

STORAGE GROWTH AND ETHERNET

Scott Kipp

September 12, 2011

What is an Exabyte? – 1 Million Terabyte Drives

• Earth created or replicated over 1,000 Exabytes of data in 2010 – that's 143GB for each of 7 Billion people

	SI decimal prefixes – short scale			Dinory	IEC binary prefixes	
	Common Name	Name (Symbol)	Value	usage	Name (Symbol)	Value
	Thousand	kilobyte (kB)	10 ³	210	<u>kibibyte</u> (KiB)	210
	Million	megabyte (MB)	106	2 ²⁰	<u>mebibyte</u> (MiB)	2 ²⁰
	Billion	gigabyte (GB)	10 ⁹	2 ³⁰	<u>gibibyte</u> (GiB)	2 ³⁰
	Trillion	terabyte (TB)	1012	240	<u>tebibyte</u> (TiB)	240
	Quadrillion	petabyte (PB)	1015	2 ⁵⁰	<u>pebibyte</u> (PiB)	2 ⁵⁰
The world created over a ZB last year!	Quintillion	exabyte (EB)	1018	2 ⁶⁰	<u>exbibyte</u> (EiB)	2 ⁶⁰
	Sextillion	zettabyte (ZB)	1021	270	<u>zebibyte</u> (ZiB)	2 ⁷⁰
	Septillion	yottabyte (YB)	1024	2 ⁸⁰	<u>yobibyte</u> (YiB)	2 ⁸⁰
	Googol	GoogolByte?	10100			

2

An Exabyte is not Infinite

100

10 000

100 000

1 000 000

At 1TB/HDD = 1PB per row 10,000 HDD- 1 Large Data Center With 10PB of Data 100,000 HDD - 100PB - Storage capacity of European Grid Infrastructure 1,000,000 TeraByte HDDs - 1 Exabyte

1 Storage Subsystem with 72 Disk Drives

9/26/2011

The Source of the Data

The Digital Universe Study

- Data is growing 40-50% per year –doubling every two years compared to IP traffic growth of 30-40%
- 75% of the data is created by individuals, but enterprises have some liability for 80% of it
 - For data creation, think of computer files, music files, Digital Video Recorders, DVDs, backup drives, digital pictures...
 - They don't explain the 80% number well, but I bet an example is that the cable company has liability for the shows on your DVR
- 25% of data is generated by machines and that is growing fast with sensors and remote monitoring
- Over the next decade, the number of servers (physical and virtual) will grow by a factor of 10, storage will grow by a factor of 50 and files will grow by a factor of 75

How much will it grow? Into the Zettabytes

1,000 Exabytes is a Zettabyte

- We create more digital data every couple of years than was created in history
- 500,000 Trillion files in 2011

Source: The Digital Universe Study: http://www.emc.com/leadership/programs/digital-universe.htm

Replication is the Great Multiplier

Look back at Andy Bach's NYSE presentation

Source:http://www.ieee802.org/3/ad_hoc/bwa /public/jun11/bach_01a_0611.pdf How many people make their own copy of the data within each organization?

CERN Case Study

CERN's LHC generates 15 PB of data every year that is distributed over their core network with a 10Tbps capacity

LHC = Large Hadron Collider

Transferring Large Data Sets – Big Data

- To transfer 15PB would take about:
 - 3.8 Years at 1GbE
 - 137.5 days at 10GbE
 - 13.75 days at 100GbE
 - 33 Hours at TbE

				Latency	Latency	
Size of Data to	Latency	Latency	Latency	of	of	Latency
Exchange	of 1GbE	of 10GbE	of 40GbE	100GbE	400GbE	of 1TbE
1 Gigabyte	8	0.8	0.2	0.08	0.02	0.008
10GB	80	8	2	0.8	0.2	0.08
100GB	800	80	20	8	2	0.8
1 Terabyte	8,000	800	200	80	20	8
1 Petabyte	8M	800000	200,000	80,000	20,000	8,000
10 PB	80M	8M	2M	800,000	200,000	80,000
100 PB	800M	80M	20M	8M	2M	800,000

