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1

I N T R O D U C T I O N

1.1 the speech segmentation problem

Listening to speech is automatic and seemingly effortless. It is an essential
part of our daily communication. Whenever a speaker produces a sentence, an
acoustic signal is created which contains a sequence of words. As listeners, we
generally have no problem hearing and understanding these spoken words.
That is, of course, provided we are familiar with the language of the speaker,
and provided that there are no exceptionally noisy conditions (such as during
a conversation at a loud rock concert). The ease with which we listen to
speech is quite remarkable when one considers the processes that are involved
in decoding the speech stream. The acoustic signal that is produced by a
speaker does not consist of words which are separated by silences, but rather
of a continuous concatenation of words. As a consequence, word boundaries
are usually not clearly marked in the speech signal (Cole & Jakimik, 1980;
Klatt, 1979). Spoken language is thus quite different from written language.
While the written words that you are reading in this dissertation are visually
separated by blank spaces, words in spoken language typically have no clearly
delineated beginnings or endings. Onecouldthusthinkofthespeechsignalasatex-
twithoutspaces.

In order to understand speech, the listener has to break down the continu-
ous speech signal into a discrete sequence of words. As adult listeners, we are
greatly helped by our knowledge of the native language vocabulary. We have
the ability to retrieve word forms that we have stored in our mental lexicon,
allowing us to recognize such word forms in the speech signal. For example,
when hearing the continuous sentence listed above, we recognize English
words such as could and signal. At the same time, there are chunks of speech
in the signal which do not correspond to words. For example, nalas is not
an English word, nor is speechsi. Indeed, models of spoken word recognition
have traditionally relied on finding matches between stretches of sound in the
speech signal and word forms in the lexicon (e.g., Marslen-Wilson & Welsh,
1978; McClelland & Elman, 1986; Norris, 1994). In these models, parts of
the speech signal are matched with words that we have stored in our mental
lexicon, until every part of the speech signal corresponds to a meaningful
word.
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The problem of speech segmentation is particularly challenging for lan-
guage learners. From the moment they are born, infants are confronted with
speech input that is continuous. Even in speech specifically directed toward
the infant, most words are embedded in a continuous sentence, rather than
being presented in isolation (van de Weijer, 1998; Woodward & Aslin, 1990).
Infants develop the ability to segment words from continuous speech already
in the first year of life (e.g., Jusczyk & Aslin, 1995). A fundamental difference,
however, in speech segmentation by adults and infants is that infants do not
yet possess the complete vocabulary of the native language (e.g., Fenson et al.,
1994). In fact, one of the major tasks that infants face is to learn the words of
their native language. The development of the mental lexicon crucially relies
on infants’ ability to break up the speech stream into word-like units.

While infants do not yet have access to a large lexicon of word forms, they
are helped by various sublexical cues for segmentation. Sublexical segmentation
cues convey information about the structure of the speech stream, but are not
linked to specific words in the lexicon. Such cues may provide infants with an
initial means to break up the speech stream, and could allow them to bootstrap
into lexical acquisition (e.g., Mehler, Dupoux, & Segui, 1990; Christophe,
Dupoux, Bertoncini, & Mehler, 1994). The sublexical segmentation cue that
will be the focus of this dissertation is phonotactics. Phonotactic constraints
state which sound sequences are allowed to occur within the words of a
language. This information is useful for segmentation, since it highlights
possible locations of word boundaries in the speech stream. In general, if
a sequence occurs in the speech stream that is not allowed to occur within
the words of a language, then such a sequence is likely to contain a word
boundary. For example, the sequence /pf/ does not occur in Dutch words.
Therefore, when /pf/ occurs in the speech stream, listeners know that /p/
and /f/ belong to separate words. To illustrate this, consider the following
continuous Dutch utterance:

(1.1) /d@lAmpfil/ (de lamp viel, ‘the lamp fell’)

The phonotactic knowledge that /pf/ cannot occur within words can be used
by listeners to segment this utterance. A word boundary (denoted by ‘.’) can
be hypothesized within the illegal sequence:

(1.2) /d@lAmp.fil/

With this simple phonotactic constraint the listener has separated /d@lAmp/
from /fil/. Note that knowledge of phonotactics is language-specific. A
German listener not familiar with the Dutch vocabulary may be inclined to
think that /pfil/ is a word, since the phonotactics of German allows words
to start with /pf/ (e.g., pfeffer, ‘pepper’). Languages thus differ in the sound
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1.2 segmentation cues and their acquisition

sequences that are allowed within words. The consequence is that phonotactic
knowledge has to be acquired from experience with a specific language.

Phonotactics is used in the segmentation of continuous speech by both
adults and infants (McQueen, 1998; Mattys & Jusczyk, 2001b). For the case of
speech perception by adults, knowledge of phonotactics supports the retrieval
of words in the mental lexicon (Norris, McQueen, Cutler, & Butterfield, 1997).
Spoken word recognition thus involves a combination of sublexical segmenta-
tion cues and lexical lookup (Cutler, 1996; Mattys, White, & Melhorn, 2005).
For the case of segmentation by infant language learners, phonotactics may
provide a basis for the development of the mental lexicon (Jusczyk, Friederici,
Wessels, Svenkerud, & Jusczyk, 1993). In the current example, the infant could
add /d@lAmp/ and /fil/ as initial entries in a ‘proto-lexicon’. During later
stages of lexical acquisition, the infant further decomposes such lexical entries,
and attributes meaning to the words.

The relevance of phonotactics for language development raises the ques-
tion of how phonotactics is acquired. The central question in this dissertation
is the following: How do learners acquire the knowledge of phonotactics
that helps them to break up the speech stream? The induction of phonotactic
constraints for speech segmentation will be addressed through a combination
of computational modeling of infant learning mechanisms, computer simula-
tions of speech segmentation, and language learning experiments with human
participants. The goal is to provide insight into some essential aspects of early
language acquisition. The proposed model is explicit, since it is implemented
as a computer program, and is supported by psychological evidence of human
learning capacities.

In what follows, the role of segmentation cues in spoken word recognition,
and the acquisition of these cues by infants will be discussed (Section 1.2).
Two hypotheses are then outlined regarding the induction of phonotactics for
speech segmentation (Section 1.3), followed by a discussion of mechanisms
that are available to infants for phonotactic learning (Section 1.4). Finally, the
research questions and scientific contribution are stated (Section 1.5), and an
overview of the different chapters in the dissertation is given (Section 1.6).

1.2 segmentation cues and their acquisition

Spoken word recognition is aided by several types of linguistic cues. Each
of these cues helps the listener to break down the continuous speech stream
into discrete, word-sized units, thereby facilitating the activation of words
in the mental lexicon. Cues that have been demonstrated to affect speech
segmentation broadly fall into three categories: metrical cues, fine-grained
acoustic cues, and phonotactics.
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1.2.1 The role of segmentation cues in spoken word recognition

A large body of research has focused on the role of metrical cues in segmen-
tation. Metrical cues concern the ordering of strong and weak syllables in a
language. For example, most English words have a trochaic stress pattern,
where word-initial strong syllables (which contain full vowels) are optionally
followed by one or more weak syllables (which contain reduced vowels). The
Metrical Segmentation Strategy (MSS, Cutler, 1990) postulates that strong
syllables occurring in the speech stream are taken as word onsets by the
listener, thereby providing a starting point for lexical access. The MSS is
supported by corpus analyses showing that the majority of English lexical
words (approximately 85%) starts with a strong syllable (Cutler & Carter,
1987). If English listeners insert word boundaries before strong syllables, they
would thus make considerable progress in segmenting the speech stream (see
e.g., Harrington, Watson, & Cooper, 1989).

Evidence for the MSS comes from perception studies. Cutler and Norris
(1988) show that listeners are faster to spot English words in speech when
they are embedded in a sequence of a strong and a weak syllable (e.g., mint in
mintesh) than when embedded in two strong syllables (e.g., mintayve). They
argue that this is due to the insertion of a word boundary before strong
syllables. That is, the occurrence of a strong syllable initiates a new attempt at
lexical access, whereas the occurrence of a weak syllable does not. Listeners
are slower at recognizing mint in mintayve, since recognition in this case
requires the assembly of a word form across a hypothesized word boundary
(min.tayve). Cutler and Norris suggest that the slowing-down effect may be
the result of competing lexical hypotheses (competing for the shared /t/).
Indeed, recognition only slowed down when the target word crossed a syllable
boundary. That is, no difference in response was found for words that did not
cross the hypothesized word boundary (e.g., thin in thintayve vs. thintef).

In a follow-up study, Cutler and Butterfield (1992) found that English
listeners insert boundaries before strong syllables, and, in addition, delete
boundaries before weak syllables. Analyses were conducted on data sets of
erroneous segmentations (‘slips of the ear’) made by English listeners. The
analyses showed that many misperceptions could be explained by the MSS.
That is, incorrect boundaries were generally placed before strong syllables,
and many missed boundaries occurred before weak syllables. In addition,
boundaries inserted before strong syllables generally occurred at the beginning
of lexical (content) words, whereas boundaries inserted before weak syllables
occurred at the beginning of grammatical (function) words. These percep-
tion studies support the view that stress patterns affect the segmentation of
continuous speech, as predicted by the metrical segmentation hypothesis.
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1.2 segmentation cues and their acquisition

A different type of segmentation cue is fine-grained acoustic information in the
speech signal. For example, word onsets in English are marked by aspiration
for voiceless stops (Christie, 1974; Lehiste, 1960), and by glottal stops and
laryngealization for stressed vowels (Nakatani & Dukes, 1977). Another cue
for word onsets is duration. The duration of a segment is generally longer for
word-initial segments than for segments in word-medial or word-final position
(Oller, 1973; Umeda, 1977). Hearing such acoustic events in the speech stream
may lead listeners to hypothesize word beginnings, thereby facilitating lexical
access (e.g., Gow & Gordon, 1995).

Segment duration indeed has an effect on the segmentation of continuous
speech (e.g., Quené, 1992; Shatzman & McQueen, 2006). In two eye-tracking
experiments, Shatzman and McQueen (2006) found that a shorter duration of
/s/ facilitates the detection of a following stop-initial target (e.g., pot in eenspot).
The short duration indicates that /s/ is likely to occur in a word-final position.
Conversely, a longer duration indicates a word-initial position, which leads
listeners to hypothesize a word starting with an ‘/s/ + consonant’ cluster (e.g.,
spot). The consequence is that the detection of the target word pot slows down.
Listeners thus rely on segment duration to resolve ambiguities that arise in
the segmentation of continuous speech.

Finally, there are phonotactic cues that affect spoken word recognition.
Studies on the role of phonotactics in speech segmentation have typically
assumed a view based on sequential constraints. Such constraints encode an
absolute or gradient avoidance of certain sequences within the words of a
language. For example, the sequence /mr/ is not allowed in languages like
English and Dutch. In a word spotting study, McQueen (1998) shows that
Dutch listeners are sensitive to phonotactics and use phonotactic information
to segment the speech stream. Words embedded in nonsense speech were
either aligned or misaligned with a phonotactic boundary. Listeners were
faster to spot words when a consonant cluster formed an illegal onset cluster,
indicating a phonotactic boundary corresponding to the word onset (e.g., rok
‘skirt’ in fiemrok), than when the cluster formed a legal onset cluster (e.g.,
fiedrok). In the latter case the phonotactic boundary (fie.drok) did not match
with the onset of the target word, resulting in a slower response in detecting
the word. In a follow-up study, Lentz and Kager (in preparation) show that
these effects are due to sublexical phonotactics providing an initial chunking
of the speech stream before lexical look-up.

Several studies have shown that the phonotactic knowledge that is used for
segmentation is more fine-grained than a classification into legal and illegal
sequences. Listeners also use phonotactic probabilities for segmentation. That
is, legal sequences can be scaled according to how likely they are to occur
in a language. During segmentation, high-probability sequences provide a
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stronger cue that a sequence is word-internal, while low-probability sequences
are less likely to be word-internal. A word spotting study by Van der Lugt
(2001) provides evidence that the likelihood of the occurrence of CV onset
sequences affects segmentation by Dutch listeners. Words were easier to
spot when they were followed by a high-probality CV onset (e.g., boom ‘tree’
in boomdif) than when followed by a low-probability onset (e.g., boomdouf).
Importantly, phonotactic probabilities have been shown to affect the processing
of nonwords independently of lexical effects such as lexical neighborhood
density (Vitevitch & Luce, 1998, 1999, 2005). This supports a sublexical view
of phonotactics in which probabilistic phonotactic knowledge is represented
independently of the mental lexicon.

While these studies show that constraints on specific sequences of phonetic
segments affect speech segmentation, there is evidence that segmentation is
also affected by more complex phonological processes. For example, Finnish
listeners use vowel harmony as a cue for segmentation (Suomi, McQueen, &
Cutler, 1997; Vroomen, Tuomainen, & Gelder, 1998). Furthermore, segmenta-
tion in Korean is affected by an interaction of multiple phonological processes
underlying the surface structures (Warner, Kim, Davis, & Cutler, 2005). These
studies show that phonotactic constraints do not merely operate on the se-
quences that surface in the speech stream, but also target the phonological
structure of segments, taking into account the features that define them (see
e.g., Chomsky & Halle, 1968).

As a consequence of the language-specific nature of phonotactics, native
(L1) language phonotactic constraints potentially interfere with spoken word
recognition in a second (L2) language (e.g., Dupoux, Kakehi, Hirose, Pallier,
& Mehler, 1999; Weber & Cutler, 2006). Weber and Cutler (2006) show that
the detection of English words by German listeners who were advanced
learners of English was influenced by German phonotactics. Thus, even
advanced learners of a second language are affected by their native language
phonotactics in L2 speech segmentation. The German learners of English,
however, were also able to exploit English phonotactic cues for boundaries.
These findings suggest that, while L1 phonotactics may interfere with L2

listening, advanced learners of a second language can acquire the phonotactic
structure of the target language (Weber & Cutler, 2006; Trapman & Kager,
2009).

A more general phonotactic constraint, which seems to hold in most lan-
guages, is the Possible-Word Constraint (Norris et al., 1997; McQueen, Otake,
& Cutler, 2001). This constraint states that word recognition should only
produce chunks of speech which conform to a minimal word structure. Specif-
ically, words minimally contain a vowel. A single consonant can therefore
not by itself be a word. The segmentation mechanism should thus avoid
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producing occurrences of isolated consonants. Norris et al. (1997) found that
listeners were faster at detecting apple in vuffapple than in vapple. They argue
that this is due to the fact that the residue of vuffapple is a possible word (vuff),
whereas the residue of vapple is a single consonant (v), and therefore violates
the PWC. While the PWC was originally proposed as a universal constraint
on spoken word recognition, the constraint can be overruled in languages
that allow single-consonant words, such as Slovak (Hanulı́ková, McQueen, &
Mitterer, 2010).

Taken together, these studies show that sublexical cues facilitate the recog-
nition of words in continuous speech. In order to obtain a more complete
picture of spoken word recognition in adult listeners, it is interesting to look
at some of the relative contributions of the different types of cues to word
recognition. For example, Vitevitch and Luce (1998, 1999) show that effects of
probabilistic phonotactics are mainly found in the processing of nonwords,
while lexical effects, such as neighborhood density (i.e., the number of words
in the lexicon that differ from the target word by a single phoneme) mainly
arise in the processing of actual lexical items. For the case of speech segmenta-
tion, Mattys et al. (2005) found evidence for a hierarchy in which lexical cues
(the actual words) dominate segmental cues (e.g., phonotactics, allophony).
In turn, segmental cues are more important than prosodic cues (word stress).
Whenever one type of cue fails (for instance, due to noise in the speech stream,
or due to lack of lexical information), participants would rely on the next cue
in the hierarchy.

The studies discussed so far concern the role of segmentation cues in
spoken word recognition by adult listeners. However, the relative importance
of lexical and sublexical cues for segmentation may be quite different for infant
language learners. During early language acquisition, infants are starting to
build up a vocabulary of words. It thus seems that infants, at least initially, do
not rely on lexical strategies to discover words in continuous speech. Rather,
infants will mainly rely on sublexical cues for speech segmentation (e.g.,
Cutler, 1996). Below evidence is discussed showing that infants in their first
year of life acquire segmentation cues. Such cues help them in constructing a
lexicon from continuous speech input.

