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Abstract

The goal of this brief note is to present the classical theory of homogeneous chaos
decomposition of square integrable random variables and provide a clear connection
to the practical applications of the theory.
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1 Introduction

Most books and papers dealing with homogeneous chaos either deal primarily with
deeply theoretical aspects or focus exclusively on application. The goal of this brief note
is to fill the gap by providing a survey of the classical theory and then a precise tran-
sition to the applications of the classical theory as it appears in numerous engineering
articles. The presentation of the classical theory follows [4] mostly. The recent work
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Gaussian Hilbert spaces and polynomial chaos

in [2] was consulted also while writing this note. There is a large body of literature on
the practical applications of polynomial chaos expansions. We mention here the recent
book [5] and the references therein for recent advances in applications of polynomial
chaos expansions and related topics.

2 Basic notation

In what follows we consider a probability space (Ω,F , P ), where Ω is a sample space,
F is an appropriate σ-algebra on Ω and P is a probability measure. A real valued random
variable X on (Ω,F , P ) is an F/B(R)-measurable mapping X : (Ω,F , P ) → (R,B(R)).
The expectation of a random variable X is denoted by,

E [X] :=

∫
Ω

X(ω) dP (ω).

L2(Ω,F , P ) denotes the Hilbert space of (equivalence classes) of real valued square
integrable random variables on Ω:

L2(Ω,F , P ) = {X : Ω→ R :

∫
Ω

|X(ω)|2 dP (ω) <∞}.

with inner product, 〈X,Y 〉 = E [XY ] =
∫

Ω
XY dP and norm ||X||2 = 〈X,X〉1/2.

We denote by
L2

→ convergence in L2, by
P→ convergence in probability, and by

D→
convergence in distribution. For more on different modes of convergence of random
variables see for example [6] or [1].

3 Gaussian Hilbert Spaces

Definition 3.1 (Gaussian linear space). A linear subspace of L2(Ω,F , P ) consisting of
zero-mean Gaussian random variables is called a Gaussian linear space.
Definition 3.2 (Gaussian Hilbert space). A Gaussian Hilbert space is a complete Gaus-
sian linear space. Equivalently, a Gaussian Hilbert space is a closed subspace of L2(Ω,F , P )

consisting of centered (zero mean) Gaussian random variables.

The following result shows that we loose no generality if we restrict our attention to
Gaussian Hilbert spaces[4].
Lemma 3.3. Let H ⊂ L2(Ω,F , P ) be a Gaussian linear space and let H denotes its
closure in L2(Ω,F , µ). Then, H is a Gaussian Hilbert space.

Proof. Let ξ ∈ H . Then, there exists a sequence {ξn} ∈ H such that, ξn
L2

→ ξ. First
note that since E [ξn] = 0 for all n, it follows that E [ξ] = 0, because

E [ξn − ξ] =

∫
Ω

ξn − ξ dP ≤
∫

Ω

|ξn − ξ| dP ≤
(∫

Ω

|ξn − ξ|2
)1/2

→ 0, as n→∞.

Next, let σ2 = ||ξ||22 = E
[
ξ2
]

= Var [ξ]. We have, σ2
n = ||ξn||22 → ||ξ||22 = σ2 as

n → ∞. Thus, we have ξn ∼ N(0, σ2
n)

D→ N(0, σ2). On the other hand, from ξn
L2

→ ξ it

immediately follows that ξn
D→ ξ (convergence in L2 implies convergence in probability

and convergence in probability implies convergence in distribution). Therefore, ξ ∼
N(0, σ2).
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3.1 Examples of Gaussian Hilbert spaces

The following examples cover the cases that will be visited in this note. For a more
complete set of examples see [4].
Example 3.4. Let ξ ∼ N(0, 1). Then, Span{ξ} = {cξ : c ∈ R} is a Gaussian Hilbert
space.

Example 3.5. Let ξj
iid∼ N(0, 1) for j = 1, . . .M . Then, Span{ξ1, . . . , ξM} is a Gaussian

Hilbert space.
Example 3.6. Let {ξj}∞1 be a countable set of independent N(0, 1) random variables.
Then, the closed linear span,

Span{ξj}∞1 = {
∑
k

cjξj :
∑
j

c2j <∞}

is a Gaussian Hilbert space.

4 Polynomial spaces

Let H be a Gaussian linear space. For n ≥ 0 define,

Pn(H ) = {p(ξ1, . . . , ξM ) : p is an M -variate polynomial of degree ≤ n with ξj ∈H ,

j = 1, . . . ,M,M ∈ N}.

