

B EXAMPLE 10 Let O[V2] = {a + bV2 1 a, b € Q). 1tis easy to see
that Q[\V/2] is a ring. Viewed as an element of R, the multiplicative in-
verse of any nonzero element of the form a + b\/2 is simply 1/(a +
b\V'2). To verify that O[V2] is a field, we must show that 1/(a + b\V/2)
can be written in the form ¢ + d\/2. In high school algebra, this process
is called “rationalizing the denominator.” Specifically,

1 B 1 a—bV2 B a B b NG
a+bV2 a+bV2a-bV2 a—200 o —200
(Note that a + b\/2 # 0 guarantees that a — b\V/2 # 0.) |

Characteristic of a Ring

Note that for any element x in Zs[i], we have 3x = x + x + x = 0, since
addition is done modulo 3. Similarly, in the subring {0, 3, 6, 9} of Z;,,
we have 4x = x + x + x + x = O for all x. This observation motivates
the following definition.

Definition Characteristic of a Ring

The characteristic of a ring R is the least positive integer n such that
nx = 0 for all x in R. If no such integer exists, we say that R has char-
acteristic 0. The characteristic of R is denoted by char R.

Thus, the ring of integers has characteristic 0, and Z, has character-
istic n. An infinite ring can have a nonzero characteristic. Indeed, the
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ring Z,[x] of all polynomials with coefficients in Z, has characteristic 2.
(Addition and multiplication are done as for polynomials with ordinary
integer coefficients except that the coefficients are reduced modulo 2.)
When a ring has a unity, the task of determining the characteristic is
simplified by Theorem 13.3.

1 Theorem 13.3 Characteristic of a Ring with Unity

Let R be a ring with unity 1. If 1 has infinite order under addition,
then the characteristic of R is 0. If 1 has order n under addition,
then the characteristic of R is n.

PROOF If 1 has infinite order, then there is no positive integer n such
that n - 1 = 0, so R has characteristic 0. Now suppose that 1 has addi-
tive order n. Then n - 1 = 0, and # is the least positive integer with this
property. So, for any x in R, we have

n-x=x+x+---+ x(nsummands)
=1Ix+ 1x + -+ + 1x (n summands)
=({1+1+---+ DIx(nsummands)
=mn-DHx=0=0.

Thus, R has characteristic n. |

In the case of an integral domain, the possibilities for the character-
istic are severely limited.

I Theorem 13.4 Characteristic of an Integral Domain

The characteristic of an integral domain is 0 or prime.

PROOF By Theorem 13.3, it suffices to show that if the additive order
of 1 is finite, it must be prime. Suppose that 1 has order n and that n = st,
where 1 = s, t = n. Then, by Exercise 15 in Chapter 12,

O=n-1=(t-1=(s-1)r-1).

So,s -1 =0ort-1=0. Since n is the least positive integer with the
property that n -+ 1 = 0, we must have s = n or t = n. Thus, n is
prime. |

We conclude this chapter with a brief discussion of polynomials
with coefficients from a ring—a topic we will consider in detail in
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later chapters. The existence of zero-divisors in a ring causes unusual
results when one is finding zeros of polynomials with coefficients in
the ring. Consider, for example, the equation x> — 4x + 3 = 0. In the
integers, we could find all solutions by factoring

P =dx+3=x—-3)x—-1)=0

and setting each factor equal to 0. But notice that when we say we can
find all solutions in this manner, we are using the fact that the only way
for a product to equal O is for one of the factors to be O—that is, we are
using the fact that Z is an integral domain. In Z;,, there are many pairs of
nonzero elements whose products are 0: 2 -6 =0,3- 4=0,4-6 = 0,
6 - 8 = 0, and so on. So, how do we find all solutions of x> — 4x + 3 = 0
in Z;,? The easiest way is simply to try every element! Upon doing so,
we find four solutions: x = 1, x = 3, x = 7, and x = 9. Observe that we
can find all solutions of x> — 4x + 3 = 0 over Z,, or Z;3, say, by setting
the two factors x — 3 and x — 1 equal to 0. Of course, the reason this
works for these rings is that they are integral domains. Perhaps this will
convince you that integral domains are particularly advantageous rings.
Table 13.2 gives a summary of some of the rings we have introduced and
their properties.

Table 13.2 Summary of Rings and Their Properties

Integral
Ring Form of Element Unity Commutative Domain Field Characteristic
Z k 1 Yes Yes No 0
Z,, n composite  k 1 Yes No No n
Z,, p prime k 1 Yes Yes  Yes P
Z|x] ax"+ -+ fix) =1 Yes Yes No 0
ax + ag
nZ,n>1 nk None Yes No No 0
[a b} 1 0]
My(Z) ¢ d 0 1 No No No 0
2a 2b
M>(27) |: 2% 2 d] None No No No 0
Z]i] a + bi 1 Yes Yes No 0
Z5li] a+bia, b€ Zy 1 Yes Yes Yes 3
ZIV2] a+bV2sab€EZ 1 Yes Yes  No 0
Q[\/i] a+ b\ﬁ; abeQ 1 Yes Yes Yes 0
VA VA (a, b) (1, 1) Yes No No 0
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It looked absolutely impossible. But it so happens that you go on worrying
away at a problem in science and it seems to get tired, and lies down and
lets you catch it.

10.

11.

12.

13.

14.

15.
16.

WILLIAM LAWRENCE BRAGGT

. Verify that Examples 1 through 8 are as claimed.

Which of Examples 1 through 5 are fields?

. Show that a commutative ring with the cancellation property

(under multiplication) has no zero-divisors.

. List all zero-divisors in Z,,. Can you see a relationship between the

zero-divisors of Z,, and the units of Z,,?

. Show that every nonzero element of Z, is a unit or a zero-divisor.
. Find a nonzero element in a ring that is neither a zero-divisor nor a

unit.

Let R be a finite commutative ring with unity. Prove that every
nonzero element of R is either a zero-divisor or a unit. What hap-
pens if we drop the “finite” condition on R?

Describe all zero-divisors and units of Z® Q & Z.

. Let d be an integer. Prove that ZIVd]l ={a+bVdla b€ Z}is

an integral domain. (This exercise is referred to in Chapter 18.)

In Z;, give a reasonable interpretation for the expressions 1/2,
—2/3,V/=3, and —1/6.

Give an example of a commutative ring without zero-divisors that
is not an integral domain.

Find two elements a and b in a ring such that both a and b are zero-
divisors, a + b # 0, and a + b is not a zero-divisor.

Let a belong to a ring R with unity and suppose that a” = 0 for
some positive integer n. (Such an element is called nilpotent.)
Prove that 1 — a has a multiplicative inverse in R. [Hint: Consider
l-ad+a+a*+---+a )]

Show that the nilpotent elements of a commutative ring form a
subring.

Show that O is the only nilpotent element in an integral domain.

A ring element a is called an idempotent if a*> = a. Prove that the
only idempotents in an integral domain are 0 and 1.

"Bragg, at age 24, won the Nobel Prize for the invention of x-ray crystallography. He
remains the youngest person ever to receive the Nobel Prize.
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17.

18.

19.
20.
21.
22,

23.
24,

25.

26.

27.

28.

29.

30.

31.
32,

33.

Let a and b be idempotents in a commutative ring. Show that each
of the following is also an idempotent: ab, a — ab, a + b — ab,
a+ b — 2ab.

Prove that if a is a ring idempotent, then ¢" = a for all positive inte-
gers n.

Determine all ring elements that are both nilpotents and idempotents.
Find a zero-divisor in Zs[i] = {a + bi | a, b € Zs}.

Find an idempotent in Zs[i] = {a + bi |l a, b € Zs}.

Find all units, zero-divisors, idempotents, and nilpotent elements
in Z3 @ Z6’

Determine all elements of a ring that are both units and idempotents.
Let R be the set of all real-valued functions defined for all real
numbers under function addition and multiplication.

a. Determine all zero-divisors of R.

b. Determine all nilpotent elements of R.

¢. Show that every nonzero element is a zero-divisor or a unit.
(Subfield Test) Let F be a field and let K be a subset of F with at
least two elements. Prove that K is a subfield of F if, for any
a,b(b# 0)inK,a — b and ab~! belong to K.

Let d be a positive integer. Prove that Q[Vd] = {a + bVd |
a, b € Q} is afield.

Let R be a ring with unity 1. If the product of any pair of nonzero
elements of R is nonzero, prove that ab = 1 implies ba = 1.

Let R = {0, 2, 4, 6, 8} under addition and multiplication modulo
10. Prove that R is a field.

Formulate the appropriate definition of a subdomain (that is, a
“sub” integral domain). Let D be an integral domain with unity 1.
Show that P = {n - 1 | n € Z} (that is, all integral multiples of 1)
is a subdomain of D. Show that P is contained in every subdomain
of D. What can we say about the order of P?

Prove that there is no integral domain with exactly six elements. Can
your argument be adapted to show that there is no integral domain
with exactly four elements? What about 15 elements? Use these ob-
servations to guess a general result about the number of elements in
a finite integral domain.

Let F be a field of order 2". Prove that char F' = 2.

Determine all elements of an integral domain that are their own in-
verses under multiplication.

Characterize those integral domains for which 1 is the only ele-
ment that is its own multiplicative inverse.



34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

47.

48.

49.
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Determine all integers n > 1 for which (n — 1)! is a zero-divisor

inZ,.

Suppose that a and b belong to an integral domain.

a. If & = b’ and @® = b3, prove thata = b.

b. If a” = V™ and a" = b", where m and n are positive integers that
are relatively prime, prove that a = b.

Find an example of an integral domain and distinct positive inte-

gers m and n such that @™ = b™ and @ = b", but a # b.

If a is an idempotent in a commutative ring, show that 1 — a is also

an idempotent.

Construct a multiplication table for Z,[i], the ring of Gaussian in-

tegers modulo 2. Is this ring a field? Is it an integral domain?

The nonzero elements of Z;[i] form an Abelian group of order 8 un-

der multiplication. Is it isomorphic to Zg, Z, D Z,, or Z, ® Z, D Z,?

Show that Z,[\V/3] = {a + b\/3 | a, b € Z;} is a field. For any

positive integer k and any prime p, determine a necessary and suf-

ficient condition for Z,[Vk] = {a + bVk | a, b € Z,} to be a field.

Show that a finite commutative ring with no zero-divisors and at

least two elements has a unity.

Suppose that a and b belong to a commutative ring and ab is a

zero-divisor. Show that either a or b is a zero-divisor.

Suppose that R is a commutative ring without zero-divisors. Show

that all the nonzero elements of R have the same additive order.

Suppose that R is a commutative ring without zero-divisors. Show

that the characteristic of R is O or prime.