1.2.2 The acquisition of segmentation cues by infants

Infants acquire knowledge about the sublexical properties of their native
language during the first year of life. The primary purpose of the sublexical
knowledge that infants possess (metrical patterns, fine-grained phonetic cues,
and phonotactics) is to segment and recognize words in fluent speech (e.g.,
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Jusczyk, 1997). Segmentation cues thus guide infants’ search for words in
continuous speech, and facilitate the development of the mental lexicon.

With respect to metrical cues, infants have a sensitivity to the basic rhyth-
mic properties of their native language from birth (Mehler et al., 1988; Nazzi,
Bertoncini, & Mehler, 1998). More fine-grained knowledge of native language
patterns of stressed (strong) and unstressed (weak) syllables develops between
the age of 6 and 9 months (Jusczyk, Cutler, & Redanz, 1993; Morgan & Saffran,
1995). Jusczyk, Cutler, and Redanz (1993) show that 9-month-old infants listen
longer to words that follow the predominant stress pattern of English (strong-
weak) than to words that follow the opposite pattern (weak-strong). Younger
infants (6-month-olds) did not show any significant listening preferences,
suggesting that infants learn about language-specific stress patterns as a result
of exposure to the native language during the first year of life. The ability to
use metrical patterns as a cue for segmenting word-like units from speech
is present at the age of 7.5 months (Jusczyk, Houston, & Newsome, 1999).
In accordance with the Metrical Segmentation Strategy, infants segmented
bisyllabic words conforming to the English strong-weak pattern from contin-
uous speech. In addition to behavioral studies, there is electrophysiological
(ERP) evidence that Dutch 10-month-old infants rely on stress patterns for
segmentation (Kooijman, Hagoort, & Cutler, 2009).

Fine-grained acoustic cues that play a role in infant language development
include co-articulation, allophony, and duration. Specifically, infants have
been shown to be sensitive to co-articulation between segments at the age of 5

months (Fowler, Best, & McRoberts, 1990), and to context-sensitive allophones
at the age of 10.5 months (Jusczyk, Hohne, & Bauman, 1999). These phonetic
factors also have an impact on the segmentation of continuous speech by
infants (Johnson & Jusczyk, 2001; Jusczyk, Hohne, & Bauman, 1999; Mattys &
Jusczyk, 2001a). Johnson and Jusczyk (2001) show that 8-month-old infants
use co-articulation as a cue in extracting trisyllabic artificial words from
continuous speech. In addition, Jusczyk, Hohne, and Bauman (1999) found
evidence suggesting that, by the age of 10.5 months, infants use information
about allophonic variation to extract words from speech. Such knowledge
allows infants to distinguish between different context-sensitive realizations of
a phoneme, and thus allows them to segment phrases that are phonemically
equivalent, but made up of different allophones (e.g., different realizations of
t and r in night rates versus nitrates). Finally, durational cues corresponding
to phonological phrase boundaries are used for segmentation in infants of 10

and 13 months of age (Gout, Christophe, & Morgan, 2004).
In addition to metrical and acoustic cues, infants learn about the phono-

tactic patterns of their native language (Friederici & Wessels, 1993; Jusczyk,
Friederici, et al., 1993; Jusczyk, Luce, & Charles-Luce, 1994), and use phono-
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tactic cues for segmentation (Johnson, Jusczyk, Cutler, & Norris, 2003; Mattys,
Jusczyk, Luce, & Morgan, 1999; Mattys & Jusczyk, 2001b; Myers et al., 1996).
Jusczyk, Friederici, et al. (1993) show that 9-month-old infants listen longer
to words from their native language than to nonnative words (which violate
the phonotactic constraints of the language). Similar results were obtained in
studies using nonwords: Infants listen longer to nonwords that respect the
native language phonotactics than to nonwords that violate the phonotactic
constraints of the native language (Friederici & Wessels, 1993). These studies
show that infants prefer to listen to words that conform to the phonotactic
patterns of the native language.

Infants’ sensitivity to phonotactics is more fine-grained than the ability
to distinguish between legal and illegal sound sequences. Infants have been
shown to be sensitive to phonotactic probabilities. That is, infants are able
to distinguish between legal sequences that differ in how likely they are to
occur in the native language. Jusczyk et al. (1994) found that infants have
a preference for nonwords that were made up of high-probability sound se-
quences (e.g., riss) over nonwords that consisted of low-probability sequences
(e.g., yowdge). While infants at 9 months of age listened longer to lists of
high-probability nonwords than to lists of low-probability nonwords, 6-month-
old infants did not show this sensitivity. This finding indicates that, in the
period between the first 6 and 9 months of life, infants start to learn about
the phonotactic patterns of their native language from experience with speech
input.

Knowledge of phonotactics is useful for infants, since it indicates which
sequences in the continuous speech stream are likely to contain boundaries,
and which sequences are not. Sequences that violate the native language
phonotactics are plausible locations for word boundaries in the speech stream.
From a probabilistic perspective, low-probability sequences are more likely to
contain word boundaries than high-probability sequences. Mattys and Jusczyk
(2001b) show that 9-month-old infants use probabilistic phonotactic cues to
segment words from continuous speech. Items were embedded in either
between-word consonant clusters (i.e., consonant clusters which occur more
frequently between words than within words), or embedded in within-word
consonant clusters (i.e., consonant clusters which occur more frequently within
words than between words). For example, during familiarization the item
gaffe would occur in the context of a phrase containing bean gaffe hold (where
/ng/ and /fh/ are between-word clusters, and thus provide a phonotactic cue
for the segmentation of gaffe), or in the context of fang gaffe tine (where /Ng/
and /ft/ are within-word clusters, and thus provide no indication of word
boundaries at the edges of gaffe). During the test phase infants listened longer
to words which had been embedded in between-word consonant clusters
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than to words which had been embedded in within-word consonant clusters.
Infants thus appear to have knowledge of the likelihood of boundaries in
segment sequences in continuous speech.

In addition to language-specific phonotactic cues, there is evidence that in-
fants use the more general Possible-Word Constraint in segmentation. Johnson
et al. (2003) found that 12-month-old infants listened longer to target words
embedded in ‘possible’ contexts (leaving a syllable as a residue) than to words
embedded in ‘impossible’ contexts (leaving a single consonant as a residue).
The PWC, militating against single-consonant residues in segmentation, thus
appears to play a role in segmentation by both adults and infants.

All of these studies provide evidence that infants use a variety of cues for
the segmentation of continuous speech. There is also evidence that infants
integrate these cues, and that infants attribute more importance to some cues
than to other cues, when these are brought into conflict. For example, Johnson
and Jusczyk (2001) show that both metrical cues and coarticulation cues
are relied upon more strongly by 8-month-old infants than a segmentation
strategy based on syllable probabilities. However, a study by Thiessen and
Saffran (2003) shows that younger infants (7-month-olds) rely more strongly
on distributional cues than on stress, suggesting that infants might initially
rely on statistical cues in order to learn stress patterns. In addition, when cues
are put in conflict, stress patterns have been found to override phonotactic
patterns (Mattys et al., 1999). At the same time, phonotactics is required
to refine metrical segmentation by determining the exact locations of word
boundaries (e.g., Myers et al., 1996). It thus appears that segmentation cues
join forces to optimize the detection of word boundaries in the continuous
speech stream.

In sum, infants rely on various sublexical cues to extract wordlike units
from continuous speech. Most of these cues are specific to the language
to which the infant has been exposed during the first months of life. This
raises an important issue. The task of segmenting a continuous speech stream
into words is one that all infants face, regardless of their native language
background. Nevertheless, most segmentation cues are language-specific.
Infants thus face the challenge of acquiring segmentation cues from experience
with the target language. Little is known about how infants tackle this
problem. In order to obtain a thorough understanding of infants’ early
language development (specifically, the contribution of sublexical cues to
learning a lexicon), it is essential to account for the acquisition of segmentation
cues. Crucially, there has to be a learning mechanism that allows infants to
acquire cues for segmentation. This mechanism needs to be able to learn
segmentation cues before the lexicon is in place. The work described in this
dissertation addresses this problem for the case of phonotactics.
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1.3 the induction of phonotactics for speech segmentation

The main interest of this dissertation is in the learning mechanisms that are
used by infants to acquire phonotactics. In addition, while a complete model
of infant speech segmentation would require accounting for the integration
of multiple segmentation cues (i.e., metrical cues, acoustic cues, phonotactic
cues), this dissertation focuses on the contribution of phonotactics to solving
the speech segmentation problem. By studying phonotactic cues in isolation,
this dissertation assesses the contributions of different mechanisms to learning
phonotactics, and to solving the speech segmentation problem. As will become
clear later on, the resulting model of phonotactic learning is fundamentally
different from earlier accounts of phonotactic learning, since those models
assume a lexicon of word forms as the basis for phonotactic learning (e.g.,
Hayes & Wilson, 2008; Pierrehumbert, 2003).

1.3.1 Bottom-up versus top-down

Although the segmentation studies clearly indicate a role for phonotactics in
the segmentation of continuous speech by both adults and infants, they leave
open the question of how the phonotactic patterns of the native language are
acquired. Analyses of parents’ estimation of their infant’s receptive vocabulary
indicate that infants have a vocabulary smaller than 30 words by the age of 8

months, which increases to about 75 words by the end of the first year (Fenson
et al., 1994). Since infants by the age of 9 months already possess fine-grained
knowledge of the phonotactic probabilities of their native language (Jusczyk
et al., 1994), it seems unlikely that they derive this knowledge from their
miniature lexicons. Rather, it seems that infants induce phonotactic patterns
by monitoring sequences that they hear in their continuous speech input.

The bottom-up learning of phonotactics from continuous speech is in line
with the view that infants use phonotactics to bootstrap into word learning.
The general idea is that infants rely on phonotactics in order to learn words,
and therefore do not rely on words to learn phonotactics. In order to avoid
this potential chicken-and-egg problem, several computational studies have
adopted a bottom-up view in which segmentation cues are derived from
unsegmented input (e.g., Brent & Cartwright, 1996; Cairns, Shillcock, Chater, &
Levy, 1997; Perruchet & Vinter, 1998; Swingley, 2005). This view is supported
by evidence from infant studies suggesting that sublexical knowledge of
phonotactics emanates from patterns in fluent speech, rather than from isolated
lexical items (e.g., Mattys et al., 1999).

A bottom-up approach to phonotactic learning may seem counterintuitive
at first. Phonological constraints (phonotactics, stress) typically refer to words
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and word edges: ‘Words should start with a strong syllable’, ‘words should
not start with /pf/’, etc. It would thus seem logical to assume that such
knowledge is derived in a top-down fashion from stored word forms in the
lexicon. Indeed, several models of phonotactic learning have been based on a
view in which phonotactic constraints are learned from the lexicon (e.g., Hayes
& Wilson, 2008; Pierrehumbert, 2001, 2003; Tjong Kim Sang, 1998). The initial
lexicons that infants have, however, provide them with a rather limited source
of data for phonotactic learning. While infants may know some words (e.g.,
mommy, daddy, and their own names) which may serve as top-down anchors
in segmentation, the limited size of the infant vocabulary makes it plausible
that infants initially rely on bottom-up information in speech segmentation
(e.g., Bortfeld, Morgan, Golinkoff, & Rathbun, 2005; Fenson et al., 1994). This
makes sense when one considers the amount of input data that can be derived
from an infant’s lexicon versus continuous speech input. In contrast to their
small lexicons, infants are exposed to a vast amount of continuous speech
input (see e.g., van de Weijer, 1998). It will be argued that this information is
rich enough for the induction of phonotactics in a bottom-up fashion using
mechanisms that have been shown to be available to infant language learners.
Moreover, the induction of phonotactics from continuous speech allows the
infant to make considerable progress in cracking the speech code.

A bottom-up learning procedure thus has two desirable properties. First,
it is compatible with the demonstrated sensitivity and segmentation skills
of infant language learners, who have not yet mastered the native language
vocabulary. Second, a bottom-up approach allows for a beneficial role of
phonotactics in segmentation and lexical acquisition. That is, the bottom-
up learning of segmentation cues from continuous speech helps the learner
to acquire words from speech. It has been argued that during language
acquisition learners maximally exploit the phonology of their native language
in order to optimize their segmentation skills (Cutler, Mehler, Norris, & Segui,
1986). In line with this view, the bottom-up approach assumes that infants
maximally exploit the phonotactic structures that they encounter in continuous
speech, since these phonotactic constraints allow them to segment the speech
stream more efficiently.

1.3.2 Computational modeling of phonotactic learning

The main challenge for a bottom-up approach to phonotactic learning is the
following: How can infants learn about the phonotactic structure of words
without knowing the words themselves? This issue will be addressed by means
of computational modeling. The algorithmic nature of computational models
enable the researcher to formulate explicit theories of language acquisition.
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Moreover, the predictions that follow from computational models allow for
straightforward empirical testing of the theoretical proposal. Computational
models of language acquisition that are based on psycholinguistic findings,
and are tested empirically, therefore provide a valuable tool in the study of
human learning mechanisms.

Importantly, computational models can be evaluated on natural language
data, such as speech corpora. In order to allow full control of factors which
might affect participants’ performance, psycholinguistic experiments typically
involve simplified and/or unnatural data (such as artificial sequences of CV
syllables). When using accurately transcribed speech corpora, theoretical
proposals can be tested on how they perform on more realistic data, including
settings that involve variations that occur in the pronunciation of natural
speech (such as acoustic reductions and assimilations). Computational models
may therefore provide valuable insights which complement psycholinguistic
findings that are obtained in laboratory settings.

Earlier work on computational modeling of phonotactic cues for seg-
mentation (see Chapter 2) has revealed two different bottom-up approaches.
Phonotactic segmentation models are either based on employing utterance
boundaries (Brent & Cartwright, 1996; Daland, 2009), or on exploiting sequen-
tial probabilities in continuous speech (e.g., Cairns et al., 1997; Swingley, 2005).
Utterance boundary models are based on the observation that utterance-initial
segments are by definition also possible word-initial segments, simply because
utterance beginnings are also word beginnings. The same line of reasoning
applies to utterance-final segments. If the probability of a segment at an
utterance boundary is interpreted as the probability at a word boundary, an
estimation can be made with respect to the likelihood of word boundaries
in continuous speech (Daland, 2009). That is, Prob(x.y) = Prob(x.) · Prob(.y),
where Prob(x.) and Prob(.y) are based on utterance boundaries.

Other models have taken a different approach by exploiting the occurrence
of sequences within continuous speech utterances (rather than restricting the
model to sequences that occur at utterance edges). That is, the probability of
a word boundary can be estimated using the co-occurrence probability of two
segments (i.e., ‘biphone’ probability) in continuous speech. A low biphone
probability indicates a likely word boundary between the two segments in the
biphone (e.g., Cairns et al., 1997).

The difference between the two approaches can be illustrated by the follow-
ing example. Consider again the Dutch utterance /d@lAmpfil/. A model based
on utterance boundaries would extract only the initial and final segments
of the utterance, along with their alignment (/.d/ and /l./). In contrast, a
sequential model would extract all segment pairs within the utterance (/d@/,
/@l/, /lA/, /Am/, /mp/, /pf/, /fi/, /il/). While both types of information may
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be useful for segmentation, the example shows that sequential phonotactics
provides the learner with more data points. In this short utterance there are
8 biphone tokens. In contrast, the utterance has (by definition) only 2 edges.
Utterance-internal sequences thus potentially constitute a rich source of infor-
mation for phonotactic learning. At the very least, it seems unlikely that the
learner would ignore all the information that is contained within the utterance
itself. In fact, there is abundant evidence that infants indeed have the ability to
extract purely sequential information from continuous speech. This ability has
been demonstrated by a large body of psycholinguistic research on statistical
learning from continuous speech by infants (discussed in Section 1.4).

There is a substantial gap, however, between phonotactic models that
have been proposed for the purpose of speech segmentation, and phonotactic
models that have been proposed in the field of linguistics. Phonologists have
traditionally defined phonotactics in terms of positional constraints which op-
erate on a hierarchical structure (e.g., Clements & Keyser, 1983; Selkirk, 1982).
Specifically, the hierarchical structure states that words consist of syllables,
and that syllables have constituents such as onsets, nuclei, and codas. For ex-
ample, syllables in English can have the phoneme /N/ as a coda, but not as an
onset. Phonotactic constraints at the level of such positional constituents have
been used in earlier studies, for example, as an account of wellformedness
judgments of nonwords by adult participants (e.g., onset and rhyme proba-
bilities, Coleman & Pierrehumbert, 1997). In addition, phonological theories
assume that constraints are represented in terms of phonological features (e.g.,
Chomsky & Halle, 1968; Prince & Smolensky, 1993). Phonological theory thus
assumes a much richer, abstract representation of phonotactics than the simple
segment-based probabilities that are used in models of segmentation.