Since Gaussian random variables have moments of all orders and mixed moments of
products of independent Gaussian random variables is the product of the individual
moments, it follows that Pn(H ) is a linear subspace of L2(Ω,F , P ) for every n ≥ 0. We
denote by Pn(H ) the closure of Pn(H ) with respect of the L2(Ω,F , P ) norm.
Remark 4.1. We note the following:

• P0(H ) = P0(H ) consists of a.s. constant functions in L2(Ω,F , P ).

• Elements of P1(H ) and P1(H) are Gaussian.

• {Pn(H )}∞0 is a strictly increasing family of subspaces of L2(Ω,F , P ).

Now, define the spaces Hn as follows,

H0 = P0(H )

Hn = Pn(H ) ∩Pn−1(H )
⊥
, n ≥ 0.

Then, we have
n⊕
0

Hk = Pn(H ),

and
∞⊕
0

Hk = ∪∞0 Pn(H ).

Theorem 4.2 (Cameron-Martin). Let H be a Gaussian Hilbert space. The spaces
{Hn}∞0 form a sequence of closed and pairwise orthogonal subspaces of L2(Ω,F , P )

such that
∞⊕
0

Hn = L2(Ω, σ(H ), P ).
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5 Chaos expansion

Let H be a Gaussian Hilbert space and define

Πk : L2(Ω,F , P )→Hk

be the orthogonal projection of L2(Ω,F , P ) onto Hk. Then, given a random variable
ϕ ∈ L2(Ω, σ(H ), P ) we have,

ϕ =

∞∑
k=0

Πk(ϕ),

where the sum converges in the L2(Ω, σ(H ), P ) sense.
Remark 5.1. If X ∈ L2(Ω,F , P ) then, the sum

∞∑
k=0

Πk(X),

converges in L2(Ω,F , P ) and is the limit is the orthogonal projection ofX onto L2(Ω, σ(H ), P ).
Remark 5.2. In view of the previous remark, we can consider the expansion

∞∑
k=0

Πk(X) (5.1)

of a random variable X ∈ L2(Ω,F , P ) as conditional expectation E [X|V], where V =

σ(H ). Intuitively, this says that the expansion (5.1) is our best approximation of X
based on information available in σ(H ). For more on the notion of conditional ex-
pectation which is a fundamental concept in theory of stochastic processes, see for
example [6].

6 Applications

Here we consider the application of polynomial chaos expansions in models involving
a physical system with finitely many random parameters. The physical response of
the system at a given time is then a random variable in (Ω, σ(H ), P ), where H =

Span{ξ1, . . . , ξM} as in Example 3.5. In what follows, we will use the notation, ξ(ω) =(
ξ1(ω), . . . , ξM (ω)

)
.

6.1 Cameron-Martin Theorem for the case of finite stochastic dimension

Here we proceed systematically and apply Theorem 4.2 to the case where H =

Span{ξ1, . . . , ξM}. Note that the spaces Pn(H ) are finite-dimensional and hence closed
in this case. In fact,

Pn(H ) = {p(ξ) : p is a polynomial of degree at most n in ξ}.

The spaces Hn = Pn(H )∩Pn−1(H )⊥ are defined as before except since we are work-
ing with closed subspaces here denoting closure of the spaces would be superfluous.
Then, by Theorem 4.2,

L2(Ω, σ
(
{ξj}M1

)
, P ) =

∞⊕
0

Hk.

An orthonormal basis of Hk is given by [5]:{
Ψα(ξ) : |α| = k

}
,
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where α = (α1, . . . , αM ) ∈ ZM≥0 is a multi-index (here Z≥0 denotes the set of nonnegative
integers), |α| =

∑
j αj , and

Ψα(ξ) =

M∏
j=1

ψαj (ξj),

with ψi the one-dimensional normalized Hermite polynomial of order i.

Then, given a random variable ϕ ∈ L2(Ω, σ(H ), P ), we have

ϕ =

∞∑
0

Πk(ϕ) (6.1)

with Πk the orthogonal projection of L2(Ω, σ(H ), P ) onto Hk. For p ≥ 0, let ϕp be given
by,

ϕp =
∑
|α|≤p

cαΨα(ξ) (6.2)

= c0 +
∑
|α|=1

cαΨα(ξ) +
∑
|α|=2

cαΨα(ξ) + . . .+
∑
|α|=p

cαΨα(ξ). (6.3)

Then (6.1) says that
ϕ = lim

p→∞
ϕp.