Let x and y belong to a commutative ring R with prime character-

istic p.

a. Show that (x + y)? = xP + yP,

b. Show that, for all positive integers n, (x + y)?" = x?" + y»".

c. Find elements x and y in a ring of characteristic 4 such that
(x + y)* # x* + y* (This exercise is referred to in Chapter 20.)

Let R be a commutative ring with unity 1 and prime characteristic.

If a € R is nilpotent, prove that there is a positive integer k such that

(I +ak=1.

Show that any finite field has order p”, where p is a prime. Hint: Use

facts about finite Abelian groups. (This exercise is referred to in
Chapter 22.)

Give an example of an infinite integral domain that has character-
istic 3.

Let R be aring and let M,(R) be the ring of 2 X 2 matrices with entries
from R. Explain why these two rings have the same characteristic.
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50.

S1.
S2.
53.

54.

SS.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Let R be a ring with m elements. Show that the characteristic of R
divides m.

Explain why a finite ring must have a nonzero characteristic.

Find all solutions of x> — x + 2 = 0 over Z[i]. (See Example 9.)
Consider the equation x> — 5x + 6 = 0.

a. How many solutions does this equation have in Z,?

b. Find all solutions of this equation in Zg.

¢. Find all solutions of this equation in Z;,.

d. Find all solutions of this equation in Z, .

Find the characteristic of Z, © 4Z.

Suppose that R is an integral domain in which 20 - 1 = 0 and
12-1 =0. (Recall that n - 1 meansthesum 1 + 1 + - - - + 1 with
n terms.) What is the characteristic of R?

In a commutative ring of characteristic 2, prove that the idempo-
tents form a subring.

Describe the smallest subfield of the field of real numbers that con-
tains \/2. (That is, describe the subfield K with the property that K
contains V2 and if F is any subfield containing V2, then F con-
tains K.)

Let F be a finite field with n elements. Prove that x"~! = 1 for all
nonzero x in F.

Let F be a field of prime characteristic p. Prove that K = {x € F|
xP = x} is a subfield of F.

Suppose that a and b belong to a field of order 8 and that a> + ab +
b* = 0. Prove that @ = 0 and b = 0. Do the same when the field has
order 2" with n odd.

Let F be a field of characteristic 2 with more than two elements.
Show that (x + y)* # x> + y? for some x and y in F.

Suppose that F is a field with characteristic not 2, and that the
nonzero elements of F' form a cyclic group under multiplication.
Prove that F is finite.

Suppose that D is an integral domain and that ¢ is a nonconstant
function from D to the nonnegative integers such that ¢(xy) =
d(x)d(y). If x is a unit in D, show that p(x) = 1.

Let F be a field of order 32. Show that the only subfields of F are
F itself and {0, 1}.

Suppose that F is a field with 27 elements. Show that for every
elementa € F, 5a = —a.



13 | Integral Domains 259

The basic unit of mathematics is conjecture.
ARNOLD ROSS

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software lists the idempotents (see Exercise 16 for the defini-
tion) in Z,. Run the program for various values of n. Use these data
to make conjectures about the number of idempotents in Z, as a
function of n. For example, how many idempotents are there when
n is a prime power? What about when # is divisible by exactly two
distinct primes? In the case where 7 is of the form pg where p and
q are primes, can you see a relationship between the two idempo-
tents that are not O and 1? Can you see a relationship between the
number of idempotents for a given n and the number of distinct
prime divisors of n?

2. This software lists the nilpotent elements (see Exercise 13 for the
definition) in Z,. Run the program for various values of n. Use
these data to make conjectures about the number of nilpotent ele-
ments in Z, as a function of n.

3. This software determines which rings of the form Z,[/] are fields.
Run the program for all primes up to 37. From these data, make a
conjecture about the form of the primes that yield a field.

4. This software finds the idempotents in Z,[i] = {a + bil a, b € Z,}
(Gaussian integers modulo 7). Run the software for n = 4, 8, 16, and
32. Make a conjecture about the number of idempotents when n = 2,
Run the software for n = 13, 17, 29, and 37. What do these values of
n have in common? Make a conjecture about the number of idempo-
tents for these n. Run the software forn = 7, 11, 19, 23, 31, and 43.
What do these values of n have in common? Make a conjecture about
the number of idempotents for these n.

5. This software finds the nilpotent elements in Z,[i] = {a + bi |
a, b € Z,}. Run the software for n = 4, 8, 16, and 32. Make a con-
jecture about the number of nilpotent elements when n = 2%, Run the
software forn = 3,5, 7, 11, 13, and 17. What do these values of n
have in common? Make a conjecture about the number of nilpotent
elements for these n. Run the program for n = 9. Do you need to
revise the conjecture you made basedonn = 3,5, 7, 11, 13, and 17?
Run the software for n = 9, 25, and 49. What do these values
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of n have in common? Make a conjecture about the number of nilpo-
tent elements for these n. Run the program for n = 81. Do you need
to revise the conjecture you made based on n =9, 25, and 49?
What do these values of n have in common? Make a conjecture
about the number of nilpotent elements for these n. Run the pro-
gram for n = 27. Do you need to revise the conjecture you made
based on n = 9, 25, and 497 Run your program for n = 125 (this
may take a few seconds). On the basis of all of your data for this ex-
ercise, make a single conjecture in the case that n = p* where p is
any prime. Run the program for n = 6, 15, and 21. Make a conjec-
ture. Run the program for 12, 20, 28, and 45. Make a conjecture.
Run the program for 36 and 100 (this may take a few minutes). On
the basis of all your data for this exercise, make a single conjecture
that covers all integers n > 1.

6. This software determines the zero-divisors in Z,[i] = {a + bi | a,
b € Z,}. Use the software to formulate and test conjectures about the
number of zero-divisors in Z,[i] based on various conditions of 7.

Suggested Readings

Eric Berg, “A Family of Fields,” Pi Mu Epsilon 9 (1990): 154—155.

In this article, the author uses properties of logarithms and exponents
to define recursively an infinite family of fields starting with the real
numbers.

N. A. Khan, “The Characteristic of a Ring,” American Mathematical Monthly
70 (1963): 736.

Here it is shown that a ring has nonzero characteristic # if and only
if n is the maximum of the orders of the elements of R.

K. Robin McLean, “Groups in Modular Arithmetic,” The Mathematical
Gazette 62 (1978): 94-104.

This article explores the interplay between various groups of integers un-
der multiplication modulo » and the ring Z,. It shows how to construct
groups of integers in which the identity is not obvious; for example, 1977
is the identity of the group {1977, 5931} under multiplication modulo
7908.
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Ideals

Ideals and Factor Rings

The secret of science is to ask the right questions, and it is the choice of
problem more than anything else that marks the man of genius in the
scientific world.

SIR HENRY TIZARD IN C. P. SNOW,

A postscript to Science and Government

Normal subgroups play a special role in group theory—they permit us
to construct factor groups. In this chapter, we introduce the analogous
concepts for rings—ideals and factor rings.

Definition ldeal
A subring A of a ring R is called a (two-sided) ideal of R if for
every r € R and every a € A both ra and ar are in A.

So, a subring A of a ring R is an ideal of R if A “absorbs” elements
from R—thatis, if YA = {rala € A} CAand Ar = {arla€ A} C A
for all » € R.

An ideal A of R is called a proper ideal of R if A is a proper subset
of R. In practice, one identifies ideals with the following test, which is
an immediate consequence of the definition of ideal and the subring
test given in Theorem 12.3.

B Theorem 14.1 ldeal Test

262

A nonempty subset A of a ring R is an ideal of R if

1. a — b € A whenevera, b € A.
2. raand ar are in A whenevera € A andr € R.
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B EXAMPLE 1 For any ring R, {0} and R are ideals of R. The ideal {0}
is called the trivial ideal. |

B EXAMPLE 2 For any positive integer n, the set nZ = {0, *n,
*2n, ...} 1is an ideal of Z. |

# EXAMPLE 3 Let R be a commutative ring with unity and let a € R.
The set {(a) = {ra | r € R} is an ideal of R called the principal ideal
generated by a. (Notice that (a) is also the notation we used for
the cyclic subgroup generated by a. However, the intended meaning
will always be clear from the context.) The assumption that R is com-
mutative is necessary in this example (see Exercise 29 in the Sup-
plementary Exercises for Chapters 12—14). |

§ EXAMPLE 4 Let R[x] denote the set of all polynomials with real co-
efficients and let A denote the subset of all polynomials with constant
term 0. Then A is an ideal of R[x] and A = (x). |

# EXAMPLE 5 Let R be a commutative ring with unity and let a,,
a, ..., a,belong to R. Then I = {ay, ay, ..., a,) = {ra; + na, +
-+ + ra, | r, € R} is an ideal of R called the ideal generated by a,
a,, . . ., a,. The verification that / is an ideal is left as an easy exercise
(Exercise 3). |

B EXAMPLE 6 Let Z[x] denote the ring of all polynomials with inte-
ger coefficients and let / be the subset of Z[x] of all polynomials with
even constant terms. Then I is an ideal of Z[x] and I = {x, 2) (see
Exercise 37). |

B EXAMPLE 7 Let R be the ring of all real-valued functions of a real
variable. The subset S of all differentiable functions is a subring of R
but not an ideal of R. |

Factor Rings

Let R be aring and let A be an ideal of R. Since R is a group under addi-
tion and A is a normal subgroup of R, we may form the factor group
R/IA = {r + A | r € R}. The natural question at this point is: How may
we form a ring of this group of cosets? The addition is already taken care
of, and, by analogy with groups of cosets, we define the product of two
cosets of s + A and t + A as st + A. The next theorem shows that this de-
finition works as long as A is an ideal, and not just a subring, of R.
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1 Theorem 14.2 Existence of Factor Rings

Let R be a ring and let A be a subring of R. The set of cosets {r + A |
r € R} is a ring under the operations (s + A) + (t + A)=s+t+ A
and (s + A)(t + A) = st + A if and only if A is an ideal of R.

PROOF We know that the set of cosets forms a group under addition.
Once we know that multiplication is indeed a binary operation on the
cosets, it is trivial to check that the multiplication is associative and
that multiplication is distributive over addition. Hence, the proof boils
down to showing that multiplication is well defined if and only if A is
an ideal of R. To do this, let us suppose that A is an ideal and let s + A =
s'"+Aandt+ A =1t + A Then we must show that st + A = s't' + A.
Well, by definition, s = s" + a and r = t' + b, where a and b belong
to A. Then

st=(s"+a)t' +b)=s"t +at' +s'b+ ab,
and so
st+A=s"t' +at’' +s'b+ab+A=5s"t +A,

since A absorbs at’ + s'b + ab. Thus, multiplication is well defined
when A is an ideal.