Recent developments in phonological research have led to models which
account for the induction of abstract feature-based phonotactic constraints
from input data (e.g., Albright, 2009; Hayes & Wilson, 2008, see Chapter 2).
For example, Hayes and Wilson (2008) propose a model in which phonotactic
constraints are selected from a space of possible constraints. Constraints are
selected and incorporated into the grammar according to their accuracy (with
respect to the lexicon of the language) and their generality. This dissertation
aims to connect constraint induction models with phonotactic models of
segmentation. Specifically, the sequential approach that has been used in
earlier segmentation models will be adopted (e.g., Cairns et al., 1997; Swingley,
2005), and will be combined with feature-based generalization (e.g., Albright,
2009; Albright & Hayes, 2003). The approach results in abstract sequential
constraints which indicate word boundaries in the speech stream.

An attractive property of sequential constraints is that they are learnable
using mechanisms that have received much attention in infant studies (e.g.,
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statistical learning, Saffran, Aslin, & Newport, 1996). Building on these find-
ings, knowledge of phonotactics will take the form of constraints stating which
sequences should be avoided within words, and which sequences should be
preserved (see Chapter 2 for a more elaborate description of the structure
of constraints). The relevance of such phonotactic constraints for segmen-
tation was first noted by Trubetzkoy, who referred to these constraints as
positive phonematische Gruppensignale and negative phonematische Gruppensignale,
respectively (Trubetzkoy, 1936).

In line with earlier models of constraint induction, an encoding of phono-
tactic constraints in terms of phonological features will be assumed (e.g.,
Albright, 2009; Hayes & Wilson, 2008). Albright (2009) shows that a model
with feature-based generalizations is able to account for human judgments of
nonword wellformedness. In his model, the learner abstracts over sequences
of segments and extracts the shared phonological feature values to construct
feature-based generalizations. Importantly, while segment-based models do
not generalize to unattested clusters, the feature-based model has proven to be
a good predictor for both attested and unattested clusters. As will be discussed
in more detail in Section 1.4, several infant studies provide evidence that is
consistent with a feature-based view of phonotactic constraints (Cristià & Seidl,
2008; Maye, Weiss, & Aslin, 2008; Saffran & Thiessen, 2003). The approach
taken in this dissertation is to maximally exploit the benefits of sequential
constraints and feature-based generalization for the induction of phonotactic
constraints, and for the detection of word boundaries in continuous speech.1

In sum, this dissertation will investigate whether the statistical learning
of biphone constraints from continuous speech can be combined with the
construction of more abstract feature-based phonotactic constraints. It will
be shown that generalizations over sequential constraints allow the learner
to make considerable progress with respect to phonotactic learning and the
formation of a mental lexicon. As will become clear in the next section, the
approach is supported by findings on infant learning mechanisms. In order
to investigate the linguistic relevance of the model, Chapter 4 addresses the
issue of whether the model can learn a sequential phonotactic constraint
(originally proposed in research on theoretical phonology) restricting the
co-occurrence of segments with the same place of articulation (OCP-Place,
Frisch, Pierrehumbert, & Broe, 2004; McCarthy, 1988).

1 An interesting characteristic of the model is that the sequential constraints that are induced by
the model can give rise to positional (alignment) effects without explicitly encoding word edges
in the structure of constraints. See Chapter 4.
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1.3.3 Two hypotheses regarding the acquisition of phonotactics by infants

The bottom-up view sketched above can be summarized as follows: Infants
induce phonotactic constraints from continuous speech, and use their acquired
knowledge of phonotactics for the detection of word boundaries in the speech
stream. In this view, emerging phonotactic knowledge informs the learner’s
search for words in speech. The view implies that at least some phonotactic
learning precedes segmentation and word learning. The result is a proto-
lexicon based on bottom-up segmentation cues. This view will be referred to
as the Speech-Based Learning (SBL) hypothesis:

(1.3) Speech-Based Learning hypothesis:

continuous speech → phonotactic learning → segmentation → proto-lexicon

An alternative hypothesis can be formulated in which the dependency
between phonotactic learning and word learning is reversed. That is, one could
argue that the initial contents of the infant’s lexicon are used to bootstrap into
phonotactic learning (rather than vice versa). This top-down view resembles
the approach taken in earlier models of phonotactic learning. Models of
phonotactic learning have typically assumed that phonotactic constraints are
the result of abstractions over statistical patterns in the lexicon (Frisch et al.,
2004; Hayes & Wilson, 2008). While these studies have not been concerned
with the topic of early language development, the developmental view that
would follow from such models is that phonotactics is acquired from a proto-
lexicon, rather than from the continuous speech stream. In this case the proto-
lexicon could, for example, have been formed using alternative segmentation
mechanisms which do not involve phonotactics. This alternative hypothesis
will be called the Lexicon-Based Learning (LBL) hypothesis:

(1.4) Lexicon-Based Learning hypothesis:

continuous speech → segmentation → proto-lexicon→ phonotactic learning

This dissertation aims to promote the Speech-Based Learning hypothesis.
In order to provide evidence for the SBL hypothesis, the dissertation proposes
a learning model which induces phonotactics from continuous speech (Chap-
ter 2). The model is implemented as a computer program, and is based on
learning mechanisms that have been shown to be available to infant language
learners. The model produces a set of phonotactic constraints which can be
used to discover word boundaries in continuous speech. While this model
shows the potential of learning phonotactics from continuous speech, it leaves
open the question of how plausible this approach is as an account of infant
phonotactic learning. The plausibility will be addressed via various empirical
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studies which aim to provide support for the model. These studies test the
viability of the SBL hypothesis by measuring the extent to which it helps the
learner in discovering word boundaries (Chapter 3). In other words, does
continuous speech contain enough information to learn phonotactics which
may serve to segment speech? Computer simulations are conducted which
specifically aim to demonstrate the added value of phonological generaliza-
tions in segmentation. In addition, a series of simulations examines the extent
to which the bottom-up account can learn phonotactic constraints which have
been studied in the traditional phonological literature (Chapter 4). Finally,
the plausibility of the approach is tested against human data. The bottom-
up (speech-based) versus top-down (lexicon-based) learning approaches are
compared with respect to their ability to account for human segmentation
data (Chapter 4). In addition, a series of experiments with adult participants
provides a final test for the induction of novel phonotactics from continuous
speech by human learners (Chapter 5). These experiments have been set up
in such a way as to maximally reduce possible top-down influences, and
thus provide strong support for the claim that human learners can induce
phonotactics in a bottom-up fashion.

In order to make claims about infant language learning by means of com-
putational modeling, it is essential to look at learning mechanisms which have
been shown to be available to infants. Ignoring such evidence could easily lead
to a very efficient learning model, but would not necessarily tell us anything
about how infants acquire phonotactic constraints for speech segmentation.
Specifically, the implementation of a bottom-up approach to phonotactic learn-
ing requires a careful consideration of mechanisms which can operate on
continuous speech input. The dissertation thus takes a computational angle
by investigating how learning mechanisms which have been shown to be
available to infants might interact in the learning of phonotactic constraints
from continuous speech. A large amount of psycholinguistic research points
towards important roles for two learning mechanisms: statistical learning and
generalization. Below the relevance of these mechanisms for infant language
acquisition will be discussed. The mechanisms will form the basis of the
computational model that will be presented in Chapter 2.

1.4 learning mechanisms in early language acquisition

Given the input that is presented to the infant, how is the input processed,
and under which conditions does the infant derive phonotactic knowledge
from the input? From a computational point of view, what is the algorithm
underlying infants’ learning behavior? Understanding the mechanisms in-
volved in acquiring linguistic knowledge from input data is perhaps the most

17



introduction

challenging part in the study of infant language acquisition. While two main
mechanisms have been identified, many questions remain with respect to how
these mechanisms operate. Bringing together these mechanisms in a computer
model brings us one step closer to understanding infant language acquisition.

1.4.1 Statistical learning

A well-studied learning mechanism is statistical learning. Infants have the
ability to compute the probability with which certain linguistic units co-occur.
For example, infants compute transitional probabilities of adjacent syllables
when listening to speech from an artificial language (Aslin, Saffran, & Newport,
1998; Goodsitt, Morgan, & Kuhl, 1993; Saffran, Aslin, & Newport, 1996). Such
probabilistic information may assist the segmentation of continuous speech.
Transitional probabilities are generally higher for sequences within words
than for sequences between words. For example, in the phrase pretty baby, the
transitional probability form pre to ty is higher than the probability from ty to
ba. Low probabilities are thus indicative of word boundaries. Saffran, Aslin,
and Newport (1996) exposed 8-month-old infants to a 2-minute nonsense
stream of continuous speech (e.g., bidakupadotigolabubidaku. . . ) in which the
transitional probabilities between syllable pairs had been manipulated. Infants
were able to distinguish ‘words’ (containing high probability sequences) from
‘part-words’ (containing a low probability sequence, and thus straddling a
statistical boundary), indicating that statistical learning is used to decompose
the speech stream into word-like units.

Many studies subsequently have shown that statistical learning is a domain-
general learning mechanism, allowing for the learning of dependencies of
various representational units. These units can be linguistic in nature (e.g.,
consonants and vowels, Newport & Aslin, 2004), or can be non-linguistic
units, such as musical tones (Saffran, Johnson, Aslin, & Newport, 1999) and
visual stimuli (Fiser & Aslin, 2002; Kirkham, Slemmer, & Johnson, 2002).
Recent evidence shows that infants can learn the statistical dependency in
two directions. Although transitional probabilities are typically calculated
as forward conditional probabilities (i.e., the probability of y given x, e.g.,
Pelucchi, Hay, & Saffran, 2009b), there is evidence that both adult and infant
learners can learn backward probabilities (i.e., the probability of x given y,
Pelucchi, Hay, & Saffran, 2009a; Perruchet & Desaulty, 2008; Saffran, 2002).
These studies indicate that statistical learning is a versatile and powerful
mechanism which may play an important role in language acquisition.

Several sources of evidence indicate that statistical learning could also be
involved in infants’ learning of phonotactics. One source of evidence concerns
a prerequisite for phonotactic learning, namely that infants should be able
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to perceive segments. A study by Maye, Werker, and Gerken (2002) shows
that 6- and 8-month-olds are able to discriminate between phonetic categories
after exposure to bimodal distributions of phonetic variation. While infants
may not yet have acquired the full segment inventory, the ability to perceive
at least some phonetic categories at a young age allows for the possibility
that infants learn the co-occurrence probabilities of such categories. More
direct evidence for the role of statistical learning in acquiring phonotactics
comes from studies showing that 9-month-old infants are sensitive to native
language probabilistic phonotactics (Jusczyk et al., 1994; Mattys & Jusczyk,
2001b). These studies suggest that infants are capable of learning segment
co-occurrence probabilities. The ability to learn statistical dependencies be-
tween segments has also been demonstrated by White, Peperkamp, Kirk, and
Morgan (2008), who found that 8.5-month-old infants’ responses in learning
phonological alternations were driven by segment transitional probabilities.

It should be mentioned that statistical learning by itself is not a full theory
of language acquisition (e.g., Soderstrom, Conwell, Feldman, & Morgan, 2009;
Johnson & Tyler, 2010). While the calculation of co-occurrence probabilities
can provide a useful means for detecting linguistic structures in the input, it
does not lead to the more abstract linguistic representations that are commonly
assumed in linguistic theories of language acquisition (e.g., Chomsky, 1981;
Prince & Tesar, 2004; Tesar & Smolensky, 2000; see also, Jusczyk, Smolensky,
& Allocco, 2002). Such linguistic frameworks assume that there is abstract
linguistic knowledge which traces back to the learner’s innate endowment
(Universal Grammar). Studies of infant learning mechanisms, however, in-
dicate that there may be a second learning mechanism which may provide
a means to learn abstract knowledge without referring to the innateness
hypothesis. It will be argued that, at least for the case of phonotactic learn-
ing, a generalization mechanism can join forces with the statistical learning
mechanism to allow for the induction of more abstract constraints. Such a
mechanism thus may provide a crucial addition to statistical approaches to
language acquisition, allowing for an emergentist view that maintains the
assumption of linguistic abstractness (e.g., Albright & Hayes, 2003; Hayes &
Wilson, 2008).

1.4.2 Generalization

In addition to statistical learning, there appears to be a role for a different
form of computation in phonotactic acquisition. This learning mechanism
allows the infant to generalize beyond observed (co-)occurrence probabilities
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to new, unobserved instances.2 Generalizations learned by infants can take
on the form of phonetic categories (e.g., Kuhl, Williams, Lacerda, Stevens, &
Lindblom, 1992; Maye et al., 2002, 2008; Werker & Tees, 1984), phonotactic
patterns (e.g., Chambers, Onishi, & Fisher, 2003; Saffran & Thiessen, 2003),
lexical categories (e.g., Gómez, 2002; Gómez & Lakusta, 2004; Gómez & Maye,
2005), and artificial grammars (e.g., Gómez & Gerken, 1999; Marcus, Vijayan,
Rao, & Vishton, 1999).

Gómez and Gerken (1999) show that infants are able to generalize over
observed training utterances to new, unobserved word strings. In their study,
12-month-old infants were exposed to word strings generated by a finite-state
grammar. After a familiarization of only 2 minutes, infants were able to dis-
tinguish between grammatical and ungrammatical items. Importantly, one of
their experiments used test items that had not occurred during familiarization.
As a consequence, transitional probabilities between word pairs were zero for
both grammatical and ungrammatical sequences. Infants generalized from
the word strings heard during familiarization (e.g., fim sog fim fim tup) to word
strings from a novel vocabulary (e.g., pel tam pel pel jic), indicating that they
had learned not just the specific word pairs, but also more abstract structures
(e.g., Berent, Marcus, Shimron, & Gafos, 2002; Marcus et al., 1999; cf. Altmann,
2002). These results suggest that generalization may play a major role in infant
language acquisition, in addition to statistical learning.

Saffran and Thiessen (2003) showed that 9-month-old infants can induce
phonotactic patterns that are more general than the occurrence patterns of the
specific phonological segments to which they were exposed. During a pattern
induction phase, the infant was familiarized with the phonotactic regularity.
Familiarization was followed by a segmentation phase, in which infants could
segment novel words from a continuous speech stream by employing the
phonotactic pattern to which they had been familiarized. Finally, the test phase
served to determine whether the infant indeed was able to distinguish novel
test items which conformed to the phonotactic pattern from test items which
did not conform to the pattern. Infants acquired a phonotactic generalization
about the positional restrictions on voiced and voiceless stops after a brief
training period. In contrast, they could not learn patterns of segments which
were not phonetically similar. These results indicate that there is more to
phonotactic acquisition than the learning of constraints on the co-occurrences
of specific segments. It seems that infants are able to abstract over the similarity
between segments to construct phonotactic generalizations.

2 The term ‘generalization’ will be used throughout the dissertation as a broad term to indicate
the learner’s ability to process items based on similarity to familiar items. The question of
whether infants store generalizations as abstract representations, or, for example, recompute
generalizations repeatedly from stored exemplars during online speech processing is considered
an open issue.
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Evidence for infants’ generalization on the basis of phonetic similarity
(voicing, manner of articulation, etc.) has been reported in various studies
(e.g., Jusczyk, Goodman, & Baumann, 1999; White et al., 2008; Maye et al.,
2008). Little is known, however, about how phonotactic generalizations are
represented by infants. Traditionally, generative phonologists have assumed
that generalizations can be stated in terms of abstract features (Chomsky &
Halle, 1968). Several recent studies have indeed argued that infants form
generalizations that are abstract at the level of the feature. For example, Maye
et al. (2008) show that exposing 8-month-old infants to a bimodal distribution
of Voice Onset Time (VOT) for one place of articulation (e.g., da/ta contrast
for dentals) facilitates the discrimination of a voicing contrast for a different
place of articulation (e.g., ga/ka contrast for velars). This finding is consistent
with the view that infants construct a generalization at the level of an abstract
feature voice as a result of exposure to a specific contrast along the VOT
dimension.

