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ABSTRACT

Polarimetric Image Reconstruction Algorithms

by

John R. Valenzuela

Chair: Jeffrey A. Fessler

In the field of imaging polarimetry Stokes parameters are sought and must be in-

ferred from noisy and blurred intensity measurements. Using a penalized-likelihood

estimation framework we investigate reconstruction quality when estimating intensity

images and then transforming to Stokes parameters (traditional estimator), and when

estimating Stokes parameters directly (Stokes estimator). We define our cost func-

tion for reconstruction by a weighted least squares data fit term and a regularization

penalty. It is shown that under quadratic regularization, the traditional and Stokes

estimators can be made equal by appropriate choice of regularization parameters. It

is empirically shown that, when using edge preserving regularization, estimating the

Stokes parameters directly leads to lower RMS error in reconstruction. Also, the

addition of a cross channel regularization term further lowers the RMS error for both

methods especially in the case of low SNR.

The technique of phase diversity has been used in traditional incoherent imaging

systems to jointly estimate an object and optical system aberrations. We extend the

technique of phase diversity to polarimetric imaging systems. Specifically, we de-

scribe penalized-likelihood methods for jointly estimating Stokes images and optical

x



system aberrations from measurements that contain phase diversity. Jointly estimat-

ing Stokes images and optical system aberrations involves a large parameter space. A

closed-form expression for the estimate of the Stokes images in terms of the aberra-

tion parameters is derived and used in a formulation that reduces the dimensionality

of the search space to the number of aberration parameters only. We compare the

performance of the joint estimator under both quadratic and edge-preserving regular-

ization. The joint estimator with edge-preserving regularization yields higher fidelity

polarization estimates than with quadratic regularization. Under quadratic regular-

ization, using the reduced-parameter search strategy, accurate aberration estimates

can be obtained without recourse to regularization “tuning”.

Phase-diverse wavefront sensing is emerging as a viable candidate wavefront sen-

sor for adaptive-optics systems. In a quadratically penalized weighted least squares

estimation framework a closed form expression for the object being imaged in terms of

the aberrations in the system is available. This expression offers a dramatic reduction

of the dimensionality of the estimation problem and thus is of great interest for prac-

tical applications. We have derived an expression for an approximate joint covariance

matrix for object and aberrations in the phase diversity context. Our expression for

the approximate joint covariance is compared with the “known-object” Cramèr-Rao

lower bound that is typically used for system parameter optimization. Estimates of

the optimal amount of defocus in a phase-diverse wavefront sensor derived from the

joint-covariance matrix, the known-object Cramèr-Rao bound, and Monte Carlo sim-

ulations are compared for an extended scene and a point object. It is found that our

variance approximation, that incorporates the uncertainty of the object, leads to an

improvement in predicting the optimal amount of defocus to use in a phase-diverse

wavefront sensor.
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CHAPTER I

Introduction

Passive optical polarimetric imaging, or simply polarimetry, is an emerging remote

sensing technology which complements panchromatic, mulitspectral, and hyperspec-

tral imaging. While spectral signatures carry information about material properties,

the polarization state of an optical field across a scene contains information related

to surface features of objects within the scene, such as, shape and roughness. Polari-

metric imaging systems acquire data that can be used to infer the polarization state

of an optical field.

The earth is illuminated by sunlight which is essentially unpolarized, however,

light reflected from the earth can have a surprisingly large linear polarization compo-

nent. The polarization state of reflected light depends strongly on the granularity of

the reflecting surface; rough surfaces tend to reflect light in a diffuse fashion leaving

the optical field unpolarized. Reflection from smooth surfaces, which is typical of

man-made objects, tends to be dominated by specular reflection which can result in a

polarizing of the optical field especially if the angle of incidence is near Brewster’s an-

gle. Since naturally occurring objects typically have a larger surface granularity than

man-made objects, polarimetry offers the potential for improved target detection and

identification.

Polarization of an optical field is not directly observable and so must be inferred
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from intensity measurements. There are several ways of representing the polarization

state of an optical field, the most common in the remote sensing context is the Stokes-

vector representation. The Stokes vector, S, is defined in terms of optical intensity in

the following way: S0 is the total intensity, S1 is the difference between the intensity

transmitted by a linear polarizer oriented parallel to the x (0◦ reference) axis and one

oriented parallel to the y axis, S2 is the difference between the intensity transmitted

by a linear polarizer oriented at 45◦ to the x axis and one oriented at 135◦, and

S3 is the difference between the intensity transmitted by a right circular polarizer

and a left circular polarizer. In the vast majority of remote sensing applications the

component S3 is negligible; for this reason it is typical to work with only the first

three components of the Stokes vector.

Polarimeters, like traditional incoherent imaging sensors, have resolution limits

that depend on noise and system point-spread function. In remote-sensing applica-

tions, degradations in the point-spread function are often due to atmospheric turbu-

lence, residual aberrations in the optical system or misalignment among components

in the optical system. As such, polarimetric imaging applications stand to bene-

fit from post-detection processing. Moreover, polarimeters utilizing adaptive optics

(AO) would benefit from an optical wavefront sensor that exploits the polarimetric

nature of the collected data.

If the polarimeter’s point-spread-function is known, image reconstruction tech-

niques can be used to remove noise and blur thereby increasing resolution. However,

it is not immediately obvious which space the estimation should be done in. The final

representation of the polarization state of the optical field is done in Stokes space;

but since S1 and S2 are differences of intensity images, their signal-to-ratios are sig-

nificantly smaller than that of the individual intensity images. The choice is then:

estimate in the higher SNR intensity space and then transform to the Stokes space, or

estimate directly in the lower SNR Stokes space. If the system point-spread-function
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is not known, it must be estimated jointly with the Stokes parameters, or in the case

of an AO system, there must be a way to estimate the degrading optical wavefront

and apply corrections in real time.

When choosing an optical wavefront sensor for an AO system there are numer-

ous candidates all having individual strengths and weaknesses. Phase diversity is an

image-based wavefront-sensing technique that allows for the joint estimation of ob-

ject and phase aberrations. The technique of phase diversity has an advantage over

other wavefront sensing modalities in that it is explicitly designed to accommodate

extended objects. The flexibility to accommodate extended scenes allows the pos-

sibility of developing a phase-diverse wavefront sensor for imaging modalities other

than traditional panchromatic imaging.

In this dissertation we first explore image reconstruction algorithms for imaging

polarimetry. Assuming a monochromatic object and a known system point-spread-

function we use a penalized-likelihood estimation framework we investigate recon-

struction quality estimating in the space that the data was collected (intensity) and

when estimating in the “data-reduced” Stokes space. We consider quadratic, edge-

preserving, and inter-channel regularization penalty functions.

In chapter III we extend the technique of phase diversity to polarimetric imaging

systems. Specifically, we describe penalized-likelihood methods for jointly estimat-

ing (monochromatic) Stokes images and optical system aberrations from measure-

ments that contain phase diversity. Both edge-preserving and quadratic regularization

penalty functions are considered. The choice of regularization penalty is considered

in light of whether a parameter is nuisance or not.

In chapter IV we consider optimization of system parameters in a phase-diverse

wavefront sensor. Most analyses in this area are done using Cramèr-Rao bounds.

We consider performance of a specific form of estimator for which wavefront sensing

could be implemented in real time. Specifically, we analyze the joint covariance of

3



object (monochromatic) and aberrations for a quadratically regularized weighted least

squares estimator.

The main contributions discussed in this work are:

• An analysis of penalized-likelihood image reconstruction techniques for estimat-

ing Stokes parameters from polarimetric measurements [95, 97].

• Development of a unified framework for jointly estimating Stokes parameters

and aberration parameters from polarimetric measurements that contain phase

diversity [96, 98].

• Derivation of an approximate joint covariance of aberration estimates and un-

known object in the phase diversity context .
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CHAPTER II

Polarimetric Image Reconstruction

2.1 Introduction

In remote sensing and astronomical applications the properties of light that are

commonly measured and analyzed include intensity, wavelength, and coherence (in-

terferometry) [93, 7]. In the context of imaging, intensity measurements provide infor-

mation on scene content while spectral measurements provide additional information

that can be used for material classification and target identification. A fourth prop-

erty of light that is related to imaging is polarization. Polarization varies slowly with

wavelength and so tends to be uncorrelated with spectral measurements [93] thereby

offering the potential for image enhancements not available with spectral measure-

ments alone. This paper describes methods for estimating polarization information,

i.e., Stokes vectors, from polarimetric intensity measurements.

In the context of remote sensing, polarization signatures are used to infer surface

features of an object under incoherent illumination [93, 26]. Man made objects tend

to have smoother surfaces than natural objects, so the mechanism of reflection is dom-

inated by specular reflection which tends to retain or even enhance any polarization

of the source.

The state of polarization of a transverse optical field can be represented in several

ways [15]; in this paper we focus on the Stokes vector representation. The Stokes
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vector is a four component vector, S = (S0, S1, S2, S3), whose elements are functions

of the optical field. The components of the Stokes vector are defined as follows: S0 is

the total intensity, S1 is the difference between the intensity transmitted by a linear

polarizer oriented parallel to the x (0◦ reference) axis and one oriented parallel to

the y axis, S2 is the difference between the intensity transmitted by a linear polarizer

oriented at 45◦ to the x axis and one oriented at 135◦, and S3 is the difference between

the intensity transmitted by a right circular polarizer and a left circular polarizer. In

the vast majority of remote sensing applications the component S3 is negligible; for

this reason it is typical to work with only the first three components of the Stokes

vector.

The intensity passed by a linear polarizer, whose transmission axis is oriented at

angle θ, may be written in terms of the components of the Stokes vector. The effect

of an ideal linear polarizer is to pass that part of the electric field which is along

the transmission axis of the polarizer. Let the transmission axis of the polarizer be

pθ = cos(θ)̂i + sin(θ)̂j and the electric field be

E (t) = Ex (t) î + Ey (t) ĵ. (2.1)

The intensity, Γ(θ), passed by the polarizer is then

Γ (θ) = 〈(E (t) · pθ)2〉

= 〈E2
x (t)〉 cos2 (θ) + 〈E2

y (t)〉 sin2 (θ)

+ 2〈Ex (θ)Ey (θ)〉 sin (θ) cos (θ)

(2.2)

where 〈·〉 indicates time averaging. Using the double angle formulae we rewrite the
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expression (2.2) for the intensity as

Γ (θ) =
1

2

(
〈E2

x (t)〉+ 〈E2
y (t)〉

)
+

1

2
cos(2θ)

(
〈E2

x (t)〉 − 〈E2
y (t)〉

)
+ 〈Ex (t)Ey (t)〉 sin(2θ).

(2.3)

The components of the Stokes vector can be written in terms of the electric field

as follows [45]

S0 = Γ (0◦) + Γ (90◦) = 〈E2
x(t)〉+ 〈E2

y(t)〉 (2.4)

S1 = Γ (0◦)− Γ (90◦) = 〈E2
x(t)〉 − 〈E2

y(t)〉 (2.5)

S2 = Γ (45◦)− Γ (135◦) = 2〈Ex(t)Ey(t)〉. (2.6)

By direct substitution, the intensity is related to the Stokes parameters as follows

Γ (θ) =
1

2
(S0 + S1 cos(2θ) + S2 sin(2θ)) . (2.7)

For J measurement angles {θ1, . . . , θJ} equation (2.7) becomes a system of J equa-

tions. In matrix form the system is

Γ = TJ×3S. (2.8)

where Γ = ((Γ(θ1), . . . ,Γ(θJ)) and S = (S0, S1, S2). The conventional estimate of the

Stokes vector uses the pseudoinverse, indicated by †, of TJ×3:

Ŝ = T†J×3Γ. (2.9)

However, the model (2.7) and the estimate (2.9) have ignored noise, blur, and other

7



degradations. The proposed methods overcome these limitations.

2.2 Image Reconstruction Applied to Stokes Vector Imaging

Statistical image reconstruction techniques are applied to data that has been cor-

rupted by non-ideal system effects, i.e., noise and blur. When applying a reconstruc-

tion algorithm to polarimetric imagery we are confronted with the question of which

image set to reconstruct: the polarimetric intensity images or the underlying Stokes

images. While access to the Stokes images is the ultimate goal we must be concerned

with the low signal levels in the S1 and S2 images. On the other hand, the intensity

images do not have this low signal difficulty and so are good candidates for improve-

ment through image reconstruction. We investigate both approaches theoretically

and numerically. Estimation of the intensity images is referred to as the traditional

approach and estimation of the Stokes vector is referred to as the proposed approach.

We explore weighted least squares estimators both with quadratic roughness penalty

and with edge-preserving regularization.

Our proposed method for Stokes vector estimation can be generalized to account

for optical imperfections such as retardances [94], but for notational simplicity we

assume the polarization properties of the optical components are ideal here.

2.2.1 Traditional Image Restoration Approach

In the traditional approach to image restoration we try to recover the uncorrupted

images from the noisy images individually. For the polarimetric imaging problem this

translates into first restoring the true intensity images, and then converting those

images into Stokes space via the linear transformation (2.9). We treat the general

case of J polarimetric channels (images) each having a unique associated polarization

angle.

Denote the lexicographically ordered data collected in the jth channel by yj. The

8



system matrix, that represents physical effects such as optical and detector blur, is

denoted Aj, and the noise vector by εj. The data vectors {yj} and noise vectors εj

are each of length nd. The size of the system matrix of the jth channel is nd × np

where np is the number of pixels in an individual true intensity image Γj.(In general,

nd 6= np) The model for the jth channel of the collected data is

yj = AjΓj + εj. (2.10)

For simplicity, we adopt a zero-mean independent-identically-distributed Gaussian

noise model:

εj ∼ N
(
0, σ2I

)
. (2.11)

Our goal here is to estimate the set of intensity images Γ = (Γ1, . . . ,ΓJ) from the

set of measurements y = (y1, . . . , yJ). Penalized-likelihood, or MAP, estimators have

been used extensively for such image reconstruction problems [103, 14, 6, 95]. Here,

a penalized-likelihood estimator for Γ is given by

Γ̂ = argmin
Γ
{− log p(y|Γ) +RΓ(Γ)} (2.12)

where RΓ is a regularization function for the intensity images. Since the intensity

images have no a priori coupling, typically one chooses an RΓ (Γ) that separates, i.e.,

RΓ (Γ) =
J∑
j=1

Rj (Γj) , (2.13)

the likelihood function also separates, so the minimization problem for Γ̂ separates

into J individual regularized image restoration operations, i.e.,

Γ̂j = argmin
Γj

{− log p(yj|Γj) +Rj (Γj)}, (2.14)
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where

− log p(yj|Γj) =
1

2σ2
‖yj − AjΓj‖2. (2.15)

After restoring each intensity image, Γj, we then estimate the Stokes vector, ŜΓ,

using a generalized version of equation (2.9) that is appropriate for images. The

generalization to images is accomplished by writing the transformation matrix so

that we have a pixel-by-pixel version of equation (2.9): so

ŜΓ = Ť†Γ̂ =
(
T†J×3 ⊗ Inp

)
Γ̂. (2.16)

where Inp is the np × np identity matrix and ⊗ denotes Kronecker product.

