Linear Regression using Stata

（v．6．3）

Oscar Torres－Reyna
otorres＠princeton．edu

We use regression to estimate the unknown effect of changing one variable over another (Stock and Watson, 2003, ch. 4)
When running a regression we are making two assumptions, 1) there is a linear relationship between two variables (i.e. X and Y) and 2) this relationship is additive (i.e. $Y=x 1+x 2+\ldots+x N$).

Technically, linear regression estimates how much Y changes when X changes one unit.

In Stata use the command regress, type:
regress [dependent variable] [independent variable(s)]
regress y x
In a multivariate setting we type:
regress y x1 x2 x3 ...
Before running a regression it is recommended to have a clear idea of what you are trying to estimate (i.e. which are your outcome and predictor variables).
A regression makes sense only if there is a sound theory behind it.

Regression: a practical approach (setting)

Example: Are SAT scores higher in states that spend more money on education controlling by other factors?*

- Outcome (Y) variable - SAT scores, variable csat in dataset
- Predictor (X) variables
- Per pupil expenditures primary \& secondary (expense)
- \% HS graduates taking SAT (percent)
- Median household income (income)
- \% adults with HS diploma (high)
- \% adults with college degree (college)
- Region (region)

. summarize csat expense percent income hi gh college region

Vari abl e	Obs	Mean	Std. Dev.	M n	Max
csat	51	944.098	66.93497	832	1093
expense	51	5235.961	1401.155	2960	9259
per cent	51	35.76471	26.19281	4	81
i ncome	51	33.95657	6.423134	23.465	48.618
hi gh	51	76.26078	5.588741	64.3	86.6
col I ege	51	20.02157	4.16578	12.3	33.3
regi on	50	2.54	1.128662	1	4

Regression: what to look for

Lets run the regression:

regress csat expense, robust

Adj R^{2} (not shown here) shows the same as R^{2} but adjusted by the \# of cases and \# of variables. When the \# of variables is small and the \# of cases is very large then Adj R^{2} is closer to R^{2}. This provides a more honest association between X and Y .

The t -values test the hypothesis that the coefficient is different from 0 . To reject this, you need a t-value greater than 1.96 (for 95% confidence). You can get the t-values by dividing the coefficient by its standard error. The tvalues also show the importance of a variable in the model.

This is the p-value of the model. It tests whether R^{2} is different from 0 . Usually we need a p-value lower than 0.05 to show a statistically significant relationship between X and Y .

R-square shows the amount of variance of Y explained by X. In this case expense explains 22% of the variance in SAT scores.

Two-tail p-values test the hypothesis that each coefficient is different from 0 . To reject this, the p-value has to be lower than 0.05 (you could choose also an alpha of 0.10). In this case, expense is statistically significant in explaining SAT.

Regression: what to look for

Adding the rest of predictor variables:

regress csat expense percent income high college,

Robust standard errors (to control for heteroskedasticity)
robust

Output variable (Y)
Predictor variables (X)
regress csat expense percent i ncome hi gh college, robust
Li near regressi on

Root MSE: root mean squared error, is the sd of the regression. The closer to zero better the fit.
Number of obs
(5, 45)
Prob $>F=0.0000$
R-squared $=0.8243$
Root MSE $=29.571$

This is the p-value of the model. It indicates the reliability of X to predict Y . Usually we need a pvalue lower than 0.05 to show a statistically significant relationship between X and Y .

R-square shows the amount of variance of Y explained by X. In this case the model explains 82.43\% of the variance in SAT scores.

Adj R^{2} (not shown here) shows the same as R^{2} but adjusted by the \# of cases and \# of variables. When the \# of variables is small and the \# of cases is very large then Adj R^{2} is closer to R^{2}. This provides a more honest association between X and Y .
csat $=851.56+0.003^{*}$ expense

- 2.62*percent + 0.11*income + 1.63*high
+ 2.03*college
The t -values test the hypothesis that the coefficient is different from 0 . To reject this, you need a t-value greater than 1.96 (at 0.05 confidence). You can get the t-values by dividing the coefficient by its standard error. The t values also show the importance of a variable in the model. In this case, percent is the most important.

Two-tail p-values test the hypothesis that each coefficient is different from 0 . To reject this, the p -value has to be lower than 0.05 (you could choose also an alpha of 0.10). In this case, expense, income, and college are not statistically significant in explaining SAT; high is almost significant at 0.10 . Percent is the only variable that has some significant impact on SAT (its coefficient is different from 0)

Regression: using dummy variables/selecting the reference category

If using categorical variables in your regression, you need to add $n-1$ dummy variables. Here ' n ' is the number of categories in the variable. In the example below, variable 'industry' has twelve categories (type tab industry, or tab industry, nolabel)

The easiest way to include a set of dummies in a regression is by using the prefix "i." By default, the first category (or lowest value) is used as reference. For example:
sysuse nlsw88.dta
reg wage hours i.industry, robust

Linear regression			$\begin{aligned} & \text { Number of obs } \\ & \text { F(12, 2215) } \\ & \text { Prob > F } \\ & \text { R-squared } \\ & \text { Root MSE } \end{aligned}$		$\begin{array}{lr} = & 2228 \\ = & 24.96 \\ = & 0.0000 \\ = & 0.0800 \\ = & 5.5454 \end{array}$	
wage	Coef.	Robust Std. Err.	t	$p>\|t\|$	[95\% Con	Interval]
hours	. 0723658	. 0110213	6.57	0.000	. 0507526	. 093979
industry Mining	9.328331	7.287849	1.28	0.201	-4.963399	23.62006
Construction	1.858089	1.281807	1.45	0.147	-. 6555808	4.371759
Manufacturing	1.415641	. 849571	1.67	0.096	-. 2503983	3.081679
Transport/Comm/Utility	5.432544	1.03998	5.22	0.000	3.393107	7.471981
Wholesale/Retail Trade	. 4583809	. 8548564	0.54	0.592	-1.218023	2.134785
Finance/Ins/Real Estate	3.92933	. 9934195	3.96	0.000	1.981199	5.877461
Business/Repair Svc	1.990151	1.054457	1.89	0.059	-. 0776775	4.057979
Personal Services	-1.018771	. 8439617	-1.21	0.228	-2.67381	. 6362679
Entertainment/Rec Svc	1.111801	1.192314	0.93	0.351	-1.226369	3.449972
Professional Services	2.094988	. 8192781	2.56	0.011	. 4883548	3.701622
Public Administration	3.232405	. 8857298	3.65	0.000	1.495457	4.969352
_cons	3.126629	. 8899074	3.51	0.000	1.381489	4.871769

To change the reference category to "Professional services" (category number 11) instead of "Ag/Forestry/Fisheries" (category number 1), use the prefix "ib\# ." where "\#" is the number of the reference category you want to use; in this case is 11.
sysuse nlsw88.dta
reg wage hours ib11.industry, robust