In a study on phonotactic learning, Cristià and Seidl (2008) exposed 7-
month-old infants to CVC words from an artificial language that either had
onsets with segments that formed a natural class (plosives + nasals, which
share the specification ‘−continuant’) or onsets with segments that did not
form a natural class (fricatives + nasals, which do not form a coherent class).
During the test phase, infants listened to words that contained novel plosives
and fricatives, not heard during training. When trained on the natural class,
infants distinguished between words that did or did not conform to the
phonotactic structure of the training language. In contrast, infants trained on
the incoherent class were not able to distinguish legal from illegal test items.
In a control experiment, they showed that the difference in learning difficulty
was not to due an inherent difference between plosives and fricatives. These
results provide evidence that infants learn phonotactic constraints which are
more general than the specific segments that were used during training, and
support the view that infants represent phonotactic generalizations at the level
of phonological features.

These studies raise the question of how such features could become avail-
able to infants. Specifically, features could either be innate, or learned from
exposure to the native language. It should be noted that features are not
necessarily innate (e.g., Mielke, 2008). Abstract phonological features have
acoustic and perceptual correlates in the speech signal (e.g., Stevens, 2002),
which is an important prerequisite if one wants to argue that features can be
learned from input data. In addition, while the traditional function of features
in phonological theory has been to distinguish the meanings of words in the
lexicon (e.g., the words pet and bet are distinguished by the feature voice),
attempts have been made to induce abstract features from raw acoustic input
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data (Lin & Mielke, 2008). This indicates the possibility of acquiring features
before the lexicon is in place.

1.4.3 Towards a unified account of infant learning mechanisms

Statistical learning allows the learner to accumulate frequency data (condi-
tional probabilities) over observed input. A second mechanism, generalization,
allows the learner to abstract away from the observed input, leading to the
formation of categories, patterns, and grammars. While the importance of
both learning mechanisms for language acquisition has been widely acknowl-
edged (Endress & Mehler, 2009; Gómez & Gerken, 1999; Marcus et al., 1999;
Peperkamp, Le Calvez, Nadal, & Dupoux, 2006; Toro, Nespor, Mehler, &
Bonatti, 2008; White et al., 2008), surprisingly little is known about how these
two mechanisms, statistical learning and generalization, interact. For example,
how can statistical learning provide a basis for the construction of general-
izations? How do generalizations affect the probabilistic knowledge of the
learner? Do the generalizations in any way reflect abstract constraints that
have been studied in the field of linguistics? Explicit descriptions and analyses
of interactions between statistical learning and generalization would greatly
enhance our understanding of language acquisition.

In addition, while infants’ capacity to use probabilistic phonotactics in
speech segmentation has been demonstrated (Mattys & Jusczyk, 2001b), it
is not clear whether infants also use phonotactic generalizations to discover
words in continuous speech. Although the study by Saffran and Thiessen
explores this possibility by presenting infants with a segmentation task after
familiarization, the authors themselves mention that the infants may have
applied the patterns that were induced during familiarization to the test items
directly, i.e. regardless of the segmentation task (Saffran & Thiessen, 2003,
p.487). Infants’ use of phonotactic generalizations in speech segmentation
thus remains to be demonstrated. This dissertation addresses this issue
indirectly by determining the potential use of such generalizations. That
is, the benefits of both segment-specific and more abstract, feature-based
constraints in speech segmentation will be assessed. The dissertation thus aims
at providing an account of phonotactic learning which includes a role for both
phonotactic probabilities and phonological similarity. The research presented
in this dissertation thereby offers insight into the learning mechanisms and
segmentation strategies that play a role in language acquisition.

A final note concerns the input on which the two mechanisms operate. It
should be stressed that, while the learning of co-occurrence probabilities from
continuous speech has been widely acknowledged, the learning of linguistic
generalizations from continuous speech has not earlier been proposed. In
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fact, there have been studies arguing that generalizations cannot be learned
from continuous speech, and that word boundaries are a prerequisite for the
learning of generalizations (Peña, Bonatti, Nespor, & Mehler, 2002; Toro et al.,
2008). One of the goals of the dissertation is to explore whether phonotactic
generalizations can be based on sublexical regularities in continuous speech
input, rather than on word forms in the lexicon.

1.5 research questions and scientific contribution

The main issue in the dissertation is:

• How do language learners induce phonotactic constraints for speech segmenta-
tion?

This issue will be addressed by proposing a computational model (based on
the Speech-Based Learning hypothesis), and subsequently providing evidence
for the model using simulations involving computational learners, and psy-
cholinguistic experiments involving human learners. The research questions
that form the core of the dissertation are the following:

1. Computational learners

• Can phonotactic constraints be induced from continuous speech using
the mechanisms of statistical learning and generalization?

– What is the role of statistical learning in the induction of phonotactic
constraints?

– What is the role of generalization in the induction of phonotactic con-
straints?

– To what extent do induced constraints resemble the sequential constraints
that have appeared in the traditional phonological literature?

• How do the different learning mechanisms affect the segmentation of
continuous speech?

– Do feature-based generalizations improve the learner’s ability to detect
word boundaries in continuous speech?

2. Human learners

• Do human learners induce phonotactics from continuous speech?

– Do adult participants learn specific (segment-based) constraints from
continuous speech?
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– Do adult participants learn abstract (feature-based) constraints from con-
tinuous speech?

• What kind of phonotactic knowledge is used by human learners for the
segmentation of continuous speech?

– Do adult learners use specific constraints, abstract constraints, or both?

– Do adult learners use constraints induced from the lexicon, or constraints
induced from continuous speech?

Scientific contribution

The dissertation contributes to the general field of cognitive science by taking
an approach to language acquisition which incorporates ideas from both com-
putational linguistics, theoretical linguistics, and psycholinguistics. That is, a
computational model of phonotactic learning is presented which is supported
by psycholinguistic findings, and which produces phonotactic constraints
which have a linguistic interpretation. The dissertation thus combines and
compares the outcomes of computer simulations, linguistic analyses, and
psycholinguistic experiments. The contribution of the dissertation to each of
these different perspectives on language acquisition is briefly specified below.

(i) Contribution to computational linguistics

A computational model of speech segmentation is presented, which can be
applied to transcribed speech corpora. Several segmentation models have
been proposed which make use of probabilistic phonotactics (e.g., Cairns et al.,
1997; Brent, 1999a). The current study complements such studies by adding a
generalization component to the statistical learning of phonotactic constraints
(Chapter 2), and by quantifying the benefits of abstract phonotactic constraints
for speech segmentation (Chapter 3). In addition, the simulations reported
in this dissertation are valuable since they involve fairly accurate representa-
tions of spoken language. While earlier studies typically used orthographic
transcriptions that were transformed into canonical transcriptions using a
phonemic dictionary, the simulations reported in this dissertation involve
speech which has been transcribed to a level which includes variations that
are typically found in the pronunciation of natural speech, such as acoustic
reductions and assimilations.

In order to allow for replication of the findings, and to encourage further
research on phonotactic learning and speech segmentation, a software package
has been created, which has been made available online:
http://www.hum.uu.nl/medewerkers/f.w.adriaans/resources/
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The software can be used to run phonotactic learning and speech segmentation
simulations, as described throughout this dissertation. In addition, it allows
the user to train models on new data sets, with the possibility to use other
statistical measures, thresholds, and a different inventory of phonological
segments and features. The package implements several learning models
(StaGe, transitional probability, observed/expected ratio) and segmentation
models (OT segmentation, threshold-based segmentation, trough-based seg-
mentation). The details of these models are explained in Chapters 2 and 3. The
software package is accompanied by a manual which explains the user-defined
parameters, and explains how the model can be applied to new data sets (see
Appendix A).

(ii) Contribution to theoretical linguistics

The dissertation provides a learnability account of phonological constraints,
rather than assuming innate constraints. While most previous accounts of
phonotactic learning defined the learning problem as finding the appropri-
ate ranking for a universal set of constraints (e.g., Tesar & Smolensky, 2000;
Prince & Tesar, 2004), the learning model presented here learns the constraints
themselves, as well as their rankings. The research thereby adds to a growing
body of research which aims at minimizing the role of Universal Grammar
in phonological acquisition, while still acknowledging the existence of ab-
stract representations and constraints (‘constraint induction’; e.g., Hayes, 1999;
Albright & Hayes, 2003; Hayes & Wilson, 2008). The induction approach is
demonstrated in a case study on the induction of OCP-Place, a phonolog-
ical constraint restricting the co-occurrence of consonants sharing place of
articulation across intervening vowels (Chapter 4).

An important difference with earlier models of constraint induction is that
the proposed model is unsupervised. Previous models have been based on in-
ducing the phonotactic structure of words from actual forms (lemmas, onsets)
in the lexicon (e.g., Albright, 2009; Hayes & Wilson, 2008), which is a case of
supervised learning. Since it is assumed that the learner has not yet acquired
a lexicon (or that the learner’s lexicon is too small to support the learning of
phonotactic constraints), the learner has no way of determining how good, or
useful, the resulting generalizations will be. In contrast, supervised models
induce phonotactic constraints through evaluation of the accuracy of general-
izations with respect to the lexicon. The unsupervised approach results in a
constraint induction model for the initial stages of language acquisition.
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(iii) Contribution to psycholinguistics

Focusing on human speech-based learning capacities, the dissertation investi-
gates whether human learners can induce novel phonotactic constraints from
continuous speech (Chapter 5). This issue is addressed in a series of artificial
language learning (ALL) experiments with adult participants. The learning
conditions of these experiments present a greater challenge to participants
than in earlier studies. The ALL experiments contribute to earlier phonotactic
learning experiments (e.g., Onishi, Chambers, & Fisher, 2002) by presenting
participants with a continuous speech stream, rather than with isolated words.
The experiments contribute to earlier speech-based learning experiments (e.g.,
Bonatti, Peña, Nespor, & Mehler, 2005; Newport & Aslin, 2004) by presenting
participants with artificial languages that display relatively small differences
in ‘within-word’ and ‘between-word’ consonant transitional probabilities. In
addition, the languages contain randomly inserted vowels, and thus do not
contain reoccurring word forms. Learners’ ability to learn the phonotactic
structure of these languages is evaluated by testing for generalization to novel
words (which had not occurred in the familiarization stream). A side issue
of interest is that the experiments add to a growing body of experimental
research demonstrating a large influence of the native language phonotactics
on the segmentation of a novel speech stream (Boll-Avetisyan & Kager, 2008;
Finn & Hudson Kam, 2008; Onnis, Monaghan, Richmond, & Chater, 2005).

1.6 overview of the dissertation

Chapter 2: A computational model of phonotactic learning and segmentation

This chapter introduces the OT segmentation model, which is a modified
version of Optimality Theory, and which is used for regulating interactions
between phonotactic constraints in speech segmentation. The constraint
induction model, StaGe, provides an account of how language learners
could induce phonotactic constraints from continuous speech. The model
assumes that the learner induces biphone constraints through the statistical
analysis of segment co-occurrences in continuous speech (Frequency-Driven
Constraint Induction, FDCI), and generalizes over phonologically similar
biphone constraints to create more general, natural class-based constraints
(Single-Feature Abstraction, SFA).

FDCI employs two statistical thresholds (on the observed/expected ratio) to
distinguish between high and low probability phonotactics. High probability
biphones trigger the induction of a contiguity constraint (Contig-IO(xy))
which states that the biphone should be kept intact during speech processing.
Conversely, low probability biphones result in the induction of a markedness
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constraint (*xy), which states that the biphone should be broken up through
the insertion of a word boundary. No constraints are induced for biphones
that have neutral probability (more formally, observed ≈ expected).

SFA inspects the similarity between biphone constraints, which is quanti-
fied as the number of shared phonological feature values. In case of a single
feature difference between constraints, the learner constructs a more general
constraint which disregards this feature. The result is that the generalizations
cover sequences of natural classes rather than sequences of specific segments.
The main benefit for the learner is that the abstract constraints make a segmen-
tation statement about biphones of neutral probability. Phonological similarity
thus complements statistical learning in speech segmentation. As a result
of (over-)generalization, conflicts arise between markedness and contiguity
constraints. Such conflicting segmentation predictions are resolved by numeri-
cally ranking the constraints and evaluating constraint violations according to
the principle of strict domination.

A worked out example illustrates how StaGe and the OT segmentation
model together can provide a mapping from continuous speech to segmented
speech through the induction of phonotactic constraints. The chapter shows
that phonotactic constraints can be learned from continuous speech in a
psychologically motivated and formally explicit way. The examples show that
the model has a straightforward linguistic interpretation.

Chapter 3: Simulations of segmentation using phonotactics

This chapter addresses the ability of StaGe to detect word boundaries in
continuous speech. Specifically, the question whether feature-based general-
izations improve the segmentation performance of the learner is addressed in
a series of computer simulations. The simulations address the induction of
native language (henceforth, L1) Dutch constraints on biphone occurrences.
Different learning models are evaluated on transcriptions of Dutch continuous
speech. The crucial comparison is between StaGe, which acknowledges a
role for both statistical learning and generalization, and segmentation mod-
els which rely solely on statistical learning. Experiment 1 compares the
segmentation performance of StaGe to statistical learning models that use
threshold-based segmentation. Experiment 2 tests a wide range of statistical
thresholds for both StaGe and the statistical learning models. Experiment
3 compares the segmentation performance of StaGe to statistical learning
models that use trough-based segmentation. All three experiments zoom in on
the complementary roles of statistical learning and generalization, addressing
both the need for statistical thresholds and the need for generalization. Finally,
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Experiment 4 shows how the model’s segmentation performance develops as
a function of input quantity.

The main finding of Experiments 1-3 is that StaGe outperforms purely
statistical models, indicating a potential role for phonotactic generalizations in
speech segmentation. The experiments also show that the induction thresholds
are necessary to create a good basis for the construction of phonotactic gener-
alizations. That is, generalization only improves segmentation performance
when a reliable distinction between high and low probability phonotactics is
made. Experiment 4 shows that the learning of contiguity constraints precedes
the learning of markedness constraints. That is, the model learns where not
to put boundaries first, and later learns where to put boundaries. This finding
is in line with developmental studies showing that infants under-segment:
They learn larger (proto-)words first, which are later broken down into smaller
word chunks.

Taken together, the experiments provide support for the Speech-Based
Learning hypothesis, in which phonotactic learning facilitates the development
of the mental lexicon, rather than vice versa. The simulations show that
segmentation benefits from both abstract and specific constraints.

Chapter 4: Modeling OCP-Place and its effect on segmentation

This chapter addresses two issues: (i) To what extent can the model induce
constraints which have been proposed in theoretical phonology? (ii) To what
extent can the model account for human segmentation behavior? The chapter
provides an important contribution to the dissertation by looking at the lin-
guistic relevance of the constraints that are learned through generalization,
and by looking at the psychological plausibility of those constraints. Specif-
ically, it is investigated whether StaGe can provide a learnability account
of an abstract phonotactic constraint which has been shown to affect speech
segmentation: OCP-Place. OCP-Place is a phonological constraint which
states that sequences of consonants sharing place of articulation should be
avoided. The chapter connects to the work of Boll-Avetisyan and Kager (2008)
who show that OCP-Place affects the segmentation of continuous artificial
languages by Dutch listeners.

Due to the underrepresentation of several specific labial-labial pairs (across
vowels), the model induces feature-based generalizations which cause a gen-
eral avoidance of labial-labial pairs. However, the constraint set does not
exactly mimic the predictions of OCP-Place. Two studies address how well
the learned constraint set reflects Dutch listeners’ phonotactic knowledge
of non-adjacent consonant dependencies. It was found that generalization
improves the fit to the human segmentation data of Boll-Avetisyan and Kager
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(2008), as compared to models that rely exclusively on consonant probabilities
(Experiment 1). Since the approach also outperforms a single, pre-defined
OCP-Place, the results suggest that the success of the approach can be at-
tributed to the mix of specific and abstract constraints. In addition, it was
found that a continuous-speech-based learner has a comparable fit to the
human data to a learner based on word types (Experiment 2). Again, the
success of both models can be attributed to the mixture of specific and general
constraints. Interestingly, a token-based learner fails, regardless of the specific
threshold configuration that is used.

The chapter provides the second piece of evidence (in addition to the
simulations in Chapter 3) that feature-based generalization plays a role in
segmentation. More specifically, the simulations of human segmentation data
provide additional evidence that segmentation involves both abstract and
specific constraints. It is again demonstrated that continuous utterances could
be used by learners as a valuable source of input for phonotactic learning.
The SBL hypothesis is thus supported by an account of human segmentation
behavior.

