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Abstract. The connected uniformly-hyperstable sets
of a finite game are shown to be precisely the essential
components of Nash equilibria.

1. Introduction

The concept of equilibrium proposed by Nash [1, 2] is a

cornerstone of game theory. He defined an equilibrium as a

profile of players’ strategies such that each is an optimal reply

to others’ strategies. Most games have multiple equilibria so

his definition is not a complete theory of rational play. Hillas

and Kohlberg [3] survey refinements that impose additional

decision-theoretic criteria. Nash also showed that a game’s

equilibria are the fixed points of an associated map (i.e. a

continuous function) from the space of strategies into itself,

and in algebraic topology too, refinements select fixed points

with stronger properties.

Here we establish for finite games an exact equivalence be-

tween a game-theoretic refinement and a topological refine-

ment. The game-theoretic refinement is the uniform variant

of Kohlberg and Mertens’ [4] definition of a hyperstable com-

ponent of equilibria of a game (this and other technical terms

are defined below). The topological refinement is O’Neill’s [5]
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definition of an essential component of fixed points of a map.

Basically, Theorem 1.1 below shows that the space of per-

turbed games considered in the definition of hyperstability

is as rich as the class of perturbed maps considered in the

definition of essentiality.

Any map whose fixed points are the equilibria is called a

Nash map for the game. Govindan and Wilson [6] prove for

2-player games that within the set of Nash maps that are

continuous in payoffs as well as strategies, between every two

Nash maps there is a homotopy that preserves fixed points;

our extension to N -player games has not been published. Sim-

ilarly Demichelis and Germano [7] show that the topological

index, and thus also the topological essentiality, of an equilib-

rium component is independent of the map used. Here, in §2
and Appendix A we show that in fact the index depends only

on the local degree of the projection map from the equilib-

rium graph to the space of games. Therefore, hereafter we say

that an equilibrium component is essential if it is an essential

component of the fixed points of some Nash map, and thus

all Nash maps. The restriction to components of equilibria is

immaterial for extensive-form games with perfect recall and

generic payoffs since for such games all equilibria in a compo-

nent induce the same probability distribution over outcomes

(Kreps and Wilson [8]; Govindan and Wilson [9]). The fol-

lowing paragraphs review definitions of the two refinements.

Essential Components of Fixed Points. Let X be the

space of maps f : X → X from/into a topological space X,

where X is endowed with the compact-open topology. Given

f ∈ X , a component is a maximal connected set of its fixed

points. A component K is topologically essential if for each

neighborhood U of K there is a neighborhood V of f such

that each map in V has a fixed point in U . In this article the

focus is on the case that X is the space of profiles of players’



ESSENTIAL EQUILIBRIA 3

mixed strategies and f is a Nash map of a game. (In §2 the

space X is denoted Σ and it is a compact convex subset of

RS with the `∞ norm.)

Uniformly Hyperstable Components of Equilibria. Hy-

perstability invokes two principles. ‘Hyper’ refers to the ax-

iom of Invariance, which requires that a refinement should be

immune to treating a mixed strategy as an additional pure

strategy. This excludes presentation effects by ensuring that

equivalent equilibria are selected in equivalent games. Stabil-

ity requires that every nearby game has a nearby equilibrium.

Here a nearby game is one with players’ payoffs in a neigh-

borhood of those of the given game, represented as a point

in Euclidean space with the `∞ norm (we use the `∞ norm

throughout). Invariance and Stability are applied as follows.

Equivalence of Games and Strategies. Two strategies of

one player are equivalent if they yield every player the same

expected payoff for each profile of others’ strategies. A pure

strategy is redundant if the player has another strategy that

is equivalent. From a game G one obtains its reduction G∗
by deleting redundant pure strategies until none remain; the

reduction is unique (apart from names of pure strategies).

Two games are equivalent if their reductions are the same. If

σ is a profile of players’ strategies in G then its reduction σ∗
is the profile of equivalent strategies of G∗. For each set C

of strategy profiles for game G the corresponding set C ′ for

an equivalent game G′ consists of the profiles of equivalent

strategies.

Hyperstability and Uniform Hyperstability. A closed set C

of equilibria of game G is hyperstable if for every neighborhood

U ′ of the equivalent set C ′ of equilibria for any equivalent

game G′ there exists a neighborhood V ′ of G′ such that every

game in V ′ has an equilibrium in U ′. A stronger variant is: A

closed set C of equilibria of G is uniformly hyperstable if for
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every neighborhood U of C there exists δ > 0 such that every

δ-perturbation of every equivalent game G′ has an equilibrium

equivalent to some strategy profile in U .

§2 establishes notation and then §3 proves:

Theorem 1.1. The connected uniformly hyperstable sets are

the essential components of any Nash map of the game.

As mentioned above, essential for some Nash map implies

essential for every Nash map of the game.1

Theorem 1.1 is proved in two parts: an essential compo-

nent is uniformly hyperstable, Theorem 3.1; a connected uni-

formly hyperstable set is an essential component, Theorem

3.2. An implication of Theorem 1.1 is that a component is

uniformly hyperstable iff its topological index is nonzero. In-

dependently, von Schemde [10] establishes this result for 2-

player outside-option games. Appendices A and B provide

technical tools.

2. Formulation

We consider games with a finite set N of players, |N | > 2.

Each player n ∈ N has a finite set Sn of pure strategies.

Interpret a pure strategy sn as a vertex of player n’s sim-

plex Σn = ∆(Sn) of mixed strategies. The sets of profiles of

pure and mixed strategies are S =
∏

n Sn and Σ =
∏

n Σn.