Linear regression			Number of obs $=2228$ F $(12,2215)$ $=24.96$ Prob $>$ F $=0.0000$ R-squared $=0.0800$ Root MSE $=5.5454$				
wage	Coef.	Robust Std. Err.	t	P>\|t		[95\% Con	Interval]
hours	. 0723658	. 0110213	6.57	0.000	. 0507526	. 093979	
industry Ag/Forestry/Fisheries	-2.094988	. 8192781	-2.56	0.011	-3.701622	-. 4883548	
Mining	7.233343	7.245913	1.00	0.318	-6.97615	21.44284	
Construction	-. 2368991	1.011309	-0.23	0.815	-2.220112	1.746314	
Manufacturing	-. 6793477	. 3362365	-2.02	0.043	-1.338719	-. 019976	
Transport/Comm/Utility	3.337556	. 6861828	4.86	0.000	1.991927	4.683185	
Wholesale/Retail Trade	-1.636607	. 3504059	-4.67	0.000	-2.323766	-. 949449	
Finance/Ins/Real Estate	1.834342	. 6171526	2.97	0.003	. 6240837	3.0446	
Business/Repair Svc	-. 1048377	. 7094241	-0.15	0.883	-1.496044	1.286368	
Personal Services	-3.113759	. 3192289	-9.75	0.000	-3.739779	-2.48774	
Entertainment/Rec Svc	-. 983187	. 9004471	-1.09	0.275	-2.748996	. 7826217	
Public Administration	1.137416	. 4176899	2.72	0.007	. 3183117	1.956521	
_cons	5.221617	. 4119032	12.68	0.000	4.41386	6.029374	

The "ib\# ." option is available since Stata 11 (type help fvvarlist for more options/details). For older Stata versions you need to use "xi:" along with "i." (type help xi for more options/details). For the examples above type (output omitted):
xi: reg wage hours i.industry, robust
char industry[omit]11 /*Using category 11 as reference*/
xi: reg wage hours i.industry, robust
To create dummies as variables type
tab industry, gen(industry)

To include all categories by suppressing the constant type: reg wage hours bn.industry, robust hascons

Regression: ANOVA table

If you run the regression without the 'robust' option you get the ANOVA table xi: regress csat expense percent income high college i.region

Source	SS	df	MS
Model Resi dual	(A) 200269.84 (B)12691.5396	40	22252.2045 (D)
Tot al	(C) 212961.38	49	4346.15061 (F)

Nunber of obs	50
F(9, 40)	70. 13
Prob $>$ F	0. 0000
R - squared	0. 9404
Adj R-squared	0. 9270
Root MSE	17.813

$F=\frac{\frac{M S S}{(k-1)}}{\frac{R S S}{n-k}}=\frac{\frac{200269.84}{9}}{\frac{12691.5396}{40}}=\frac{22252.2045}{317.28849}=\frac{D}{E}=70.13$

$$
\operatorname{Adj}^{2}=1-\frac{n-1}{n-k}\left(1-R^{2}\right)=1-\frac{49}{40}(1-0.9404)=1-\frac{E}{F}=1-\frac{317.28849}{4346.15061}=0.9270
$$

$R^{2}=\frac{M S S}{T S S}=1-\frac{\sum e_{i}^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}=\frac{200269.84}{212961.38}=\frac{A}{C}=0.9404$

$$
\text { RootMSE }=\sqrt{\frac{R S S}{(n-k)}}=\sqrt{\frac{12691.5396}{40}}=\sqrt{\frac{B}{40}}=17.813
$$

A = Model Sum of Squares (MSS). The closer to TSS the better fit.
$B=$ Residual Sum of Squares (RSS)
C = Total Sum of Squares (TSS)
D = Average Model Sum of Squares $=\mathrm{MSS} /(k-1)$ where $k=$ \# predictors
$\mathrm{E}=$ Average Residual Sum of Squares $=\mathrm{RSS} /(n-k)$ where $n=\#$ of observations
$\mathrm{F}=$ Average Total Sum of Squares $=\mathrm{TSS} /(n-1)$
R^{2} shows the amount of observed variance explained by the model, in this case 94%.
The F-statistic, $\mathrm{F}(9,40)$, tests whether R^{2} is different from zero.
Root MSE shows the average distance of the estimator from the mean, in this case 18 points in estimating SAT scores.

Regression: estto/esttab

To show the models side-by-side you can use the commands estto and esttab:

[^0]
Regression: correlation matrix

Below is a correlation matrix for all variables in the model. Numbers are Pearson correlation coefficients, go from -1 to 1 . Closer to 1 means strong correlation. A negative value indicates an inverse relationship (roughly, when one goes up the other goes down).

	csat	expense	per cent	i ncome	hi gh	coll ege
csat	1. 0000					
expense	$\begin{gathered} -0.4663 * \\ 0.0006 \end{gathered}$	1. 0000				
per cent	$\begin{gathered} -0.8758 * \\ 0.0000 \end{gathered}$	$\begin{aligned} & 0.6509 * \\ & 0.0000 \end{aligned}$	1. 0000			
i ncome	$\begin{gathered} -0.4713^{*} \\ 0.0005 \end{gathered}$	$\begin{aligned} & 0.6784^{*} \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.6733^{*} \\ & 0.0000 \end{aligned}$	1. 0000		
hi gh	$\begin{aligned} & 0.0858 \\ & 0.5495 \end{aligned}$	$\begin{aligned} & 0.3133^{*} \\ & 0.0252 \end{aligned}$	$\begin{aligned} & 0.1413 \\ & 0.3226 \end{aligned}$	$\begin{aligned} & \text { 0. } 5099 * \\ & 0.0001 \end{aligned}$	1. 0000	
coll ege	$\begin{gathered} -0.3729 * \\ 0.0070 \end{gathered}$	$\begin{aligned} & 0.6400^{*} \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.6091^{*} \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.7234 * \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.5319 * \\ & 0.0001 \end{aligned}$	1. 0000

Regression: graph matrix
Command graph matrix produces a graphical representation of the correlation matrix by presenting a series of scatterplots for all variables. Type:
graph matrix csat expense percent income high college, half maxis(ylabel(none) xlabel(none))


```
scatter csat percent
```


There seem to be a curvilinear relationship between csat and percent, and slightly linear between csat and high. To deal with U-shaped curves we need to add a square version of the variable, in this case percent square

$$
\text { generate percent2 }=\text { percent^2 }
$$

Regression: functional form/linearity

The command acprplot (augmented component-plus-residual plot) provides another graphical way to examine the relationship between variables. It does provide a good testing for linearity. Run this command after running a regression
regress csat percent high /* Notice we do not include percent2 */ acprplot percent, lowess acprplot high, lowess

The option lowess (locally weighted scatterplot smoothing) draw the observed pattern in the data to help identify nonlinearities. Percent shows a quadratic relation, it makes sense to add a square version of it. High shows a polynomial pattern as well but goes around the regression line (except on the right). We could keep it as is for now.

