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In this paper, we suggest a new approach for reverse engineering gene regulatory networks, which consists of
using a reconstruction process that is similar to the evolutionary process that created these networks. The
aim is to integrate prior knowledge into the reverse engineering procedure, thus biasing the search towards
biologically plausible solutions. To this end, we propose an evolutionary method that abstracts and mimics
the natural evolution of gene regulatory networks. Our method can be used with a wide range of nonlinear
dynamical models. This allows us to explore novel model types such as the log-sigmoid model introduced

here.

We apply the biomimetic method to a gold standard dataset from an in vivo gene network. The

obtained results won a reverse engineering competition of the second DREAM conference.
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Introduction

The goal of reverse engineering is to unravel unknown cellu-
lar networks from quantitative experimental data. Concep-
tually, there are three basic entities involved in the reverse
engineering procedure.! In the case of gene network reverse
engineering, these entities are: 1) A dataset of gene expression
measurements; 2) A mathematical model of gene regulation;
3) A search method that can find, within the framework of the
model, the networks that are most probable given the dataset
and possibly some prior knowledge. These three aspects must
be balanced for effective reverse engineering.

The quantity and quality of available data strongly influ-
ences the choice of a suitable model type and reverse engineer-
ing method. For example, microarrays simultaneously assess
the expression of thousands of genes. This results in an ex-
tremely high-dimensional search space. For such large-scale
reverse engineering, statistical methods? or regression tech-
niques relying on relatively simple dynamical models based
on first-order approximations of gene expression dynamics® *
are typically used. Here, we are interested in inference meth-
ods that target smaller networks, but use more accurate and
biologically plausible, nonlinear gene network models. This
generally requires more selective and accurate measurement of
the expression level of single genes, for example using quan-
titative Polymerase Chain Reaction (q-PCR) or fluorescent
transcriptional reporters. These technologies are advancing
at a fast pace. As the quality of available data improves, we
believe it timely to explore the possibility of using more de-
tailed phenomenological model types—enabling a more faith-
ful reconstruction of the gene network—than commonly used
models of gene regulation such as the linear model,> " the log-

linear model,>*® the sigmoid model,” ** or S-Systems.!* '®

As a first step in this direction, we introduce a log-sigmoid
gene network model that can approximate a broader range of
gene regulation functions than the standard sigmoid model.
More sophisticated, nonlinear model types require the con-
ception of adequate reverse engineering algorithms that can
navigate the more complex search space. An important issue
in the design of such algorithms is the incorporation of prior
knowledge in order to ‘guide’ the search towards biologically
plausible solutions.'® This is especially important when the
reverse engineering problem is underdetermined by the avail-
able data.'” Because biological networks are generally sparse,
most state-of-the-art reverse engineering methods include an
explicit bias towards sparse networks,®% 71512 for example
by limiting the maximum number of connections per gene.
Here, we advocate a new approach for embedding prior
knowledge in a reverse engineering method. Instead of formu-
lating ad hoc constraints, we use an algorithm that bears close
similarity with the way in which gene regulatory networks are
thought to evolve in nature. Standard genetic algorithms have
been used previously for gene network inference.!> Corne and
Pridgeon have argued that genetic algorithms may be partic-
ularly well suited for reverse engineering biological networks,
which are themselves a product of an evolutionary process.'®
The approach proposed here goes further by extending the
evolutionary algorithm with a biomimetic artificial genome
(Analog Genetic Encoding [AGE]), which mimics the encod-
ing of biological gene networks. By reproducing—at a cer-
tain level of abstraction—the structure and evolutionary con-
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Fig. 1 Evolutionary and functional constraints shape the ‘design space’ of biological networks,31 which often have ‘design
features’ such as sparseness, network motifs, robustness, etc. For example, some motifs (left) may be encountered more
frequently in a particular network than other topologies (right). By ‘replaying the evolutionary tape’, the biomimetic reverse
engineering approach aims at reproducing the evolutionary constraints of biological networks, thereby partly biasing the

search towards nature’s design space

straints of biological gene networks, the reverse engineering
process can be biased towards biologically plausible solutions,
thereby improving the accuracy of predictions (Figure 1).

