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Abstract

Humans skillfully manipulate objects and tools despite the inherent instability. In order to succeed at these tasks, the
sensorimotor control system must build an internal representation of both the force and mechanical impedance. As it is not
practical to either learn or store motor commands for every possible future action, the sensorimotor control system
generalizes a control strategy for a range of movements based on learning performed over a set of movements. Here, we
introduce a computational model for this learning and generalization, which specifies how to learn feedforward muscle
activity in a function of the state space. Specifically, by incorporating co-activation as a function of error into the feedback
command, we are able to derive an algorithm from a gradient descent minimization of motion error and effort, subject to
maintaining a stability margin. This algorithm can be used to learn to coordinate any of a variety of motor primitives such as
force fields, muscle synergies, physical models or artificial neural networks. This model for human learning and
generalization is able to adapt to both stable and unstable dynamics, and provides a controller for generating efficient
adaptive motor behavior in robots. Simulation results exhibit predictions consistent with all experiments on learning of
novel dynamics requiring adaptation of force and impedance, and enable us to re-examine some of the previous
interpretations of experiments on generalization.
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Introduction

When learning a novel motor task, it is not possible to either

practice, or store motor commands, for every possible future

motor action. This means that the CNS must learn to generalize

control strategies from the small set of trained movements at its

disposal. Studies which have investigated generalization in

learning a stable interaction with a novel dynamic environment

have demonstrated the formation of an internal representation of

the motor commands necessary for feedforward control [1–5].

The learning of this internal representation on a single movement

affects the control strategy in neighboring regions [1,6–8]. These

studies in generalization have demonstrated that motor learning is

not rote memorization, but due to an internal representation

which depends on, and generalizes over, the state space [2,9].

However, the broad size of the estimated basis functions, through

which generalization is proposed to occur, could prevent the

learning of force fields with fine granularity. Therefore, the

successful learning of such fine grained force fields was interpreted

as evidence that the breadth of neural basis functions were adapted

to the complexity of the experienced environment [3].

An early model capable of both increasing stiffness and force

was developed by Loeb [10,11]. This model, consisting of a single

joint with realistic antagonist muscles, sensor dynamics and spinal

cord pathways, was tested on several tasks including external

perturbations. As this model’s parameters were obtained in one

batch through numerical optimization, the model did not explicitly

represent mechanisms for motor learning. Models of motor

learning [7,8,12–16], some of which generalize in state space,

are able to predict the evolution of force for learning stable

dynamics. However, these models do not consider the effects of

noise due to motor output variability [17] and the interaction of

this variability with the environment, nor do they possess a

mechanism to deal with unstable situations typical of tool use

[18,19]. Furthermore, the evolution patterns of muscle activation

in novel stable dynamics predicted by these models are different

from the patterns observed in experiments [20] in which co-

activation is found.

Recently we have proposed a model of motor learning in muscle

space which adapts and coordinates the temporal muscle

activations patterns such that it simultaneously minimizes insta-

bility and the effects of noise, adapts to changes in the dynamics of

the body and the environment, and minimizes the metabolic cost

[21]. This model was demonstrated to adapt a two-joint six-muscle

biomechanical model of planar arm motion to stable and unstable

dynamic interactions [21,22], but the algorithm had no capability

for generalization and was demonstrated only along a single

movement, as a function of time rather than over a state space.

Simulations were performed along only a single movement, which

was performed simply using a one degree-of-freedom look-up-

table as a function of movement time to learn the feedforward

motor command. This feedforward motor command was updated
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after each trial using a V-shaped function of the kinematic error,

such that motor command activity increased when the muscle was

either stretched or shortened, but decreased when the muscle was

close to the desired length. This function specifies, based on the

movement error of the previous trial, the manner in which both

the co-activation and reciprocal activation are changed in order to

tune the time varying patterns of muscle activation. Through the

modification of the patterns of muscle activation, both the joint

torque and joint stiffness are changed to produce the described

mechanical behavior at the endpoint of the limb.

Here we extend this previous work by formulating a model of

human motor adaptation at the muscle level capable of trial-by-

trial learning and generalization across multiple movements. In

order to produce this generalization behavior, corresponding to

experimental results, the feedforward motor command cannot

simply be learned as a function of time for only a single movement

as in our previous version [21,22], but is learned as a function of

the state of the limbs (joint position and velocity). In this manner,

learning experienced in one movement will generalize both to

neighboring movements and to any movement that experiences

similar states of the limb. In order to adapt the algorithm to a

state-space implementation, it was necessary to explicitly derive an

algorithm from the principles behind the V-shape adaptation law.