2.2.2 Stokes Estimation Model

We now propose a method for estimating S directly from y. The method for

estimating the Stokes vector (images) directly differs from the traditional estimation

model in both the likelihood function and the regularization function.

A penalized-likelihood estimator for the Stokes vector is

Ŝ = argmin
S
{− log p(y|S) +RS(S)} (2.17)

where RS is a regularization function for the Stokes images. As in the traditional

estimator the regularization function RS typically separates, i.e.,

RS (S) =
3∑
j=1

Rj (Sj) . (2.18)

However, unlike the traditional case the likelihood function p(y|S) does not separate

and so the minimization problem (2.17) is coupled. On the other hand, (2.17) involves

fewer unknown parameters than (2.12) because typically J > 3.
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2.3 Analytical Estimator Analysis: Quadratically Penalized

Weighted Least Squares Estimator

This section compares analytically the traditional and Stokes estimators. The

degrading effect of the imaging system is taken to be optical blur and represented by

the matrix B, i.e., Aj = B in equation (2.10). This matrix is Toeplitz if the system

is shift invariant, but the analysis that follows applies to general blur matrices. We

assume here that each channel has the same optical and detector blur; this is a

reasonable assumption because aberrations and detector effects are not affected by

linear polarizers.

We focus on the case of four polarimetric measurements (taken with linear polar-

izers) at angles [0◦, 45◦, 90◦, 135◦]; this sets the size of TJ×3 in equation (2.8) to be

4× 3, denoted by T4 hereafter. The Stokes to intensity transformation, T4, and the

intensity to Stokes transformation, T†4, are given by

T4 =



1

2

1

2
0

1

2
0

1

2

1

2
−1

2
0

1

2
0 −1

2


and T†4 =



1

2

1

2

1

2

1

2

1 0 −1 0

0 1 0 −1


.

We note for use below that T′4T4 = diag(1, 1
2
, 1

2
), where ′ indicates conjugate trans-

pose. In fact the analysis that follows applies to any set of polarization angles for

which T′J×3TJ×3 is a diagonal matrix.
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2.3.1 Traditional Estimator

The data model (2.10) becomes

y = (I4 ⊗B) Γ + ε, (2.19)

where ⊗ is the Kronecker product. For simplicity we consider a quadratic regular-

izing penalty function that uses vertical and horizontal neighboring pixels. In one

dimension the regularizer, RΓ (Γ), is written

RΓ (Γ) =
1

2
β

J∑
j=1

np∑
k=2

(Γjk − Γjk−1
)2

=
1

2
β

J∑
j=1

‖CΓj‖2 (2.20)

where C is a finite differencing matrix, β is the regularization “tuning” parameter, and

‖·‖ is the Euclidean-norm. Note that it is reasonable to use the same regularization

parameter for the different polarimetric channels because there is a high correlation

between them. In two dimensions the summation notation becomes cumbersome and

so we use linear algebra notation exclusively. Let C be a finite differencing matrix

that takes both vertical and horizontal differences, then the regularization function

can be succinctly written, noting that C
4
= I4 ⊗ C, as

RΓ (Γ) =
1

2
β‖CΓ‖2. (2.21)

The estimator (2.12) can then be written

Γ̂ = argmin
Γ
{ 1

2σ2
‖y − (I4 ⊗B) Γ‖2 +

1

2
β‖CΓ‖2}. (2.22)
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We consider the case of unconstrained optimization and so the minimizer must satisfy

∇Γ

(
1

2σ2
‖y − (I4 ⊗B) Γ‖2 +

1

2
β‖CΓ‖2

)
= 0.

Solving the above equation for Γ̂ and combining with (2.16) yields

ŜΓ = Ť†
(
I4 ⊗

([
B′B + σ2βR

]−1
B′
))

y, (2.23)

where R = C ′C. This expression corresponds to separate deblurring of each polari-

metric channel followed by converting the restored images into Stokes images.

2.3.2 Stokes Estimator

Noting that the system effects are identical to the case of the traditional estimator

we write the data model for the Stokes estimator as follows:

y = (T4 ⊗B) S + ε. (2.24)

Following the same procedure as in the case of the traditional estimator we have the

following implicitly defined estimator

Ŝ = argmin
S
{ 1

2σ2
‖y − (T4 ⊗B) S‖2

+
1

2

(
β0‖CS0‖2 + β1‖CS1‖2 + β2‖CS2‖2

)
}.

(2.25)

In this case the three images being estimated are very different and so justify three

independent regularization “tuning” parameters. Minimizing with respect to S leads

to the closed form estimator

Ŝ =
[
T′4T4 ⊗B′B + σ2β3 ⊗R

]−1
(T′4 ⊗B′) y (2.26)
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where β3
4
= diag(β0, β1, β2). We now analyze the two approaches (2.23) and (2.26).

2.3.3 Spatial Resolution Analysis of the Stokes Estimator

We begin by calculating the mean value of the proposed estimator (2.26). To aid

in the calculation define P = diag(1, 2, 2), and note that T′4T4 = P−1 = diag(1, 1
2
, 1

2
).

Then using (2.19):

E[Ŝ|S] =
[
T′4T4 ⊗B′B + σ2β3 ⊗R

]−1

× (I3 ⊗B′)
(
P−1 ⊗ Inp

) (
T†4 ⊗ Inp

)
E[y|S]

=
[
T′4T4 ⊗B′B + σ2β3 ⊗R

]−1

× (I3 ⊗B′)
(
P−1 ⊗ Inp

)
(I3 ⊗B) S

=
[
P−1 ⊗B′B + σ2β3 ⊗R

]−1 (
P−1 ⊗B′B

)︸ ︷︷ ︸
L

S

= LS,

where L is a [3np × 3np] matrix that acts somewhat like a Wiener filter [49]. Each

term in the above expression is uncoupled since the matrices P−1 and β3 are diagonal.

To explore the spatial resolution properties of the estimators, we approximate B by

a circulant matrix [104]. Let Q be the orthonormal DFT matrix, then the eigen-

decompostions B and C are approximated by QΘQ′ and QΩQ′ respectively. Then

E[Ŝ|S] =
[
P−1 ⊗QΘ′ΘQ′ + σ2β3 ⊗QΩ′ΩQ′

]−1

·
(
P−1 ⊗QΘ′ΘQ′

)
S

= Q{
[
P−1 ⊗Θ′Θ + σ2β3 ⊗ Ω′Ω

]−1

·
(
P−1 ⊗Θ′Θ

)
}Q′S.

(2.27)
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We see that the expectation of Ŝ is approximately a filtered version of the true objects

with each image having an independent filter.

Filter for S0 =⇒ Lk =
|Bk|2

|Bk|2 + β0σ2|Fk|2
(2.28a)

Filter for S1 =⇒ Lk =
1
2
|Bk|2

1
2
|Bk|2 + β1σ2|Fk|2

(2.28b)

Filter for S2 =⇒ Lk =
1
2
|Bk|2

1
2
|Bk|2 + β2σ2|Fk|2

, (2.28c)

where {Bk} and {Fk} are the DFT coefficients of the first column of B and C respec-

tively and k = 1, . . . , np. We see that the S1 and S2 channels have a different spatial

resolution than the S0 channel, unless we choose β1 = β2 = β0/2. However, in the

intensity model all three channels always have identical resolutions.

Matching the spatial resolution of the S1 and S2 channels to the S0 channel also

decouples the estimator. That is, by choosing

β3 = β diag

(
1,

1

2
,
1

2

)
(2.29)

we have

Ŝ =
[
T′4T4 ⊗B′B + σ2β3 ⊗R

]−1
(T′4 ⊗B′) y

=

[
diag(1,

1

2
,
1

2
)⊗

(
B′B + σ2βR

)]−1

(T′4 ⊗B′) y

= diag(1, 2, 2)⊗
[
B′B + σ2βR

]−1
(T′4 ⊗B′) y

= T†4 ⊗
[
B′B + σ2βR

]−1
B′y

= ŜΓ.

In other words, for the choice (2.29), with quadratic regularization the Stokes esti-

mator becomes uncoupled and reduces to the traditional estimator. Next we consider
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the covariance of the estimator.

Cov(Ŝ|S) = Cov(Ly|S)

= σ2
[
P−1 ⊗B′B + σ2β3 ⊗R

]−1

·
(
P−1 ⊗B′B

) [
P−1 ⊗B′B + σ2β3 ⊗R

]−1

In the circulant approximation we have,

Cov(Ŝ|S) = σ2
[
P−1 ⊗QΘ′ΘQ′ + σ2β3 ⊗QΩ′ΩQ′

]−1

·
(
P−1 ⊗QΘ′ΘQ′

)
·
[
P−1 ⊗QΘ′ΘQ′ + σ2β3 ⊗QΩ′ΩQ′

]−1

= σ2Q
[
P−1 ⊗Θ′Θ + σ2β3Ω′Ω

]−1

·
(
P−1 ⊗Θ′Θ

)
·
[
P−1 ⊗Θ′Θ + σ2β3Ω′Ω

]−1
Q′

(2.30)

The variance of the ith pixel in each image is

Var{S0i
|S} =

σ2

np

∑
k

|Bk|2

(|Bk|2 + β0σ2|Fk|2)2 (2.31a)

Var{S1i
|S} =

σ2

np

∑
k

2|Bk|2

(|Bk|2 + β1σ2|Fk|2)2 (2.31b)

Var{S2i
|S} =

σ2

np

∑
k

2|Bk|2

(|Bk|2 + β2σ2|Fk|2)2 (2.31c)

For the choice (2.29) the noise in the reconstructed Stokes images {S1, S2} is twice

that of S0, indicating that the regularization for the {S1, S2} images may need to be

stronger than S0. In summary, if one used quadratic regularization with regularization

parameters as in (2.29), then Ŝ and ŜΓ would be identical. Next we turn to the case

of nonquadratic regularization.
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2.4 Empirical Studies

2.4.1 Edge-preserving Regularization

In the Stokes images {S1, S2} the polarization information typically has sharp

edges. To recover as much polarization information as possible the regularization

function should preserve edges. Since quadratic regularization tends to wash out

edges and smooth noise we explore edge preserving regularization using the hyperbolic

function ψ(t; δ) = δ2

(√
1 +

(
t
δ

)2 − 1

)
, where δ is a “shape parameter” that controls

edge-preserving properties. For fixed δ this function is approximately quadratic for

values of t < δ and approximately linear for t > δ. This behavior will tend to smooth

noise and preserve edges. The Stokes and intensity regularizers are written

RΓ (Γ) =
J∑
j=1

2np∑
k=1

ψ ([CΓj]k; δ)

RS (Γ) =
2∑
`=0

2np∑
k=1

ψ ([CS`]k; δ`)

The Stokes estimator now has two regularization parameters per Stokes image and the

intensity estimator has two regularization parameters in total. Since closed form ex-

pressions for the minimizers of these cost functions are intractable we minimize them

numerically. The numerical optimization was done with the LBFGS algorithm[57].

To obtain optimal values of all regularization parameter combinations would be com-

putationally burdensome so we chose the β parameters by analyzing the local point

spread function [31] of the quadratic estimators. The β parameters are chosen so

that the FWHM of the estimator is a prescribed amount in regions where the regu-

larization function is approximately quadratic. The local impulse response is defined
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by

lj (S) = lim
ε→0

Ŝ (y(S + εej))− Ŝ (y (S))

ε

= ∇Ŝ (y (S))∇y (S) ej.

(2.32)

For the quadratically penalized weighted least squares estimator with white Gaussian

noise the local impulse response of each Stokes image is independent and written[30]

lkj
= [B′B + σ2βkR]−1B′Bekj

(2.33)

where k ∈ {0, 1, 2} indicates the Stokes image. Using a local Fourier approximation we

can compute this impulse response with FFTs. Since the FFTs are computationally

inexpensive we can sweep over the β parameters and choose the one that corresponds

to an a priori FWHM of the impulse response. By choosing β so that the estimator

has controlled noise smoothing properties we can vary the δ parameters to find optimal

values.

2.4.2 Cross-Channel Regularization

Polarimetric signatures usually are correlated in the Stokes parameters S1 and S2.

To exploit this correlation we can introduce a cross-channel regularization term into

the cost function. Cross-channel regularization has proved beneficial in multispectral

image restoration algorithms [11, 14]. The cross-channel regularization functions we

adopt for the traditional and proposed estimators are

Rcross (Γ) = βcross

√∑
j

[CΓj]2 (2.34)

Rcross (S) = βcross

√
[CS0]2 + [CS1]2 + [CS2]2. (2.35)
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The traditional and Stokes estimators, using channel-by-channel and cross-channel

regularization, are then

Γ̂ = argmin
Γ
{ 1

2σ2
‖y − (I4 ⊗B) Γ‖2

+ β
∑
j

ψ (CΓj; δ)}+ βcross

√∑
j

[CΓj]2
(2.36)

Ŝ = argmin
S
{ 1

2σ2
‖y − (T4×3 ⊗B) S‖2

+ β0ψ (CS0; δ0) + β1ψ (CS1; δ1) + β2ψ (CS2; δ2)

+ βcross

√
[CS0]2 + [CS1]2 + [CS2]2}.

(2.37)

The additional parameters βcross were varied over a range of values to find optimal

settings.

2.5 Simulation Experiments

Simulation experiments were performed to evaluate both the traditional and pro-

posed estimators as well as the cross-channel regularization. The simulations were

conducted using the circulant approximation, this approximation was facilitated by

tapering the object to its mean at the boundaries. For the true imagery we used polari-

metric images that were collected by General Dynamics Advanced Information Sys-

tems in Ypsilanti, Michigan; the polarization angles of the sensor were {0◦, 45◦, 90◦, 135◦}.

We added known optical blur and Gaussian noise to the imagery. The system PSF

had a FWHM of 1.9 pixels; the PSF was constructed from a phase screen, param-

eterized by a uniform distribution of the first 20 Zernike polynomials, placed in an

annular pupil. We define the SNR of an image by: SNR = 20 log10(‖ȳ‖/‖ȳ − y‖)dB

where ȳ and y are the uncorrupted and corrupted images respectively. The simulation

experiments were done at two SNR levels using the same PSF: 25dB and 15dB.

The regularization parameters [β0, β] were chosen so that the FWHM of the es-
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timator’s PSF was 1.5 pixels under quadratic regularization. We chose to set the

parameters [β1, β2] = 2β0 for increased noise suppression in the {S1, S2} channels.