On the other hand, suppose that A is a subring of R that is not an
ideal of R. Then there exist elements a € A and r € R such that ar & A
or ra & A. For convenience, say ar & A. Consider the elements a + A =
0 + A and r + A. Clearly, (a + A)(r + A) = ar + Abut (0 + A) -
(r+A)=0-r+A=A.Sincear + A # A, the multiplication is not
well defined and the set of cosets is not a ring. |

Let’s look at a few factor rings.
B EXAMPLE8 Z/4Z={0+4Z,1 +4Z,2 + 4Z,3 + 4Z}. To see how
to add and multiply, consider 2 + 4Z and 3 + 4Z.

Q+42)+ B +4Z)=5+4Z=1+4+4Z=1+4Z
Q+47)(B +42) =6 +4Z=2+4+4Z =2+ 4Z

One can readily see that the two operations are essentially modulo 4
arithmetic. i
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B EXAMPLE 9 27/6Z = {0 + 6Z,2 + 6Z, 4 + 6Z}. Here the opera-
tions are essentially modulo 6 arithmetic. For example, (4 + 6Z) +
4+6Z)=2+6Zand (4 + 6Z2)(4 + 6Z) =4 + 6Z. |

Here is a noncommutative example of an ideal and factor ring.

a, a
B EXAMPLE 10 Let R = {{ ]
as dy

subset of R consisting of matrices with even entries. It is easy to
show that / is indeed an ideal of R (Exercise 21). Consider the factor
ring R/I. The interesting question about this ring is: What is its size?

a;, € Z}and let 1 be the

We claim R/I has 16 elements; in fact, R/I = {{rl rz} +1 | r,-E {0, 1}}

ryory
An example illustrates the typical situation. Which of the 16 elements

7 8 7 8 1 0
is { ] + I?7 Well, observe that [ } + 1= [ } +
5 =3 5 =3 1 1

6 8 1 0
[4 _4] + 1= L J + 1, since an ideal absorbs its own elements.
The general case is left to the reader (Exercise 23). |

B EXAMPLE 11 Consider the factor ring of the Gaussian integers
R = Z[i]/(2 — i). What does this ring look like? Of course, the elements
of R have the form a + bi + (2 — i), where a and b are integers, but the
important question is: What do the distinct cosets look like? The fact
that2 — i + (2 — i) = 0 + (2 — i) means that when dealing with coset
representatives, we may treat 2 — i as equivalent to 0, so that 2 = i. For
example, thecoset3 +4i+ 2 —i)=3+8+2—i)=11+2 — ).
Similarly, all the elements of R can be written in the form a + (2 — i),
where a is an integer. But we can further reduce the set of distinct coset
representatives by observing that when dealing with coset representa-
tives, 2 = i implies (by squaring both sides) that 4 = —1 or 5 = 0.
Thus, thecoset3 +4i+ 2 —i)=11+2—-H=1+5+5+2—-i)=
1 + (2 — i). In this way, we can show that every element of R is equal to
one of the following cosets: 0 + (2 — i), 1 + 2 —i),2 + (2 —i),3 +
(2 — i), 4 + (2 — i). Is any further reduction possible? To demonstrate
that there is not, we will show that these five cosets are distinct. It suf-
fices to show that 1 + (2 — i) has additive order 5. Since 5(1 + (2 — i)) =
5+42—-i)=0+ 2 —1i),1+ (2 —i)hasorder 1 or 5. If the order is
actually I,then 1 + 2 — i) =0+ (2 —i),so 1 € 2 — i). Thus, 1 =
(2 — i) (a + bi) =2a + b + (—a + 2b)i for some integers a and b. But
this equation implies that 1 = 2a + band 0 = —a + 2b, and solving these
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simultaneously yields » = 1/5, which is a contradiction. It should be
clear that the ring R is essentially the same as the field Zs. |

B EXAMPLE 12 Let R[x] denote the ring of polynomials with real co-
efficients and let (x> + 1) denote the principal ideal generated by
x2 + 1; that is,

&+ 1) = {fx)E>+ 1D 1 Ax) € Rlx]).
Then

R[x]/{x2 + 1) = {g(x) + (x2 + 1) | g(x) € R[x]}
={ax+b+{x*+1)la bER}.

To see this last equality, note that if g(x) is any member of R[x], then
we may write g(x) in the form g(x)(x*> + 1) + r(x), where g(x) is the
quotient and r(x) is the remainder upon dividing g(x) by x> + 1. In
particular, r(x) = 0 or the degree of r(x) is less than 2, so that r(x) =
ax + b for some a and b in R. Thus,

g+ @+ D =gx)x*+ 1)+ rx) + x>+ 1)
=r(x) + %+ 1),

since the ideal (x> + 1) absorbs the term g(x)(x*> + 1).
How is multiplication done? Since

PH1I+E@+1)=0+ &7+ 1),

one should think of x> + 1 as 0 or, equivalently, as x> = —1. So, for
example,

+3+EE+1) - 2x+5+&2+ 1))
=22+ 1lx+ 15+ &2+ 1)=11x+ 13+ &% + 1).

In view of the fact that the elements of this ring have the form ax +
b + (x> + 1), where x> + (x> + 1) = —1 + (x> + 1), it is perhaps not
surprising that this ring turns out to be algebraically the same ring as
the ring of complex numbers. This observation was first made by
Cauchy in 1847. |

Examples 11 and 12 illustrate one of the most important applica-
tions of factor rings—the construction of rings with highly desirable
properties. In particular, we shall show how one may use factor rings
to construct integral domains and fields.
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Prime Ideals and Maximal Ideals

Definition Prime Ideal, Maximal Ideal

A prime ideal A of a commutative ring R is a proper ideal of R such
thata,b € Rand ab € A imply a € A or b € A. A maximal ideal of a
commutative ring R is a proper ideal of R such that, whenever B is an
idealof Rand A C BC R,then B= Aor B = R.

So, the only ideal that properly contains a maximal ideal is the en-
tire ring. The motivation for the definition of a prime ideal comes from
the integers.

B EXAMPLE 13 Let n be an integer greater than 1. Then, in the ring of
integers, the ideal nZ is prime if and only if n is prime (Exercise 9).
({0} is also a prime ideal of Z.) |

B EXAMPLE 14 The lattice of ideals of Zz¢ (Figure 14.1) shows that
only (2) and (3) are maximal ideals. [ |

B EXAMPLE 15 The ideal (x> + 1) is maximal in R[x]. To see this, as-
sume that A is an ideal of R[x] that properly contains (x> + 1). We will
prove that A = R[x] by showing that A contains some nonzero real
number c. [This is the constant polynomial s(x) = c for all x.] Then 1 =
(1/c)c € A and therefore, by Exercise 15, A = R[x]. To this end, let
flx) € A, but fix) & (x> + 1). Then

f0) = g + 1) + (),

where r(x) # 0 and the degree of r(x) is less than 2. It follows that
r(x) = ax + b, where a and b are not both 0, and

ax + b = r(x) = fix) — gx)(x*> + 1) € A.

36
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0

Figure 14.1
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Thus,
a*x> — b2 =(ax + b)ax —b)EA and a*(x* + 1) € A.
So,
0 # a® + b* = (a®>* + a%) — (a*>x* — b?) E A. |

B EXAMPLE 16 The ideal (x> + 1) is not prime in Z,[x], since it con-
tains (x + 1)2 = x2 + 2x + 1 = x? + 1 but does not contain x + 1. |

The next two theorems are useful for determining whether a particu-
lar ideal is prime or maximal.

1 Theorem 14.3 R/A Is an Integral Domain If and Only If A Is Prime

Let R be a commutative ring with unity and let A be an ideal of R.
Then R/A is an integral domain if and only if A is prime.

PROOF Suppose that R/A is an integral domain and ab € A. Then
(a+ A)b + A) = ab + A = A, the zero element of the ring R/A. So,
eithera + A =Aorb + A = A; that is, eithera € A or b € A. Hence,
A is prime.

To prove the other half of the theorem, we first observe that R/A is a
commutative ring with unity for any proper ideal A. Thus, our task is
simply to show that when A is prime, R/A has no zero-divisors. So, sup-
pose that A is prime and (¢ + A)(b + A) =0+ A =A.Thenab € A
and, therefore, « € A or b € A. Thus, one of a + A or b + A is the zero
coset in R/A. |

For maximal ideals, we can do even better.

I Theorem 14.4 R/Als aField If and Only If A Is Maximal

Let R be a commutative ring with unity and let A be an ideal of R.
Then R/A is a field if and only if A is maximal.

PROOF Suppose that R/A is a field and B is an ideal of R that properly
contains A. Let b € Bbut b & A. Then b + A is a nonzero element
of R/A and, therefore, there exists an element ¢ + A such that
b+ A (c+ A =1+ A, the multiplicative identity of R/A. Since
b € B, we have bc € B. Because

1+A=(b+A)c+A) =bc+A,
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we have 1 —bc € A CB.So,1 = (1 — bc) + bc € B. By Exercise 15,
B = R. This proves that A is maximal.

Now suppose that A is maximal and let » € R but b & A. It suffices
to show that » + A has a multiplicative inverse. (All other properties
for a field follow trivially.) Consider B = {br + al r € R,a € A}. This
is an ideal of R that properly contains A (Exercise 25). Since A is maxi-
mal, we must have B = R. Thus, 1 € B, say, | = bc + a’, where a’ € A.
Then

l1+tA=bc+a +A=bc+A=(b+A)(c+A). |

When a commutative ring has a unity, it follows from Theorems
14.3 and 14.4 that a maximal ideal is a prime ideal. The next example
shows that a prime ideal need not be maximal.

B EXAMPLE 17 The ideal (x) is a prime ideal in Z[x] but not a maxi-
mal ideal in Z[x]. To verify this, we begin with the observation that
(x) = {fix) € Z[x] | f(0) = 0} (see Exercise 29). Thus, if g(x)h(x) € (x),
then g(0)2(0) = 0. And since g(0) and 4(0) are integers, we have g(0) = 0
or h(0) = 0.

To see that (x) is not maximal, we simply note that (x) C (x, 2) C
Z|x] (see Exercise 37). |

Text not available due to copyright restrictions

1. Verify that the set defined in Example 3 is an ideal.
2. Verify that the set A in Example 4 is an ideal and that A = (x).

3. Verify that the set 7 in Example 5 is an ideal and that if J is any
ideal of R that contains a;, a,, . . ., a,, then I C J. (Hence, (a,
a, . .., a,) is the smallest ideal of R that contains ay, a,, . . . , a,.)

4. Find a subring of Z € Z that is not an ideal of Z & Z.

5. LetS={a+ bila, b€ Z biseven}. Show that S is a subring of
Z[i], but not an ideal of Z[i].

6. Find all maximal ideals in
a. Zg b. Z;. c. Z, d. Z,.

7. Let a belong to a commutative ring R. Show that aR = {ar | r € R} is
an ideal of R. If R is the ring of even integers, list the elements of 4R.