The model is:
xi: regress csat expense percent percent2 income high college i.region, robust

```
xi: regress csat expense percent percent2 income high college i.region, robust
eststo model4
esttab, r2 ar2 se scalar(rmse)
. esttab, r2 ar2 se scal ar(rmse)
```

	$\begin{array}{r} (1) \\ \text { csat } \end{array}$	(2) csat	(3) csat	$\begin{gathered} \text { (4) } \\ \text { csat } \end{gathered}$
expense	$\begin{aligned} & -0.0223^{* * *} \\ & (0.00367) \end{aligned}$	$\begin{array}{r} 0.00335 \\ (0.00478) \end{array}$	$\begin{aligned} & -0.00202 \\ & (0.00359) \end{aligned}$	$\begin{array}{r} 0.00141 \\ (0.00372) \end{array}$
percent		$\begin{aligned} & -2.618^{* * *} \\ & (0.229) \end{aligned}$	$\begin{aligned} & -3.008 * * * \\ & (0.236) \end{aligned}$	$\begin{aligned} & -5.9455^{* * *} \\ & (0.641) \end{aligned}$
i ncome		$\begin{gathered} 0.106 \\ (1.207) \end{gathered}$	$\begin{gathered} -0.167 \\ (1.196) \end{gathered}$	$\begin{gathered} -0.914 \\ (0.973) \end{gathered}$
hi gh		$\begin{array}{r} 1.631 \\ (0.943) \end{array}$	$\begin{array}{r} 1.815 \\ (1.027) \end{array}$	$\begin{array}{r} 1.869 \\ (0.931) \end{array}$
coll ege		$\begin{array}{r} 2.031 \\ (2.114) \end{array}$	$\begin{aligned} & \text { 4. } 671 * * \\ & (1.600) \end{aligned}$	$\begin{aligned} & 3.418 * * \\ & (1.145) \end{aligned}$
_I region_2			$\begin{aligned} & \text { 69. } 45 * * * \\ & (18.00) \end{aligned}$	$\begin{array}{r} 5.077 \\ (20.75) \end{array}$
_Iregion_3			$\begin{aligned} & 25.40 * \\ & \text { (12.53) } \end{aligned}$	$\begin{array}{r} 5.209 \\ (10.42) \end{array}$
_I region_4			$\begin{aligned} & 34.58 * * * \\ & (9.450) \end{aligned}$	$\begin{aligned} & \text { 19. 25* } \\ & \text { (8.110) } \end{aligned}$
per cent 2				$\begin{aligned} & 0.0460 * * * \\ & (0.0102) \end{aligned}$
_cons	$\begin{aligned} & 1060.7^{* * *} \\ & (24.35) \end{aligned}$	${ }^{851.6^{* * *}}$	$\begin{aligned} & \text { 808. }{ }^{* * * *} \\ & (67.86)^{* *} \end{aligned}$	$\begin{aligned} & 874.0^{* * *} \\ & (58.13)^{* *} \end{aligned}$
N	51	51	50	50
R-sq	0. 217	0.824	0.911	0. 940
adj. R-sq	0.201	0.805	0.894	0.927
rnse	59. 81	29. 57	21.49	17.81

[^1]How good the model is will depend on how well it predicts Y, the linearity of the model and the behavior of the residuals.

There are two ways to generate the predicted values of Y (usually called Yhat) given the model:
Option A , using generate after running the regression:

```
xi: regress csat expense percent percent2 income high college i.region, robust
generate csat_predict = _b[_cons] + _b[percent]*percent + _b[percent]*percent + _b[percent2]*percent2
+ _b[high]*high + ...
```

Option B, using predict immediately after running the regression:
xi: regress csat expense percent percent2 income high college i.region, robust predict csat_predict
label variable csat_predict "csat predicted"
. predict csat_predict
(opti on xb assūred; fitted val ues)
(1 missing val ue gener ated)
. I abel variable csat_predict "csat predicted"

Regression: observed vs. predicted values
For a quick assessment of the model run a scatter plot

scatter csat csat_predict

We should expect a 45 degree pattern in the data. Y-axis is the observed data and x-axis the predicted data (Yhat).

In this case the model seems to be doing a good job in predicting csat

An important assumption is that the variance in the residuals has to be homoskedastic or constant. Residuals cannot varied for lower of higher values of X (i.e. fitted values of Y since $Y=X b$). A definition:
"The error term $[\mathrm{e}]$ is homoskedastic if the variance of the conditional distribution of $\left[\mathrm{e}_{\mathrm{i}}\right]$ given $\mathrm{X}_{\mathrm{i}}\left[\operatorname{var}\left(\mathrm{e}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i}}\right)\right]$, is constant for $\mathrm{i}=1 \ldots \mathrm{n}$, and in particular does not depend on x ; otherwise, the error term is heteroskedastic" (Stock and Watson, 2003, p.126)

When plotting residuals vs. predicted values (Yhat) we should not observe any pattern at all. In Stata we do this using rvfplot right after running the regression, it will automatically draw a scatterplot between residuals and predicted values.
rvfplot, yline(0)

A non-graphical way to detect heteroskedasticiy is the Breusch-Pagan test. The null hypothesis is that residuals are homoskedastic. In the example below we fail to reject the null at 95\% and concluded that residuals are homogeneous. However at 90% we reject the null and conclude that residuals are not homogeneous.

```
estat hettest
    estat hettest
Breusch- Pagan / Cook-Wei sberg test for het eroskedasti city
    Ho: Constant variance
    Variables: fitted val ues of csat
    chi 2(1) = 2.72
    Prob > chi 2 = 0.0993
```

The graphical and the Breush-Pagan test suggest the possible presence of heteroskedasticity in our model. The problem with this is that we may have the wrong estimates of the standard errors for the coefficients and therefore their t -values.

There are two ways to deal with this problem, one is using heteroskedasticity-robust standard errors, the other one is using weighted least squares (see Stock and Watson, 2003, chapter 15). WLS requires knowledge of the conditional variance on which the weights are based, if this is known (rarely the case) then use WLS. In practice it is recommended to use heteroskedasticity-robust standard errors to deal with heteroskedasticity.

By default Stata assumes homoskedastic standard errors, so we need to adjust our model to account for heteroskedasticity. To do this we use the option robust in the regress command.
xi: regress csat expense percent percent2 income high college i.region, robust

Following Stock and Watson, as a rule-of-thumb, you should always assume heteroskedasticiy in your model (see Stock and Watson, 2003, chapter 4) .

