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Abstract—This report seeks to expand upon existing models
for predicting the outcome of NBA games. Using a time-varying
approach, the model proposed in this report couples standard
machine learning techniques with weighted causal data to predict
the number of points scored by each team in an attempt to beat
the spread.

I. INTRODUCTION

In the NBA, thirty teams comprise two conferences.
Throughout the regular season these teams will each play 82
games, for a total of 1230 NBA games played per season. To
the enterprising sports gambler, this means 1230 opportunities
to beat the odds made by expert NBA analysts and cash in. To
the data analyst, 1230 games provide a wealth of player and
team data for modeling complex trends in the performance
of individuals and franchises. This report is concerned with
exploring prior research in the field of sports prediction,
specifically with the goal of predicting NBA game outcomes
more accurately than the NBA experts who set the betting line
for each game. Before diving into our models and predictions,
we want to provide an overview of the various types of bets
you can make in the NBA.

a) The Spread: When betting against the spread, the
gambler bets either that the favorite will win by more than
the spread, or the underdog will lose by less than the spread
(or win). The favorite is the team with the negative number,
because they are essentially handicapped a number of points.
In order to place a bet of this form, the gambler would place
a bet of $110 with a payoff of $100. The amount paid for a
chance to win $100 is denoted in parentheses.
e.g.
Miami Heat -8.2 (-110)
Denver Nuggets 8.2 (-110)

b) Over/Under: In this form of betting, the gambler
bets whether or not the total points scored in a game will be
greater than or less than a given amount. As with the spread,
the amount paid for a chance to win $100 is also listed.
e.g.
Miami Heat 170 (-110)
Denver Nuggets 170 (-110)

c) Other: There are additional forms of betting, but this
report is concerned only with the betting schemes discussed
above.

Prior Research

A prevalent approach in the field is to use a combination of
models, as opposed to a single prediction algorithm, to output
a more robust prediction. For example, the TeamRankings.com
website, founded by Stanford graduates Mike Greenfield and

Tom Federico and featured by ESPN, combines the predictions
of six different models to shape their expected outcomes of
college basketball games. The intuitive idea of a combination
of models is that each model can capture a different aspect of
the game or correct for a poor assumption made by another
model. Due to time constraints, the methods covered in this
report are all singular in their approach. It is possible that some
combination of our individual predictors would yield better
results, and is worth further exploration in the future.

Also, Zifan Shi et al. suggested normalizing team statistics
with respect to the strength of the opposing team. Though
they did not propose an algorithm for doing so, this seemed a
logical approach and we incorporated it into our model. In this
report we first apply basic feature reduction and polynomial
regression with team averages over a long period. These
approaches are useful for becoming familiar with the data,
and picking out any obvious trends that our more involved
models might use to their advantage. We then use the classic,
”tried and true” support vector machine technique with various
feature sets to predict game outcome. Finally, we propose
a model for estimating a team’s time-varying offensive and
defensive strengths in order to normalize the team statistics
with respect to their opponent in each game. These normalized
statistics are used to predict the number of points scored by
each team in the coming game, and we then make a bet against
the spread under the assumption that our predicted point spread
is more accurate than the actual spread.

II. DATA

For our project, we needed actual NBA game statistics,
but there are no publicly available datasets. Instead, we used
public box scores on the popular sports website ESPN. On
ESPN, the data we wanted are organized per game in box
scores. We wrote a scraper that traversed all the dates of the
regular season, found if there were any games for that date,
and if there were, stored the box score HTML links. With
all the box score links, we issued an HTML request to those
HTML pages, received the HTML response, and parsed the
corresponding data from those pages. We scraped the past 10
years of data from ESPN, making small modifications year to
year for HTML formatting differences. We figured 10 years
would be sufficient for our purposes. As for the betting data,
probably to prevent people like us from running tests like these,
we were unable to find betting data from past games listed
on any site. However, via an ESPN Insider account, and by
changing the URL in the browser with the correct game id, we
managed to get the betting data from all of last year’s games.
Data from prior years were not available via this method, so
we were limited to testing spread and over/under results on
only last year’s data. After collecting this data, we organized



the data into 3 tables in a MySQL database:

TABLE I. GENERAL PER GAME DATA

Date Time Location Home Team
Away Team Home Team Score Away Team Score Flagrant Fouls

Technical Fouls Officials Attendance Game Length
Spread Over/Under Home ROI Away ROI

TABLE II. TEAM PER GAME DATA

Team ID Game ID 1st Quarter Pts
2nd Quarter Pts 3rd Quarter Pts 4th Quarter Pts

1st OT Pts 2nd OT 2 Pts 3rd OT Pts
4th OT Pts Field Goals Made Field Goals Attempted

Three Pointers Made Three Pointers Attempted Free Throws Made
Free Throws Attempted Offensive Rebounds Defensive Rebounds

Rebounds Assists Steals
Blocks Turnovers Personal Fouls
Points Fast Break Points Points in the Paint

Total Team Turnovers Points Off Turnovers

TABLE III. PLAYER PER GAME DATA

Player ID Team ID Game ID
Minutes Played Field Goals Made Field Goals Attempted

Three Pointers Made Three Pointer Attempted Free Throws Made
Free Throws Attempted Offensive Rebounds Defensive Rebounds

Rebounds Assists Steals
Blocks Turnovers Personal Fouls

Plus/Minus Points Did Not Play Reason

With MySQL, we easily manipulated or merged the data
into smaller more applicable datasets that we wanted to per-
form our training on. For example, we could take the averages
for each team in games played in the 2012-13 NBA season,
instead of analyzing the entire dataset.

III. BASIC MODELS

To start off, we looked at some basic data among teams.
To determine wins, the most obvious stat is points scored or in
other words, which team scores more than the other team. We
wanted to know if we could make any simplifying assumptions
based on how teams scored points. For one season, we plotted
the histogram of points scored per game. We see that this is a

Fig. 1. Distribution of Points Scored Per Game for All Teams in NBA
(2012-13)

nearly perfect Gaussian distribution. Further, by breaking this
down per team per year, we can see similar results with smaller
datasets.

For most of our tests, we make the assumption that the
teams have fairly consistent performances (we do not take
into consideration for example major injuries). Our first test
was running a basic linear regression using four predictors:
Home Team Points Per Game (PPG), Home Team Points

Fig. 2. Distribution of Points Scored Per Game for All Teams in NBA
(2012-13)

Allowed Per Game (PAPG), Away Team PPG, Away Team
PAPG. This model trained on season total averages for the
full season, then testing on the training set predicted correctly
68%. Unfortunately, if we hold out data, the testing accuracy
was only 54%.1

For the next step, we incorporated more stats outside of
simply points per game averages. We found the season long
averages for every team stat listed in the teams stats table.
Some stats exactly predicted others (2*(FGM-TPM) + 3*TPM
+ FTM = PTS and OREB + DREB = REB), so we had to
reduce the number of predictors. We used a lasso approach to
reduce the coefficients of certain predictors to 0 or effectively
remove the predictors. Using cross validation, we trained on
a random half of the data then tested on a held out dataset.
With this, our model again predicted with 68% accuracy, but
on data it had not seen before.

To play around with different predictors in the model, we
tried using raw game numbers instead of the season averages
to train the model, and then tested on the same data. This
produced worse results at 63%. Lastly, we obviously do not
have the season end averages until the end of the season.
To compensate for this, we calculated the running averages
(using a small python script since MySQL does not have this
capability). One thing to note is that the running averages can
have large changes over the course of the season. To see where
they stabilized, we plotted each teams points per game average
over 82 games.

From the graph, we can see some teams have very stabile
and constant averages. Most of the teams seem to stabilize
by 1/2 to 3/4 of the way through the season. Only a couple

1For the regression, the home team’s PPG and away team’s PAPG were
more significant than the other 2 predictors. Put into the basketball context,
this means an offensive team performs better at home, while a defensive team
performs better on the road. Interestingly, this seems to indicate that a team
is more consistent defensively on the road, while at home, their offensive
production can feed of the crowd’s energy.



Fig. 3. Average Points Per Game Per Team Over 82 Games

kept changing until the end of the season.2 When we trained
only on the running averages in the 1st half of the season and
tested on the running averages in the 2nd half of the season,
we managed a get a test accuracy of 66%.