Sequence-based artificial genomes similar to AGE were
originally proposed for modeling evolutionary dynamics of
gene networks'® 2% and have been applied, for example, in
artificial ontogeny®! and artificial chemistries.®> In contrast
to these artificial genomes, AGE has been specifically de-
signed for the evolutionary synthesis and reverse engineering
of dynamical networks, and it permits the evolution of vari-
ous dynamical gene network models with real-valued param-
eters. We have previously shown that AGE displays state-of-
the-art optimization performance in other network synthesis
problems than reverse engineering.?>?® Preliminary results
on gene network inference from simulated, noise-free steady-
state data were reported in.?*

Here, we use a more realistic gene model and assess our
method on the DREAM five-gene-network challenge, a gold
standard provided by Cantone et al. (unpublished data) as a
reverse engineering competition for the second DREAM con-
ference (New York, 2007). This gold standard consists of a
time series dataset obtained from an in vivo gene network of
known topology. The topology of the network was not dis-
closed by the organizers prior to submission of this paper.
Our predictions, which won the challenge, were thus obtained
blinded towards the true topology and assessed by an indepen-
dent evaluation team of the DREAM challenge organizers.?®

Results and discussion

Biomimetic reverse engineering method. We have developed
a biomimetic reverse engineering algorithm that can be used
with a large class of gene network models. This class of models
abstracts gene networks as nonlinear dynamical systems de-
scribed by a system of ordinary differential equations, where
genes are characterized by a list of internal parameters p (e.g.
decay rate, maximum transcription rate, etc.) and the inter-
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actions between pairs of genes are characterized by a single
parameter called weight w. The topology of the network and
the values of all numerical parameters are encoded in an arti-
ficial genome similarly to the way biological gene networks are
encoded in the genome in nature. We would like to stress that
the goal is not building a detailed model of the workings of
gene networks, but abstracting some key features believed to
be important in their evolution. These features are illustrated
in Figure 2.

The biomimetic genome, complemented with a set of bi-
ologically inspired genetic mutation and crossover operators
and a process of artificial evolution, allows us to evolve gene
networks in silico according to a given fitness criterion (the
fitness function) as described in Methods. The fitness func-
tion measures how well the experimental data is reproduced
by an evolved network in simulation, using a sum of squares
€error.

The biomimetic genome implies a bias towards sparse net-
works because—as in biological gene networks—regulatory in-
teractions need to be actively evolved through creation of ap-
propriate motifs (‘binding sites’) in the cis- and trans-acting
sequences. Links tend to be pruned by random mutations
and only the links under selective pressure (i.e., those that
contribute positively to the fitness) are maintained. Thus,
given the choice between a highly connected and a sparse
network that fit the data equally well, the biomimetic algo-
rithm evolves the sparse network with a higher probability—
consistent with our prior knowledge that biological networks
are generally sparse.

The log-sigmoid gene network model. We have applied a prin-
cipled approach to design a new type of gene network model
(manuscript in preparation). In short, we have considered the
complete set of biologically conceivable cis-regulatory input
functions (the input function of a gene describes the combined
effect of its regulators on the transcription rate) and com-
pared how well different phenomenological models approxi-
mate these functions. We found that existing phenomenolog-
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Fig. 2 Implicit encoding of genetic interactions in the biological and the artificial genome. (A) In a cell, the regulatory interaction between two genes
is the result of a biochemical process that depends among other things on the coding region (trans-acting region) of the first gene, which encodes the
characteristics of the regulatory protein, and the cis-regulatory region of the second gene, which contains the potential binding sites for the regulatory
protein. (B) The artificial encoding abstracts the following aspects of the biological encoding: 1) The genome is a sequence of nucleotides. The artificial
genome is constituted by one or more chromosomes, which are sequences of characters (A-Z). 2) Genes can be located anywhere in the genome. The
beginning and the end of genes are marked by special motifs called ‘tokens’ (GN and TE) analogous to promoters and terminators of biological genes. 3)
Implicit encoding of regulatory interactions. The potential regulatory interaction between two genes is not encoded explicitly in the genome. Instead,
genes have a cis-regulatory sequence and a trans-acting sequence, which may interact via an interaction map that computes an ‘affinity’ (interaction