Regression: omitted-variable test

How do we know we have included all variables we need to explain Y ?
Testing for omitted variable bias is important for our model since it is related to the assumption that the error term and the independent variables in the model are not correlated $(\mathrm{E}(\mathrm{e} \mid \mathrm{X})=0$)

If we are missing variables in our model and

- "is correlated with the included regressor" and,
- " the omitted variable is a determinant of the dependent variable" (Stock and Watson, 2003, p.144),
...then our regression coefficients are inconsistent.
In Stata we test for omitted-variable bias using the ovtest command:
xi: regress csat expense percent percent2 income high college i.region, robust ovtest

```
. ovtest
Ramsey RESET test using powers of the fitted val ues of csat
    Ho: model has no omitted variables
    F(3, 37) = 1.25
    Prob > F = 0.3068
```

The null hypothesis is that the model does not have omitted-variables bias, the p -value is higher than the usual threshold of 0.05 (95% significance), so we fail to reject the null and conclude that we do not need more variables.

Regression: specification error

Another command to test model specification is linktest. It basically checks whether we need more variables in our model by running a new regression with the observed Y (csat) against Yhat (csat_predicted or $X \beta$) and Yhat-squared as independent variables ${ }^{1}$.
The thing to look for here is the significance of _hatsq. The null hypothesis is that there is no specification error. If the p-value of _hatsq is not significant then we fail to reject the null and conclude that our model is correctly specified. Type:
xi: regress csat expense percent percent2 income high college i.region, robust linktest
. I inkt est

Source	SS	df	MS
Mbdel	200272.359	$\mathbf{2}$	100136.18
Resi dual	12689.0209	47	269.979169
Tot al	212961.38	49	4346.15061

| Number of obs | $=50$ |
| :--- | ---: | ---: |
| F(2, 47) | $=370.90$ |
| Prob F | $=0.0000$ |
| R-squar ed | $=0.9404$ |
| Adj R- squar ed | $=0.9379$ |
| Root MSE | $=16.431$ |

| csat | Coef. | St d. Er r. | t | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% Conf. I nt er val] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| hat | 1.144949 | 1.50184 | 0.76 | 0.450 | -1.876362 | 4.166261 |
| _hat sq | -.0000761 | .0007885 | -0.10 | 0.923 | -.0016623 | .0015101 |
| _cons | -68.69417 | 712.388 | -0.10 | 0.924 | -1501.834 | 1364.446 |

[^2]
Regression: multicollinearity

An important assumption for the multiple regression model is that independent variables are not perfectly multicolinear. One regressor should not be a linear function of another.

When multicollinearity is present standand errors may be inflated. Stata will drop one of the variables to avoid a division by zero in the OLS procedure (see Stock and Watson, 2003, chapter 5).
The Stata command to check for multicollinearity is vif (variance inflation factor). Right after running the regression type:
. vif

Var i abl e	VI F	$1 /$ VI F
per cent 2	70.80	0.014124
per cent	49.52	0.020193
_I regi on_2	8.47	0.118063
income	4.97	0.201326
_I regi on_3	4.89	0.204445
hi gh	4.71	0.212134
col I ege	4.52	0.221348
expense	3.33	0.300111
_I regi on_4	2.14	0.467506
Mean VI F	17.04	

A vif >10 ora $1 /$ vif <0.10 indicates trouble.

We know that percent and percent 2 are related since one is the square of the other. They are ok since percent has a quadratic relationship with Y, but this would be an example of multicolinearity.

The rest of the variables look ok.

Regression: outliers

To check for outliers we use the avplots command (added-variable plots). Outliers are data points with extreme values that could have a negative effect on our estimators. After running the regression type:
avplot percent

avplot expense

These plots regress each variable against all others, notice the coefficients on each. All data points seem to be in range, no outliers observed.

For more details and tests on this and influential and leverage variables please check
http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter2/statareg2.htm
Also type help diagplots in the Stata command window.

avplots

coef $=-5.9452674,($ robust $) s e=.64055286, t$

coef $=-.9143708,($ robust $) \mathrm{se}=.97326373, \mathrm{t}=$

coef $=5.2088169$, (robust) $s e=10.422781, \mathrm{t}$

coef $=1.8691679,($ robust $) \mathrm{se}=.93111302, \mathrm{t}$:
coef $=3.4175732$, (robust) $s=1.1450333, t=2$.
coef $=19.245404,($ robust $) \mathrm{se}=8.1097615, \mathrm{t}=2$.

Regression: summary of influence indicators

| DfBeta | Measures the influence of each observation on the coefficient of a particular independent variable (for example, x 1). This is in standard errors terms.
 An observation is influential if it has a significant effect on the coefficient. | A case is an influential outlier if
 \|DfBeta|> 2/SQRT(N)
 Where N is the sample size.
 Note: Stata estimates standardized DfBetas. | In Stata type: $\text { reg } y \text { x1 x2 x3 }$
 dfbeta $x 1$
 Note: you could also type:
 predict DFx1, dfbeta(x1)
 To estimate the dfbetas for all predictors just type:
 dfbeta
 To flag the cutoff
 gen cutoffdfbeta $=$ abs $(D F x 1)>$
 2/sqrt(e(N)) \& e(sample) | In SPSS: Analyze-RegressionLinear; click Save. Select under "Influence Statistics" to add as a new variable (DFB1_1) or in syntax type
 REGRESSION
 /MISSING LISTWISE
 /STATISTICS COEFF OUTS
 R ANOVA
 /CRITERIA=PIN(.05)
 POUT(.10)
 /NOORIGIN
 /DEPENDENT Y
 /METHOD=ENTER X1 X2 X3
 /CASEWISE PLOT(ZRESID)
 OUTLIERS(3) DEFAULTS
 DFBETA
 /SAVE MAHAL COOK LEVER DFBETA SDBETA DFFIT SDFIT COVRATIO . |
| :---: | :---: | :---: | :---: | :---: |
| DfFit | Indicator of leverage and high residuals.
 Measures how much an observation influences the regression model as a whole.
 How much the predicted values change as a result of including and excluding a particular observation. | High influence if
 \|DfFIT| >2*SQRT(k/N)
 Where k is the number of parameters (including the intercept) and N is the sample size. | After running the regression type:
 predict dfits if e(sample), dfits
 To generate the flag for the cutoff type:
 gen cutoffdfit=
 abs(dfits) >2 *sqrt((e(df_m)
 $+1) / e(N)) \& e(s a m p l e)$ | Same as DfBeta above (DFF_1) |
| Covariance ratio | Measures the impact of an observation on the standard errors | High impact if \|COVRATIO-1| $\geq 3^{*} \mathrm{k} / \mathrm{N}$ Where k is the number of parameters (including the intercept) and N is the sample size. | In Stata after running the regression type
 predict covratio if e(sample), covratio | Same as DfBeta above (COV_1) 24 |