The second set of regularization parameters, [δ0, δ1, δ2, δ], was determined by sweep-

ing each parameter over a range of values and choosing the parameters which yielded

a minimum RMS error in the estimate. The cross-channel regularization was evalu-

ated for the Stokes estimator with channel-by-channel edge-preserving regularization.

The optimal δ values were used and the parameter βcross was swept over a range to

determine an optimal setting. Once the optimal values of the regularization param-

eters were determined for both data SNR levels the estimator was evaluated over a

100 realization noise ensemble.

2.6 Results

Tables 2.1 and 2.2 compare the RMS estimation errors of four quantities over the

noise ensemble: (1) the S0 estimate, (2) the S1 estimate, (3) the S2 estimate, and

(4) the estimate of the degree of linear polarization (DOLP). The DOLP is a useful

quantity in polarimetric image analysis and is defined by DOLP =
√
S2

1 + S2
2/S0.

The proposed and traditional estimators both perform well in the estimation of S0

at both SNR levels. However, the proposed estimator outperforms the traditional

estimator, especially in the 15dB SNR case, on the S1 and S2 images as well as

the DOLP. The superior performance of the proposed estimator can be attributed

to the joint nature of the estimator in which regularization is applied directly to

the Stokes images. The addition of the cross-channel regularization term improves

both estimators. The cross-channel term improved the traditional estimator more

than the proposed estimator in RMS error because of the higher correlation between

the intensity channels than between the Stokes channels. The addition of the cross-

channel regularization term brought the estimators into near equivalent performance

in the high SNR case. In the low SNR case the cross-channel regularization helped
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both estimators but the proposed estimator maintained superior performance.
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Table 2.1: Simulation Results (SNR = 25dB): RMS Error Percentages

Stokes traditional
Stokes with traditional with

cross-channel cross-channel

Ŝ0 0.71± 0.0035% 0.91± 0.0040% 1.07± 0.0035% 1.30± 0.0040%
Ŝ1 42.19± 0.17% 62.45± 0.24% 36.97± 0.16% 38.57± 0.17%
Ŝ2 45.93± 0.19% 67.08± 0.25% 40.58± 0.17% 42.00± 0.19%
DOLP 27.83± 0.11% 39.90± 0.15% 24.78± 0.10% 24.54± 0.11%

Table 2.2: Simulation Results (SNR = 15dB): RMS Error Percentages

Stokes traditional
Stokes with traditional with

cross-channel cross-channel

Ŝ0 2.49± 0.011% 3.10± 0.015% 2.74± 0.012% 3.44± 0.015%
Ŝ1 61.90± 0.27% 126.88± 0.57% 58.13± 0.25% 69.18± 0.30%
Ŝ2 65.35± 0.29% 137.32± 0.60% 61.14± 0.26% 75.00± 0.33%
DOLP 43.95± 0.20% 96.59± 0.31% 42.37± 0.18% 46.68± 0.20%

Fig. 2.1 show the noisy and blurred data for both SNR levels, Figs. 2.2 and 2.3

show estimates of the Stokes images for SNR levels of 25dB and 15dB respectively,

and Figs. 2.4 and 2.5 show estimates of the DOLP for SNR levels of 25dB and 15dB

respectively. Figs. 2.6 and 2.7 show estimates of the DOLP with the addition of cross-

channel regularization for both the proposed and traditional estimators for SNR levels

of 25dB and 15dB respectively.
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Figure 2.1: Noisy and blurred polarimetric imagery. The First row has an SNR of
25dB and the second row has an SNR of 15dB. From left to right the angle of the
polarizer is {0◦, 45◦, 90◦, 135◦}

2.7 Conclusions and Future Work

Estimation of Stokes vectors directly provides estimates with lower overall RMS er-

ror as compared with restoring the intensity images and then transforming to Stokes

space for interpretation. The addition of a cross-channel regularization term im-

proves interpretability for both the proposed estimator and the tradtitional estimator

markedly. In the low (15dB) SNR regime the proposed estimator outperforms the

traditional estimator both with and without cross-channel regularization. Future

work includes addressing non idealities such aliasing and broadband optical PSF ef-

fects. Also, investigating estimator efficiency, convergence properties, and automatic

selection of regularization parameters will be done.
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Figure 2.2: Estimates of Stokes images for SNR = 25dB. All rows read from left to
right: Pristine, Proposed Method, Traditional Method. First row: S0, second row:
S1, third row: S2.
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Figure 2.3: Estimates of Stokes images for SNR = 15dB. All rows read from left to
right: Pristine, Proposed Method, Traditional Method. First row: S0, second row:
S1, third row: S2.

Figure 2.4: Estimates of the DOLP for SNR = 25dB, from left to right: Pristine,
Proposed Method, Traditional Method.
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Figure 2.5: Estimates of the DOLP for SNR = 15dB, from left to right: Pristine,
Proposed Method, Traditional Method.

Figure 2.6: Estimates of the DOLP for SNR = 25dB, from left to right: Pristine,
Proposed method with cross channel regularization, Traditional method with cross
channel regularization.

Figure 2.7: Estimates of the DOLP for SNR = 15dB, from left to right: Pristine,
Proposed method with cross channel regularization, Traditional method with cross
channel regularization.
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CHAPTER III

Phase-Diverse Polarimetric Image Reconstruction

3.1 Introduction

Polarimetric imaging systems acquire data that can be used to infer the polarization

state of an optical field [93, 7]. The polarization state of an optical field across a scene

contains information related to surface features such as shape and roughness [26].

Naturally occurring objects typically have a larger surface granularity than man-

made objects, so polarimetry offers the potential for improved target detection and

identification over other imaging modalities [37].

The polarization state of a transverse optical field can be specified by the Stokes

vector S = (S0, S1, S2, S3) [15, 45]. The elements of S are functions of the optical

intensity and defined in the following way: S0 is the total optical intensity, S1 is

the difference between the optical intensity transmitted by a linear polarizer with

pass axis oriented at 0◦ (reference) and one having pass axis oriented at 90◦, S2 is

the difference between the optical intensity transmitted by a linear polarizer with

pass axis oriented at 45◦ and one having pass axis oriented at 135◦, and S3 is the

optical intensity transmitted by a right circular polarizer and a left circular polarizer.

In the majority of remote-sensing applications the linear polarization state of the

optical field is of interest and so the S3 component is ignored. We adopt this usual

simplification of considering only the first three components of the Stokes vector,
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though the method generalizes easily.

Polarimeters, like traditional incoherent imaging sensors, have resolution limits

that depend on noise and system point-spread function. In remote-sensing applica-

tions, degradations in the point-spread function are often due to atmospheric turbu-

lence, residual aberrations in the optical system or misalignment among components

in the optical system. We previously developed a method for estimating Stokes im-

ages directly from polarimetric measurements [97]. That work assumed complete

knowledge of the system point-spread function and was thus limited in its range of

application. In this paper, we propose methods that overcome this limitation by

introducing phase diversity into the polarimetric measurements. In traditional inco-

herent imaging the technique of phase diversity has been used to jointly estimate the

object and optical aberrations in the presence of atmospheric turbulence [69]. Phase

diversity requires the simultaneous collection of two or more images that are related

via a deterministic phase perturbation. Typically, two images are collected: one is

the conventional in-focus image and the second image is acquired on a separate focal

plane that is translated along the optical axis thereby inducing a known defocus to

the second image. Fig. 3.1 shows a typical phase diversity configuration. A direct ex-

Figure 3.1: Traditional phase-diversity imaging strategy.

tension of the traditional phase diversity strategy to polarimetry would be to acquire
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two measurements per polarimetric channel; a four-channel polarimeter would be ex-

tended to an eight-channel polarimeter. Here we present two algorithms to jointly

estimate the Stokes vectors and optical aberrations using a simpler four-channel phase

diverse polarimeter. The method could be adapted easily to eight-channel polarime-

ters and other variations, but a four-channel polarimeter configuration is particularly

attractive in terms of cost and complexity of hardware.

One acquisition parameter that must be chosen is the amount of defocus in the

diversity channel(s). Choosing the optimal amount of phase diversity for phase-

diverse phase-retrieval in a traditional incoherent imaging system was investigated

in [53] using the Cramér-Rao lower bound. In this work we also use the Cramér-Rao

lower bound for phase-diverse phase-retrieval as a guide in choosing the amount of

defocus to introduce into the system.

For simplicity of presentation, all optical-system elements are assumed to be ideal

and all polarimetric measurements are assumed to be perfectly registered.

The organization of this paper is as follows. Section II presents the mathemati-

cal framework of joint estimation of object and aberrations from polarimetric mea-

surements. Section III formulates a reduced-parameter search strategy. Section IV

explores joint estimation numerically with both quadratic and edge-preserving regu-

larization. Sections V and VI give results and concluding remarks.

3.2 Mathematical Framework

3.2.1 Stokes-Vector Imaging

The optical intensity, Γ, at a single point in an imaging system with a linear

polarizer in the optical path having pass axis oriented at angle θ to the reference axis
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can be expressed in terms of the Stokes vector,

Γ (θ) =
1

2
[S0 + S1 cos(2θ) + S2 sin(2θ)] . (3.1)

An imaging polarimeter has multiple channels, each with a different polarization

angle. For J measurements (channels) at polarization angles θ1, . . . , θJ , equation (3.1)

becomes a system of J equations. In matrix form the system is


Γ(θ1)

...

Γ(θJ)

 =
1

2


1 cos(2θ1) sin(2θ1)

...
...

...

1 cos(2θJ) sin(2θJ)



S0

S1

S2

 . (3.2)

When Γ(θj), S0, S1, and S2 are images each of size N ×M , (3.2) can be configured

lexicographically to become

Γ =
(
TJ×3 ⊗ Inp

)
S, np = NM, (3.3)

where S = (S0, S1, S2) is a 3np × 1 column vector, Inp is the np × np identity matrix,

⊗ is the Kronecker product, TJ×3 is the matrix in (3.2), and Γ is a Jnp × 1 column

vector. The conventional estimate of the Stokes images, Ŝconv, is formed by using the

pseudo-inverse of TJ×3 [15]

Ŝconv =

{[
(T′J×3TJ×3)−1T′J×3

]
⊗ Inp

}
Γ, (3.4)

where “ ′ ” denotes conjugate transpose. The matrix inverse in (3.4) is guaranteed to

exist if J ≥ 3 and the θj are chosen so that TJ×3 has linearly independent columns.

In words, in (3.4) the J × 3 system of equations in (3.2) is solved by least-squares at

each voxel independently.
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3.2.2 Forward-Imaging Model

The model (3.3) ignores measurement blur and noise. A more complete discrete-

discrete forward model for an incoherent imaging system that accounts for space-

invariant optical blur and additive noise can be represented by 2D discrete convolu-

tion:

yj(n,m) = bj(n,m) ∗ Γj(n,m) + εj(n,m) n = 1, . . . , N, m = 1, . . . ,M (3.5)

where yj(n,m) is the data for the jth channel, bj(n,m) denotes the incoherent point-

spread function associated with the jth channel, Γj(n,m) is the jth channel ideal

intensity image, ∗ denotes 2D convolution, and εj(n,m) is additive noise. A matrix-

vector representation of (3.5) is

yj = Bj

[
(TJ×3)j ⊗ Inp

]
S + εj, j = 1, . . . , J, (3.6)

where Bj denotes a np×np Toeplitz matrix whose entries depend on bj(n,m), (TJ×3)j

denotes the jth row of TJ×3, and εj is an additive noise vector. Stacking J channels

(each given by (3.6)) yields

y = B
(
TJ×3 ⊗ Inp

)
S + ε (3.7)

where y
4
=(y1, . . . ,yJ), B

4
= diag{Bj} is a block diagonal matrix with the single-

channel blur matrices on the diagonal, and ε
4
=(ε1, . . . , εJ).

3.2.3 Point-Spread-Function Parameterization

Ideally the matrices Bj (or equivalently the PSFs bj(n,m)) would correspond to

diffraction-limited PSFs. In practice the PSF is often degraded by known or unknown

aberrations. In the presence of aberrations the generalized pupil function for the
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system can be written

P(x, y) = A(x, y) exp [ıW (x, y)] , (3.8)

where A(x, y) is a binary aperture function and W (x, y) is an effective optical path-

length error. Figure 3.2 shows the geometry that defines the aberration function W .

If the system had no aberrations the exit pupil would have a perfect spherical wave

emanating from it towards the focal plane. However, when aberrations are present

the wavefront leaving the exit pupil departs from the spherical ideal. The aberration

function W (x, y) is the path-length error, with respect to a Gaussian reference sphere,

accumulated as a ray passes from the reference sphere to the actual wavefront [43]. It

Gaussian 
reference
sphere

Ideal 
image 
point

Exit
pupil

Actual
wavefront

W(x,y)

Figure 3.2: Geometry for defining the aberration function W (x, y).

is a well known property of space-invariant optical imaging systems that the coherent

transfer function is a scaled version of the generalized pupil function and can be
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written

H(u, v) = A(u, v) exp [ıW (u, v)] , (3.9)

where (u, v) are frequency domain coordinates [43]. Aberrations in an optical system

can be represented using a suitable basis set {ϕk(u, v)}, such as Zernike polynomi-

als [60]. Representing W (u, v) in the basis {ϕk(u, v)} parameterizes the generalized

pupil function:

H(u, v;α) = A(u, v) exp

[
ı

K∑
k=1

αkϕk(u, v)

]
where α = (α1, . . . , αK). (3.10)

Visible regime polarimeter configurations, such as division-of-focal-plane and division-

of-amplitude, simultaneously acquire all of the polarimetric channels and so are ex-

posed to identical optical aberrations, i.e., W (u, v) is the same for each channel.

3.2.4 Phase Diversity

To aid in the estimation of aberrations, we propose to introduce phase diversity,

typically by different amounts in the different polarimetric channels. Figs. 3.3 and 3.4

show two possible polarimetric-phase-diverse imaging strategies. If the phase diver-

sity function in channel j is denoted φj(u, v), then the generalized pupil function for

the jth channel can be written

Hj(u, v;α) = A(u, v) exp

{
ı

[
K∑
k=1

αkϕk(u, v) + φj(u, v)

]}
. (3.11)

The corresponding incoherent point-spread function, hj(x, y), and the optical

transfer function, Hj(u, v), can be written in terms of the generalized pupil func-
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Figure 3.3: Polarimetric phase diversity strategy utilizing the division-of-focal-plane
technique.

tion:

hj(x, y;α) = c
∣∣F−1 [Hj(u, v;α, φj)]

∣∣2 (3.12)

Hj(u, v;α) = c F
[∣∣F−1 [Hj(u, v;α, φj)]

∣∣2] (3.13)

where F[·] is the Fourier transform and c is a constant that normalizes the point-

spread function to unit volume [53]. The modeled system point-spread function,

bj(n,m), and optical transfer function consist of samples of hj(x, y;α) and Hj(u, v;α)

at the Nyquist sampling rate [43], respectively. Consequently, each blur matrix, Bj, is

parameterized by the vector α. For analysis and implementation we assume periodic

boundary conditions on the object so that the blur matrices, Bj(α), are circulant
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Figure 3.4: Polarimetric phase diversity strategy utilizing the division-of-amplitude
technique.

and thus diagonalized by a 2D DFT matrix

Bj(α) = Q Ωj(α) Q′, (3.14)

where Q is a 2D unitary DFT matrix and Ωj(α) is a diagonal matrix whose entries

are the DFT coefficients of the first column of Bj(α).