The next step we tried from this was using SVMs to
classify the game as win or loss.

IV. SUPPORT VECTOR MACHINE

Using the full game data from the database, implemented
a support vector machine model to classify each game sample
as a binary variable 1 (win) or 0 (loss). We used the SVM in
conjunction with a lasso regression and bootstrap aggregating
to achieve our final prediction. Before implementing the al-
gorithm, we pre-processed the raw data was had scaled and
calculated the average of various team statistics from each
season (rebounds per game, points per game, etc.). Further,
for each game we created a sample point with the averages
for both teams as features.

Even in this reduced form there were still 79 variables
features. To infer which of the predictors were most significant
we ran a lasso regression on the data. The lasso, a type of
shrinkage regression, set several of our predictors coefficients
to zero, which justified their exclusion from our model because
they were insignificant. Our lasso model was tested over a
range of shrinkage parameters and was then 10-fold cross
validated. We chose the best model after cross validation to
select our best subset of predictors. Though the data for our
lasso model was of varied size and character throughout our
experimental trials, the lasso generally left approximately 20
predictor coefficients nonzero.

Using the set of predictors that had been found to be most
significant, we fit a polynomial kernel support vector classifier
to the data. We implemented the SVM and tuned the result to
find the optimal cost parameter and polynomial degree from
a range using simple cross validation. This model was able
to predict the win response for whole seasons of games with

2If you look at Indiana’s steady increase in average points per game, it can
be attributed to Paul George’s meteoric growth as a player. Our models never
account for player or team growth.

accuracy in the range of 65-69%.
To further optimize the prediction of the SVM we also

implemented bootstrap aggregating (bagging) over the SVM-
lasso model. We bootstrapped over our entire model so that the
lasso would be fit onto each bootstrap re-sample and decide
which sample were significant in that bootstrap set. Then we fit
the SVM to the re-sample and predicted the results for the test
set. Averaging the predictions over 20 bootstrap re-samples,
we set the sample with an average of less than .5 to 0 and the
rest to 1. In the best case we were able to bag over a model
trained on the 2012-13 season and predict the results of the
2011-12 season with 68.4% accuracy and the results of the
2010-11 season with 65.1% accuracy.

We also explored fitting the model on a larger training
set, which led too a small improvement in test accuracy. We
fitted and bagged a model trained on the 2010-11 and 2011-12
seasons and predicted the 2012-13 results with 68.9% accu-
racy. This was our best non-training error from the lasso/SVM
model. This is a strong result in context; ESPNs Accuscore
algorithm for NBA odds (win/loss) bets had an accuracy of
70.3% last season. Though a consistent expert picks panel does
not formally exist at ESPN for basketball, in NFL football the
Accuscore football equivalent has been more accurate than any
ESPN expert for the past 3 years.

To examine the real effect of our model we calculated
the real-time average of a teams statistics for the 2012-13
season and ran our bagged lasso/SVM model on a training
set that used the previous two seasons as well as an arbitrary
number of elapsed games in the 2012-13 season. When we
predicted the remain games of the season we consistently
achieved accuracies of 63.5% (70% of games remaining) or
greater with the accuracy increasing to 65.6% toward the end
of the season (30% of games remaining). We also ran the
predictor on the entire running averages set and got an accuracy
of 65%. Though this test of the true use-case yielded weaker
results than the full-season retrospective classifications, we
believe that given more time we could improve the model.
First, we could calculate running averages for each season
and use these samples to train the data. We could also go
a level deeper in detail and try to use a construction of player
statistic contributions (in real season time) to construct the
team average statistics and then make predictions.

A. Boosting

One of the methods cited by TeamRankings.com as an
element of their prediction formula was a decision tree.
Because of his success we also pursued a decision tree to
try to classify our data. However, instead of simply fitting a
decision tree regression to the data we implemented a Boosting
method to combine a myriad of weak learner decision trees
to form a strong learner tree at the end. We optimized by
simple cross validation over three different tuning parameters:
the depth of the tree, the number of trees, and the shrinkage
parameter lambda. Unfortunately, the accuracy of the model
plateaued at 64.5%. Boosting is a particularly slow and com-
putationally heavy method so it was difficult to run a cross
validations/optimizations over many combinations of depth,
tree count, and shrinkage parameter.