For player n, S−n =
∏

m6=n Sm and Σ−n =
∏

m6=n Σm de-

note the sets of profiles of others’ pure and mixed strate-

gies. Given N and S, each game G is described by its pay-

off function Ĝ : S → RN from profiles of pure strategies

to players’ payoffs. Thus a game is specified by a point in

1An analog of this theorem (with essentially the same proof) inter-
prets hyperstability as a property of the equivalence class of a set of
strategy profiles for the equivalence class of the game; i.e. G∗ represents
the equivalence class of game G and a hyperstable set for G∗ represents
the equivalent hyperstable sets for games equivalent to G∗.
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RS×N . Let Gn and Gn be the extensions of Ĝn from pro-

files of mixed strategies to player n’s expected payoffs from

pure and mixed strategies; viz., player n’s expected payoffs

from his pure strategies are given by Gn : Σ → RSn , where

Gn
s (σ) =

∑
t∈S−n

Ĝn(s, t)
∏

m6=n σm(tm), and Gn : Σ → R
where Gn(σ) = σ′nG

n(σ). Note that Gn(σ) does not depend

on σn but Gn(σ) does.

A profile σ ∈ Σ is an equilibrium of G if each player’s

strategy σn is an optimal reply to others’ strategies; that is,

[τn − σn]′Gn(σ) 6 0 for all τn ∈ Σn. Equilibria are charac-

terized as fixed points of a map as follows (Gül, Pearce, and

Stacchetti [11]). Let rn : RSn → Σn be the piecewise-affine

map that retracts each point in RSn to the point of Σn nearest

in Euclidean distance; i.e. rn(zn) is the unique solution r ∈ Σn

to the variational inequality [τn−r]′[zn−r] 6 0 for all τn ∈ Σn.

Let Z =
∏

nRSn and define r : Z → Σ via r(z)n = rn(zn) for

each player n, and w : Σ → Z via wn(σ) = σn +Gn(σ). Then

σ is an equilibrium iff σ = [r ◦ w](σ). Hence the equilibria

are the fixed points of the map Φ ≡ r ◦ w : Σ → Z → Σ. An

equilibrium component is a maximal connected set of equilib-

ria and thus compact. Each component of fixed points of the

permuted map F ≡ w ◦ r : Z → Σ → Z is homeomorphic to

a corresponding component of the fixed points of Φ and their

indices agree (Dold [12]). In particular, the index is the local

degree of the displacement map f ≡ Id− F used below.

A restricted class of perturbations perturbs a player’s pay-

offs from his pure strategies independently of others’ behav-

iors. For each g ∈ Z define the perturbed game G ⊕ g by

(G⊕g)n(σ) = Gn(σ)+gn and thus (G⊕g)n(σ) = Gn(σ)+σ′ngn.

Let EG = {(g, σ) ∈ Z × Σ | σ is an equilibrium of G ⊕ g} be

the graph of equilibria over this class of perturbations. Define

θ : EG → Z by θn(g, σ) = σn+Gn(σ)+gn, and let p1 : EG → Z
be the natural projection. Then θ is a homeomorphism; in
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particular, θ−1(z) = (f(z), r(z)). Consequently, f = p1 ◦ θ−1.

Moreover §A.2 shows that map f has degree +1. There exists

an orientation of EG such that the local degree of f is same

as the local degree of the projection map p1. Hence the local

degree of f and thus also the index of a component C of G is

the same as the degree of the projection map p1 on any suf-

ficiently small neighborhood of (0, C) in the graph EG. §A.1

presents an alternative definition of the index that depends

only on the best-reply correspondence, which is intrinsic to

a game independently of the map characterizing equilibria as

fixed points.

As described in §1, a profile σ ∈ Σ for game G induces

an equivalent profile σ∗ ∈ Σ∗ of G’s reduction G∗. Let An

be the matrix whose columns are the pure strategies in Sn

represented as mixed strategies in Σ∗n. Then σ∗n = Anσn

and Gn(σ) = A′
nG∗n(σ∗). A profile σ ∈ Σ is an equilibrium of

G if and only if the equivalent profile σ∗ = (Anσn)n∈N is an

equilibrium of G∗.

3. Proof of the Theorem

We now prove the two parts of Theorem 1.1. Theorem 3.1

extends to the entire class of equivalent games the implication

of nonzero index established by Ritzberger [13].

Theorem 3.1. An equilibrium component is uniformly hy-

perstable if it is essential.

Proof. Let C be an equilibrium component of game G that

is an essential component of a Nash map. Then its index

is nonzero (O’Neill [5], McLennan [14]), say d 6= 0. As

shown in §A.3, the index is invariant to addition of redun-

dant strategies, so we can assume that G is reduced. Let U

be an open neighborhood of C in Σ. We show that there

exists δ > 0 such that for each equivalent game G∗ and
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each game G̃∗ within δ of G∗ there exists an equilibrium

of G̃∗ equivalent to some profile in U . If necessary by re-

placing U with a smaller neighborhood, we can assume that

the only equilibria in the closure of U are in C. Because no

strategy in its boundary ∂U is an equilibrium, δ̄ > 0 where

δ̄ = minσ∈∂U [maxn∈N,s∈Sn Gn
s (σ)−σ′nG

n(σ)]. Fix δ ∈ (0, δ̄/2).

Let G∗ be a game whose reduction is G, and let C∗ be the

equilibrium component of G∗ whose reduction is C. Let E∗ be

the graph of the equilibrium correspondence over the space of

games with the same set of strategies as in G∗. Let B∗ be the

open ball around G∗ with radius δ. Let U∗ ⊃ C∗ be the set of

profiles of G∗ that reduce to profiles in U ; note that a profile

in ∂U∗ reduces to a profile in ∂U . Then V ∗ = E∗ ∩ (B∗×U∗)

is an open neighborhood of (G∗, C∗) in the graph. Suppose

σ∗ ∈ ∂U∗ and let σ be the corresponding profile in ∂U . Then

there exists a pure strategy s for some player n whose pay-

off Gn
s (σ) in G from s against σ is greater than the payoff

Gn(σ) from the reduction σn of σ∗n by at least δ̄. For a game

G̃∗ ∈ B∗, the payoff from s against σ∗ is strictly greater than

Gn
s (σ)− δ̄/2 while the payoff from σ∗n against σ∗ is strictly less

than Gn(σ) + δ̄/2. Thus, σ∗ cannot be an equilibrium of G̃∗.