8. Prove that the intersection of any set of ideals of a ring is an ideal.
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10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22,

23.
24.

25.

26.

27.

. If nis an integer greater than 1, show that (n) = nZ is a prime ideal

of Z if and only if n is prime. (This exercise is referred to in this
chapter.)

If A and B are ideals of a ring, show that the sum of A and B,A + B =
{a+bla€ A, bE B},isanideal.

In the ring of integers, find a positive integer a such that

a. (@) =(2) + (3),

b. (a) = (6) + (8),

c. {a) = (m) + (n).

If A and B are ideals of a ring, show that the product of A and B,
AB = {a\by + ayby + - - - + a,b, | a; € A, b; € B, n a positive
integer}, is an ideal.

Find a positive integer a such that

a. (a) = 3)(4),

b. (a) = (6)(8),

c. (a) = (m)n).

Let A and B be ideals of a ring. Prove that AB C A N B.

If A is an ideal of a ring R and 1 belongs to A, prove that A = R.
(This exercise is referred to in this chapter.)

If A and B are ideals of a commutative ring R with unity and A + B = R,
show that A N B = AB.

If an ideal 7 of a ring R contains a unit, show that / = R.

Suppose that in the ring Z the ideal (35) is a proper ideal of J and J
is a proper ideal of /. What are the possibilities for J? What are the
possibilities for /?

Give an example of a ring that has exactly two maximal ideals.
Suppose that R is a commutative ring and |RI = 30. If / is an ideal
of R and I/l = 10, prove that / is a maximal ideal.

Let R and / be as described in Example 10. Prove that / is an ideal
of R.

Let I = (2). Prove that I[x] is not a maximal ideal of Z[x] even
though / is a maximal ideal of Z.

Verify the claim made in Example 10 about the size of R/I.

Give an example of a commutative ring that has a maximal ideal
that is not a prime ideal.

Show that the set B in the latter half of the proof of Theorem 14.4
is an ideal of R. (This exercise is referred to in this chapter.)

If R is a commutative ring with unity and A is a proper ideal of R,
show that R/A is a commutative ring with unity.

Prove that the only ideals of a field F are {0} and F itself.
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29.

30.

31.

32,

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.
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Show that R[x]/(x> + 1) is a field.

In Z[x], the ring of polynomials with integer coefficients, let I =
{f(x) € Z[x] | f(0) = 0}. Prove that I = (x). (This exercise is re-
ferred to in this chapter and in Chapter 15.)

Show that A = {(3x, y) | x, y € Z} is a maximal ideal of Z & Z.
Generalize. What happens if 3x is replaced by 4x? Generalize.

Let R be the ring of continuous functions from R to R. Show that
A = {f€ RIf(0) =0} is a maximal ideal of R.

Let R = Zg D Zs. Find all maximal ideals of R, and for each max-
imal ideal /, identify the size of the field R/I.

How many elements are in Z[i]/{(3 + i)? Give reasons for your
answer.

In Z[x], the ring of polynomials with integer coefficients, let / =
{f(x) € Z[x] | £(0) = 0}. Prove that I is not a maximal ideal.

InZ® Z, letl = {(a,0) | a € Z}. Show that I is a prime ideal but
not a maximal ideal.

Let R be a ring and let / be an ideal of R. Prove that the factor ring
R/I'is commutative if and only if rs — sr € [ for all » and s in R.

In Z[x], let I = {fix) € Z[x] | f(0) is an even integer}. Prove that
I = (x, 2). Is I a prime ideal of Z[x]? Is I a maximal ideal? How
many elements does Z[x]/I have? (This exercise is referred to in
this chapter.)

Prove that I = (2 + 2i) is not a prime ideal of Z[i]. How many
elements are in Z[{]/I? What is the characteristic of Z[i]/I?

In Zs[x], let I = (x> + x + 2). Find the multiplicative inverse of 2x +
3 + Iin Zs[x]/I.

Let R be a ring and let p be a fixed prime. Show that I, = {r € R |
additive order of r is a power of p} is an ideal of R.

An integral domain D is called a principal ideal domain if every
ideal of D has the form {(a) = {ad | d € D} for some a in D. Show
that Z is a principal ideal domain. (This exercise is referred to in
Chapter 18.)

a b ros
LetRZ{[ }|a,b,dEZ} and SZ{{ ]|r,s,tEZ,s
0 d 0 ¢

is even ¢. If S is an ideal of R, what can you say about r and ¢?

If R and S are principal ideal domains, prove that R € S is a princi-

pal ideal ring.
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44.

45.

46.

47.

48.

49.

50.
51.

52.

53.

54.

55.

56.

57.

58.
59.

60.

Let a and b belong to a commutative ring R. Prove that {x € R |
ax € bR} is an ideal.

Let R be a commutative ring and let A be any subset of R. Show
that the annihilator of A, Ann(A) = {r E Rl ra = 0forallain A},
is an ideal.

Let R be a commutative ring and let A be any ideal of R. Show that
the nil radical of A, N(A) = {r € R | r" € A for some positive in-
teger n (n depends on r)}, is an ideal of R. [N({0)) is called the nil
radical of R.]

LetR = Zz7. Find

a. N(0y), b. N((3)), c. N({9)).

Let R = Zs¢. Find

a. N(0y), b. N({4)), c. N(6)).

Let R be a commutative ring. Show that R/N({0)) has no nonzero
nilpotent elements.

Let A be an ideal of a commutative ring. Prove that N(N(A)) = N(A).
Let Z,[x] be the ring of all polynomials with coefficients in Z, (that
is, coefficients are O or 1, and addition and multiplication of coef-
ficients are done modulo 2). Show that Z,[x]/{x*> + x + 1) is a
field.

List the elements of the field given in Exercise 51, and make an ad-
dition and multiplication table for the field.

Show that Zs[x]/(x* + x + 1) is not a field.

Let R be a commutative ring without unity, and let a € R. Describe
the smallest ideal  of R that contains a (that is, if J is any ideal that
contains a, then I C J).

Let R be the ring of continuous functions from R to R. Let A =
{f€ R1f(0)is an even integer}. Show that A is a subring of R,
but not an ideal of R.

Show that Z[i]/{1 — i) is a field. How many elements does this
field have?

If R is a principal ideal domain and / is an ideal of R, prove that
every ideal of R/l is principal (see Exercise 41).

How many elements are in Zs[i]/{1 + i)?

Let R be a commutative ring with unity that has the property that
a* = aforall ain R. Let I be a prime ideal in R. Show that IR/l = 2.
Let R be a commutative ring with unity, and let / be a proper ideal
with the property that every element of R that is not in / is a unit of R.
Prove that / is the unique maximal ideal of R.
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61. Let I, = { fix) € Z|x] | f(0) = 0}. For any positive integer n, show
that there exists a sequence of strictly increasing ideals such that

62. Let R = {(a;, ay, a3, .. .)}, where each a; € Z. Let [ = {(ay, a»,
as, . .. )}, where only a finite number of terms are nonzero. Prove
that / is not a principal ideal of R.

63. Let R be a commutative ring with unity and let a, b € R. Show that
(a, b), the smallest ideal of R containing a and b, is [ = {ra + sb!
r, s € R}. That is, show that I contains a and b and that any ideal
that contains a and b also contains /.

Computer Exercises

What is the common denominator of intellectual accomplishment? In math,
science, economics, history, or any other subject, the answer is the same:
great thinkers notice patterns.

DAVID NIVEN, PSYCHOLOGIST

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software determines the number of elements in the ring Z[i]/
(a + bi) (where i* = —1). Run the program for several cases and
formulate a conjecture based on your data.

2. This software determines the characteristic of the ring Z[i]/{a + bi)
(where i = —1). Let d = gcd(a, b). Run the program for several
cases with d = 1 and formulate a conjecture based on your data.
Run the program for several cases with d > 1 and formulate a con-
jecture in terms of a, b, and d based on your data. Does the formula
you found for d > 1 also work in the case that d = 1?

3. This software determines when the ring Z[i]/{a + bi) (where i* = —1)
is isomorphic to the ring Z2, ;2. Run the program for several cases
and formulate a conjecture based on your data.


http://www.d.umn.edu/~jgallian

Richard Dedekind

Richard Dedekind was not only
a mathematician, but one of the wholly
great in the history of mathematics, now
and in the past, the last hero of a great
epoch, the last pupil of Gauss, for four
decades himself a classic, from whose
works not only we, but our teachers and
the teachers of our teachers, have drawn.

EDMUND LANDAU,
Commemorative Address
to the Royal Society of Géttingen

T EE T T R T TR T W TR T TT T

This stamp was issued by East Germany
in 1981 to commemorate the 150th
anniversary of Dedekind’s birth. Notice
that it features the representation of an
ideal as the product of powers of prime
ideals.

RicHARD DEDEKIND was born on October 6,
1831, in Brunswick, Germany, the birth-
place of Gauss. Dedekind was the youngest
of four children of a law professor. His early
interests were in chemistry and physics, but
he obtained a doctor’s degree in mathemat-
ics at the age of 21 under Gauss at the
University of Gottingen. Dedekind contin-
ued his studies at Gottingen for a few years,
and in 1854 he began to lecture there.
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Dedekind spent the years 1858—1862 as a
professor in Ziirich. Then he accepted a po-
sition at an institute in Brunswick where he
had once been a student. Although this
school was less than university level,
Dedekind remained there for the next 50
years. He died in Brunswick in 1916.

During his career, Dedekind made numer-
ous fundamental contributions to mathemat-
ics. His treatment of irrational numbers,
“Dedekind cuts,” put analysis on a firm,
logical foundation. His work on unique
factorization led to the modern theory of
algebraic numbers. He was a pioneer in the
theory of rings and fields. The notion of
ideals as well as the term itself are attributed
to Dedekind. Mathematics historian Morris
Kline has called him “the effective founder
of abstract algebra.”

To find more
Dedekind, visit:

information about

http://www-groups.dcs
.st-and.ac.uk/~history/


http://www-groups.dcs.st-and.ac.uk/~history/
http://www-groups.dcs.st-and.ac.uk/~history/

In the judgment of the most competent
living mathematicians, Fraulein Noether
was the most significant creative mathe-
matical genius thus far produced since the
higher education of women began. In the
realm of algebra, in which the most gifted
mathematicians have been busy for cen-
turies, she discovered methods which have
proved of enormous importance in the de-
velopment of the present-day younger
generation of mathematicians.