Of course in practice p does not go to infinity and we will work with a truncated chaos
expansion ϕp, which we call an expansion of order p. The number of terms in a truncated
expansion is given by,

p∑
s=0

#{α ∈ ZM≥0 : |α| = s},

where we use # to the denote the number of elements in a finite set.
Lemma 6.1. Let p be a positive integer. The following identity holds.

p∑
s=0

#{α ∈ ZM≥0 : |α| = s} =
(M + p)!

M !p!
.

Proof. First note that for an integer a ≥ 0, it is straightforward to show that

p∑
s=0

(
a+ s

s

)
=

(
a+ p+ 1

p

)
.

Thus, by the well known formula [3],

#{α ∈ ZM≥0 : |α| = s} =

(
M + s− 1

s

)
,

we have,

p∑
s=0

#{α ∈ ZM≥0 : |α| = s} =

p∑
s=0

(
M + s− 1

s

)
=

(
M + p

p

)
=

(M + p)!

p!M !
.

Thus, by the above result, we can rewrite (6.2) as follows,

ϕp =

P∑
k=0

akΨk(ξ), (6.4)
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where P satisfies,

1 + P =
(M + p)!

M !p!
,

and there is a one-to-one correspondence between the coefficients ak in (6.4) and cα
in (6.2). A carefully constructed indexing scheme suitable for purposes of programming
can be found in [5].

Moreover, we note that the zero order polynomial Ψ0 ≡ 1, and thus one may write,

ϕp = a0 +

P∑
k=1

akΨk(ξ).

Next, since ϕp is σ
(
{ξ1, . . . , ξM}

)
-measurable, there exists1 a Borel function φ such that

ϕp(ω) = φ
(
ξ1(ω), . . . , ξM (ω)

)
, that is,

ϕp(ω) = φ(ξ(ω)) = a0 +

P∑
k=1

akΨk(ξ(ω)).

Remark 6.2. We note that since ξj
iid∼ N(0, 1) for j = 1, . . . ,M , it follows that their joint

probility density function, fξ is the product of the probability density for a standard
normal random variable. We denote the joint distribution function of ξ by Fξ. In appli-
cations, instead of working in the abstract probability space (Ω,F , P ) one often works
in the image probability space (RM ,B(RM ), Fξ).

This latter representation is the most common way of writing a chaos expansion in
engineering literature.

Finally, we note that the solution of a dynamical system with M random parame-
ters is a stochastic process X(t, ξ(ω)), which we will approximate by a truncated chaos
expansion as follows:

X(t, ξ)
.
=

P∑
k=0

ak(t)Ψk(ξ).

Using orthogonality of Ψk’s and E [Ψk(ξ)] = 0, it is immediate to note that the approxi-
mate mean and variance of X over time are given by

µ̂X(t) = E

[
P∑
k=0

ak(t)Ψk(ξ)

]
=

〈
P∑
k=0

ak(t)Ψk(ξ), 1

〉
= a0(t),

and

σ̂2
X(t) = E

[[ P∑
k=0

ak(t)Ψk(ξ)
]2]
− E

[
P∑
k=0

ak(t)Ψk(ξ)

]2

= E

[[ P∑
k=0

ak(t)Ψk(ξ)
]2]
− a0(t)2

=

P∑
k=1

a2
kE
[
Ψ2
k

]
.

Moreover, if we have chaos expansions for X(t, ξ) and Y (t, ξ),

X(t, ξ)
.
=

P∑
k=0

xk(t)Ψk(ξ), Y (t, ξ)
.
=

P∑
k=0

yk(t)Ψk(ξ),

1This is due to a basic result from probability theory which sometimes is called the Doob’s Dynkin Lemma.
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then an approximation to covariance of X and Y over time is given by

cov(X,Y )(t) = E
((
X(t, ·)− E [X(t, ·)]

)(
Y (t, ·)− E [Y (t, ·)]

))
.
=

P∑
k=1

xk(t)yk(t)E
[
Ψ2
k

]
.

6.2 Random dynamical systems

Consider the autonomous ODE system,{
Ẋ = F (X),

X(0) = X0,
(6.5)

where the solution X of the system is a function X : [0, Tfin]→ Rn:

X(t) = [X1(t), . . . , Xn(t)]T .

Assuming the right-hand-side function F : Rn → Rn is Lipschitz continuous,X exists
and is unique. We consider the case, where we have parametric uncertainty in the right-

hand-side function F , that is F = F (X, ξ), where ξ = (ξ1, . . . , ξM ) with ξj
iid∼ N(0, 1).

Hence, the solution to (6.5) is a stochastic process,

X : [0, Tfin]× (Ω, σ({ξ}j}M1 ), P )→ Rn.

We can rewrite (6.5) more precisely as below,{
Ẋ(t, ξ) = F

(
X(t, ξ), ξ

)
X(0, ξ) = X0, a.s.