Therefore, G̃∗ has no equilibrium in ∂U∗. Consequently, the

projection map P ∗ : V ∗ → B∗ is proper: the inverse image

of every compact subset of B∗ under P−1 is compact. §A.3

shows that the index of C and C∗ agree. Therefore, by §A.2,

the local degree of G∗ under P ∗ is d. Because P ∗ is a proper

map, this implies that the local degree of each game G̃∗ ∈ B∗
is d (Dold [12]). Therefore the sum of the indices of equilib-

rium components of G̃∗ in U∗ is d. Since d 6= 0, G̃∗ has an

equilibrium in U∗. Since G∗ could be any game whose reduc-

tion is G and every game G̃∗ in its neighborhood B∗ has an

equilibrium in U∗, C is uniformly hyperstable. ¤
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Thus those components with nonzero indices are uniformly

hyperstable, and such components exist because the sum of

the indices of all components is +1. Now we prove necessity.

Theorem 3.2. A connected uniformly hyperstable set is an

essential component.

Proof. Let C be a closed connected set of equilibria of G

and let K be the component containing it. Supposing that

Ind(K) = 0 or C 6= K, we show that C is not uniformly hy-

perstable. Fix a neighborhood U as in Corollary A.2 of the

Appendix and let δ > 0. We construct an equivalent game G̃

and a perturbation G̃δ of G̃ such that ‖G̃− G̃δ‖ 6 δ and the

perturbed game G̃δ has no equilibrium equivalent to a strat-

egy profile in U . The construction of G̃ is done in three steps

(we are indebted to a reviewer for suggesting a simplification

of Step 2).

The best-reply correspondence for game G is BR : Σ ³
Σ where BR(σ) = {τ ∈ Σ | (∀n ∈ N, ∀τ̃n ∈ Σn) [τ̃n −
τn]′Gn(σ) 6 0}. More generally, for β ≥ 0 say that a strat-

egy τn of player n is a β-reply against σ ∈ Σ if τ ′nG
n(σ) >

Gn
s (σ) − β, where s ∈ Sn is any optimal reply of player n

against σ. A profile τ is a β-reply against σ if for each n the

strategy τn is a β-reply for player n against σ.

Step 1. First we show that without loss of generality

we can assume that G satisfies the following property (*):

for every neighborhood W of Graph(BR) there exists a map

h : Σ → Σ such that:

(1) Graph(h) ⊂ W .

(2) For each player n the n-th coordinate map hn of h

depends only on Σ−n.

(3) h has no fixed points in U .

It suffices to show existence of an equivalent game G∗ satis-

fying (*).
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Define G∗ as follows. Player n’s pure strategy set is S∗n =

Sn × Sn+1, where n + 1 is taken modulo N . For each n,

and m ∈ {n, n + 1}, denote by pnm the natural projection

from S∗n to Sm. Then the payoff function from pure strate-

gies for player n is given by G∗
n(s∗) = Gn(s), where for each

m, sm = pm,m(s∗m). In other words, n’s choice of a strat-

egy for n + 1 is payoff irrelevant. Clearly G∗ is equivalent to

G. Let Σ∗
n be player n’s set of mixed strategies in the game

G∗. We continue to use pnm to denote the map from Σ∗
n to

Σm that computes for each mixed strategy σ∗n the induced

marginal distribution over Sm. Let p : Σ∗ → Σ be the map

p(σ∗) = (p1,1(σ
∗
1), . . . , pN,N(σ∗N)); i.e. p computes the payoff-

relevant coordinates of σ∗. Finally let P : Σ∗ × Σ∗ → Σ × Σ

be the map for which P (σ∗, τ ∗) = (p(σ∗), p(τ ∗)). Use BR∗ to

denote the best-reply correspondence for the game G∗. Simi-

larly C∗ denotes the component of equilibria of G∗ equivalent

to equilibria in C, and U∗ denotes the neighborhood corre-

sponding to U .

Fix a neighborhood W ∗ of Graph(BR∗). For each µ > 0,

let W (µ) be the set of those (σ, τ) ∈ Σ×Σ for which τ is a µ-

reply to σ in G. Then the collection {W (µ) | µ > 0} is a basis

of neighborhoods of the graph of BR. Choose µ > 0 such that

P−1(W (µ)) ⊆ W ∗. By Corollary A.2, there exists a map h :

Σ → Σ such that Graph(h) ⊂ W (µ) and h has no fixed points

in U . Now define the map h∗ : Σ∗ → Σ∗ as follows: for each

n, h∗n(σ∗) is the product distribution τn(σ∗)× pn+1,n+1(σ
∗
n+1),

where τn(σ∗) = hn(p1,1(σ
∗
1), . . . , pn−1,n−1(σ

∗
n−1), pn−1,n(σ∗n−1),

pn+1,n+1(σ
∗
n+1), . . . , pN,N(σ∗N)). By construction, each coordi-

nate map h∗n depends only on Σ∗
−n. We claim that the graph of

h∗ is contained in W ∗. To see this, observe first that τn(σ∗) is

player n’s component of the image of (p−n(σ∗), pn−1,n(σ∗n−1))

under h. Since Graph(h) ⊂ W (µ), τn(σ∗) is a µ-reply to
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p−n(σ∗). Therefore, (p(σ∗), τ(σ∗)) belongs to W (µ). Hence

(σ∗, h∗(σ∗)) ∈ P−1(W (µ)) ⊆ W ∗.

We finish the proof by showing that h∗ has no fixed point in

U∗. Suppose σ∗ is a fixed point of h∗. Then each σ∗n is a prod-

uct distribution with pn,n+1(σ
∗
n) = pn+1,n+1(σ

∗
n+1) for all n.

Therefore pnn(σ∗n) = pnn(h∗n(σ∗)) = hn(p−n(σ∗), pn−1,n(σ∗n−1))

= hn(p(σ∗)) for each player n, which implies that p(σ∗) is a

fixed point of h. Since h has no fixed point in U , σ∗ /∈ U∗.