ALBERT EINSTEIN, The New York Times

EMmmy NOETHER was born on March 23,
1882, in Germany. When she entered the
University of Erlangen, she was one of
only two women among the 1000 students.
Noether completed her doctorate in 1907.
In 1916, Noether went to Gottingen and,
under the influence of David Hilbert and
Felix Klein, became interested in general
relativity. While there, she made a major
contribution to physics with her theorem
that whenever there is a symmetry in nature,
there is also a conservation law, and vice
versa. Hilbert tried unsuccessfully to obtain
a faculty appointment at Gottingen for
Noether, saying, “I do not see that the sex of
the candidate is an argument against her ad-
mission as Privatdozent. After all, we are a
university and not a bathing establishment.”

It was not until she was 38 that Noether’s
true genius revealed itself. Over the next
13 years, she used an axiomatic method to
develop a general theory of ideals and non-
commutative algebras. With this abstract
theory, Noether was able to weld together
many important concepts. Her approach was
even more important than the individual re-
sults. Hermann Weyl said of Noether, “She
originated above all a new and epoch-mak-
ing style of thinking in algebra.”

With the rise of Hitler in 1933, Noether, a
Jew, fled to the United States and took a po-
sition at Bryn Mawr College. She died sud-
denly on April 14, 1935, following an oper-
ation.

To find more information about Noether,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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If at

first you do succeed—try to hide your astonishment.

HARRY F. BANKS

True/false questions for Chapters 12—14 are available on the Web at:

10.

11.

12.

13.

14.

http://www.d.umn.edu/~jgallian/TF

. Find all idempotent elements in Z;q, Z,o, and Z3,. (Recall that a is

idempotent if a> = a.)

. If m and n are relatively prime integers greater than 1, prove that

Z,.» has at least two idempotents besides 0 and 1.

. Suppose that R is a ring in which a*> = 0 implies a = 0. Show that

R has no nonzero nilpotent elements. (Recall that b is nilpotent if
b" = 0 for some positive integer n.)

. Let R be a commutative ring with more than one element. Prove

that if for every nonzero element a of R we have aR = R, then R is
a field.

. Let A, B, and C be ideals of aring R. If AB C C and C is a prime

ideal of R, show that A C C or B C C. (Compare this with Euclid’s
Lemma in Chapter 0.)

. Show, by example, that the intersection of two prime ideals need

not be a prime ideal.

. Let R denote the ring of real numbers. Determine all ideals of R & R.

What happens if R is replaced by any field F?

. Determine all factor rings of Z.
. Suppose that n is a square-free positive integer (that is, n is not

divisible by the square of any prime). Prove that Z, has no nonzero
nilpotent elements.

Let R be a commutative ring with unity. Suppose that a is a unit
and b is nilpotent. Show that a + b is a unit. (Hint: See Exercise 29
in Chapter 12.)

Let A, B, and C be subrings of aring R. If A C B U C, show that
ACBorACC.

For any element a in a ring R, define (a) to be the smallest ideal of
R that contains a. If R is a commutative ring with unity, show that
(a) = aR = {ar | r € R}. Show, by example, that if R is commuta-
tive but does not have a unity, then (a) and aR may be different.
Let R be a ring with unity. Show that (a) = {s,at, + s,at, + - - - +
sqat, | s, t; € R and n is a positive integer}.

Show that Z,[x] has characteristic n.


http://www.d.umn.edu/~jgallian/TF

15.

16.

17.

18.
19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.
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Let A and B be ideals of aring R. If A N B = {0}, show thatab = 0
whena € Aand b € B.

Show that the direct sum of two integral domains is not an integral
domain.

Consider the ring R = {0, 2, 4, 6, 8, 10} under addition and multi-
plication modulo 12. What is the characteristic of R?

What is the characteristic of Z,, @ Z,? Generalize.

Let R be a commutative ring with unity. Suppose that the only
ideals of R are {0} and R. Show that R is a field.

Suppose that / is an ideal of J and that J is an ideal of R. Prove that
if I has a unity, then / is an ideal of R. (Be careful not to assume that
the unity of / is the unity of R. It need not be—see Exercise 2 in
Chapter 12.)

Recall that an idempotent element b in a ring is one with the property
that b> = b. Find a nontrivial idempotent (that is, not 0 and not 1) in
Ox]/{x* + x?).

In a principal ideal domain, show that every nontrivial prime ideal
is a maximal ideal.

Find an example of a commutative ring R with unity such that a,
b E R, a # b,and @" = b" and @™ = b™, where n and m are positive
integers that are relatively prime. (Compare with Exercise 35, part b,
in Chapter 13.)

Let O( \/2) denote the smallest subfield of R that contains Q and
\/2. [That is, o( \3/5) is the subfield with the property that Q( \3/2)
contains Q and /2 and if F is any subfield containing Q and \3f2,
then F contains Q(%).] Describe the elements of Q( \3f2).

Let R be an integral domain with nonzero characteristic. If A is a
proper ideal of R, show that R/A has the same characteristic as R.
Let F be a field of order p". Determine the group isomorphism
class of F under the operation addition.

If R is a finite commutative ring with unity, prove that every prime
ideal of R is a maximal ideal of R.

Let R be a noncommutative ring and let C(R) be the center of R
(see Exercise 19 in Chapter 12). Prove that the additive group of
R/C(R) is not cyclic.

Ty

a, b, c,dEZz}
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30.

31.

32,

33.

34.

35.

36.

37.
38.
39.
40.

41.
42,
43.

44.

with ordinary matrix addition and multiplication modulo 2. Show that

o= e

is not an ideal of R. (Hence, in Exercise 7 in Chapter 14, the com-
mutativity assumption is necessary.)

If R is an integral domain and A is a proper ideal of R, must R/A be
an integral domain?

LetA={a+bila,b& Z amod?2 = bmod2}. How many ele-
ments does Z[i]/A have? Show that A is a maximal ideal of Z[].
Suppose that R is a commutative ring with unity such that for each
a in R there is a positive integer n greater than 1 (n depends on a)
such that a" = a. Prove that every prime ideal of R is a maximal
ideal of R.

State a “finite subfield test”; that is, state conditions that guarantee
that a finite subset of a field is a subfield.

Let F be a finite field with more than two elements. Prove that the
sum of all of the elements of F is 0.

Show that if there are nonzero elements a and b in Z, such that > +
b* = 0, then the ring Z,[i] = {x + yi | x, y € Z,} has zero-divisors.
Use this fact to find a zero-divisor in Z3[{].

Suppose that R is a ring with no zero-divisors and that R contains a
nonzero element b such that »> = b. Show that b is a unity for R.
Find the characteristic of Z[i]/{(2 + i).

Show that the characteristic of Z[i]/{a + bi) divides a* + b>.

Show that 4x*> + 6x + 3 is a unit in Zg[x].

For any commutative ring R, R[x, y] is the ring of polynomials in x
and y with coefficients in R (that is, R[x, y] consists of all finite sums
of terms of the form ax’y/, where a € R and i and j are nonnegative
integers). (For example, x* — 3x%y — y* € Z[x, y].) Prove that (x, y)
is a prime ideal in Z[x, y] but not a maximal ideal in Z[x, y].

Prove that (x, y) is a maximal ideal in Zs[x, y].

Prove that (2, x, y) is a maximal ideal in Z[x, y].

Let R and S be rings. Prove that (a, b) is nilpotent in R & S if and
only if both a and b are nilpotent.

Let R and S be commutative rings. Prove that (a, b) is a zero-divisor

in R & S if and only if @ or b is a zero-divisor or exactly one of a or
bis 0.



45.
46.

47.

48.

49.
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Determine all idempotents in Z,«, where p is a prime.

Let R be a commutative ring with unity 1. Show that a is an idem-
potent if and only if there exists an element b in R such thatab = 0
anda + b =1.

Let Z,[\V2] = {a + b2l a, b € Z,}. Define addition and multi-
plication as in Z[V/2], except that modulo n arithmetic is used to
combine the coefficients. Show that Z3[\f2] is a field but Z7[\@]
is not.

Let p be a prime. Prove that every zero-divisor in Z,, is a nilpotent
element.

If x is a nilpotent element in a commutative ring R, prove that rx is
nilpotent for all r in R.



Ring Homomorphisms

If there is one central idea which is common to
all aspects of modern algebra it is the notion of homomorphism.
I. N. HERSTEIN, Topics in Algebra

Definition and Examples

280

In our work with groups, we saw that one way to discover information
about a group is to examine its interaction with other groups by way of
homomorphisms. It should not be surprising to learn that this concept
extends to rings with equally profitable results.

Just as a group homomorphism preserves the group operation, a ring
homomorphism preserves the ring operations.

Definitions Ring Homomorphism, Ring Isomorphism
A ring homomorphism ¢ from a ring R to a ring S is a mapping from
R to S that preserves the two ring operations; that is, for all @, b in R,

¢a+b)=d@ +b) and  Pab) = Ha)(b).

A ring homomorphism that is both one-to-one and onto is called a
ring isomorphism.

As is the case for groups, in the preceding definition the operations
on the left of the equal signs are those of R, whereas the operations on
the right of the equal signs are those of S.

Again as with group theory, the roles of isomorphisms and homomor-
phisms are entirely distinct. An isomorphism is used to show that two
rings are algebraically identical; a homomorphism is used to simplify a
ring while retaining certain of its features.

A schematic representation of a ring homomorphism is given in
Figure 15.1. The dashed arrows indicate the results of performing the
ring operations.

The following examples illustrate ring homomorphisms. The reader
should supply the missing details.
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°
$(a) + ¢(b)

Figure 15.1

B EXAMPLE 1 For any positive integer n, the mapping k — k mod n is
a ring homomorphism from Z onto Z, (see Exercise 11 in Chapter 0).
This mapping is called the natural homomorphism from Z to Z,. |

B EXAMPLE 2 The mapping a + bi — a — bi is a ring isomorphism
from the complex numbers onto the complex numbers (see Exercise 25
in Chapter 6). |

B EXAMPLE 3 Let R[x] denote the ring of all polynomials with real
coefficients. The mapping f(x) — f(1) is a ring homomorphism from
R[x] onto R. |

I EXAMPLE 4 The correspondence ¢: x — 5x from Z, to Z
is a ring homomorphism. Although showing that ¢(x + y) =
d(x) + ¢(y) appears to be accomplished by the simple statement that
5(x + y) = 5x + 5y, we must bear in mind that the addition on the left is
done modulo 4, whereas the addition on the right and the multiplication
on both sides are done modulo 10. An analogous difficulty arises in show-
ing that ¢ preserves multiplication. So, to verify that ¢ preserves both op-
erations, we write x + y = 4¢, + ryand xy = 4q, + ), where 0 = r; < 4
and 0 =r, <4.Then p(x + y) = ¢(r})) = 5r, =5(x +y — 4q)) = 5x +
S5y — 20q, = 5x + 5y = ¢p(x) + ¢(y) in Z,. Similarly, using the fact that
5.5 =5in Z,, we have ¢p(xy) = ¢d(r,) = 5r, = 5(xy — 4q,) = 5xy —
20g, = (5 - 5)xy = 5x5y = $x)$(y) in Z,. i

B EXAMPLE 5 We determine all ring homomorphisms from Z;, to Z,.
By Example 10 in Chapter 10, the only group homomorphisms from Z;,
to Z3, are x — ax, where a = 0, 15, 10, 20, 5, or 25. But, since 1 - 1 =1
in Z,,, we must have a - a = a in Zy. This requirement rules out 20 and 5
as possibilities for a. Finally, simple calculations show that each of the re-
maining four choices does yield a ring homomorphism. |
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B EXAMPLE 6 Let R be a commutative ring of characteristic 2. Then
the mapping a — a? is a ring homomorphism from R to R. |

# EXAMPLE 7 Although 2Z, the group of even integers under addi-
tion, is group-isomorphic to the group Z under addition, the ring 2Z is
not ring-isomorphic to the ring Z. (Quick! What does Z have that 2Z
doesn’t?) |

Our next two examples are applications to number theory of the nat-
ural homomorphism given in Example 1.

