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Abstract

We present a novel 3D gesture recognition scheme that com-
bines the 3D appearance of the hand and the motion dynam-
ics of the gesture to classify manipulative and controlling
gestures. Our method does not directly track the hand. In-
stead, we take an object-centered approach that efficiently
computes the 3D appearance using a region-based coarse
stereo matching algorithm in a volume around the hand.
The motion cue is captured via differentiating the appear-
ance feature. An unsupervised learning scheme is carried
out to capture the cluster structure of these feature-volumes.
Then, the image sequence of a gesture is converted to a se-
ries of symbols that indicate the cluster identities of each
image pair. Two schemes (forward HMMs and neural net-
works) are used to model the dynamics of the gestures. We
implemented a real-time system and performed numerous
gesture recognition experiments to analyze the performance
with different combinations of the appearance and motion
features. The system achieves recognition accuracy of over
96% using both the proposed appearance and the motion
cues.

1 Introduction

Gestures have been one of the important interaction me-
dia in current human-computer interaction (HCI) environ-
ments [3, 4, 11, 12, 14, 16, 18, 21, 24, 25, 26]. Further-
more, for 3D virtual environments (VE) in which the user
manipulates 3D objects, gestures are more appropriate and
powerful than traditional interaction media, such as a mouse
or a joystick. Vision-based gesture processing also provides
more convenience and immersiveness than those based on
mechanical devices.

Most reported gesture recognition work in the litera-
ture (see Section 1.1) relies heavily on visual tracking and
template recognition algorithms. However general human
motion tracking is well-known to be a complex and diffi-
cult problem [8, 17]. Additionally, while template match-
ing may be suitable for static gestures, its ability to capture
the spatio-temporal nature of dynamic gestures is in doubt.

Alternatively, methods that attempt to capture the 3D infor-
mation of the hand [11] have been proposed. However, it is
well-known that, in general circumstances, the stereo prob-
lem is difficult to solve reliably and efficiently.

Human hands and arms are highly articulate and de-
formable objects and hand gestures normally consist of 3D
global and local motion of the hands and the arms. Manip-
ulative and interaction gestures [14] have a temporal nature
that involve complex changes of hand configurations. The
complex spatial properties and dynamics of such gestures
render the problem too difficult for pure 2D (e.g. template
matching) methods. Ideally we would capture the full 3D
information of the hands to model the gestures [11]. How-
ever, the difficulty and computational complexity of visual
3D localization and robust tracking prompts us to question
the necessity of doing so for gesture recognition.

To that end, we present a novel scheme to model and
recognize 3D temporal gestures using 3D appearance and
motion cues without tracking and explicit localization of
the hands. Instead we follow the site-centered computation
fashion of Visual Inteface Cues (VICs) paragigm [3, 24].

We propose that interaction gestures can be captured in
a local neighborhood around the manipulated object based
on the fact that the user only initiates manipulative gestures
when his or her hands are close enough to the objects. The
advantage of this scheme is that it is efficient and highly
flexible. The dimension of the volume of the local neighbor-
hood around the manipulated object can be adjusted conve-
niently according to the nature of the particular interaction
environment and the applicable gestures. For example, in a
desktop interaction environment where the interaction ele-
ments are represented as small icons on a flat panel and ma-
nipulative gestures are only initiated when the user’s hand
is near the surface of the panel, we only need to observe
a small volume above the panel with the icon sitting at the
center of the bottom. The height and diameter of the vol-
ume is also limited to be able to capture enough visual cues
to carry out successful gesture recognition.

The remainder of this paper is structured as follows. In
Section 2 we present a novel method to efficiently capture
the 3D spatial information of the gesture without carrying
out a full-scale disparity computation. We discuss how
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to learn the cluster structure of the appearance and mo-
tion features via an unsupervised learning process in Sec-
tion 3. Two ways to model the dynamics of the gestures,
i.e., forward HMMs [10, 19] and multilayer neural net-
works [6], are also presented. In Section 4 we demonstrate
our real-time system that implements the proposed method
and present the results of gesture recognition.

1.1 Related Work

[22] gives a general overview of the state of the art in ges-
ture analysis for vision-based human computer interaction.
Robust hand localization and tracking, modeling the con-
straints of hand motion and recognizing temporal gesture
patterns are among the most difficult and active research ar-
eas. Compared to other technique, such as neural network,
rule-based method [14], HMM [23, 24] and its extension [2]
is a popular scheme to model temporal gestures.

