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Abstract

In this paper, we present a modified regularized Newton method for minimizing a nonconvex function whose
Hessian matrix may be singular. We show that if the gradient and Hessian of the objective function are Lipschitz
continuous, then the method has a global convergence property. Under the local error bound condition which is
weaker than nonsingularity, the method has cubic convergence.
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1. Introduction

We consider the unconstrained optimization problem

min
x∈Rn

f (x), (1)

where f : Rn → R is twice continuously differentiable, whose gradient ∇ f and Hessian ∇2 f are denoted by g(x)
and H(x) respectively. Throughout this paper, we assume that the solution set of (1) is nonempty and denoted by
X, and in all cases ∥·∥ refers to the 2-norm.

It is well known that f (x) is convex if and only if H(x) is symmetric positive semidefinite for all x ∈ Rn. Moreover,
if f (x) is convex, then x ∈ X if and only if x is a solution of the system of nonlinear equations

g(x) = 0 (2)

Hence, we could get the minimizer of f (x) by solving (2) (C.T.Kelley, 1999, W. Sun, 2006, W. Zhou, 2008). The
Newton method is one of a efficient solution method. At every iteration, it computes the trial step

dN
k = −H−1

k gk, (3)

where gk = g(xk) and Hk = H(xk). As we know, if Hk is Lipschitz continuous and nonsingular at the solution, then
the Newton method has quadratic convergence. However, this method has an obvious disadvantage when the Hk is
singular or near singular.

To overcome the difficulty caused by the possible singularity of Hk, (D. Sun, 1999) proposed a regularized Newton
method, where the trial step is the solution of the linear equations

(Hk + µkI)d = −gk, (4)

where I is the identity matrix. µk is a positive parameter which is updated from iteration to iteration.

Now we need to consider another question, “how to choose the modified regularized parameter µk? ” which will
play important roles not only in theoretical analysis but also in numerical experiments. Yamashita and Fukushima
(D. H. Li, 2004) chose µk = ∥gk∥2 and showed that the regularized Newton method has quadratic convergence
under the local error bound condition which is weaker than nonsingularity. Fan and Yuan (J. Y. Fan, 2005) took
µk = ∥gk∥δ with δ ∈ [1, 2] and showed that the Levenberg-Marqularity method preserves the quadratic convergence
under the same conditions. Numerical results (J. Y. Fan, 2009, Jinyan Fan, 2014) show that the choice of µk = ∥Fk∥
performs more stable and preferable.
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In most past studies (N. Yamashita, 2001, Polyak, 2009, J. Y. Fan, 2009, Jinyan Fan, 2014) for the regularized
Newton method, the convergence properties have been discussed only when f is convex. In this paper, we propose
a modified Newton method for (1) whose objective function f is nonconvex, which is mainly motivated in (Dong-
huiLi, 2004). Dong-Huili, Masao Fukushima, Liqun Qi and Nobuo Yamashita have proposed that regularized
Newton and inexact Newton methods are possible extended to nonconvex minimization problems (Dong-huiLi,
2004). They chose Λk to satisfy

Λk = max(C ∥gk∥ ,−2λ1(Hk)), (5)

where C > 0 is a constant and λ1(Hk) is the minimum eigenvalue of Hk. Based on the better performance of the
modified regularized method with Λk = max(0,−λmin(Hk)), we will consider the choice of

Λk = max(0,−λmin(Hk)), (6)

in this paper.

We extend the regularized Newton method (4) to the unconstrained nonconvex optimization. At the k-th iteration
of the modified regularized Newton method , we set regularized parameter µk as µk = α1Λk + ∥gk∥, where α1 ≥ 1.
From the definition of Λk, the matrix Hk + α1ΛkI is positive semidefinite even if f is nonconvex. Therefore, if
∥gk∥ , 0, then Hk + µkI = Hk + α1ΛkI + ∥gk∥ I ≻ 0, we can use regularized Newton method to solve the problem
of (1).

The main scheme of the modified regularized Newton method for unconstrained nonconvex optimization is given
as follows. At every iteration, it solves the linear equations

(Hk + µkI)d = −gk (7)

to obtain the Newton step dk, where µk = α1Λk + λk ∥gk∥, and then solves the linear equations

(Hk + µkI)d = −g(yk) with yk = xk + dk (8)

to obtain the approximate Newton step d̃k.