B. Spread and Over/Under Analysis

We ended up developing full models to predict the spread,
but to give us an initial idea on how spread and over/under
lines are set, we ran a simple regression using teams averages
as predictors and the following graphs are the result.

Fig. 4. Prediction of Spread and Over/Under using Basic Linear Regression

From the graphs, we can see a clear linear relationship
between what we predicted and what the final betting lines
were set at. The variance could come from betting houses
adjusting to how the public is betting or variation in the models
that our linear model did not account for (such as injured
players, fatigue, etc). We then looked at how the Vegas spread
and over/under lines compared to actual game results.

Fig. 5. Spread and Over/Under vs. Actual Game Results

From these graphs, it is clear that from the cloud shape
that there is a lot of noise in the actual games compared to
the predictions. This could be the underlying nature of sports
that sports are inherently very noisy and there is nothing we
can do. On the other hand, the betting lines do a good job
splitting their predictions in half, essentially meaning that they
do a good job themselves over the course of the season setting
the lines such that they are guaranteed to win.

V. CAUSAL WEIGHTED REGRESSION

In our final approach, we attempted to create a model that
captures both the natural fluctuations in a team’s performance
throughout the season, and also adjust their statistics to more
accurately reflect their performance in a game. For instance,
a team that puts up a lot of points against the best team
in the league should potentially have their rating increased,
even if they lose. We introduce the causal limitation somewhat
artificially to this method, although our reasoning stems from
the fact that we have a time-varying model, and it would not
make sense to incorporate future data. One thing to note is
that this is a hybrid approach, and once we obtain the causally

normalized statistics, we use polynomial regression along with
SVM and Naive Bayes techniques to further enhance the
model’s predictions. The following steps describe the full
method we devised. Running this algorithm over a season

Algorithm 1 Calculate Time-Varying Defensive and Offensive
Strengths By Win Propagation
Require: λ, KO, KD

OS(0) = 1
DS(0) = 1
for all game ∈ allGames do
m← numberOfGamesWinnerHasP layed
p← numberOfGamesLoserHasP layed

OS
(m+1)
winner ← λOS

(m)
winner + (1− λ)KO

DS
(p)

loser

OS
(m)
winner

DS
(m+1)
winner ← λDS

(m)
winner + (1− λ)KD

OS
(p)

loser

DS
(m)
winner

OS
(p+1)
loser ← λOS

(p)
loser + (1− λ)K−1

D
DS

(m)
winner

OS
(p)

loser

DS
(p+1)
loser ← λDS

(p)
loser + (1− λ)K−1

O
OS

(m)
winner

DS
(p)

loser

end for

will produce an estimated offensive strength (OS(m)) and a
defensive strength(DS(m)) where m ∈ Mgamesperseason
is the number of games played for each team. The constants
KO and KD control the relative weighting of defense vs.
offense, and λ is the forgetting factor - i.e. how much past
game results should affect the current strengths. These values
are then smoothed with a polynomial interpolator to get an
estimate of a team’s offensive and defensive strengths relative
to the other teams at any point in the season. One important
thing to note is that we do withhold the test set from the
training set when we apply the smoothing, as failure to
withhold this data would cause the test data to leak into to the
training data. The estimations of this method provide a fairly
decent relative representation of all the teams’ capabilities,
at least when compared retrospectively to their performances
last year. The defensive strengths of a team are then used in

Fig. 6. In the 2012 season, the Miami Heat were regarded as the best
defensive team in the league. The Los Angeles Lakers were more or less in
the middle of the league both offensively and defensively.

every game to normalize their stats to get an estimation of
their effective stats relative to the league at that point. These
values are similarly smoothed to reduce the high variance that
is inherent in sports data.

These normalized statistics are then used in a linear re-
gression over the training set to map a given statistic to
normalized points scored in a game. We found that a derived
statistic called ”effective field goal percentage” (eFGP) was the
most highly correlated with points scored, and so our model
uses only the regression fitted to this statistic in predicting
the normalized number of points that will be scored. Once



a normalized point prediction is made based on a teams
smoothed normalized eFGP going into a game, the prediction
is de-normalized with the opposing teams estimated defensive
strength (DS(numGamesOpponentHasPlayed)

opponent ) to get a real score
prediction. We can then compare the predicted scores for each
team to get a predicted spread, and by comparing this to the
given spread for the game, we are able to bet one way or
another.

