
Algebraic Structures

Abstract algebra is the study of algebraic structures. Such a structure consists
of a set together with one or more binary operations, which are required to satisfy
certain axioms. For example, here is the definition of a simple algebraic structure
known as a group:

Definition: Group
A group is a set G together with a binary operation ∗ on G, satisfying the following
axioms:

1. The operation ∗ is associative. That is,

a ∗ (b ∗ c) = (a ∗ b) ∗ c

for all a, b, c ∈ G.

2. There exists an element e ∈ G with the property that

a ∗ e = e ∗ a = a

for all a ∈ G. (This element e is called the identity element of G.)

3. For each element a ∈ G, there exists an element a−1 ∈ G such that

a ∗
(
a−1

)
=

(
a−1

)
∗ a = e.

(The element a−1 is called the inverse of a.)

The binary operation ∗ in this definition may be any operation at all, such as
addition, multiplication, or composition of functions. Any set of elements with an
operation that satisfies these axioms forms a group. For example:



Algebraic Structures 2

• The set Z of integers forms a group under the operation of addition. In par-
ticular, addition is associative, the element 0 is an additive identity, and every
integer has an additive inverse.

• The set R − {0} of nonzero real numbers forms a group under the operation
of multiplication. Note that zero must be excluded, since it does not have a
multiplicative inverse.

• The set GL(n,R) of all invertible n × n matrices forms a group under the
operation of matrix multiplication. In this case, the identity element is the
n× n identity matrix.

Groups are a particularly simple algebraic structure, having only one operation
and three axioms. Most algebraic structures have more than one operation, and are
required to satisfy a long list of axioms.

Here is a partial list of the most important algebraic structures:

• A group is an algebraic structure with a single operation, as defined above.
Groups are closely associated with the idea of symmetry, and most groups
that arise in mathematics are groups of symmetry transformations, with the
operation being composition of functions.

• A field is an algebraic structure with addition and multiplication, which obey
all of the usual rules of elementary algebra. Examples of fields include the
rational numbers Q, the real numbers R, and the complex numbers C.

• A ring is a more general algebraic structure with addition and multiplication.
Unlike a field, a ring is not required to have multiplicative inverses, and the
multiplication is not required to be commutative. A good example of a ring is
the set of all n×n matrices under the operations of matrix addition and matrix
multiplication. The integers Z also form a ring under the operations of addition
and multiplication.

• A vector space is an algebraic structure with operations of addition and mul-
tiplication by scalars. The scalars are required to be elements of a field, such
as the real numbers R. The basic example of a vector space is the set Rn of all
vectors with n entries.

• A module is similar to a vector space, except that the scalars are only required
to be elements of a ring. For example, the set Zn of n-dimensional vectors
with integer entries forms a module, where “scalar multiplication” refers to
multiplication by integer scalars.

Because algebraic structures are inherently abstract, the names for them are fairly
arbitrary. Words like “group”, “module”, and “field” are just interchangeable collec-
tive nouns, and you should not ascribe any importance to which structure has which
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name. The word “ring” is also in this category—it is meant to refer to an association
or coalition, such as a smuggling ring or a ring of spies, and should not convey any
sense of circularity.

The structures listed above are only a sample of the many algebraic structures
of importance in mathematics. Many fields of mathematics involve their own special
algebraic structures, and new algebraic structures are defined all the time. To give
you a sense of scale, the online encyclopedia Wikipedia currently has articles on over
a hundred different algebraic structures, and this represents only a small fraction of
those that have been investigated in the mathematical literature.

Fields

The most familiar form of algebra is the elementary algebra that you learned in high
school, namely the algebra of the real numbers. From an abstract point of view, this
is the algebra of fields.

Definition: Field
A field is a set F together with two binary operations + (the addition operation)
and · (the multiplication operation), that satisfy the following axioms:

1. The addition operation is associative. That is,

a + (b + c) = (a + b) + c

for all a, b, c ∈ F .

2. The addition operation is commutative. That is,

a + b = b + a

for all a, b ∈ F .

3. There exists a special element of F called the additive identity, denoted by
the symbol 0. This element has the property that

a + 0 = a

for all a ∈ F .
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4. For each element a ∈ F , there is an element −a ∈ F , called the additive
inverse of a, with the property that

a + (−a) = 0.

5. The multiplication operation is associative. That is,

a · (b · c) = (a · b) · c

for all a, b, c ∈ F .

6. The multiplication operation is commutative. That is,

a · b = b · a

for all a, b ∈ F .

7. There exists a special element of F called the multiplicative identity, de-
noted by the symbol 1. This element has the property that

a · 1 = a

for all a ∈ F .

8. For each element a ∈ F other than 0, there exists an element a−1 ∈ F , called
the multiplicative inverse of a, with the property that

a ·
(
a−1

)
= 1.

9. The multiplication operation distributes over the addition operation. That is,

a · (b + c) = (a · b) + (a · c)

for all a, b, c ∈ F .

Note that the axioms for a field are precisely the axioms for algebra on the real
numbers. As a result, the real numbers R form a field under the usual operations
of addition and multiplication. However, the real numbers are not the only possible
field. Indeed, you are already familiar with a few other examples:

• The rational numbers Q form a field under the usual operations of addition
and multiplication. In particular, we can add or multiply two elements of Q to
obtain another element of Q, and these operations obey all of the axioms listed
above.
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• The complex numbers C form a field under the commonly defined operations of
addition and multiplication. Complex numbers do obey all of the listed axioms
for a field, which is why elementary algebra works as usual for complex numbers.