Many HCI systems [12, 14, 16, 21, 22] have been re-
ported that enable the user to use gestures as a controlling
or communicative media to manipulate interaction objects.
The hand or fingertips are detected based on such cues as vi-
sual appearance, shape and even human body temperature
via infrared cameras, etc. A variety of algorithms have been
applied to track the hand [22], such as the Kalman filter and
particle filter [5].

With a model-based approach [1, 13], it is possible to
capture the gesture in higher dimensionality than 2D. In [1]
the 3D hand model is represented as a set of synthetic im-
ages of the hand with different configurations of the fin-
gers under different viewpoints. Image-to-model matching
is carried out using Chamfer distance computation. One of
the difficulties of this approach is to construct a good 3D
model of the hand that can deal with variance between dif-
ferent users. Furthermore, efficient algorithms are neces-
sary to handle the matching between models and input im-
ages. Another approach to capture 3D data is to use special
cameras [11], such as 3D cameras or other range sensors.
However, the hardware requirement limits its application to
general HCI systems.

2 Capturing 3D Features of Manipu-
lative Gestures

Manipulative and controlling gestures have a temporal 3D
nature involving the interaction between human hands and
other objects. Example subjects include the tools and toys
in a VE, interaction elements in a HCI interface, etc. One
of the most difficult problems in visual modeling of tem-
porl gestures is data collection. Here we propose an effi-
cient scheme to capture 3D gesture appearance and motion
in an object-centered fashion. We assume that the manipu-

lative gestures can be captured in a local space around the
manipulated object. The assumption is valid [24] in many
HCI scenarios, such as a WIMP-style interface [20].

2.1 3D Gesture Volume

Given a pair of rectified stereo images of the scene, a dis-
parity map can be computed using a standard correspon-
dence search algorithm. Since we only care about the lo-
cal neighborhood around the object, we can constrain the
stereo search to a limited 3D space around the object. This
brings about two advantages: (1) we only care about the
small patch of the image centered at the object, and (2) we
only need to search through a small number of disparities
(depths), which is a volume around the depth of the object.
To speed up the disparity computation, we further simplify
the process using block matching technique.

Formally, let Il and Ir be a pair of rectified images of
the scene. We split the images into tiles of equal size of
w × h. Here w and h refer to the width and height of the
tile, respectively. Suppose we only consider a local area of
size of m × n patches, starting at patch (x0, y0). Given a
discrete parallax search range of [0, (p − 1) × w], we can
characterize the scene using a m × n × p volume V as:

Vx,y,z = Match(Il(x0+x,y0+y), Ir(x0+x+z,y0+y)) (1)

x ∈ [0, m − 1], y ∈ [0, n− 1], z ∈ [0, p − 1]

Note that in the previous equation, the image index indicates
a patch of the image, not a particular pixel.

We convert the color images into hue images to reduce
the impact of changes in lighting intensity because hue is a
good color-invariant model [9]. Furthermore, we perform a
comprehensive color normalization process [7] on each im-
age to overcome the variance of illumination and lighting
geometry among different interaction sessions. These tech-
niques ensure the relative stability of the appearance feature
under different imaging conditions. Different block match-
ing algorithms can be applied, such as sum of squared dif-
ference and sum of absolute differences.

Following this scheme, we can extract the features of the
image as a very simple vector with the size of m × n × p.
The typical size of the extracted appearance vector is from
125 to 1000. In contrast, the size of the original image is
640 × 480 and the size of the local image around a typical
object in our experiments is approximately 150×150. Thus,
this feature extraction scheme reduces the size of the the
input data greatly.

Figure 1 shows examples of the stereo image pair and the
extracted 3D feature of the scene. It can be seen that the ex-
tracted feature volume characterizes the different configura-
tion of the user’s hand with respect to the target interaction
subject.