		Regress	n: summary of dis	tance meacirec
Cook's distance	Measures how much an observation influences the overall model or predicted values. It is a summary measure of leverage and high residuals.	High influence if $\text { D }>4 / \mathrm{N}$ Where N is the sample size. A $\mathrm{D}>1$ indicates big outlier problem	In Stata after running the regression type: predict D, cooksd	In SPSS: Analyze-Regression-Linear; click Save. Select under "Distances" to add as a new variable (COO_1) or in syntax type REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA $/$ CRITERIA $=$ PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT Y /METHOD=ENTER X1 X2 X3 /CASEWISE PLOT(ZRESID) OUTLIERS(3) DEFAULTS DFBETA /SAVE MAHAL COOK LEVER DFBETA SDBETA DFFIT SDFIT COVRATIO.
Leverage	Measures how much an observation influences regression coefficients.	High influence if leverage $\mathrm{h}>2 * \mathrm{k} / \mathrm{N}$ Where k is the number of parameters (including the intercept) and N is the sample size A rule-of-thumb: Leverage goes from 0 to 1 . A value closer to 1 or over 0.5 may indicate problems.	In Stata after running the regression type: predict lev, leverage	Same as above (LEV_1)
Mahalanobis distance	It is rescaled measure of leverage. $\mathrm{M}=\text { leverage } *(\mathrm{~N}-1)$ Where N is sample size.	Higher levels indicate higher distance from average values. The M-distance follows a Chisquare distribution with $\mathrm{k}-1 \mathrm{df}$ and alpha $=0.001$ (where k is the number of independent variables). Any value over this Chi-square value may indicate problems.	Not available	Same as above (MAH_1) 25 PU/DSS/OTR

Sources for the summary tables:
 influence indicators and distance measures

- Statnotes:
http://faculty.chass.ncsu.edu/garson/PA765/regress.htm\#outlier2
- An Introduction to Econometrics Using Stata/Christopher F. Baum, Stata Press, 2006
- Statistics with Stata (updated for version 9) / Lawrence Hamilton, Thomson Books/Cole, 2006
- UCLA http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter2/statareg2.htm

Regression: testing for normality

Another assumption of the regression model (OLS) that impact the validity of all tests (p, t and F) is that residuals behave 'normal'. Residuals (here indicated by the letter "e") are the difference between the observed values (Y) and the predicted values (Yhat): e = Y - Yhat.

In Stata you type: predict e, resid. It will generate a variable called "e" (residuals).
Three graphs will help us check for normality in the residuals: kdensity, pnorm and qnorm.

kdensity e, normal

kernel $=$ epanechnikov, bandwidth $=6.4865$

If residuals do not follow a 'normal' pattern then you should check for omitted variables, model specification, linearity, functional forms. In sum, you may need to reassess your model/theory. In practice normality does not represent much of a problem when dealing with really big samples.

A kernel density plot produces a kind of histogram for the residuals, the option normal overlays a normal distribution to compare. Here residuals seem to follow a normal distribution. Below is an example using histogram.
histogram e, kdensity normal

Standardize normal probability plot (pnorm) checks for non-normality in the middle range of residuals. Again, slightly off the line but looks ok.

Quintile-normal plots (qnorm) check for non-normality in the extremes of the data (tails). It plots quintiles of residuals vs quintiles of a normal distribution. Tails are a bit off the normal.
qnorm e

A non-graphical test is the Shapiro-Wilk test for normality. It tests the hypothesis that the distribution is normal, in this case the null hypothesis is that the distribution of the residuals is normal. Type

```
swilk e . swilk e
```

Shapiro-WIk Wtest for norml data

Variable	Obs	W	V	z	Prob $>z$
e	50	0.95566	2.085	1.567	0.05855

The null hypothesis is that the distribution of the residuals is normal, here the p-value is 0.06 we failed to reject the null (at 95%). We conclude then that residuals are normally distributed, with the caveat that they are not at 90%.

To test whether two coefficients are jointly different from 0 use the command test (see Hamilton, 2006, p.175).
xi: quietly regress csat expense percent percent2 income high college i.region, robust Note 'quietly' suppress the regression output

To test the null hypothesis that both coefficients do not have any effect on csat ($\beta_{\text {high }}=0$ and $\beta_{\text {college }}$ $=0$), type:
test high college

$$
\begin{aligned}
& \text { test high col l ege } \\
& \left(\begin{array}{l}
\text { 1) high }=0 \\
(2) \text { col lege }=0 \\
\\
\\
F(2, \operatorname{Prob}>F=17.12
\end{array}=0.0000\right.
\end{aligned}
$$

The p-value is 0.0000 , we reject the null and conclude that both variables have indeed a significant effect on SAT.

Some other possible tests are (see Hamilton, 2006, p.176):
test income = 1
test high = college
test income = (high + college)/100

Stata temporarily stores the coefficients as _b [varname], so if you type:

```
gen percent_b = _b[percent]
gen constant_b = _b[_cons]
You can also save the standard errors of the variables _se[varname]
gen percent_se = _se[percent]
gen constant_se = _se[_cons]
```

. summarize percent_b percent_se constant_b constant_se

Variable	Obs	Mean	Std.	Dev.	M n	Max
percent_b	51	-5.945267		0	-5.945267	-5.945267
percent_se	51	.6405529		0	.6405529	.6405529
constant_b	51	873.9537		0	873.9537	873.9537
constant_se	51	58.12895		0	58.12895	58.12895

Regression: saving regression coefficients/getting predicted values

You can see a list of stored results by typing after the regression ereturn list:

```
. xi : qui etl y regress csat expense percent percent2 i ncome hi gh col l ege i . regi on, robust
i.regi on _Iregi on_1-4 (nat ural l y coded; _Iregi on_1 omi tted)
. ereturn list
scal ars:
\begin{tabular}{|c|c|}
\hline e( N ) & \(=50\) \\
\hline e( df_m) & \(=9\) \\
\hline \(e\left(d f{ }^{-r}\right.\) ) & \(=40\) \\
\hline e( F\()\) & \(=76.92400040408057\) \\
\hline \(e(r 2)\) & = . 9404045015031877 \\
\hline \(e(r \mathrm{mse})\) & \(=17.81259357987284\) \\
\hline e( mss) & \(=200269.8403983309\) \\
\hline e(rss) & 12691. 53960166909 \\
\hline e(r2_a) & . 9269955143414049 \\
\hline e(TI) & \(=-209.3636234584767\) \\
\hline e(II 0) & - 279. 8680043669825 \\
\hline
\end{tabular}
macros:
        e(cmal i ne) : "regress csat expense percent percent2 i ncome hi gh col l ege _l regi on_*, robust"
                        e(title) : "Li near regressi on"
                e(vce) : "robust"
            e(depvar) : "csat"
                e(cmd) : "regress"
    e(properti es) : "b V"
        e(predi ct ) : "regres_p"
            e(model ) : "ol s"
            e(est at_cmd) : "regress_estat"
            e(vcetype) : "Robust"
natrices:
                e(b) : 1 x 10
functi ons:
            e(sampl e)
```


Regression: general guidelines

The following are general guidelines for building a regression model*

1. Make sure all relevant predictors are included. These are based on your research question, theory and knowledge on the topic.
2. Combine those predictors that tend to measure the same thing (i.e. as an index).
3. Consider the possibility of adding interactions (mainly for those variables with large effects)
4. Strategy to keep or drop variables:
5. Predictor not significant and has the expected sign -> Keep it
6. Predictor not significant and does not have the expected sign -> Drop it
7. Predictor is significant and has the expected sign -> Keep it
8. Predictor is significant but does not have the expected sign -> Review, you may need more variables, it may be interacting with another variable in the model or there may be an error in the data.

