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J�urgen SchmidhuberIDSIACorso Elvezia 366900 Lugano, Switzerlandjuergen@idsia.chhttp://www.idsia.ch/~juergenRevised August 1996Abstract\Recurrent backprop" for learning to store information over extended time intervals takestoo long. The main reason is insu�cient, decaying error back ow. We briey review Hoch-reiter's 1991 analysis of this problem. Then we overcome it by introducing a novel, e�cientmethod called \Long Short Term Memory" (LSTM). LSTM can learn to bridge minimal timelags in excess of 1000 time steps by enforcing constant error ow through internal states ofspecial units. Multiplicative gate units learn to open and close access to constant error ow.LSTM's update complexity per time step is O(W ), where W is the number of weights. In ex-perimental comparisons with \Real-Time Recurrent Learning", \Back-Propagation ThroughTime", \Recurrent Cascade-Correlation", \Elman training procedure", and \Neural SequenceChunking", LSTM leads to many more successful runs, and learns much faster. LSTM alsosolves complex long time lag tasks that have never been solved by previous recurrent net algo-rithms. LSTM works with local, distributed, real-valued, and noisy pattern representations.1 INTRODUCTIONIn principle, recurrent nets can use their feedback connections to store representations of recentinput events in form of activations (\short term memory" as opposed to \long term memory"embodied by slowly changing weights). This is potentially signi�cant for many applications,including speech processing, non-Markovian control, and music composition (e.g., Mozer 1992).However, the most widely used previous algorithms for learning what to put in short termmemory take too much time or don't work at all, especially when minimal time lags betweeninputs and corresponding teacher signals are long.For instance, with conventional \backprop through time" (BPTT, e.g., Williams and Zipser1992) or RTRL (e.g., Robinson and Fallside 1987), error signals \owing backwards in time"tend to either (1) blow up or (2) vanish: the temporal evolution of the backpropagated errorexponentially depends on the size of the weights. Case (1) may lead to oscillating weights. Incase (2), learning to bridge long time lags takes a prohibitive amount of time, or does not work atall. The reasons will be briey discussed in Section 2, which outlines a detailed analysis of errorblow-ups/vanishing errors due to Hochreiter (1991).\Long Short Term Memory" (LSTM1), the new approach presented in this paper, overcomesthe problems above. Unlike Schmidhuber's (1992b) chunking systems (which work well if input1The abbreviation \LSTM" refers to a novel architecture in conjunction with an appropriate gradient-basedlearning algorithm. The combination of both is designed to overcome decaying error ow problems of previousapproaches. The expression \LSTM architecture" will be used where architectural issues are addressed. Theexpression \LSTM algorithm" will be used where aspects of the algorithm are addressed.1



sequences contain local regularities that make them partly predictable), even in noisy, highlyunpredictable environments, LSTM can learn to bridge time intervals in excess of 1000 time steps,without loss of short time lag capabilities. A major feature of the LSTM architecture is that itenforces constant, non-exploding, non-vanishing error ow through internal states of special units.Constant error backprop also makes the method fast.Outline. For didactic purposes, following the overview of an error ow analysis, the nextsection will introduce a naive approach to constant error backprop, and highlight its problemsconcerning information storage and retrieval. These problems will be solved by the LSTM archi-tecture to be described in Section 3. Section 4 will present numerous experiments and comparisonswith competing methods. LSTM outperforms them. LSTM also learns to solve complex tasks noother recurrent net algorithm has solved. Section 5 will briey review previous work. Section 6 willdiscuss certain limitations and advantages of LSTM. The appendix contains a detailed descriptionof the algorithm (A.1), and explicit formulae for error ow (A.2).2 CONSTANT ERROR BACKPROPSubsection 2.1 will explain standard recurrent nets' problems with decaying error ow. Subsec-tion 2.2 will present a naive approach to overcome these problems by introducing a single-unitarchitecture that enforces constant error ow. Certain problems of this architecture will lead tothe LSTM architecture in section 3.2.1 EXPONENTIALLY DECAYING ERRORConventional BPTT (e.g. Williams and Zipser 1992). Output unit k's target at time t is denoteddk(t). Using mean squared error, k's error signal is #k(t) = f 0k(netk(t))(dk(t) � yk(t)), whereyi(t) = fi(neti(t)) is the activation of a non-input unit i with activation function fi, neti(t) =Pj wijyj(t� 1) is unit i's current net input, and wij is the weight on the connection from unit jto i. Some non-output unit j's backpropagated error signal is #j(t) = f 0j(netj(t))Pi wij#i(t+1).The corresponding contribution to wjl's total weight update is �#j(t)yl(t � 1), where � is thelearning rate, and l stands for an arbitrary unit connected to unit j.Problems of conventional methods | outline of Hochreiter's analysis (1991, page19-21). Suppose we have a fully connected net whose non-input unit indices range from 1 to n.The error occurring at an arbitrary unit u at time step t is propagated \back into time" for q timesteps, to an arbitrary unit v. This will scale the error by the following factor:@#v(t� q)@#u(t) = ( f 0v(netv(t� 1))wuv q = 1f 0v(netv(t� q))Pnl=1 @#l(t�q+1)@#u(t) wlv q > 1 : (1)With lq = v and l0 = u, we obtain:@#v(t� q)@#u(t) = nXl1=1 : : : nXlq�1=1 qYm=1 f 0lm(netlm(t�m))wlmlm�1 (2)(proof by induction). The sum of the nq�1 terms Qqm=1 f 0lm(netlm(t�m))wlmlm�1 determines thetotal error back ow (note that since the summation terms may have di�erent signs, increasingthe number of units n does not necessarily increase error ow).Intuitive explanation of equation (2). If jf 0lm(netlm(t�m))wlmlm�1 j > 1:0 for all m (thiscan happen, e.g., with linear flm | there it is possible that all j wlmlm�1 j exceed 1f 0lm ), thenthe largest product increases exponentially with q, that is, the error blows up, and di�erent errorsignals arriving at unit v can lead to oscillating weights and unstable learning. On the other hand,if jf 0lm(netlm(t�m))wlmlm�1 j < 1:0 for all m (this is the case if, e.g., flm is the logistic sigmoid forall m, and absolute weight initialization values are below 4.0 | see next paragraph), the largest2



product decreases exponentially with q, that is, the error vanishes, and nothing can be learned inacceptable time.If flm is the logistic sigmoid function, then the maximal value of f 0lm is 0.25. If ylm�1 isconstant and not equal to zero, then jf 0lm(netlm)wlmlm�1 j takes on maximal values where wlmlm�1 =1ylm�1 coth( 12netlm), goes to zero for jwlmlm�1 j ! 1, and is less than 1:0 for jwlmlm�1 j < 4:0(e.g., if the absolute maximal weight value wmax is smaller than 4.0). Hence, using conventional,logistic, sigmoid activation functions, if the weights have absolute values below 4.0, especially inthe beginning of the training phase the error ow tends to vanish. But in general the use oflarger initial weights won't help | as seen above, the relevant derivative goes to zero \faster"than the absolute weight can grow (also, some weights will have to change their signs by crossingzero). Likewise, increasing the learning rate does not help either | it won't change the ratio oflong-range error ow and short-range error ow. BPTT is too sensitive to recent distractions. (Avery similar, more recent analysis was presented by Bengio et al. 1994).Weak upper bound for scaling factor. The following, slightly extended analysis for thevanishing error case also takes n, the number of units, into account. For q > 1, formula (2) canbe rewritten as (WuT )T F 0(t� 1) q�1Ym=2 (WF 0(t�m)) Wv f 0v(netv(t� q));where the weight matrixW is de�ned by [W ]ij := wij , v's outgoing weight vectorWv is de�ned by[Wv ]i := [W ]iv = wiv , u's incoming weight vectorWuT is de�ned by [WuT ]i := [W ]ui = wui, and form = 1; : : : ; q, F 0(t�m) is the diagonal matrix of �rst order derivatives de�ned as: [F 0(t�m)]ij := 0if i 6= j, and [F 0(t � m)]ij := f 0i(neti(t � m)) otherwise. Here T is the transposition operator,[A]ij is the element in the i-th column and j-th row of matrix A, and [x]i is the i-th componentof vector x.Using a matrix norm k : kA compatible with vector norm k : kx, we de�ne f 0max := maxm=1;:::;qfkF 0(t � m) kAg. For maxi=1;:::;nfjxijg � k x kx we get jxT yj � n k x kx k y kx. Sincejf 0v(netv(t� q))j � k F 0(t� q) kA � f 0max, we obtain the following inequality:j @#v(t� q)@#u(t) j � n (f 0max)q kWv kx kWuT kx kW kq�2A � (f 0max kW kA)q :This inequality results from k Wv kx = k Wev kx � k W kA k ev kx � k W kA and k WuT kx= k euW kx � k W kA k eu kx � k W kA, where ek is the unit vector whose components are 0except for the k-th component, which is 1. Note that this is a weak, extreme case upper bound| it will be reached only if all k F 0(t�m) kA take on maximal values, and if the contributions ofall paths across which error ows back from unit u to unit v have the same sign. Large k W kA,however, typically result in small values of k F 0(t�m) kA, as con�rmed by experiments (see, e.g.,Hochreiter 1991).For example, with norms k W kA := maxrPs jwrsj and k x kx:= maxrjxrj, we have f 0max =0:25 for the logistic sigmoid. We observe that if jwij j � wmax < 4:0n 8i; j, then k W kA �nwmax < 4:0 will result in exponential decay | by setting � := �nwmax4:0 � < 1:0, we obtainj @#v(t�q)@#u(t) j � n (�)q . We refer to Hochreiter's 1991 thesis for additional details.2.2 CONSTANT ERROR FLOW: NAIVE APPROACHA single unit. To avoid vanishing error signals, how can we achieve constant error ow througha single unit j with a single connection to itself? According to the rules above, at time t, j'slocal error back ow is #j(t) = f 0j(netj(t))#j(t+ 1)wjj . To enforce constant error ow through j,we require f 0j(netj(t))wjj = 1:0. Note that the right hand side is like one of Mozer's �xed timeconstants (1992)| a time constant of 1:0 is appropriate for potentially in�nite time lags (comment:the expression \time constant" is not used in the di�erential sense, as, e.g., by Pearlmutter 1995).Integrating the di�erential equation above, we obtain fj(netj(t)) = netj(t)wjj for arbitrary netj(t).3