1

2

3

4

5

1

2

3

4

5
0

10

20

30

40

50

1

2

3

4

5

1

2

3

4

5
0

10

20

30

40

50

1

2

3

4

5

1

2

3

4

5
0

10

20

30

40

50

Figure 1: Examples of the image pair and extracted appear-
ance feature. Left and middle column display left images
and right images of the scene, respectively. Right column
shows the bottom layer of the feature volume (i.e., Vx,y,z

with z = 0 )

2.2 Motion by Differencing

Since we represent the 3D appearance of the gesture images
using feature vectors, one simple way to capture the motion
information of the gestures is to compute the the displace-
ment in this feature space. In our real-time experiment, the
change between consecutive frames is normally very small
because of the high frame rate. Thus we compute the dif-
ference between the appearance feature of the current frame
and that of several frames before.

Motioni = Vi − Vi−k, i = k + 1, ..., M (2)

One way to combine the appearance feature and the motion
feature is to concatenate the two vectors to form a larger
vector. This new vector contains both the static and tempo-
ral information of the gesture.

Given an image sequence that contains a particular ma-
nipulative gesture, we convert the sequence into a series of
vectors, or points in the gesture volume or gesture motion
space. Thus, the gesture can be conceptualized as a directed
path connecting these points in the appropriate order. Intu-
itively we can model the gesture by learning the parameters
of such a path. However, this appearance or motion space is
still a relatively high-dimension space, making the learning
and recognition difficult to handle.

3 Learning the Gesture Structure

3.1 Unsupervised Learning of the Cluster
Structures of 3D Features

Given a training set of image sequences containing a group
of valid gestures, we build a new set of appearance or mo-

tion vectors following the technique described in the pre-
vious section. It can be expected that there will be much
redundancy of information because the training set contains
repeatable gestures and there are only a limited number of
gestures in the set. Actually in our current experiment con-
taining six manipulative gestures, using a PCA technique
on the 125-dimension appearance feature that we extracted
from over 600 gesture sequences, we can achieve an av-
erage reconstruction error of less than 5% using only 8
eigenvectors. Therefore, we are able to characterize the
appearance or motion feature of the gestures using data of
much lower dimensionality without losing the capability to
discriminate between them.

One of the popular ways to model temporal signals is to
learn a statistical model [6]. However, the size of training
data needed for statistical learning normally increases ex-
ponentially with the dimensionality of input features. This
curse of dimensionality is one of the reasons that visual
modeling of gestures is difficult. Thus we propose to re-
duce the dimensionality of the 3D feature by learning its
cluster configuration.

Since the raw 3D feature data is of high dimensionality
and difficult to cluster via intuitive ways, we propose a un-
supervised method to learn the cluster structure. Basically
we implement a K-means algorithm to learn the centroid
of each of the clusters of the feature sets. The choice of
the number of clusters is empirical. We then represent each
vector using a symbol that indicates its cluster identity. In
our data sets comprised of 6 gestures, we use less than 20
clusters to describe each of the feature set, including the
appearance set, the motion set and the appearance-motion
combination set.

3.2 Gesture Modeling Using HMM

We use typical forward HMMs to model the dynamics of
the temporal gestures. The input to the HMMs is the ges-
ture sequence represented as a series of symbols with each
symbol indicating the cluster identity of current frame. The
basic idea is to construct a HMM for each gesture and learn
the parameters of the HMM from the training sequences
that belong to this gesture using the Baum-Welch algo-
rithm [10, 15]. The probability that each HMM generates
the given sequence is the criterion of recognition. The ges-
ture sequence is recognized as the class with the highest
probability. Rejection of invalid gestures is based on the
thresholding of the best probability. If the highest probabil-
ity that a sequence achieves on all HMMs is lower than a
threshold, the sequence will be rejected. This threshold is
chosen to be smaller than the lowest probability that each
HMMs generates the sequences that belong to that class in
the training set.

In our experiment, we use a 6-state forward HMM to



model each of the six manipulative gestures. Figure 2 shows
the topology of the HMMs.

1 2 4 5 63

Figure 2: HMM structure for the interaction gestures

The choice of the number of the states in the forward
HMM is based on the intuitive analysis of the temporal
properties of the gestures to be modeled. In our current ex-
periment, each of the gestures can be decomposed of less
than 6 distinct stages. For example, if we use 3 spatial lay-
ers to represent the vicinity of an manipulated object, the
gesture of swiping an icon to the left can be viewed as such
a configuration sequence of the hand: (1) entering the outer
layer of the vicinity of the icon, (2) entering the inner layer
(3) touching the icon to select it and (4) swiping the icon by
moving the finger to the left side of the icon. Ideally, each of
the distinct stages can be modeled by a certain state of the
forward HMM. The parameter sets of the trained HMMs
verify our expectation, in which the observation probability
of each symbols of a gesture is dominantly high in one of
the states and very small in other states. Generally speaking,
a dynamic process with n stages can be modeled using an
n-state forward HMM with similar topology. For example,
in [19], four-state HMMs are used to recognize American
Sign Language.