We derived this algorithm by translating the principles of motor

adaptation from [21,22] to arbitrary movements and motor

primitives. Adaptation was formulated as the gradient descent of a

cost function of error and effort, where the error in a muscle results

both from its stretch or shortening, corresponding to experimental

data [21,23]. The adaptable feedforward control was then

implemented as a radial basis function neural network (Fig. 1).

Our model does not attempt to reproduce the exact physiology

from cortex to muscles, but reflects important functional properties

that have been observed in sensorimotor learning. Notably, the

model reproduces the fact that sensorimotor adaptation is

generalized to neighboring movements [2,6,9]. This is produced

by using a radial basis function network with local activation fields.

Simulations systematically test whether the model reproduces

experimental results, and revisit representative psychophysical

studies of generalization in motor learning [2,3,24]. We simulate

generalization to a variety of movements with distinct dynamics

[2], and investigate learning for both fine grained force fields [3]

and multiple movements with lateral instability [24].

Methods: Novel Model of Human Motor
Adaptation

Motion control
Human joints are actuated by a redundant set of muscles, each

of which can only pull. The activation of these muscles produces

torques on the joint. Co-activation of antagonist muscles results in

the canceling out of the joint torques weighted according to the

moment arms. However, co-activation also contributes towards

increasing joint impedance as the impedance of each muscle

increases with activation [25], and impedance adds in all muscles

spanning a joint [26].

How do humans use these muscle properties to adapt to novel

environments? The observations of learning patterns in [20,23,27]

suggest principles of motor adaptation which we have previously

derived [21,22]. The first principle states that the motor command for

the M muscles involved in a movement, m:(m1 � � �mi � � �mM )T ,

is composed of a feedforward command u and a delayed feedback

command v (Fig. 1):

m~uzv: ð1Þ

Feedforward control is necessary to produce skillful movements in

the presence of instability and interaction forces despite delays in

the neural system. Feedback control, corresponding to the

restoring force of the muscles once a disturbance is present (i.e.,

v is defined by Equ.(1)), acts to stabilize motion. When the human

hand is slightly perturbed during arm movements, it tends to

return to the undisturbed trajectory [28] due to the instantaneous

effects of muscle elasticity, short and long latency stretch reflexes,

and involuntary visuomotor responses [29,30]. However, v is not

strictly equal to neural feedback, as descending feedforward

commands can modulate neural reflexes and other feedback

contributions to the overall motor response, and these feedfor-

Figure 1. Diagram of human motor control model with a radial-basis function neural network learning feedforward muscle
activation formulated in muscle coordinates.
doi:10.1371/journal.pone.0045075.g001
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ward/feedback interactions are likely to be highly nonlinear

outside of a local operating range.

In the multi-joint limb system, long latency reflexes do not

always inhibit the shortening muscles. Indeed, there are a variety

of studies which show excitation in response to muscle shortening

at delays within normal reflex latencies when stability is important

[31–34]. Furthermore, feedback responses on initial trials in novel

force fields also express this co-activation of antagonist muscles

[21]. Corresponding to this experimental data, for each muscle i,

feedback vi in Equ.(1) is an increasing function of both stretch and

shortening, with a larger slope for stretch. For simplicity we

assume that this function is linearly increasing in both directions,

i.e.

vi~ei,zzxei,{, 0vxv1, ð2Þ

where ei,z~maxfei,0g is the positive part and ei,{~({e)i,z the

negative part of the feedback error

ei~p(eizd _eei), p,dw0, ð3Þ

where

ei:lr,i(t{w){li(t{w) ð4Þ

is the difference of muscle length li to the reference length lr,i and

w is the delay of neural feedback. Through equation (3), we assume

that a filtered version of muscle length error (comprising the

change in muscle length and muscle velocity relative to an

undisturbed trajectory), is available to the CNS through afferent

feedback such as muscle spindles [35]. These muscular error

signals could arise either directly from the afferent feedback from

the muscles if the gamma motor drive contained information

about the predicted future state of the joint [36] or could arise in

the central system through comparison of the afferent feedback

with the predicted sensory consequences of the performed action.

