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Abstract— In the past, scientific data have been almost 

exclusively compressed by means of lossless methods, in order to 

preserve their full quality. However, more recently, there has 

been an increasing interest in the lossy compression which has 

not yet globally accepted by the remote sensing community, 

mainly because it is sensed that the lossy compressed images 

may affect the results of posterior processing stages. Hence here, 

the influence of lossy compression on two standard approaches 

for hyperspectral data exploitation known as adaptive spectral 

unmixing, and supervised classification using PCA are 

considered. The experimental result states that the adaptive 

spectral unmixing provides a user defined spatial scale which 

improves the process of extraction of end members and PCA 

improves the classification accuracy. It is also observed that, for 

certain compression techniques, a higher compression ratio may 

lead to more accurate classification results. This work further 

provides recommendations on best practices when applying lossy 

compression prior to hyperspectral data classification and/or 

unmixing. 

 

Index Terms— Hyperspectral data lossy compression, end 

member extraction, adaptive spectral unmixing, wavelet 

transform, support vector machine (SVM), Principal 

component analysis 

I. INTRODUCTION 

Hyperspectral imaging amounts to collect the energy 

reflected or emitted by ground targets at a typically very high 

number of wavelengths, resulting in a data cube containing 

tens to hundreds of bands. These data have become 

increasingly popular, since they enable plenty of new 

applications, including detection and identification of 

surface and atmospheric constituents, analysis of soil type, 

agriculture and forest monitoring, environmental studies, 

and military surveillance. In hyperspectral imaging, two 

types of compression have been investigated extensively in 

the past [1]. Lossless data compression is generally a type of 

data compaction, which eliminates unnecessary redundancy 

without loss of any information. While, lossy data 

compression removes some low-detail information. Since the 

best compression ratios achieved by lossless techniques are in 

the order of 3:1 [2], Lossy compression is generally used 

when higher ratios are required and two of the most recent 

satellites, SPOT 4 and IKONOS, started to employ lossy 

compression prior to downlinking the data to ground 

stations. Nevertheless, lossy compression has not yet 

achieved global acceptance in the remote sensing 
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community, because it is generally sensed that using 

compressed images may ultimately affect the results of 

posterior processing stages of remote sensing images, such as 

spectral unmixing or image classification. This negative 

effect, however, has been scarcely characterized, mostly in 

the context of classification applications [1]. 

By using some approaches like vector quantization (VQ) 

higher compression ratios of 70:1 were achieved without 

reducing the classification performance for joint 

classification and compression of hyperspectral images and 

here the classification error can be expressed as an 

alternative to the mean square-error (MSE) distortion 

measure. Similarly, high classification accuracy can also be 

obtained at high compression ratios, particularly when a 

spatial–spectral (wavelet like) transform is applied. This 

suggests that including spatial information typically 

improves classification accuracy, even if this information is 

introduced through image distortion induced by lossy 

compression.                  

II. TRANSFORM CODING TECHNIQUES  

Transform-based lossy compression has a huge potential for 

hyperspectral data reduction and the transform techniques 

considered here are wavelet based. Wavelet-based 

compression techniques are commonly divided into two 

functional parts: First,(DWT) decorrelates the input image in 

the spatial domain, and second, a bit plane encoder (BPE) 

stage encodes the transformed image, possibly followed by an 

entropy coder (e.g., a Huffman or an arithmetic encoder). In 

addition, in order to improve the coding performance of these 

techniques, a common strategy for hyperspectral images is to 

decorrelate first the image in the spectral domain; DWT and 

principal component analysis (PCA) are often used as Group 

(JPEG). The latest standard of the Joint Photographic 

Experts group JPEG2000 is also employed along with the 

DWT. These techniques are able to distribute the target bit 

rate among the components using a bit allocation algorithm 

spectral decorrelator [3].  

III. EXPERIMENTAL RESULTS 

The performance of the different progressive 

lossy-to-lossless techniques in terms of two hyperspectral 

data exploitation applications, i.e., adaptive spectral 

unmixing and PCA classification are evaluated. In all cases, 

the evaluation has been performed on a representative 

bit-rate range 0.2–2.0 bits per pixel per band (bpppb), i.e., a 

compression ratio ranging from 80:1 to 8:1.  

A. Adaptive Spectral Unmixing 

The hyperspectral scene used for the adaptive spectral 

unmixing experiments is the well-known AVIRIS Cuprite 
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image. The scene comprises 224 spectral bands between 0.4 

and 2.5μm, with a spectral resolution of 10 nm. Prior to the 

analysis, several bands were removed due to water absorption 

and low signal-to-noise ratio, retaining a total of 188 bands 

for experiments.  

1) Experiment1: Impact of Hyperspectral Data Lossy 

Compression on Estimation of the abundances. 