The paper is organized as follows. In section 2, we present a new modified regularized Newton algorithm by using
trust region technique, then prove the global convergence. In section 3, we study the convergence rate of the
algorithm and obtain the cubic convergence under the local error bound condition. Finally, we conclude the paper
in section 4.

2. The Algorithm and Global Convergence

First, we give the modified regularized Newton algorithm.
Define the actual reduction of f (x) at the k-th iteration as

Aredk = f (xk) − f (xk + dk + d̃k). (9)

Note that the Newton step dk is the minimizer of the problem:

min
d∈Rn

1
2

dT Hkd + gT
k d +

1
2
µk∥d∥2.

If we let
∆k,1 = ∥dk∥ =

∥∥∥−(Hk + µkI)−1gk

∥∥∥ ,
then dk is also a solution of the trust region problem

min
d∈Rn
φ (d) =

1
2

dT Hkd + gT
k d,

s.t. ∥d∥ ≤ ∆k,1.

By the famous result given by Powell in (M.J.D.Powell, 1975), we know that

φ(0) − φ(dk) ≥ 1
2
∥gk∥min

{
∥dk∥ ,

∥gk∥
∥Hk∥

}
. (10)
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Similar to dk, d̃k is not only the minimizer of the problem

min
d∈Rn

1
2

dT Hkd + g(yk)T d +
1
2
µk∥d∥2,

but also the solution of the following trust region problem

min
d∈Rn
ϕ (d) =

1
2

dT Hkd + g(yk)T d,

s.t. ∥d∥ ≤ ∆k,2,

where
∆k,2 =

∥∥∥∥d̃k

∥∥∥∥ = ∥∥∥−(Hk + µkI)−1g (yk)
∥∥∥ .

Therefore we also have

ϕ(0) − ϕ(d̃k) ≥ 1
2
∥g (yk)∥min

{∥∥∥∥d̃k

∥∥∥∥ , ∥g (yk)∥
∥Hk∥

}
. (11)

Based on the inequalities (10) and (11), it is reasonable for us to define the new predicted reduction as

Pr edk = φ (0) − φ (dk) + ϕ (0) − ϕ
(
d̃k

)
, (12)

which satisfies

Pr edk ≥
1
2
∥gk∥min

{
∥dk∥ ,

∥gk∥
∥Hk∥

}
+

1
2
∥g (yk)∥min

{∥∥∥∥d̃k

∥∥∥∥ , ∥g (yk)∥
∥Hk∥

}
. (13)

The ratio of the actual reduction to the predicted reduction

rk =
Aredk

Pr edk
, (14)

plays a key role in deciding whether to accept the trial step and how to adjust the regularized parameter.

The regularized Newton algorithm with correction for unconstrained nonconvex optimization problems is stated as
follows.

Algorithm 2.1

Step 1. Given x0 ∈ Rn, ε ≥ 0, λ0 > m > 0, 0 < c0 ≤ c1 ≤ c2 < 1, 0 < p1 < 1 < p2, α1 ≥ 1, k := 0.
Step 2. If ∥gk∥ ≤ ε, then stop. Otherwise go to step 3.
Step 3. Compute Λk = max (0,−λmin (Hk)), νk = λk ∥gk∥.

Solve
(Hk + α1ΛkI + νkI) d = −gk. (15)

to obtain dk.

Set
yk = xk + dk.

Solve
(Hk + α1ΛkI + νkI) d = −g (yk) , (16)

to obtain d̃k .

Set
sk = dk + d̃k.

Step 4. Compute rk =
Aredk
Pr edk

.

Set

xk+1 =

{
xk + sk, i f rk ≥ c0,
xk, otherwise. (17)
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Step 5. Update λk+1 as

λk+1 =


p2λk, i f rk < c1,
λk, i f rk ∈ [c1, c2] ,
max {p1λk,m} , i f rk > c2.

(18)

Set k := k + 1 and go step 2.

Before discussing the global convergence of the algorithm above, we make the following assumption.