Through equations (2–4) the two sides of the V-shape function

used for the learning law in [21,22] are now contained within the

feedback error signal used to drive the adaption. As a consequence

learning will now correspond to an extended feedback error learning

[12], able to deal with both adaptation of force and impedance in

a unified way. Although it is not required that such error signals

driving increased muscle activation in both agonist and antagonist

muscles also appears in the feedback motor output (stretch reflex

responses), there are many examples of such behavior in motor

control [32–34].

Minimization of error to keep stability with minimal effort
We assume that the feedforward motor command u depends on

positive activation parameters p~(p1, . . . ,pP). For example, if

u(p) is represented by a neural network specifying how the

feedforward motor command depends on the state of the limbs,

these parameters would correspond to the weights of this network.

u may be a linear function of the parameter vector u(p):Yp,

where the matrix Y can be a linear function of the state (e.g. in a

Perceptron neural network) or a nonlinear function (e.g. in a

Gaussian radial basis function neural network). The other motor

adaptation principles from [21] yield that motor learning consists

of adapting the activation parameters in order to minimize

movement error and effort, which we express as the cost function:

V (p):
a

2
vT vzc

XP

i~1

pi, a,cw0: ð5Þ

vT v is a cost for movement feedback error and
P

pi for the

activation, i.e. for feedforward activity and consequently imped-

ance.

We assume that learning corresponds to the gradient descent

minimization of the cost function Equ.(5), i.e. activation is updated

proportionally to the gradient of this function:

Dpk:pkz1{pk _~~{
dV

dp
, ð6Þ

where k is a trial index. The gradient descent update of cost Equ.(5) is

Dpk~{
dV

dp
~{a

Lvk
i

Lpj

� �T

vk{c

1

..

.

1

2
64
3
75

P

: ð7Þ

In Equ.(1) m should ultimately represent the environment to learn and

is thus assumed to be independent of p, i.e. Lmi=Lpj~0 V(i,j). Equ.(7)

then yields:

Dpk~a
Lui

Lpj

� �T

vk{c1, a,cw0: ð8Þ

The second term {c1 of Equ.(8), producing the same decrease

of activation in all parameters fpig, is minimizing the overall

activation and thus impedance in a subtle way. If activation j is

smaller than activation i, then pj is decreasing relatively faster than

pi. This enables learning law Equ.(8) to realize a winner-take-all

scheme selecting the activation directions that were increased most

from a
Lui

Lpj

� �T

v. In the initial trials, the feedback error is large and

most of the activation modification results from a
Lui

Lpj

� �T

v. Later

in the learning, optimization of impedance is performed from the

term {c1, producing a decrease of impedance in the directions

less activated, i.e. the direction of small impedance.

Let the motor command be of the form:

u(p):Yp, ð9Þ

where Y(s) is a matrix of possibly nonlinear functions of the state s
over some unknown state space spanning for example joint or

muscle position and velocity. This linear function of activity

parameters can be used to model many biological and artificial

systems, including the rigid body dynamics model of serial or

parallel mechanisms [37], nonlinear adaptive control [38], neural

networks (as shown below), force fields [39,40], time-varying and

synchronous muscles synergies [41,42] and linear superpositions of

differential equations [43]. Gradient descent of cost function

Equ.(5) yields then the learning law

Dpk:aY(s)T vk{c1, ð10Þ

where v(tzw) compensates for the feedback delay. Sensitivity

analysis of the algorithm [22] has shown that that the model is
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robust to long delays up to 200 ms and exhibits how the learning

parameters influence performance. Note that the update of each

activation parameter depends only on the error, and is indepen-

dent on the other activations, i.e. no explicit dependence between

the activations is needed to regulate endpoint force and impedance

with the coupled and highly nonlinear dynamics of the redundant

neuro-muscular system.

We recognize in Equ.(10) the term aYT v of feedback error

learning [12] or traditional nonlinear adaptive control [44].

However, this relation is now in muscle space instead of non-

redundant joint or hand space for adaptive control. This

formulation means that stochastic deviation from the mean

trajectory over consecutive trials results in increasing co-activation,

and thus impedance, providing improved control [22]. In

addition, while adaptive control is only concerned about

identifying parameters that ensure the best tracking of the desired

trajectory, the novel algorithm concurrently minimizes activation

(Equ.(5)).

