
Abstraction as a Practical Debugging Tool
Sandip Ray

University of Texas at Austin
sandip@cs.utexas.edu

http://www.cs.utexas.edu/∼sandip

Abstract—We present a procedure for automatically construct-
ing an abstract state model of a hardware design using the
definition of the state transition function for the design and a
description of the set of observations to be preserved in the
abstraction. The procedure iteratively constructs the abstract
model by refining a mapping from the states of the original
design to the states of the abstraction. The resulting abstraction
is guaranteed to be a conservative approximation of the design.
We discuss our implementation of the procedure and different
design trade-offs involved in making it effective.

I. INTRODUCTION

With the increasing size and complexity of hardware de-
signs, verification of practical hardware systems is becoming
increasingly challenging. Formal analysis techniques based on
state exploration are limited by the well-known state explosion
problem. In many cases, the size of a hardware design can
even limit the effectiveness of simulation since a significant
number of cycles may be required to reach a given boundary
condition, even under user-directed input biasing. A common
method of attacking this state explosion is to simply reduce the
number of state elements in the design of interest by redefining
the design with smaller registers, for example by reducing
a 64-bit datapath to a 2-bit datapath. The resulting smaller
model is then analyzed (through formal or simulation-based
techniques) with the goal to discover errors in the original
design. However, a key problem with this approach is that it
is often difficult to correlate the result of the analysis of the
simpler model with the original design.

One solution to this problem is to ensure, through a re-
finement mapping [1], that the design can be abstracted to
small-state model that provides a conservative approximation.
There has been work on formally verifying such correlation
between a design and its abstraction, often with a theorem
prover. However, in practice it can be a cumbersome process
to come up with a sufficient abstraction and subsequent
proof of correctness. Additionally, both the abstraction and
proof may require substantial edition in order to maintain the
correspondence with an evolving hardware design.

We present a procedure to ameliorate the above issue
by automatically constructing abstract models of hardware
designs modeled at the RTL level. Given an input design D
and a desired observation O on D, the procedure generates an
abstraction A of D that is guaranteed to be a conservative
approximation of D with respect to O. In addition, the
procedure is parameterized by the amount of approximation
desired: by varying this parameter, it is possible to generate

a range of models, each of which is guaranteed to be an
abstraction of D but which vary on the degree of abstraction
and the number of possible states.

Abstract interpretation has been a central component in
formal verification research since its introduction by Cousot
and Cousot in 1977 [2]. It forms the basis of many scal-
able model checking techniques, for instance counterexample-
guided refinements, predicate abstraction, etc. Indeed, our
algorithm appears on the surface to be close to well-known
techniques for generating predicate abstraction, for example
those proposed by Namjoshi and Kurshan [3]. A key difference
between these approaches and our procedure is our empha-
sis to support scalability, both in formal verification and in
reduction of simulation cycles. The orthogonal requirements
of simulation and formal state exploration introduce design
trade-offs in the algorithm for constructing the abstraction.
For instance, in our context, it is often not desirable that A be
a complete abstraction of D with respect to O. One reason is
that a complete abstraction often retain a prohibitive amount
of state information from the original design. Furthermore,
determinism in abstraction generation is also undesirable since
it is critical to generate a range of abstractions, each defining a
different search space with varying degrees of state reduction
and approximation to the original design. Our procedure
is carefully designed with consideration for the trade-offs
necessary for its practical utility.

The remainder of the paper is organized as follows. In
Section II we introduce preliminary notations and definitions.
In Section III, we first introduce a basic abstraction generation
algorithm and then successively refine it into one that is usable
in practice. In Section IV we discuss how to instantiate the
algorithm with RTL operations. We conclude in Section V.