Assumption 2.1 g(x) and H(x) are both Lipschitz continuous, that is, there exists a constant L1 > 0, L2 > 0 such
that

∥g (y) − g (x)∥ ≤ L1 ∥y − x∥ , ∀x, y ∈ Rn (19)

and
∥H (y) − H (x)∥ ≤ L2 ∥y − x∥ , ∀x, y ∈ Rn. (20)

It follows from (20) that
∥g (y) − g (x) − H (x) (y − x)∥ ≤ L2∥y − x∥2, ∀x, y ∈ Rn. (21)

The following lemma given below shows the relationship between the positive semidefinite matrix and symmetric
positive semidefinite matrix.

Lemma 2.1 A real-valued matrix is positive semidefinite if and only if
(
A + AT

)
/2 is positive semidefinite.

Proof. See (W. Sun, 2006). �

Next, we give the bounds of a positive definite matrix and its inverse.

Lemma 2.2 Suppose A is symmetric positive semidefinite. Then,

∥A + φI∥ ≥ φ

and ∥∥∥(A + φI)−1
∥∥∥ ≤ φ−1

hold for any φ > 0.

Proof. See (JinyanFan, 2014). �

Theorem 2.1 Under the conditions of Assumption 2.1, if f is bounded below, then Algorithm 2.1 terminates in
finite iterations or satisfies

lim
k→∞

inf ∥gk∥ = 0. (22)

Proof. The proof is similar to (Weijun Zhou, 2013). We prove by contradiction. If the theorem is not true, then
there exists a positive τ and an integer k̃ such that

∥gk∥ ≥ τ, ∀k ≥ k̃. (23)

Without loss of generality, we can suppose k̃ = 1. Set T = {k|xk , xk+1}. Then

{1, 2, · · ·} = T ∪ {k|xk = xk+1} .

Now we will analysis in two cases whether T is finite or not.

Case (1): T is finite. Then there exists an integer k1 such that

xk1 = xk1+1 = xk1+2 = · · · .

By (17), we have
rk < c0, ∀k ≥ k1.
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Therefore by (18) and (23), we deduce
λk → ∞, νk → ∞. (24)

Since xk+1 = xk, ∀k ≥ k1, we get from (15) and (24) that

∥dk∥ =
∥∥∥−(Hk + α1ΛkI + λk ∥gk∥ I)−1gk

∥∥∥→ 0. (25)

From (16), we obtain∥∥∥∥d̃k

∥∥∥∥ = ∥∥∥−(Hk + α1ΛkI + λk ∥gk∥ I)−1g (yk)
∥∥∥

≤
∥∥∥(Hk + α1ΛkI + λk ∥gk∥ I)−1 (g (yk) − gk − Hkdk)

∥∥∥
+

∥∥∥(Hk + α1ΛkI + λk ∥gk∥ I)−1gk

∥∥∥ + ∥∥∥(Hk + α1ΛkI + λk ∥gk∥ I)−1Hkdk

∥∥∥
≤ L2λk

−1 1
∥gk∥
∥dk∥2 + 2 ∥dk∥

≤ γ1 ∥dk∥ ,

(26)

where γ1 is a positive constant.

It follows from (9) and (12) that

|Aredk − Pr edk | =
∣∣∣∣ f (xk) − f (xk + dk + d̃k) − (ϕk,1(0) − ϕk,1(dk) + ϕk,2(0) − ϕk,2(d̃k))

∣∣∣∣
≤

∣∣∣∣∣ f (yk + d̃k) − f (yk) − 1
2

d̃k
T

Hkd̃k − g(yk)T d̃k

∣∣∣∣∣
+

∣∣∣∣∣ f (yk) − f (xk) − 1
2

dk
T Hkdk − gk

T dk

∣∣∣∣∣
≤ o

(
∥dk∥2

)
+ o

(∥∥∥∥d̃k

∥∥∥∥2)
.

(27)

Moreover, from (13), (23), (19) and (25), we have

Pr edk ≥
1
2
τmin

{
∥dk∥ ,

τ

L1

}
≥ 1

2
τ ∥dk∥ , (28)

for sufficiently large k.

Duo to (27) and (28), we get

|rk − 1| =
∣∣∣∣∣Aredk − Pr edk

Pr edk

∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣ f (xk) − f (xk + dk + d̃k) − (ϕk,1(0) − ϕk,1(dk) + ϕk,2(0) − ϕk,2(d̃k))
1
2τmin

{
∥dk∥ , τL1

}
∣∣∣∣∣∣∣∣

≤
o
(
∥dk∥2

)
+ o

(∥∥∥∥d̃k

∥∥∥∥2)
∥dk∥

→ 0,

(29)

which implies that rk → 1. Hence, there exists positive constant γ2 such that λk ≤ γ2, holds for all large k, which
contradicts to (24).