With the asymmetric V-shaped feedback error Equ.(2), this

adaptation law can be decomposed as:

Dpk~aYT ek
zzaxYT ek

{{c1

~
a

2
(1{x)YT ekz

a

2
(1zx)YT Dek D{c1,

ð11Þ

where

DeD:(De1D, . . . ,Dei D, . . . ,DeM D) ð12Þ

is defined component-wise. It was shown in [21] that a deviation to

one direction is compensated for by a force in the opposite

direction in the next trial, hence xv1. In this representation, the

first term in e produces a force opposed to the error, i.e.

compensates for systematic error, the second term in DeD increases

co-activation in response to deviation, i.e. increases stability, and

the third term {c1 removes superfluous (co-)activation. There-

fore, the adaptation of Equ.(10) (or Equ.8) concurrently decreases instability,

movement error and effort.

The first term of Equ.(11) produces a modification of reciprocal

activation, and corresponds to the force regulation algorithms of

nonlinear adaptive control [44], iterative learning control [45],

and previous models of motor learning [12,13,38]. The other

terms tune the co-activation in all antagonist muscles groups, i.e.

our scheme is extending these algorithms to simultaneous

regulation of force and impedance. Recent robotic implementa-

tions of this controller [46,47] have demonstrated its efficiency to

producing an adaptive motor behavior with force and impedance

tuned to the environment.

RBF neural network feedforward model
As the neuromuscular system has to perform a range of

movements in the dynamics of unknown environments, we model

the feedforward command u in Equ.(1) as a mapping which will be

adapted during motion. We represent this mapping as a radial-

basis function neural network described by (Fig. 1):

u~Wy,

y~(y1,y2, . . . ,yN )T , yj(s)~exp
DDs{sj DD2

2s2
j

" #
:

ð13Þ

where W:(wij) are the parameters or weights of the neural

network which are adapted during learning. y(s) are Gaussian

functions representing N neurons, with the state space vector as

input, whose components are both position and velocity: s:(q, _qq).
Each neuron yj is characterized by its centre sj in the state space

and its activation field sj .

To derive the learning law, we first need to set the neural

network of Equ.(13) in the format of the linear model of Equ.(9):

Wy~u:Yp, W~(wij), ð14Þ

thus

Yp~

y1 0 0

y2 0 0

..

. ..
. ..

.

yN 0 0

0 y1 0

0 y2 0

..

. ..
. ..

.

0 yN 0

..

. ..
.

P
..
.

0 0 y1

0 0 y2

..

. ..
. ..

.

0 0 yN

2
6666666666666666666666666666664

3
7777777777777777777777777777775

T
w11

w12

..

.

w1N

w21

w22

..

.

w2N

..

.

wM1

wM2

..

.

wMN

2
6666666666666666666666666666664

3
7777777777777777777777777777775

:

Using this identity, it can be shown that the learning law Equ.(10)

yields

Wkz1~WkzDWk,Dwk
ij~avi yj{c: ð15Þ

To assign neurons to a group of data, we use a simple

unsupervised learning algorithm called K-means [48,49], which

minimizes the sum of the square distances to the neurons centers:

D~
XK

c~1

X
sj[zc

(sj{n c)2, ð16Þ

where K is the number of clusters, zc the vector of clusters where

each cluster is assigned a centroid nc which is the mean point of

neurons centers fsjg in this cluster (Fig. 2).

Results: Simulation of Generalization in Force and
Impedance Learning

The above model was used to simulate representative general-

ization experiments from the literature [2,3,24] and test hypoth-

eses on motor adaptation formulated in these papers. The

simulation used the two-joint six-muscle biomechanics structure

of [22]. Multijoint arm movements with minimal jerk hand

trajectory were used for the simulations of the next two

paragraphs. For the simulation of movements with lateral

instability requiring the variability of human movements, free

movements from [24] were used. The difference from the mean

trajectory was used as motion error for on-line control as detailed

Generalization in Adaptation to Unstable Dynamics
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in [18]. Learning was performed in various force fields as

described below. The computation steps are summarized in

Table 1.

Muscle elasticity, neural feedback and signal dependent noise

were modeled using the physiological parameters described in

[22]. A feedback delay w~100 ms was assumed. To initialize the

neural network by assigning centroids to the clusters in the task

space, the k-means algorithm implemented in Matlab (the

Mathworks Inc.) was used. For all experiments, the number of

neurons was allowed to vary between 3 and 80, and the algorithm

was initialized with 20 neurons. 2000 iterations were performed

yielding 22–40 neurons in the experiments of this study.

The K-means algorithm assumes that the number of clusters K

is known and there is an initial guess of the centre of each cluster.