strength) as described in Methods

ical models used for reverse engineering, such as the standard
sigmoid model,® '3 typically perform well only on input func-
tions similar to a Boolean OR-gate. The log-sigmoid model
introduced in Methods circumvents this limitation. In sum-
mary, the following points make the log-sigmoid model an
interesting choice:

e The log-sigmoid model is identical to the standard sig-
moid model, except that the logarithm of the inputs is
used. This makes it compatible with many reverse en-
gineering methods originally developed for the standard
sigmoid model.

e In contrast to the standard sigmoid model, it approxi-
mates AND-type and OR-type gene regulation functions
equally well (unpublished results).

o It is equivalent to a Hill-type model and the weights w;;
can be interpreted as the Hill coefficients of the regula-
tors (see Methods).

e Some types of gene expression data are naturally treated
in log space, as discussed in the next section.

Predictions and confidence levels.It is clear that with the
noisy and relatively small datasets available, it is impossible
to infer regulatory links with 100% certainty. Within this
context, the goal of reverse engineering is not identifying a
single ‘true’ network, but rather making a set of predictions
of regulatory links, which can have different confidence levels
assigned. Such a list of predictions is the official format in
which reverse engineering results are to be submitted to the
DREAM challenge.

If the reverse engineering problem is underdetermined by
the available data, any run of a stochastic inference method
(as the evolutionary method proposed here) generally con-
verges to a different network. From N runs, we thus get a set
of N different inferred networks. Analyzing such an ensemble

of inferred networks to make predictions and assign confidence
levels is not trivial. For now, we simply define the confidence
level of a regulatory link as the fraction of times that it was
present in the set of inferred networks. Enhancing and in-
hibitory links are counted separately, i.e., the predictions are
signed. A detailed discussion of different methods to extract
predictions and confidence levels from ensembles of inferred
networks is the focus of our companion paper in this issue.°

In silico and in vivo benchmarks. To allow objective compar-
ison with other methods, we have applied our algorithm to a
gold standard dataset provided for the five-gene-network re-
verse engineering challenge of the second DREAM conference
(Cantone et al., unpublished data). This dataset consists of
two time series of 15 and 11 samples respectively, and was ob-
tained from an n vivo gene network (henceforth referred to as
target network) using q-PCR. The goal is to predict the topol-
ogy of the target network from this data. The true topology
of the target network was not yet disclosed by the organizers
of the DREAM challenge at time of submission of this paper.

Here, we can not yet include a more detailed descrip-
tion of the in vivo gene network and the challenge because
this information has not yet been published. For this rea-
son, the q-PCR data and the true network structure are not
shown in the discussion of the results below. We will sup-
plement more information as soon as possible on our website
(http://lis.epfl.ch/grn).

As a further test case we have constructed an in silico
five-gene network, from which we generated two time series
with the same number of samples as the DREAM challenge
dataset described above. Different levels of log-normal noise
were added to the simulated data. The topology of the in
silico target network is a loop of inhibitory connections (Fig-
ure 3A). The in silico gene network in SBML format and the
corresponding datasets are available from the authors upon
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Fig. 3 (A-C) In silico benchmark. (A) The in silico target network is a loop of five inhibitory interactions. (B) Normalized gene expression levels—
plotted on a logarithmic scale—for the two time series. Noisy data, generated from the in silico target network, is used as input for the reverse engineering

method (points). The time course of the inferred network fits the input data

without overfitting to noise. (C) The regulatory links of the target network

were correctly predicted with high confidence levels. Arrows are enhancing, T-ends denote inhibitory interactions.
(D-F) In vivo DREAM challenge. (D) The topology of the in vivo target network has not yet been disclosed prior to submission of this paper. (E)

The inferred network dynamics plotted as normalized, negative g-PCR log ex

pression ratios. The DREAM challenge dataset has not yet been released for

publication. For this reason, the accuracy of the data fit is qualitatively shown with the shaded areas. For any time series of a gene, over 90% of all data

points fall within this area. (F) Predicted network topology

request.