Step 2. Let I be the interval [0, δ]. We now show that

without loss of generality we can assume that G satisfies the

following property (**): there exists a map g : Σ → IR, where

R =
∑

n |Sn|, such that:

(1) For each player n, gn depends only on Σ−n.

(2) No profile σ ∈ U is an equilibrium of the game G ⊕
g(σ).

As in Step 1 we prove this by constructing an equivalent game

with the property (**). Since the payoff functions are multi-

linear on the compact set Σ, there exists a Lipschitz constant

M > 0 such that ‖Gn(σ)−Gn(τ)‖ 6 M‖σ− τ‖ for all n and

σ, τ ∈ Σ. We begin with a preliminary lemma.

Lemma 3.3. If τn is a β1-reply against σ, ‖τ ′n − τn‖ 6 β2,

‖σ′ − σ‖ 6 β3 then τ ′n is a (β1 + Mβ2)-reply to σ and τn is a

(2Mβ3 + β1)-reply to σ′.

Proof of the Lemma. The first result follows directly from the

Lipschitz inequality. Let s be an optimal reply for player n

to σ′. Then the second result follows by using the Lipschitz

inequality along with the inequality:

Gn(s, σ′−n)−Gn(τn, σ′−n) 6 |Gn(s, σ′−n)−Gn(s, σ−n)|
+Gn(s, σ−n)−Gn(τn, σ−n)+ |Gn(τn, σ−n)−Gn(τn, σ

′
−n)| . ¤

Fix η = δ/6M . For each σ ∈ Σ there exists an open

ball B(σ) around σ of radius less than η such that for each
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σ′ ∈ B(σ) the set of pure best replies against σ′ is a sub-

set of those that are best replies to σ. Since the set of best

replies for each player n to a strategy profile is the face of Σn

spanned by his pure best replies, BR(σ′) ⊆ BR(σ) for each

σ′ ∈ B(σ). The balls B(σ) define an open covering of Σ.

Hence there exists a finite set of points σ1, . . . , σk whose cor-

responding balls form a subcover. For each σi, let W (σi) be

the η-neighborhood of BR(σi). Let W = ∪i (B(σi)×W (σi)).

Then W is a neighborhood of the graph of BR. From Step 1

there exists a map h : Σ → Σ such that (1) Graph(h) ⊂ W ;

(2) for each n, hn depends only on Σ−n; and (3) h has no

fixed point in U . If τ = h(σ) then there exist σi, τ i such that

σ ∈ B(σi), τ i is a best reply to σi, and τ is within η of τ i.

Therefore, the Lemma implies that τ i is a 2Mη-reply against

σ and therefore that τ is a 3Mη-reply against σ.

Fix α > 0 such that if σ ∈ U then ‖σ − h(σ)‖ > α. For

each n, let Tn be the simplicial complex obtained by taking

a sufficiently fine subdivision of Σn such that the diameter

of each simplex is less than both η and α, and let Tn be the

set of vertices of this simplicial complex. Define T =
∏

n Tn.

We now define a game G that is equivalent to G, as follows.

For each player n the set of pure strategies is Tn. The pure

strategy tn ∈ Tn is a duplicate of the mixed strategy in Σn

corresponding to the vertex tn of Tn. Since the vertices of

Σn belong to Tn, G is equivalent to G. Let Σn be the set of

mixed strategies of player n in G and let Σ =
∏

n Σn. Denote

by C and U the sets in Σ that are equivalent to C and U

respectively.

For tn ∈ Tn, define X(tn) ⊆ Σ−n as the projection on to

Σ−n of the inverse image of the closed star (cf. §B.1) of tn

under the map hn. And let Y (tn) be the set of σ−n ∈ Σ−n

such that ‖tn−hn(σ)‖ > 2η (recall that hn(σ) does not depend

on σn). Since the diameter of each simplex of Tn is less than
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η, X(tn) ∩ Y (tn) = ∅. Now use Urysohn’s Lemma to define

a function πtn : Σ−n → [0, 1] such that π−1
tn (1) = X(tn) and

π−1
tn (0) ⊇ Y (tn).

Let R′ =
∑

n |Tn|. We now construct a map g : Σ → IR′

with the requisite properties by first defining g on Σ and then

extending it to the whole of Σ by letting g(σ) be g(σ), where σ

is the equivalent profile in G. For each n, let fn : Σ−n → R be

the map defined by f(σ−n) = maxs∈Sn Gn(s, σ−n). For each n,

tn ∈ Tn, σ ∈ Σ, let gtn(σ) = πtn(σ−n)[fn(σ−n)−Gn(tn, σ−n)+

Mη]. We first show that g is well defined, i.e. g maps each

σ to a point in IR′ . Fix n, tn, and σ. If σ−n ∈ Y (tn), then

gtn(σ) = 0. If σ−n /∈ Y (tn), then ‖tn − hn(σ)‖ 6 2η. Since

hn(σ) is a 3Mη-reply to σ−n, the Lemma implies that tn is

a 5Mη-reply to σ−n, i.e. 0 6 fn(σ−n) − Gn(tn, σ−n) 6 5Mη.

Hence 0 6 gtn(σ) 6 6Mη = δ. Thus g is a well-defined map

from Σ into IR′ . Obviously the extension of g to the whole of

Σ also has norm at most δ. Also, by construction for each n,

gn depends only on Σ−n.

To finish the proof of this step we show that if σ ∈ U

then σ is not an equilibrium of G ⊕ g(σ). Suppose to the

contrary that σ ∈ U is such an equilibrium and let σ be the

corresponding strategy in Σ. In the game G⊕ g(σ), consider

the payoff that player n gets when he plays a pure strategy

tn while the others play according to σ. If σ−n ∈ X(tn), then

his payoff is fn(σ−n) + Mη; if σ /∈ X(tn) then his payoff is

Gn(tn, σ−n) + πtn(σ−n)[fn(σ−n) − Gn(tn, σ−n) + Mη], which

is strictly smaller than fn(σ−n) + Mη since πtn(σ−n) < 1.