II. PRELIMINARIES

IN denotes the set of natural numbers {0, 1, . . .}, and
{i, . . . , j} denotes the set of natural numbers between i and
j (inclusive). IB denotes the set of Booleans {true, false}.
For set X , |X| denotes the cardinality of X . We use
f(x1, x2, . . .) , e to declare a function named f , with
parameters x1, x2, . . ., as the expression e with free variables
x1, x2, The name λ denotes an anonymous function. For
functions f and g, we use f.g to denote their composition: that
is, (f.g)(x) , f(g(x)). For a surjective function f : D → R,
the function f̂ : R → D satisfies for all r ∈ R, f(f̂(r)) = r.
We define a preorder v on functions by (f v g) , (∀x, y :
(g(x) = g(y)) ⇒ (f(x) = f(y))). Informally, f v g implies

that g preserves more information from its domain than f . We
also define the strict order (f @ g) , (f v g) ∧ (g 6v f).

For any set X , X∗ is the set of finite sequences of
elements of X . We use 〈x1, x2, x3, . . . , xn〉 to denote the
sequence x of length |x| = n. The empty sequence is
denoted by 〈〉; for nonempty sequence x, x+ denotes the
sequence 〈x2, x3, . . . , xn〉; for sequences xand y, x||y denotes
the sequence 〈x1, x2, . . . , x|x, y1, y2, . . . , y|y|〉.

Sequential hardware designs semantically reduce to state
models which can be represented by a tuple 〈S, I, P 〉, where
S is the set of states, I is the set of inputs, and P : S×I → S
is the next-state function that takes the current state and current
input and returns the next state.

Invariant checking may now be formulated as follows.
Given a state modem M ,〉S, I, P 〉 and a surjective predicate
good : S → IB, show that good is invariantly true for all states
reachable from some initial state s of S. This is denoted by
M, s |= good, defined as follows.

run(s, k, P) ,
{
s if k = 〈〉
run(P(s, k1), k+, P) otherwise

(s M t) , (∃k ∈ I∗ : t = run(s, k, P))

(M, s |= good) , (∀t ∈ S : (s M t)⇒ good(t))

We leave the definition of good implicitly assumed for
model M for the remainder of the paper. The pair of functions
Φ , 〈ΦS ,ΦI〉 is termed an abstraction witness if there
exists a model MΦ , 〈S′, I ′, P ′〉, such that ΦS : S → S′,
ΦI : S × I → I ′, good v ΦS and ∀s, i : ΦS(P (s, i)) =
P ′(ΦS(s),ΦI(s, i)). A model M ′ is an abstraction of M
if it is MΦ for some abstraction witness Φ. If the input
mapping ΦI is independent of the first state parameter, (i.e.,
∀s, t, i : ΦI(s, i) = ΦI(t, i)), then Φ is termed a complete
abstraction. The key property about the abstraction witness Φ
is that invariant check can be transferred.

Theorem 1: For an abstraction witness Φ, if MΦ,ΦS(s) |=
(good.Φ̂(s)) then M, s |= good.

Theorem 2: For an abstraction witness Φ, MΦ,ΦS(s) |=
(good.Φ̂(s)) if and only if M, s |= good.

Before discussing how to generate effective abstractions,
we first point out two trivial ones. First, M is a complete
abstraction of itself through the abstraction witness Φ(s) , s
and ΦI(s, i) , i. Second, the model 〈IB, IB, P ′(s, i) , i〉
is an abstraction through the witness ΦS(s) , good(s) and
ΦI(s, i) , good(P (s, i)). These two abstractions form the
opposite ends of the a spectrum of abstractions, where on
the one end we have M (with low degree of approximation
and low degree of state reduction) and on the other end
we have M ′ with very high degree of approximation and
very high degree of state reduction. The goal of abstraction
generation is to find abstract models between these two
extremes, with an effective balance of approximation and
state reduction. As the definition of M ′ hints, given any

f : S → S′ with good v f , it is possible to build an
abstraction MΦ , 〈S′, S′, P ′(s, i) , i〉, with ΦS(s) , f(s)
and ΦI(s, i) , f(P (s, i)). In the generation of abstractions,
we focus on the iterative generation of an abstraction witness
Φ which achieves the desired level of state reduction while
introducing the least amount of approximation. Once the Φ
is determined, we modify the definition of P to update the
necessary components of state that affect Φ.