1 EXAMPLE 8 (Test for Divisibility by 9)

An integer n with decimal representation aqia,_; - - - a, is divisible by 9
ifand only if @, + a,_; + - - - + a, is divisible by 9. To verify this, ob-
serve that n = @, 10 + a;,_;10"! 4+ - - - + q,. Then, letting « denote
the natural homomorphism from Z to Zy [in particular, a(10) = 1], we
note that 7 is divisible by 9 if and only if

0 = a(n) = ala)(@(10))* + ala;_)(a(10)) ' + - - - + a(ay)
= alay) + alag—y) + -+ alay)
=ala, + a_; + - -+ apy).

But a(a; + a,_; + + - - + ay) = Ois equivalent to a, + a;_; + « - - +
a, being divisible by 9. |

§ EXAMPLE 9 (Theorem of Gersonides)

Among the most important unsolved problems in number theory is the
so-called “abc conjecture.” This conjecture is a natural generalization
of a theorem first proved in the fourteenth century by the Rabbi
Gersonides. Gersonides proved that the only pairs of positive integers
that are powers of 2 and powers of 3 which differ by 1 are 1, 2; 2, 3; 3,
4; and 8, 9. That is, these four pairs are the only solutions to the equa-
tions 2" = 3" = 1. To verify that this is so for 2” = 3" + 1, observe that
for all n we have 3" mod 8 = 3 or 1. Thus, 3" + 1 mod 8 = 4 or 2. On
the other hand, for m > 3, we have 2" mod 8 = 0. To handle the case
where 2" = 3" — 1, we first note that for all n, 3 mod 16 = 3,9, 11, or
1, depending on the value of n mod 4. Thus, (3" — 1) mod 16 = 2, 8, 10,
or 0. Since 2" mod 16 = 0 for m = 4, we have ruled out the cases where
nmod4 = 1,2, or 3. Because 3* mod 5 = (3**mod 5 = 1¥*mod 5 =
1, we know that (3* — 1) mod 5 = 0. But the only values for 2" mod 5
are 2, 4, 3, and 1. This contradiction completes the proof. |
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Properties of Ring Homomorphisms

I Theorem 15.1 Properties of Ring Homomorphisms

Let ¢ be a ring homomorphism from a ring R to a ring S. Let A be a
subring of R and let B be an ideal of S.

1.

SRk

For any r € R and any positive integer n, ¢(nr) = n¢(r) and
d(r") = (o))"

@d(A) = {p(a) | a € A} is a subring of S.

If A is an ideal and ¢ is onto S, then ¢(A) is an ideal.
¢~1(B) = {r € R | ¢(r) € B} is an ideal of R.

If R is commutative, then ¢(R) is commutative.

If R has a unity 1, S # {0}, and ¢ is onto, then ¢(1) is the unity
of S.

¢ is an isomorphism if and only if ¢ is onto and Ker ¢ =
{r e R|¢(r) = 0} = {0}.

If ¢ is an isomorphism from R onto S, then ¢~ is an
isomorphism from S onto R.

PROOF The proofs of these properties are similar to those given in
Theorems 10.1 and 10.2 and are left as exercises (Exercise 1). |

The student should learn the various properties of Theorem 15.1
in words in addition to the symbols. Property 2 says that the homomor-
phic image of a subring is a subring. Property 4 says that the pullback
of an ideal is an ideal, and so on.

The next three theorems parallel results we had for groups. The
proofs are nearly identical to their group theory counterparts and are
left as exercises (Exercises 2, 3, and 4).

B Theorem 15.2 Kernels Are Ideals

Let ¢ be a ring homomorphism from a ring R to a ring S. Then Ker ¢
= {r € R | ¢(r) = 0} is an ideal of R.

I Theorem 15.3 First Isomorphism Theorem for Rings

Let ¢ be a ring homomorphism from R to S. Then the mapping from
R/Ker ¢ to $(R), given by r + Ker ¢ — ¢(r), is an isomorphism. In
symbols, R/IKer ¢ = $(R).
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B Theorem 15.4 ldeals Are Kernels

Every ideal of a ring R is the kernel of a ring homomorphism of R.
In particular, an ideal A is the kernel of the mappingr —>r + A
Jfrom R to R/A.

The homomorphism from R to R/A given in Theorem 15.4 is called
the natural homomorphism from R to R/A. Theorem 15.3 is often re-
ferred to as the Fundamental Theorem of Ring Homomorphisms.

In Example 17 in Chapter 14 we gave a direct proof that (x) is a
prime ideal of Z[x] but not a maximal ideal. In the following example
we illustrate a better way to do this kind of problem.

§ EXAMPLE 10 Since the mapping ¢ from Z[x] onto Z given by
¢(f(x)) = f(0) is a ring homomorphism with Ker ¢ = (x) (see Exercise
29 in Chapter 14), we have, by Theorem 15.3, Z[x]/{(x) = Z. And because
Z is an integral domain but not a field, we know by Theorems 14.3 and
14.4 that the ideal (x) is prime but not maximal in Z[x]. |

I Theorem 15.5 Homomorphism from Z to a Ring with Unity

Let R be a ring with unity 1. The mapping ¢: Z — R givenbyn —n - 1
is a ring homomorphism.

PROOF Since the multiplicative group property a”*" = a™a" translates to
(m + n)a = ma + na when the operation is addition, we have ¢(m + n) =
(m+n)y-1=m-1+n-1.So, ¢ preserves addition.

That ¢ also preserves multiplication follows from Exercise 15 in
Chapter 12, which says that (m - a)(n - b) = (mn) - (ab) for all integers
m and n. Thus, ¢(mn) = (mn) - 1 = (mn) - (1)(1)) =(m - DH(n-1) =
d(m)dp(n). So, ¢ preserves multiplication as well. |

I Corollary 1 A Ring with Unity Contains Z, or Z

If R is a ring with unity and the characteristic of R is n > 0, then
R contains a subring isomorphic to Z,. If the characteristic of R is 0,
then R contains a subring isomorphic to Z.

PROOF Let 1 be the unity of Rand let S = {k - 1 | kK € Z}. Theorem 15.5
shows that the mapping ¢ from Z to S given by ¢(k) = k - 1 is a homo-
morphism, and by the First Isomorphism Theorem for rings, we have
ZIKer ¢ = S. But, clearly, Ker ¢ = (n), where n is the additive order of 1
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and, by Theorem 13.3, n is also the characteristic of R. So, when R
has characteristic n, S = Z/(n) =~ Z,. When R has characteristic 0, S =
ZK0) = Z. |

1 Corollary 2 Z, Isa Homomorphic Image of Z

For any positive integer m, the mapping of ¢: Z — Z,, given by x —
x mod m is a ring homomorphism.

PROOF This follows directly from the statement of Theorem 15.5,
since in the ring Z,,, the integer x mod m is x - 1. (For example, in Zs, if
x=5 wehave5-1=1+1+1+1+1=2) |

I Corollary 3 A Field Contains Z, or Q (Steinitz, 1910)

If F is a field of characteristic p, then F contains a subfield
isomorphic to Z,. If F is a field of characteristic 0, then F contains
a subfield isomorphic to the rational numbers.

PROOF By Corollary 1, F contains a subring isomorphic to Z, if F has
characteristic p, and F has a subring S isomorphic to Z if F has charac-
teristic 0. In the latter case, let

T={ab 'la,beES,b+0}.
Then T is isomorphic to the rationals (Exercise 63). |

Since the intersection of all subfields of a field is itself a subfield
(Exercise 11), every field has a smallest subfield (that is, a subfield
that is contained in every subfield). This subfield is called the prime
subfield of the field. It follows from Corollary 3 that the prime
subfield of a field of characteristic p is isomorphic to Z,, whereas the
prime subfield of a field of characteristic 0 is isomorphic to Q. (See
Exercise 67.)

The Field of Quotients

Although the integral domain Z is not a field, it is at least contained in a
field—the field of rational numbers. And notice that the field of rational
numbers is nothing more than quotients of integers. Can we mimic the
construction of the rationals from the integers for other integral do-
mains? Yes. The field constructed in Theorem 15.6 is called the field of
quotients of D. Throughout the proof of Theorem 15.6, you should keep
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in mind that we are using the construction of the rationals from the inte-
gers as a model for our construction of the field of quotients of D.

Theorem 15.6 Field of Quotients

Let D be an integral domain. Then there exists a field F (called the
field of quotients of D) that contains a subring isomorphic to D.

PROOF LetS = {(a,b) l a,b € D, b # 0}. We define an equivalence
relation on S by (a, b) = (¢, d) if ad = bc (compare with Example 14
in Chapter 0). Now, let F be the set of equivalence classes of S under
the relation = and denote the equivalence class that contains (x, y) by
x/y. We define addition and multiplication on F by

alb + c/d = (ad + bc)/(bd) and alb - cld = (ac)/(bd).

(Notice that here we need the fact that D is an integral domain to ensure
that multiplication is closed; that is, bd # 0 whenever b # 0 and d # 0.)

Since there are many representations of any particular element of F'
(just as in the rationals, we have 1/2 = 3/6 = 4/8), we must show that
these two operations are well defined. To do this, suppose that a/b = a'/b’
and c¢/d = ¢'/d', so that ab’ = a’'b and c¢d’ = ¢'d. It then follows that

(ad + be)b'd’ = adb'd’ + beb'd' = (ab')dd' + (cd')bb'
= (@'b)dd' + (c'd)bb' = a'd'bd + b'c'bd
= (@'d" + b'c")bd.

Thus, by definition, we have
(ad + bo)/(bd) = (a'd" + b'cHI(b'd"),

and, therefore, addition is well defined. We leave the verification that
multiplication is well defined as an exercise (Exercise 55). That F'is a
field is straightforward. Let 1 denote the unity of D. Then 0/1 is the
additive identity of F. The additive inverse of a/b is —a/b; the multi-
plicative inverse of a nonzero element a/b is b/a. The remaining field
properties can be checked easily.