(6.6)

To capture the distribution of Xi(t, ξ) at a given time, we will rely on the truncated
polynomial chaos PC expansion,

Xi(t, ξ)
.
=

P∑
k=0

cik(t)Ψk(ξ).

6.3 Two major paradigms in applications of polynomial chaos expansion

Here we describe two general strategies in using PC expansions when dealing with
dynamical systems with random parameters. The first method, which is known as the
intrusive method involves inserting the PC expansion in the dynamical system and solv-
ing for the PC coefficients using a reformulated (and larger) dynamical system. The
reformulated system is obtained via process of Galerkin projection into the PC basis.

The second method, which is known as the non-intrusive method or non-instrusive
spectral projection (NISP) does not require a reformulation of the original problem; in-
stead, we solve the dynamical system for a relatively small (especially in low stochastic
dimension) number of realizations of the random parameters and use the realizations
of the solution to project the solution into a PC basis. We illustrate and discuss these
two methods in the context of a simple predator prey model as described below.
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6.4 A model problem

Consider a classic predator prey model:{
Ẋ = αX − βXY
Ẏ = −γY + δXY

(6.7)

Here X and Y denote the populations of the prey and the predator over time. We
let randomness enter the system through the parameters α and γ. The stochastic pa-
rameters space is then a two dimensional space parameterized by the random vector
ξ = (ξ1, ξ2) with ξ1 and ξ2 standard normal random variables. We let,

α(ξ) = a1 + b1ξ1, and γ(ξ) = a2 + b2ξ2.

The initial conditions are assumed to be deterministic in this problem:

X(0) = X0, Y (0) = Y0.

6.5 The intrusive method

We use the approximation to X and Y through truncated PC expansions:

X(t, ξ) =

P∑
k=0

Xk(t)Ψk(ξ), (6.8)

Y (t, ξ) =

P∑
k=0

Yk(t)Ψk(ξ), (6.9)

The goal is to solve for the modes Xk and Yk in the above expansions.

We insert (6.8) into the first equation of (6.7): Ẋ = α(ξ)X − βXY :

P∑
k=0

Ẋk(t)Ψk(ξ) = α(ξ)

P∑
k=0

Xk(t)Ψk(ξ)− β
( P∑
j=0

Xj(t)Ψj(ξ)
)( P∑

k=0

Yk(t)Ψk(ξ)
)

(6.10)

Now we take the inner product of both sides of the above equation with Ψi for i =

0, . . . , k:

Left hand side:〈
P∑
k=0

Ẋk(t)Ψk(ξ),Ψi(ξ)

〉
= Ẋi 〈Ψi(ξ),Ψi(ξ)〉 = ẊiE

[
Ψ2
i (ξ)

]
. (6.11)

Right hand side:〈
α(ξ)

P∑
k=0

Xk(t)Ψk(ξ),Ψi(ξ)

〉
−

〈
β

P∑
j,k=0

Xj(t)YkΨj(ξ)Ψk(ξ),Ψi(ξ)

〉

Using α(ξ) = a1 + b1ξ1, we have〈
α(ξ)

P∑
k=0

Xk(t)Ψk(ξ),Ψi(ξ)

〉
= a1Xi(t)E

[
Ψ2
i (ξ)

]
+ b1

P∑
k=0

Xk(t)E [ξ1Ψi(ξ)Ψk(ξ)]
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On the other hand,〈
β

P∑
j,k=0

Xj(t)YkΨj(ξ)Ψk(ξ),Ψi(ξ)

〉
= β

P∑
j,k=0

Xj(t)Yk(t)E [Ψi(ξ)Ψj(ξ)Ψk(ξ)]

Thus, the right hand side of (6.10) is given by,

a1Xi(t)E
[
Ψ2
i (ξ)

]
+ b1

P∑
k=0

Xk(t)E [ξ1Ψi(ξ)Ψk(ξ)]− β
P∑

j,k=0

Xj(t)Yk(t)Cijk, (6.12)

where
Cijk = E [Ψi(ξ)Ψj(ξ)Ψk(ξ)] .