Obviously there exists at least one tn such that σ−n ∈ X(tn)—

for instance any vertex of the simplex of Tn that contains

hn(σ) in its interior. Thus, the set of optimal replies to σ for

player n, call it T ′
n, is the set of tn’s such that σ−n ∈ X(tn).

For each tn ∈ T ′
n, there exists a simplex of Tn that contains

tn and hn(σ). Hence the distance between hn(σ) and tn is
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less than α. The support of σn being a subset of T ′
n, we then

have ‖σn − hn(σ)‖ 6 α. Since we are using the l∞-distance,

‖σ − h(σ)‖ 6 α, which is impossible. Thus, there does not

exist σ in U that is an equilibrium of G⊕ g(σ).

Step 3. Suppose g : Σ → IR has the property (**)

described in Step 2. For each σ ∈ U there exists ζ(σ) > 0

and an open ball B(σ) around σ such that for each σ′ ∈
B(σ) and each g′ such that ‖g′ − g(σ′)‖ 6 ζ(σ), σ′ is not an

equilibrium of G⊕ g′. The balls B(σ) form an open covering

of U . Hence there exists a finite set of points σ1, . . . , σk such

that their corresponding balls cover Σ. Let ζ = mini ζ(σi).

Construct a simplicial subdivision I of the interval I such that

the diameter of each simplex (i.e. a subinterval) is at most ζ.

Using the multisimplicial approximation theorem from §B.2,

there exists a simplicial subdivision Tn of each Σn, and for

each s ∈ Sn a multisimplicial approximation g∗s : |T−n| → |I|
of gs that is multilinear on each multisimplex of T−n. Let g∗ :

Σ → |I|R be the corresponding multisimplicial map defined

by the coordinate maps g∗s . By construction, no σ ∈ U is an

equilibrium of G⊕ g∗(σ).

As in §B.2 let Pn be the polyhedral complex generated by

Tn, and let γn : Σn → [0, 1] be the associated convex map. For

each n let Pn be the set of vertices of Pn. Given a polyhedron

P−n in
∏

m6=nPm, there exists a multisimplex T−n of T−n that

contains it. Since g∗ is multilinear on each multisimplex, g∗

is multilinear on each polyhedron.

Consider now the equivalent game G̃ where the strategy

set of each player n is the set Pn of vertices of the polyhedral

complex Pn. Let Σ̃n be the set of mixed strategies of player

n in the game G̃. For each player n, let An be the |Sn| × |Pn|
matrix, where column p is the mixed strategy vector that

corresponds to the vertex p of Pn. Then the payoff to player n

from a strategy vector σ̃ ∈ Σ̃ is his payoff in G from the profile
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σ, where σm = Amσ̃m for each m. For each n, let Bn : P−n →
IPn be the map defined by Bn(p−n) = A′

ng∗n(p−n). Consider

now the game G̃′ obtained by modifying the payoff functions

to the following: for each player n, his payoff from the pure-

strategy profile p is G̃n(p) + Bn,pn(p−n). By construction G̃′

is a δ-perturbation of G̃. Let cn be the vector in RPn where

the coordinate p of cn is γn(p). For each δ′ 6 δ let G̃δ′ be the

game G̃′ ⊕ [−δ′c]. Then G̃δ′ is a δ-perturbation of G̃.

We claim now that for sufficiently small δ′ the game G̃δ′ has

no equilibrium in the set Ũ that is the neighborhood equiva-

lent to U of the equilibrium component C̃ for G̃ equivalent to

C. Indeed, suppose to the contrary that there is a sequence δk

converging to zero and a corresponding sequence σ̃k of equi-

libria of G̃δk that lie in Ũ . For each k let σk be the equivalent

profile in Σ. For each k and each player n, if τ̃ k
n ∈ Σ̃n is a

mixed strategy such that Anτ̃ k
n = σk

n then c′nτ̃ k
n > c′nσ̃k

n. Thus

σ̃k
n solves the linear programming problem minτ̃k

n∈Σ̃n
c′nτ̃ k

n sub-

ject to Anτ̃
k
n = σk

n. Let Lk
n be the unique polyhedron of Pn

that contains σk
n in its interior. Since γn is a convex func-

tion, γn(σk
n) 6

∑
pn∈Pn

τ̃ k
n,pn

γn(An,pn) for all τ̃ k
n ∈ Σ̃n such

that Anτ̃
k
n = σk

n, where An,pn is the pn-th column of An and

τ̃ k
n,pn

is the probability that τ̃ k
n assigns to the pure strategy pn.

Moreover the construction of γn ensures that this inequality

is strict unless the support of τ̃ k
n is included in Lk

n. Therefore,

the equilibrium strategy σ̃k
n assigns positive probability only

to points in Lk
n.

Now let σ̃ be a limit of σ̃k as δk ↓ 0 and let σ be the

equivalent mixed strategy. Then σ̃ is an equilibrium of the

game G̃′. Therefore, σ is an equilibrium of the game G ⊕
b, where bns =

∑
p−n∈P−n

g∗ns(p)
∏

m6=n σ̃m,pm for each n and

s ∈ Sn. By the arguments in the previous paragraph, there

exists for each n a polyhedron P ◦
n ∈ Pn such that σ̃n assigns
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positive probability only to points in P ◦
n . Since each g∗n is

multilinear on the multisimplex T−n that contains P ◦
−n, bns =

g∗ns(σ−n). Thus σ is an equilibrium of G ⊕ g∗(σ), which is a

contradiction. Thus, for all sufficiently small δ′ the game G̃δ′

has no equilibrium in Ũ . ¤

Thus the connected uniformly hyperstable sets are precisely

the essential components as stated in Theorem 1.1.

Appendix A. Index Theory

A.1. An Index Derived from the Best-Reply Corre-

spondence. We define an index for equilibrium components

using the best-reply correspondence and show that this index

coincides with the standard index constructed from a Nash

map.