Chapter 5: The induction of novel phonotactics by human learners

Building on the assumptions and findings from Chapter 4, the SBL hypoth-
esis is tested with human participants. Specifically, the chapter investigates
whether human learners can learn novel phonotactic structures from a contin-
uous speech stream. Using the artificial language learning (ALL) approach,
the chapter provides a more direct test for the psychological plausibility of the
phonotactic learning approach. In addition, the chapter provides a test for the
assumption that learners can induce phonotactic constraints on consonants
across intervening vowels from continuous speech.

Continuous artificial languages are constructed in such a way that they
exhibit both statistical and phonological structure. Experiment 1 is an attempt
to extend earlier studies to a case involving more word frames, more words,
and smaller differences in TP, but with greater phonological similarity. The
test phase focuses on the statistical learning component. Experiment 2 drops
the notion of ‘word’ altogether (by using randomly selected vowels), thereby
focusing on purely phonotactic learning, rather than word learning. The
experiment tests for generalization to novel ‘words’ with the same phonotactic
(consonant) structure. Finally, Experiment 3 tests whether human participants
perform feature-based generalization on top of the statistical learning of
consonant dependencies. The experiment tests for generalization to novel
segments from the same natural class.
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Experiment 1 shows a large influence of L1 phonotactics on artificial
language segmentation. While this finding is in line with the findings from
Chapter 4, it hinders the induction of novel phonotactic constraints. That is, no
learning effect is found. Experiment 2 shows that, when carefully controlling
for L1 factors, human learners can indeed learn novel phonotactics from
continuous speech. The significant learning effect gives direct support for
the SBL learning hypothesis: It shows phonotactic learning from continuous
speech (i.e., without referring to a lexicon). In addition, it provides additional
evidence for the learning of phonotactic constraints across intervening vowels.
Furthermore, the experiment demonstrates learners’ capacity to generalize
phonotactics, learned from continuous speech, to novel words. This indicates
that the acquired phonotactic knowledge is represented outside of the mental
lexicon, and is therefore not merely a by-product of word forms in the lexicon.
Whereas the results of Chapter 4 could also be explained by a type-based
learner, the results in Experiment 2 cannot be attributed to lexicon-based
learning. Experiment 3, however, failed to provide evidence for feature-based
generalization to novel segments. Possible explanations for this null result are
discussed.

Chapter 6: Summary, discussion, and conclusions

The final chapter summarizes the main points of the dissertation, critically
assesses the findings, and provides suggestions for future work in this area.
The main accomplishment of the dissertation is the demonstration that phono-
tactics can be learned from continuous speech by combining mechanisms that
have been shown to be available to infant and adult language learners. To-
gether, the mechanisms of statistical learning and generalization allow for the
induction of a set of phonotactic constraints with varying levels of abstraction,
which can subsequently be used to successfully predict the locations of word
boundaries in the speech stream. In doing so, the model provides a better
account of speech segmentation than models that rely solely on statistical
learning. This result was found consistently throughout the dissertation, both
in computer simulations and in simulations of human segmentation data. With
respect to human learning capacities, the dissertation shows that participants
can learn novel segment-based phonotactic constraints from a continuous
speech stream from an artificial language. By combining computational mod-
eling with psycholinguistic experiments, the dissertation contributes to our
understanding of the mechanisms involved in language acquisition.
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2

A C O M P U TAT I O N A L M O D E L O F
P H O N O TA C T I C L E A R N I N G A N D
S E G M E N TAT I O N

1

In this chapter a computational model is proposed for the induction of phono-
tactics, and for the application of phonotactic constraints to the segmentation
of continuous speech. The model uses a combination of segment-based statis-
tical learning and feature-based generalization in order to learn phonotactic
constraints from transcribed utterances of continuous speech. The constraints
are interpreted in a segmentation model based on the linguistic framework
of Optimality Theory (OT). In Section 2.1, an overview is given of previous
work on computational modeling of speech segmentation and phonotactic
learning. Section 2.2 presents the OT segmentation model, which formalizes
how phonotactic constraints can be used to detect word boundaries in con-
tinuous speech. The learning model, StaGe, is presented in Section 2.3. A
worked out example in Section 2.4 illustrates the types of constraints that are
learned by the model. Finally, some implications of the model are discussed
in Section 2.5.2

2.1 introduction

Computational models of speech segmentation are typically trained and tested
on transcribed utterances of continuous speech. The task of the model is either
to learn a lexicon directly, through the extraction of word-like units, or to
learn to predict when a word boundary should be inserted in the speech
stream. Here the latter task will be discussed, focusing on models that
learn phonotactics in order to detect word boundaries in continuous speech.
(For more general overviews of computational models of segmentation, see
Batchelder, 2002; Brent, 1999b.) Various segmentation models have been
proposed that make use of either phonotactics based on utterance boundaries
(Brent & Cartwright, 1996), or phonotactics based on sequence probabilities
(e.g., Cairns et al., 1997).

1 Sections of this chapter were published in: Adriaans, F., & Kager, R. (2010). Adding generalization
to statistical learning: The induction of phonotactics from continuous speech. Journal of Memory
and Language, 62, 311-331.

2 The model can be downloaded from:
http://www.hum.uu.nl/medewerkers/f.w.adriaans/resources/
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2.1.1 Models of speech segmentation using phonotactics

Brent and Cartwright (1996) propose that phonotactic constraints can be
learned through inspection of consonant clusters that appear at utterance
boundaries. The model is based on the observation that clusters at the edges
of utterances are necessarily also allowed at the edges of words. Their segmen-
tation model evaluates candidate utterance parsings using a function based on
Minimum Representation Length (MRL). The phonotactic constraints act as a
filter to eliminate utterance parsings which would produce phonotactically
ill-formed words. A disadvantage of this approach is that it is based on
categorical phonotactics. That is, a cluster is either allowed or not, based on
whether it occurs at least once at an utterance boundary. As a consequence,
the approach is rather vulnerable to occurrences of illegal clusters at utterance
edges (which may occur as a result of acoustic reductions). In general, cate-
gorical phonotactics fails to make a prediction in cases of ambiguous clusters
in the speech stream, since such clusters have multiple phonotactically legal
interpretations. Moreover, infants have been demonstrated to use sequential
phonotactic probabilities to segment speech (Mattys et al., 1999; Mattys &
Jusczyk, 2001b). An approach based on categorical phonotactics derived from
utterance boundaries therefore at best only provides a partial explanation of
infants’ knowledge of phonotactics. (See Daland, 2009, for a more promising,
probabilistic approach to using utterance boundaries for segmentation.)

Models that rely on sequential phonotactic cues either explicitly implement
segment co-occurrence probabilities (e.g., Brent, 1999a; Cairns et al., 1997),
or use neural networks to learn statistical dependencies (Cairns et al., 1997;
Christiansen, Allen, & Seidenberg, 1998; Elman, 1990). Two different inter-
pretations exist with respect to how co-occurrence probabilities affect speech
segmentation (Rytting, 2004). Saffran, Newport, and Aslin (1996) suggest that
word boundaries are hypothesized at troughs in transitional probability. That
is, a word boundary is inserted when the probability of a bigram is lower
than those of its neighboring bigrams. This trough-based segmentation strategy
thus interprets bigram probabilities using the context in which the bigram
occurs. Computational models have shown this interpretation to be effective
in segmentation (e.g., Brent, 1999a). A trough-based approach, however, is
not capable of extracting unigram words, since such words would require
two adjacent local minima (Rytting, 2004; Yang, 2004). The implication is
that the learner is unable to discover monosyllabic words (Yang, 2004, for
syllable-based statistical learning) or single-phoneme words (Rytting, 2004,
for segment-based statistical learning).

Studies addressing the role of probabilistic phonotactics in infant speech
segmentation (e.g., Mattys & Jusczyk, 2001b) indicate that the probability
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of a bigram can also affect speech segmentation directly, i.e. regardless of
neighboring bigrams. The interpretation of probabilities in isolation has been
modeled either by inserting boundaries at points of low probability (Cairns et
al., 1997; Rytting, 2004), or by clustering at points of high probability (Swingley,
2005). In both cases the learner relies on a threshold on the probabilities in
order to determine when a boundary should be inserted, or when a cluster
should be formed. This threshold-based segmentation strategy gives rise to
a new problem for the learner: How can the learner determine what this
threshold should be? Although the exact value of such a statistical threshold
remains an open issue, it will be argued in Section 2.3 that a classification of
bigrams into functionally distinct categories can be derived from the statistical
distribution.

While the relevance of segment co-occurrence (‘biphone’) probabilities
for segmentation is well-established, the potential relevance of more abstract,
feature-based constraints in segmentation has not been explored in previous
segmentation models.3 The model presented in this chapter complements
previous modeling efforts by adding a generalization component to the sta-
tistical learning of phonotactic constraints. The existence of such general
(‘abstract’) constraints is widely accepted in the field of phonology. However,
the link to psycholinguistically motivated learning mechanisms, such as sta-
tistical learning and generalization, has not been made, and the learning of
phonotactic constraints from continuous speech has not been explored. In
fact, constraints in linguistic frameworks such as Optimality Theory (Prince &
Smolensky, 1993) are typically assumed to be innate (as a part of Universal
Grammar). An increasing number of phonological studies, however, have
assumed that constraints are not innate, but rather that constraints have to be
learned (Albright, 2009; Boersma, 1998; Hayes, 1999; Hayes & Wilson, 2008). In
this view, learning constraints from experience is an essential part of language
acquisition.

2.1.2 Models of constraint induction

Recent work in phonology has focused on the induction of phonotactic con-
straints, either from articulatory experience (Hayes, 1999), or from statistical
regularities in the lexicon (e.g., Hayes & Wilson, 2008). These models reduce
Universal Grammar to a given set of phonological features, and a fixed format
of phonotactic constraints. The constraints themselves are induced by training
the model on input data. Hayes (1999) proposes that learners can construct

3 A study by Cairns et al. (1997) used a Simple Recurrent Network with feature-based input
representations. However, their feature-based network did not perform better than a model
based on simple biphone probabilities. The study thus provides no evidence that feature-based
generalizations improve segmentation performance, as compared to segment-based probabilities.
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phonological constraints on the basis of experienced phonetic difficulty in
perceiving and producing sounds. That is, the child gets feedback from her
own production/perception apparatus. The experience is reflected in a map
of phonetic difficulty which is used by the learner to assess possible phono-
tactic constraints. That is, the learner constructs a space of logically possible
constraints with features as primitive elements. These candidate constraints
are then assessed for their degree of phonetic grounding. The result is a set
of phonetically grounded markedness constraints which can be incorporated
into the formal constraint interaction mechanism of Optimality Theory (Prince
& Smolensky, 1993).

Other models have been based on the idea that phonotactic patterns are
abstractions over statistical patterns in the lexicon (Albright, 2009; Frisch et
al., 2004; Hayes & Wilson, 2008; Pierrehumbert, 2003). Hayes and Wilson
(2008) propose a model in which phonotactic constraints are selected from a
constraint space (provided by Universal Grammar), and are assigned weights
according to the principle of maximum entropy. Specifically, constraints are
selected according to the accuracy of the constraint with respect to the lexicon
of the native language, and according to the generality of the constraint. It
should be noted that the generalizations in the models by Hayes (1999) and
Hayes and Wilson (2008) are constructed before the learner is presented with
any input. That is, all logically possible generalizations are a priori represented
as candidate constraints.

A different approach to the construction of generalizations is taken in
models by Albright and Hayes (2002, 2003) and Albright (2009). These models
gradually build up more abstract constraints through Minimal Generalization
(MG) over processed input data, rather than basing generalizations on a pre-
given set of constraints. The learner abstracts over sequences of segments and
extracts the shared phonological features to construct a new generalization.
The procedure is minimal in the sense that only shared feature values are
used for the construction of generalizations, thus avoiding overgeneralizations
which are not supported by the data.

From a cognitive point of view, a learning mechanism that constructs
generalizations as a response to input data (such as in Albright & Hayes, 2002,
2003) seems more plausible as a model of infant learning than a mechanism
that operates on a space of logically possible constraints (such as in Hayes &
Wilson, 2008). The model that is proposed in Section 2.3 therefore takes an
approach to the construction of phonotactic generalizations which is similar
to MG. That is, generalizations are constructed on the basis of similarities in
the input. The model needs no a priori abstractions, since it generalizes over
statistically learned biphone constraints. The model is also similar to MG in the
sense that similarity is quantified in terms of shared phonological features. As
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a result, generalizations affect natural classes, rather than individual segments.
In line with previous induction models, the model presented in this chapter
works with a set of phonological features that is given to the learner prior to
phonotactic learning. It is currently an open issue whether these features are
innate or learned from the acoustic speech stream (see e.g., Lin & Mielke, 2008).
Regardless of the origin of phonological features, it will be assumed here that
features are available for the construction of phonotactic generalizations.

An important difference with earlier models of constraint induction is that
the model presented in this chapter is unsupervised. While earlier induction
models learn by evaluating the accuracy of generalizations with respect to
the lexicon (which is a case of supervised learning), it is assumed here that
the learner has not yet acquired a lexicon, or that the learner’s lexicon is too
small to support the learning of phonotactic constraints. In fact, the proposal
is that the learner uses phonotactic generalizations, learned from continuous
speech, as a source of knowledge to extract words from the speech stream.
Therefore, the learner has no way of determining how good, or useful, the
resulting generalizations will be. The unsupervised approach to learning
generalizations is another step in the direction of a cognitively plausible
model of phonotactic learning, especially for the case of phonotactic learning
by infants.

Modeling phonotactic constraints for speech segmentation requires the
formalization of both a learning model, accounting for the constraints, and
a segmentation model, explaining how the constraints are used to predict
the locations of word boundaries in the speech stream. Before describing
the learning model, StaGe (Statistical learning and Generalization), a for-
mal model will be presented for the interpretation of constraints in speech
segmentation. Note that no earlier formal models of speech segmentation
have been proposed which use abstract constraints. The segmentation model
thus opens up the possibility of modeling abstract phonotactic constraints for
speech segmentation.

2.2 the ot segmentation model

The proposal is to use a modified version of Optimality Theory (OT, Prince &
Smolensky, 1993) for regulating interactions between phonotactic constraints
in speech segmentation. Optimality Theory is based on the idea that linguistic
well-formedness is a relative notion, as no form can possibly meet all demands
made by conflicting constraints. The optimal form is one which best satisfies
a constraint set, taking into account the relative strengths of the constraints,
which is defined by a strict ranking. In order to select the optimal form,
a set of candidate forms is first generated. This candidate set contains all
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logically possible outputs for a given input. All candidates are evaluated
by the highest-ranked constraint. Candidates that violate the constraint are
eliminated; remaining candidates are passed on to the next highest-ranked
constraint. This assessment process goes on until only one candidate remains.
This is the optimal form. The optimal form thus incurs minimal violations
of the highest-ranked constraints, while taking any number of violations of
lower-ranked constraints for granted. This principle of constraint interaction
is known as strict domination.

The version of OT that is adopted here retains the assumptions of constraint
violability and strict domination, but is otherwise quite different. Whereas
OT learners have the task of learning the appropriate ranking for an a priori
given set of constraints, the task of our learner is (i) to learn the constraints
themselves, as well as (ii) to rank these constraints. Crucially, the OT segmen-
tation model does not employ a universal constraint set (‘CON’) that is given
to the learner. Rather, constraints are induced by employing the mechanisms
of statistical learning and generalization (cf., Hayes, 1999; Hayes & Wilson,
2008).

The constraint ranking mechanism in our model is also fundamentally
different from mechanisms employed in earlier OT learners (in particular, the
Constraint Demotion Algorithm, Tesar & Smolensky, 2000; and the Gradual
Learning Algorithm, Boersma, 1998; Boersma & Hayes, 2001). Rather than
providing the learner with feedback about optimal forms, i.e. segmented
utterances, our model assumes unsupervised constraint ranking, since the
input to the learner consists exclusively of unsegmented utterances. Each
constraint is accompanied by a numerical ranking value, which is inferred by
the learner from the statistical distribution, and which expresses the strength
of the constraint (see also, Boersma & Hayes, 2001; Boersma, Escudero, &
Hayes, 2003).

Finally, note that, although the OT segmentation model is based on strict
constraint domination, one could conceive of other constraint interaction
mechanisms (such as constraint weighting in Harmonic Grammar, Legendre,
Miyata, & Smolensky, 1990) to segment the speech stream. That is, the
numerical values of the induced constraints are not committed to the specific
interpretation of strict domination. The issue of how the choice of constraint
interaction mechanism would affect performance of the model remains open.
For the current study, strict domination at least offers a useful mechanism to
regulate the interaction between constraints in speech segmentation.