III. GENERIC ABSTRACTION GENERATION ALGORITHM

Our procedure is iterative. In each iteration, we take an ab-
straction mapping and “propagate” the necessary observations
along the logic of the underlying design from the current state
to the previous state. We demonstrate the process below using
a simple pipeline example. Assume that the pipeline has three
integer-valued latches s0, s1, and s2, that linearly transmits the
value of its input i. Schematically, we write the state transition
function of the pipeline as P (s, i) , 〈i, s0, s1, s2〉. Suppose
the observation of interest is the property good(s) , (s2 > 0).
The iterative process then begins with the abstraction mapping
the state s to the singleton set of abstraction predicates
f0(s) , {good(s)}. In each iteration we refine the abstraction
by propagating the requirements on a state to the previous state
in the transition. In the example, this produces the sequence
following sequence of refinements.

f0(s) , {(s2 > 0)}
f1(s) , {(s2 > 0), (s1 > 0)}
f2(s) , {(s2 > 0), (s1 > 0), (s0 > 0)}

The resulting model has state elements corresponding to the
members in f2 and the input mapped to (i > 0).

Notice that the state mapping is refined at each step in
the sequence, i.e., for all j, fj v fj+1. In the final step
the mapping converges and we set our abstraction witness
Φ to be ΦS(s) , f2(s) and ΦI(s, i) , (i > 0). Note that
in this case Φ is a complete abstraction. However, it is not
desirable in general to construct a complete abstraction, since
it might necessitate preserving too much state information
from the original system. In some cases, additional inputs
or nondeterminism is useful to hide state information that is
irrelevant to the invariant. Furthermore, the determinism in the
generation of Φ in this example is also sometimes undesirable
in practice, since we would like to generate a range of possible
abstractions, each defining a different search space for failures
in the invariant check with varying degrees of state reduction
and approximation to the original model.

In order to define the abstraction propagation process, we
need some functions with specified properties that serve as pa-
rameters for the procedure we outline. We assume that the state
transition function P is defined by a composition of operators
taken from a set of primitive operations Ops. The restriction
to unary operations here is merely for presentation reasons,
but does not lose generality. Different design languages define
different sets of primitive operations. In case of RTL designs
of sequential hardware, the primitive operations include bit-
string manipulation, and arithmetic and logical combinators.

Given the set Ops, the function P is syntactically a finite
sequence of operations in Ops∗. The semantics P of a
sequence of P will be defined recursively as follows.

P ,

{
(λ(x) , x) if P = 〈〉
P1.P+ otherwise

We assume the definition of a set of surjective abstraction
functions Abs which define the supported reduction of state
information. We also assume the associative and commutative
operators meet (u) and join (t) on Abs, where for all α, β,
(α u β) v α v (α t β). Propagation of abstraction is then
formalized by a function prop : Ops × Abs × IN → Abs,
which transfers an existing abstraction from the output of a
primitive operation to its input. The extra IN parameter for
prop is provided to allow the selection from among a set of
possible propagations. The extension of prop to a sequence
of operations is given by the function SP : Ops∗ × Abs →
Abs as follows, where random() is a random natural number
generator.

SP(P, α) ,
{
α if P = 〈〉
SP(P+,prop(P,α, random())) otherwise

What should be the requirement on SP? We formalize the
requirement by the notion of transfer as follows. A function
G(f, α, n) is a transfer if for all f , α ∈ Abs, and n, we have
(α.f) v G(f, α, n). Informally, a function is a transfer if it
returns an abstraction function at the input of f that preserves
the information in α at the output of f .

Theorem 3: If prop(op, α, n) is a transfer then SP(P, α, n)
is a transfer.

The theorem ensures that the abstraction returned by SP for
the input of P preserves the goal abstraction at the output of
P . We assume in the sequel that prop is a transfer. In practice
this requirement may be too strong and we will discuss the
points at which we break this requirement.