Let BR : Σ ³ Σ be the best-reply correspondence for the

game G, i.e. BR(σ) = {τ ∈ Σ | (∀n) τn ∈ arg maxτ̃n∈Σn τ̃ ′nGn(σ)}.
The set E of equilibria of G is the set of fixed points of BR;

i.e. those for which σ ∈ BR(σ). Let C be a component of

the equilibria of G. We follow McLennan [14] in defining an

index for C. Let U be an open neighborhood of C such that

its closure U satisfies U ∩ E = C. Let W be a neighbor-

hood of Graph(BR) such that W ∩ {(σ, σ) ∈ Σ × Σ | σ ∈
U − U} = ∅. By Corollary 2 in [14] there exists a neigh-

borhood V ⊆ W of Graph(BR) such that if f0 and f1 are

any two maps from Σ to Σ whose graphs are contained in

V , then there is a homotopy F : [0, 1] × Σ → Σ from f0 to

f1 such that Graph(F ) ⊂ [0, 1] × V . By the Proposition in

[14] there exists a map f : Σ → Σ for which Graph(f) ⊂ V .

Define the index IndBR(C) to be the standard index of the

restricted map f : U → Σ. The choice of the neighborhood

V and the homotopy axiom for index ensure that this index

does not depend on the particular map f chosen to compute

the index.
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The index of the component C can also be defined using the

index obtained from the Nash map Φ : Σ → Σ defined in §2,

which has the equilibria as its fixed points. Define the Gül-

Pearce-Stacchetti [11] index IndGPS(C) to be the standard

index of the component C computed from the restriction of

Φ to the map g : U → Σ.

Theorem A.1. IndBR(C) = IndGPS(C).

Proof. For each λ > 0 define the game Gλ as the game where

the payoff functions of all players in G are multiplied by λ; i.e.

Gλ = λG. Clearly, all games Gλ have the same equilibria. For

Gλ let wλ be the map corresponding to w in the game G, and

let gλ = r◦wλ be the corresponding GPS map. Then for each

λ > 0 the homotopy H : [0, 1] × Σ → Σ, H(t, σ) = g1+t(λ−1),

from g to gλ preserves the set of fixed points. Hence, the

index of C under gλ is the same for all λ. To prove Theorem

A.1 it is sufficient to show that there exists λ > 0 such that

the graph of gλ is contained in V , the neighborhood specified

in the definition of IndBR(C). For each λ > 0 and σ ∈ Σ,

wλ(σ) ≡ zλ is such that 1 + λGn(s, σ−n) > zλ
ns > λGn(s, σ−n)

for all n, s. Choose c(σ) > 0 such that if s is not a best

reply to σ−n for player n, then Gn(s′, σ−n) − Gn(s, σ−n) >
c(σ), where s′ is a best reply for player n against σ. Then

zλ
ns′ − zλ

ns > λc(σ) − 1 if s is not a best reply and s′ is. In

particular, if λ > 2/c(σ), then this difference is at least 1.

Therefore, for each such λ, zλ is retracted by r to a point in

BR(σ). Now choose an open ball B(σ) around σ in Σ such

that (i) B(σ) × BR(σ) ⊂ V ; and (ii) for each n and each

s ∈ Sn that is not a best reply to σ, there is an s′ such that

Gn(s′, σ′−n)−Gn(s, σ′−n) > c(σ)/2 for all σ′ ∈ B(σ). Then as

before, gλ(σ′) ∈ BR(σ) for each λ > 4/c(σ) and σ′ ∈ B(σ).

The balls B(σ) for σ ∈ Σ form an open cover of Σ. Since Σ

is compact there exists a finite set σ1, . . . , σK ∈ Σ such that
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∪kB(σk) ⊃ Σ. Let λ∗ = maxk 4/c(σk). For each λ > λ∗ the

graph of gλ belongs to V , as required. ¤

A corollary follows from results of A. McLennan (Selected

Topics in the Theory of Fixed Points, §4.4 and Appendix E,

Economics Department, University of Minnesota, 1988, per-

sonal communication).

Corollary A.2. If C is a closed subset of a component K of

equilibria, with C = K only if Ind(K) = 0, then there exists a

closed neighborhood U of C for which, for each neighborhood

W of Graph(BR), there exists a map h such that Graph(h) ⊂
W and h has no fixed point in U .

A.2. Equivalence of Index and Degree. Let Γ = RN |S| be

the space of all finite N -player games with a fixed strategy set

Sn for each player, and S =
∏

n Sn. Let E∗ be the graph of the

Nash equilibrium correspondence over Γ and let p : E∗ → Γ

be the natural projection. Each game G can be decomposed

uniquely as G = G̃⊕g, where for each player n and each pure

strategy s ∈ Sn,
∑

s−n
G̃n(s, s−n) = 0. Thus, Γ is the product

space Z̃ × Z of all pairs (G̃, g). Define Θ : E∗ → Z̃ × Z
by Θ(G̃, g, σ) = (G̃, z) where for each player n and each s ∈
Sn, zns = σns + G̃n(s, σ−n) + gns. Theorem 1 of [4] shows

that Θ is a homeomorphism. The inverse Θ−1 is defined by

Θ−1(G̃, z) = (G̃, g, r(z)), where r(z) = σ is the retraction of

z to Σ and gns = zns − σns − G̃n(s, σ−n) for all n and s ∈ Sn.

Furthermore, Θ extends to a homeomorphism between the

one-point compactifications, call them E∗ and Γ, of E∗ and Γ

respectively; and p◦Θ−1 is homotopic to the identity map on

Γ. Thus, the map p ◦ Θ−1 has degree +1. We can therefore

orient E∗ such that the projection map p : E∗ → Γ has degree

1. Given a game G and a component C of the game, choose a

neighborhood U of {(G̃, g)} × C in the graph that is disjoint

from the other components of equilibria of G (viewed as a
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subset of E∗). The degree of C, denoted deg(C), is the local

degree of (G̃, g) under the restriction of p to U . Since Θ is

the identity on the Z̃ factor, we can also define the degree

of C using Z as the space of games. Indeed given the game

G = (G̃, g), let E ′G = (g′, σ) such that ((G̃, g′), σ) belongs

to E∗. Let θ′ : E ′G → Z be the map θ′(g′, σ) = z, where z is

such that Θ((G̃, g′), σ) = (G̃, z). Then θ′ is a homeomorphism

between E ′G and Z and as before we can define the degree of C

as the local degree of the projection map from a neighborhood

of {g} × C in E ′ whose closure does not contain any other

equilibria of the game G. Obviously, these two definitions are

equivalent. If we use θ′ then the degree of C is just the degree

of g under the map f ′ ≡ p ◦ θ′−1 from a neighborhood V of

θ′({g} × C) in Z, where p is the natural projection from E ′
to Z. Letting θ and f be the maps defined in §2, we have

θ({g} × C) = θ({0} × C), and f = f ′ − g. Therefore, the

degree of zero under the map f over V is the same as the

degree of g under the map f ′ over V . As in §2, the degree of

zero under the map f over V is the index of the component

w(C) of the fixed point set of F , which is the same as the

index of C under the GPS map Φ.