This means: fj has to be linear, and unit j's activation has to remain constant: yj(t + 1) =fj(netj(t + 1)) = fj(wjjyj(t)) = yj(t). In the experiments, this will be ensured by using theidentity function fj : fj(x) = x;8x, and by setting wjj = 1:0.Of course, in reality unit j will not only be connected to itself but also to other units. Thisinvokes two obvious, related problems (also inherent in all other gradient-based approaches):1. Input weight conict: for simplicity, let us focus on a single additional input weight wji.Assume that the total error can be reduced by switching on unit j in response to a certain input,and keeping it active for a long time (until it helps to compute a desired output). Provided i is non-zero, since the same incoming weight has to be used for both storing certain inputs and ignoringothers, wji will often receive conicting weight update signals during this time (recall that j islinear): these signals will attempt to make wji participate (1) in storing the input (by switchingon j) and (2) in protecting the input (by preventing j from being switched o� by insigni�cant laterinputs). This conict makes learning di�cult, and calls for a more context-sensitive mechanismfor controlling \write operations" through input weights.2. Output weight conict: assume j is switched on and currently stores some previousinput. For simplicity, let us focus on a single additional outgoing weight wkj . Since the same wkjhas to be used for both retrieving j's content at certain times and preventing j from disturbingk at other times, as long as unit j is non-zero, wkj will attract conicting weight update signalsgenerated during sequence processing: these signals will attempt to make wkj participate in (1)accessing the information stored in j and { at di�erent times { in (2) protecting unit k from beingperturbed by j. For instance, with many tasks there are certain \short time lag errors" that can bereduced in early training stages. However, at later training stages, j may suddenly start to causeavoidable errors in situations that already seemed under control, by attempting to participate inreducing more di�cult \long time lag errors". Again, this conict makes learning di�cult, andcalls for a more context-sensitive mechanism for controlling \read operations" through outputweights.Of course, input and output weight conicts are not speci�c for long time lags, but occur forshort time lags as well. Their e�ects, however, become particularly pronounced in the long timelag case: as time lag size increases, (1) stored information needs protection against perturbationduring longer and longer time intervals, and, especially in advanced stages of learning, (2) moreand more already correct outputs also need protection against perturbation.Due to the problems above, the naive approach does not work well. The next section showshow to do it right.3 LONG SHORT TERM MEMORYMemory cells and gate units. To construct an architecture that allows for constant error owthrough special, self-connected units without the disadvantages of the naive approach, we extendthe self-connected, linear unit j from Section 2.2 by introducing additional features. A multiplica-tive input gate unit is introduced which allows for protecting the constant error ow within j fromperturbation by irrelevant inputs. Likewise, a multiplicative output gate unit is introduced whichallows for protecting other units from perturbation by currently irrelevant memory contents storedin j. Essentially, the gates are designed to learn to open and close access to constant error owwithin j.The resulting, more complex unit is called a memory cell. See Figure 1. The j-th memory cellis denoted cj . Each memory cell is built around a central linear unit with a �xed self-connection.In addition to netcj , cj gets input from a multiplicative unit outj (the \output gate"), and fromanother multiplicative unit inj (the \input gate"). inj 's activation at time t is denoted by yinj (t).outj 's activation at time t is denoted by youtj (t). We have youtj (t) = foutj (netoutj (t)); yinj (t) =finj (netinj (t)); where netoutj (t) = Pu woutjuyu(t � 1), and netinj (t) = Pu winjuyu(t � 1). Wealso have netcj (t) = Pu wcjuyu(t � 1). The summation indices u may stand for input units,gate units, memory cells, or even conventional hidden units if there are any (see also paragraphon \network topology" below). All these di�erent types of units may convey useful information4



about the current state of the net. For instance, an input gate (output gate) may use inputs fromother memory cells to decide whether to store (access) certain information in its memory cell.There even may be recurrent self-connections like wcjcj . It is up to the user to de�ne the networktopology. See Figure 2 for an example.At time t, cj 's output ycj (t) is computed in a sigma-pi-like fashion:ycj (t) = youtj (t)h(scj (t));where the \internal state" scj (t) isscj (0) = 0; scj (t) = scj (t� 1) + yinj (t)g �netcj (t)� for t > 0:The di�erentiable function g squashes netcj . The di�erentiable function h scales memory celloutputs computed from the internal state scj .

in
j

in
j

out
j

out
j

w ic
j

w i c
j

yc
j

g h1.0

net
w i w i

y in
j yout

j

net c
j

g y in
j

= g+sc
j

sc
j

y in
j

h yout
j

netFigure 1: Architecture of memory cell cj (the box) and corresponding gate units inj ; outj . Theself-recurrent connection (with weight 1.0) indicates feedback with a delay of 1 time step. See textand appendix A.1 for details.Why gate units? To avoid input weight conicts (see Section 2.2), inj controls the errorow to memory cell cj 's input connections wcj i. To circumvent cj 's output weight conicts (seeSection 2), outj controls the error ow from unit j's output connections. Symmetrically, the netcan use inj to decide when to keep or override information in memory cell cj (see Figure 1). Thenet can use outj to decide when to access memory cell cj and when to prevent other units frombeing perturbed by cj (see Figure 1).Error signals trapped within a memory cell cannot change { but di�erent error signals owinginto the cell (at di�erent times) via its output gate may get superimposed. The output gate willhave to learn which errors to trap in its memory cell, by appropriately scaling them. The inputgate will have to learn when to release errors, again by appropriately scaling them. Essentially,the multiplicative gate units open and close access to constant error ow through internal statesof memory cells.A \conservative", large, negative, initial gate bias will turn out to be useful for preventingmemory cells from participating in reducing short time lag errors in the beginning of the trainingphase (see also paragraphs on \state drift" and \abuse problem" below).Distributed output representations typically do require output gates. Not always both gatetypes are necessary, though | one may be su�cient. For instance, in Experiments 2a and 2b inSection 4, it will be possible to use input gates only. In fact, output gates are not indispensable incase of local output encoding | preventing memory cells from perturbing already learned outputscan be done by simply setting the corresponding weights to zero. Even in the local output codingcase, however, output gates can be bene�cial. They prevent the net's attempts of storing long5



time lag memories (which are usually hard to learn) from perturbing activations representing easilylearnable short time lag memories (for instance, output gates will be quite useful in Experiment1). Network topology. We use a network with one input layer, one hidden layer, and one outputlayer. The (fully) self-connected hidden layer contains memory cells and corresponding gate units(for convenience, we refer to both memory cells and gate units as being located in the hiddenlayer). The hidden layer may also contain \conventional" hidden units providing inputs to gateunits and memory cells. All units (except for gate units) in all layers have directed connections(serve as inputs) to all units in the layer above (or to all higher layers { Experiments 2a and 2b).Memory cell blocks. S memory cells sharing the same input gate and the same output gateform a structure called a \memory cell block of size S". Memory cell blocks facilitate informationstorage | like with conventional neural nets, it is not so easy to code a distributed input within asingle cell. Since each memory cell block has as many gate units as a single memory cell (namelytwo), the block architecture can be even slightly more e�cient (see paragraph \computationalcomplexity"). A memory cell block of size 1 is just a simple memory cell. In the experiments(Section 4), we will use memory cell blocks of various sizes.
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Figure 2: Example of a net with 8 input units, 4 output units, and 2 memory cell blocks of size 2.in1 marks the input gate, out1 marks the output gate, and cell1=block1 marks the �rst memorycell of block 1. cell1=block1's architecture is identical to the one in Figure 1, with gate unitsin1 and out1 (note that by rotating Figure 1 by 90 degrees anti-clockwise, it will match with thecorresponding parts of Figure 1). The example assumes dense connectivity: each gate unit andeach memory cell see all non-output units. For simplicity, however, outgoing weights of onlyone type of unit are shown for each layer. With the e�cient, truncated update rule, error owsonly through connections to output units, and through �xed self-connections within cell blocks (notshown here | see Figure 1). Error ow is truncated once it \wants" to leave memory cells orgate units. Therefore, no connection shown above serves to propagate error back to the unit fromwhich the connection originates (except for connections to output units), although the connectionsthemselves are modi�able. That's why the truncated LSTM algorithm is so e�cient, despite itsability to bridge very long time lags. See text and appendix A.1 for details. Figure 2 actually showsthe architecture used for Experiment 5a | only the bias of the non-input units is omitted.Learning. We use a variant of RTRL (e.g., Robinson and Fallside 1987) which properly takes6