Video Content – The Growth Component

- Cisco's Visual Network Index (VNI)* predicts ~1 ZB of content will be distributed over Global IP networks in 2015 while there will be almost 8ZB of data produced and replicated that year
- Consumer video streaming is the main bandwidth driver in the future according to VNI*
- 1GB of content can produce 1PB** of data transfers so the storage component is one millionth compared to the networking component in some applications

*http://www.cisco.com/web/solutions/sp/vni/vni_forecast_highlights/index.html **http://www.emc.com/collateral/demos/microsites/emc-digital-universe2011/index.htm

Breaking IT Down into Information Technology (IT)

Explanation of Storage Access

9/26/2011

11

DAS = Direct Attached Storage

NAS = Network Attached Storage

External Storage Sales in Exabytes

- 17EB in 2011 growing to 90 EB in 2015 – About 1% of the digital universe
- Ethernet-based storage expected to grow to over 50% of storage capacity in 2015
- NAS is usually unstructured data, but its supporting more applications

NAS – Network Attached Storage

An application server that serves files

Fibre Channel Storage Area Network (SAN)

SCSI over Optical Fiber

Trends in Storage

- Application migration benefits from networked storage compared to DAS
- Cloud computing requires major data moves
- Virtual Desktop Infrastructure (VDI) leads to centralized storage and increased network traffic
- Solid State Drives (SSDs) or Flash Storage leads to higher bandwidth demands on the network

Server Virtualization and Migration

Data needs to move with the application

Data in Cloud Computing in 2015

Over 10% of storage could be in the clouds!

Source: The Digital Universe Study: http://www.emc.com/leadership/programs/digital-universe.htm

Cloud Computing

- Cloud Computing offers the grand vision of hosting and scaling applications from your data center to the cloud provider or another data center on demand
- To enable this transition, the data needs to be exchanged or mirrored first

Data Mirroring Between Storage Arrays

3 Main Ways to Mirror Data over the WAN

Virtual Desktop Infrastructure (VDI) Architecture

 VDI enables centralized management and simple upgrades to software and applications and increases LAN traffic

Comparing Server Technologies

	2000	2005	2010	2015
CPU	1 x Pentium 4 1.5 GHz	5 x Pentium D 2.6 GHz	15 x Nehalem Quad 2.6 GHz	45 x? Haswell 2.6 GHz?
DRAM	1 x	4 x	8 x	32 x?
	DDR1	DDR2	DDR3	DDR4?
Network	1 X	10 x	100 x	400 x
	100Mb Ethernet	Gigabit Ethernet	10 Gigabit Ethernet	40 Gigabit Ethernet
Bus	1 x	15 x	30 x	60 X
	PCI 32-bit/33 MHz	PCle Gen1 x8	PCle Gen2 x8	PCle Gen3 x8
Fibre	1 x	4 x	8 x	32 X
Channel	1GFC	4GFC	8GFC	32GFC
Disk	1 X	1 X	1 X	1 X
	15K rpm hard drive	15K rpm hard drive	15K rpm hard drive	15K rpm hard drive

SSDs – Solid State Drives

- Application performance is limited by multiple factors with disk drive latency being one factor
- Order of magnitude improvements in performance
 - While traditional spinning disk drive seek times are in the millisecond range, SSD seek times are in the microsecond range
 - SSDs often referred to as Tier-0 storage while disk drives are Tier-1
 - Capacities in the hundreds of GBs per drive
 - Very energy efficient compared to spinning disks
 - Most SSDs provide over 50,000 IOPs per drive
- One flash storage system supports 500,000 IOPS and 8 GBps (64 Gbps) of throughput

	Latency	Drive IOPs	Array IOPS
HDD	2-10 mS	100-300	400-40,000
SSD	50-250 uS*	40k-150k	50k-500k

* This is based on Flash memory and multiple parallel processing

Conclusion

- We entered the Zettabyte era last year 1M TB/year of new data
- More data is created every two years than all previous years combined
- Virtualization causes the need for networked storage of all varieties (SAN and NAS)
- All storage technologies are improving except disk drive access times and disk rotational speeds
- New applications and devices are driving more data access and higher bandwidths

Thank You