The OT segmentation model is illustrated in Figure 2.1. The learner
processes utterances of continuous speech through a biphone window. That
is, for each biphone in the utterance, the learner needs to decide whether a
boundary should be inserted or not. Input to the OT segmentation model
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Candidate set  
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Figure 2.1: The OT segmentation model. The model is presented
with biphones in isolation (xy-sequences), or embedded in context
(wxyz-sequences). Segmentation candidates indicate possible boundary
locations. The candidate set is {xy, x.y} for biphones in isolation, and
{wxyz, w.xyz, wx.yz, wxy.z} for biphones in context. Candidates are
evaluated using the phonotactic constraint set. A boundary is inserted
into the speech stream if the constraint set favors segmentation of a
biphone (i.e., if x.y or wx.yz is the optimal candidate).

consists of biphones, either presented to the model in isolation (xy-sequences;
see Chapter 3 – Experiments 1, 2, and 4), or embedded in context (wxyz-
sequences; see Chapter 3 – Experiment 3). In the latter case, the learner
inspects not just the current biphone under consideration (xy), but also its
immediate neighbors (wx and yz) when making a segmentation decision for
the current biphone.

Segmentation candidates are generated which are possible interpretations
of the input sequence. This is implemented using a very simple version
of OT’s candidate generator (GEN): Each candidate contains either a word
boundary at one of the possible boundary locations, or no boundary at all. For
biphones in isolation, two candidates are generated: xy and x.y. For biphones
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in context, the candidates are: wxyz, w.xyz, wx.yz, and wxy.z. Candidates
are evaluated using the constraint set, which contains induced, numerically
ranked constraints. A boundary is inserted into the speech stream whenever
the constraint set favors segmentation of the current biphone under inspection.
For the case of biphones in isolation, this means that a boundary is inserted
whenever x.y is the optimal candidate (i.e., it is preferred over xy). For the
case of biphones embedded in context, a boundary is inserted whenever wx.yz
is the optimal candidate (i.e., it is preferred over wxyz, w.xyz, and wxy.z).
If multiple candidates remain active after inspection of the constraint set, a
winner is chosen at random.

2.3 the learning model: stage

StaGe (Statistical learning and Generalization) learns specific and abstract
phonotactic constraints, as well as ranking values for those constraints, from
continuous speech. The model keeps track of biphone probabilities in the
input (statistical learning). Biphone probabilities trigger the induction of
segment-specific constraints whenever the probabilities reach a specified
threshold. These thresholds capture the distinction between high- and low-
probability phonotactics. The learner interprets low-probability biphones as
likely positions for word boundaries. Conversely, the learner interprets high-
probability biphones as unlikely positions for word boundaries. The learner
thus infers the likelihood of word boundaries from segment co-occurrence
probabilities in continuous speech; a process which will be referred to as
Frequency-Driven Constraint Induction.

The learner constructs generalizations whenever phonologically similar
biphone constraints (of the same phonotactic category, i.e., ‘high’ or ‘low’
probability) appear in the constraint set. Similarities are quantified as the
number of shared values for phonological features. In case of a single-feature
difference between constraints, the learner abstracts over this feature, and
adds the generalization to the constraint set; this will be referred to as Single-
Feature Abstraction. The abstract constraints affect sequences of natural
classes, rather than sequences of specific segments. In addition to learning
constraints, the learner infers ranking values from the statistical distribution.
These ranking values determine the strength of the constraint with respect to
other constraints in the constraint set.

The general architecture of the model is illustrated in Figure 2.2. Below,
the main components of StaGe (i.e., statistical learning, Frequency-Driven
Constraint Induction, and Single-Feature Abstraction) are discussed in more
detail.
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Figure 2.2: The architecture of StaGe. The learner builds up a statis-
tical distribution (Statistical learning) from which biphone constraints
are induced which either favor or restrict the occurrence of a biphone
(Frequency-Driven Constraint Induction). Generalizations are con-
structed whenever phonologically similar constraints appear in the
constraint set (Single-Feature Abstraction).

2.3.1 Statistical learning

Following many psycholinguistic studies StaGe implements a statistical learn-
ing mechanism. In this case statistical learning expresses how likely it is that
two segments co-occur in continuous speech. The most well-known formula
implementing such statistical dependencies is transitional probability (e.g.,
Saffran, Newport, & Aslin, 1996; Newport & Aslin, 2004):

TP(xy) =
Prob(xy)

ΣProb(xY)
(2.1)
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where Y can be any segment following x. However, as several authors have
noted (e.g., Aslin et al., 1998; Perruchet & Peereman, 2004), there exists a
variety of formulas that can be used to model statistical learning. StaGe im-
plements a slightly different measure of co-occurrence probability, the ob-
served/expected (O/E) ratio (Pierrehumbert, 1993):

O(xy)
E(xy)

=
Prob(xy)

ΣProb(xY) · ΣProb(Xy)
(2.2)

where Y can be any segment following x, and X can be any segment preceding
y. A third, closely related measure is mutual information (MI), which corre-
sponds to the log2 value of the observed/expected ratio, and which has been
used in several computational segmentation studies (Brent, 1999a; Rytting,
2004; Swingley, 2005). The difference between transitional probability and
observed/expected ratio (or MI) is the direction of the statistical dependency
(Brent, 1999a). Transitional probability expresses a distribution over all ele-
ments (y ∈ Y) that follow a certain element x. In contrast, observed/expected
ratio is a bidirectional dependency, expressing the likeliness of two elements
co-occuring. Recent studies have shown that infants and adults can also com-
pute backward transitional probabilities (Pelucchi et al., 2009a; Perruchet &
Desaulty, 2008). Learners thus possibly compute both forward and backward
probabilities, or perhaps compute a single bidirectional measure. In earlier
computational studies, the choice of formula had little impact on the out-
come (Brent, 1999a; Swingley, 1999), although Brent (1999a) found somewhat
better performance for mutual information than for transitional probability.
StaGe uses the O/E ratio, because this measure has been used in earlier
studies on phonotactics (Pierrehumbert, 1993; Frisch et al., 2004), and it has a
straightforward interpretation in terms of phonotactic constraints (see below).

2.3.2 Frequency-Driven Constraint Induction

StaGe classifies probabilities obtained through statistical learning into three
distinct categories: ‘low probability’, ‘high probability’, and ‘neutral proba-
bility’. Such a categorization follows from the statistical distribution. The
O/E ratio, for example, expresses whether a biphone is underrepresented or
overrepresented in continuous speech. That is, biphones occur either more or
less often than would be expected on the basis of the occurrence frequencies
of the individual segments.

Biphones that occur more often than expected are considered ‘high proba-
bility’ biphones (overrepresentations) by the learner. In speech segmentation,
the learner tries to keep high-probability biphones intact. This is done through
the induction of a phonotactic constraint, which states that no boundary
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should be inserted (a ‘contiguity’ constraint, see McCarthy & Prince, 1995;
Trubetzkoy, 1936):

(2.3) Contig-IO(xy) ‘Sequence xy should be preserved.’

In contrast, ‘low probability’ biphones (underrepresentations) are likely to
contain word boundaries. For this phonotactic category, the learner induces
a constraint that favors the insertion of a word boundary (a ‘markedness’
constraint, stating which sequences are not allowed in the language):

(2.4) *xy ‘Sequence xy should not occur.’

Markedness and contiguity constraints thus represent two opposing forces
in speech segmentation, both of which are derived directly from the statistical
distribution. Contiguity constraints exert pressure towards preservation of
high-probability biphones, whereas markedness constraints exert pressure
towards the segmentation of low-probability biphones. When interpreted
within the framework of OT, a contiguity (or markedness) constraint says that
the insertion of a word boundary should be avoided (or enforced), whenever
possible (that is, unless some other, higher-ranked constraint would require
otherwise).

The strength of a constraint is expressed by its expected frequency (E(xy)).
Since the expected frequency of a biphone is defined as the product of indi-
vidual segment probabilities, the strength of a constraint is in fact determined
by the frequencies of its segment constituents. If two phonemes, in spite of
their high frequencies in isolation, seldom occur in conjunction, then there
is a strong constraint restricting their co-occurrence (that is, a highly ranked
markedness constraint). Similarly, if two frequent segments occur much
more often than expected, then there is a strong constraint favoring the co-
occurrence of these phonemes (that is, a highly ranked contiguity constraint).
The ranking value (r) of a markedness or contiguity constraint is thus based
on the same statistical measure:

r = E(xy) = ΣProb(xY) · ΣProb(Xy) (2.5)

The third category concerns biphones of ‘neutral’ probability, whose ob-
served frequency is equal to their expected frequency. Such biphones provide
the learner with no phonotactic information (which is reflected in the corre-
sponding mutual information value, which is zero in these cases). Therefore,
on the basis of the statistical distribution the learner has no reason to induce
either type of constraint for such biphones. In a real-life setting, however,
the observed frequency will never exactly match the expected frequency. The
classification of biphones on the basis of their statistical values is illustrated in
Table 2.1. StaGe induces contiguity constraints for biphones whose observed
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Table 2.1: Classification of biphones according to their statistical values.

Category O/E ratio MI Interpretation Constraint

low O(xy) � E(xy) MI(xy) � 0 Pressure towards *xy
segmentation

high O(xy) � E(xy) MI(xy) � 0 Pressure towards Contig-IO(xy)
contiguity

neutral O(xy) ≈ E(xy) MI(xy) ≈ 0 No pressure –

frequency is substantially higher than their expected frequency. In contrast,
markedness constraints are induced for biphones with a much lower observed
frequency than expected. Finally, no constraints are induced for biphones
which carry little probabilistic information.

The decision of when exactly to induce a constraint can be modeled by
setting thresholds on the probabilities. Two parameters are introduced in
the model: a threshold for the induction of markedness constraints (tM),
and a threshold for the induction of contiguity constraints (tC). Introducing
these parameters raises an important issue: How do these thresholds become
available to the learner? Are they fixed values, possibly due to biological
factors? Or can they be induced from the statistical distribution? Since there
is currently no way of resolving this issue, the thresholds are set manually. As
a first estimation, the notion ‘substantially’ is implemented as a factor-two
deviation from the expected value. That is, a markedness constraint is induced
whenever the observed frequency is less than half of the expected frequency
(tM = 0.5). A contiguity constraint is induced whenever observed is more than
twice the expected frequency (tC = 2.0). A wide range of possible threshold
values is tested in Chapter 3 (Experiment 2).

2.3.3 Single-Feature Abstraction

The categorization of biphones into markedness and contiguity constraints
provides the learner with a basis for the construction of phonotactic gen-
eralizations. Such generalizations state which classes of sound sequences
should in general be segmented, or be kept intact, respectively. The learner
constructs a generalization whenever phonologically similar constraints of the
same category arise in the constraint set. Generalizations are added to the
constraint set, while keeping existing constraints intact.

42



2.3 the learning model : stage

In modeling the unsupervised learning of phonotactic generalizations,
a very basic measure of similarity is implemented, adopting the notion of
‘constraint neighbors’ (Hayes, 1999). Two constraints are said to be neighbors
when they have different values for one single feature only. The following
set of features is adopted: syllabic, consonantal, approximant, sonorant, con-
tinuant, nasal, voice, place, anterior, lateral for consonants, and high, low, back,
round, long, tense, nasalized for vowels (see Appendix B). For example, the
constraints Contig-IO(pl) and Contig-IO(bl) are neighbors, since they have
a single-feature difference (voice in the first segment). Generalization con-
sists of abstracting over these differences: A new constraint is created where
this feature has been neutralized. That is, only shared feature values re-
main. The resulting constraint (e.g., Contig-IO(x ∈{p,b};y ∈{l})) affects a
sequence of natural classes, rather than a sequence of individual segments.
This more general constraint is added to the constraint set. The algorithm is
recursive: The existence of another phonologically similar biphone constraint
that is a neighbor of this abstract constraint would trigger a new general-
ization. In this case, the feature difference between the abstract constraint
(Contig-IO(x ∈{p,b};y ∈{l})) and the biphone constraint (e.g., Contig-IO(br))
is assessed as the total number of different feature values for features that have
not been neutralized in the generalization (e.g., voice has been neutralized in
position x, therefore only the single-feature difference between /l/ and /r/
is taken into account in computing similarity between the two constraints).
Abstraction over the single-feature difference creates an even more general
constraint (Contig-IO(x ∈{p,b};y ∈{l,r})), which is again added to the con-
straint set. This constraint states that any sequence of /p/ or /b/, followed by
/l/ or /r/ (i.e., /pl/, /pr/, /bl/, /br/) should not be broken up by a word
boundary. The model thus creates constraints that have a wider scope than
the specific constraints that cause the construction of the generalization. In
the current example, /pr/ is included in the generalization, while there is
no specific constraint affecting this biphone. No more new generalizations
are created if there are no more biphone constraints from the same constraint
class (markedness or contiguity) within a single-feature difference from this
constraint.

Generalizations are ranked according to the expected frequencies (as de-
fined in formula 2.5) of the biphone constraints that support the generalization,
averaged over the total number of biphones that are affected by the general-
ization. For example, the contiguity constraints Contig-IO(pl), Contig-IO(bl),
and Contig-IO(br) support the generalization Contig-IO(x ∈{p,b};y ∈{l,r})
(in addition to the less general Contig-IO(x ∈{p,b};y ∈{l}) and Contig-
IO(x ∈{b};y ∈{l,r})). While this abstract constraint is based on three statis-
tically induced constraints, it affects a total of four biphones: /pl/, /bl/,
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/br/, /pr/. In this hypothetical example, the fourth biphone, /pr/, does
not support the generalization. This is because the learner did not assign
this biphone to the contiguity category. More formally, it did not pass the
statistical threshold for contiguity constraints (tC), meaning that it was either
assigned to the low-probability category (i.e., *pr), or to the neutral probability
category (in which case no specific constraint was induced for /pr/). There-
fore, the ranking value of the generalization Contig-IO(x ∈{p,b};y ∈{l,r})
is the summed ranking values (i.e., expected frequencies) of Contig-IO(pl),
Contig-IO(bl), and Contig-IO(br), divided by 4. Note that the generalization
would have been given a higher ranking value by the learner if there would
have been a contiguity constraint Contig-IO(pr). In that case, the ranking
value would be calculated as the summed values of Contig-IO(pl), Contig-
IO(bl), Contig-IO(br), and Contig-IO(pr), divided by 4. Generalizations with
stronger statistical support in the constraint category are thus ranked higher
than generalizations with weaker support.

The ranking of constraints based on statistical support within constraint
categories is crucial, since it ensures that statistically induced constraints will
generally be ranked higher than abstracted constraints. This has two important
consequences. The first concerns resolving conflicts between constraints. A
conflict arises whenever a biphone is affected by both a markedness constraint
and a contiguity constraint. In such a case, the markedness constraint favors
segmentation of the biphone, whereas the contiguity constraint favors keeping
the biphone intact. If two constraints are in conflict, the highest ranked
constraint determines the outcome (assuming OT’s strict domination). StaGe’s
constraint ranking allows the learner to represent exceptions to phonotactic
regularities, since such exceptions (i.e., specific constraints) are likely to be
ranked higher than the regularity (i.e., the abstract constraint).

The second, related consequence concerns constraining the generalization
mechanism. StaGe’s single-feature abstraction is unsupervised. Since all
phonological similarities (with recursive single-feature differences) within
a constraint category result in new constraints (which are simply added to
the constraint set without any further consideration), the model is likely to
overgeneralize. However, overly general constraints will have little statistical
support in the data (i.e., relatively few biphone-specific constraints will sup-
port them). Since the numerical ranking of the constraints is based on exactly
this statistical support, overly general constraints will end up at the bottom of
the constraint hierarchy. Thus, general constraints like *CC, Contig-IO(CC),
*CV, etc., are likely to be added to the constraint set, but their impact on
segmentation will be minimal due to their low ranking values. Note that
specific constraints are not by definition ranked higher than more general ones.
Specifically, biphone constraints that are made up of low-frequency segments
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are likely to be outranked by a generalization, since such biphones have low
expected frequencies. The numerical ranking values, which are inferred by the
learner in an unsupervised fashion, thus resolve conflicts between markedness
and contiguity constraints, while constraining generalization at the same time.