into account the altered, multiplicative dynamics caused by input and output gates. However, toensure non-decaying error backprop through internal states of memory cells, like with truncatedBPTT (e.g., Williams and Peng 1990), errors arriving at \memory cell net inputs" (for cell cj ,this includes netcj , netinj , netoutj ) do not get propagated back further in time (although they doserve to change the incoming weights). Only within2 memory cells, errors are propagated backthrough previous internal states scj . To visualize this: once an error signal arrives at a memorycell output, it gets scaled by ouput gate activation and h0. Then it is within the memory cell. Thenit can ow back and back and back, without ever being scaled. Only when it leaves the memorycell through the input gate and g, it is scaled again once more by input gate activation, and g,and their derivatives. Then it serves to change the incoming weights. Then it gets truncated. So,overall, it is scaled twice. In between it is constant (see appendix for explicit formulae).Computational complexity. Like with Mozer's focused recurrent backprop algorithm (Mozer1989), only the derivatives @scj@wil need to be stored and updated. Hence, the algorithm is verye�cient, and the LSTM algorithm's update complexity per time step is excellent in comparisonto other approaches such as RTRL: the complexity is O(KW ), where K is the number of outputunits and W is the number of weights (see details in appendix A.1). Hence, given n memory cellsand a �xed number of output units, the LSTM algorithm's update complexity per time step isO(n2), just like BPTT's for a fully recurrent net with n units. Unlike full BPTT, however, themethod is local in space (Schmidhuber, 1989): there is no need to store activation values observedduring sequence processing in a stack with potentially unlimited size.Comment: with an untruncated backprop version (which we don't recommend | it is justmore expensive), outside of memory units there tends to be the typical exponential decay.Abuse problem and solutions. In the beginning of the learning phase, error reduction maybe possible even without storing information over time. Then the net will tend to abuse memorycells, e.g., as bias cells (i.e., the network might make their activations constant and use the outgoingconnections as adaptive thresholds for other units). The potential di�culty is: it may take a longtime to release abused memory cells and make them available for further learning. A similar\abuse problem" appears if two memory cells store the same (redundant) information. There areat least two solutions to the abuse problem: (1) Sequential network construction (e.g., Fahlman1991): a memory cell and the corresponding gate units are added to the network whenever theerror stops decreasing (see Experiment 2 in Section 4). (2) Output gate bias: each output gategets a negative initial bias, to push initial memory cell activations towards zero. Memory cellswith more negative bias automatically get \allocated" later (see Experiments 1, 3, 4, 5 in Section4). Internal state drift and remedies. If memory cell cj 's inputs are mostly positive or mostlynegative, then its internal state sj will tend to drift away over time. This is potentially dangerous,for two reasons: (1) h0(sj) will tend to adopt very small values, and the gradient will tend tovanish. (2) Certain tasks may require to store precise values of real numbers for long durations| during this time, memory cell contents must be protected against even minor \internal statedrifts". One way to circumvent the drift problem is to choose an appropriate function h. Buth(x) = x, for instance, has the disadvantage of unrestricted memory cell output range. Our simplebut e�ective way of solving drift problems at the beginning of learning is to initially bias the inputgate inj towards zero. Although there is a tradeo� between the magnitudes of h0(sj) on the onehand and of yinj and f 0inj on the other, the potential negative e�ect of input gate bias is negligiblecompared to the one of the drifting e�ect. There appears to be no need for �ne tuning initial bias:with logistic sigmoid activation functions, the precise initial bias hardly matters because vastlydi�erent initial bias values produce almost the same near-zero activations (our Experiment 4 inSection 4.4 con�rms that the precise initial bias is not important). In fact, the system itself learnsto generate the most appropriate input gate bias.2For intra-cellular backprop in a quite di�erent context see also Doya and Yoshizawa (1989).
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4 EXPERIMENTSIntroduction. Which tasks are appropriate to demonstrate the quality of a novel long timelag algorithm? First of all, minimal time lags between relevant input signals and correspondingteacher signals must be long for all training sequences. In fact, many previous recurrent netalgorithms sometimes manage to generalize from very short training sequences to very long testsequences. See, e.g., Pollack (1991). But a real long time lag problem does not have any shorttime lag exemplars in the training set. Elman's training procedure, BPTT, o�ine RTRL, onlineRTRL, etc., fail miserably on real long time lag problems. See, e.g., Hochreiter (1991) and Mozer(1992).A second important requirement is that the tasks should be complex enough such that theycannot be solved quickly by simple-minded strategies such as random weight guessing. This willbe discussed in the next paragraph.Guessing can outperform many long time lag algorithms. Recently we discovered(Schmidhuber and Hochreiter 1996) that many tasks used by previous authors can be solvedmuch faster by simple random weight guessing than by the proposed algorithms. For instance,we found that it is easy to guess a solution to Bengio and Frasconi's 500-step \parity problem"(1994). It requires to classify sequences with 500-600 elements (only 1's or -1's) according towhether the number of 1's is even or odd. The target at sequence end is 1.0 for odd and 0.0for even. We ran an experiment with one input unit, 10 hidden units, one output unit, logisticactivation functions sigmoid in [0:0; 1:0]. Each hidden unit receives connections from the inputunit and the output unit; the output receives connections from all other units; all units are biased.Our training set consists of 100 sequences, 50 from class 1 (target 0) and 50 from class 2 (target1). Correct sequence classi�cation is de�ned as \absolute error at sequence end below 0.1". Toguess a solution, we repeatedly, randomly initialize all weights in [-100.0,100.0] until a randomweight matrix correctly classi�es all training sequences. Then we test on the test set. We comparethe results to Bengio et al.'s results. Among the six methods tested by Bengio et al. (1994) (forsequences with only 25-50 steps), only simulated annealing was reported to solve the task (withinabout 810,000 trials) A method called \discrete error BP" took about 54,000 trials to achieve �nalclassi�cation error 0.05. In Bengio and Frasconi's more recent work (1994), for sequences with250-500 steps, their EM-approach took about 3,400 trials to achieve �nal classi�cation error 0.12.Guessing, however, solved the problem within only 250 trials (mean of 10 trials, �nal absolutetest set errors always below 0.0001). Many similar examples are described in Schmidhuber andHochreiter (1996). Of course, this does not mean that guessing is a good algorithm. It just meansthat some previously used problems are inappropriate to demonstrate the quality of previouslyproposed algorithms.What's common to Experiments 1{5. All our experiments (except for Experiment 1)involve long minimal time lags | there are no short time lag training exemplars facilitatinglearning. Most of them require either many free parameters/inputs or high weight precision, suchthat random weight guessing becomes infeasible.We always use on-line learning (as opposed to batch learning), and logistic sigmoids as acti-vation functions. For Experiments 1 and 2, initial weights are chosen in the range [�0:2; 0:2], forthe other experiments in [�0:1; 0:1]. Training sequences are generated randomly according to thevarious task descriptions. Except for Experiments 1, 2a, and 2b, sequence elements are randomlygenerated on-line, and error signals are generated only at sequence ends. Net activations are resetafter each processed input sequence.For comparisons with recurrent nets taught by gradient descent, we give results only for RTRL,except for comparison 2a, which also includes BPTT. Untruncated BPTT (see, e.g., Williams andPeng 1990) computes exactly the same gradient as o�ine RTRL. With long time lag problems,o�ine RTRL (or BPTT) and the online version of RTRL (no activation resets, online weightchanges) lead to almost identical, negative results (as con�rmed by additional simulations inHochreiter 1991; see also Mozer 1992). This is because o�ine RTRL, online RTRL, and fullBPTT all su�er badly from exponential error decay.Our LSTM architectures are selected quite arbitrarily. Of course, if nothing is known about8



the complexity of the given problem, a more systematic approach would be: start with a verysmall net consisting of one memory cell. If this does not work, try two cells, etc. Alternatively,use sequential network construction (e.g., Fahlman 1991).Outline of experiments.� Experiment 1 focuses on a standard benchmark test for recurrent nets: the embedded Rebergrammar. Since it allows for training sequences with short time lags, it is not a long time lagproblem. We include it just because (1) it provides a nice example where LSTM's outputgates are truly bene�cial. (2) It is a popular benchmark for recurrent nets that has beentried by many authors | we want to include at least one experiment where conventionalalgorithms do not fail completely (LSTM, however, clearly outperforms them). The embed-ded Reber grammar's minimal time lags represent a border case in the sense that it is stillpossible to learn to bridge them with conventional algorithms. Only slightly longer minimaltime lags, however, would make this almost impossible. Of course, the more interesting tasks(to be found in the remainder of our paper) are those that RTRL/BPTT etc. cannot solveat all in reasonable time.� Experiment 2 focuses on noise-free and noisy sequences involving numerous input symbolsdistracting from the few important ones. The most di�cult task (Task 2c) involves hundredsof distractor symbols at random positions, and minimal time lags of 1000 steps. LSTMsolves it, while BPTT/RTRL already fail in case of 10-step minimal time lags (see also, e.g.,Hochreiter 1991 and Mozer 1992). For this reason, RTRL and BPTT are omitted in theremaining, more complex experiments, all of which involve much longer time lags.� Experiment 3 addresses long time lag problems with noise and signal on the same input line.Experiments 3a/3b focus on Bengio and collaborators' 1994 \2-sequence problem". Becausethis problem actually can be solved quickly by random weight guessing, we also include amuch more di�cult 2-sequence problem (3c) which requires to learn real-valued, conditionalexpectations of noisy targets, given the inputs.� Experiment 4 involves distributed, continuous-valued input representations and requires tolearn to store precise, real values for very long time periods. Relevant input signals can occurat quite di�erent positions in input sequences. Again, minimal time lags involve hundredsof time steps. Similar tasks never have been solved by other recurrent net algorithms.� Experiment 5 involves tasks of a di�erent complex type that also has not been solved byother recurrent net algorithms. Again, relevant input signals can occur at quite di�erentpositions in input sequences. The experiment shows that LSTM can extract informationconveyed by the temporal order of widely separated inputs.� Subsection 4.6 will summarize details of LSTM experiments in two tables.4.1 EXPERIMENT 1: EMBEDDED REBER GRAMMARTask. Our �rst task is to learn the \embedded Reber grammar", e.g. Smith and Zipser (1989),Cleeremans et al. (1989), and Fahlman (1991). Since it allows for training sequences with shorttime lags (with as few as 9 time steps), it is not a long time lag problem. We include it fortwo reasons: (1) It is a popular recurrent net benchmark used by many authors | we wantedto have at least one experiment where RTRL and BPTT do not fail completely (of course, themore interesting tasks in our paper are those that RTRL/BPTT etc. cannot solve at all). (2) Itprovides a nice example where output gates are truly bene�cial.Starting at the leftmost node of the directed graph in Figure 4, symbol strings are generatedsequentially (beginning with the empty string) by following edges | and appending the associatedsymbols to the current string | until the rightmost node is reached. Edges are chosen randomlyif there is a choice (probability: 0.5). The net's task is to read strings, one symbol at a time, and9



B

T

S
X

X P

V

T

P V

S

E

Figure 3: Transition diagram for the Rebergrammar.
B

T

P

E

T

P

GRAMMAR

GRAMMAR

REBER

REBERFigure 4: Transition diagram for the embeddedReber grammar. Each box represents a copy ofa Reber grammar (see �gure 3).to permanently predict the next symbol (error signals occur at every time step). To predict thesymbol before the last one, the net has to remember the second symbol.Comparison. We compare LSTM to \Elman nets trained by Elman's training procedure"(ELM) (results taken from Cleeremans et al. 1989), Fahlman's \Recurrent Cascade-Correlation"(RCC) (results taken from Fahlman 1991), and RTRL (results taken from Smith and Zipser (1989),where only the few successful trials are listed). It should be mentioned that Smith and Zipseractually make the task easier by increasing probabilities of short time lag exemplars. We didn'tdo this for LSTM.Training / Testing. We use local input/output representation (7 input units, 7 outputunits). Following Fahlman, we use 256 training strings and 256 separate test strings. The trainingset is generated randomly. Training exemplars are chosen randomly from the training set. Testsequences are generated randomly, too, but sequences already used in the training set are notused for testing. After string presentation, all activations are reinitialized with zeros. A trial isconsidered successful if all string symbols of all sequences in both test set and training set arepredicted correctly: if the output unit(s) corresponding to the possible next symbol(s) is(are)always the most active ones.Architectures. Architectures for RTRL, ELM, RCC are reported in the references listedabove. For LSTM, we use 3 (4) memory cell blocks. Each block has 2 (1) memory cells. Theoutput layer's only incoming connections originate at memory cells. Each memory cell and eachgate unit receives incoming connections from all memory cells and gate units (the hidden layer isfully connected | less connectivity may work as well). The input layer has forward connectionsto all units in the hidden layer. The gate units are biased. These architecture parameters make iteasy to store at least 3 input signals (architectures 3-2 and 4-1 are employed to obtain comparablenumbers of weights for both architectures: 264 for 4-1 and 276 for 3-2). Other parameters maybe appropriate as well, however. All sigmoid functions are logistic with output range [0; 1], exceptfor h, whose range is [�1; 1], and g, whose range is [�2; 2]. This allows for pushing the absolutememory cell outputs towards 1.0. All weights are initialized in [�0:2; 0:2]. The initial output gatebiases are �1;�2;�3 (see abuse problem solution (2) of Section 3). We tried di�erent learningrates: 0:5, 0:1; 0:2.Results. We use 3 di�erent, randomly generated pairs of training sets and test sets. Witheach such pair, 10 trials with di�erent weight initializations are made. See Table 1 for results(mean of 30 trials). Unlike the other methods, LSTM always learns to solve the task. Even whenwe ignore the unsuccessful trials of the other approaches, LSTM learns much faster.Importance of output gates. The experiment provides a nice example where the output gateis truly bene�cial. Learning to store the �rst T or P should not perturb activations representingthe more easily learnable transitions of the original Reber grammar. This is the job of the outputgates. Without output gates, we did not achieve fast learning.10