Finally, the mapping ¢: D — F given by x — x/1 is a ring isomor-
phism from D to ¢(D) (see Exercise 7). |

B EXAMPLE 11 Let D = Z|x]. Then the field of quotients of D is
{f(x)/g(x) | f(x), g(x) € D, where g(x) is not the zero polynomial }. |

When F is a field, the field of quotients of F[x] is traditionally de-
noted by F(x).
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B EXAMPLE 12 Let p be a prime. Then Z,(x) = {f(x)/g(x) | f(x), g(x) €
Z,[x], g(x) # 0} is an infinite field of characteristic p. |

We can work it out.

Nk W

10.

11.

12.

13.

TITLE OF SONG BY JOHN LENNON AND
PAUL MCCARTNEY, December 1965

Prove Theorem 15.1.

Prove Theorem 15.2.

Prove Theorem 15.3.

Prove Theorem 15.4.

Show that the correspondence x — 5x from Zs to Z;, does not pre-
serve addition.

Show that the correspondence x — 3x from Z, to Z;, does not pre-
serve multiplication.

. Show that the mapping ¢: D — F in the proof of Theorem 15.6 is a

ring homomorphism.

. Prove that every ring homomorphism ¢ from Z, to itself has the

form ¢(x) = ax, where a’> = a.

. Suppose that ¢ is a ring homomorphism from Z,, to Z,. Prove that

if ¢(1) = a, then a®> = a. Give an example to show that the converse
is false.

a. Is the ring 2Z isomorphic to the ring 32?
b. Is the ring 2Z isomorphic to the ring 42?

Prove that the intersection of any collection of subfields of a field
F is a subfield of F. (This exercise is referred to in this chapter.)

Let Z;[i] = {a + bil a, b € Z;} (see Example 9 in Chapter 13). Show
that the field Z;[/] is ring-isomorphic to the field Z;[x]/{x* + 1).

Y

Show that ¢p: C — S given by
b
bla + bi) = [ “ }
—b a

is a ring isomorphism.

a,bER}.
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14.

15.

16.

17.

18.

19.
20.

21.

22,
23.
24,

25.

26.

27.

28.
29.
30.

31.

Let Z[V2] = {a + bNV2 1 a, b € Z}. Let

n=Als %)

Show that Z[\/2] and H are isomorphic as rings.

a, b EZ}.

a b
c

|-
d

Consider the mapping from M,(Z) into Z given by {

Prove or disprove that this is a ring homomorphism.

n{fy !

b
g ] — a is a ring homomorphism.
c

Is the mapping from Zs to Z;, given by x — 6x a ring homomor-
phism? Note that the image of the unity is the unity of the image
but not the unity of Zs,.

a,b,c €z } Prove or disprove that the map-

ping {

Is the mapping from Z,, to Z;, given by x — 2x a ring homomor-
phism?
Describe the kernel of the homomorphism given in Example 3.

Recall that a ring element a is called an idempotent if a*> = a. Prove
that a ring homomorphism carries an idempotent to an idempotent.

Determine all ring homomorphisms from Zg to Zy. Determine all
ring homomorphisms from Z,, to Zsy,.

Determine all ring isomorphisms from Z, to itself.

Determine all ring homomorphisms from Z to Z.

Suppose ¢ is a ring homomorphism from Z © Z into Z & Z. What
are the possibilities for ¢((1, 0))?

Determine all ring homomorphisms from Z & Z into Z ® Z.

InZ, let A = (2) and B = (8). Show that the group A/B is isomor-
phic to the group Z, but that the ring A/B is not ring-isomorphic to
the ring Z,.

Let R be a ring with unity and let ¢ be a ring homomorphism from R
onto S where S has more than one element. Prove that S has a unity.
Show that (Z @ Z)/({a) D (b)) is ring-isomorphic to Z, D Z,.
Determine all ring homomorphisms from Z b Z to Z.

Prove that the sum of the squares of three consecutive integers can-
not be a square.

Let m be a positive integer and let n be an integer obtained from m
by rearranging the digits of m in some way. (For example, 72345 is
a rearrangement of 35274.) Show that m — n is divisible by 9.
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33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

47.
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(Test for divisibility by 11) Let n be an integer with decimal repre-
sentation qa,_; - * - a,a,. Prove that n is divisible by 11 if and only
ifay— a; + a, — - - - (—1)kay is divisible by 11.

Show that the number 7,176,825,942,116,027,211 is divisible by 9
but not divisible by 11.

Show that the number 9,897,654,527,609,805 is divisible by 99.
(Test for divisibility by 3) Let n be an integer with decimal repre-
sentation a;a;,_, - + - a,a,. Prove that n is divisible by 3 if and only
ifa, +a,_,+ -+ a + ayis divisible by 3.

(Test for divisibility by 4) Let n be an integer with decimal repre-

sentation a;a;_, - + - a,a,. Prove that n is divisible by 4 if and only
if a,a, is divisible by 4.
Show that no integer of the form 111,111,111, ... ,111 is prime.

Consider an integer n of the form @, 111,111,111,111,111,111,

111,111,12b. Find values for a and b such that n is divisible by 99.

Suppose n is a positive integer written in the form n = 3% +

a3+ - - -+ a,3 + a,, where each of the ;s is 0, 1, or 2 (the

base 3 representative of n). Show that n is even if and only if a;, +

ap_, + -+ a + ayiseven.

Find an analog of the condition given in the previous exercise for

characterizing divisibility by 4.

In your head, determine (2 - 107> + 2)'% mod 3 and (10'%° + 1)%°

mod 3.

Determine all ring homomorphisms from Q to Q.

Let R and S be commutative rings with unity. If ¢ is a homomor-

phism from R onto S and the characteristic of R is nonzero, prove

that the characteristic of S divides the characteristic of R.

Let R be a commutative ring of prime characteristic p. Show that

the Frobenius map x — x” is a ring homomorphism from R to R.

Is there a ring homomorphism from the reals to some ring whose

kernel is the integers?

Show that a homomorphism from a field onto a ring with more

than one element must be an isomorphism.

Suppose that R and S are commutative rings with unities. Let ¢ be a

ring homomorphism from R onto S and let A be an ideal of S.

a. If A is prime in S, show that ¢ 1(A) = {x E R | ¢(x) € A} is
prime in R.

b. If A is maximal in S, show that ¢~ !(A) is maximal in R.
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48.

49.

50.

51.

52.

53.
54.

55.

56.

57.

58.

59.

60.

61.

62.
63.

A principal ideal ring is a ring with the property that every ideal

has the form (a). Show that the homomorphic image of a principal

ideal ring is a principal ideal ring.

Let R and S be rings.

a. Show that the mapping from R € S onto R given by (a, b) — a
is a ring homomorphism.

b. Show that the mapping from R to R @ S given by a — (a, 0) is a
one-to-one ring homomorphism.

c. Show that R @ S is ring-isomorphic to S & R.

Show that if m and n are distinct positive integers, then mZ is not

ring-isomorphic to nZ.

Prove or disprove that the field of real numbers is ring-isomorphic

to the field of complex numbers.

Show that the only ring automorphism of the real numbers is the
identity mapping.

Determine all ring homomorphisms from R to R.

Suppose that n divides m and that a is an idempotent of Z, (that is,
a’> = a). Show that the mapping x — ax is a ring homomorphism
from Z,, to Z,. Show that the same correspondence need not yield a
ring homomorphism if # does not divide m.

Show that the operation of multiplication defined in the proof of
Theorem 15.6 is well defined.

Let O[V2] = {a + b2 | a, b € Q} and O[V5] = {a + b\V/5 |
a, b € Q}. Show that these two rings are not ring-isomorphic.

Let Z[i] = {a + bi | a, b € Z}. Show that the field of quotients of
Z[i] is ring-isomorphic to Q[i] = {r + si | r, s € Q}. (This exercise
is referred to in Chapter 18.)

Let F be a field. Show that the field of quotients of F is ring-
isomorphic to F.

Let D be an integral domain and let F' be the field of quotients of D.
Show that if E is any field that contains D, then E contains a
subfield that is ring-isomorphic to F. (Thus, the field of quotients
of an integral domain D is the smallest field containing D.)
Explain why a commutative ring with unity that is not an integral do-
main cannot be contained in a field. (Compare with Theorem 15.6.)
Show that the relation = defined in the proof of Theorem 15.6 is an
equivalence relation.

Give an example of a ring without unity that is contained in a field.

Prove that the set 7 in the proof of Corollary 3 to Theorem 15.5 is
ring-isomorphic to the field of rational numbers.
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64. Suppose that ¢: R — S is a ring homomorphism and that the
image of ¢ is not {0}. If R has a unity and S is an integral domain,
show that ¢ carries the unity of R to the unity of S. Give an ex-
ample to show that the preceding statement need not be true if S
is not an integral domain.

65. Let f(x) € R[x]. If a + bi is a complex zero of f(x) (here i = V—1),
show that a — bi is a zero of f(x). (This exercise is referred to in
Chapter 32.)

66. Let R = {[“ b}
b a

a
tak
aes[b

a, b e Z}, and let ¢ be the mapping that

b
}toa—b.
a

. Show that ¢ is a homomorphism.

. Determine the kernel of ¢.

Show that R/Ker ¢ is isomorphic to Z.

. Is Ker ¢ a prime ideal?

Is Ker ¢ a maximal ideal?

67. Show that the prime subfield of a field of characteristic p is ring-
isomorphic to Z, and that the prime subfield of a field of charac-
teristic 0 is ring-isomorphic to Q. (This exercise is referred to in
this chapter.)

Y]

e T

68. Let n be a positive integer. Show that there is a ring isomorphism
from Z, to a subring of Z,, if and only if n is odd.

69. Show that Z,,, is ring-isomorphic to Z,, & Z, when m and n are rel-
atively prime.

Suggested Readings

J. A. Gallian and J. Van Buskirk, “The Number of Homomorphisms from
Z, into Z,,” American Mathematical Monthly 91 (1984): 196-197.

In this article, formulas are given for the number of group homomor-
phisms from Z,, into Z, and the number of ring homomorphisms from
Z,, into Z,. This article can be downloaded at http://www.d.umn.edu/
~jgallian/homs.pdf
Lillian Kinkade and Joyce Wagner, “When Polynomial Rings Are
Principal Ideal Rings,” Journal of Undergraduate Mathematics 23
(1991): 59-62.
In this article written by undergraduates, it is shown that R[x] is a
principal ideal ring if and only if R = R, ® R, D - - - D R,, where
each R; is a field.


http://www.d.umn.edu/~jgallian/homs.pdf
http://www.d.umn.edu/~jgallian/homs.pdf
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Mohammad Saleh and Hasan Yousef, “The Number of Ring Homomor-
phisms from Z,, @ - - - ® Z,,into Z, D - - - @ Z, " American Mathe-
matical Monthly 105 (1998): 259-260.