As a consequence of generalization, the ‘neutral’ probability biphones
are now likely to be pulled into the class of either markedness or contiguity
constraints. In fact, this may be the main advantage of generalization for the
learner: The middle part of the statistical distribution, where the observed
frequency approximates the expected frequency, consists of values that are
neither high nor low (the ‘neutral’ category in Table 2.1). Biphones in such
a ‘grey’ area carry little probabilistic information. Hence, on the basis of
statistical learning alone, the learner would have to make a guess whether
or not to segment such a biphone, or would have to inspect the values of
neighboring biphones in order to estimate the likelihood of a word boundary.
Alternatively, when our model encounters a statistically neutral biphone dur-
ing segmentation, it can use a more general constraint to determine whether
the biphone should be segmented or not. The advantage for the learner is
thus that biphones for which no reliable statistical information is available
can still be reliably segmented (or be kept intact) due to similarity to other
biphones.

2.4 an example : the segmentation of plosive-liquid sequences

In this section, an illustration is given of how StaGe builds up a constraint set,
and how this constraint set is used in speech segmentation using an example
of plosive-liquid sequences in Dutch. The example is based on a simulation in
which StaGe is applied to consonant clusters (CC biphones) in transcribed
utterances of unsegmented speech in the Spoken Dutch Corpus (Goddijn &
Binnenpoorte, 2003). As a test case, the model is presented with the problem
of predicting word boundaries in the following hypothetical Dutch utterance:

(2.6) dAt lEx Ik zo trYx brurtj@ (‘I’ll put that right back, little brother’)

To the learning infant this sounds like:

(2.7) dAtlExIkzotrYxbrurtj@

The model processes utterances through a biphone window, and is faced with
the task of deciding whether or not a boundary should be inserted for each
biphone in the utterance. At the onset of learning, the learner knows nothing,
and he/she would have to insert boundaries at random. The focus here is on
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The following OT tableaus should be cropped from this document, and saved
as separate files for inclusion as Figures in APA-style paper.

Tableau 1: Segmentation with a specific constraint

Input: tl, tr, br Contig-IO(br)
(r = 344.50)

? tl
? t.l
? tr
? t.r

! br
b.r ∗

Tableau 2: Segmentation with an abstract con-
straint

Input: tl, tr, br Contig-IO(x ∈{p,b,t,d};y ∈{l,r}) Contig-IO(br)
(r = 360.11) (r = 344.50)

! tl
t.l ∗

! tr
t.r ∗

! br
b.r ∗ ∗

Tableau 3: Segmentation with specific and ab-
stract constraints

Input: tl, tr, br *tl Contig-IO(x ∈{p,b,t,d};y ∈{l,r}) Contig-IO(br)
(r = 2690.98) (r = 360.11) (r = 344.50)

tl ∗
! t.l ∗
! tr

t.r ∗
! br

b.r ∗ ∗

1

Figure 2.3: An OT tableau showing segmentation using a single, spe-
cific constraint. The upper left cell contains the input. Segmentation
candidates for the input are listed in the first column. The upper row
shows the induced constraint set, with corresponding ranking values
(r) in parentheses. Ranking is irrelevant at this point, since there is only
one constraint. The star ‘*’ indicates a violation of a constraint by a
segmentation candidate. The index finger ‘+’ indicates the optimal
candidate.

the plosive-liquid sequences in the utterance, representing undecided segmen-
tations as ‘?’:

(2.8) dA t?l ExIkzo t?r Yx b?r urtj@

Through statistical learning the learner builds up a distribution from which
constraints are derived. The learner induces a phonotactic constraint whenever
a biphone passes the threshold for markedness constraints (tM = 0.5), or the
threshold for contiguity constraints (tC = 2.0). For example, the learner
discovers that /br/ is overrepresented in the input (i.e., O(br)

E(br) > 2.0), and
induces Contig-IO(br) with ranking value r = E(br) = 344.50. (For simplicity,
static ranking values are assumed here. However, since ranking values are
derived from expected frequencies, ranking values may change due to changes
in the statistical distribution.) Figure 2.3 shows how this specific constraint
affects segmentation of the plosive-liquid sequences in the utterance, using
the OT segmentation model. The learner decides that no boundary should be
inserted into /br/. With respect to the other sequences, the learner remains
ignorant:

(2.9) dA t?l ExIkzo t?r Yx br urtj@

As a result of multiple specific plosive-liquid overrepresentations in the sta-
tistical distribution, the learner induces multiple similar contiguity constraints:
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The following OT tableaus should be cropped from this document, and saved
as separate files for inclusion as Figures in APA-style paper.

Tableau 1: Segmentation with a specific constraint

Input: tl, tr, br Contig-IO(br)
(r = 344.50)

? tl
? t.l
? tr
? t.r

! br
b.r ∗

Tableau 2: Segmentation with an abstract con-
straint

Input: tl, tr, br Contig-IO(x ∈{p,b,t,d};y ∈{l,r}) Contig-IO(br)
(r = 360.11) (r = 344.50)

! tl
t.l ∗

! tr
t.r ∗

! br
b.r ∗ ∗

Tableau 3: Segmentation with specific and ab-
stract constraints

Input: tl, tr, br *tl Contig-IO(x ∈{p,b,t,d};y ∈{l,r}) Contig-IO(br)
(r = 2690.98) (r = 360.11) (r = 344.50)

tl ∗
! t.l ∗
! tr

t.r ∗
! br

b.r ∗ ∗

1

Figure 2.4: An OT tableau showing segmentation using an abstract
constraint. The upper row shows the induced constraint set, with
corresponding ranking values (r) in parentheses. Constraints are ranked
in a strict domination, shown from left to right. Violation of a higher-
ranked constraint eliminates a candidate. Ranking is irrelevant here,
since the constraints are not in conflict. The index finger ‘+’ indicates
the optimal candidate.

Contig-IO(pl), Contig-IO(pr), Contig-IO(bl), Contig-IO(dr). Through Single
Feature Abstraction the learner infers a general constraint, Contig-IO(x ∈{p,b,
t,d}; y ∈{l,r}) (in addition to less generalized versions of the constraint, which
are not shown in this example). On the basis of statistical support (the specific
contiguity constraints for /br/, /pl/, /pr/, /bl/, and /dr/), the learner calcu-
lates a ranking value for this abstract constraint. Since the constraint affects a
total number of 8 biphones, the ranking value is equal to the summed ranking
values of the 5 contiguity constraints, divided by 8. In this case, the strength
of the constraint is r = 360.11. The effect of the generalization is illustrated in
Figure 2.4. The generalization has substantial strength: It is ranked slightly
higher than the specific constraint for /br/. However, since the constraints
do not make conflicting predictions, their respective ranking has no effect on
segmentation.

Generalization is both helpful and potentially harmful in this case. As
a consequence of generalization, the learner is able to make a decision for
all plosive-liquid sequences in the utterance. That is, no more undecided
segmentations (‘?’) remain:

(2.10) dA tl ExIkzo tr Yx br urtj@

The generalization helps the learner, since it correctly predicts that /tr/, which
is statistically neutral in continuous speech and has no specific constraint
affecting it, should be kept intact. However, the constraint Contig-IO(x ∈{p,b,
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The following OT tableaus should be cropped from this document, and saved
as separate files for inclusion as Figures in APA-style paper.

Tableau 1: Segmentation with a specific constraint

Input: tl, tr, br Contig-IO(br)
(r = 344.50)

? tl
? t.l
? tr
? t.r

! br
b.r ∗

Tableau 2: Segmentation with an abstract con-
straint

Input: tl, tr, br Contig-IO(x ∈{p,b,t,d};y ∈{l,r}) Contig-IO(br)
(r = 360.11) (r = 344.50)

! tl
t.l ∗

! tr
t.r ∗

! br
b.r ∗ ∗

Tableau 3: Segmentation with specific and ab-
stract constraints

Input: tl, tr, br *tl Contig-IO(x ∈{p,b,t,d};y ∈{l,r}) Contig-IO(br)
(r = 2690.98) (r = 360.11) (r = 344.50)

tl ∗
! t.l ∗
! tr

t.r ∗
! br

b.r ∗ ∗

1
Figure 2.5: An OT tableau showing interaction between specific and
abstract constraints. The upper row shows the induced constraint set,
with corresponding ranking values (r) in parentheses. Constraints are
ranked in a strict domination, shown from left to right. Violation of a
higher-ranked constraint eliminates a candidate. Ranking is relevant
here, since the constraints are in conflict with respect to /tl/. The index
finger ‘+’ indicates the optimal candidate.

t,d}; y ∈{l,r}) at the same time overgeneralizes with respect to /tl/ and
/dl/. While plosive-liquid sequences are in general well-formed, these specific
sequences typically do not occur within Dutch words. (Rare exceptions include
atlas and atleet.)

Since the learner is keeping track of both high and low probabilities in the
statistical distribution, the learner also induces markedness constraints, stating
which sequences should not occur in the language. For example, the learner
induces the constraint *tl, since /tl/ passes the threshold for markedness
constraints (O(tl)

E(tl) < 0.5). The ranking value of *tl is high, due to its high
expected frequency (i.e., /t/ and /l/ are frequent phonemes). Therefore, *tl
ends up at the top of the constraint hierarchy (see Figure 2.5). Note that the
learner has learned an exception to a generalization: The learner will not
insert boundaries into plosive-liquid sequences, unless it concerns the specific
sequence /tl/. In sum, the model has correctly inferred that /br/ should
not contain a boundary (due to the induction of a specific constraint, and
confirmed by a generalization). In addition, the model has learned that /tr/
should not contain a boundary (due to the abstract constraint). And finally,
the model has correctly inferred that /tl/ is an exception to the generalization,
and that /tl/ should therefore be broken up by a word boundary. The learner
predicts the correct segmentation for all the plosive-sequences it was presented
with:

(2.11) dA t.l ExIkzo tr Yx br urtj@
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2.5 general discussion

In this chapter, a computational model has been proposed for the induction
of phonotactic knowledge from continuous speech. The model, StaGe, im-
plements two learning mechanisms that have been shown to be accessible
to infant language learners. The first mechanism, statistical learning, allows
the learner to accumulate data and draw inferences about the probability of
occurrence of such data. The second mechanism, generalization, allows the
learner to abstract away from the observed input and construct knowledge
that generalizes to unobserved data, and to probabilistically neutral data.
We integrate these mechanisms into a single computational model, thereby
providing an explicit, and testable, proposal of how these two mechanisms
might interact in infants’ learning of phonotactics.

Several properties of StaGe’s frequency-driven constraint induction are
worth noticing. First, it should be stressed that the learner does not process or
count any word boundaries for the induction of phonotactic constraints. It has
been argued that phoneme pairs typically occur either only within words or
only across word boundaries, and that keeping track of such statistics provides
the learner with a highly accurate segmentation cue (Christiansen, Onnis, &
Hockema, 2009; Hockema, 2006). However, such a counting strategy requires
that the learner is equipped with the ability to detect word boundaries a
priori. This is a form of supervised learning that is not representative of the
learning problem of the infant, who is confronted with unsegmented speech
input. In contrast, StaGe draws inferences about the likelihood of boundaries
based on probabilistic information about the occurrences of segment pairs
in unsegmented speech. The model categorizes biphones without explicitly
taking any boundary information into account, and thus represents a case of
unsupervised learning.

Second, while earlier segmentation models employed either boundary
detection strategies (Cairns et al., 1997; Rytting, 2004) or clustering strategies
(Swingley, 2005), StaGe integrates these approaches by acknowledging a role
for both edges of the statistical distribution. A low probability biphone is
likely to contain a word boundary, which is reflected in the induction of a
markedness constraint. Conversely, a high probability biphone is interpreted
as a contiguous cluster, reflecting the low probability of a boundary breaking
up such a biphone.

Finally, the assumption of functionally distinct phonotactic categories is
also what sets the approach apart from earlier constraint induction models
(Hayes, 1999; Hayes & Wilson, 2008). Whereas these models induce only
markedness constraints, penalizing sequences which are ill-formed in the
language, StaGe uses both ends of a statistical distribution, acknowledging
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that other sequences are well-formed. While ill-formedness exerts pressure
towards segmentation, well-formedness provides counter pressure against seg-
mentation. This distinction provides a basis for the construction of phonotactic
generalizations, while at the same time providing counter pressure against
overgeneralization.

By adding generalization to the statistical learning of phonotactic con-
straints, the model achieves two things. First, through generalization over
observed data, the learner has acquired abstract knowledge. While most
theories of abstract linguistic knowledge assume abstract representations to
be innate, the model shows that it is possible to derive abstract phonotactic
constraints from observed data. This finding is in line with recent studies (e.g.,
Hayes & Wilson, 2008) that aim at minimizing the role of Universal Grammar
in language acquisition, while still acknowledging the existence of abstract
representations and constraints. Second, the interaction of markedness and
contiguity constraints, with varying degrees of generality, and the use of strict
constraint domination in speech segmentation, allows the learner to capture
generalizations, as well as exceptions to these generalizations. Similar to ear-
lier work by Albright and Hayes (2003), the model thus makes no principled
distinction between ‘exceptions’ and ‘regularities’ (cf. Pinker & Prince, 1988).
That is, regularities and exceptions are modeled in a single formal framework.
The linguistic relevance of the constraints induced by StaGe will be addressed
in more detail in Chapter 4.

An important property of StaGe is that the model is unsupervised. That
is, unlike previous models of phonotactic learning (e.g., Pierrehumbert, 2003;
Hayes & Wilson, 2008), the model does not receive any feedback from seg-
mented utterances or word forms in the lexicon. The learner induces phono-
tactic constraints from its immediate language environment, which consists of
unsegmented speech. The model thereby provides a computational account of
phonotactic learning during the very first stages of lexical acquisition. In fact,
through the induction of phonotactics from unsegmented speech, the learner
is able to bootstrap into word learning. Alternatively, one might argue that
infants rely on segmentation cues other than phonotactics to learn their first
words, and then derive phonotactics from a proto-lexicon. Such a view raises
the new question of how such other segmentation cues would be learned.
In general, knowledge of words cannot be a prerequisite for the learning of
segmentation cues, since words are the result of segmentation (e.g., Brent &
Cartwright, 1996; Swingley, 2005). If these cues are to be used to bootstrap into
word learning, then such cues need to be learned from unsegmented speech
input. It was therefore argued that at least some knowledge of phonotactics
comes before the infant starts to build up a vocabulary of words. This knowl-
edge is learned from continuous speech using a combination of statistical
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learning and generalization. An interesting open issue is what the effect of
the lexicon will be on the child’s acquired phonotactic knowledge when her
vocabulary reaches a substantial size. Specifically, one might wonder what
types of phonotactic constraints would become available to the learner if the
learner would induce phonotactics from the lexicon. This issue will be further
explored in Chapter 4.

While the model presented does not rule out the possibility that human
learners acquire phonotactics from isolated word forms (as predicted by
the Lexicon-Based Learning hypothesis, see Chapter 1), the model provides
support for the Speech-Based Learning hypothesis by showing that, at least in
theory, it is possible to learn phonotactic constraints from continuous speech.
Importantly, this possibility has not been demonstrated previously. Specifically,
the learning of feature-based generalizations from an unsegmented speech
stream has not previously been explored. StaGe shows that, when combined
with a statistical learning mechanism, feature-based generalizations can be
induced from continuous speech. The next chapter proceeds to provide
empirical evidence in favor of the Speech-Based Learning hypothesis. A series
of computer simulations will show that the learning of phonotactic constraints
from continuous speech is not just a theoretical possibility. Rather, the induced
constraints turn out to be very useful for segmentation. That is, feature-based
generalizations, learned from continuous speech, improve the segmentation
performance of the learner, and thus potentially help the learner to form a
mental lexicon.
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3

S I M U L AT I O N S O F S E G M E N TAT I O N U S I N G
P H O N O TA C T I C S

1

In this chapter, a series of computer simulations is presented which tests
the performance of StaGe in detecting word boundaries in transcriptions of
continuous speech. It is hypothesized that StaGe, which induces phonotactic
constraints with various degrees of generality, outperforms purely statistical
approaches to speech segmentation, such as transitional probability. While
it is an open issue whether infant language learners use phonotactic gen-
eralizations in speech segmentation, better performance by the model in
these simulations would demonstrate a potential role for such generalizations.
Specifically, if feature-based generalizations are useful for segmentation, then
such generalizations potentially contribute to the development of the lexicon.