method hidden units # weights learning rate % of success success afterRTRL 3 � 170 0.05 \some fraction" 173,000RTRL 12 � 494 0.1 \some fraction" 25,000ELM 15 � 435 0 >200,000RCC 7-9 � 119-198 50 182,000LSTM 4 blocks, size 1 264 0.1 100 39,740LSTM 3 blocks, size 2 276 0.1 100 21,730LSTM 3 blocks, size 2 276 0.2 97 14,060LSTM 4 blocks, size 1 264 0.5 97 9,500LSTM 3 blocks, size 2 276 0.5 100 8,440Table 1: EXPERIMENT 1: Embedded Reber grammar: percentage of successful trials and numberof sequence presentations until success for RTRL (results taken from Smith and Zipser 1989),\Elman net trained by Elman's procedure" (results taken from Cleeremans et al. 1989), \RecurrentCascade-Correlation" (results taken from Fahlman 1991) and our new approach (LSTM). Weightnumbers in the �rst 4 rows are estimates | the corresponding papers don't provide all the technicaldetails. Only LSTM almost always learns to solve the task (only two failures out of 150 trials).Even when we ignore the unsuccessful trials of the other approaches: LSTM learns much faster(the number of required training examples in the �nal row varies between 3,800 and 24,100).4.2 EXPERIMENT 2: NOISE-FREE AND NOISY SEQUENCESTask 2a: noise-free sequences with long time lags. There are p+ 1 possible input symbolsdenoted a1; :::; ap�1; ap = x; ap+1 = y. ai is \locally" represented by the p+ 1-dimensional vectorwhose i-th component is 1 (all other components are 0). A net with p+ 1 input units and p+ 1output units sequentially observes input symbol sequences, one at a time, permanently tryingto predict the next symbol | error signals occur at every single time step. To emphasize the\long time lag problem", we use a training set consisting of only two very similar sequences:(y; a1; a2; : : : ; ap�1; y) and (x; a1; a2; : : : ; ap�1; x). Each is selected with probability 0.5. To predictthe �nal element, the net has to learn to store a representation of the �rst element for p timesteps.We compare \Real-Time Recurrent Learning" for fully recurrent nets (RTRL), \Back-PropagationThrough Time" (BPTT), the sometimes very successful neural sequence chunker (CH, Schmidhu-ber 1992b), and our new method (LSTM). In all cases, weights are initialized in [-0.2,0.2]. Due tolimited computation time, training is stopped after 5 million sequence presentations. A successfulrun is one that ful�lls the following criterion: after training, during 10,000 successive, randomlychosen input sequences, the maximal absolute error of all output units is always below 0:25.Architectures. RTRL: one self-recurrent hidden unit, p+1 non-recurrent output units. Eachlayer has connections from all layers below. All units use the logistic activation function sigmoidin [0,1].BPTT: same architecture as the one trained by RTRL.CH: both net architectures like RTRL's, but one has an additional output for predicting thehidden unit of the other one (see Schmidhuber 1992b for details).LSTM: like with RTRL, but the hidden unit is replaced by a memory cell and an input gate(no output gate required). g is the logistic sigmoid, and h is the identity function h : h(x) = x;8x.Memory cell and input gate are added once the error has stopped decreasing (see abuse problem:solution (1) in Section 3).Results. Using RTRL and a short 4 time step delay (p = 4), 79 of all trials were successful.No trial was successful with p = 10. With long time lags, only the neural sequence chunker andthe new approach achieved successful trials, while BPTT and RTRL failed. With p = 100, thesequence chunker solved the task in only 13 of all trials. LSTM, however, always learned to solvethe task. Comparing successful trials only, LSTM learned much faster. See Table 2 for details.11



Method Delay p Learning rate # weights % Successful trials Success afterRTRL 4 1.0 36 78 1,043,000RTRL 4 4.0 36 56 892,000RTRL 4 10.0 36 22 254,000RTRL 10 1.0-10.0 144 0 > 5,000,000RTRL 100 1.0-10.0 10404 0 > 5,000,000BPTT 100 1.0-10.0 10404 0 > 5,000,000CH 100 1.0 10506 33 32,400LSTM 100 1.0 10504 100 5,040Table 2: Task 2a: Percentage of successful trials and number of training sequences until success,for \Real-Time Recurrent Learning" (RTRL), \Back-Propagation Through Time" (BPTT), neuralsequence chunking (CH), and the new method (LSTM). Table entries refer to means of 18 trials.With 100 time step delays, only CH and LSTM achieve successful trials. Even when we ignore theunsuccessful trials of the other approaches: LSTM learns much faster.Task 2b: no local regularities. With the task above, the chunker sometimes learns to cor-rectly predict the �nal element, but only because of predictable local regularities in the input streamthat allow for compressing the sequence. In an additional, more di�cult task (involving many moredi�erent possible sequences), we remove compressibility by replacing the deterministic subsequence(a1; a2; : : : ; ap�1) by a random subsequence (of length p�1) over the alphabet a1; a2; : : : ; ap�1. Weobtain 2 classes (two sets of sequences) f(y; ai1 ; ai2 ; : : : ; aip�1 ; y) j 1 � i1; i2; : : : ; ip�1 � p� 1g andf(x; ai1 ; ai2 ; : : : ; aip�1 ; x) j 1 � i1; i2; : : : ; ip�1 � p� 1g. Again, every next sequence element has tobe predicted. The only totally predictable targets, however, are x and y, which occur at sequenceends. Training exemplars are chosen randomly from the 2 classes. Architectures, parameters, andsuccess criteria are the same as in Experiment 2a.Results. As expected, the chunker failed to solve this task (so did BPTT and RTRL, ofcourse). Our new approach, however, was always successful (see success criterion above). Onaverage (mean of 18 trials), for p = 100 success was achieved after 5,680 sequence presentations.This demonstrates: the new approach does not require sequence regularities to work well.Task 2c: very long time lags | no local regularities. This is the most di�cult taskin this subsection. Now there are p + 4 possible input symbols denoted a1; :::; ap�1; ap; ap+1 =e; ap+2 = b; ap+3 = x; ap+4 = y. a1; :::; ap are also called \distractor symbols". Again, ai islocally represented by the p + 4-dimensional vector whose ith component is 1 (all other com-ponents are 0). A net with p + 4 input units and 2 output units sequentially observes inputsymbol sequences, one at a time. Training sequences are randomly chosen from the union oftwo very similar subsets of sequences: f(b; y; ai1 ; ai2 ; : : : ; aiq+k ; e; y) j 1� i1; i2; : : : ; iq+k � qg andf(b; x; ai1 ; ai2 ; : : : ; aiq+k ; e; x) j 1� i1; i2; : : : ; iq+k � qg. To pick a training sequence, we do: (1)First randomly generate a sequence pre�x of length q + 2. (2) Randomly generate a sequencesu�x of additional elements (6= b; e; x; y) with probability 910 or, alternatively, an e with proba-bility 110 . (3) After the �rst e, conclude the sequence with x or y, depending on the nature ofthe second element. For a given k, this leads to a uniform distribution on the possible sequenceswith length q + k + 4. The minimal sequence length is q + 4. The expected sequence length isq + 14 = 4 +P1k=0 110 ( 910 )k(q + k). The expected number of occurrences of element ai; 1 � i � p,in a sequence is q+10p � qp . The goal is to predict the last symbol, which always occurs afterthe \trigger symbol" e. Error signals are generated only at sequence ends. To predict the �nalelement, the net has to learn to store a representation of the second element for at least q + 1time steps (until it sees the trigger symbol e). Success is de�ned as \prediction error (for �nalsequence element) of both output units always below 0:2, for 10,000 successive, randomly choseninput sequences". 12



q (time lag �1) p (# random inputs) qp # weights Success after50 50 1 364 30,000100 100 1 664 31,000200 200 1 1264 33,000500 500 1 3064 38,0001,000 1,000 1 6064 49,0001,000 500 2 3064 49,0001,000 200 5 1264 75,0001,000 100 10 664 135,0001,000 50 20 364 203,000Table 3: Task 2c: LSTM with very long minimal time lags q+1 and a lot of noise. p is the numberof available distractor symbols (p + 4 is the number of input units). qp is the expected number ofoccurrences of a given distractor symbol in a sequence. The last column lists the number of trainingsequences required by LSTM (of course, BPTT/RTRL and the other competitors have no chance ofsolving non-trivial tasks with minimal time lags involving 1000 time steps). If we let the number ofdistractor symbols (and weights) increase in proportion to the time lag, learning time increases veryslowly. The lower block illustrates the expected slow-down due to increased frequency of distractorsymbols.Architecture / Learning. The net has p + 4 input units and 2 output units. Weightsare initialized in [-0.2,0.2]. To avoid too much learning time variance due to di�erent weightinitializations, the hidden layer gets two memory cells (two cell blocks of size 1 | although onewould be su�cient). There are no other hidden units. The output layer receives connections onlyfrom memory cells. Memory cells and gate units receive connections from input units, memorycells and gate units (the hidden layer is fully connected). No unit is biased. h is a logistic sigmoidwith output range [�1; 1]; g is a logistic sigmoid with output range [�2; 2]. This allows for pushingabsolute memory cell outputs towards 1.0. The learning rate is 0.01. Note that the minimal timelag is q+1 | the net never sees short training sequences facilitating the classi�cation of long testsequences.Results. 20 trials were made for all tested pairs (p; q). Table 3 lists the mean of the numberof training sequences required by LSTM to achieve success (of course, BPTT and RTRL have nochance of solving non-trivial tasks with minimal time lags involving 1000 time steps).Scaling. Table 3 shows: if we let the number of input symbols (and weights) increase inproportion to the time lag, learning time increases very slowly. This is a another remarkableproperty of LSTM not shared by any other method we are aware of. Indeed, RTRL/BPTT are farfrom scaling reasonably | instead, they appear to scale exponentially, and appear quite uselesswhen the time lags exceed as few as 10 time steps.Distractor inuence. In Table 3, the column headed by qp reects the expected frequencyof distractor symbols. Increasing this frequency decreases learning speed. This e�ect is due toweight oscillations caused by frequently observed input symbols.4.3 EXPERIMENT 3: NOISE AND SIGNAL ON SAME CHANNELThe next experiment addresses the case of noise and signal on the same input line. We focus onBengio and collaborators' simple 1994 \2-sequence problem". This experiment serves to illustratethat LSTM does not encounter fundamental problems if noise and signal are mixed on the sameinput line. Experiment 3c will address a more interesting, more di�cult 2-sequence problem.Task 3a (\2-sequence problem"). The task is to observe and then classify input sequences.There are two classes. Each class probability is 0.5. There is only one input line. Only the �rstN real-valued sequence elements convey relevant information about the class. Sequence elements13