Fig. 7. This regression is fitted for each team in the hopes of capturing any
differing offensive paradigms between teams.

To further improve our model’s ability to beat the spread,
we incorporate both SVM and Naive Bayes classifiers trained
on a feature set of the game statistics in addition to our
predictions. The classifiers are used both to directly predict
whether or not a team will beat the spread in a given game,
and also to predict whether or not the prediction given by
the model will succeed or not. The first case is referred to as
Method 1, and the second as Method 2. Here are the results of
the model under various test schemes: K-fold Cross Validation
with K = 10, and Random Holdout Cross Validation with
30% of the data withheld as the test set. The RHCV values are
obtained as the mean of 30 iterations. Though the above figures

TABLE IV. SPREAD PREDICTION MODEL RESULTS

Method 10-fold CV i 10-fold CV ii 30× RHCV i 30× RHCV ii
Normal Predictor 52.53% 51.67% 51.39% 50.71%
SVM Method 1 51.69% 50.84% 49.88% 50.23%
SVM Method 2 52.78% 50.84% 50.33% 49.59%
NB Method 1 51.42% 50.52% 50.07% 49.74%
NB Method 2 51.10% 51.22% 50.42% 50.33%

seem to imply that this would be a reasonable approach, our
results show that it was not any more successful at predicting
game outcomes than the brute-force bulk approaches discussed
earlier (win/loss prediction results not shown in table as they
have been discussed at length in prior sections). However,
since this model was designed specifically with the goal of
predicting the point spread, it is not surprising that it would
perform worse with regard to winner prediction. Beating the
spread is not necessarily the same problem as predicting the
winning team. We also tested this model under more stringent
conditions imposed due its causal nature, so this probably
accounts for the lower performance in win/loss prediction
accuracy. With our results, we are reluctant to believe that
our model achieves significantly better than 50% prediction
accuracy vs. the spread, and although multiple iterations of
the two cross-validation schemes did show a slight favorable
edge towards 51% and 52%, we are certainly not beating
the requisite 52.4% prediction accuracy required to enact a
financially rewarding betting strategy.

This modeling approach makes more rigid assumptions
about the time-varying nature of team performance, but also

allows for better estimation of a team’s true value at any
given time. We think that expanding upon the existing causal
weighting algorithm to include more variables would signif-
icantly improve the strength estimation aspect of the model.
It was disappointing that incorporating the extra classification
step did not significantly improve the model, but given that
our predictions are hovering at around 50% anyway, it is
not surprising that the predictions have only a very small
correlation with the outcomes (if any), and no amount of
classification can fix that.

VI. CONCLUSION

In this report we have shown that machine learning tech-
niques can be successfully applied to NBA games to predict
the winner of any given game with around 68% accuracy.
This level of accuracy rivals that of professional analysts and
basketball experts. However, in our endeavor to predict the
spread outcomes with an accuracy greater than 52.4%, the
model we developed fails to meet this goal under testing.3
There are several contributing factors to this.

Once our model was trained, it resulted in a simple
deterministic predictor. Ideally, since we are trying to model
the interactions of complex entities, we would like to add more
layers to our model and incorporate an element of stochasticity.
This in conjunction with batch simulation would probably
converge on a more accurate estimate for game outcomes than
our train-once, predict-once method. Successful sports betting
companies such as Accuscore claim to use this batch simula-
tion approach. Implementation of a more complex stochastic
model would require greater access to specialized data, and
also more computational power to run many simulations. These
are limitations that an individual wishing to beat the spread
will always face, and it is no surprise that the predictors with
more resources at their disposal are able to perform better.
We conclude that in order to make predictions about such a
complex interaction, the quality and complexity of the data
used is perhaps the most important factor in determining the
success of the model.
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3For the poster presentation, we made a prediction for that night
that Orlando would beat the spread in their game against Charlotte. We
just wanted to say, that our prediction was right: ORL 92 CHA 83 -
http://espn.go.com/nba/recap?gameId=400489191