3.3 Algorithms for Joint Estimation of Stokes Images and

Aberrations

This section describes novel algorithms for estimating S and α jointly under the

model (3.7). Under an additive Gaussian noise model εj ∼ N(0, σ2Inp) for j =

1, . . . , J , the log-likelihood function for both the object S and aberration parameters
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α is

L(S,α) = − 1

2σ2

∥∥y −B(α)
(
TJ×3 ⊗ Inp

)
S
∥∥2
. (3.15)

Conventional maximum-likelihood estimation is ineffective for this problem because

B(α) is ill-conditioned. Therefore we focus on penalized-likelihood estimators of the

form (
Ŝ, α̂

)
= argmin

(S,α)

{
− L(S,α) +R(S)

}
4
= argmin

(S,α)

Ψ (S,α) (3.16)

where R(S) is a regularization term that penalizes an object, S, according to how

much it departs from our assumptions about the image properties [28]. In remote

sensing α is often a nuisance parameter. However, in an adaptive-optics system with

aberration correction capability, α is a parameter of interest. Depending on the

task at hand, either α or S or both can be parameters of interest. The choice of

regularization penalty will in general depend on the task, i.e., which parameters are

of interest and which are nuisance.

3.3.1 α as a Nuisance Parameter

When the Stokes images, S, are primary interest, then α is a nuisance parameter

and a regularization function that reflects a priori knowledge about the object should

be chosen. Stokes images (S1, S2) typically have sharp edges due to man-made objects

having stronger polarimetric signatures than naturally occurring objects. To recover

as much polarization information as possible the regularization function, R(S), should

preserve edges. Since quadratic regularization tends to wash out edges and smooth

noise we explore edge-preserving regularization using a hyperbolic potential function

ψ(t; δ) = δ2

(√
1 +

(
t
δ

)2 − 1

)
. For fixed δ this function is approximately quadratic

for values of t < δ and approximately linear for t > δ. This behavior will tend to
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smooth noise and preserve edges. Specifically, we chose R(S) be

R(S) =
2∑
l=0

2np∑
k=1

βl ψ ([CSl]k; δl) , (3.17)

where C is a 2D finite-differencing matrix (horizontal and vertical differences). The

estimator (3.16) is then

(
Ŝ, α̂

)
= argmin

(S,α)

{
1

2σ2

∥∥y −B(α)
(
TJ×3 ⊗ Inp

)
S
∥∥2 +

2∑
l=0

2np∑
k=1

βl ψ ([CSl]k; δl)
}
. (3.18)

3.3.2 α As a Parameter of Interest — Reduced Parameter Search Strat-

egy

In [42] it was shown that, for a two channel phase-diversity system under an addi-

tive Gaussian noise model, the estimate of the object being imaged could be expressed

in terms of the system aberration parameters. This result was generalized in [69] for

phase-diverse imaging with an arbitrary number of channels. A similar procedure can

be used to derive a closed-form expression for the Stokes images in terms of system

aberrations for polarimetric phase-diverse imaging. Deriving this closed-form expres-

sion requires the use of a quadratic regularizer that can be diagonalized by the DFT

as in (3.14). We focus on quadratic regularizers of the form

R(S) =
1

2

∥∥(
√
β3 ⊗C)S

∥∥2
, (3.19)

where
√
β3

4
= diag{

√
β0,
√
β1,
√
β2} and βi > 0 i = 0, 1, 2. Using this regularization

function (3.16) becomes

(
Ŝ, α̂

)
= argmin

(S,α)

1

2σ2

∥∥y −B (α)
(
TJ×3 ⊗ Inp

)
S
∥∥2

+
1

2

∥∥(
√
β3 ⊗C)S

∥∥2
. (3.20)
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For a fixed aberration vector, α, (3.20) is convex in S and the column gradient of Ŝ

satisfies the stationary point condition ∇SΨ(S;α) = 0, where Ψ is defined in (3.16),

which leads to

S(α) =
[(

T′J×3 ⊗ Inp

)
B (α)′B (α)

(
TJ×3 ⊗ Inp

)
+ σ2β3 ⊗C′C

]−1

×
(
T′J×3 ⊗ Inp

)
B (α)′ y.

(3.21)

The matrix inverse in (3.21) is guaranteed to exist provided the intersection of the

null spaces of the component matrices is the zero vector. Because C is a first-order

finite differencing matrix, the only nonzero vectors in its null space are of the form

γ1 where γ ∈ R and 1 is the np × 1 vector of ones. Therefore, nonzero vectors in

the null space of (
√
β3 ⊗ C) are of the form v = (γ11, γ21, γ31) where γ1, γ2, γ3

are not all simultaneously zero. It remains to show that v is not in the null space of(
T′J×3 ⊗ Inp

)
B (α)′B (α)

(
TJ×3 ⊗ Inp

)
. Now,

(
T′J×3 ⊗ Inp

)
B (α)′B (α)

(
TJ×3 ⊗ Inp

)
v

=
(
T′J×3 ⊗ Inp

)
QΩ (α)′Ω (α) Q′

(
TJ×3 ⊗ Inp

)
v︸ ︷︷ ︸

u

,

where the circulant approximation has been used. Observe that u is nonzero only

in the DC components. Recall that the optical transfer function, Ωj (α), for space-

invariant blur conserves energy and thus does not alter DC components. Thus,

(
T′J×3 ⊗ Inp

)
QΩ (α)′Ω (α)u =

(
T′J×3 ⊗ Inp

)
v̌ 6= 0

since v̌ is a nonzero constant vector.

Substitution of (3.21) into (3.20) yields an “aberration only” objective function,

α̂ = argmin
α

{
1

2σ2

∥∥y−B (α)
(
TJ×3 ⊗ Inp

)
S(α)

∥∥2
+

1

2

∥∥(
√
β3⊗C)S(α)

∥∥2
}
. (3.22)
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The estimate in (3.22) is a joint estimate of object and aberrations, that is, mini-

mization over α implicitly minimizes over S. Once α has been estimated the object

estimate is given by (3.21). We note that this algorithm is a special case of the

variable projection method [39].

3.4 Simulation Experiments

We performed simulation experiments to evaluate joint estimation with both edge-

preserving regularization (3.18) and quadratic regularization (3.22). The simulations

were conducted using the circulant approximation, this approximation was facilitated

by tapering the object to its mean at the boundaries. Two situations were considered:

1. the object parameters are of interest and the aberration parameters are nuisance

parameters, and 2. the aberration parameters are of interest and the object param-

eters are nuisance parameters. Because of the significant computational savings af-

forded by (3.22) we evaluated it with distinct regularization tuned for each object and

aberrations. For comparison we also evaluated the conventional estimate (3.4) using

the same data without phase diversity. For ground truth, we used polarimetric images

collected using a division-focal-plane polarimeter by General Dynamics Advanced In-

formation Systems, Ypsilanti, MI. The linear polarizer pass axes were oriented at

{0◦, 45◦, 90◦, 135◦}, and the subsampled polarimetric image size was [256× 256] (sub-

sampled from a [512 × 512] micropolarizer array). The imagery was then corrupted

by space-invariant optical blur and additive zero-mean Gaussian noise. The optical

blur was constructed using an annular pupil with a phase distortion constructed from

Zernike polynomials 4-19 as defined in [60]; the phase distortion had an RMS strength

of 0.2 waves. The phase of the generalized pupil function is shown in Fig. 3.5. We

define the SNR of an image to be 20 log10(‖ȳ‖ / ‖ȳ − y‖)dB where ȳ and y are the

noise free and noisy images respectively; the experiments were done at two SNR levels:
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Figure 3.5: Phase of the generalized pupil function in units of waves.

45dB and 25dB. To emulate a traditional phase-diversity configuration the defocused

channels were at angles {0◦, 90◦}. In this configuration the {45◦, 135◦} channels sum

to form the conventional in-focus channel and the {0◦, 90◦} channels sum to form the

de-focus channel, see Fig. 3.7. To aid in selecting the amount of defocus to use in the

diversity channels we assumed complete knowledge of the object, as in the problem

of phase retrieval, in Figs. 3.9 and 3.10 (phase-diverse phase-retrieval) and computed

the Cramér-Rao bound for the aberration parameters over a range of defocus values

optimized for the estimation of α. The Fisher-information matrix is computed from

the log-likelihood function in (3.20)

F =
1

σ2
[∇αµ(α)] [∇αµ(α)]′ (3.23)

where ∇ denotes the column gradient and µ(α)
4
= B(α)

(
T4×3 ⊗ Inp

)
S. The Fisher-

information matrix was computed and inverted for various values of defocus. Since the

Zernike polynomials are orthonormal, the mean of the diagonal elements corresponds
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to the minimum achievable mean-squared error, ŴMIN, of any unbiased estimator of

the degrading wavefront W (α). In Fig. 3.6 ŴMIN is plotted against peak-to-valley

defocus. The minimum occurs when the amount of defocus is 1.8 waves peak-to-

valley; we used this amount of defocus in the simulations but we note that it is

not necessarily the optimal choice for joint estimation of object and aberrations. The

blurry and noisy data with and without phase diversity are shown in Figs. 3.7 and 3.8.
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Figure 3.6: Minimum mean squared error as a function of defocus measured from
peak to valley, both axes are in units of waves.

Figure 3.7: Data for SNR = 45dB: from left to right: {0◦, 45◦, 90◦, 135◦}. The defo-
cused channels are at {0◦, 90◦}.
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Figure 3.8: Data for SNR = 25dB: from left to right: {0◦, 45◦, 90◦, 135◦}. The defo-
cused channels are at {0◦, 90◦}.

Numerical evaluation of (3.18) and (3.22) requires the selection of regularization

“tuning” parameters; for (3.18) six parameters must be chosen, (β0, β1, β2, δ0, δ1, δ2),

and for (3.22) three parameters must be chosen (β0, β1, β2).

When there is no phase diversity the estimator PSF, l(α), of (3.20) for a fixed

aberration parameter, α, is given by [30]

lk(α) = [B(α)′B(α) + σ2βkC
′C]−1B(α)′B(α)ek, (3.24)

where B(α) is the common blur across channels, ek is a Kronecker impulse, and

k = 0, 1, 2 indicates the Stokes image; because the blur is space invariant (3.24)

is independent of pixel location. The parameters (β0, β1, β2) in (3.18) were cho-

sen so that in the limit that the hyperbolic potential is approximately quadratic,

i.e., (3.18) ≈ (3.20), the channel point-spread functions had full width at half maxima

(FWHM) of (r, 2r, 2r), where r is the FWHM of the diffraction-limited point-spread

function in the absence of phase diversity, β0 was calculated using

β̂0 = argmin
β0

∥∥FWHM [l0(α)]− r
∥∥2
, (3.25)

and (β1, β2) were calculated similarly. Setting the PSF FWHM of Ŝ1 and Ŝ2 to twice
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that of Ŝ0 is reasonable because of the significantly lower SNR in the S1 and S2 images.

We generated 20 realizations of α each having RMS phase strengths of 0.2 waves over

the pupil. For each aberration realization, (3.25) was solved numerically, then the

final values for (β0, β1, β2) were determined by averaging over the ensemble. Once the

β parameters were fixed the nonquadratic regularization parameters, {δ0, δ1, δ2}, were

determined by a brute-force multidimensional search for the parameter combination

which minimized the normalized RMS error between the Stokes object and the Stokes

estimate.

For (3.22) there were three regularization parameters to set for each case. These

parameters were determined by a brute-force multidimensional search for the param-

eter combination which minimized the normalized RMS error between 1. the Stokes

object and the Stokes estimate, and 2. the true aberrations and the aberration es-

timate. The regularization parameters that were “tuned” for object estimation were

10 orders of magnitude larger than those for aberration estimation.

After the regularization parameters were set, the estimators were evaluated over a

20 realization noise ensemble for each of two SNR levels. The initial estimate in each

case was formed using (3.4) with the phase-diverse data. Since closed form expres-

sions for the minimizers of (3.18) and (3.22) are not tractable they were minimized

numerically. The optimization was done using the limited memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) algorithm [57]. The minimization of (3.18) required pre-

conditioning due to the different scales of the Stokes images and the aberration pa-

rameters. Samples of the Hessian matrix of (3.18) were calculated via finite differences

and used in a diagonal preconditioner. The iterative search was stopped when the

iteration, k, satisfied (Ψk+1 −Ψk)/Ψk < 10−10, this corresponded to ≈ 200 iterations

for (3.18) and ≈ 30 iterations for (3.22).
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3.5 Results

Tables 3.1 and 3.2 show normalized RMS estimation errors for each of (3.18),

(3.22), and (3.4). The reported errors are of the quantities S0, the total linear polar-

ization (TPOL)
√
S2

1 + S2
2 , and wavefront. There is no wavefront error to be reported

for the conventional estimate, (3.4), so a value of N/A is listed. Also, the estimates

of S0 and TPOL are listed as N/A for (3.22) when the regularization was tuned for

aberration estimation because the estimated images are unrecognizable. The poor

object estimates in this case are due to the small values of the regularization param-

eter. Recall that the object estimate is given by (3.21) which approaches the inverse

filter as β → 0 and thus greatly amplifies noise. The aberration estimation errors

for (3.22) when tuned for object estimation were reasonably good and are included

for completeness.