at positions t > N are generated by a Gaussian with mean zero and variance 0.2. Case N = 1:the �rst sequence element is 1.0 for class 1, and -1.0 for class 2. Case N = 3: the �rst threeelements are 1.0 for class 1 and -1.0 for class 2. The target at the sequence end is 1.0 for class1 and 0.0 for class 2. Correct classi�cation is de�ned as \absolute output error at sequence endbelow 0.2". Given a constant T, the sequence length is randomly selected between T and T +T/10 (a di�erence to Bengio et al.'s problem is that they also permit shorter sequences of lengthT/2).For the 2-sequence problem, the best method among the six tested by Bengio et al. (1994) wasmultigrid random search (sequence lengths 50 | 100; no precise stopping criterion mentioned),which solved the problem after 6,400 sequence presentations, with �nal classi�cation error 0.06.In more recent work, Bengio and Frasconi were able to improve their results: an EM-approachwas reported to solve the problem within 2,900 trials.Guessing. We discovered that the 2-sequence problem is so simple that it can quickly besolved by random weight guessing. We ran an experiment with one input unit, 10 hidden units,one output unit, and logistic activation functions sigmoid in [0:0; 1:0]. Each hidden unit sees theinput unit, the output unit, and itself; the output unit sees all other units; all units are biased.By randomly guessing weights in [-100.0,100.0], it is possible to solve the problem within only718 trials on average. Using Bengio et al.'s 3-parameter architecture for the \latch problem" (asimple version of the 2-sequence problem that allows for input tuning instead of weight tuning), theproblem was solved within only 22 trials on average, due to tiny parameter space. See Schmidhuberand Hochreiter (1996) for similar, additional results.LSTM architecture. We use a 3-layer net with 1 input unit, 1 output unit, and 3 cell blocksof size 1. The output layer receives connections only from memory cells. Memory cells and gateunits receive inputs from input units, memory cells and gate units, and are biased (the hiddenlayer is fully connected). All sigmoid functions are logistic. Gate units and output unit are sigmoidin [0; 1], h is sigmoid in [�1; 1], and g is sigmoid in [�2; 2].Training / Testing. All weights (except the bias weights to gate units) are randomly ini-tialized in the range [�0:1; 0:1]. The �rst input gate bias is initialized with �1:0, the second with�3:0, and the third with �5:0. The �rst output gate bias is initialized with �2:0, the secondwith �4:0 and the third with �6:0. The precise initialization values hardly matters, however, ascon�rmed by additional experiments. The learning rate is 1.0. All activations are set to zero atthe beginning of a new sequence.We stop training (and judge the task as being solved) according to the following criteria: ST1:none of 256 sequences from a randomly chosen test set is misclassi�ed. ST2: ST1 is satis�ed, andmean absolute test set error is below 0.01. In case of ST2, an additional test set consisting of 2560randomly chosen sequences is used to determine the fraction of misclassi�ed sequences.Results. See Table 4. The results are means of 10 trials with di�erent weight initializationsin the range [�0:1; 0:1]. LSTM is able to solve this problem. It is by far not as fast as randomweight guessing, though (see paragraph \Guessing" above). Clearly, this trivial problem does notprovide a very good testbed to compare performance of various non-trivial algorithms. Still, itdemonstrates that LSTM does not encounter fundamental problems when faced with signal andnoise on the same channel.Task 3b. Architecture, parameters, etc. like in Task 3a, but now with Gaussian noise (mean0 and variance 0.2) added to the information-conveying elements (t <= N). We stop training(and judge the task as being solved) according to the following, slightly rede�ned criteria: ST1:less than 6 out of 256 sequences from a randomly chosen test set are misclassi�ed. ST2: ST1 issatis�ed, and mean absolute test set error is below 0.04. In case of ST2, an additional test setconsisting of 2560 randomly chosen sequences is used to determine the fraction of misclassi�edsequences.Results. See Table 5. The results represent means of 10 trials with di�erent weight initializa-tions. LSTM easily solves the problem.More interesting Task 3c. Architecture, parameters, etc. like in Task 3a, but with afew essential changes that make the task non-trivial: the targets are 0.2 and 0.8 for class 1 andclass 2, respectively, and there is Gaussian noise on the targets (mean 0 and variance 0.1; stdev14



T N stop: ST1 stop: ST2 # weights ST2: fraction misclassi�ed100 3 27,380 39,850 102 0.000195100 1 58,370 64,330 102 0.000117Table 4: Task 3a: Bengio et al.'s 2-sequence problem. T is minimal sequence length. N is thenumber of information-conveying elements at sequence begin. The column headed by ST1 (ST2)provides the number of sequence presentations required to achieve stopping criterion ST1 (ST2).The �nal column lists the fraction of misclassi�ed post-training sequences (with absolute error >0.2) from a test set consisting of 2560 sequences (tested after ST2 was achieved). All values aremeans of 10 trials. We discovered, however, that this problem is so simple that random weightguessing solves it faster than LSTM and any other method we know of.T N stop: ST1 stop: ST2 # weights ST2: fraction misclassi�ed100 3 41,740 43,250 102 0.00828100 1 74,950 78,430 102 0.01500Table 5: Task 3b: modi�ed 2-sequence problem. Same as in Table 4, but now even information-conveying elements are perturbed by noise.0.32). To minimize mean squared error, the system has to learn the conditional expectations of thetargets, given the inputs. Misclassi�cation is de�ned as \absolute di�erence between output andnoise-free target (0.2 for class 1 and 0.8 for class 2) > 0.1. " The network output is consideredacceptable if the expected absolute di�erence between noise-free target and output is below 0.015.This requires high weight precision. Unlike Tasks 3a and 3b, Task 3c cannot be quickly solved byrandom guessing any more.Training / Testing. The learning rate is 0:1. We stop training according to the followingcriterion: none of 256 sequences from a randomly chosen test set is misclassi�ed, and mean absolutedi�erence between noise free target and output is below 0.015. An additional test set consistingof 2560 randomly chosen sequences is used to determine the fraction of misclassi�ed sequences.Results. See Table 6. The results represent means of 10 trials with di�erent weight initial-izations. Despite the noisy targets, LSTM still can solve the problem by learning the real-valued,expected target values.4.4 EXPERIMENT 4: ADDING PROBLEMThe di�cult task in this section is of a type that never has been solved by other recurrent net al-gorithms. It shows that LSTM can solve long time lag problems involving distributed, continuous-T N stop # weights fraction misclassi�ed av. di�erence to mean100 3 269,650 102 0.00558 0.014100 1 565,640 102 0.00441 0.012Table 6: Task 3c: modi�ed, more interesting 2-sequence problem. Same as in Table 4, but withnoisy, real-valued targets. The system has to learn the conditional expectations of the targets, giventhe inputs. The �nal column provides the average di�erence between network output and expectedtarget. Unlike Tasks 3a and 3b, Task 3c cannot be quickly solved by random weight guessing anymore. 15



T minimal lag # weights # wrong predictions Success after100 50 93 1 out of 2560 74,000500 250 93 0 out of 2560 209,0001000 500 93 1 out of 2560 853,000Table 7: EXPERIMENT 4: Results for the Adding Problem. T is minimal sequence length. T=2is the minimal time lag. \# wrong predictions" is the number of incorrectly processed sequences(error > 0.04) from a test set containing 2560 sequences. The last row provides the number oftraining sequences required to achieve the stopping criterion. All values are means of 10 trials.For T = 1000, the number of required training examples varies between 370,000 and 2,020,000,exceeding 700,000 in only 3 cases.valued representations.Task. Each element of each input sequence is a pair consisting of two components. The �rstcomponent is a real value randomly chosen from the interval [�1; 1]. The second component iseither 1.0, 0.0, or -1.0, and is used as a marker: at the end of each sequence, the task is to outputthe sum of the �rst components of those pairs that are marked by second components equal to 1.0.The value T is used to determine minimal sequence length, which is a randomly chosen integerbetween T and T + T10 . With a given sequence, exactly two pairs are marked as follows: we �rstrandomly select and mark one of the �rst ten pairs (whose �rst component is called X1). Thenwe randomly select and mark one of the �rst T2 � 1 still unmarked pairs (whose �rst component iscalled X2). The second components of the remaining pairs are zero except for the �rst and �nalpair, whose second components are -1 (X1 is set to zero in the rare case where the �rst pair ofthe sequence got marked). An error signal is generated only at the sequence end: the target is0:5 + X1+X24:0 (the sum X1 +X2 scaled to the interval [0; 1]). A sequence is processed correctly ifthe absolute error at the sequence end is below 0.04.Architecture. We use a 3-layer net with 2 input units, 1 output unit, and 2 cell blocks ofsize 2. The output layer receives connections only from memory cells. Memory cells and gateunits receive inputs from memory cells and gate units (the hidden layer is fully connected | lessconnectivity may work as well). The input layer has forward connections to all units in the hiddenlayer. All non-input units are biased. These architecture parameters make it easy to store at least2 input signals (a cell block size of 1 works well, too). All sigmoidal functions are logistic withoutput range [0; 1], except for h, whose range is [�1; 1], and g, whose range is [�2; 2].State drift versus initial bias. Note that the task requires to store the precise values of realnumbers for long durations | the system must learn to protect memory cell contents against evenminor \internal state drifts" (see Section 3). To study the signi�cance of the drift problem, wemake the task even more di�cult by biasing all non-input units, thus arti�cially inducing internalstate drifts. All weights (including bias weights) are randomly initialized in the range [�0:1; 0:1].Following Section 3's remedy for state drifts, the �rst input gate bias is initialized with �3:0, thesecond with �6:0 (but the precise initialization values hardly matters, as con�rmed by additionalexperiments).Training / Testing. The learning rate is 0.5. Training is stopped if the average trainingerror is below 0.01, and the 2000 most recent sequences were processed correctly.Results. With a test set consisting of 2560 randomly chosen sequences, the average test seterror was always below 0.01, and there were never more than 3 incorrectly processed sequences.Table 7 shows details.The experiment demonstrates: (1) LSTM is able to work well with distributed representations.(2) LSTM is able to learn to perform calculations involving continuous values. (3) Since the systemmanages to store continuous values without deterioration for minimal delays of T2 time steps, thereis no signi�cant, harmful internal state drift. 16