We assume log-normal noise on the data because microar-
rays and g-PCR assess gene expression on a logarithmic scale.
Hence, the measurement error is expected to be approximately
log-normal. Furthermore, there is experimental evidence that
biological noise in gene regulation also has a log-normal distri-
bution.?” For this reason, the reverse engineering algorithm
fits the models to the original q-PCR log-expression ratios,
without first transforming the data to a linear scale (see Meth-
ods).
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In silico benchmark results. We first applied the reverse engi-
neering method to the in silico benchmark at different levels
of noise. The results obtained from a batch of 25 runs on
the dataset with log-normal noise of standard deviation 1.0
are shown in Figure 3. All runs seemed to fit the noisy data
reasonably—the best run with a mean square error of 0.76
(Figure 3B) and the worst run with a mean square error of
1.04. Despite the strong noise in the dataset, the inferred net-
work dynamics are close to the noise-free network dynamics
of the target network (result not shown). Four out of the five
inhibitory links of the target network were correctly inferred
in over 95% of the runs. The fifth link was also correctly pre-



Directed pos. Directed neg. Undirected Unsigned
Team | AUC Team | AUC Team | AUC
Team 58 0.72 AGE 0.14 AGE 0.87
AGE 0.43 Team 107 | 0.13 Team 40 0.79
Team 110 | 0.41 Team 58 0.12 Team 80 0.78
Team 40 0.41 Team 110 | 0.11 Team 110 0.48
Team 107 | 0.35 Team 40 0.06
Team 60 0.17 Team 60 0.06
Team 119 | 0.17 Team 119 | 0.06

Table 1 DREAM five-gene-network challenge results for directed excitatory, directed in-
hibitory, and undirected unsigned link predictions.
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Fig. 4 Precision versus recall curves of the predictions for the in silico
benchmark at different levels of noise (standard deviation o = 1 ...2.5).
Accuracy of predictions is measured by the area under the curve (AUC)
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Fig. 5 Precision versus recall curves of our results for the DREAM chal-
lenge five-gene-network in the categories of directed excitatory, directed
inhibitory, and undirected unsigned link predictions

dicted, though with a lower confidence level of 76%. All other
links had confidence levels below 60% (Figure 3C).

When adding more noise to the dataset (standard devia-
tion 1.5), four of the correct links were still identified in over
90% of the runs, but two links were now incorrectly predicted
with the same confidence level as the fifth link of the target
network. With noise of standard deviation above 2.0, the pre-
dictions were not accurate anymore. Precision versus recall
curves (see Methods) for inhibitory link predictions (there are
no excitatory links in this benchmark) are given in Figure 4.

In vivo DREAM challenge results. We launched 50 runs of
our reverse engineering algorithm on the DREAM five-gene-

network dataset. The inferred networks fit the data with a
mean square error between 0.36 (best run, Figure 3E) and
0.50 (worst run). The network topology prediction is given in
Figure 3F. The predictions have significantly lower confidence
levels than those of the in silico benchmark.

Predictions for excitatory and inhibitory connections were
evaluated separately by the DREAM organizers. The corre-
sponding precision versus recall curves are shown in Figure
5. In addition, we derived undirected unsigned predictions
from the directed signed predictions as described in our com-
panion paper.?’ The accuracy of predictions of all partic-
ipating teams was ranked according to the area under the
precision versus recall curve (AUC, see Methods). As shown
in Table 1, the biomimetic method based on AGE has a very
competitive performance overall (the identities of other teams
have not yet been disclosed). The result of highest statis-
tical significance (according to the test mentioned below) of
the challenge was obtained in the undirected unsigned cate-
gory by our method. Here, we focus our discussion on the
directed signed predictions, which are the primary output of
our method. The other categories are discussed in our com-
panion paper.2® Further results are available on the DREAM
website (http://wiki.c2b2.columbia.edu/dream, we are team
55).