A.3. Invariance of Index and Degree. We provide a sim-

ple proof using the index defined by the best-reply correspon-

dence.

Theorem A.3. The index of a component of equilibria is in-

variant under the addition or deletion of redundant strategies.

Proof. Let C be an equilibrium component of game G. It

suffices to show that the index of C is invariant under the

addition of redundant strategies. Accordingly, for each player

n let Tn be a finite collection of mixed strategies. Let G∗ be

the game obtained by adding the strategies in Tn as pure

strategies for n; i.e. n’s pure strategy set in G∗ is Sn ∪ Tn.
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Let Σ∗
n be his set of mixed strategies. Let BR∗ be the best-

reply correspondence in Σ∗. Let p∗ : Σ∗ → Σ be the function

that maps each mixed strategy in G∗ to the equivalent mixed

strategy in G. Let ι : Σ → Σ∗ be the inclusion map that

sends a point in Σ to the corresponding point on the face of

Σ∗; precisely, ι(σ) = σ∗, where σ∗ns = σns for s ∈ Sn and

σnt = 0 for t ∈ Tn. Obviously, ι(σ) ⊂ p−1(σ) for each σ ∈ Σ.

Let C∗ ≡ p−1(C) be the equilibrium component of G∗ cor-

responding to C. Let U be an open neighborhood of C whose

closure is disjoint from other equilibrium components of G.

Let U∗ = p−1(U). Choose a neighborhood W ∗ of the graph of

BR∗ such that the index of C∗ can be computed as the sum

of the indices of the fixed points in U∗ of any map h∗ whose

graph is contained in W ∗.

Let W be a neighborhood of the graph of BR such that

(σ, τ) ∈ W implies p−1(σ) × p−1(τ) ⊂ W ∗. By the definition

of IndBR(C), there exists a map h : Σ → Σ such that (i) the

graph of h is contained in W ; (ii) h has no fixed points on the

boundary of U ; and (iii) IndBR(C) is the index of the map h

over U . Define now a map h∗ : Σ∗ → Σ∗ by h∗ = ι ◦ h ◦ p.

Then, by construction the graph of h∗ is contained in W ∗.

Moreover, h and h∗ have homeomorphic sets of fixed points.

In fact, the fixed points of h∗ are the image of the fixed points

of h under the injective map ι. Letting h0 = ι◦h, we have that

h = p ◦ h0 and h∗ = h0 ◦ p. Therefore, by the commutativity

property of the index (Dold [12, VII.5.9]), the index of the

map h : U → Σ is the same as that of h∗ : U∗ → Σ∗. Hence

IndBR∗(C
∗) = IndBR(C). ¤

Appendix B. Multisimplicial Complexes

B.1. A Multisimplicial Approximation Theorem. We

establish a multilinear version of the Simplicial Approxima-

tion Theorem. This result may be known but we found no
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reference. We begin with some definitions; see Spanier [15]

for details.

A set of points {v0, . . . , vn} in RN is affinely independent

if the equations
∑n

i=0 λivi = 0 and
∑

i λi = 0 imply that

λ0 = · · · = λn = 0. An n-simplex K in RN is the convex

hull of an affinely independent set {v0, . . . , vn}. Each vi is a

vertex of K and the collection of vertices is called the vertex

set of K. Each σ ∈ K is expressible as a unique convex

combination
∑

i λivi; and for each i, σ(vi) ≡ λi is the vi-th

barycentric coordinate of σ. The interior of K is the set of σ

such that σ(vi) > 0 for all i. A face of K is the convex hull

of a nonempty subset of the vertex set of K.

A (finite) simplicial complex K is a finite collection of sim-

plices such that the face of each simplex in K belongs to K,

and the intersection of two simplices is either empty or a face

of each. The set V of 0-dimensional simplices is called the

vertex set of K. The set given by the union of the simplices

in K is called the space of the simplicial complex and is de-

noted |K|. For each σ ∈ |K|, there exists a unique simplex

K of K containing σ in its interior; define the barycentric co-

ordinate function σ : V → [0, 1] by letting σ(v) = 0 if v is

not a vertex of K and otherwise by letting σ(v) be the corre-

sponding barycentric coordinate of σ in the simplex K. For

each vertex v ∈ V , the star of v, denoted St(v), is the set of

σ ∈ |K| such that σ(v) > 0. The closed star of v, denoted

Cl St(v), is the closure of St(v).

A subdivision of a simplicial complex K is a simplicial com-

plex K∗ such that each simplex of K∗ is contained in a sim-

plex of K and each simplex of K is the union of simplices in

K∗. Obviously |K| = |K∗|. We need the following theorem on

simplicial subdivisions for our Approximation Theorem below

(Spanier [15],§3).
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Theorem B.1. For every simplicial complex K and every

positive number λ > 0 there exists a simplicial subdivision

K∗ such that the diameter of each simplex of K∗ is at most λ.