4.5 EXPERIMENT 5: TEMPORAL ORDERIn this subsection, LSTM solves di�cult tasks of another type that never has been solved byother recurrent net algorithms. The experiment shows that LSTM is able to extract informationconveyed by the temporal order of widely separated inputs.Task 5a: two relevant, widely separated symbols. The goal is to classify sequences.Elements are represented locally (binary input vectors with only one non-zero bit). The sequencestarts with an E, ends with a B (the \trigger symbol") and otherwise consists of randomly chosensymbols from the set fa; b; c; dg except for two elements at positions t1 and t2 that are either X orY . The sequence length is randomly chosen between 100 and 110, t1 is randomly chosen between10 and 20, and t2 is randomly chosen between 50 and 60. There are 4 sequence classes Q;R; S; Uwhich depend on the temporal order of X and Y . The rules are: X;X ! Q; X;Y ! R; Y;X !S; Y; Y ! U .Task 5b: three relevant, widely separated symbols. Again, the goal is to classifysequences. Elements are represented locally. The sequence starts with an E, ends with a B (the\trigger symbol"), and otherwise consists of randomly chosen symbols from the set fa; b; c; dgexcept for three elements at positions t1; t2 and t3 that are either X or Y . The sequence length israndomly chosen between 100 and 110, t1 is randomly chosen between 10 and 20, t2 is randomlychosen between 33 and 43, and t2 is randomly chosen between 66 and 76. There are 8 sequenceclasses Q;R; S; U; V;A;B;C which depend on the temporal order of the Xs and Y s. The rulesare: X;X;X ! Q; X;X; Y ! R; X;Y;X ! S; X;Y; Y ! U ; Y;X;X ! V ; Y;X; Y !A; Y; Y;X ! B; Y; Y; Y ! C.With both tasks, error signals occur only at the end of a sequence. The sequence is classi�edcorrectly if the �nal error of all output units is below 0.3.Architecture. We use a 3-layer net with 8 input units, 2 (3) cell blocks of size 2 for Task5a (5b), 4 (8) output units for Task 5a (5b). Again, all non-input units are biased. Again, theoutput layer receives connections from memory cells only. Memory cells and gate units receiveinputs from input units, memory cells and gate units (the hidden layer is fully connected | lessconnectivity may work as well). The architecture parameters for Task 5a (5b) make it easy tostore at least 2 (3) input signals. All sigmoid functions are logistic with output range [0; 1], exceptfor h, whose range is [�1; 1], and g, whose range is [�2; 2].Training / Testing. The learning rate is 0.5 (0.1) for Experiment 5a (5b). Training is stoppedif the average training error is below 0.1, and the 2000 most recent sequences were classi�edcorrectly. All weights are initialized in the range [�0:1; 0:1]. The �rst input gate bias is initializedwith �2:0, the second with �4:0, and (for Experiment 5b) the third with �6:0 (but again, theprecise initialization values hardly matter, as con�rmed by additional experiments).Results. With a test set consisting of 2560 randomly chosen sequences, the average test seterror was always below 0.1, and there were never more than 3 incorrectly classi�ed sequences.Table 8 shows details.The experiment shows that LSTM is able to extract information conveyed by the temporalorder of widely separated inputs. For instance, with Task 5a, the delays between �rst and secondrelevant input and between second relevant input and sequence end are at least 30 time steps.Exemplary solutions. In Experiment 5a, how does LSTM distinguish between temporalorders (X;Y ) and (Y;X)? One of many possible solutions is to store the �rst X or Y in cell block1, and the second X=Y in cell block 2. Before the �rst X=Y occurs, block 1 can see that itself isstill empty (by means of recurrent connections). After the �rst X=Y , block 1 can close its inputgate. Once block 1 is �lled and closed, this fact will become visible to block 2 (recall that all gateunits and all memory cells receive connections from all non-output units).Typical solutions, however, require only one memory cell block. The block stores the �rst Xor Y ; once the second X=Y occurs, it changes its state depending on the �rst stored symbol.Solution type 1 exploits the connection between memory cell output and input gate unit | thefollowing events cause di�erent input gate activations: \X occurs in conjunction with a �lledblock"; \X occurs in conjunction with an empty block". Solution type 2 is based on a strongpositive connection between memory cell output and memory cell input. The previous occurrence17



task # weights # wrong predictions Success afterTask 5a 156 1 out of 2560 31,390Task 5b 308 2 out of 2560 571,100Table 8: EXPERIMENT 5: Results for the Temporal Order Problem. \# wrong predictions" isthe number of incorrectly classi�ed sequences (error > 0.3 for at least one output unit) from a testset containing 2560 sequences. The last row provides the number of training sequences requiredto achieve the stopping criterion. The results for Task 5a are means of 20 trials. The results forTask 5b are means of 10 trials.of X (Y ) is represented by a positive (negative) internal state. Once the input gate opens for thesecond time, so does the output gate, and the memory cell output is fed back to its own input.This causes (X;Y ) to be represented by a positive internal state, because X contributes to thenew internal state twice (via current internal state and cell output feedback). Similarly, (Y;X)gets represented by a negative internal state.4.6 SUMMARY OF EXPERIMENTAL LSTM DETAILSThe two tables in this subsection provide an overview of the most important LSTM parametersand architecture details used in Experiments 1{5.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Task p lag b s in out w c ogb igb bias h g �1-1 9 9 4 1 7 7 264 F -1,-2,-3,-4 r ga h1 g2 0.11-2 9 9 3 2 7 7 276 F -1,-2,-3 r ga h1 g2 0.11-3 9 9 3 2 7 7 276 F -1,-2,-3 r ga h1 g2 0.21-4 9 9 4 1 7 7 264 F -1,-2,-3,-4 r ga h1 g2 0.51-5 9 9 3 2 7 7 276 F -1,-2,-3 r ga h1 g2 0.52a 100 100 1 1 101 101 10504 B no og none none id g1 1.02b 100 100 1 1 101 101 10504 B no og none none id g1 1.02c-1 50 50 2 1 54 2 364 F none none none h1 g2 0.012c-2 100 100 2 1 104 2 664 F none none none h1 g2 0.012c-3 200 200 2 1 204 2 1264 F none none none h1 g2 0.012c-4 500 500 2 1 504 2 3064 F none none none h1 g2 0.012c-5 1000 1000 2 1 1004 2 6064 F none none none h1 g2 0.012c-6 1000 1000 2 1 504 2 3064 F none none none h1 g2 0.012c-7 1000 1000 2 1 204 2 1264 F none none none h1 g2 0.012c-8 1000 1000 2 1 104 2 664 F none none none h1 g2 0.012c-9 1000 1000 2 1 54 2 364 F none none none h1 g2 0.013a 100 100 3 1 1 1 102 F -2,-4,-6 -1,-3,-5 b1 h1 g2 1.03b 100 100 3 1 1 1 102 F -2,-4,-6 -1,-3,-5 b1 h1 g2 1.03c 100 100 3 1 1 1 102 F -2,-4,-6 -1,-3,-5 b1 h1 g2 0.14-1 100 50 2 2 2 1 93 F r -3,-6 all h1 g2 0.54-2 500 250 2 2 2 1 93 F r -3,-6 all h1 g2 0.54-3 1000 500 2 2 2 1 93 F r -3,-6 all h1 g2 0.55a 100 40 2 2 8 4 156 F r -2,-4 all h1 g2 0.55b 100 24 3 2 8 8 308 F r -2,-4,-6 all h1 g2 0.1Table 9: Summary of experimental details for LSTM, Part I. 1st column: task number. 2ndcolumn: minimal sequence length p. 3rd column: minimal number of time steps between mostrecent relevant input information and teacher signal. 4th column: number of cell blocks b. 5thcolumn: block size s. 6th column: number of input units in. 7th column: number of output units18



out. 8th column: number of weights w. 9th column: c describes connectivity: \F" means \outputlayer receives connections from memory cells; memory cells and gate units receive connectionsfrom input units, memory cells and gate units"; \B" means \each layer receives connections fromall layers below". 10th column: initial output gate bias ogb, where \r" stands for \randomly chosenfrom the interval [�0:1; 0:1]" and \no og" means \no output gate used". 11th column: initial inputgate bias igb (see 10th column). 12th column: which units are biased? \no" stands for \no unit isbiased", \b1" stands for \all non-input units are biased, with exception of the output units", \ga"stands for \only the gate units are biased", \all" stands for \all non-input units are biased". 13thcolumn: the function h, where \id" is identity function. \h1" is logistic sigmoid in [�2; 2]. 14thcolumn: the function g, where \g1" is logistic sigmoid in [0; 1], \g2" is logistic sigmoid in [�1; 1].15th column: learning rate �.1 2 3 4 5 6Task select interval test set size stopping criterion success1 t1 [�0:2; 0:2] 256 training & test correctly pred. see text2a t1 [�0:2; 0:2] no test set after 5 million exemplars AB(0.25)2b t2 [�0:2; 0:2] 10000 after 5 million exemplars AB(0.25)2c t2 [�0:2; 0:2] 10000 after 5 million exemplars AB(0.2)3a t3 [�0:1; 0:1] 2560 ST1 and ST2 (see text) AB(0.2)3b t3 [�0:1; 0:1] 2560 ST1 and ST2 (see text) AB(0.2)3c t3 [�0:1; 0:1] 2560 ST1 and ST2 (see text) see text4 t3 [�0:1; 0:1] 2560 ST3(0.01) AB(0.04)5a t3 [�0:1; 0:1] 2560 ST3(0.1) AB(0.3)5b t3 [�0:1; 0:1] 2560 ST3(0.1) AB(0.3)Table 10: Summary of experimental details for LSTM, Part II. 1st column: task number. 2ndcolumn: training exemplar selection, where \t1" stands for \randomly chosen from training set",\t2" stands for \randomly chosen from 2 classes", and \t3" stands for \randomly chosen on-line".3rd column: weight initialization interval. 4th column: test set size. 5th column: stopping criterionfor training, where \ST3(�)" stands for \average training error below � and the 2000 most recentsequences were processed correctly". 6th column: success criterion / correct classi�cation criterion,where \AB(�)" stands for \absolute error of all output units at sequence end is below �".5 PREVIOUS WORKThe approaches of Elman (1988), Fahlman (1991), Williams (1989), Pearlmutter (1989), Schmid-huber (1992a), and many of the related algorithms in Pearlmutter's comprehensive overview (1995)su�er from the same problems as BPTT (see Sections 1 and 2).Other methods that seem practicable for short time gaps only are Time-Delay Neural Networks(Lang et al. 1990) and Plate's method (Plate 1993) (which updates unit activations based on aweighted sum of old activations, see also de Vries and Principe 1991). Lin et al. (1995) proposevariants of time-delay networks called NARX networks (some of their problems can be quicklysolved by simple weight guessing, though).To deal with long time lags, Mozer (1992) uses time constants inuencing the activationchanges. However, for long time gaps the time constants need external �ne tuning (Mozer 1992).Sun et al.'s alternative approach (1993) updates the activation of a recurrent unit by adding theold activation and the (scaled) current net input. The net input, however, tends to perturb thestored information, which again makes long term storage impracticable.Bengio et al. (1994) investigate methods such as simulated annealing, multi-grid randomsearch, time-weighted pseudo-Newton optimization, and discrete error propagation. Their \latch"and \2-sequence" problems are very similar to problem 3a with delay 100 (although their paperdoes not contain all experimental details, such as test set size, precise success criteria, etc.). Theyreport that only simulated annealing was able to solve such problems perfectly (but we found thatrandom weight guessing solves such simple problems much faster | see Experiment 3). Bengio19