Regression: publishing regression output (outreg2)

The command outreg2 gives you the type of presentation you see in academic papers. It is important to notice that outreg2 is not a Stata command, it is a user-written procedure, and you need to install it by typing (only the first time)

```
ssc install outreg2
```

Follow this example (letters in italics you type)

```
use "H:\public_html\Stata\Panell01.dta", clear
reg y xl, r
outreg2 using myreg.doc, replace ctitle(Model 1)
```

- outreg2 using myreg.doc, replace ctitle (Model 1)	
$\frac{\text { myreg.doc }}{}$	Windows users click here to open the file myreg. doc in Word (you can replace this name with your own). Otherwise follow the Mac instructions.

Mac users click here to go to the directory where myreg. doc is saved, open it with Word (you can replace this name with your own)

You can add other model (using variable $x 2$) by using the option append (NOTE: make sure to close myreg. doc)

```
reg y x1 x2, r
```

outreg2 using myreg.doc, append ctitle(Model 2)
. outreg2 using myreg.doc, append ctitle(Model 2)
myreg.doc
dir : seeout

You also have the option to export to Excel, just use the extension *.xls.
For older versions of outreg2, you may need to specify the option word or excel (after comma)

VARIABLES	(1) Model 1
x1	$4.950 \mathrm{e}+08$ $(6.902 \mathrm{e}+08)$
Constant	$1.524 \mathrm{e}+09 * *$ $(6.636 \mathrm{e}+08)$
	70
Observations R-squared	0.006
Robust standard errors in parentheses $* * * ~$$<0.01, * * \mathrm{p}<0.05, * \mathrm{p}<0.1$	

VARIABLES	(1) Model 1	(2) Model 2
x1	$4.950 \mathrm{e}+08$	$5.513 \mathrm{e}+08$
	$(6.902 \mathrm{e}+08)$	$(6.869 \mathrm{e}+08)$
x 2		$3.808 \mathrm{e}+07$
		$(2.478 \mathrm{e}+08)$
Constant	$1.524 \mathrm{e}+09 * *$	$1.483 \mathrm{e}+09 * *$
	$(6.636 \mathrm{e}+08)$	$(6.595 \mathrm{e}+08)$
		70
Observations	70	70
R-squared	0.006	0.006

Robust standard errors in parentheses *** $\mathrm{p}<0.01$, ** $\mathrm{p}<0.05$, * $\mathrm{p}<0.1$

Regression: publishing regression output (outreg2)

You can use outreg2 for almost any regression output (linear or no linear). In the case of logit models with odds ratios, you need to add the option eform, see below

```
use "H:\public_html\Stata\Panell01.dta", clear
logit y_bin xl
outreg2 using mymod.doc, replace ctitle(Logit coeff)
    . outreg2 using mymod.doc, replace ctitle(Logit coeff)
    mymod.doc
    dir : seeout
logit y_bin x1, or
outreg2 using mymod.doc, append ctitle(Odds ratio) eform
```

. outreg2 using mymod.doc, append ctitle (Odds ratio) eform
$\frac{\text { mymod.doc }}{\text { dir }: ~ \text { seeout }}$
Windows users click here to open the file mymod. doc in Word (you
can replace this name with your own). Otherwise follow the Mac
instructions.

Mac users click here to go to the directory where mymod. doc is saved, open it with Word (you can replace this name with your own)

For more details/options type

EQUATION	VARIABLES	(1) Logit coeff	(2) Odds ratio
y_bin	x1	0.493	
		(0.645)	$(1.637$
	Constant	$1.082^{* *}$	$2.952^{* *}$
		(0.482)	(1.422)
	Observations	70	70

help outreg2
Standard errors in parentheses
*** $\mathrm{p}<0.01$, ** $\mathrm{p}<0.05, * \mathrm{p}<0.1$

Regression: publishing regression output (outreg2)

For predicted probabilities and marginal effects, see the following document
http://dss.princeton.edu/training/Margins.pdf

Regression: interaction between dummies

Interaction terms are needed whenever there is reason to believe that the effect of one independent variable depends on the value of another independent variable. We will explore here the interaction between two dummy (binary) variables. In the example below there could be the case that the effect of student-teacher ratio on test scores may depend on the percent of English learners in the district*.

- Dependent variable (Y) - Average test score, variable testscr in dataset.
- Independent variables (X)
- Binary hi_str, where ' 0 ' if student-teacher ratio ($s t r$) is lower than 20 , ' 1 ' equal to 20 or higher.
- InStata, first generate hi_str = 0 if str<20. Then replace hi_str=1 if str>=20.
- Binary hi_el, where ' 0 ' if English learners (el_pct) is lower than 10%, ' 1 ' equal to 10% or higher
- InStata, first generate hi_el = 0 if el_pct<10. Then replace hi_el=1 if el_pct>=10.
- Interactionterm str_el = hi_str * hi_el. In Stata: generate str_el = hi_str*hi_el

We run the regression
regress testscr hi_el hi_str str_el, robust

The equation is testscr_hat $=664.1$ - 18.1*hi_el - 1.9*hi_str - 3.5*str_el

The effect of hi_str on the tests scores is -1.9 but given the interaction term (and assuming all coefficients are significant), the net effect is $-1.9-3.5^{*}$ hi_el. If hi_el is 0 then the effect is -1.9 (which is hi_str coefficient), but if hi_el is 1 then the effect is $-1.9-3.5=-5.4$. In this case, the effect of student-teacher ratio is more negative in districts where the percent of English learners is higher.
See the next slide for more detailed computations.

Regression: interaction between dummies (cont.)