This article gives a formula for the number described in the title.

Suggested Website

http://www.d.umn.edu/~jgallian/puzzle

This site has a math puzzle that is based on the ideas presented in this
chapter. The user selects an integer and then proceeds through a series of
steps to produce a new integer. Finally, another integer is created by using
all but one of the digits of the previous integer in any order. The software
then determines the digit not used.


http://www.d.umn.edu/~jgallian/puzzle

Polynomial Rings

Wit lies in recognizing the resemblance among things which differ and the
difference between things which are alike.

MADAME DE STAEL

Notation and Terminology

One of the mathematical concepts that students are most familiar with
and most comfortable with is that of a polynomial. In high school,
students study polynomials with integer coefficients, rational coeffi-
cients, real coefficients, and perhaps even complex coefficients. In ear-
lier chapters of this book, we introduced something that was probably
new—polynomials with coefficients from Z,. Notice that all of these
sets of polynomials are rings, and, in each case, the set of coefficients is
also a ring. In this chapter, we abstract all of these examples into one.

Definition Ring of Polynomials over R
Let R be a commutative ring. The set of formal symbols

R[x] ={ax" + a,_x" '+ - - +ax+aylq;ER,
n is a nonnegative integer}

is called the ring of polynomials over R in the indeterminate x.
Two elements

ax" + a,_x" '+ +ax + aq
and

b, x™ + by_x™ 1+ .-+ bx+ b,

of R[x] are considered equal if and only if a; = b, for all nonnegative
integers i. (Define @; = 0 when i > n and b; = 0 when i > m.)

293
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In this definition, the symbols x, x?, ..., x* do not represent
“unknown” elements or variables from the ring R. Rather, their purpose
is to serve as convenient placeholders that separate the ring elements
ap, Ap—1,s - - ., ay. We could have avoided the x’s by defining a polyno-
mial as an infinite sequence a, a;, d,, . . ., a,, 0,0, 0, ..., but our
method takes advantage of the student’s experience in manipulating
polynomials where x does represent a variable. The disadvantage of our
method is that one must be careful not to confuse a polynomial with the
function determined by a polynomial. For example, in Z;[x], the poly-
nomials f(x) = x* and g(x) = x> determine the same function from Z;
to Z;, since f(a) = g(a) for all a in Z;." But f(x) and g(x) are different
elements of Z;[x]. Also, in the ring Z,[x], be careful to reduce only the
coefficients and not the exponents modulo n. For example, in Z;[x],
5x = 2x, but x> # x2%.

To make R[x] into a ring, we define addition and multiplication in
the usual way.

Definition Addition and Multiplication in R[x]
Let R be a commutative ring and let

fX) =ax"+a,_x" 1+ +ax+a,
and

8x) = by x™ + by x™ 1+ - - + bix + by
belong to R[x]. Then

f(X) + g(x) = (as + bs)xs + (as—l + bs—l)xbu1
+"'+(a1+b1)x+a0+b0,

where s is the maximum of m and n, a; = 0 for i > n, and b; = 0 for
i > m. Also,

J)Z(X) = CppnX™ " + Cpyn X"+ X +
where
ce = apby + ay_1by + - - - + aiby 1 + apby
fork=0,...,m+ n.

Although the definition of multiplication might appear complicated,
it is just a formalization of the familiar process of using the distributive

"In general, given f(x) in R[x] and a in R, f(a) means substitute a for x in the formula
for f(x). This substitution is a homomorphism from R[x] to R.
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property and collecting like terms. So, just multiply polynomials over a
commutative ring R in the same way that polynomials are always mul-
tiplied. Here is an example.
Consider f(x) = 2x* + x> + 2x + 2 and g(x) = 2x*> + 2x + 1 in Z5[x].
Then, in our preceding notation, as = 0, a4, = 0,a; = 2,a, = 1,a, = 2,
ay=2,and bs=0,b,=0,b3=0,b, =2,b, =2, by = 1. Now, using
the definitions and remembering that addition and multiplication of the
coefficients are done modulo 3, we have

fix) +gxv) =2+ 0)x3 +A+2x*+Q2+2x+2+1)
=23 +0x2+1x+0
=2 + x
and

- gx)=0-1+0-2+2-2+1-0+2-0+2-0)x
+O0-1+2-24+1-2+2-0+2-0x*
+Q2-1+1-2+2-2+2-0%

+ (1 14+224+2-22+Q2-1+2-2x+2-1
=x +0x* + 23+ 0x2 + 0x + 2
=xX+23+2

Our definitions for addition and multiplication of polynomials were
formulated so that they are commutative and associative, and so that
multiplication is distributive over addition. We leave the verification
that R[x] is a ring to the reader.

It is time to introduce some terminology for polynomials. If

f()C) = an-xn + an—l-xni1 +--t apx + ap,

where a, # 0, we say that f(x) has degree n; the term a,, is called the
leading coefficient of f(x), and if the leading coefficient is the multi-
plicative identity element of R, we say that f(x) is a monic polynomial.
The polynomial fix) = 0 has no degree. Polynomials of the form
J(x) = a, are called constant. We often write deg f(x) = n to indicate
that f(x) has degree n. In keeping with our experience with polynomials
with real coefficients, we adopt the following notational conventions:
We may insert or delete terms of the form Ox*; 1x* will be denoted by
X% + (—a)xF will be denoted by —a,x*.

Very often properties of R carry over to R[x]. Our first theorem is a
case in point.
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§ Theorem 16.1 D an Integral Domain Implies D[x] an Integral Domain

If D is an integral domain, then D|x] is an integral domain.

PROOF Since we already know that D[x] is a ring, all we need
to show is that D[x] is commutative with a unity and has no zero-divisors.
Clearly, D[x] is commutative whenever D is. If 1 is the unity element of
D, it is obvious that f{x) = 1 is the unity element of D[x]. Finally, sup-
pose that

f) =ax"+ a,_x" 1+ +a
and
800 = b+ by 0+ by

where a,, # 0 and b,, # 0. Then, by definition, f(x)g(x) has leading co-
efficient a,b,, and, since D is an integral domain, a,b,, # 0. |

The Division Algorithm
and Consequences

One of the properties of integers that we have used repeatedly is the
division algorithm: If @ and b are integers and b # 0, then there exist
unique integers g and r such that a = bg + r, where 0 = r < |bl. The
next theorem is the analogous statement for polynomials over a field.

I Theorem 16.2 Division Algorithm for F[x]

Let F be a field and let f(x) and g(x) € F[x] with g(x) # 0. Then
there exist unique polynomials q(x) and r(x) in F[x] such that f(x) =
g(x)q(x) + r(x) and either r(x) = 0 or deg r(x) < deg g(x).

PROOF We begin by showing the existence of g(x) and r(x). If
fix) = 0 or deg flx) < deg g(x), we simply set g(x) = 0 and r(x) = f(x).
So, we may assume that n = deg f(x) = deg g(x) = m and let f{x) =
ax" + -+ + ayand g(x) = b,x" + - - - + by. The idea behind this
proof is to begin just as if you were going to “long divide” g(x) into
f(x), then use the Second Principle of Mathematical Induction on
deg f(x) to finish up. Thus, resorting to long division, we let fi(x) =
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fx) — a,b,, 'x"""g(x)." Then, f;(x) = 0 or deg f;(x) < deg f(x); so, by
our induction hypothesis, there exist ¢;(x) and r;(x) in F[x] such that
[0 = g@)q,(x) + r(x), where ri(x) = 0 or deg ry(x) < deg g(x).
[Technically, we should get the induction started by proving the case
in which deg f(x) = 0, but this is trivial.] Thus,

fo) = ayb,, 'xg(x) + fi(x)
= a,b, ') + qi(0)g(x) + ri(x)
= la,by, X" + qi(0)]g(x) + r(x).

So, the polynomials g(x) = a,b,, 'x" ™ + q,(x) and r(x) = r;(x) have
the desired properties.

To prove uniqueness, suppose that f{x) = g(x)g(x) + r(x) and fix) =
gx) g(x) + r(x), where r(x) = 0 or deg r(x) < deg g(x) and r(x) = 0
or deg r (x) < deg g(x). Then, subtracting these two equations, we obtain

0 = g)[g(x) — g(x)] + [r(x) — r(x)]

or

r(x) — r(x) = g)lgx) — g(x)].

Thus, r(x) — r(x) is 0, or the degree of r(x) — r(x) is at least that of
g(x). Since the latter is clearly impossible, we have r(x) = r(x) and
q(x) = q(x) as well. |

The polynomials g(x) and r(x) in the division algorithm are called
the quotient and remainder in the division of f{x) by g(x). When the
ring of coefficients of a polynomial ring is a field, we can use the long
division process to determine the quotient and remainder.

"For example,

(3/2)x*
2x2 + 2 )3x7 +x+1
3t + 327
-3+ x+1

So,
B+ x+1=3x"+x+1— GR2x*2%+2)
In general,
anbm—lxn—m
by + -
ax +
fi(x)
So,
i) = @ + - 2) = ab, by )
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I EXAMPLE 1 To find the quotient and remainder upon dividing
flx) = 3x* + x> + 2x*> + 1 by g(x) = x> + 4x + 2, where f(x) and g(x)
belong to Zs[x], we may proceed by long division, provided we keep in
mind that addition and multiplication are done modulo 5. Thus,

3x% + 4x
PAdx+2 )3+ P+ 2 +1
3+ 2+ &P
47 + ¥ +1
48 + x* + 3x

2x + 1
So, 3x? + 4x is the quotient and 2x + 1 is the remainder. Therefore,

3+ 3+ 2%+ 1= (2 + 4x + 2)(Bx* + 4x) + 2x + 1. |

Let D be an integral domain. If f{x) and g(x) € D[x], we say that g(x)
divides f(x) in D[x] [and write g(x) | fix)] if there exists an h(x) € D[x]
such that fix) = g(x)h(x). In this case, we also call g(x) a factor of f(x).
An element a is a zero (or a root) of a polynomial fix) if fla) = 0.
[Recall that f{a) means substitute a for x in the expression for f(x).]
When F'is a field, @ € F, and f(x) € F[x], we say that a is a zero of
multiplicity k (k = 1) if (x — a)* is a factor of f{x) but (x — a)**! is not
a factor of f(x). With these definitions, we may now give several impor-
tant corollaries of the division algorithm. No doubt you have seen these
for the special case where F is the field of real numbers.

I Corollary 1 The Remainder Theorem

Let F be a field, a € F, and f(x) € F[x]. Then f(a) is the remainder in
the division of f(x) 