and Frasconi (1994) also propose an EM approach for propagating targets. With n so-called \statenetworks", at a given time, their system can be in one of only n di�erent states. It is reportedto solve the 500 step parity problem which requires only two di�erent states, and which actuallycan be quickly solved by weight guessing (see beginning of Section 4). But to solve, e.g., the\adding problem" (Section 4.4), their system would need an unacceptable number of states (andstate networks).Ring (1993) also proposed a method for bridging long time lags. Whenever a unit in his networkreceives conicting error signals, he adds a higher order unit inuencing appropriate connections.Although his approach can sometimes be extremely fast, to bridge a time lag involving 100 stepsmay require the addition of 100 units. Also, Ring's net does not generalize to unseen lag durations.Puskouius and Feldkamp (1994) used Kalman �lter techniques to improve recurrent net per-formance. There is no reason to believe, however, that their Kalman Filter Trained RecurrentNetworks (1994) will be useful for very long minimal time lags. In fact, they use \a derivativediscount factor imposed to decay exponentially the e�ects of past dynamic derivatives."Schmidhuber's hierarchical chunker system does have a capability to bridge arbitrary timelags, but only if there is perfect predictability across the entire subsequence causing the time lag(see Schmidhuber 1992b, 1993; and Mozer 1992). For instance, in his postdoctoral thesis (1993),Schmidhuber uses hierarchical recurrent nets to rapidly solve certain grammar learning tasksinvolving minimal time lags in excess of 1000 time steps. The performance of chunker systems,however, deteriorates as the noise level increases. Of course, chunker systems can be augmentedby LSTM to combine the advantages of both.LSTM is not the �rst method that involves multiplicative units. For instance, Watrous andKuhn (1992) also use multiplicative inputs in second order nets. Some di�erences to LSTM are:(1) Watrous and Kuhn's architecture has no linear units to enforce constant error ow. It isnot designed to solve long time lag problems. (2) It has fully connected second-order sigma-piunits, while the LSTM architecture's only multiplicative units are the gate units. (3) Watrousand Kuhn's algorithm costs O(W 2) operations per time step. Ours costs only O(W ). See alsoMiller and Giles (1993) for additional work on multiplicative inputs. As we recently discovered,however, simple weight guessing solves some of Miller and Giles' problems more quickly than thealgorithms they investigate (Schmidhuber and Hochreiter, 1996).6 DISCUSSIONLimitations of LSTM.� The particularly e�cient truncated backprop version of the LSTM algorithm won't easilysolve problems similar to \strongly delayed XOR problems", where the goal is to computethe XOR of two widely separated inputs that previously occurred somewhere in a noisysequence. The reason is: storing only one of the inputs won't help to reduce the expectederror | the task is not decomposable in the sense that it is impossible to incrementallyreduce the error by �rst solving an easier subgoal and then using the corresponding modi�edweights as building blocks for a complete solution.In theory, this limitation can be circumvented by using the full gradient (perhaps withadditional conventional hidden units receiving input from the memory cells). This willincrease computational complexity, though.� Each memory cell block needs two additional units (input and output gate). In comparisonto standard recurrent nets, however, this does not increase the number of weights by morethan a factor of 9. Why 9? Because each conventional hidden unit is replaced by 3 units inthe LSTM architecture. In the fully connected case, this increases the weight number by afactor of 32. Note, however, that our experiments use quite comparable weight numbers forthe architectures of LSTM and competing approaches.20



� Generally speaking, due to its constant error ow through internal states of memory cells,LSTM runs into problems similar to those of feedforward nets seeing the entire input string atonce. For instance, there are tasks that can be quickly solved by random weight guessing butnot by the truncated LSTM algorithm with small weight initializations, such as the 500-stepparity problem (see introduction to Section 4). Here, LSTM's problems are similar to theones of a feedforward net with 500 inputs, trying to solve 500-bit parity. Indeed, the LSTMarchitecture trained by the LSTM algorithm typically behaves much like a feedforward nettrained by backprop that sees the entire input. But that's also precisely why it so clearlyoutperforms previous approaches on many non-trivial tasks with signi�cant search spaces.� LSTM architecture and algorithm do not have any problems with the notion of \recency"that go beyond those of other approaches. All gradient-based approaches, however, su�erfrom practical inability to precisely count discrete time steps. If it makes a di�erence whethera certain signal occurred 99 or 100 steps ago, then an additional counting mechanism seemsnecessary. Easier tasks, however, such as one that only requires to make a di�erence between,say, 3 and 11 steps, do not pose any problems to LSTM. For instance, by generating anappropriate negative connection between memory cell output and input, LSTM can givemore weight to recent inputs and learn decays where necessary.Advantages of LSTM.� The most obvious advantage is the constant error backprop within internal states of memorycells and the resulting ability to bridge very long time lags.� LSTM works well for long time lag problems involving noise, distributed representations, andcontinuous values. LSTM does not require an a priori choice of a �nite number of states.� LSTM generalizes well even in cases where the positions of widely separated, relevant inputsin the input sequence do not matter. Unlike previous approaches, ours quickly learns todistinguish between two or more widely separated occurrences of a particular element in aninput sequence, without depending on appropriate short time lag training exemplars.� There appears to be no need for parameter �ne tuning. LSTM works well over a broad rangeof parameters such as learning rate, input gate bias and output gate bias. For instance, tosome readers the learning rates used in the experiments may seem large. However, a largelearning rate pushes the output gates towards zero, thus automatically countermanding itsown negative e�ects. Using logistic sigmoid activation functions, the negative initial bias forinput and output gates does not require �ne tuning either (changing the bias has little e�ecton activations and �rst derivatives in the range of small derivatives of the logistic sigmoid).� For fully recurrent nets, the LSTM algorithm's update complexity per time step is essentiallythe one of BPTT, which is excellent in comparison to other approaches such as RTRL: givena constant number of output units, this complexity is at most O(n2), where n is the numberof units. Unlike full BPTT, however, the method is local in space.� Since memory cells can be plugged into any feedforward or recurrent net, and since anygradient-based algorithm can be plugged into any other (all we need is the chain rule), LSTMarchitecture and algorithm can be seamlessly integrated into feedforward or recurrent netstrained by RTRL, BPTT, backprop, and other gradient-based approaches.
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7 CONCLUSIONTo the authors, in hindsight LSTM's architecture seems simple and obvious. In principle, eachmemory cell's internal architecture guarantees constant error ow within its internal state. Thisprovides the basis for bridging very long time lags. For each memory cell, there are two gate unitsdesigned to learn to open and close access to error ow within the memory cell. The multiplicativeinput gate allows for protecting the internal state from perturbation by irrelevant inputs. Likewise,the multiplicative output gate allows for protecting other units from perturbation by currentlyirrelevant memory contents.Long Short Term Memory appears to represent signi�cant improvements over previous neurallong time lag methods. For tasks similar to the more di�cult, arti�cial tasks discussed in thispaper (where random weight guessing is infeasible), we recommend LSTM.Future work. To �nd out about the practical limitations of LSTM, we intend to apply it toreal world data. Application areas will include (1) time series prediction, (2) music composition,(3) speech processing.8 ACKNOWLEDGMENTSThanks to Mike Mozer, Wilfried Brauer, and several anonymous referees for valuable commentsand suggestions that helped to improve a previous version of this paper (Hochreiter and Schmid-huber 1995). This work was supported by DFG grant SCHM 942/3-1 from \Deutsche Forschungs-gemeinschaft".APPENDIXA.1 ALGORITHM DETAILSIn what follows, the index k ranges over output units, i ranges over hidden units, cj stands forthe j-th memory cell block, cvj denotes the v-th unit of memory cell block cj , and u; l;m stand forarbitrary units.The gate unit logistic sigmoid (with range [0; 1]) used in the experiments isf(x) = 11 + exp(�x) . (3)The function h (with range [�1; 1]) used in the experiments ish(x) = 21 + exp(�x) � 1 . (4)The function g (with range [�2; 2]) used in the experiments isg(x) = 41 + exp(�x) � 2 . (5)Forward pass.The net input and the activation of hidden unit i areneti(t) = Xu wiuyu(t� 1) (6)yi(t) = fi(neti(t)) .The net input and the activation of inj arenetinj (t) = Xu winjuyu(t� 1) (7)yinj (t) = finj (netinj (t)) .22