You can compute the expected values of test scores given different values of hi_str and hi_el. To see the effect of hi_str given hi_el type the following right after running the regression in the previous slide.
predict yhat1 if hi_str==0 \& hi_el==0
(option xb assumed; fitted values)
(271 missing values generated)
(predict yhat2 if hi_str==1 \& hi_el==0
(option xb assumed; fitted values)
(341 missing values generated)
(predict yhat3 if hi_str==0 \& hi_el==1
(option xb assumed; fitted values)
(331 missing values generated)
(predict yhat4 if hi_str==1 \& hi_el==1
(option xb assumed; fitted values)
(317 missing values generated)

These are different scenarios holding constant hi_el and varying hi_str. Below we add some labels
. Tabel variable yhat1 "Low str/Low el"
. label variable yhat2 "High str/Low el"
. label variable yhat3 "Low str/High el"
. Tabel variable yhat4 "High str/High el"

We then obtain the average of the estimations for the test scores (for all four scenarios, notice same values for all cases).

- summarize yhat1 yhat2 yhat3 yhat4
variab7e
obs

Here we estimate the net effect of low/high student-teacher ratio holding constant the percent of English learners. When hi_el is 0 the effect of going from low to high student-teacher ratio goes from a score of 664.2 to 662.2 , a difference of 1.9 . From a policy perspective you could argue that moving from high str to low str improve test scores by 1.9 in low English learners districts.
When hi_el is 1 , the effect of going from low to high student-teacher ratio goes from a score of 645.9 down to 640.5 , a decline of 5.4 points $(1.9+3.5)$. From a policy perspective you could say that reducing the str in districts with high percentage of English learners could improve test scores by 5.4 points.

Regression: interaction between a dummy and a continuous variable

Lets explore the same interaction as before but we keep student-teacher ratio continuous and the English learners variable as binary. The question remains the same*.

- Dependent variable (Y) - Average test score, variable testscr in dataset.
- Independent variables (X)
- Continuous str, student-teacher ratio.
- Binary hi_el, where ' 0 ' if English learners (el_pct) is lower than 10%, ' 1 ' equal to 10% or higher
- Interactionterm str_el2 = str * hi_el. In Stata: generate str_el2 = str*hi_el

We will run the regression

```
regress testscr str hi_el str_el2, robust
```

Linear regression					$\begin{aligned} & \text { Number of obs } \\ & \text { FC } 3,4416 \text {) } \\ & \text { Prob }>\text { F } \\ & \text { R-squared } \\ & \text { Root MSE } \end{aligned}$	420	
		Robust					
testscr	Coef.	Std. Err.	t	P>\|t		[95\% conf.	Interval]
	-. 9684601	. 5891016	-1. 64	0.101	-2.126447	. 1895268	
hi_e1	5.639141	19.51456	0.29	0.773	-32.72029	43.99857	
str_el2	-1.276613	. 9669194	-1.32	0.187	-3.17727	. 6240436	
_cons	682.2458	11.86781	57.49	0.000	658.9175	705.5742	

The equation is testscr_hat $=682.2-0.97 * s t r+5.6 * h i _e l-1.28^{*} s t r _e l 2$
The effect of str on testscr will be mediated by hi_el.

- If hi_el is 0 (low) then the effect of $s t r$ is $682.2-0.97 *$ str.
- If hi_el is 1 (high) then the effect of str is 682.2-0.97*str $+5.6-1.28^{*}$ str $=687.8-2.25^{*}$ str

Notice that how hi_el changes both the intercept and the slope of str. Reducing str by one in low EL districts will increase test scores by 0.97 points, but it will have a higher impact (2.25 points) in high EL districts. The difference between these two effects is 1.28 which is the coefficient of the interaction (Stock and Watson, 2003, p.223).

Regression: interaction between two continuous variables

Lets keep now both variables continuous. The question remains the same*.

- Dependent variable (Y) - Average test score, variable testscr in dataset.
- Independent variables (X)
- Continuous str, student-teacher ratio.
- Continuous el_pct, percent of English learners.
- Interaction term str_el3 = str * el_pct. In Stata: generate str_el3 = str*el_pct

We will run the regression
regress testscr str el_pct str_el3, robust

Linear regression					$\begin{array}{rlr} \text { Number of obs } & =420 \\ \text { F(} 3, & 416) & =155.05 \\ \text { Prob }>\text { F } & =0.0000 \\ \text { R-squared } & =0.4264 \\ \text { Root MSE } & =14.482 \end{array}$		
		Robust					
testscr	Coef.	Std. Err.	t	P>\|t		[95\% conf.	Interval]
str	-1.117018	. 5875135	-1.90	0.058	-2.271884	. 0378468	
el_pct	-. 6729116	. 3741231	-1.80	0.073	-1.408319	. 0624958	
str_el3	. 0011618	. 0185357	0.06	0.950	-. 0352736	. 0375971	
_cons	686.3385	11.75935	58.37	0.000	663.2234	709.4537	

The equation is testscr_hat $=686.3-1.12^{*}$ str - 0.67^{*} el_pct + 0.0012*str_el3 The effect of the interaction term is very small. Following Stock and Watson (2003, p.229), algebraically the slope of str is $-1.12+0.0012^{*} e l _p c t$ (remember that $s t r _e l 3$ is equal to $s t r * e l _p c t$). So:

- If el_pct = 10 , the slope of str is -1.108
- If el_pct $=20$, the slope of str is -1.096 . A difference in effect of 0.012 points.

In the continuous case there is an effect but is very small (and not significant). See Stock and Watson, 2003, for further details.

Creating dummies

You can create dummy variables by either using recode or using a combination of tab/gen commands: tab major, generate(major_dum)

- tab major, generate(major_dum)
Major
Econ
Math

Check the 'variables' window, at the end you will see three new variables. Using tab1 (for multiple frequencies) you can check that they are all 0 and 1 values

major==Econ	Freq.	Percent	Cum.
0 1	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 66.67 \\ & 33.33 \end{aligned}$	$\begin{array}{r} 66.67 \\ 100.00 \end{array}$
Total -> tabulati major==Math	30 jor_du Freq.	100.00 Percent	Cum.
0 1	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 66.67 \\ & 33.33 \end{aligned}$	$\begin{array}{r} 66.67 \\ 100.00 \end{array}$
Total -> tabulation major==Poli tics	30 jor_d Freq.	100.00 Percent	Cum.
0 1	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 66.67 \\ & 33.33 \end{aligned}$	$\begin{array}{r} 66.67 \\ 100.00 \end{array}$
Total	30	100.00	40

Creating dummies (cont.)