Despite the competitiveness of our results, it has to be
stressed that the accuracy of the predictions of all participat-
ing teams (including us) is low. The DREAM organizers have
analyzed results based on a null hypothesis of a randomized
gold standard and found that predictions of inhibitory links
are not statistically significant at a level of 5%. Even though
the results of the other categories are significant according
to this test, the inferred networks are not close to the true
topology.

The fact that several state-of-the-art reverse engineering
methods, applied by different participating teams, have failed
to predict the true topology with reasonable accuracy gives
strong reason to believe that the network is not identifiable
from the provided dataset. Even though the two time series
of the dataset were obtained after application of the same ini-
tial perturbation, the dynamics are very different in the two
cases (data not shown). Details on the experiments have not
yet been disclosed. If the measures were done on single cells,
these differences may be due to intrinsic noise (stochasticity in
gene expression) and/or extrinsic noise (the aggregate effect
of variations in other cellular components).?” In this case, a
stochastic model may be more suitable than the determinis-
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tic model used here. However, if the measures were obtained
from samples containing many cells, the noise in gene regula-
tion is averaged out and the variations in the two time series
may be due to different experimental conditions. In this case,
the deterministic model may be adequate, but the experimen-
tal condition that underlies the variation would have to be
included in the model. This ambiguity underlines the impor-
tance of considering the nature of the experimental data in
the choice of the model and the reverse engineering method.

Conclusions

We have presented a biomimetic approach for the design of
gene network reverse engineering methods. By taking inspi-
ration from the mechanisms that enable the evolution of com-
plex gene regulatory networks in nature, we have designed an
artificial genome (AGE) that permits simultaneous inference
of network structure and numerical parameter values with dif-
ferent types of nonlinear models.

The reverse engineering benchmarks considered here are
underdetermined by the available data. Hence, individual
runs of the evolutionary algorithm converge to different net-
works that fit the data approximately equally well. Yet, we
have shown that by considering the set of inferred networks
obtained from multiple runs, our method successfully predicts
the network topology of the in silico benchmark in the pres-
ence of realistic levels of noise.

The biomimetic method based on AGE was the best per-
former of the in vivo five-gene-network DREAM challenge,
obtaining the result of highest statistical significance and per-
forming competitive in all categories. However, the accuracy
of the predictions submitted by the participants in this chal-
lenge (including us) is not satisfactory. We believe that this
is due to high levels of noise in the dataset. A more in depth
analysis will be possible after the target network and details
of the time series experiments will be disclosed.

Someren et al. have proposed to incorporate prior knowl-
edge by formulating criteria for various features of biolog-
ical gene networks—e.g. sparseness, stability, modularity,
and robustness—thus leading to a multi-criterion optimiza-
tion problem.'® However, the formulation and weighting of
ad hoc criteria is difficult in practice. The biomimetic ap-
proach circumvents this problem by exploiting a more fun-
damental prior, namely the fact that biological gene networks
originate from an evolutionary process. However, it remains to
be shown to what extent mimicking evolutionary constraints
of gene networks actually ‘guides’ the reverse engineering pro-
cess towards biologically plausible solutions. Here, we have
only discussed the resulting bias towards sparse networks.
We are currently studying other possible implications of the
biomimetic algorithm, for example evolution of robustness, us-
ing the Drosophila gap gene network'® as a biological reverse
engineering target.

Methods

Artificial genome.The artificial genome is based on Ana-
log Genetic Encoding (AGE). We give here only a brief de-
scription, for details and justifications of the different design
choices, refer t0.23 24

The AGE genome is constituted by one or several se-
quences of characters (chromosomes) drawn from a genetic
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alphabet. Here, the genetic alphabet contains 26 letters (A-
Z). As shown in Figure 2, the start of a gene is indicated by
the motif GN. A gene is composed of sub-sequences, which are
delimited by the motif TE. Each sub-sequence encodes a fea-
ture of the gene model. In the experiments reported here,
the log-sigmoid gene model was used. For this specific model,
valid genes have the following sub-sequences s, which can be
character strings of arbitrary length

gene = GN Scis TE Strans TE Sm TE s TE sx TE . (1)