The net input and the activation of outj arenetoutj (t) = Xu woutjuyu(t� 1) (8)youtj (t) = foutj (netoutj (t)) .The net input netcvj , the internal state scvj , and the output activation ycvj of the v-th memorycell of memory cell block cj are:netcvj (t) = Xu wcvj uyu(t� 1) (9)scvj (t) = scvj (t� 1) + yinj (t)g �netcvj (t)�ycvj (t) = youtj (t)h(scvj (t)) .The net input and the activation of output unit k arenetk(t) = Xu: u not a gate wkuyu(t� 1)yk(t) = fk(netk(t)) .Backward pass. We will describe the backward pass only for the particularly e�cient \truncatedgradient version" of the LSTM algorithm (see Section 3). The truncated version only approximatesthe partial derivatives, which is reected by the \�tr" signs in the notation below. It truncateserror ow once it \wants" to leave memory cells or gate units. Truncation ensures that thereare no loops across which an error that left some memory cell through its input or input gatecan reenter the cell through its output or output gate. This in turn ensures constant error owthrough the memory cell's internal state.In the truncated backprop version, the following derivatives are replaced by zero (see Section3 paragraph "Learning"):@netinj (t)@yu(t�1) �tr 0 8u, @netoutj (t)@yu(t�1) �tr 0 8u, and @netcj (t)@yu(t�1) �tr 0 8u. Therefore we get @yinj (t)@yu(t�1) =f 0inj (netinj (t))@netinj (t)@yu(t�1) �tr 0 8u, @youtj (t)@yu(t�1) = f 0outj (netoutj (t))@netoutj (t)@yu(t�1) �tr 0 8u, and @ycj (t)@yu(t�1) =@ycj (t)@netoutj (t) @netoutj (t)@yu(t�1) + @ycj (t)@netinj (t) @netinj (t)@yu(t�1) + @ycj (t)@netcj (t) @netcj (t)@yu(t�1) �tr 0 8u. This implies for all wlm noton connections to cvj ; inj ; outj (that is, l 62 fcvj ; inj ; outjg): @ycvj (t)@wlm =Pu @ycvj (t)@yu(t�1) @yu(t�1)@wlm �tr 0.The \truncated" derivatives of output unit k are:@yk(t)@wlm = f 0k(netk(t)) Xu: u not a gate wku @yu(t� 1)@wlm + �klym(t� 1)! �tr (10)f 0k(netk(t))0@Xj SjXv=1 �cvj lwkcvj @ycvj (t� 1)@wlm +Xj ��inj l + �outj l� SjXv=1wkcvj @ycvj (t� 1)@wlm +Xi: i hidden unit wki @yi(t� 1)@wlm + �klym(t� 1)! =f 0k(netk(t))8>>>>><>>>>>: ym(t� 1) l = kwkcvj @ycvj (t�1)@wlm l = cvjPSjv=1 wkcvj @ycvj (t�1)@wlm l = inj OR l = outjPi: i hidden unit wki @yi(t�1)@wlm l otherwise ,
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where � is the Kronecker delta (�ab = 1 if a = b and 0 otherwise), and Sj is the size of memorycell block cj . The \truncated" derivatives of a hidden unit i that is not part of a memory cell are:@yi(t)@wlm = f 0i(neti(t))@neti(t)@wlm �tr �lif 0i(neti(t))ym(t� 1) . (11)(Note: here it would be possible to use the full gradient without a�ecting constant error owthrough internal states of memory cells.)Cell block cj 's \truncated" derivatives are:@yinj (t)@wlm = f 0inj (netinj (t))@netinj (t)@wlm �tr �inj lf 0inj (netinj (t))ym(t� 1) . (12)@youtj (t)@wlm = f 0outj (netoutj (t))@netoutj (t)@wlm �tr �outj lf 0outj (netoutj (t))ym(t� 1) . (13)@scvj (t)@wlm = @scvj (t� 1)@wlm + @yinj (t)@wlm g �netcvj (t)�+ yinj (t)g0 �netcvj (t)� @netcvj (t)@wlm �tr (14)��inj l + �cvj l� @scvj (t� 1)@wlm + �inj l @yinj (t)@wlm g �netcvj (t)�+�cvj lyinj (t)g0 �netcvj (t)� @netcvj (t)@wlm =��inj l + �cvj l� @scvj (t� 1)@wlm + �inj l @yinj (t)@wlm g �netcvj (t)�+�cvj lyinj (t)g0 �netcvj (t)� ym(t� 1) .@ycvj (t)@wlm = @youtj (t)@wlm h(scvj (t)) + h0(scvj (t))@scvj (t)@wlm youtj (t) �tr (15)�outj l @youtj (t)@wlm h(scvj (t)) + ��inj l + �cvj l�h0(scvj (t))@scvj (t)@wlm youtj (t) .To e�ciently update the system at time t, the only (truncated) derivatives that need to be storedat time t� 1 are @scvj (t�1)@wlm , where l = cvj or l = inj .Computational complexity. The complexity is O(K(H + CS + (H + 3SC)I)) = O(KW ),where K is the number of output units, C is the number of memory cell blocks, S is the size of thememory cell blocks, H is the number of hidden units, I is the (maximal) number of units forward-connected to memory cells, gate units and hidden units, and W � K(H +CS)+ (H +CS+2C)Iis the number of weights. The expression above is obtained by considering the computation ofall derivatives of output units with respect to weights: H + SC is the number of direct connec-tions to an output unit, CSI is the number of connections to memory cells, HI is the number ofconnections to hidden units, and 2CI is the number of connections to gate units. Since a singlegate unit inuences S memory cells, the chain rule requires to sum over the block size: we obtaina complexity 2CIS for computing the derivatives of a given output unit with respect to all con-nections leading to gate units. To conclude: given n memory cells and a �xed number of outputunits, the LSTM algorithm's update complexity per time step is at most O(n2), just like BPTT'sfor a fully recurrent net with n units.
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A.2 ERROR FLOWWe compute how much an error signal is scaled while owing back through a memory cell forq time steps. As a by-product, this analysis recon�rms that the error ow within a memorycell's internal state is constant (see also Section 2.2). The analysis also highlights a potentialfor undesirable long-term drifts of scj (see (2) below), as well as the bene�cial, countermandinginuence of negatively biased input gates (see (3) below).Using the truncated backprop learning rule, we obtain @scj (t� k)@scj (t� k � 1) = (16)1 + @yinj (t� k)@scj (t� k � 1)g �netcj (t� k)�+ yinj (t� k)g0 �netcj (t� k)� @netcj (t� k)@scj (t� k � 1) =1 +Xu � @yinj (t� k)@yu(t� k � 1) @yu(t� k � 1)@scj (t� k � 1)� g �netcj (t� k)� +yinj (t� k)g0 �netcj (t� k)�Xu � @netcj (t� k)@yu(t� k � 1) @yu(t� k � 1)@scj (t� k � 1)� �tr 1:The �tr sign indicates equality due to the fact that truncated backprop replaces by zero thefollowing derivatives: @yinj (t�k)@yu(t�k�1) 8u and @netcj (t�k)@yu(t�k�1) 8u.In what follows, an error #j(t) starts owing back at cj 's output. We rede�ne#j(t) :=Xi wicj#i(t+ 1) . (17)Following the de�nitions/conventions of Section 2.1, we compute error ow for the truncatedbackprop learning rule. The error occuring at the output gate is#outj (t) �tr @youtj (t)@netoutj (t) @ycj (t)@youtj (t)#j(t) . (18)The error occuring at the internal state is#scj (t) = @scj (t+ 1)@scj (t) #scj (t+ 1) + @ycj (t)@scj (t)#j(t) . (19)The previous equation (19) implies constant error ow through internal states of memory cells:@#scj (t)@#scj (t+ 1) = @scj (t+ 1)@scj (t) �tr 1 . (20)The error occuring at the memory cell input is#cj (t) = @g(netcj (t))@netcj (t) @scj (t)@g(netcj (t))#scj (t) . (21)The error occuring at the input gate is#inj (t) �tr @yinj (t)@netinj (t) @scj (t)@yinj (t))#scj (t) . (22)No external error ow. Errors are propagated back from units l to unit v along outgoingconnections with weights wlv . This \external error" (note: for conventional units there is nothingbut external error) at time t is#ev(t) = @yv(t)@netv(t)Xl @netl(t+ 1)@yv(t) #l(t+ 1) . (23)25



We get @#ev(t� 1)@#j(t) = (24)@yv(t� 1)@netv(t� 1) �@#outj (t)@#j(t) @netoutj (t)@yv(t� 1) + @#inj (t)@#j(t) @netinj (t)@yv(t� 1) + @#cj (t)@#j(t) @netcj (t)@yv(t� 1)� �tr 0 .We observe: the error #j arriving at the memory cell output is not backpropagated to units v viaexternal connections to inj ; outj ; cj .Error ow within memory cells. Now we focus on the error back ow within a memorycell. This is actually the only type of error ow that allows for bridging several time steps. Supposeerror #j(t) arrives at cj 's output at time t and is propagated back for q steps until it reaches injor the memory cell input g(netcj ). It is scaled by a factor of @#v(t�q)@#j(t) , where v = inj ; cj . We �rstcompute @#scj (t� q)@#j(t) �tr 8<: @ycj (t)@scj (t) q = 0@scj (t�q+1)@scj (t�q) @#scj (t�q+1)@#j(t) q > 0 . (25)Expanding equation (25), we obtain@#v(t� q)@#j(t) �tr @#v(t� q)@#scj (t� q) @#scj (t� q)@#j(t) �tr (26)@#v(t� q)@#scj (t� q)  1Ym=q @scj (t�m+ 1)@scj (t�m) ! @ycj (t)@scj (t) �tryoutj (t)h0(scj (t))� g0(netcj (t� q)yinj (t� q) v = cjg(netcj (t� q)f 0inj (netinj (t� q)) v = inj .Consider the factors in the previous equation's last expression. Obviously, error ow is scaledonly at times t (when it enters the cell) and t � q (when it leaves the cell), but not in between(constant error ow through the internal state). We observe:(1) The output gate's e�ect is: youtj (t) scales down those errors that can be reduced earlyduring training without using the memory cell. Likewise, it scales down those errors resulting fromusing (activating/deactivating) the memory cell at later training stages | for instance, withoutthe output gate, the memory cell would sometimes suddenly start causing avoidable errors insituations that already seemed under control (because it was easy to reduce the correspondingerrors without memory cells). See \output weight conict" and \abuse problem" in Sections 2/3.(2) If there are large positive or negative scj (t) values (because scj \drifted away" since timestep t � q), then h0(scj (t)) may be small (assuming that h is a logistic sigmoid). See Section 3.Drifts of the memory cell's internal state scj can be easily countermanded by negatively biasingthe input gate inj (see Section 3 and next point). Recall from Section 3 that the precise bias valuehardly matters.(3) yinj (t � q) and f 0inj (netinj (t� q)) are small if the input gate is negatively biased (assumefinj is a logistic sigmoid). But the potential signi�cance of this is negligible compared to thepotential signi�cance of drifts of the internal state scj .Some of the factors above may occasionally scale down LSTM's overall error ow, but not ina manner that depends on the length of the time lag. The ow will still be much more e�ectivethan an exponentially (of order q) decaying ow without memory cells.
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