Table 3.1: RMS Error Percentages for SNR = 45dB

cost parameter of interest S0

√
S2

1 + S2
2 wavefront

edge-preserving S 1.8%± 0.01% 36%± 0.3% 3.3%± 0.2%
quadratic S 1.6%± 0.01% 40%± 0.2% 3.0%± 0.2%
quadratic α N/A N/A 1.4%± 0.2%
conventional estimate S 10%± 0.0013% 60%± 0.11% N/A

Table 3.2: RMS Error Percentages for SNR = 25dB

cost parameter of interest S0

√
S2

1 + S2
2 wavefront

edge-preserving S 6.2%± 0.2% 59%± 1.4% 80%± 4.6%
quadratic S 6.5%± 0.02% 61%± 1.0% 79%± 0.36%
quadratic α N/A N/A 16%± 7%
conventional estimate S 11%± 0.011% 490%± 1.7% N/A

Figs. 3.9 and 3.10 show object estimates for SNR = 45dB and SNR = 25dB

respectively. Each estimate is displayed in RGB format with the RGB channels set
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as [S0+10
√
S2

1 + S2
2 , S0, S0]; in this display scheme the polarized elements of the scene

are red while the unpolarized elements are in gray scale; the factor of 10 in the red

channel was chosen for visual appeal. As expected, the estimates with data at a higher

SNR have lower RMS errors and are more visually appealing. Figs. 3.11 and 3.12

show cuts through TPOL reconstructions, at a column having an edge with large

polarization content, for SNR = 45dB and SNR = 25dB respectively. The benefit of

edge-preserving regularization is apparent in both cases but more pronounced at the

25dB SNR level as the quadratically regularized estimate shows significantly larger

blurring across the edge. Figs. 3.13 and 3.14 show the residual wavefronts, that is,

Figure 3.9: Image estimation results for SNR = 45dB. From left to right: object,
estimate using edge-preserving regularizer, estimate using quadratic regularizer, and
the conventional estimate.

Figure 3.10: Image estimation results for SNR = 25dB. From left to right: object,
estimate using edge-preserving regularizer, estimate using quadratic regularizer, and
the conventional estimate.
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Figure 3.11: Cuts through a column of TPOL for the object and reconstructions with
edge-preserving and quadratic regularization at SNR = 45dB.

the estimated wavefront less the true wavefront. The estimates in all cases have lower

RMS errors with higher SNR data. At 45dB SNR the wavefront estimation errors

are all comparable. At 25dB SNR the wavefront error in using (3.22) (when tuned

for aberration estimation) is markedly lower than (3.18) and (3.22) (when tuned for

object estimation). This significant reduction in estimation error can be attributed

to the regularization being tuned for aberration estimation.
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Figure 3.12: Cuts through a column of TPOL for the object and reconstructions with
edge-preserving and quadratic regularization at SNR = 25dB.
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Figure 3.13: Residual wavefront errors for SNR = 45dB. From left to right: edge-
preserving regularization, quadratic regularization tuned for object estimation, and
quadratic regularization tuned for aberration estimation.
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Figure 3.14: Residual wavefront errors for SNR = 25dB. From left to right: edge-
preserving regularization, quadratic regularization tuned for object estimation, and
quadratic regularization tuned for aberration estimation.
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3.6 Conclusions and Future Work

This paper has described two methods, (3.18) and (3.22), for joint estimation of

Stokes images and aberrations from polarimetric images with phase diversity. Estima-

tion accuracy follows a task-based hierarchy, i.e., in a joint-estimation framework the

choice of algorithm is task dependent. When the task is image restoration (aberrations

are nuisance parameters) an algorithm that jointly estimates object and aberrations

while incorporating a priori knowledge of the object is appropriate. However, if the

aberration parameters are of interest and the object is a nuisance parameter then

a reduced-parameter algorithm should be chosen. We mention that there contrived

situations for which aberration estimation in this context will fail. One such circum-

stance is when the scene is polarized in such a way that the diversity channel receives

little or no signal. For example, for a fixed set of polarizer angles {0◦, 45◦, 90◦, 135◦},

if the object is completely polarized along the reference axis (0◦), 90◦ channel will

have zero signal; if that channel is the diversity channel the ambiguity in the problem

will not be broken and the aberrations will not be able to be estimated.

Future work includes analyzing the bias and covariance of (3.20) and using those

expressions to investigate how the choice of diversity channels impacts estimation of

Stokes images and aberrations.
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CHAPTER IV

Approximation to the object-aberration joint

covariance matrix in the phase-diversity context

4.1 Introduction

Incoherent imaging systems have resolution limits that depend, among other

things, on known or unknown phase aberrations. Phase aberrations arise from a

variety of sources including atmospheric turbulence, misaligned optics within the sys-

tem, improper mirror figure, and sub-aperture misalignments in multi-aperture sys-

tems [40]. Knowledge of system phase aberrations affords either correction through

the use of adaptive optics (AO), or post-detection deblurring of the collected imagery

via image restoration algorithms.

Phase diversity is an image-based wavefront-sensing technique that allows for the

joint estimation of object and phase aberrations. The technique of phase diversity

requires the simultaneous collection of two or more images that are related via a

deterministic phase perturbation. In the canonical phase diversity configuration, two

images are collected: one is the conventional in-focus image and the second image is

acquired on a separate focal plane that is translated along the optical axis thereby

inducing a known defocus to the second image, see figure 4.1.

For telescopes that require wavefront sensors, such as, telescopes that employ
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Figure 4.1: Traditional phase-diversity imaging strategy.

AO correction or multi-aperture telescopes that require sub-aperture phasing, phase

diversity is a candidate wavefront sensor [71]. When implementing a phase-diverse

wavefront sensor there are several acquisition parameters that must be chosen, such

as, the type and strength of phase diversity. Several analyses have been done to

address the optimality of acquisition parameters in the Cramèr-Rao sense [53, 21,

20, 22, 19], however, these analyses assume complete knowledge of the object being

imaged and therefore may give misleading results. Moreover, many phase-diverse

wavefront sensors are biased estimators which are not bounded in variance by the

classical Cramèr-Rao lower bound. An attractive class of phase-diverse wavefront

sensors are quadratically regularized weighted least squares estimators, this is due to

the availability of a reduced parameter formulation of the estimator that is explicitly

dependent on only the aberrations being estimated. In this paper we present an

approximation to the joint covariance matrix for a quadratically regularized weighted

least squares phase-diverse wavefront sensor; we use this approximation as an analysis

tool for aberration estimation performance in the presence of an unknown object.

The organization of this chapter is as follows: In section 2 we review the phase

diversity concept and algorithms. In section 3 we review approximations to the bias

and covariance of implicitly defined estimators. In section 4 we develop an expression
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for the covariance of aberration estimates for a quadratically regularized weighted

least squares phase-diverse wavefront sensor. In section 5 we present simulation ex-

periments, and in sections 6 and 7 we present results and conclusions.

4.2 Review of the phase diversity concept

The technique of phase diversity was first proposed by Gonsalves [42, 41] and

was later generalized and put into the framework of maximum-likelihood estimation

by Paxman [69]. As an explicit maximum-likelihood estimator (MLE) of object and

aberrations phase diversity is not a viable wavefront sensing technique owing to the

large number of parameters that must be jointly estimated (object pixels + aberration

parameters). The viability of phase diversity as an ML wavefront sensor comes from

the availability of a closed-form expression for the object in terms of the aberration

parameters. In an ML framework that assumes additive Gaussian noise, the implicit

function theorems can be invoked and a closed-form expression for the object, in terms

of the aberration parameters, can be written . Back substitution of this expression

into the MLE reduces the dimensionality of the estimation problem down to only the

number of aberration parameters. For completeness we briefly restate these results

in the framework of linear algebra.

4.2.1 Forward imaging model

A discrete-discrete forward model for the jth channel of a J channel incoherent

imaging system that includes phase diversity, accounts for space-invariant optical

blur, and additive noise can be represented by

yj = tjBj(α)S + εj, j = 1, . . . , J, (4.1)
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where yj is an (nd × 1) lexicographically ordered data vector, Bj(α) denotes an

(np × np) Toeplitz matrix that is parameterized by the vector α = (α1, . . . , αK), S is

an (np×1) lexicographically ordered object vector , εj is an (np×1) lexicographically

ordered noise vector, nd is the number of collected pixels, and np is the number of

object pixels. Stacking J channels (each given by (4.1)) yields

y = B(α)
(
TJ ⊗ Inp

)
S + ε (4.2)

where y
4
=(y1, . . . ,yJ), TJ

4
=(t1, . . . , tJ), B(α)

4
= diag{Bj(α)} is a block diagonal ma-

trix with the single-channel blur matrices on the diagonal, Inp is the np × np identity

matrix, ε
4
=(ε1, . . . , εJ), and ⊗ is the Kronecker product.

To aid in the analysis we make the common additional approximation that the

Bj(α) are circulant and are thus diagonalized by the unitary 2D-DFT matrix. We

discuss the parameterization of the Bj(α) in detail in the next section.

4.2.2 Phase aberration parameterization in the phase diversity context

Phase aberrations in a space-invariant incoherent imaging system are conveniently

represented through the generalized pupil function [43]. Let the continuous-space

generalized pupil function (also the coherent transfer function in this case) be denoted

by H(u, v), then

H(u, v) = P (u, v) exp [ıW (u, v)] , (4.3)

where P (u, v) is a binary aperture function, W (u, v) is a phase aberration function

proportional to an effective optical path-length error, and (u, v) are frequency domain

coordinates [43]. The phase aberration function, W , can be parameterized by repre-

senting it in an appropriate basis. Using a suitable basis, {ϕk(u, v)}, W (u, v) can be
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expanded leading to

H(u, v;α) = P (u, v) exp

[
ı
K∑
k=1

αkϕk(u, v)

]
where α = (α1, . . . , αK). (4.4)

If the phase diversity function in channel j is denoted φj(u, v), then the generalized

pupil function for the jth channel can be written

Hj(u, v;α) = P (u, v) exp

{
ı

[
K∑
k=1

αkϕk(u, v) + φj(u, v)

]}
. (4.5)

The continuous-space optical transfer function, Hj(u, v), is then

Hj(u, v;α) = c F
[∣∣F−1 [Hj(u, v;α)]

∣∣2] , (4.6)

where F[·] is the Fourier transform and c is a constant that ensures that the corre-

sponding point-spread function is normalized to unit volume [53]. Let Ωj(α) denote

an (np×np) diagonal matrix consisting of samples of (4.6) taken at the Nyquist rate.

Then, by invoking the circulant approximation we may write

Bj(α) = Q Ωj(α) Q′ (4.7)

where Q is the unitary 2D-DFT matrix and ′ indicates conjugate transpose. Conse-

quently, each blur matrix, Bj, is parameterized by the vector α.
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4.2.3 Maximum-likelihood framework

Under the noise model ε ∼ N(0,Kε) a maximum-likelihood estimate of the joint

parameter vector, [S,α], for the imaging model (4.2) is given by

[Ŝ, α̂] = argmin
(S,α)

Φ(S,α) (4.8)

= argmin
(S,α)

1

2

∥∥y −B(α)(TJ ⊗ Inp)S
∥∥2

K−1
ε
, (4.9)

where Kε is assumed to be nonsingular. For a fixed aberration vector, α, (4.9) is

convex in S and so satisfies the stationary-point condition ∇SΦ(S, ·) = 0. Using this

condition an expression for the object in terms of the aberration parameters can be

derived:

S(α) =
[
T′JB

′(α)K−1
ε B(α)TJ

]−1
T′JB

′(α)K−1
ε y. (4.10)

We note here that (4.10) contains a matrix inverse and so is not guaranteed to exist

for all blur matrices. We can gain insight into the validity of (4.10) by invoking (4.7):

[
(T′J ⊗ Inp)B′(α)K−1

ε B(α)(TJ ⊗ Inp)
]−1

(4.11)

=
[
(T′J ⊗ Inp)Q Ω′(α) Q′ K−1

ε Q Ω(α) Q′(TJ ⊗ Inp)
]−1

. (4.12)

Observe that each matrix in (4.12) must be invertible. Thus, for (4.10) to exist, the

OTFs, Ωj(α), must not have zeros on the main diagonal. Since imaging system OTFs

are a normalized autocorrelation of the corresponding generalized pupil function, we

see immediately that systems with circular pupils, sampled at the Nyquist rate, will

necessarily have zeros in the OTFs. Traditionally, authors have had success evaluating

expressions of the form (4.10) only at points where the matrix inverse exists [12, 13].

As convenient as that is for numerical evaluation, it is an unsatisfying means of

regularizing an ill-posed problem. A sufficient condition for regularizing (4.9) while
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retaining a closed form expression for the object in terms of the aberration parameters

is to use a quadratic regularizer that has a positive-definite Hessian. Adding quadratic

regularization of the form

R(S) = β
1

2

∥∥CS
∥∥2
, (4.13)

where β is a regularization “tuning” parameter and C is a matrix such that C′C is

positive definite, to the objective function in (4.9) provides a sufficient condition for

the existence of an expression of the object in terms of the aberration parameters.

With regularization of this form (4.9) becomes

[Ŝ, α̂] = argmin
(S,α)

{
1

2

∥∥y −B(α)(TJ ⊗ Inp)S
∥∥2

K−1
ε

+ β
1

2

∥∥CS
∥∥2
}

(4.14)

⇐⇒ argmin
α

{
1

2

∥∥y −B(α)(TJ ⊗ Inp)S(α)
∥∥2

K−1
ε

+ β
1

2

∥∥CS(α)
∥∥2
}
, (4.15)

where

S(α) =
[
T′JB

′(α)K−1
ε B(α)TJ + βC′C

]−1
T′JB

′(α)K−1
ε y. (4.16)

Observe that the matrix inverse in (4.16) exists because T′JB
′(α)K−1

ε B(α)TJ is

nonnegative definite and βC′C is positive definite so their sum is positive definite.

Estimators of the form (4.14) are biased and not bounded in variance by the classical

Cramèr-Rao lower bound. To obtain performance bounds, in terms of mean-squared

error, for estimators of the type (4.14) the bias and variance must either be calculable

directly or approximated. In the next section we review results on the approximation

of the covariance of an implicitly defined estimator.
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4.3 Covariance approximation for implicitly defined estima-

tors

In this section we review the results of Fessler [29]. Let θ = (θ1, . . . , θnp) ∈ Rnp

be an unknown real parameter vector that is to be estimated from a measurement

vector Y = (Y1, . . . , Ynd
) ∈ Rnd . Let the estimator be of the form

θ̂ = argmin
θ

Φ(θ,Y), (4.17)

estimators of this form can be viewed as mappings from the data space to the param-

eter space. That is, (4.17) can be written θ̂ = h(Y) where h : Rnd → Rnp . Under the

assumption that Φ(·,Y) has a global minimum, θ̂, the stationary-point condition is

satisfied for each component of the parameter vector at θ̂:

0 =
∂

∂θj
Φ(θ,Y)

∣∣∣∣
θ=θ̂

j = 1, . . . , np. (4.18)

At this point we note that the implicit function theorems guarantee the existence of

h(Y) = (h1(Y), . . . , hnp(Y)) for suitable regular Φ. Thus, we can rewrite (4.18) as

0 =
∂

∂θj
Φ(h(Y),Y)

∣∣∣∣
θ=θ̂

j = 1, . . . , np. (4.19)

Now, consider the first order Taylor expansion of h(Y)

h(Y) ≈ h(Ȳ) +∇Yh(Ȳ)(Y − Ȳ) where ∇Y =

(
∂

∂Y1

, . . . ,
∂

∂Ynd

)
. (4.20)

Then,

Cov(θ̂) = Cov(h(Y)) ≈ ∇Yh(Ȳ) Cov(Y)∇Yh
′(Ȳ), (4.21)
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where we have used the identity Cov(Ax) = A Cov(x)A′. Note that the dependence

on h is only through its partial derivatives at Ȳ. Applying the chain rule to (4.19)

we have

∇Y [∇θΦ(h(Y),Y)] = 0np×nd
(4.22)

⇒ ∇[2,0]Φ(h(Y),Y)∇Yh+∇[1,1]Φ = 0np×nd
(4.23)

⇒ ∇Yh = −[∇[2,0]Φ(h(Y),Y)]−1∇[1,1]Φ(h(Y),Y), (4.24)

where (j, k)th element of the (np×np) operator∇[2,0] is ∂2

∂θj∂θk
, and the (j, n)th element

of the (np × nd) operator ∇[1,1] is ∂2

∂θj∂Yn
. Substitution into (4.21), and evaluation at

Ȳ, yields an approximation for the covariance of θ̂

Cov(θ̂) ≈
[
−[∇[2,0]Φ(θ̌, Ȳ)]−1∇[1,1]Φ(θ̌, Ȳ)

]
Cov(Y)

[
−[∇[2,0]Φ(θ̌, Ȳ)]−1∇[1,1]Φ(θ̌, Ȳ)

]′
,

(4.25)

where θ̌
4
=h(Ȳ).