The conventional K-means clustering algorithm can in general

only achieve local optimization to a solution that depends on the

initial locations of cluster centers. Therefore, we let the algorithm

run a number of times with the cluster centers at different

locations, and selected the locations with minimal D. After

calculating the number and centers of neurons, the activation

fields of all neurons fsig were chosen to include all data within the

cluster, and are multiplied by a positive scaling factor such that the

Gaussians of adjacent neurons overlap and ensure a smooth

transition across data. Fig. 2 illustrates how the K-means algorithm

clusters data from two straight line movements separated by 35u,
using joint positions (as is used in Section ‘‘Impedance learning in

multiple movements’’).

Movement generalization
Generalization of dynamical learning to different movements

was demonstrated by [2]. The experiment involved adapting to a

velocity dependent force field VF (Fig. 3A) defined by:

Fx

Fy

� �
~

{13 {13

{13 12

� �
_xx

_yy

� �
N: ð17Þ

One group of subjects learned the VF by performing reaching

movements to randomly selected targets in 8 directions separated

by 45u, after which the transfer of learning to a circular movement

in the same force field was investigated. A second group directly

learned to perform circular movements in the VF. Both groups of

subjects exhibited similar abilities to deal with the dynamics

despite different training regimes. Moreover, after effects from the

adaptation were similar for both groups [2].

In order to simulate the experiment by [2], the RBF network

was first initialized in the interaction free condition using joint

position and velocity data from eight 12 cm-long movements

spanning a range of 360u and a 10 cm radius circle. Both reaching

movements and circular movements had duration of 300 ms. This

neural network was then used to simulate the learning of

movements.

Results of learning with 100 reaching movements in the eight

directions are shown in Figure 3B. In before effect trials, i.e. initial

exposure to the force field (yellow), movements diverge according

to the force field. After adaptation to the external dynamics (cyan)

movements become similar to those in NF. After-effects trials

(magenta) slightly deviate opposite to the before effects trials,

confirming the development of a learned compensation for the

force field [1].

Figures 3C–H show similar results as in [2]. In the free

condition, the simulation is able to make circular movements

(Fig. 3C) which are disturbed when the force field is introduced

(Fig. 3F). After training, the simulation is able to make undisturbed

circular movements in the force field (Fig. 3G). Fig. 3D shows the

effect of removing the VF after learning. The flattened circular

after effect illustrates the learned feedforward control. Interesting-

ly, similar results are obtained when the dynamics of the force field

are trained with reaching movements rather than circular

movements, corresponding to the first group of subjects in the

human experiment. Fig. 3H shows the path after learning and

Fig. 3E the after effects.

Figure 2. Illustration of data clustering for a two-dimensional
joint space using K-means algorithm (as described in the
‘‘Novel model of human motor adaptation’’ section). The two
paths correspond to the movements of Section ‘‘Impedance learning in
multiple movements’’ (however the simulations of that section are
done with a neural network over a four-dimensional state space
(q1, _qq1,q2, _qq2)).
doi:10.1371/journal.pone.0045075.g002

Table 1. Operations used at each time step to simulate the
human arm learning a force field.

Function Algorithm Description

Computation of motor lr~lr(tzDt) new reference
length

command in the CNS u~W y(l, _ll) feedforward
command

e~lr{l tracking error

e~p(ezd _ee) sliding error

v~ezzx e{ neural feedback

Arm musculature w~k(ezkd _ee) visco-elasticity

m~f(uzv)zw muscle tension

F~F(x, _xx) force field

JT
mm~JTY(q, _qq,€qq)zJT F motion integration

Learning in the CNS Wnew~WzayvT {c1 feedforward
update

Details and variables definitions can be found in the paper and in [22].
doi:10.1371/journal.pone.0045075.t001
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The circular deformation can be examined from the ratio

between the horizontal and vertical axes (the numbers in the top

corners in the panels of Fig. 3C–H). Movements in the VF after

learning either along the circle (H) or the reaching movements (G),

exhibit a ratio of approximately 1, as in the free condition (C).

Initial trials in the VF (F) have ratio v0.8 showing the vertical

elongation, while all after-effects have ratio w1.2 whether learned

along the circle (D) or in reaching movements (E). This

demonstrates a transfer of learning from the reaching movements

to the circle, and illustrates that the feedforward control learned by

performing reaching movements in VF is valid for different

movements requiring distinct dynamics, i.e. the generalization property

of the model.

Figure 3. Simulation of transfer of learning to other movements as in [2] (compare with Fig. 4 of [2]). Learning directly on a circle
(C,D,F,G) or training reaching movements in all directions (B,E,H) results in similar performance and after effects. A: Velocity-dependent force field. B:
Reaching movements in eight directions show early learning trials in the force field (yellow), late learning trials in the force field (cyan), and after
effect trials when the force field was removed (magenta). C: Circle drawn in the null field before the simulation experiences the force field. D: After
effects of adapting to the force field directly while making circles. E: Transferred after effects from learning the force field with reaching movements
(as shown in B) to circular movements. F: Circular movements performed by the simulation during the initial unexpected exposure to the force field
before learning. G: Circles drawn after adaptation to the VF directly by making circular movements. H: Transferred learning from reaching movements
in 8 directions (as shown in B) to the circular motion. The number in the top right of each panel C-H indicates the ratio of horizontal to vertical axes of
the drawn circle.
doi:10.1371/journal.pone.0045075.g003

Generalization in Adaptation to Unstable Dynamics
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Granularity of the feedforward model
Thoroughman and Taylor [3] investigated how much of the

complexity of force fields can be learned. Subjects made reaching

movements in 16 directions from 0u to 337.5u separated by 22.5u
while the robotic arm disturbed the hand in increasingly variant

velocity dependent force fields VF1, VF2, VF4, described by:

Fx

Fy

� �
~{15

ffiffiffiffiffiffiffiffiffiffi
_xxz _yy

p { sin (lw)

cos (lw)

� �
, w~ arctan

_yy

_xx

� �
ð18Þ

where l~1 for VF1, l~2 for VF2 and l~4 for VF4, the force is in

N and the velocity in m/s (Figs. 4A). The experimental results

showed that learning was possible for fields of various complexity,

though the most complex field was not learned as well as the other

two. A neural network model with adjustable size of activation

fields was shown to account for these results, and it was thus

concluded that the brain coding may adjust the size of the

activation fields as the field complexity (how quickly the forces

change in state space) increased.

In our simulation, 12 cm long movements of duration 300 ms

were made to targets which were randomly presented in one of the

16 directions. 80 free movements were first performed followed by

160 movements in either of VF1, VF2 or VF4. The neural

network was created with both position and velocity input data for

all 16 directions of movements. The number of neurons and their

corresponding activation fields were identical for adaptation to all

three force fields. The force field defined in Equ.(18) was

implemented with movements randomly simulated towards each

of the 16 targets.

Results of our simulations show that the controller was able to

learn the dynamics in all three force fields, but did not produce

similar learning in VF4 as in the other two fields. Fig. 4D exhibits

large deviation of the after-effects in VF1 and VF2 relatively to

learned movements, providing evidence for a modification of the

feedforward control, however there was little deviation in VF4.

Furthermore, the learned feedforward command can efficiently

reduce the effect of the respective dynamics in VF1 and VF2

(Fig. 4C), while in VF4 the trajectories after learning do not

deviate much from the before-effects. Quantitative analysis of the

learning is provided by the correlation of the velocity time series

between free movements in all directions and respective move-

ments after learning in VF1, VF2 and VF4. The correlation was

computed as in [1] and smoothed using a 20-movement moving

average. We see in Fig. 4B that the movements in VF1 and VF2

become increasingly well correlated with the free movements. In

VF4 the correlation evolution is more volatile. It also increases but

remains below 0.9.

In summary, the simulation yields similar results as in the

experiment of [3]. That is, our model reproduced all of the major

features of the experimental results, without varying the neural

coding from one environment to another. Specifically, all three

force fields were learned by the simulation, however the most

complex environment (VF4) was not learned as well as the other

two, exactly as found by the experimental results. This suggests

that there are clear limits in the ability of this internal model in

learning fine granularity of changes in the external environment.

Thus a single neural coding was able to produce a feedforward

activation model able to deal with the fine granularity of all three

external environments. In contrast to the interpretation of [3], it

was not necessary to modify the size of the neural activation fields

which code the feedforward activation model in order to match

the force field spatial complexity. However, agreeing with the

experimental results [3], the approximation property of the

internal model was limited, such that VF4, with its fine

granularity, could not be learned well. Together the simulation

and experimental results indicate a clear tradeoff or interference

between the generalization of the learned model (how well

learning at one point can be used to nearby state spaces) and

the specificity of the internal model (how fine grained the learned

force compensation could be).

Impedance learning in multiple movements
While many studies have examined the generalization functions

of adaptation to stable environments, e.g. [1–3,8], almost all

studies examining adaptation to unstable dynamics have focused

on a single movement direction [23,50–52]. Recently, we

examined adaptation to two separate movements, separated by

35u, to unstable environments oriented perpendicular to the

direction of each movement [24]. The results showed that subjects

were able to learn to selectively increase endpoint stiffness in each

movement only in the direction of instability and switch between

these on a movement by movement basis. Therefore in order to

test the capability of our model for impedance learning and

unstable tasks we simulated the task of [24]. In that experiment,

subjects performed reaching movements with lateral instability to

any of two targets separated by 35u. Lateral instability was

produced by a position-dependent divergent force field (DF) of the

form:

F\

FDD

� �
~

300x\

0

� �
ð19Þ

where F\ and FDD indicate the components of the force applied on

the hand (in N) normal and parallel to the straight line from start to

end points, respectively and x\ is the lateral deviation of the hand

from this straight line. A virtual safety barrier was implemented

when the hand deviated by more than 5 cm from the straight line

between start and finish points, consisting of large damping

replacing the negative stiffness of Equ.(19). There was no force

field inside the (2.5 cm diameter) start and end circles.

We simulated 600 ms long point-to-point movements from

(0,31) cm relative to the shoulder to either (0,56) cm (called D1), or

(14,52) cm (D2), which were randomly intermixed (Fig. 5). The

simulation results of hand trajectories and endpoint stiffness during

adaptation to DF are similar to experimental data [24]. The model

was able to adapt to the instability in both D1 and D2 directions

simultaneously. Initial trajectories deviated to either the right or

the left of the straight-line trajectory (Fig. 5A), but with adaptation

the model produced nearly straight movements to the target

similar to free movements (Fig. 5B). Stiffness was computed from

the muscle activation as described in [18] which incorporates

contributions to endpoint stiffness from both the feedforward and

feedback components of muscle activation.

Figure 5C shows the endpoint stiffness ellipse after learning in

DF relative to the free condition. After learning in DF stiffness

increased in size for both D1 and D2 movements, and the stiffness

ellipse elongated in the respective direction of instability as was

found in experiments [24,50]. Note that while in NF the stiffness

was already elongated lateral to the movement direction, however

in DF the increase is much larger in the lateral movement

direction as along the movement direction, compensating for the

force field instability.

These results show that our model is capable of learning to

perform multiple movements with lateral instability, as is required

in many tasks with tools, e.g. carving. Similar to the human

experimental results, the simulation learned a behavior needing
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minimal force and impedance, resulting in a stiffness ellipse

elongated in the direction of instability and compensating for it.

Force and impedance required for each movement could be

learned easily, without interference with other movements, as was

found experimentally [24,53,54].

Discussion

This paper introduced a model of human motor adaptation able

to learn multiple movements in stable or unstable dynamics, and

to generalize this learning across state space, extending the

learning formulation of [21,22] to multiple movements and

generalization. In this novel version of the algorithm, adaptation

arose from the gradient descent minimization of a cost function

Figure 4. Simulation of reaching movements in force fields of increasing complexity as in [3]. A: Velocity dependent force fields VF1, VF2,
VF4. B: Evolution of correlation between velocity profiles of movements in VF and the NF during learning. C: Movements performed before learning
(in yellow) and after learning (blue) in the force fields. D: Movements after learning (blue) and during after effects trials (magenta) (where the force
field is removed after learning).
doi:10.1371/journal.pone.0045075.g004
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corresponding to feedback and feedforward muscle activation. A

mapping from state space to muscle activation coded in a radial

basis function network was gradually identified during movements,

yielding a model of feedforward control valid in this state space.

Previous models based on iterative control or adaptive control

algorithms [7,8,12–16] predicted the evolution of force, but did

not consider motor output variability and could not adapt to

instability as they did not have a mechanism to adapt impedance.

Furthermore, these models - when perturbed by a velocity

dependent force field - predict only an increase in the activity of

the stretched muscle, with no increases in co-contraction such as

found experimentally [20,27,55,56]. On the other hand, our

model predicts the appropriate changes in both the stretched and

shortened muscles resulting in increases in co-activation due to any

perturbing inputs to the limb. Models based on optimization

[10,11,57–62] compute the coordination of processes, muscles and

limbs in one step, yielding only the post-learning optimal behavior.

In contrast, our algorithm is able to predict the trial-by-trial

changes of muscle activation, which may predict distinct behaviors

resulting from convergence to local minima or to bifurcations [63],

and is critical for use in neurotechnology applications such as

neural prostheses.

A major conceptual difference from our previous work [21,22]

is the incorporation of the V-shaped function, which gives rise to

simultaneous changes in impedance and force, into the neural

feedback command. The new model proposed here uses neural

feedback as a V-shaped function of kinematic error, providing

increased feedback co-activation in response to perturbations. This

modified neural feedback corresponds to the results of several

studies that have illustrated that when stability requirements are

important, perturbations of the limb give rise to increases in the

muscle activity of both the stretched and shortened muscles [31–

34]. Incorporating the V-shaped function into the feedback

command enabled us to form a cost function of the feedback

and effort. Gradient descent on this cost function gives rise to an

adaptation law that can be used for a variety of motor primitives,

such as muscle synergies, physical models, neural networks and

linear families of differential equations. The new algorithm

extends feedback error learning [12] in that both force and

impedance are adapted simultaneously, using an adaptation law

that corresponds to observed experimental changes in muscle

activation.

The simulations of multijoint movements in this paper, together

with the results from [21,22], demonstrate the efficiency of this

nonlinear adaptive controller. The algorithm derived and imple-

mented in this paper learned to perform movements in any

direction in either stable or unstable dynamics despite motor

output variability. Moreover, it was able to generalize from one

movement to another, and converged to suitable force and

minimal impedance behavior. This novel computational model

learns to coordinate motor commands without requiring any

inversion or any model of the actuators. It can be applied in

iterative control along a single movement [22] or on a periodic

trajectory, to identify the parameters of a known dynamic

structure in the sense of adaptive control [44,64], or to learn

muscle synergies or unstructured dynamics with a neural network

(as was shown in this paper).

These characteristics of the ‘human controller’ are very

attractive for robotic systems interacting either with the environ-

ment or with humans. To our knowledge, there exists no previous

robotics algorithm that is able to control force and impedance and

acquire stability. Some of the possibilities of this learning controller

have been demonstrated in recent implementations with a seven

degrees of freedom industrial robot and with a novel variable

impedance actuator [46,47]. This controller can be easily

implemented on a robot providing an automatic adaptive motor

behavior that learns stable performance in interaction with the

environment with the appropriate force and impedance [46,47].

An interesting feature of human learning is that impedance is

increased with any movement error [65]. Therefore, in presence of

any perturbation, the controller first increases impedance, making

the control robust, before adapting the force in order to perform

the task successfully while relaxing impedance.

From the neurophysiological point of view, the simulation

suggests that to compensate for external dynamics, the sensori-

motor control system needs to consider the limb state in order to

compute the appropriate feedforward motor command. The

computational model was able to predict the generalization

patterns observed during learning of multiple movements by

humans [1,3,24], and across movements requiring different

dynamics [2]. It predicted correct patterns of force, impedance

and muscle activations in multiple directions [24] and in various

dynamic environments [22]. Compared to experimental work [3],

the model also found similar limitations in the granularity of

dynamic environments that it was able to compensate for.

However, in contrast to the analysis of [3], our results suggests

that neurons are not required to adapt their activation fields in

order to reproduce the experimental results.

Figure 5. Learning movements to multiple directions in unstable dynamics. Initial trials in the divergent field for both D1 and D2 (A) and
movements after learning 300 trials (B, D1 in blue and D2 in red). C: Stiffness ellipses fKx=DxDg (where K is the 262 endpoint stiffness matrix [22])
before (dashed line) and after (solid line) learning in D1 (blue) and D2 (red).
doi:10.1371/journal.pone.0045075.g005
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As currently specified, the algorithm adapts to the environment

through learning of the appropriate feedforward motor command.

However, sensorimotor learning does not occur purely through

adaptation of the feedforward motor command, but also through

the modulation of the feedback responses, tuning them to the

environment (see [66,67] for reviews). That is, the gain of the

feedback responses have been shown to modulate early in learning

[55], after adaptation to stable [55,68] and unstable dynamics

[52,69], and depending on the relevance of the perturbations to

the overall task [30,34,70]. Such changes in feedback control are

not explained within our current algorithm which focuses purely

on the learning of the feedforward motor command.

In summary, the model described in this paper is an elegant

solution to motor adaptation, relying on biologically plausible

signals and resulting in skillful motor behavior. The novel

algorithm, without an explicit model of either the impedance or

the force, learns in a single process the time-varying motor

commands that result in the appropriate force and tuned

mechanical impedance. The properties of motor generalization

and dynamic coupling between the muscles emerge through the

learning process.
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