Putting (6.11) and (6.12) together, we get:

ẊiE
[
Ψ2
i (ξ)

]
= a1Xi(t)E

[
Ψ2
i (ξ)

]
+ b1

P∑
k=0

Xk(t)E [ξ1Ψi(ξ)Ψk(ξ)]− β
P∑

j,k=0

Xj(t)Yk(t)Cijk,

Therefore, we get

Ẋi = a1Xi(t) +
b1

E [Ψ2
i (ξ)]

P∑
k=0

Xk(t)E [ξ1Ψi(ξ)Ψk(ξ)]− β

E [Ψ2
i (ξ)]

P∑
j,k=0

Xj(t)Yk(t)Cijk,

Through a similar calculation we get,

Ẏi = −a2Yi(t)−
b2

E [Ψ2
i (ξ)]

P∑
k=0

Yk(t)E [ξ1Ψi(ξ)Ψk(ξ)] +
δ

E [Ψ2
i (ξ)]

P∑
j,k=0

Xj(t)Yk(t)Cijk,

Therefore, to solve for the modes Xi and Yi in the PC expansions X and Y we need to

solve the following coupled system of 2(P + 1) equations (here P + 1 =
(2 + p)!

2!p!
where

p is the polynomial order of the expansion):
Ẋi = a1Xi(t) +

b1
E [Ψ2

i (ξ)]

P∑
k=0

Xk(t)E [ξ1Ψi(ξ)Ψk(ξ)]− β

E [Ψ2
i (ξ)]

P∑
j,k=0

Xj(t)Yk(t)Cijk,

Ẏi = −a2Yi(t)−
b2

E [Ψ2
i (ξ)]

P∑
k=0

Yk(t)E [ξ1Ψi(ξ)Ψk(ξ)] +
δ

E [Ψ2
i (ξ)]

P∑
j,k=0

Xj(t)Yk(t)Cijk,

The initial conditions are given by{
X0(0) = a1, X1(0) = b1, X2(0) = 0, . . . , XP (0) = 0,

Y0(0) = a2, Y1(0) = b2, Y2(0) = 0, . . . , YP (0) = 0.

Note that the reformulated system of the intrusive method is much larger and a lot
more complex than the original system. The main take home message here is that we
need to solve this system only once so we get the coefficients Xk and Yk of the chaos
expansions for X and Y ; we can the sample the expansion of X and Y as many time as
we would like at a very cheap computational cost.

On the other hand, a naive Monte-Carlo approach would require solving the original
(deterministic) dynamical system for a large collection (say about 10, 000) of sample
points in the parameters space to generate the distribution for X and Y over time. In
the case of a system as simple as the predator-prey model here, a naive Monte-Carlo
approach maybe manageable, but for more complicated systems with more random
parameters, cost of Monte-Carlo simulations can become prohibitive.
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6.6 The non-intrusive method

Consider the PC expansion of X and Y :

X(t, ξ) =

P∑
k=0

Xk(t)Ψk(ξ), (6.13)

Y (t, ξ) =

P∑
k=0

Yk(t)Ψk(ξ), (6.14)

where we recall that ξ = (ξ1, ξ2) with ξ1 and ξ2 standard normal random variables. Let
us the expansion for X for example. Note that using the orthogonality of Ψk we can
directly get,

Xk(t) =
〈X(t, ξ),Ψk(ξ)〉
〈Ψk(ξ),Ψk(ξ)〉

=
E [X(t, ξ)Ψk(ξ)]

E [Ψ2
k(ξ)]

.

Now the moment E
[
Ψ2
k(ξ)

]
can be computed analytically, because Ψk is none but a

multivariate Hermite Polynomial. However, we cannot compute the moment in the
numerator because we do not haveX(t, ξ) (if we did haveX(t, ξ) there would be nothing
to solve for anyway). Note however, that

E [X(t, ξ)Ψk(ξ)] =

∫
Ω

X(t, ξ(ω))Ψk(ξ(ω)) dP (ω)

=

∫
R2

X(t,x)Ψk(x)fξ(x) dx, (6.15)

where fξ is joint PDF of ξ1 and ξ2. Thus, we can compute the moments E [X(t, ξ)Ψk(ξ)]

by computing the integral in (6.15) numerically. In this case, a natural integration
scheme would be Gauss-Hermite quadrature (in 2D):∫

R2

X(t,x)Ψk(x)fξ(x) dx =

N∑
j=1

wjX(t,xj)Ψk(xj).

Where xj and wj are multi-dimensional nodes and weights for Gauss Hermite quadra-
ture (in 2D). To complete the computations then, one needs to solve for X(t,xj) by solv-
ing the original predator prey system (6.7) with ξ = xj , j = 1, . . . N ; that is, solve (6.7)
with

α = a1 + b1x
j
1, γ = a2 + b2x

j
2,

to get X(·,xj), j = 1, . . . , N . Then, the coefficients Xk of the chaos expansion of X
can be computed through the above procedure. This method of computing the coeffi-
cients in the chaos expansion, via numerical integrations, is what is known as the NISP
method.
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