4.4 Approximation to the covariance of aberration estimates

in the phase diversity context

In this section we give an expression for the approximate joint covariance matrix

for the aberration estimates obtained using (4.14). Let θ = [S,α], the operators ∇[2,0]

and ∇[1,1] are then of sizes (np +K)× (np +K) and (np +K)× Jnp respectively; the

operators acting on Φ are shown graphically in Figure 4.2.

Let ∇[2,0]Φ(S,α) = F, and its block-matrix representation be

F =

F11 F12

F21 F22

 . (4.26)
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Figure 4.2: partitions of ∇[2,0]Φ and ∇[1,1]Φ

The block elements are given by

F11 = (T′J ⊗ Inp)B′K−1
ε B(TJ ⊗ Inp) + βC′C (4.27)

F12 = (T′J ⊗ Inp)

(
B′K−1

ε

∂B

∂α

)
(TJ ⊗ Inp)S (4.28)

F21 = F′12 (4.29)

[F22](k,l) =

〈
∂B

∂αl
(TJ ⊗ Inp)S ,

∂B

∂αk
(TJ ⊗ Inp)S

〉
K−1

ε

, (4.30)

where we have suppressed the dependence on α for brevity. The matrix ∇[1,1]Φ can

be partitioned as a block-vector:

∇[1,1]Φ =

G

H

 , (4.31)

58



where

G = (∇S [(∇yΦ)]) = −
(
K−1
ε B(TJ ⊗ Inp)

)′
(4.32)

H =
∂

∂α
(∇yΦ) = −K−1

ε

∂B

∂α
(TJ ⊗ Inp)S. (4.33)

The covariance matrix of the aberration estimates can be extracted in the following

way. Let ẽk = (0, ek), where 0 is a vector of zeros with length np, and ek is a vector of

length K having a 1 in the kth location. The covariance of the kth and lth aberration

parameter estimates is then

Cov(α̂k, α̂l) = ẽk
′Cov(θ̂)ẽl (4.34)

≈ ẽk ′[−∇[2,0]Φ]−1[∇[1,1]Φ]Kε[∇[1,1]Φ]′[−∇[2,0]Φ]−1ẽl (4.35)

= (K1/2
ε [∇[1,1]Φ]′[∇[2,0]Φ]−1ẽk)

′(K1/2
ε [∇[1,1]Φ]′[∇[2,0]Φ]−1ẽl), (4.36)

where we have used the symmetry of ∇[2,0]Φ and assumed Kε is symmetric positive

definite. When the variance of the individual aberration estimates is desired (4.36)

simplifies to

Var(α̂k) =
∥∥K1/2

ε [∇[1,1]Φ]′[∇[2,0]Φ]−1ẽk
∥∥2
. (4.37)

The expressions (4.36) and (4.37) can be reduced further by writing out the elements

of [∇[2,0]Φ]−1:

[∇[2,0]Φ]−1(S,α) = F−1 =

(F11 − F12F
−1
22 F21)−1 −F−1

11 F12∆−1

−∆−1F21F
−1
11 ∆−1

 , (4.38)

where ∆ = F22 − F21F
−1
11 F12 is the Schur complement. Observe that ∇[2,0]Φ is a

joint Fisher-Information Matrix (FIM ) that can be used when B(α) is nonsingular.
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Moreover, F22 is the FIM that is typically used when computing the known-object

Cramèr-Rao bound on aberration estimates for phase-diverse wavefront sensing. It

was first pointed out in [71] that the joint Cramèr-Rao bound for aberration estimates

consists of a “known object” term less a correction term due to the object being

unknown. Continuing we have

[∇[2,0]Φ]−1ẽk =

(F11 − F12F
−1
22 F21)−1 −F−1

11 F12∆−1

−∆−1F21F
−1
11 ∆−1


 0

ek

 (4.39)

=

−F−1
11 F12∆−1ek

∆−1ek

 (4.40)

=

−F−1
11 F12

I

∆−1ek. (4.41)

The covariance of the kth and lth aberration estimates can now be written

Cov(α̂k, α̂l) ≈
(
K1/2
ε

(
H′ −G′F−1

11 F12

)
∆−1ek

)′ (
K1/2
ε

(
H′ −G′F−1

11 F12

)
∆−1el

)
. (4.42)

When the variances of the aberration estimates are desired (4.42) reduces to

Var(α̂k) ≈
∥∥K1/2

ε

(
H′ −G′F−1

11 F12

)
∆−1ek

∥∥2
. (4.43)

Recall that ∆−1ek = [∆−1]k, the kth column of ∆−1. Also recall that matrix-vector

multiplication is a weighted sum of the columns of the matrix with the elements of

the vector. So our matrix multiply is a weighted sum of images with the columns of

∆−1 as the weights.
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4.4.1 Discussion

The expression (4.42) can now, in principle, be evaluated. However, care must be

taken when using (4.42) because it depends on the actual aberrations being estimated

and the object being imaged. In a practical application one would specify statistical

classes of aberrations and objects a priori and then run Monte Carlo experiments

over those classes. From those data conclusions might then be drawn for the variance

of the aberration estimates from a particular statistical class. Also, (4.42) will be of

higher value when the estimation error is dominated by variance; as such, our focus

will be on imaging scenarios of moderate to low SNR. In the following section we

adopt a Monte Carlo approach for evaluating (4.43) in imaging scenarios of moderate

to low SNR. We note that Monte Carlo techniques of this kind are commonly used in

the AO and wavefront sensing literature [60, 33, 35, 99, 53]. Considering, analytically,

the effects of a random aberration vector, α, on the covariance approximation will be

done in our future work.

4.5 Simulation Experiments

Our simulation experiments follow a straightforward Monte-Carlo paradigm. The

simulations were conducted using the circulant approximation, this approximation

was facilitated by tapering the object to its mean at the boundaries. For a given

phase-diverse wavefront sensing configuration we evaluate (4.43) over an ensemble of

phase screens from a particular statistical class. We then sum the variances for each

phase screen, and then average those results over the phase screen ensemble collapsing

the estimate variances to a scalar quantity. This scalar quantity is a figure of merit

for the particular phase-diverse wavefront sensing configuration under consideration.

For comparison, we evaluate the known object Cramèr-Rao bound for the model (4.1).

The expression for the elements of the known object FIM are given by (4.30). The

61



FIM is populated and inverted for each phase screen realization, the diagonal elements

are averaged, then we average over the phase screen ensemble to obtain a scalar figure

of merit. We also evaluate (4.15) for verification. Equation (4.15) is evaluated over

both noise and phase screen ensembles. The reason for this is that we are building up

an empirical variance for each phase screen realization and then averaging that over

the phase screen ensemble to obtain a scalar quantity for the phase-diverse wavefront

sensing configuration under consideration.

The phase diversity configuration that has the least amount of hardware com-

plexity is the canonical configuration in Figure 4.1; for this reason we focus on the

canonical configuration. An important parameter to choose in this configuration is

the strength of defocus imparted to the out-of-focus image; analyses regarding the

selection of this parameter using the known-object Cramèr-rao bound have been re-

ported in the literature [53, 21].

In our experiments we use two objects: (i) an extended scene, and (ii) a point

object. The extended scene was of size [64× 64] and taken from a larger [256× 256]

image, the subregion that is processed is indicated by a red box in figure 4.3; the point

object is also of size [64 × 64] pixels. The imagery is corrupted by space-invariant

blur and zero mean independent-identically-distributed additive Gaussian noise of

variance σ2. The objects, blurred objects, and blurry and noisy objects are shown in

figures 4.3 and 4.4.

In all of the calculations presented here the pupil phase aberrations were pa-

rameterized using Zernike polynomials 4 through 19 as defined in [60]; that is, the

expansion basis, {ϕi}, is composed of Zernike polynomials. Each phase screen re-

alization, in a 50 realization ensemble, was constructed by first drawing aberration

coefficients, α, from a uniform distribution over the interval [−1, 1] and using them

as weights in a basis expansion over an annular pupil. The resulting phase screen is
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Figure 4.3: From left to right: pristine tank with subregion for processing indicated
by the red box, tank with 0.2 RMS waves of optical blur, tank with 0.2 RMS waves
of optical blur and additive noise to 25dB

Figure 4.4: From left to right: point object, point with 0.2 RMS waves of optical
blur, point with 0.2 RMS waves of optical blur and additive noise to 5dB

then normalized to 0.2 waves RMS over the pupil. The phase of the generalized pupil

function for one particular realization in the ensemble is shown in figure 4.5. A word

of caution is in order at this point. The use of only the first 15 non-planar Zernike

polynomials in a independent identically uniformly distributed manner is not meant

to correspond to a particular optical circumstance; however, it may resemble random

low order optical fabrication errors. Also, an ensemble of 50 realizations may not be

large enough to adequately represent a statistical class. The question of adequate

ensemble size requires further research.

The SNR of the extended scene is 25dB and that of the point object is 5dB, where

we define the SNR of an image to be 20 log10(‖ȳ‖ / ‖ȳ − y‖)dB where ȳ and y are the
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Figure 4.5: A particular wavefront realization in the Monte Carlo ensemble.

noise free and noisy images respectively. We note also that the SNR is only computed

over pixels that contain signal. This method of computing the SNR ensures that the

SNR of a point object does not depend on the size of the imaging array.

Since a closed form expression for the minimizer of (4.15) is not tractable it

was minimized numerically. The optimization was done using the limited memory

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [57]. The iterative search

was stopped when the iteration, k, satisfied (Ψk+1 − Ψk)/Ψk < 10−10, this corre-

sponded to ≈ 30 iterations.

As an example showing that the bulk of the estimation error, in phase-diverse

wavefront sensing, comes from variance in moderate to low SNR imaging scenarios

we evaluated (4.15) over a 20 realization noise ensemble and a single phase screen

realization. Figure 4.6 shows scatter plots of the individual estimates (left) and

the average estimates over the ensemble (right); perfect estimation corresponds to

estimates lying on the diagonal line. The scatter plot on the right shows that the

average estimates are quite close to the true values indicating a small bias; whereas

the variance of the individual estimates is comparatively large.
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Figure 4.6: Individual aberration estimates and averaged estimates.

The evaluation of (4.43) requires the selection of a regularization “tuning” param-

eter. Previous experience with phase diversity suggests that the aberration estimates

are weakly dependent on the regularization parameter provided the regularization is

small. We verify this claim by evaluating (4.43) over our phase screen ensemble for

several different regularization parameters. The resulting curve is shown in Fig. 4.7.

The curve shows that for regularization parameters smaller than approximately 10−6

the standard deviation of the estimates is nearly constant.
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Figure 4.7: Estimated standard deviation as a function of β.
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4.6 Results and discussion

The results of our simulation experiments for selection of the defocus parameter

are summarized in table 4.1. Figure 4.8 shows comparisons of the average of the

estimate standard deviations using (4.43) and the known-object Cramèr-Rao bound

using (4.30), as well as the RMSE of the Monte Carlo simulation, for the extended

scene over a range of defocus values. An immediate observation is that the Cramèr-

Rao bound method is lower than the estimated standard deviations using (4.43).

This is consistent with intuition as the Cramèr-Rao bound assumes complete knowl-

edge of the object and one would expect improved estimator performance under that

condition. Observe further that the minima of the two methods are different. The

Cramèr-Rao bound method predicts an optimal defocus value of 1.30 waves whereas

equation (4.43) predicts an optimal defocus value of 1.75 waves. The Monte Carlo

simulations yield an optimal defocus of 2.20 waves. The predicted optimal defocus

value using approximation (4.43) is closer to the Monte Carlo result than that pre-

dicted by the known-object Cramèr-Rao bound. This makes intuitive sense as (4.43)

incorporates the uncertainty in the object whereas the Cramèr-Rao method does not.

Table 4.1: Predictions of optimal defocus strength using (4.43), (4.30), and (4.15)

method extended scene point object
Monte Carlo: Eq. (4.15) 2.20 waves 1.05 waves
Variance approximation: Eq. (4.43) 1.75 waves 0.95 waves
Known-object CRB: Eq. (4.30) 1.30 waves 0.85 waves

Figure 4.9 shows comparisons of the average of the estimate variances using (4.43)

and (4.30), as well as the RMSE of the Monte Carlo simulation, for the point object

over a range of defocus values. As with the extended scene, the Cramèr-Rao bound

is lower than the variance predicted by (4.43). We see also that the optimal defocus
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Figure 4.8: Comparison of the average of the estimate standard deviations calculated
via both (4.43) and (4.30), as well as the RMSE of the Monte Carlo simulation, for
the extended scene.

values for the two methods are very nearly equal; the minimum for the Cramèr-Rao

bound occurs at 0.85 waves and the minimum for equation (4.43) is at 0.95 waves.

The optimal defocus value for (4.15) occurs at 1.05 waves. Although the minima

for the three methods are very near one another we note that the minimum given

by (4.43) is closer to the minimum obtained through Monte Carlo simulations.