The following example discusses another class of fields that we shall be using repeat-
edly.

EXAMPLE 1 Integers Modulo n
If n ≥ 2, let Zn denote the set {0, 1, . . . , n − 1} under the operations of addition
and multiplication modulo n. For example, here are the addition and multiplication
tables for Z5:

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

· 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

It is not hard to see that Zn satisfies most of the axioms for a field, but it is not
clear that every nonzero element of Zn has a multiplicative inverse (as is required by
axiom 8). For Z5, we can see from the multiplication table that every element has an
inverse. In particular,

1−1 = 1, 2−1 = 3, 3−1 = 2, and 4−1 = 4,

Thus Z5 is a field.
The same is not true for Z6. Here is the multiplication table modulo 6:

· 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

As you can see from this table, 1−1 = 1 and 5−1 = 5 in Z6, but the elements 2, 3,
and 4 do not have multiplicative inverses. �

The following theorem from number theory characterizes which elements of Zn

have multiplicative inverses. We will not prove this theorem here:
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Theorem 1 Multiplicative Inverses in Zn

Let n ∈ N, and let k ∈ Zn. Then k has a multiplicative inverse in Zn if and
only if k and n are relatively prime.

Here relatively prime means that k and n have no common prime factors,
i.e. their greatest common divisior is 1. This explains why 2, 3, and 4 have no
multiplicative inverses in Z6 — all of these numbers have a factor in common with 6.
We can immediately conclude the following:

Corollary 2 Prime Fields

Zn is a field if and only if n is prime.

This gives us a large class of fields that are very different from the real numbers.
However, you should be aware that we have hardly exhausted the list of fields. For
example, here are the addition and multiplication tables for a field with four elements:

+ 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1

b b a 1 0

· 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a b 1

b 0 b 1 a

Note that this is not the same as Z4, since among other things Z4 is not a field. The
lesson is that not every finite field comes from modular arithmetic.

There are similar fields with eight and nine elements, although surprisingly it is
not possible to define a field with six or ten elements. Indeed, a famous theorem of
field theory asserts that there exists a field with n elements if and only if n is a power
of a prime.

Algebra of Fields

By definition, the elements of a field satisfy exactly the same algebraic axioms as
the real numbers. As a result, everything you know about algebra for real numbers
translates directly to algebra for the elements of any field. This includes virtually
everything you know about elementary algebra, as well as basic linear algebra.
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Of course, the definition of a field involves only addition and multiplication, but
we usually think of algebra as involving the four operations of addition, subtraction,
multiplication, and division. Fortunately, it is not difficult to define subtraction and
division for elements of a field.

Definition: Subtraction and Division in Fields
Let F be a field, and let a, b ∈ F .

(a) The difference of a and b is defined by the formula

a− b = a + (−b),

where −b is the additive inverse of b.

(b) If b 6= 0, the quotient of a and b is defined by the formula

a÷ b = a · (b−1),

where b−1 is the multiplicative inverse of b.

For example, in the field Z5, we can divide 2 by 3 as follows:

2÷ 3 = 2 · (3−1) = 2 · 2 = 4.

Now that we have subtraction and division, we can perform almost any algebraic
computation in the usual way for elements of a field. Here are a few examples:

EXAMPLE 2 Solving an Equation
Solve the following equation:

3x + 4 ≡ 6 (mod 7).

SOLUTION Since Z7 is a field, we can solve this equation using elementary algebra.
First we subtract 4 from both sides:

3x ≡ 2 (mod 7).

Next we must divide through by 3. A moment’s thought reveals that 3−1 = 5 in Z7,
so dividing through by 3 is the same as multiplying through by 5. This gives:

x ≡ 5 · 2 ≡ 3 (mod 7). �
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EXAMPLE 3 Row Reduction
Solve the following system of equations:

3x + 7y ≡ 4 (mod 11)

8x + 6y ≡ 1 (mod 11)

SOLUTION Since Z11 is a field, we can solve this system in any of the usual ways.
We shall use row reduction. We begin by putting the coefficients into an augmented
matrix: [

3 7 4
8 6 1

]
The usual next step would be to divide the first row by 3. A moment’s thought
reveals that 3−1 = 4 in Z11, so we must multiply the first row by 4:[

1 6 5
8 6 1

]
Continuing in this fashion, we can reduce the matrix all the way to reduced echelon
form: [

1 6 5
8 6 1

]
→

[
1 6 5
0 2 5

]
→

[
1 6 5
0 1 8

]
→

[
1 0 1
0 1 8

]
So the solution is

x ≡ 1 (mod 11) and y ≡ 8 (mod 11). �

EXAMPLE 4 Inverting a Matrix
Find the inverse of the following matrix, whose entries are elements of Z7:

A =

[
5 2
6 3

]
.

SOLUTION Since this is a 2× 2 matrix, there is a simple formula for the inverse:[
a b
c d

]−1

= (ad− bc)−1

[
d −b
−c a

]
.

Applying this to the given matrix gives:

A−1 = 3−1

[
3 5
1 5

]
.

since 3−1 = 5 in Z7, we conclude that

A−1 = 5

[
3 5
1 5

]
=

[
1 4
5 4

]
. �


