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Analysis of Go-Back-N ARQ in Block Fading Channels
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Abstract— This work analyzes the throughput of Go-Back-N
(GBN) in block fading, a model frequently used for slow fading
wireless channels. We devise hidden Markov models and block
transition probabilities for the block fading channel, allowing us
to calculate the throughput of GBN with reliable feedback, as well
as unreliable feedback. The advantages of this approach include
generality: it applies to two-state as well as multi-state models for
forward and reverse channels. Also, the results for both reliable
and unreliable feedback are expressed in terms of probability
matrices, which can be used as convenient building blocks in the
analysis and simulation of larger systems. Simulations verify our
analysis.

Index Terms— ARQ,
throughput.

block fading, Go-Back-N protocol,

I. INTRODUCTION

O-Back-N (GBN) protocol is one of three basic ARQ

schemes, which are widely used in packet communi-
cation systems. In this paper, we compute the throughput of
GBN in fading wireless channels.

A brief summary of past works related to this area is as
follows. Several studies [1]-[4] have modeled the wireless
channel as a finite-state Markov process. The performance
of GBN under Markov errors has been reported in [S]-[8].
These works either assume error-free feedback or use a two-
state Markov model in both forward and backward channels.
Part of our contribution is to relax both these assumptions.
Turin [9] calculates the throughput of GBN under a hidden
Markov model (HMM), by transforming the parameters of the
HMM in a way to make the analysis tractable. He also assumes
bit-reversal errors (instead of erasures) in the feedback link.

This work studies GBN under block fading, a popular model
for slow fading channels [10]. The key challenge for analysis
under block fading is that the instantaneous channel condition
does not by itself represent the history of the channel. One
must also know the relative time index within the fading
block. Thus simple models, such as a two-state time-invariant
Markov model, cannot be used. To make the analysis tractable,
in the case where the feedback link is reliable, we develop
a multi-state, cyclo-stationary hidden Markov model for the
channel, and use the method of Turin [9] to analyze it.

‘When the feedback channel is unreliable, one must construct
a composite channel for the purpose of analysis. To manage
the complications arising in this task, Turin [9] assumed bit-
reversal errors for the HMM channel, thus an error in the
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feedback link would convert ACK to NACK and vice versa.
This assumption simplifies the analysis, but unfortunately it
departs from common practice. Modern packet communication
systems use CRC to detect any errors, and erroneous packets
are discarded (erasure). More importantly, the bit-reversal
can lead to problems in the GBN protocol itself: In GBN,
the receiver processes frames in a certain order. If a frame
is erroneous, the receiver will send a NACK and reject all
subsequent frames until the missing frame is received. Now if
the NACK turns to ACK by the time it reaches the transmitter,
the corresponding frame will never be re-transmitted and the
protocol will go into deadlock. Also, because the transmit-
ter has received an ACK, this deadlock cannot be resolved
through a timeout.

We are able to address erasure errors on both the forward
and reverse link by using block-transition probabilities. To
prevent deadlock when a NACK is lost in transition, we use
a time-out mechanism as in [7], [8]. Simulations confirm the
validity of our result in a variety of scenarios.

To summarize, in this work we (a) characterize block fading
via a nonstationary hidden Markov model, (b) include erasure
errors in both directions, and (c) analyze GBN with timeouts
under this scenario, which is more realistic than the previous
works. A key contribution of this work is to unify all these
factors under one umbrella and provide analysis for GBN in
block fading channels, which was not available previously.

II. BLOCK FADING AND HIDDEN MARKOV MODELS

We denote by Y; the discrete-valued random variable rep-
resenting channel quality at time ¢, taking values from the set
Y ={1,2,...,K}. At any given time ¢, the observation of
this channel (error or no error) is characterized by a Bernoulli
random variable X; taking values over X = {0,1}. The
probability of error is defined as ¢; = Pr[X; = 1|Y; = j].
Error probability is thus a function of channel quality. If Y; is a
Markov chain (with states ) and transition probability matrix
P), then X, will be a hidden Markov chain characterized by
{V,X,P,e}.

The hidden Markov model can describe a number of
physical channels, for example the fading wireless channel.
However, for slow fading, often the block fading model is
used, where the channel condition does not transition every
time, but only once every N time intervals. Thus, the transition
probabilities of the channel are not time-invariant.

To cast the problem once again in the framework of hidden
Markov processes, we need to expand the state space. In
particular, let the time index inside a block be represented
by the index n taking values over N' = {1,..., N}. Then
the expanded state space is defined as the Cartesian product
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s = (n,j) taking values over S = N x Y. The transition
probabilities between the states are as follows. For i,5 € )V
andn=1,2,---N—1

P’I"[St = (m7l) | Si—1 = (ﬂ,j)}

1, fm=n+landi=j
= . (1
0, otherwise

Fori,jeYand n=N
P’I’[St = (m,l) | St—l = (nmjﬂ

rﬂﬁzﬂﬁﬂzﬂ,ﬁmzl

@)

0, otherwise

Then S; is a Markov chain whose state transition matrix we
denote with M. To write the state transition matrix, we need a
linear ordering of the states. The ordering does not affect the
outcome of analysis, therefore we assume an arbitrary ordering
and, with an abuse of notation, show it with the same symbol
s =1,2,..., NK. In each state s the channel will have an
error probability that we denote with £,, and the vector of all
such probabilities is denoted with €.

For our examples we concentrate on the simple case where
Y has only two values, representing the good and bad fading
situations. The state transition diagram is shown in Fig. 1. For
clarity the states are labeled {G1, By, ...,Gn, By}, where G;
and B; represent the channel in a good and bad fading state,
respectively, and the relative time index within fading block
is 4.

Thus we have arrived at a hidden Markov model described
by the quartet {S, X, M, e}, where € is a vector of er-
ror probabilities in all (hidden) states. For the purposes of
analysis, however, it is more convenient to use an alternative
representation of the Markov chain that combines the last
two parameters into one (set of parameters), following the
formulation of Turin. In the special case of Bernoulli obser-
vations, the formulation is as follows. Let A; = diag{e} and
Ay =1 — A;. Define M; = MA,; for i = 0,1. Then the
HMM is fully specified with {S, X', My, M;} [9]. Note that
M = M, + M;. A similar construction is possible for larger
observation alphabets, leading to more M; matrices.

III. GBN THROUGHPUT ANALYSIS

We assume the source always has data to transmit, all
frames have the same length, and it takes one time slot to
transmit a frame. The round trip time is k, i.e. between
the time a frame is transmitted and its acknowledgment is
received, k — 1 more frames are sent. Thus, if a NACK for
the frame transmitted at time ¢ is received, the frame will be
retransmitted at time ¢ + k.

A. Reliable Feedback

Using the setup constructed in the last section, the through-
put of GBN with reliable feedback can be calculated for any
set of channel qualities and any block length, in a manner
following [9]. For example, consider block fading of length

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 8, AUGUST 2007

1-q

Fig. 1.
qualities.

The state transition diagrams of block fading with two channel

N = 3 and two channel qualities (good and bad). Once every
3 time intervals, the channel quality is updated according to
the transition matrix

l1-q¢ ¢ ] 3)

P:{ r 1—r

where the first row and column corresponds to the good
channel condition, and the second row and column to the bad
channel condition. Now, for a Markov system that transitions
every time interval, using (1) and (2), the state transition
probability matrix will be

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

M = 0 0 0 0 0 1

1—gq q 0 0 0 0

| T 1—7r 0 0 0 0
_fop I
P 0

The error probability is equal to €g and ep for the
states corresponding to the good and bad channel quali-
ties, respectively. The vector of error probabilities is € =
[ec eB eg B €¢ € |. The diagonal matrices of the state error
and success probabilities are A1 = diag{e} and Ag =I—A;

Finally we have {S, X', M, M } as a HMM channel where
My = MA,and M; = MA;. Notice that the state transition
probability M is periodic with period N so the limiting
state probabilities do not exist [11]. However, the stationary
probabilities can be found by solving the following system of
equations.

asM=7m and wl=1 “

where 1 is a column vector of ones. The channel is error free,
therefore we have

n=m[I-MQk)] ‘Mol )

where k is the round trip time, I is an identity matrix and

Q(k) = Y1y M.
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B. Noisy Feedback

As described in [12], if forward and backward chan-
nels are independent and subject to hidden Markov er-
rors, the composite channel can also be described by
a HMM model. Let {S(), x( M’ M} and
{S®) x®) Méb), Mgb)} be the forward and backward chan-
nels respectively. Then, the composite channel is characterized
by {S, X, ].\/_[007 M()l, Mlo, Mll} where S = S(f) X S(b),
X = XU x Xx® and each of the observation probability
matrices is described by a Kronecker product, i.e, M;; =
MZ(»f) & M;b) for 7,7 = 0, 1. In this context, X; = 00 means
both channels are good while X; = 01 means the backward
channel is erroneous. Note that M = Mgy + Mg, + M1 +
M11~

As mentioned earlier, [9] assumed bit-reversal errors in the
feedback channel, which leads to serious difficulties. Thus we
will assume feedback errors resulting in erasure. To prevent
deadlock, we assume a timer mechanism is used as in [7].
Moreover, due to the nature of GBN, receiving ACK or
NACK for the ith packet means all previous packets have been
correctly received.

The GBN protocol is followed similar to, e.g., [8]. The
timer is set when a frame is (re)transmitted. If the timer
expires before any acknowledgments are received, the frame is
retransmitted together with all the succeeding frames. So, the
timeout (7") has to be greater than or equal to round trip time
(T' > k). Erroneous ACK/NACK (erasures) are ignored. If
an erased feedback were ACK, the message can be implicitly
acknowledged by subsequent ACKs or NACKs. If it were a
NACK, the transmitter waits until timer expires.

Let us first consider the special case T = k. When
the acknowledgments are decoded incorrectly, the timer has
expired and the message will be retransmitted immediately.
Therefore, the discarded ACK or NACK will have the same
effect as NACK correctly received. So we have

M, =
M, =

Moo
Mo + Mg+ M =M — My

We can use (5) to find the throughput in this scenario of
T = k. Next consider the case T > k. Define d = T'—k so that
d is the maximum number of lost ACK before timer is expired.
Then, the transmitter can be represented by a finite state
machine with 7'+ d + 1 states, in state 0 an ACK is correctly
decoded. States L1, Lo, ..., Ly correspond to 1,2,...,d lost
ACKSs respectively. Finally in states W;,5 = 1,2,...,T the
transmitter is in the waiting period for timeout or feedback.
Let Z =10, Ly, La,...,Lg, Wr,..., W1} represent the set
of all states. The block transition probabilities of these states
can be given as follows.

For Zt—l = 0, W1

Mpyg, if£=0
My, ifl =1,
PT‘[Zt :f|Zt,ﬂ = 1\/[117 lfKZWT (6)
Mg, ifl=Wy
0 otherwise
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For Zt,1 = Ll, Lg, ey Ld,1
Moy, if =0
].\/_[017 if £ = LjJrl
PT‘[Zt :é‘Zt,1 :Lj] = M11> iffZWT_j (7)
Mg, if =Wy
0, otherwise
For Z;,_1 = Ly4
Moo, if =0
P’I"[Zt :é‘Zt,1 :Ld} = 1\/[—1\/[007 lfKZWk (8)
0, otherwise

For Zt,1 = WT7...’WQ

M, ifl=W;_
0, otherwise

P?"[Zt = £ | Zt—l = W]} = { (9)

Let T be the block transition probability matrix and 7 =
[0 ML, TLy.--TL, Twy --.Tw,| be the stationary vectors.
Then the stationary vectors can be obtained by solving the
following system of equations.

7T =7 and E T =T
ez

(10)

Where 7 is the stationary probabilities of M given in (4).
The throughput of GBN protocol is given by

{7To+(7TL1 +27TL2+"'+d7TLd)(M00+M10)}1

d
{Wo + (Z i7TLi> (Moo + M1o)} 1

i=1

’]’I:

1)

Let’s consider an example of k = 5 and 7" = 7 as in [§].
So there are 10 states, Z = {0, Ly, Lo, Wry,--- , Wi} in
the finite state machine. Denote the composite channel with
{S, X, Moo, ].\/_[017 Mlo, M11}~ From (6)-(9), the block
transition probability matrix will be

Moo Mo 0 Mn 0 Mio 07

Moo 0 Mo 0 M Mio 0

Moo 0 0 0 0 M—-My - 0

0 0 0 0 M 0 0

T = 0 0 0 0 0 M 0
0 0 0 0 0 0 Y |
Moo Mo 0 M 0 Mo oo 0

The stationary probability vectors are calculated from the
following system of equations
(mo + 7L, + 7L, + Tw, ) Moo
(mo + 7w, )Mor
L, = 7, Mo

o =

7TL1 =

mw, = (mo+ mw,)Mi1

Twe = @, M1+ 7w, M

mws = (mo+ 7L, +mw,)Mio + 7L, (M — M)
+mw, M

w, = 7Tw; M, j=4,3,2and1

12)

Sw o=

ez
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Substitute pp = mo + 7wy, . After some algebra, the following
equation yields .

#{I+M01 + M(2)1 +Mi + MMy + MM
+ {Mw + Mo My + Mg, M — Mg, Moo

+M01M11M+M11MM:|Q(]€)} =T (13)

Where I is an identity matrix and Q(k) = Zf

the first three equations of system (12), we have

"~ M. From
mo = (Moo + Mo1 Moo + Mo1Mo1Moo)

1Mo

L, = kMo Mo

7TL1 =

Finally substituting 7y, 7, and 7z, into (11) will give the
throughput of GBN protocol.

IV. RELATIONSHIP WITH RENEWAL REWARD THEORY

The technique of renewal reward processes [13] has been
used in [8] for the analysis of Go-Back-N in simple two-state
Markovian channels with unreliable feedback. In this section,
we examine the relationship of our analysis to the renewal
reward method. Our methodology is, in a sense, equivalent
to a generalization of renewal reward methods from scalar to
matrix form.

Denote by R(7) the number of correct receptions up to a
time 7, which in our case is the reward. From a fundamental
theorem of the renewal reward processes, we have

R(r) _ E[R]

li = —
A 7 ED]

where E[D] is the average cycle duration from one state to
the next. In [8], the calculations for a Markovian channel are
made by calculating reward and delay transition matrices.

In our case, we are analyzing a nonstationary block-fading
channel, therefore using the renewal reward method in the
manner of [8] is not straight forward. Using our previous
developments, we note that our transition probabilities are
calculated for one transition per time interval, therefore in
our case E[D] = 1. We can now calculate the average
reward using the earlier developments. We demonstrate the
calculations for the special case of 7' = k. Using the same
notation as before, let Z = {0, Wr,..., Wi} represent the
set of all states. Then:

My, M; 0 0 07
0 0 M 0 ... 0
0 0 0O M ... 0
Tt Nx(+1)N =
0 0 0 0 M
M, M, 0 0
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Fig. 2. Throughput, 1, vs. ¢ :analytical and simulation results for » = 0.3,
eq=0.2,ep=08and N =1,2,3.

Now we construct the reward matrix.

1 0 0 ... 0

1 00 ... 0 1 1
RN x(k+1)N = | 9 :

1 0 0 ... 0 LR NxN

where ® denotes the Kronecker product, and the matrix R
essentially says that a unit reward is collected whenever a
correct acknowledgement is received. The average reward can
be calculated as:

E[R] =Y (TR");#;
i
where & = [mo Tw,. ... Tw,] is the stationary vector of the
transition matrix T. In the case of 7' = k, the average reward
expression can be collected into matrix form:

E[R] = (mo + 7w, )Mo1

One may wish to verify that this is consistent with the
expression obtained using the previous method. To do so,
using the system of equations (10), we can show that

(70 + mw, )Mol = mo1 =7 [T — M, Q(k)] Mol

V. NUMERICAL RESULTS

We consider a channel with two quality levels, whose
transition matrix is given in (3). Recall that the parameters
of the forward channel are error probabilities g, ecp, state
transition probabilities r, g, round-trip time %k and length of
block fading N. The round-trip time indicates the distance of
the transmitter and receiver, as well as their processing delay;
for our simulations we set k& = 5. The block fading length is an
indicator of channel variations, which in part depends on user
mobility as well as the dynamics of the environment. Fig. 2
shows the throughput vs ¢ under block fading channel for
N = 1,2, and 3. The throughput under block fading channels
is higher than i.i.d. channels when r 4 ¢ < 1, a result that has
been reported in [5].

Fig. 3 shows that throughput initially improves with length
of block fading, but it quickly saturates as N — oo. The
behavior can be explained as follows: Note that the average
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Fig. 3. Throughput, 7, vs. length of block fading, NV for eg = 0.1, ep =
0.7, block error rate = 0.25 and » = 0.1,0.2,0.3.

0.7 T T
N Analytical, T=5
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0.5 <m : ; I
ot == - Analytical, T=7
- SN o Simulation, T=7
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[
£ 0.3f
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; |

0.25 0.3 0.35 0.4 0.45 0.5

Probability of Block Error

81 015 o2

Fig. 4. Throughput vs block error rate for NV = 3, »r = 0.3, e = 0.07,
ep =07 k=5and T =5,6,7.

number of losses is held constant in this analysis. As we
increase N, the channel block length, the increased memory
of the channel means that losses are more clustered, which
is good for the GBN protocol, since each time an error
is observed, several packets are discarded anyway. In this
example, each time an error is observed, 5 packets must be
retransmitted, so we see that increased throughput levels off
around N = 5.

In this figure we also observe another interesting phenom-
enon: there are small jumps in throughput when N is a
multiple of T'. This can be explained as follows: If N =T,
when a block is in deep fade, one may recover by exactly
one round of retransmission, without any waste (without
GBN retransmitting packets that were correctly received).
If N = 2T, one may recover with exactly two rounds of
retransmission without any waste, etc.

Under block fading with unreliable feedback, the through-
put is shown in Fig. 4 when the reverse channel
has the same statistics as the forward channel, i.e.,
(80, " M MY = (5O, x® MP, M} we
then investigate the asymmetric forward/backward channel by
fixing BER=0.1 in backward channel and varying BER in the
forward channel; the results appear in Fig. 5.
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T
Analytical, T=5

O Simulation, T=5
Analytical, T=6 |_|

X Simulation, T=6
Analytical, T=7
O Simulation, T=7

Throughput

0.1 | | | | | |
0.1 0.15 0.2 0.25 0.3 0.35 0.4

Block Error Rate on Forwad Channel

0.45 0.5

Fig. 5. Throughput for asymmetric forward/backward channels. The back-
ward channel is fixed at BER=0.1 and the forward channel is allowed to vary.
Other parameters are N = 3, r = 0.3, eg¢ = 0.07, eg = 0.7, k = 5 and
T =5,6,7.

VI. CONCLUSION

In this paper, we study Go-Back-N ARQ under block
fading. By characterizing the block fading with a hidden
Markov model, we calculate the throughput of GBN with both
reliable and unreliable feedback. Feedback errors are modeled
by erasure which normally occur in practical data communi-
cations. Future research directions may include analysis of
the delay time of GBN protocol as well as modified GBN
protocols such as GBN with stutter or GBN with more than
one NACK.
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