It is important to note that both the Cramèr-Rao bound and the variance ap-

proximation (4.43) are useful as guides in system parameter selection; one would be

remiss to use either of these methods as a complete substitute for full simulation

using (4.15). The primary benefit of (4.43) is that it can provide reasonable bounds

on parameters of interest for far less computational expense than performing full

Monte Carlo simulations. The ratio of computation time, for a single realization and

a [64× 64] object, of (4.15) to (4.43) is ≈ 12; a sizable time savings.
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Figure 4.9: Comparison of the average of the estimate standard deviations calculated
via both (4.43) and (4.30), as well as the RMSE of the Monte Carlo simulation, for
the point object.
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4.7 Conclusion and future work

A method for approximating the variance of aberration estimates for quadratically

regularized weighted least squares estimators in the phase diversity context have

been presented. The approximation has been shown to be a fairly accurate guide in

selecting an appropriate amount of defocus for the diversity channel. The benefit of

using (4.43) over (4.30) is delineated when the object is an extended scene; however

the two methods do not differ substantially when the object is a point source.

The next steps in this research are to explore approximations to the bias of (4.15).

An approximation to the bias could be used with (4.43) to approximate the entire

mean squared error for aberration estimation. These expressions could also be used

to explore how regularization of the object affects the aberration estimates. A natural

next step is also to investigate why the known-object Cramèr-Rao bound differs from

the approximation (4.43) less for point objects than for extended scenes.
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CHAPTER V

Conclusion and future work

5.1 Summary

In this dissertation we have analyzed penalized-likehood estimation techniques

for polarimetric imagery. We have explored the question of which space is the ap-

propriate space to estimate in: intensity space or Stokes space. It was found that

estimation of Stokes vectors directly provides estimates with lower overall RMS er-

ror as compared with restoring the intensity images and then transforming to Stokes

space for interpretation. We have also explored how the addition of a cross-channel

regularization term affects estimation accuracy. It was found that the addition of a

cross-channel regularization term improves interpretability of Stokes parameter esti-

mates when estimating the Stokes parameters directly and when using a traditional

estimator.

While the addition of a cross-channel regularization term has improved inter-

pretability for both estimators it has also added another set of regularization “tuning”

parameters. For practical implementation the added computation cost of additional

regularization penalty functions should be considered. The proposed Stokes space

estimator has been shown to provide lower RMS reconstruction errors, however, the

traditional estimator has only one tuning parameter to be adjusted as opposed to the

Stokes estimator which has three. Further study into the computational cost verses
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reconstruction error between the proposed estimator and the traditional estimator is

warranted for implementation decisions.

We have also developed a unified framework for joint estimation of Stokes images

and aberrations from polarimetric measurements that contain phase diversity. We

explored two methods, (3.18) and (3.22), for joint estimation of Stokes images and

aberrations. It was found that estimation accuracy follows a task-based hierarchy,

i.e., in a joint-estimation framework the choice of algorithm is task dependent. When

the task is image restoration (aberrations are nuisance parameters) an algorithm that

jointly estimates object and aberrations while incorporating a priori knowledge of

the object is appropriate. However, if the aberration parameters are of interest and

the object is a nuisance parameter then a reduced-parameter algorithm should be

chosen.

The magnitudes of the regularization tuning parameters are very different depend-

ing on which parameters are of importance. When the aberration parameters are of

interest and the object is nuisance the regularization parameter is quite small and the

estimates are weakly dependent on the parameter over a wide range of values. In the

limit as the regularization parameter approaches zero (3.22) becomes a maximum-

likelihood estimator (that cannot be evaluated for circular apertures). It seems then,

that the primary role of regularization in (3.22) is to ensure invertibility of the matrix

in (3.21).

We have developed of a method for approximating the variance of aberration

estimates for quadratically penalized weighted least squares estimators in the phase

diversity context. Comparisons for system-parameter selection were made between

the commonly used known-object Cramèr-Rao bound and our variance approximation

that takes into account an unknown object. The impact including the uncertainty

of the object in the formulation has been shown to be significant when selecting the

diversity defocus parameter when imaging extended scenes. When imaging a point
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object the known-object Cramèr-Rao bound yields a minimum variance defocus value

nearly equal to our approximation that incorporates the uncertainty in the object.

From a practical point of view our approximation to the variance has significant

utility; evaluation of the variance approximation (4.43) for 15 aberration parameters

is 12 times faster than a single evaluation of (4.15).

5.2 Future Work

While this dissertation has focused primarily on polarimetric image reconstruction

algorithms the framework is general and may be applied to other imaging modali-

ties. The framework developed may be immediately applied to any imaging modality

where there is a linear relationship between the estimation space and measurement

space. An example of this is multi/hyper-spectral imaging. Spectral measurements

are made using optical filters that pass a range of wavelengths. Real scenes under so-

lar illumination contain information across a continuum of wavelengths, each spectral

measurement is a sum of contributions from different wavelengths. In the polarimet-

ric case our linear transformation TJ×3 specified J ≥ 3, but with spectral imaging we

have TJ×K where K ≥ J . A model of this type highlights the possibility of estimating

fine spectral components from measurements that are coarsely sampled in wavelength.

This could be used, for example, for detection of materials with narrow spectral sig-

natures. For example, a typical multispectral imager may have four spectral bands

each with bandwidths of λ̄/5 where λ̄ is the mean wavelength of a particular band. In

our proposed framework one could estimate spectral bands with bandwidths of λ̄/10

thereby effectively increasing the spectral resolution of the imager. Consequently,

there is the potential to detect finer spectral signatures. Moreover, improvement in

detection of fine spectral signatures is a motivation for regularization design.

There are subtleties that have to be addressed when applying these methods to

spectral imaging. The wavelength dependence of the point-spread-function as well as
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the sample rate at the detector should be modeled appropriately. Research into the

impact of aliasing, due to wavelength variation, is of practical importance for spectral

imager design. Also, regularization strategies for recovery of aliased information in

the spectral imaging context has yet to be explored.

A more general extension of the Stokes estimation framework would be to con-

sider estimation spaces that are nonlinearly related to the measurements. Some re-

lated work has been done already in the area spectral anomaly detection [51, 50, 76].

However, development of image reconstruction algorithms in this area has received

little attention. Exploration of penalized-likelihood estimators that perform estima-

tion in a space that is nonlinearly related to the measurements offers the potential for

dimensionality reduction opens up new motivations for regularization penalty design.

All of the algorithms in this work have assumed a monochromatic object, in re-

ality the world polychromatic. These algorithms can be generalized to accommodate

polychromatic objects. There are two areas where the polychromatic nature of light

will enter: (1) point-spread function, and (2) detector sampling. The PSF scales with

wavelength to first order so that can be dealt with in a straightforward manner; the

detector sampling also scales with wavelength but one must be mindful of aliasing

effects at the blue end of the spectrum.

The polarimetric-phase-diverse wavefront sensing algorithm (4.15) can be explored

further by switching paradigms to a Bayesian framework. In the Bayesian frame work

the regularization penalty is viewed as a statistical prior on the object. In our frame-

work the only requirement on our quadratic regularization penalty was that C′C

be positive definite. Using Parseval’s theorem (3.22) can be written in the Fourier

domain. In the Bayesian paradigm, in the Fourier domain, the regularization penalty

now takes on the meaning of the inverse power-spectral density of the object. For

extended scenes different object PSDs can be explored. For example, an image of

Manhattan, New York, will have strong spatial frequencies corresponding to the grid-
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like street structure of the city, whereas farm land may not exhibit any preferential

direction in the frequency domain.

It would be natural to extend the expression for the approximate joint covari-

ance matrix to include other system parameters. For example, in this dissertation we

have assumed that the measurements were all perfectly registered and sampled at the

Nyquist rate, however, this is seldom the case for real phase-diversity systems. Gen-

eralization of (4.43) to include multiple system parameters would provide a means

for studying the effects of channel misregistration, aliasing, or other system param-

eters on wavefront estimation. Similarly, in our polarimetric work we have assumed

the polarimetric channels were perfectly aligned and sampled at the Nyquist rate.

Again, a generalization of (4.43) to polarimetric-phase-diverse systems would provide

a starting point for analyzing how system nonidealities effect wavefront estimation.

Analytical analysis of our covariance approximation under the consideration of a

random α is forthcoming. To complement this we plan to compare variations of our

analytic predictions over an aberration ensemble with the variations of the Monte

Carlo simulations over the same ensemble. Moreover, we plan to tailor the aberra-

tion ensemble to more accurately represent atmospheric turbulence using Kolmogorov

statistics.

In our joint estimation of object and aberrations we have found that one can either

have better object estimates or better aberration estimates but not both. We plan to

thoroughly investigate joint estimation versus staged estimation. Intuitively it seems

that the full joint model would give the best estimates for object and aberration but

it is not clear that this is the case and it deserves further attention.

Further analysis of phase-diverse wavefront sensor performance would benefit from

an expression for the approximate bias of the aberration estimates. This calculation

involves a third order Taylor expansion of an implicit estimator[29] and so simpli-

fying assumptions seem imperative. However, once armed with approximations for
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the covariance and bias of the aberrations estimates it would be of great utility in

analyzing how regularization of the object or aberrations, affects the estimation of

the aberration parameters. That is, one could analyze the effect of a statistical prior

on the aberrations in addition to the object regularization.

As mentioned above, higher fidelity system models are practical importance. Ap-

proximations for the covariance and bias of (4.15) can be generalized to accommo-

date registration parameters, channel transmission, pixel aggregation, etc. That

is, if the joint parameter to be estimated, Θ, consists of L types of parameters,

Θ = (θ1, . . . ,θL), that enter into the estimation problem both linearly and nonlin-

early, one could analyze their joint impact on reconstruction quality using approxi-

mations to the bias and covariance.

In appendix B we demonstrated graphically, for a three-channel polarimeter, that

the set of angles {θi} = π(i−1)
J

for i = 1, . . . , J was an optimal in the Cramèr-Rao

sense. We also conjectured that the same set of angles would be optimal for a J-

channel polarimeter and showed that those angles are indeed an extreme point of

the J-channel objective function. A path forward for proving that the set of angles

is indeed a minimum variance set includes showing that the set of angels is a local

minimum and not a maximum. This can be accomplished by showing that the Hessian

evaluated at the prescribed set is positive definite. The next, more difficult step, is

to show that the angles are a global minimum and not a local minimum. A second

approach would be to explore a single-value decomposition of the FIM . The FIM

has a large amount of structure and so may have a “nice” SVD. Once the SVD

is in hand one can use the fact that the trace is similarity invariant and obtain the

inverse without too much difficulty. From there one could work towards a closed-form

expression for the minimizing set of angles.
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APPENDIX A

Numerical minimization of (3.22)

Numerical minimization of equation (3.22)

The minimization of (3.22) is most easily accomplished by invoking Parseval’s

theorem. If we ignore inconsequential constants our objective function can be written

in the Fourier domain as

Φ(α) =
1

2

J∑
j=1

∥∥Yj −ΩjΛjΘ(α)
∥∥2

+
1

2

2∑
n=0

βn
∥∥DΘn(α)

∥∥2
, (A.1)

where Yj = Q′yj, Λj = [TJ×3](j,1:3) ⊗ Inp , Θ(α) = Q′S(α), Ω(α) = Q′B(α), and D

is a matrix such that D′D = QCC′Q′. The partial derivatives of (A.1) with respect

to the ith aberration parameter can be written

∂Φ
∂αi

= −1
2

J∑
j=1

〈
∂Ωj

∂αi
ΛjΘ + ΩjΛj

∂Θ
∂αi

, Yj −ΩjΛjΘ
〉

+
1
2

2∑
n=0

βn

〈
D
∂Θn

∂αi
, DΘn

〉
+ c.c,

where the dependencies on αi have been suppressed for brevity, 〈· , ·〉 is the Eu-

clidean inner product over C3np , and c.c denotes complex conjugate. To evaluate this

expression, the partial derivatives of Ωj and Θ(α) must be calculated.
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Expression for ∂Θ
∂αi

Recall, equation (3.21) expresses the Stokes parameters in terms of the aberration

parameters:

S(α) =

(T′J×3 ⊗ Inp

)
B (α)′B (α)

(
TJ×3 ⊗ Inp

)
+ σ2β3 ⊗C′C︸ ︷︷ ︸

P

−1

×
(
T′J×3 ⊗ Inp

)
B (α)′ y︸ ︷︷ ︸

V

.

(A.2)

This expression may be written as a matrix-vector product: S(α) = P−1(α;β3)V(α; y),

and a similar expression may be written in the Fourier domain

Θ(α) = A−1(α;β3)X(α; Y). (A.3)

The partial derivative of (A.1) with respect to αi is then

∂Θ

∂αi
=

∂

∂αi

(
A−1X

)
=
∂A−1

∂αi
X + A−1 ∂X

∂αi
(A.4)

= −A−1 ∂A

∂αi
A−1X + A−1 ∂X

∂αi
(A.5)

= −A−1

(
2

J∑
j=1

[TJ×3]′j[TJ×3]j ⊗ Re

{
Ω′j

∂Ωj

∂αi

})
A−1

J∑
j=1

Λ′jΩ
′
jYj

+ A−1

J∑
j=1

Λ′j
∂Ω′j
∂αi

Yj

. (A.6)

With this expression in place it remains to write down an expression for A−1 and

compute the partial derivatives of Ωj with respect to αi.
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Expression for
∂Ωj

∂αi

∂

∂αi
Ωj =

∂

∂αi
c F

[∣∣F−1 [Pj]
∣∣2] (A.7)

= c F

[
∂

∂αi

∣∣F−1 [Pj]
∣∣2] (A.8)

= 2c F

[
Re

{(
F−1

[
∂Pj
∂αi

]) (
F−1 [Pj]

)∗}]
(A.9)

= 2c F
[
Re
{(

F−1 [ıψiPj]
) (

F−1 [Pj]
)∗}]

(A.10)

= 2c F
[
−Im

{(
F−1 [ψiPj]

) (
F−1 [Pj]

)∗}]
(A.11)

= 2c F
[
Im
{
F−1 [Pj]

(
F−1 [ψiPj]

)∗}]
, (A.12)

where c normalizes the PSF to unit volume.
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Expression for A−1 for the case of polarization angles {0◦, 45◦, 90◦, 135◦}

For a J channel polarimeter the matrix A has a (3 × 3) block structure and so

can be inverted by hand. For our specific case, the expression for A−1 can be written

as horizontally concatenated (3× 1) block-column vectors in the following way:

A−1 =
1

16 det [A]



(∣∣Ω1

∣∣2 +
∣∣Ω3

∣∣2 + 4β1

∣∣D∣∣2)(∣∣Ω2

∣∣2 +
∣∣Ω4

∣∣2 + 4β2

∣∣D∣∣2)
−
(∣∣Ω1

∣∣2 − ∣∣Ω3

∣∣2)(∣∣Ω2

∣∣2 +
∣∣Ω4

∣∣2 + 4β2

∣∣D∣∣2)
−
(∣∣Ω2

∣∣2 − ∣∣Ω4

∣∣2)(∣∣Ω1

∣∣2 +
∣∣Ω3

∣∣2 + 4β1

∣∣D∣∣2)