The sequences Scis and Sgrans implicitly encode the reg-
ulatory interactions and their strength (see Figure 2). The
weight w;;, which measures how strong gene j regulates
gene i, is decoded by an interaction map that computes an
‘affinity’ w;; between the respective sequences, where w;; =
I(Strans,j , Scis,is). The interaction map is based on the local
alignment score of the two sequences. Figuratively speak-
ing, the closer the match between two subsequences (‘binding
sites’) of Scis and Strans, the stronger the interaction. The
affinity between two sequences may be zero, in which case
there is no regulatory link between the two genes. For details,
refer to.2* The exact implementation of the interaction map
is not critical. What matters is the implicit nature of the en-
coding, i.e., the fact that the N2 possible connections (where
N is the network size) are encoded implicitly in only N cis-
and trans-acting elements.

The sequences s, sp, and sy encode the gene parameters
m, b, and X of the log-sigmoid model (5). The numerical value
is decoded from the character strings using Center of Mass
Encoding (CoME), which is a self-adaptive, variable length
encoding for real-valued parameters.?®

Genetic operators and evolutionary algorithm. Apart from the
biomimetic genotype and the genetic mutation and crossover
operators described below, the evolutionary algorithm is sim-
ilar to a standard generational genetic algorithm.?® Start-
ing from a population of randomly initialized genomes,?* the
evolutionary algorithm is run for 50’000 generations, which
takes approximately 5 hours on a standard desktop PC (In-
tel Pentium 4 processor, 1GB memory). The population size
is 100. We use elitism, i.e., the best individual is protected
from replacement. At each generation, 50 parents are cho-
sen using tournament selection.?? From the 50 parents, 100
new individuals are created and the following genetic opera-
tors are applied probabilistically to randomly chosen parts of
the genome:

e Nucleotide deletion, insertion, and substitution: A char-
acter is removed, inserted, or substituted in the genome
with probability 0.001 per character. Random charac-
ters from the genetic alphabet are used for insertions
and substitutions.

e Chromosome fragment deletion, transposition, and du-
plication: Two points are chosen in a chromosome and
the intervening genome fragment is deleted, transferred
or copied to another point of the genome with probabil-
ity 0.01 per chromosome.

e (Crossover: Chromosomes of parents are recombined
with probability 0.5, provided that a homologous
crossover point is found.??

The choice of the parameters listed above is not critical.

They were chosen heuristically based on a series of test runs
and the experiences reported in.?3 24



Fitness function. The evolved gene networks are evaluated ac-
cording to how well they reproduce the measured data. Let
#* denote the estimated gene expression level of gene i at
time point ¢ of the k’th time series, obtained by simulating
the evolved gene network,® and z!* the corresponding loga-
rithmic expression level of the measured target dataset (i.e.,
the negative q-PCR log-expression ratio). The fitness f of the
evolved network is then given by the sum of squares error

F=S G a2, with 2 =log(@). (2)
i t k

ILe., the square error is taken on a logarithmic scale, consis-
tent with our assumption of log-normal noise (see Results and
Discussion).

Evaluating the accuracy of predictions. We use the scoring
metrics proposed by the organizers of the DREAM challenge?®
to measure the accuracy of a set of predictions. The predic-
tions are ranked according to their confidence level and their
accuracy is defined as the area under the precision versus re-
call (PR) curve. The precision and the recall of the first k
predictions are defined as

precision;, =

TPk /k (3)

recall, = TPy/P, (4)

where TPy, is the number of correct predictions (true posi-
tives) up to prediction k, and P is the total number of true
links (positives) in the target network. PR curves are drawn
by incrementing k from the first until the last element of the
ranked list of predictions. The area under the PR curve is
computed as described in ref. [30].

The log-sigmoid gene network model. The log-sigmoid model
describes the expression level x; of gene i by

dl’i
a = m;-0 Z Wiz + b;
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