The method used for estimating the number of abundances 

from the fundamental materials available in the original data 

set and in the recovered scenes (after coding and decoding) 

are evaluated using a method developed by Harsanyi, 

Farrand, and Chang [4] that includes a noise-whitening 

process as pre-processing by using three different values of 

false alarm probability (PF=10−3, PF = 10−4, and PF = 10−5) 

known as NWHFC.  As the compression ratio was increased 

(low bit rate), the use of DWT for spectral decorrelation 

severely affected the estimation of the number of abundances 

by NWHFC. For the NWHFC method, we can observe two 

performance groups: 1) 3-D compression algorithms 

(DWT-JPEG2000 and PCA-JPEG2000) were outperformed 

by the 2-D compression algorithms (TER, JPEG2000, and 

JPEG2000- BIFR.. A simple statistical measure to evaluate 

the similarity of the fractional abundances estimated for the 

same end member in the original and the compressed scene is 

the root MSE (RMSE). 

2) Experiment 2: Impact of Hyperspectral Data Lossy 

Compression on estimation of number of end members 

The method for estimating the number of end members in the 

original data set and in the recovered scenes is evaluated by 

using Hysime method. HySime performed differently, in the 

sense that the compression techniques applying PCA or 

DWT performed better than the other ones and for this 

method the most accurate estimates were provided by PCA as 

spectral decorrelators and the sensitivity to different types 

and levels of compression is different.  

3) Experiment3: Impact of Hyperspectral Data Lossy 

Compression on End member Extraction: 

Here, the number of end members in the AVIRIS scene is 

assumed as p = 22. With this assumption in mind, 22 end 

members were extracted from the original and compressed 

scenes (at different compression ratios) using three popular 

end member extraction methods [5]: N-FINDR [6], 

orthogonal subspace projection (OSP), and vertex 

component analysis (VCA)[7]. Then the quantitative 

assessment of end member extraction accuracy was 

conducted by comparing the results obtained by the same end 

member extraction algorithm applied to the original 

hyperspectral scene (without compression) and to the scenes 

obtained after applying different compression techniques. 

The quantitative measure used for evaluation of end member 

extraction accuracy was the average spectral angle distance 

(SAD) between the end members obtained from the original 

scene and the end members obtained from the compressed 

scenes with different techniques and compression ratios. The 

results indicate that the use of PCA or DWT as spectral 

decorrelator leads to an improvement in the SAD-based 

scores for all the end member extraction algorithms (with 

lower values meaning higher spectral similarity). SAD-based 

similarity scores between the end members extracted from 

the original AVIRIS data set and the end members extracted 

after coding the original scene with different compression 

techniques and compression ratios were measured in 

radians,. The values have been multiplied by a constant 

factor of 100 for visualization purposes. To conclude this 

section, it is emphasized that the impact of compression on 

different types of pixels such as pure (in which the resulting 

measure is given by the underlying response of one single 

material), mixed (in which the resulting measure is given by 

the underlying response of several materials), and anomalous 

(with very low occurrence in the scene) did not reveal 

important differences when assessing the performance of the 

compression algorithms. 

B. PCA Classification 

The availability of hyperspectral images expands the 

capability of using image classification to study detailed 

characteristics of objects, but at a cost of having to deal with 

huge data sets. The hyperspectral scene used for PCA 

classification experiments is the well-known AVIRIS image 

(in radiance units) .Some bands that are noisy or covering the 

region of water absorption are  removed and finally 

remaining spectral bands were taken in to account. Before 

training, data were normalized to give zero mean and unit 

variance. Only 20% of the available training samples of each 

class were used for building the model, and the rest was used 

for testing.  

The principal component analysis is based on the fact that 

neighbouring bands of hyperspectral images are highly 

correlated and often convey almost the same information 

about the object. The analysis is used to transform the 

original data so to remove the correlation among the bands. 

In the process, the optimum linear combination of the 

original bands accounting for the variation of pixel values in 

an image is identified. It employs the statistic properties of 

hyperspectral bands to examine band dependency or 

correlation. 

The important conclusion is that it can yield about 70 percent 

correct classification rate and using the principal component 

analysis technique as a pre-processing step for the 

classification yields benefit and efficienc  

TABLE 1 Area , speed  and  power for PCA 

Power  Area  speed 

0.064 w 1.46700 kilobytes 5.277 ns 

TABLE 2 Area, speed and power for SVM 

Power Area speed 

0.099 w 1.76550 kilobytes 7.455 ns 

IV. CONCLUSIONS 

In this paper, the impact of different lossy compression 

techniques on the tasks of hyperspectral image classification 

and spectral unmixing were examined and implemented 

using VHDL.VHDL is a hardware description language and 

in case of VHDL the major considerations are area, speed and 

power. When taking this into account compared with other 

techniques like SVM, PCA provides better results. This is 

shown in TABLE 1 for PCA and in TABLE 2 for SVM.  
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