3.3 Gesture Modeling Using A Multilayer
Neural Network

Another way to learn the gestures is to use multilayer neural
networks. The input to the neural network is the whole ges-
ture sequence, which is now a sequence of symbols. The
output is the identity of the gesture. To meet the require-
ment of the neural network, we need to fix the length of each
input sequence. We align each sequence to a fixed length
by carrying out sub-sampling on those sequences that are
longer than the predefined length and interpolation on those
that are shorter. The parameters of the network are also
learned from training data using the standard backpropaga-
tion algorithm [6].

In our current system, the neural network consists of 3
layers, i.e., the input and output layer and the hidden layer.
The number of nodes in the hidden layer is chosen to be 50.

4 Experimental Results

4.1 Experimental Setup

We use 4D touchpad as our experimental platform. We use
two color cameras to observe the interaction desktop which
is presented as a flat panel on which the interaction elements
are rendered. The system is calibrated based on a homogra-
phy technique so that, for the rendered icons on the panel,
a correspondence of the dimension and position of the icon
is established between the rendered image and the images
captured from the cameras. The user interacts with the ob-
jects on the panel using manipulative and controlling ges-
tures. Figure 3 shows the configuration of our experiment
platform.

Figure 3: The 4D Touchpad HCI platform.

In our current experiments, we collect gesture sequences
consisting of 6 interactive gestures, i.e., pushing a button,
twisting a dial clockwise, twisting a dial anti-clockwise,
toggle a switch, swiping an icon to the left and swiping an
icon to the right.

We implement the system on a PC with dual Pentium III
processors. The system achieves real-time speed; the pro-
cessing is limited by the cameras (30Hz). The system pro-
cesses the continuous video in the following fashion. For
each captured image pair, the appropriate appearance and/or
motion features are extracted and the corresponding cluster
identity of current features is computed based on trained
cluster centroids. We begin the recording of a sequence
when the cluster identity represents a valid hand configu-
ration instead of a scene where the hand has not entered
the vicinity of the target icon, which we call an “empty”
configuration. We carry out the recognition of current se-
quence and notify the user when a valid gesture is recog-
nized. The recording of current sequence is then terminated
and the system enters a new cycle. Another case for ending
current sequence is that the system continuously observes
empty configuration for several frames.

4.2 Gesture Recognition Results

To perform training of the HMMs and the neural network,
we record over 100 gesture sequences for each of the 6 ges-



tures. A separate test set contains over 70 sequence of each
gesture.

We carry out the training and testing on several feature
sets. These different sets are characterized by the dimen-
sionality of our 3D gesture volume described in Section 2
and different combination of the appearance and motion
cues.

1. Appearance Only (5 ∗ 5 ∗ 5 = 125-D)
In this set, we only use the appearance feature with the
dimensionality as 5 ∗ 5 ∗ 5 = 125. We carry out the
K-means on the training set of these features using 8
cluster centers.

2. Appearance Only (10 ∗ 10 ∗ 10 = 1000-D)
Similar to the first set. But the dimensionality of the
appearance feature is 10 ∗ 10 ∗ 10 = 1000.

3. Motion Only (10 ∗ 10 ∗ 10 = 1000-D)
We compute the motion feature by taking the differ-
ence between two 1000-D appearance vectors. We use
15 cluster centers to represent the cluster structure.

4. Concatenation of Appearance and Motion
In this set, we concatenate the 125-D appearance fea-
ture with the 1000-D motion vector to form a 1125-D
vector. We carry out the K-means on this appearance-
motion feature set using 18 clusters.

5. Combination of Appearance (125-D) and Motion
We carry out K-means on the 125-D appearance fea-
ture and 1000-D motion features separately. Then each
frame is represented as a 2-D discrete vector contain-
ing both the appearance cluster identity and motion
cluster character.

6. Combination of Appearance (1000-D) and Motion
Similar to the previous setting except that we use the
1000-D appearance feature.