Here is another example:
tab agregroups, generate(agegroups_dum)

. tab agegroups, generate(agegrups_dum)			
Age by groups	Freq.	Percent	Cum.
18 to 19	10	33.33	33.33
20 to 29	9	30.00	63.33
30 to 39	11	36.67	100.00
Total	30	100.00	

Check the 'variables' window, at the end you will see three new variables. Using tab1 (for multiple frequencies) you can check that they are all 0 and 1 values

| Variables | |
| :--- | :--- | :--- |
| Name | Label |
| status | Status: grad or undergad |
| major | Major |
| country | Country |
| age | Age |
| sat | SAT |
| score | Average score (grade) |
| height | Height (in) |
| readnews | Newspaper read / week |
| score2 | Score in decimals |
| readnews2 | Monthly readership |
| agegroups | Age by groups |
| sex | Gender |
| major_dum1 | major==Econ |
| major_dum2 | major==Math |
| major_dum3 | major==Politics |
| agegrups_dum1 | agegroups==18 to 19 |
| agegrups_dum2 | |
| agegroups==20 to 29 | |
| agegrups_dum3 | agegroups==30 to 39 |

- tab1 agegrups_dum1 agegrups_dum2 agegrups_dum3 -> tabulation of agegrups_dum1 agegroups== 18 to 19 Freq. Percent Cum.			
0 1	20 10	$\begin{aligned} & 66.67 \\ & 33.33 \end{aligned}$	$\begin{array}{r} 66.67 \\ 100.00 \end{array}$
Total -> tabulation agegroups== 20 to 29		100.00 m2 Percent	Cum.
0 1	21	$\begin{aligned} & 70.00 \\ & 30.00 \end{aligned}$	$\begin{array}{r} 70.00 \\ 100.00 \end{array}$
Total -> tabulatio agegroups== 30 to 39		$\begin{aligned} & 100.00 \\ & \text { m3 } \\ & \text { Percent } \end{aligned}$	Cum.
0 1	$\begin{aligned} & 19 \\ & 11 \end{aligned}$	$\begin{aligned} & 63.33 \\ & 36.67 \end{aligned}$	$\begin{array}{r} 63.33 \\ 100.00 \end{array}$
Total	30	100.00	

Frequently used Stata commands

$\begin{aligned} & \dot{-} \\ & \dot{\sim} \\ & \dot{D} \\ & \vec{D} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	Category	Stata commands
	Getting on-line help	help search
	Operating-system interface	pwd cd sysdir mkdir dir / Is erase copy type
	Using and saving data from disk	use clear save append merge compress
	Inputting data into Stata	input edit infile infix insheet
\cdots	The Internet and Updating Stata	update net ado news

Basic data reporting

Source: http://www.ats.ucla.edu/stat/stata/notes2/commands.htm

Basic data reporting	describe codebook inspect list browse count assert summarize Table (tab) tabulate
Data manipulation	generate replace egen recode rename drop keep sort encode decode order by reshape
Formatting	format label
Keeping track of your work	log notes
Convenience	display

Is my model OK? (links)
Regression diagnostics: A checklist
http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter2/statareg2.htm
Logistic regression diagnostics: A checklist
http://www.ats.ucla.edu/stat/stata/webbooks/logistic/chapter3/statalog3.htm
Times series diagnostics: A checklist (pdf)
http://homepages.nyu.edu/~mrg217/timeseries.pdf
Times series: dfueller test for unit roots (for R and Stata)
http://www.econ.uiuc.edu/~econ472/tutorial9.htm
Panel data tests: heteroskedasticity and autocorrelation

- http://www.stata.com/support/faqs/stat/panel.html
- http://www.stata.com/support/faqs/stat/xtreg.html
- http://www.stata.com/support/faqs/stat/xt.html
- http://dss.princeton.edu/online help/analysis/panel.htm

I can't read the output of my model!!! (links)

Data Analysis: Annotated Output
http://www.ats.ucla.edu/stat/AnnotatedOutput/default.htm

Data Analysis Examples

http://www.ats.ucla.edu/stat/dae/

Regression with Stata

http://www.ats.ucla.edu/STAT/stata/webbooks/reg/default.htm

Regression

http://www.ats.ucla.edu/stat/stata/topics/regression.htm
How to interpret dummy variables in a regression
http://www.ats.ucla.edu/stat/Stata/webbooks/reg/chapter3/statareg3.htm
How to create dummies
http://www.stata.com/support/faqs/data/dummy.html
http://www.ats.ucla.edu/stat/stata/faq/dummy.htm
Logit output: what are the odds ratios?
http://www.ats.ucla.edu/stat/stata/library/odds ratio logistic.htm

Topics in Statistics (links)

What statistical analysis should I use?
 http://www.ats.ucla.edu/stat/mult pkg/whatstat/default.htm

Statnotes: Topics in Multivariate Analysis, by G. David Garson
http://www2.chass.ncsu.edu/garson/pa765/statnote.htm

Elementary Concepts in Statistics
http://www.statsoft.com/textbook/stathome.html

Introductory Statistics: Concepts, Models, and Applications
http://www.psychstat.missouristate.edu/introbook/sbk00.htm

Statistical Data Analysis
http://math.nicholls.edu/badie/statdataanalysis.html

Stata Library. Graph Examples (some may not work with STATA 10) http://www.ats.ucla.edu/STAT/stata/library/GraphExamples/default.htm

Comparing Group Means: The T-test and One-way ANOVA Using STATA, SAS, and SPSS
http://www.indiana.edu/~statmath/stat/all/ttest/

Useful links / Recommended books

- DSS Online Training Section http://dss.princeton.edu/training/
- UCLA Resources to learn and use STATA http://www.ats.ucla.edu/stat/stata/
- DSS help-sheets for STATA http://dss/online help/stats packages/stata/stata.htm
- Introduction to Stata (PDF), Christopher F. Baum, Boston College, USA. "A 67-page description of Stata, its key features and benefits, and other useful information." http://fmwww.bc.edu/GStat/docs/Statalntro.pdf
- STATA FAQ website http://stata.com/support/faqs/
- Princeton DSS Libguides http://libguides.princeton.edu/dss

Books

- Introduction to econometrics / James H. Stock, Mark W. Watson. 2nd ed., Boston: Pearson Addison Wesley, 2007.
- Data analysis using regression and multilevel/hierarchical models / Andrew Gelman, Jennifer Hill. Cambridge ; New York: Cambridge University Press, 2007.
- Econometric analysis / William H. Greene. 6th ed., Upper Saddle River, N.J. : Prentice Hall, 2008.
- Designing Social Inquiry: Scientific Inference in Qualitative Research / Gary King, Robert O. Keohane, Sidney Verba, Princeton University Press, 1994.
- Unifying Political Methodology: The Likelihood Theory of Statistical Inference / Gary King, Cambridge University Press, 1989
- Statistical Analysis: an interdisciplinary introduction to univariate \& multivariate methods / Sam Kachigan, New York: Radius Press, c1986
- Statistics with Stata (updated for version 9) / Lawrence Hamilton, Thomson Books/Cole, 2006

[^0]: St andard errors in par ent heses

 * $\mathrm{p}<0.05$, ** $\mathrm{p}<0.01$, *** $\mathrm{p}<0.001$

[^1]: St andard er rors in parent heses

 * $\mathrm{p}<0.05, * * \mathrm{p}<0.01, * * * \mathrm{p}<0.001$

[^2]: ${ }^{1}$ For more details see http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter2/statareg2.htm, and/or type help linktest.