−
(∣∣Ω1

∣∣2 − ∣∣Ω3

∣∣2)(∣∣Ω2

∣∣2 +
∣∣Ω4

∣∣2 + 4β2

∣∣D∣∣2)(∑4
j=1

∣∣Ωj

∣∣2 + 4β0

∣∣D∣∣2)(∣∣Ω2

∣∣2 +
∣∣Ω4

∣∣2 + 4β2

∣∣D∣∣2)− (∣∣Ω2

∣∣2 − ∣∣Ω4

∣∣2)2

(∣∣Ω1

∣∣2 − ∣∣Ω3

∣∣2)(∣∣Ω2

∣∣2 − ∣∣Ω4

∣∣2)




−
(∣∣Ω2

∣∣2 − ∣∣Ω4

∣∣2)(∣∣Ω1

∣∣2 +
∣∣Ω3

∣∣2 + 4β1

∣∣D∣∣2)(∣∣Ω1

∣∣2 − ∣∣Ω3

∣∣2)(∣∣Ω2

∣∣2 − ∣∣Ω4

∣∣2)(∑4
j=1

∣∣Ωj

∣∣2 + 4β0

∣∣D∣∣2)(∣∣Ω1

∣∣2 +
∣∣Ω3

∣∣2 + 4β1

∣∣D∣∣2)− (∣∣Ω1

∣∣2 − ∣∣Ω3

∣∣2)2

 ,

where

64 det[A] =

 4∑
j=1

∣∣Ωj

∣∣2 + 4β0

∣∣D∣∣2
(∣∣Ω1

∣∣2 +
∣∣Ω3

∣∣2 + 4β1

∣∣D∣∣2)(∣∣Ω2

∣∣2 +
∣∣Ω4

∣∣2 + 4β2

∣∣D∣∣2)

−
(∣∣Ω2

∣∣2 − ∣∣Ω4

∣∣2)2 (∣∣Ω1

∣∣2 +
∣∣Ω3

∣∣2 + 4β1

∣∣D∣∣2)
−
(∣∣Ω1

∣∣2 − ∣∣Ω3

∣∣2)2 (∣∣Ω2

∣∣2 +
∣∣Ω4

∣∣2 + 4β2

∣∣D∣∣2) .
With the component expressions for the partial derivatives for the reduced-parameter

objective function in place gradient-based search methods may be used. It is worthy

to note that search methods that do not use gradient information are futile for the

objective function (3.22). We examined the standard derivative-free simplex method

(the MATLAB fminsearch algorithm) and found that reaching the global minimum

of (3.22) would take more than 3 days of computation whereas the gradient-based

L-BFGS method requires less than 20 minutes to reach the global minimum.
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APPENDIX B

Optimal angles for a three-channel linear

polarimeter

Optimal angles for a three-channel polarimeter

In this appendix we use the Cramèr-Rao bound as a metric for determining the

optimal polarization angles for a three-channel linear polarimeter; we also provide a

conjecture for a set of optimal polarization angles for J-channel linear polarimeter.

Consider the following model for a J-channel linear polarimeter

y = (TJ×3 ⊗ Inp)S + ε, (B.1)

where,

TJ×3 =



1
2

1
2

cos(2θ1) 1
2

sin(2θ1)

1
2

1
2

cos(2θ2) 1
2

sin(2θ2)

...
...

...

1
2

1
2

cos(2θJ) 1
2

sin(2θJ)


(B.2)

This model ignores the effects of optical blur as polarization is independent of phase

in the visible regime. Under the noise model ε ∼ N(0, σ2Inp) we may write down the
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following log-likelihood function

L(S;θ) =
1

2

∥∥y − (T′J×3(θ)TJ×3(θ)⊗ Inp)S
∥∥2
, (B.3)

where θ = (θ1, . . . , θJ). The Fisher-Information Matrix (FIM ) for (B.3) is given by

F = T′J×3(θ)TJ×3(θ)⊗ Inp . (B.4)

At this point we may consider the FIM as a function of θ. The variances in the

estimates of the Stokes parameters are then a function of the polarizer angles and are

equal to the diagonal elements of the inverse FIM :

F−1 =
[
T′J×3(θ)TJ×3(θ)

]−1 ⊗ Inp , (B.5)

where

T′J×3(θ)TJ×3(θ) =


∑J

ı=1
1
4

∑J
ı=1

1
4

cos(2θı)
∑J

ı=1
1
4

sin(2θı)∑J
ı=1

1
4

cos(2θı)
∑J

ı=1
1
4

cos2(2θı)
∑J

ı=1
1
8

sin(4θı)∑J
ı=1

1
4

sin(2θı)
∑J

ı=1
1
8

sin(4θı)
∑J

ı=1
1
4

sin2(2θı)

 . (B.6)

The inverse of any invertible 3× 3 matrix F is written

F−1 =
1

det(F)


F22F33 − F2

23 F13F32 − F12F33 F12F23 − F13F22

F23F31 − F21F33 F11F33 − F2
13 F13F21 − F11F23

F21F32 − F22F31 F12F31 − F11F32 F11F22 − F2
12

 . (B.7)

We define our performance metric to be the trace of the FIM :

θ̂ = argmin
θ

= Tr[F−1(θ)]
4
= Ψ(θ). (B.8)
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Without loss of generality we can set θ1 = 0. Now, specializing to three channels we

have θ = (θ2, θ3). The objective function Ψ(θ2, θ3) becomes

Ψ(θ2, θ3) = −1

8

4 cos (2θ2) + cos (4θ2) + 4 cos (2 (θ2 − θ3)) + cos (4 (θ2 − θ3))

sin2 (θ2) sin2 (θ2 − θ3) sin2 (θ3)

+
4 cos (2θ3) + cos (4θ3)− 15

sin2 (θ2) sin2 (θ2 − θ3) sin2 (θ3)

(B.9)

Figures B.1 and B.2 show density plots of log[Ψ(θ2, θ3)] {θ2, θ3} ∈ (0, π); figure B.2

has been thresholded at log(25) for better color representation. Observe that there
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Figure B.1: Density plot of log(Ψ).

are two convex regions separated by the line θ2 = θ3. If we demand that the angles are

ordered in a monotonically increasing fashion, the valid solution space lies above the

line θ2 = θ3. We solve (B.8) numerically using a constrained Nelder-Meade numerical

optimization routine. The results of the search are

θ2 → 1.0471975511966241732

θ3 → 2.0943951023933713478.
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Figure B.2: Density plot of log(Ψ) thresholded for enhanced color representation.

These numbers are suspiciously close to π/3 and 2π/3 respectively. Although (B.9)

does not appear to lend itself to an analytic minimum, we can evaluate the gradient of

our objective function at the intuitive solution of (π/3, 2π/3). If the gradient vanishes

we conjecture that (π/3, 2π/3) is the global minimum. The partial derivatives of (B.9)

are

∂Ψ

∂θ2

=
sin (2θ2 − 5θ3) + sin (4θ2 − 5θ3) + 4 sin (2θ2 − 3θ3) + 3 sin (4θ2 − 3θ3)

8 sin3 (θ2) sin3 (θ2 − θ3) sin2 (θ3)

+
−26 sin (2θ2 − θ3) + 3 sin (4θ2 − θ3) + 4 sin (2θ2 + θ3)

8 sin3 (θ2) sin3 (θ2 − θ3) sin2 (θ3)

+
sin (4θ2 + θ3) + sin (2θ2 + 3θ3)

8 sin3 (θ2) sin3 (θ2 − θ3) sin2 (θ3)

(B.10)

∂Ψ

∂θ3

=
4 cos (θ2) sin (2 (θ2 − 2θ3)) cot2 (θ2)

4 sin3 (θ2 − θ3) sin3 (θ3)

+
(4 cos (2θ2) cos (4θ2)− 13) csc2 (θ2) sin (θ2 − 2θ3)

4 sin3 (θ2 − θ3) sin3 (θ3)
.

(B.11)

Evaluation the partial derivatives at (π/3, 2π/3) verifies that indeed the gradient of

the objective vanishes.
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Conjecture

We conjecture that a set of minimum-variance angles, in the Cramè-Rao sense,

for a J-channel linear polarimeter is {θl} = {π l−1
J
} for l = 1, . . . , J . We show next

that this set of angles is an extreme point of Ψ(θ). The diagonal elements of the

J-channel inverse FIM can be written as a ratio of functions, f(θ)/g(θ):

[F−1](1,1) =
f1(θ)

g(θ)
, [F−1](2,2) =

f2(θ)

g(θ)
, [F−1](3,3) =

f3(θ)

g(θ)
, (B.12)

where the functions have been defined to be consistent with (B.7). Consider the

derivative of our metric with respect to the lth component of θ:

∂

∂θl
Tr[F−1] =

∂

∂θl

f1(θ) + f2(θ) + f3(θ)

g(θ)
(B.13)

The general form of the first derivative of a ratio of functions is given by the quotient

rule (
f(θ)

g(θ)

)′
=
f ′(θ)g(θ)− g′(θ)f(θ)

g(θ)2
, (B.14)

this function vanishes if f ′(θ) and g′(θ) are both zero (g(θ) is nonzero by assumption).

We will differentiate each term in the numerator and show that the resulting sum

is zero for the conjectured set of angles, we will then differentiate the denominator
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and show that it vanishes for the same set of angles.

∂f1

∂θl
=

∂

∂θl

(
F22F33 − F2

23)
)

(B.15)

=
∂

∂θl

(
J∑
ı=1

1

4
cos2(2θı)

)(
J∑
=1

1

4
sin2(2θ)

)
− ∂

∂θl

(
J∑
k=1

1

8
sin(4θk)

)2

(B.16)

=

(cos(2θl) sin(2θl))

((
J∑
ı=1

1

4
cos2(2θı)

)
−

(
J∑
=1

1

4
sin2(2θ)

))

− cos(4θl)
J∑
k=1

1

8
sin(4θk)

. (B.17)

We evaluate (B.17) by invoking the following trigonometric identities

J∑
ı=1

cos2(Lπ
ı− 1

J
) =

J∑
ı=1

sin2(Lπ
ı− 1

J
) =

J

2
, L = even (B.18)

J∑
k=1

cos(Lπ
k − 1

J
) =

J∑
k=1

sin(Lπ
k − 1

J
) = 0, L = even, (B.19)

using these in (B.17) yields

∂f1

∂θl
= (1/4) cos(2π

l − 1

J
) sin(2π

l − 1

J
)(
J

2
− J

2
)− (1/8) cos(4π

l − 1

J
)(0) = 0. (B.20)

Continuing with the next two terms we have

∂f2

∂θl
=

∂

∂θl

(
F11F33 − F2

13)
)

(B.21)

=
J

4

∂

∂θl

J∑
=1

1

4
sin2(2θ)−

∂

∂θl

(
J∑
k=1

1

4
sin(2θk)

)2

(B.22)

=
J

4
cos(2θl) sin(2θl)−

1

4
cos(2θl)

J∑
k=1

1

4
sin(2θk), (B.23)
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evaluation over the prescribed set yields

∂f2

∂θl
=
J

4
cos

(
2π
l − 1

J

)
sin

(
2π
l − 1

J

)
. (B.24)

The third term is

∂f3

∂θl
=

∂

∂θl

(
F11F22 − F2

12)
)

(B.25)

=
J

4

∂

∂θl

J∑
ı=1

1

4
cos2(2θı)−

∂

∂θl

(
J∑
k=1

1

4
cos(2θk)

)2

(B.26)

= −J
4

cos(2θl) sin(2θl)−
1

4
sin(2θl)

J∑
k=1

1

4
sin(2θk), (B.27)

evaluation over the prescribed set yields

∂f3

∂θl
= −J

4
cos

(
2π
l − 1

J

)
sin

(
2π
l − 1

J

)
. (B.28)

Putting the three terms together we have

∂(f1 + f2 + f3)

∂θl

∣∣∣∣
θl=π(l−1)/J

= 0, (B.29)

since this expression is independent of l, it holds for all components of θ. It remains

to show that ∂
∂θl
g(θ)

∣∣
θl

= 0, l = 1, . . . , J .

Recall, g(θ) = det(F). We will use the following identity in our work:

∂ det(F)

∂θ
= det (F) Tr

(
F−1∂F

∂θ

)
. (B.30)

Equation (B.30) vanishes if Tr
(

F−1 ∂F
∂θl

)
= 0. We now write out the elements of the
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trace [
F−1 ∂F

∂θl

]
11

=
(
F22F33 − F2

23

) ∂F11

∂θl

+ (F13F32 − F12F33)
∂F21

∂θl

+ (F12F23 − F13F22)
∂F31

∂θl

, (B.31)

[
F−1 ∂F

∂θl

]
22

= (F23F31 − F21F33)
∂F12

∂θl

+
(
F11F33 − F2

13

) ∂F22

∂θl

+ (F13F21 − F11F23)
∂F32

∂θl

, (B.32)

[
F−1 ∂F

∂θl

]
33

= (F21F32 − F22F31)
∂F13

∂θl

+ (F12F31 − F11F32)
∂F23

∂θl

+
(
F11F22 − F2

12

) ∂F33

∂θl

. (B.33)

Each of these expressions must be evaluated at θl = π l−1
J

. Consider (B.31); the first

term is zero due to F11 being independent of angle, the second and third terms also

vanish since F12

∣∣
θl=π

l−1
J

= F13

∣∣
θl=π

l−1
J

= 0. Equation (B.32) has two vanishing terms

since F23

∣∣
θl=π

l−1
J

= 0 as well. Lastly, using the previous identities, equation (B.32)

also has two vanishing terms. There are two nonzero terms left in the trace:

Tr
(

F−1 ∂F
∂θl

) ∣∣∣∣
θl=π

l−1
J

=
[(

F11F33 − F2
13

) ∂F22

∂θl
+
(
F11F22 − F2

12

) ∂F33

∂θl

] ∣∣∣∣
θl=π

l−1
J

. (B.34)

Observe that ∂F22

∂θl
= −∂F33

∂θl
, F12

∣∣
θl=π

l−1
J

= F12

∣∣
θl=π

l−1
J

= 0, and that F22

∣∣
θl=π

l−1
J

=
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F33

∣∣
θl=π

l−1
J

= J
8
. Putting these together we have

Tr

(
F−1 ∂F

∂θl

) ∣∣∣∣
θl=π

l−1
J

=
J2

16
− J2

16
= 0. (B.35)

It has been demonstrated that the set polarization angles {θl} = {π l−1
J
} l = 1, . . . , J

is an extreme point of Ψ. Further research is needed to prove that the set of angles

{θl} = {π l−1
J
} l = 1, . . . , J is a global minimum of Ψ.
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