Case (2): T is infinite. Then we have from (13) and (23) that

∞ > f (x1) − lim
k→∞

inf f (xk) ≥
∞∑

i=1

( f (xi) − f (xi+1))

=
∑
k∈T

( f (xk) − f (xk+1)) ≥
∑
k∈T

c0 Pr edk

≥
∑
k∈T

c0

(
1
2
∥gk∥min

{
∥dk∥ ,

∥gk∥
∥Hk∥

}
+

1
2
∥g (yk)∥min

{∥∥∥∥d̃k

∥∥∥∥ , ∥g (yk)∥
∥Hk∥

})
≥

∑
k∈T

c0
τ

2
min

{
∥dk∥ ,

τ

L1

}
,

(30)

11



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 7, No. 2; 2015

which implies that
lim

k→∞,k∈T
dk = 0. (31)

The above equality together with the updating rule of (18) means

νk → ∞. (32)

Similar to (26), it follows from (31) and (32) that∥∥∥∥d̃k

∥∥∥∥ ≤ γ3 ∥dk∥ , ∀k ∈ T

for some positive constant γ3. Then we have

∥sk∥ =
∥∥∥∥dk + d̃k

∥∥∥∥ ≤ (1 + γ3) ∥dk∥ , ∀k ∈ T.

This equality together with (30) yields ∑
k∈T
∥sk∥ < ∞,

which implies that
xk → x∗. (33)

It follows from (15), (33), (32) and (26) that

dk → 0, d̃k → 0. (34)

Since (Hk + α1ΛkI + λk ∥gk∥ I) d = −gk from (15), we have from (23), (19) and (34) that

1 ≤ ∥Hk∥
∥gk∥

∥dk∥ +
α1 ∥Λk∥
∥gk∥

∥dk∥ + λk ∥gk∥ ≤
L1

τ
∥dk∥ +

α1 ∥Λk∥
τ

∥dk∥ + λk ∥dk∥ ,

which means
λk → ∞. (35)

By the same analysis as (29) we know that
rk → 1. (36)

Hence, there exists a positive constant γ4 > m such that λk ≤ γ4 holds for all sufficiently large k, which gives a
contradiction to (35). The proof is completed. �

3. Local Convergence of Algorithm 2.1

In this section, we show that the sequence generated by Algorithm 2.1 converges to some solution of (1) cubically.
To study the local convergence properties of Algorithm 2.1, we make the following assumptions.

Assumption 3.1

(a) The sequence {xk} generated by Algorithm 2.1 converges to x∗ ∈ X and lies in some neighbourhood of x∗.

(b) ∥g(x)∥ provides a local error bound on some N (x∗, b1) for (2), that is, there exist constant β1 > 0 and 0 < b1 < 1
such that

∥g(x)∥ ≥ β1dist (x, X) ∀x ∈ N (x∗, b1) = {x| ∥x − x∗∥ ≤ b1} . (37)

(c) The Hessian H(x) is Lipschitz continuous on N (x∗, b1) , i.e., there exists a positive constant L̃1 such that

∥H(y) − H(x)∥ ≤ L̃1 ∥y − x∥ ∀x, y ∈ N(x∗, b1). (38)

Note that, if H(x) is nonsingular at a solution, then ∥g(x)∥ provides a local error bound on its neighbourhood.
However, the converse is not necessarily true, for examples please refer to (N.Yamashita, 2001, Dong-huiLi, 2004).
Hence, the local error bound condition is weaker than nonsingularity.

By Assumption 3.1 (c), we know

∥g(y) − g(x) − H(x)(y − x)∥ ≤ L̃1∥y − x∥2 ∀x, y ∈ N(x∗, b1) (39)
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and there exists a constant L̃2 > 0, such that

∥g(y) − g(x)∥ ≤ L̃2 ∥y − x∥ ∀x, y ∈ N(x∗, b1). (40)

In the following, we denote xk the vector in the solution set X that satisfies

∥xk − xk∥ = dist (xk, X) .

The following lemma gives the relationship between the trial step sk and the distance from xk to the solution set.

Lemma 3.1 Under the condition of Assumption 3.1, for all sufficiently large k, we have

∥sk∥ ≤ O (dist (xk, X)) (41)

Proof. Since xk → x∗ ∈ X, we get

∥xk − xk∥ = dist (xk, X) ≤ ∥xk − x∗∥ → 0.

Due to (37), we have
vk = λk ∥gk∥ ≥ mβ1dist(xk, X) = mβ1 ∥xk − xk∥ .

From (15), we get

∥dk∥ =
∥∥∥(Hk + α1ΛkI + vkI)−1gk

∥∥∥
≤

∥∥∥(Hk + α1ΛkI + vkI)−1 (g (xk) − gk − Hk (xk − xk))
∥∥∥

+
∥∥∥(Hk + α1ΛkI + vkI)−1Hk (xk − xk)

∥∥∥
≤ L̃1v−1

k ∥xk − xk∥2 + ∥xk − xk∥
≤ O (∥xk − xk∥) .

(42)

Since yk = xk + dk, then yk → x∗, which means yk ∈ N (x∗, b1) for sufficiently large k.
From (16), we get ∥∥∥∥d̃k

∥∥∥∥ = ∥∥∥(Hk + α1ΛkI + vkI)−1g (yk)
∥∥∥

≤
∥∥∥(Hk + α1ΛkI + vkI)−1 (g (yk) − gk − Hkdk)

∥∥∥
+

∥∥∥(Hk + α1ΛkI + vkI)−1gk

∥∥∥ + ∥∥∥(Hk + α1ΛkI + vkI)−1Hkdk

∥∥∥
≤ L̃1v−1

k ∥dk∥2 + 2 ∥dk∥
≤ O (∥xk − xk∥) .

(43)

Combining (42) and (43), we obtain

∥sk∥ =
∥∥∥∥dk + d̃k

∥∥∥∥ ≤ ∥dk∥ +
∥∥∥∥d̃k

∥∥∥∥ ≤ O (∥xk − xk∥) . (44)

�

3.1 The Boundedness of λk and Λk

In the following, we will show λk and Λk are bounded above, which will play a key role in the next subsection.

Lemma 3.2 Under the condition of Assumption 3.1, then there exists a positive constant T > m such that

λk ≤ T

holds for all sufficiently large k.

Proof. From (10), (37) and (40), we have

φ(0) − φ(dk) ≥ 1
2
∥gk∥min

{
∥dk∥ ,

∥gk∥
∥Hk∥

}
≥ 1

2
β1 ∥xk − xk∥min

{
∥dk∥ ,

β1 ∥xk − xk∥
L̃2

}
≥ β2 ∥xk − xk∥min {∥dk∥ , ∥xk − xk∥}

(45)

13
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for some constant β2.

Then from (13), (27), (42), (43) and (45), we get

|rk − 1| =
∣∣∣∣∣Aredk − Pr edk

Pr edk

∣∣∣∣∣
=

o
(
∥dk∥2

)
+ o

(∥∥∥∥d̃k

∥∥∥∥2)
∥xk − xk∥min {∥dk∥ , ∥xk − xk∥}

→ 0,

which implies that rk → 1. Therefore there exists a constant T > m such that λk ≤ T holds for all sufficiently large
k. The proof is completed. �

Lemma 3.3 Suppose Assumption 3.1 hold. If xk ∈ N(x∗, b1/2), then

Λk ≤ L̃1dist(xk, X).

Proof. Using a method similar to the proof of (Kenji Ueda, 2010), we get the expected result. �

3.2 Cubic Convergence of Algorithm 2.1

Lemma 3.4 Suppose Assumption 3.1 hold, then we have

dist(xk+1, X) ≤ O(dist(xk, X)2). (46)

Proof. From (37) and (40), we have

mβ1 ∥xk − xk∥ ≤ vk = λk ∥gk∥ = λk ∥gk − g (xk)∥ ≤ T L̃2 ∥xk − xk∥ . (47)

Which shows that ∥xk − xk∥ is equivalent to vk.
From the local error bound condition, (39), (16) and (38), we have

β1 ∥xk+1 − xk+1∥ ≤ ∥g (xk+1)∥ =
∥∥∥∥g

(
yk + d̃k

)∥∥∥∥
≤

∥∥∥∥g
(
yk + d̃k

)
− g (yk) − H (yk) d̃k

∥∥∥∥ + ∥∥∥∥g (yk) + H (yk) d̃k

∥∥∥∥
≤ L̃1

∥∥∥∥d̃k

∥∥∥∥2
+ L̃1 ∥dk∥

∥∥∥∥d̃k

∥∥∥∥ + (α1Λk + vk)
∥∥∥∥d̃k

∥∥∥∥
≤ O

(
∥xk − xk∥2

)
.

(48)

�

Note that since
∥xk − xk∥ ≤ ∥xk+1 − xk∥ ≤ ∥xk+1 − xk+1∥ + ∥sk∥

we may deduce from (48) that

∥xk − xk∥ ≤ 2 ∥sk∥ (49)

for all sufficiently large k. Combining this inequality with (44) and (48), we obtain that

∥sk+1∥ = O
(
∥sk∥2

)
, (50)

which indicates that {xk} converges quadratically to x∗,namely,

∥xk+1 − x∗∥ = O
(
∥xk − x∗∥2

)
. (51)

To obtain faster convergence of the modified regularized Newton method, we need to estimate
∥∥∥∥d̃k

∥∥∥∥ more accurately.
We will use the SVD technique to derive the local convergence rate of Algorithm 2.1. Since H(x∗) is symmetric,
there is an orthogonal matrix (V∗k,1,V

∗
k,2) such that

14
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H(x∗) =
(
V∗k,1,V

∗
k,2

) ( Σ∗k,1 0
0 0

) (
V∗Tk,1
V∗Tk,2

)
= V∗k,1Σ

∗
k,1V∗Tk,1 ,

where Σ∗k,1 is a diagonal matrix. Moreover, we can suppose that H(x) has the following decomposition

H(x) =
(
Vk,1, Vk,2

) ( Σk,1 0
0 Σk,2

) (
Vk,1

T

Vk,2
T

)
= Vk,1Σk,1Vk,1

T + Vk,2Σk,2Vk,2
T ,

where rank
(
Σk,1

)
= rank

(
Σ∗k,1

)
and Σk,2 converges to zero as x→ x∗. In the following, we neglect the subscription

k in Σk,i and Vk,i (i = 1, 2), and write H(xk) as

H (xk) = V1Σ1V1
T + V2Σ2V2

T .

Lemma 3.5 (W. Sun, 2006). If the sequence {xk} converges superlinearly to x∗, then

lim
k→∞

∥xk+1 − xk∥
∥xk − x∗∥ = 1.

Proof. See (W. Sun, 2006). �

Therefore we have from Lemma3.5, (50), (51) and (44) that there exists two positive constants β3 and β4 such that

∥xk − x∗∥ ≤ β3 ∥sk∥ ≤ β4 ∥xk − xk∥ ≤ β4 ∥xk − x∗∥ , (52)

which means that ∥xk − x∗∥ is equivalent to ∥xk − xk∥ .
By the theory of matrix perturbation (G.W.Stewart, 1990) and (38), we have∥∥∥Σ1 − Σ∗1

∥∥∥ + ∥Σ2∥ ≤ ∥Hk − H (x∗)∥ ≤ L̃1 ∥xk − x∗∥ .

Combining this inequality with (52), we get∥∥∥Σ1 − Σ∗1
∥∥∥ ≤ L̃1 ∥xk − xk∥ , ∥Σ2∥ ≤ L̃1 ∥xk − xk∥ .

Lemma 3.6 Suppose Assumption 3.1 hold, then we have

∥g (yk)∥ ≤ O
(
∥xk − xk∥2

)
,∥∥∥U2UT

2 g (yk)
∥∥∥ ≤ O

(
∥xk − xk∥3

)
.

Proof. From lemma 3.3, (15), (42) and (47), we have

∥gk + Hkdk∥ = (α1Λk + vk) ∥dk∥ ≤ O
(
∥xk − xk∥2

)
. (53)

Similarly, we know ∥∥∥∥g (yk) + Hkd̃k

∥∥∥∥ = (α1Λk + vk)
∥∥∥∥d̃k

∥∥∥∥ ≤ O
(
∥xk − xk∥2

)
. (54)

Then we get from (39), (42) and (53) that

∥g (yk)∥ = ∥g (xk + dk) − gk − Hkdk∥ + ∥gk + Hkdk∥
≤ O

(
∥xk − xk∥2

)
.

(55)

From the local error bound condition and (55), we have

∥yk − yk∥ ≤ β−1
1 ∥g (yk)∥ ≤ O

(
∥xk − xk∥2

)
.
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Set H̃k = U1Σ1UT
1 and d̃k = −H̃k

+
g (yk), then d̃k is the least square solution of min

∥∥∥g (yk) + H̃kd
∥∥∥ . Therefore we

have

∥∥∥U2UT
2 g (yk)

∥∥∥ = ∥∥∥∥g (yk) + H̃kd̃k

∥∥∥∥ ≤ ∥∥∥g (yk) + H̃k (yk − yk)
∥∥∥

≤ ∥g (yk) + H (yk) (yk − yk)∥ +
∥∥∥∥(H̃k − H (yk)

)
(yk − yk)

∥∥∥∥
≤ ∥g (yk) + H (yk) (yk − yk)∥ + ∥(H (yk) − Hk) (ỹk − yk)∥

+
∥∥∥∥(Hk − H̃k

)
(yk − yk)

∥∥∥∥
≤ L̃1∥yk − yk∥2 + L̃1 ∥dk∥ ∥yk − yk∥ + ∥Σ2∥ ∥yk − yk∥
≤ O

(
∥xk − xk∥3

)
.

(56)

�

Lemma 3.7 Suppose Assumption 3.1 hold, then we have∥∥∥∥d̃k

∥∥∥∥ ≤ O
(
∥xk − xk∥2

)
. (57)

Proof. From (16), we have

d̃k = −(Hk + α1ΛkI + vkI)−1g (yk)

= −U1(Σ1 + µkI)−1UT
1 g (yk) − U2(Σ2 + µkI)−1UT

2 g (yk) .
(58)

Since xk → x∗, then Σ1 → Σ∗1 and hence Σ−1
1 is uniformly bounded, that is, there exists a constant β5 such that

∥∥∥Σ−1
1

∥∥∥ ≤ β5. (59)

Then from (58), (59) and lemma 3.6, we obtain∥∥∥∥d̃k

∥∥∥∥ ≤ ∥∥∥Σ−1
1

∥∥∥ ∥∥∥U1UT
1 g (yk)

∥∥∥ + µ−1
k

∥∥∥U2UT
2 g (yk)

∥∥∥
≤ β5 ∥g (yk)∥ + µ−1

k

∥∥∥U2UT
2 g (yk)

∥∥∥
≤ O

(
∥xk − xk∥2

)
.

(60)

�

Theorem 3.1 Suppose Assumption 3.1 hold, the sequence generated by Algorithm 2.1 converges to some solution
of (1) cubically.

Proof. It follows from (37), we get

c1 ∥xk+1 − xk+1∥ ≤ ∥g (xk+1)∥ =
∥∥∥∥g

(
yk + d̃k

)∥∥∥∥
≤

∥∥∥∥g
(
yk + d̃k

)
− g (yk) − H (yk) d̃k

∥∥∥∥ + ∥∥∥∥g (yk) + H (yk) d̃k

∥∥∥∥
≤ L̃1

∥∥∥∥d̃k

∥∥∥∥2
+

∥∥∥∥g (yk) + Hkd̃k

∥∥∥∥ + ∥∥∥∥(H (yk) − Hk) d̃k

∥∥∥∥
≤ L̃1

∥∥∥∥d̃k

∥∥∥∥2
+ L̃1 ∥dk∥

∥∥∥∥d̃k

∥∥∥∥ + (α1Λk + vk)
∥∥∥∥d̃k

∥∥∥∥
≤ O

(
∥xk − xk∥3

)
,

(61)

From Lemma 3.1, (49) and (61), we finally have

∥sk+1∥ = O
(
∥sk∥3

)
, (62)

which indicates that {xk} converges to x∗ cubically, i.e., ∥xk+1 − x∗∥ = O
(
∥xk − x∗∥3

)
. The proof is completed. �
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4. Concluding Remarks

In this paper, we propose a modified regularized Newton method with correction for unconstrained nonconvex
optimization. Furthermore, we have proved that the modified regularized Newton method has a global convergence
and a local cubic convergence under some appropriate conditions.
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