A. Extending with Context

The definition of SP above did not take into account the cur-
rent context at the inputs of an operation in determining how
to propagate the abstraction. For instance, assume that Ops
contains the equality operation “=”,1 and in some iteration,
SP encounters the operation (x = y) such that the current goal
at the output of the operation is the identity mapping. Given
no additional information other than that prop is a transfer,
we must return an identity mapping for x and y. But if we
know that y can only take the value 42 then we can propagate
the goal to the mapping that preserves only te value 42 but
coerces other values of x to 0. Thus, having information of
current abstractions and possible values of the inputs of an
operator can be useful in computing effective abstractions.
In our implementation of SP, we compute these contexts

1Technically, since “=” is binary it cannot be in Ops. We turn it into a
unary operation by providing it with a tuple and returning the equality of the
first and second items of the tuple.

using an abstraction “evaluator” of operators, which iteratively
computes the abstraction at the output of an operation given
an abstraction of its inputs. We extend the definitions of prop
and SP with an additional parameter for the current mapping
or context, leading to the following modified definition of SP.

SP(P, α, c) ,

α if P = 〈〉
SP(P+, prop(P+, g ,BC(g, P+, c)) otherwise

where
g
.
= prop(P1, α, random(),FC(P+, c))

Here the function FC (forward context) computes the evalu-
ation of the current context c, and the function BC (backward
context) refines the current state context based on the eventual
propagation of goal g through P1. In the implementation,
BC only modifies the current state context when a goal is
propagated to a variable or signal whose value is shared among
different operations; thus, the foal propagated back from the
operation augments the context for propagating a different goal
for a different operation. Note that even though the extension
of SP with context is key to the effectiveness of abstraction
generation, it is essentially heuristic.

B. Iterative Refinement

Given SP, we now define an iterative procedure AbsGen
to compute abstractions by iteratively refining an abstraction
mapping. For pedagogical reasons, we first define a simpler
function AbsGenComplete. To do so, we assume that a
function α which maps a state-input pair 〈s, i〉 can be de-
composed into the definition α(〈s, i〉) , 〈αS(s), αI(i)〉. Then
AbsGenComplete is given by the following definition.

indep(α) , (∀s, t, i : α(s, i) = α(t, i))

AGC(α) ,
{
〈α′, βI〉 if (α′ v α) ∧ indep(βI)
AGC(α′) otherwise

where
β
.= SP(P, α, α)

and
α′

.= βs t α

AbsGenComplete() , AGC(good)

If AbsGenComplete terminates, then it returns a complete
abstraction of the original model. We can ensure termination
by guaranteeing that every increasing chain α1 @ α2,v . . . is
finite. But as we mentioned before, completeness might not be
desirable in many cases. So we instead consider an alternative
function AbsGen that heuristically generates an abstraction
with a desired amount of state reduction and approximation. It
takes an additional natural number d which gives the minimum
number of SP iterations required to build the abstraction,
a natural number r which is the minimum factor of state
reduction desired for any abstraction, and v ∈ Abs which is an

“upper bound” abstraction used to exclude certain state infor-
mation from the generated abstraction. The function AbsGen
returns an abstraction witness and is defined as follows.

AG(α, d, r, v) ,

〈α′, βI〉 if (α′ v α) ∨ ((RF(α′) ≥ r) ∧ d ≤ 0)
AG(α′) otherwise

where
β
.
= SP(P, α, α)

and
α′ .= (βs u v) t α

The function RF (reduction factor) takes an abstraction
function α and (heuristically) determines the approximate
number of bits needed to encode the domain of α, divided by
the number of bits needed to encode the range of α; this ratio
defines the amount of state reduction achieved. The parameter
d is used to froce a certain minimum number of SP iterations
and serves the purpose of placing a lower-bound on the amount
of allowable abstraction.

IV. INSTANTIATING ABSTRACTION GENERATION FOR RTL

The procedure presented above is generic, and can be
instantiated with any finite set of primitive operations Ops
and abstraction functions Abs, provided that the necessary
derivation functions u, t, prop, RF, etc. are appropriately
defined. We now turn to instantiating the procedure for the
abstraction of RTL definitions. For this purpose, we take Ops
to be the set of standard RTL operations on bit-vectors, includ-
ing addition, subtraction, comparison, bitwise-conjunction,
bitwise-disjunction, concatenation, extraction, generic if-then-
else expresssions, etc. For the purpose of this paper, a bit
vector is a member of the set BV , ({0, 1})∗. We assume
implicit conversions from IB and IN to BV (and the vice versa),
where true is converted to 〈1〉 and false to 〈0〉.

Our implementation has efficient support for arrays or
sequence for bit vectors, but we do not present them here for
pedagogical reasons. Instead, we assume that an RTL state
is defiend by a sequence of bit vectors, and the set S is the
set BV∗. We now discuss the different mapping operations.
A linear mapping is either the identity mapping λ(x) , x,
or is of the form λ(x) , ite((Lo ≤ x ≤ hi),Lo, f(x)),
where ite is the standard if-then-else operation, Lo and Hi
are constant bitvectors, and f is a linear mapping. A bitvector
mapping is either a linear mapping f or is defined by λ(x) ,
(f(〈x1, . . . , xi〉)||g(〈xi+1, . . . , xj〉)) where i and j are natural
number constants, “||” is the bitvector concatenation operation,
and f and g are bitvector mappings. The set of abstraction
functions Abs is then restricted to contain functions Φ defined
by: Φ(〈x1, . . . , xn〉) , 〈f1(x1), . . . , fn(x)〉.

The bulk of the complexity is in the definition of prop.
To understand the issues we consider one example. Consider
the instance of prop for the ite(x, y, z) operator, and let α be
the map at the output. If the function prop returns the map
α on both y and z and the identity mapping on x then the
requirements on prop being a transfer are satisfied. But ite
is a prolific operation and the best abstraction is not always

obtained by including the informationfrom all tests in the
ite expression. So we break the transfer property for ite by
randomly selecting once for each field (or register) in the
next-state function. This is based on a heuristic observation
that there is a high correlation between tests within the next-
state expression for a given register. The selection is where
the additional natural number selection parameter for prop is
used to select from a range of possible propagations.

Given a library of functions prop it is straightforward to
produce SP as outlined in the preceding section. The strategy
is to design a procedure that crawls over the body of P starting
from the output, using prop to propagate the output mapping at
the goal of an operation to its input. We often take into account
the context when applying a specific mapping. For instance,
consider the expression (x + y) where the goal mapping is
A(z) , ite((4 ≤ z ≤ 6), 4,0(z)) where 0(z) is the all-zero
mapping. It y is alwars the constant 2 then we can use this
information to propagate the mapping B(x) , ite((2 ≤ x ≤
4), 2,0) to x.

V. CONCLUSION

We have presented a procedure for automatically generat-
ing abstractions of state machines represented in RTL. The
procedure illuminates different design trade-offs involved in
the design of a scalable abstraction tool in practice. One key
application of the tool is in abstracting pipelined transaction
queues, which are ubiquitous in implementations of commu-
nication protocols, and are known to be notoriously difficult
to abstract manually.

Our approach apparently resembles a cone-of-influence al-
gorithm. The difference with cone-of-influence arises from the
need to generate abstractions that account for interpretation of
the different operator semantics: our procedure is designed
with the goal of scalability at the sake of verification com-
pleteness. Furthermore, the procedure handles the semantics
of arithmetic functions, bit vectors primitives, and arrays, as
well as modules and functions built on top of such primitives.

Acknowledgements

This material is based upon work supported in part by
DARPA and the National Science Foundation under Grant
No. CNS-0429591 and by the Semiconductor Research Cor-
poration under Grant No. 08-TJ-149. The author thanks Rob
Sumners for helping with the development of an early version
of the procedure discussed in the paper.

REFERENCES

[1] M. Abadi and L. Lamport, “The Existence of Refinement Mappings,”
Theoretical Computer Science, vol. 82, no. 2, pp. 253–284, May 1991.

[2] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Approximation or Analysis
of Fixpoints,” in Proceedings of the 4th ACM Symposium on Principles
of Programming Languages (POPL 1977). Los Angeles, CA: ACM
Press, 1977, pp. 238–252.

[3] K. S. Namjoshi and R. P. Kurshan, “Syntactic Program Transformations
for Automatic Abstraction,” in Proceedings of the 12th International
Conference on Computer-Aided Verification (CAV 2000), ser. LNCS, E. A.
Emerson and A. P. Sistla, Eds., vol. 1855. Springer-Verlag, Jul. 2000,
pp. 435–449.