A multisimplex is a set of of the form K1×· · ·×Km, where

for each i, Ki is a simplex. A multisimplicial complex K is

a product K1 × · · · × Km, where for each i, Ki is a simplicial

complex. The vertex set V of a multisimplicial complex K
is the set of all (v1, . . . , vm) for which each vi is a vertex of

Ki. The space of the multisimplicial complex is
∏

i |Ki| and

is denoted |K|. For each vertex v of K, the star of v, St(v),

is the set of all σ ∈ |K| such that for each i, σi ∈ St(vi). The

closure of this set is Cl St(v). A subdivision of a multisim-

plicial complex K is a multisimplicial complex K∗ =
∏

iK∗i
where for each i, K∗i is a subdivision of Ki. In the following,

K is a fixed multisimplicial complex and L is a fixed simplicial

complex.

Definition B.2. A map f : |K| → |L| is called multisimpli-

cial if for each multisimplex K of K there exists a simplex L

in L such that:

(1) f maps each vertex of K to a vertex of L;

(2) f is multilinear on |K|; i.e. for each σ ∈ |K|, f(σ) =∑
v∈V f(v) ·∏i σi(vi).

By property (1) vertices of K are mapped to vertices of L.

Therefore, for each σ ∈ |K|, f(σ) is an average of the values

at the vertices of K. Since the simplex L is a convex set,

the image of the multisimplex K is contained in L. If K is

a simplicial complex then Definition B.2 coincides with the

usual definition of a simplicial map. In this special case the

image of a (multi)simplex K under f is a simplex of L, which

is not necessarily true in general.
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Definition B.3. Let g : |K| → |L| be a continuous map. A

multisimplicial map f : |K| → |L| is a multisimplicial approx-

imation to f if for each σ ∈ |K|, f(σ) is in the unique simplex

of L that contains g(σ) in its interior.

We could equivalently define a multisimplicial approxima-

tion by requiring that for each σ and each simplex L of L, if

g(σ) ∈ L then also f(σ) ∈ L. We now prove a Multisimplicial

Approximation Theorem.

Theorem B.4. Suppose that g : |K| → |L| is a continuous

map. Then there exists a subdivision K∗ of K and a multi-

simplicial approximation f : |K∗| → |L| of g.

Proof. The collection {g−1(St(w)) | w is a vertex of L} is an

open covering of |K|. Let λ > 0 be a Lebesgue number of this

covering; i.e. every subset of |K| whose diameter is less than

λ is included in some set of the collection. By Theorem B.1,

there exists for each i a simplicial subdivision K∗i of Ki such

that the diameter of each simplex is less than λ/2. Then for

each vertex v of K∗, St(v) has diameter less than λ (recall

that we use the `∞ norm). We first define a function f 0 from

the vertex set of K∗ to the vertex set of L as follows. For

each vertex v of K∗, since the diameter of St(v) is less than λ,

there exists a vertex w of L such that g(St(v)) ⊂ St(w). Let

f 0(v) = w. Suppose v1, . . . , vk are vertices of a multisimplex

K. We claim that their images under f 0 span a simplex in L.

Indeed, since the vj’s are vertices of a multisimplex, we have

that ∩jSt(vj) is nonempty. Therefore,

∅ 6= g(∩jSt(vj)) ⊆ ∩jg(St(vj)) ⊆ ∩jSt(f 0(vj)) .

Therefore, the vertices f 0(vj) span a simplex in L. Since f 0

maps vertices of a multisimplex to vertices of a simplex, there

exists a well-defined unique multilinear extension of f 0, call

it f . To finish the proof we show that f is a multisimplicial
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approximation of g. Let σ be an interior point of a multi-

simplex K and let L be the simplex containing g(σ) in its

interior. For every vertex v of K, g(St(v)) ⊆ St(f(v)) by con-

struction. Thus g(σ) ∈ St(f(v)) for each vertex v of K. In

particular, the set of vertices {f(v) | v is a vertex of K} span

a subsimplex L′ of L. Since f(σ) ∈ L′, f is a multisimplicial

approximation of g. ¤

The proof of Theorem B.4 shows a slightly stronger result.

Let η = λ/2 where λ is as defined in the proof. If each K∗i
is subdivision of Ki such that the diameter of each simplex

is at most η then g admits a multisimplicial approximation

f : |K∗| → |L|. Thus, we obtain:

Corollary B.5. There exists η > 0 such that, for each sub-

division K∗ of K with the property that the diameter of each

multisimplex is at most η, there exists a multisimplicial ap-

proximation f : |K∗| → |L| of g.

B.2. Construction of a Convex Map on a Polyhedral

Subdivision. We describe the construction of a convex map

associated with a polyhedral refinement of a simplicial subdi-

vision.

Let T be a simplicial complex obtained from a simplicial

subdivision of the d-dimensional unit simplex Σ in Rd+1. The

polyhedral complex P is derived from T as follows (Eaves

and Lemke [16]). For each simplex τ ∈ T whose dimen-

sion is d − 1, let Hτ = {z ∈ Rn | a′τz = bτ} be the hy-

perplane that includes τ and is orthogonal to Σ. Then each

closed d-dimensional admissible polyhedron of P has the form

Σ ∩ [∩τH
pτ
τ ] where each pτ ∈ {+,−} and H+

τ and H−
τ are

the two closed half-spaces whose intersection is Hτ . Enlarge

P by applying the rule that each lower-dimensional polyhe-

dral face of an admissible polyhedron is also admissible. By

construction, the closure of each simplex in T is partitioned
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by admissible polyhedra of P , any two non-disjoint admis-

sible polyhedra meet in a common face that is also an ad-

missible polyhedron, and each admissible polyhedron is con-

vex. Associate with P the map γ : Σ → [0, 1] for which

γ(σ) = α
∑

τ |a′τσ− bτ |, where the scaling factor α > 0 is suf-

ficiently small that γ(Σ) ∈ [0, 1]. Then γ is convex and piece-

wise affine. In particular for any finite collection σ1, . . . , σk

of points in Σ and nonnegative scalars λ1, . . . , λk such that∑
i λ

i = 1, we have that γ(
∑

i λ
iσi) 6

∑
i λ

iγ(σi), with the

inequality being strict if and only if there does not exist an

admissible polyhedron of P that contains all of the σi’s.
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