We perform the training and testing on these sets for the
HMM models and the neural network. For the neural net-
work, we align each gesture sequence to the fixed length of
20. For the HMM models, we also carry out comparison ex-
periments between using the same aligned sequences as the
neural network and applying the raw unaligned sequence.
Table 1 shows the gesture recognition results for all the fea-
ture sets and both gesture models. For each model we report
both the recognition accuracy on the training set and that on
the test set.

The results show that aligning the sequences to the same
length improves the recognition accuracy. It can also be
seen that the motion feature alone seems to perform slightly
worse than those with appearance cues. However, combin-
ing appearance features with the motion features achieves
the best recognition accuracy for our current gesture set.

Table 1: Gesture recognition results for different feature
spaces

Set HMM NN Unaligned
1 99.5 99.5 100.0 98.8 99.4 99.4
2 99.5 100.0 98.4 94.4 98.4 98.0
3 98.4 98.1 97.7 86.3 97.9 98.8
4 98.9 99.0 98.9 87.7 96.7 96.1
5 100.0 100.0 100.0 96.6 98.2 97.3
6 99.8 99.8 99.8 97.1 99.2 99.5

Another interesting comparison between the HMM
model and neural network shows that our multilayer neural
network tends to over-train on the feature sets. The neural
network model achieves equivalent or higher accuracy on
the training set as the HMM model, but perform worse on
the test set. During the training of the HMMs, the Baum-
Welch algorithm runs for less than 5 iterations before the
overall system entropy reaches a local minimum. While
during the neural network training process, the backpropa-
gation algorithm typically runs for over 1000 iterations. We
stop the the procedure when the decrease of the output error
between consecutive runs is lower than a threshold, which
is typically a very small number such as 0.00001.

Alternatively, one could stop the backpropagation algo-
rithm interactively by measuring the performance on a val-
idation set after each iteration and halting the training pro-
cess if the classification on this validation set degenerates.
However, we choose a fixed threshold to preserve the gener-
ality of the method and keep the training process automatic.

We also compare the gesture modeling using HMM
based on the raw sequences and those using collapsed se-
quences. Each raw sequence containing a gesture is packed
in such a way that we only record a symbol if it is different
to its previous one. In essence, we only record the order
of the appearance of each feature, excluding the duration in
the original temporal sequence. This is similar to the rule-
based and state-based gesture modeling [2, 22]. Table 2
shows the gesture recognition results based on the datasets
of collapsed sequences.

Table 2: Gesture recognition results for collapsed sequences
Feature Sets Training Test
Appearance(125-D) 89.3% 88.8%
Appearance(1000-D) 88.3% 86.1%
Motion(1000-D) 98.4% 96.6%
Concatenation 90.8% 89.0%
Combination 1 94.2% 96.8%
Combination 2 99.8% 98.8%



Compared to the results using raw sequences, the ges-
ture recognition using collapsed sequences perform slightly
worse. Still, for the combination of the appearance and
the motion features, this scheme of gesture modeling based
only on key frames achieves very good recognition perfor-
mance.

5 Conclusions

In this paper we present a novel real-time 3D gesture recog-
nition system that combines the 3D appearance of the hand
and the motion dynamics of the gesture to classify manip-
ulative and controlling gestures. Instead of tracking the
user’s hand, we capture the 3D appearance of the local vol-
ume around the manipulation subject. Motion is computed
as the difference of the appearance feature between frames.
We reduce the dimensionally of the 3D feature by employ-
ing unsupervised learning. We implement a real-time sys-
tem based on the 4D touchpad platform and test the system
using two different approaches to model the temporal ges-
tures, i.e., forward HMMs and multilayer neural networks.
By combining the appearance and motion cues, both HMM
models and the neural network achieves an recognition ac-
curacy of over 96%. The proposed scheme is a flexible and
efficient way to capture the 3D visual cues in a local neigh-
borhood around the object. The experiment results show
that these local appearance and motion features capture the
necessary visual cues to recognize different manipulative
gestures.

Our future research will address more complex gestures,
such as those gestures involving two hands. In our current
experiment setup, the manipulated objects lie on a 2D plane.
We intend to perform experiments on objects with 3D vol-
ume, such as a cube on a desktop. We also plan to inves-
tigate other ways to model the gesture dynamics, such as
HMMs that achieve mimimal classification errors.
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