3.1 introduction

The goal of this chapter is to simulate the segmentation of continuous speech
using phonotactics. These computer simulations allow for a comparison be-
tween models that make different assumptions about the learning mechanisms
that are used for phonotactic learning. The crucial comparison is between mod-
els with and without feature-based generalization. While probabilistic cues
for segmentation have been used in many models (e.g., Brent, 1999a; Cairns et
al., 1997; Daland, 2009; Rytting, 2004), none of these models have explored
the potential relevance of more abstract phonotactic constraints for speech
segmentation. In fact, most studies assume that such constraints are learned
from the lexicon, and thus can only develop after the learner has acquired the
skills necessary to segment speech (e.g., Hayes & Wilson, 2008). The model
presented in the previous chapter (StaGe) shows that it is possible to induce
phonotactic constraints from continuous speech using the mechanisms of sta-
tistical learning and generalization. Here, it is examined how the phonotactic
generalizations, created by the model, affect the segmentation of continuous
speech. If the generalizations improve the segmentation performance of the
learner, than this is an indication that phonotactic generalizations may also

1 Sections of this chapter were published in: Adriaans, F., & Kager, R. (2010). Adding generalization
to statistical learning: The induction of phonotactics from continuous speech. Journal of Memory
and Language, 62, 311-331.

53



simulations of segmentation using phonotactics

have a role in segmentation by human learners, assuming that learners will
optimize their segmentation skills (e.g., Cutler et al., 1986).

Several psycholinguistic studies have shown that adult listeners use ab-
stract phonological constraints for segmentation (e.g., Suomi et al., 1997;
Warner et al., 2005). However, these studies have not addressed the issue of
how such constraints are acquired. The simulations in this chapter demon-
strate a first unified account of the learning of abstract constraints, and the
segmentation of continuous speech using these constraints. While the sim-
ulations are not a test for the psychological plausibility of the model, the
implication of successful simulations would be that the approach can be con-
sidered as a potential account of human segmentation behavior. (A direct link
between the computational model and human segmentation data will be made
in Chapter 4.) It should be noted that the simulations do not aim at obtaining
perfect segmentations, but rather address the effect of the learning of abstract,
natural class constraints compared to learning without generalization. A more
complete model of speech segmentation would involve the integration of
multiple cues (see e.g., Christiansen et al., 1998, for a segmentation model that
combines phonotactics and stress). For the current purposes, we focus on the
contribution of phonotactics to speech segmentation.

The experiments complement previous computational studies in that the
segmentation simulations involve fairly accurate representations of spoken
language. That is, while segmentation studies typically use orthographic
transcriptions of child directed speech that are transformed into canonical
transcriptions using a phonemic dictionary, the spoken utterances used in
this chapter have been transcribed to a level which includes variations that
are typically found in the pronunciation of natural speech, such as acoustic
reductions and assimilations. Experiment 1 compares StaGe to statistical
learning using segmentation models that process biphones in isolation (i.e.,
without inspecting the context in which they occur; Section 3.2). The ef-
fect of varying thresholds for these models is investigated in Experiment 2

(Section 3.3). In Experiment 3, the learning models are compared using a
setting in which segmentation decisions for biphones are affected by context
(Section 3.4). Finally, Experiment 4 addresses the development of StaGe as a
function of input quantity (Section 3.5). The chapter ends with a discussion of
the findings (Section 3.6).

3.2 experiment 1: biphones in isolation

The goal of the first experiment is to assess whether infants would benefit
from phonotactic generalizations in speech segmentation. This question is
addressed in a computer simulation of speech segmentation, allowing for
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a comparison between models that vary in their assumptions about infant
learning capacities. The crucial comparison is between models that are solely
based on biphone probabilities, and StaGe, which relies on both statistical
learning and generalization.

3.2.1 Method

Materials

The models are tested on their ability to detect word boundaries in broad pho-
netic transcriptions of the Spoken Dutch Corpus (Corpus Gesproken Nederlands,
CGN). To create representations of continuous speech, all word boundaries
were removed from the transcribed utterances. The ‘core’ corpus, about 10%
of the total corpus, contains a fairly large sample (78,080 utterances, 660,424

words) of high quality transcriptions of spoken Dutch. These broad phonetic
transcriptions are the result of automatic transcription procedures, which
were subsequently checked and corrected manually (Goddijn & Binnenpoorte,
2003). Due to this procedure, variations in the pronunciation of natural speech
are preserved in the transcriptions to a large extent. For example, the word
natuurlijk (‘naturally’) occurs in various phonemic realizations. The Spoken
Dutch Corpus contains the following realizations for natuurlijk. (Frequency
of occurrence is given in parentheses. Only realizations that occur at least 10

times in the corpus are displayed.)

(3.1) n@tyl@k (86), nAtyl@k (80), n@tyrl@k (70), n@tyk (68), ntyk (57), natyrl@k
(56), nAtyrl@k (55), nAtyk (54), tyk (43), natyl@k (40), n@tyl@g (29), n@tyg
(28), natyk (23), nAtyl@g (20), tyg (19), ntyg (18), n@tyrl@g (17), nAtyg (16),
natyg (13), nAtyrl@g (12), ntyl@k (12), n@tyrk (10), natyrl@g (10).

This example illustrates some of the variability that is found in pronuncia-
tions of natural speech. In fact, the canonical transcription /natyrl@k/ is not
the most frequent realization of natuurlijk in natural speech. The combination
of its size and level of transcription accuracy makes the Spoken Dutch Corpus
fairly representative of spoken Dutch. In contrast, previous computational seg-
mentation studies typically used orthographic transcriptions of child-directed
speech that were transformed into canonical transcriptions using a phonemic
dictionary. Different realizations of words are lost in such a transcription
procedure. The current study complements previous modeling efforts by in-
vestigating the performance of segmentation models in a setting that includes
natural variability in the pronunciation of connected speech.
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Procedure

The models are tested on novel data (i.e., data that was not used to train the
model). To further increase the generalizability of the results, simulations are
based on 10-fold cross-validation (see e.g., Mitchell, 1997). Each utterance
in the corpus is randomly assigned to one out of ten disjunct sets, such that
each set contains approximately 10% of the data points (i.e., biphones) in the
corpus. With this random partition, ten simulations are done for each model.
In each simulation one of the ten sets (i.e., 10% of the corpus) is used as test
set and the remaining nine sets (90% of the corpus) are used as training set.
This procedure gives a more reliable estimate of a model’s performance than
a single randomly chosen test set.

The models are trained on unsegmented utterances in the training set. The
models are then given the task of predicting word boundaries in the test set.
Output of the models thus consists of a hypothesized segmentation of the test
set. The models are evaluated on their ability to detect word boundaries in
the test utterances. The following metrics are used to evaluate segmentation
performance:

Hit rate (H):

H =
TruePositives

TruePositives + FalseNegatives
(3.2)

False alarm rate (F):

F =
FalsePositives

FalsePositives + TrueNegatives
(3.3)

d-prime (d′):

d′ = z(H)− z(F) (3.4)

The hit rate measures the number of word boundaries that the model
actually detects. The false alarm rate measures the number of boundaries that
are incorrectly placed. The learner should maximize the number of hits, while
minimizing the number of false alarms. The d′ score (see e.g., MacMillan
& Creelman, 2005) reflects how well the model distinguishes hits from false
alarms. The following ‘dumb’ segmentation strategies would therefore each
result in a d′ score of zero: a) inserting a boundary into every biphone, b)
not inserting any boundaries, and c) randomly inserting boundaries. These
metrics have some advantages over evaluation metrics that are commonly
used in the field of Information Retrieval (IR), i.e. recall, precision, and F-score,
since such metrics do not necessarily assign low scores to random models.
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Specifically, random models (in which no learning takes place) will obtain
high precision scores whenever there are many potential boundaries to be
found. (See Fawcett, 2006, for a related discussion.)

Note that the corpus transcriptions do not specify the exact location of a
word boundary in cases of cross-word boundary phonological processes, such
as assimilations, deletions, degeminations and glide insertions. For example,
kan nog (‘can still’) is often transcribed as /kAnOx/. In such cases, it is unclear
whether a segment (in this case, /n/) should go with the word to the left or
to the right. These phonemes are interpreted as belonging to the onset of the
following word, rather than to the coda of the preceding word.

Segmentation models

Five models are compared with respect to their abilities to successfully detect
word boundaries: a random baseline; a statistical learning model based on
transitional probabilities (TP); a statistical learning model based on observed/
expected ratios (O/E); StaGe’s Frequency-Driven Constraint Induction (FDCI;
i.e., excluding Single-Feature Abstraction); and the complete StaGe model
(i.e., including Single-Feature Abstraction). No learning takes place in the
random baseline, and, hence, boundaries are inserted at random. More
specifically, for each biphone in the test utterance a random decision is made
whether to keep the biphone intact or to break up the biphone through
the insertion of a word boundary. The two statistical models (TP, O/E)
serve to illustrate the segmentation performance of a learner that does not
induce constraints, nor construct generalizations. These models use segment-
based probabilities directly to predict word boundaries in the speech stream.
In addition to evaluating the complete model, the performance of StaGe’s
Frequency-Driven Constraint Induction (FDCI) is evaluated separately. This is
done to provide a clearer picture of the added value of generalization in the
model. That is, we are interested in the contribution of both the statistically
induced constraints, and the abstract, natural class-based constraints to the
segmentation performance of the model.

In the current experiment, phonotactic knowledge is applied to the segmen-
tation of biphones in isolation (i.e., not considering the context of the biphone).
For the statistical learning models, a threshold-based segmentation strategy
is used (Cairns et al., 1997; Rytting, 2004; Swingley, 2005). A segmentation
threshold can be derived from the properties of the statistical distribution.
Since a biphone occurs either more or less often than expected, the threshold
for observed/expected ratios is set at O/E = 1.0. That is, if observed is less
than expected, a boundary is inserted. The TP segmentation threshold is
less straightforward. For every segment x, transitional probability defines a
distribution over possible successors y for this segment. Transitional probability
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thus defines a collection of multiple statistical distributions, each requiring
their own segmentation thresholds. TP thresholds are defined in the same
way as O/E ratio: The threshold is the value that would be expected if all
segments were equally likely to co-occur. For example, if a segment has three
possible successors, then each successor is expected to have a probability of
1/3. If the TP of a biphone is lower than this expected value, a boundary is
inserted between the two segments.2

The statistical models insert boundaries whenever observed is smaller
than expected, regardless of the size of this deviation. StaGe makes different
assumptions about thresholds: A markedness constraint is induced when
observed is substantially smaller than expected; a contiguity constraint is in-
duced when observed is substantially larger than expected. In Chapter 2, it
was argued that generalization over such statistically induced phonotactic con-
straints would be valuable to the learner, since the generalizations are likely
to affect the segmentation of statistically neutral biphones in a positive way. It
thus makes sense to compare StaGe to the threshold-based statistical models.
If phonotactic generalizations improve the segmentation performance of the
learner, then StaGe should have a better segmentation performance than a
statistical model that simply considers all biphone values, and inserts bound-
aries based on a single segmentation threshold. As a first test for StaGe we set
tM = 0.5 (‘observed is less than half of expected’) and tC = 2.0 (‘observed is
more than twice expected’). The induced constraints are interpreted in the OT
segmentation model (Figure 2.1), which takes xy-sequences (i.e., biphones) as
input, and returns either xy or x.y, depending on which candidate is optimal.

3.2.2 Results and discussion

Table 3.1 shows the hit rate, false alarm rate, and d′ scores for each model. The
table contains the estimated means (obtained through 10-fold cross-validation),
as well as the 95% confidence intervals for those means.

The random baseline does not distinguish hits from false alarms at all,
which results in a d′ score of approximately zero. While the random baseline
inserts the largest amount of correct boundaries, it also makes the largest
amount of errors. The d′ score thus reflects that this model has not learned
anything. The two statistical models (TP, O/E) detect a fair amount of word
boundaries (about one third of all boundaries in the test set), while keeping
the false alarm rate relatively low. The learning performance is illustrated by
the d′ values, which show a large increase compared to the random baseline.

2 Since all segment combinations tend to occur in continuous speech, the TP segmentation thresh-
olds can be approximated by a single threshold: TP = 1

|X| , where |X| is the size of the segment
inventory.
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Table 3.1: Simulation results for Experiment 1 (biphones in isolation).

Hit rate
Model 95% CI

Learning Segmentation Mean Lower Upper

- random 0.4994 0.4979 0.5009

TP thresholds 0.3126 0.3102 0.3149

O/E thresholds 0.3724 0.3699 0.3750

FDCI OT 0.4774 0.4763 0.4786

StaGe OT 0.4454 0.4375 0.4533

False alarm rate
Model 95% CI

Learning Segmentation Mean Lower Upper

- random 0.5004 0.4992 0.5016

TP thresholds 0.1069 0.1060 0.1077

O/E thresholds 0.1372 0.1354 0.1390

FDCI OT 0.2701 0.2691 0.2710

StaGe OT 0.1324 0.1267 0.1382

d’
Model 95% CI

Learning Segmentation Mean Lower Upper

- random -0.0024 -0.0062 0.0015

TP thresholds 0.7547 0.7489 0.7606

O/E thresholds 0.7678 0.7592 0.7765

FDCI OT 0.5560 0.5532 0.5588

StaGe OT 0.9785 0.9695 0.9874

Note. The displayed scores are the means obtained through 10-fold cross-validation,
along with the 95% confidence interval (CI). TP = transitional probability, O/E = ob-
served/expected ratio, FDCI = Frequency-Driven Constraint Induction, StaGe = Statis-
tical learning and Generalization.
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These scores also show that the formula used to implement statistical learning
(either TP or O/E) does not have a great impact on segmentation performance.
O/E has a higher hit rate than TP, but also has a higher false alarm rate.

If FDCI is applied to the O/E ratios, the performance of the learner worsens.
This is not surprising: FDCI reduces the scope of the phonotactic learner to the
edges of the statistical distribution. That is, boundaries are inserted if O/E <
0.5, and boundaries are not inserted if O/E > 2.0. For the remaining biphones
(with 0.5 ≤ O/E ≤ 2.0; the ‘grey’ area), the learner has no other option but to
insert boundaries at random. Therefore, the scores for FDCI are closer to the
random baseline. A look at the performance of the complete model reveals
that StaGe outperforms both the random baseline and the two statistical
models in distinguishing hits from false alarms. Through generalization over
the statistically induced constraints, the learner has widened the scope of
its phonotactic knowledge. The result is that statistically neutral biphones
are not segmented at random, nor are they segmented on the basis of their
unreliable O/E ratios (which are by definition either higher or lower than 1.0).
In contrast, those biphones are affected by phonotactic generalizations, which
say that they should either be segmented or not due to their phonological
similarity to biphones in either the markedness or contiguity category. This
strategy results in the best segmentation performance. Compared to its purely
statistical counterpart (O/E), StaGe has both a higher hit rate and a lower
false alarm rate (although the difference between false alarm rates is marginal).
This results in a d′ score that is substantially and significantly higher than
those of the statistical models (which is reflected in the large difference in
means, and non-overlapping confidence intervals).

These results show that StaGe, which employs both statistical learning
and generalization, is better at detecting word boundaries in continuous
speech. These findings provide evidence for a potential role for phonotactic
generalizations in speech segmentation. That is, if infants were to construct
generalizations on the basis of statistically learned biphone constraints, they
would benefit from such generalizations in the segmentation of continuous
speech.

While the segmentation thresholds for the statistical learners make a
mathematically sensible distinction between high and low probability bi-
phones, and there is evidence that biphone probabilities directly affect speech
segmentation by infants (Mattys & Jusczyk, 2001b), there is currently no
psycholinguistic evidence supporting any exact value for these thresholds.
Moreover, the exact values of the constraint induction thresholds employed
by StaGe (tM = 0.5; tC = 2.0) are rather arbitrary. It is therefore important to
consider a wider range of possible threshold values. Experiment 2 looks at
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the effects of varying thresholds for both the statistical learning models and
StaGe.

3.3 experiment 2: thresholds

Experiment 2 asks to what extent the results of Experiment 1 can be attributed
to the specific threshold configurations that were used. Specifically, the current
experiment aims at determining whether StaGe’s superior performance was
due to a single successful threshold configuration, or whether StaGe in general
outperforms statistical learners, regardless of the specific thresholds that are
used in the model. To this end a Receiver Operating Characteristic (ROC)
analysis is done (e.g., MacMillan & Creelman, 2005; Fawcett, 2006; Cairns
et al., 1997). Such an analysis is useful for visualizing the performance of a
classifier (such as a threshold-based segmentation model), since it portraits
the complete performance in a single curve. An ROC curve is obtained by
plotting hit rates as a function of false alarm rates over the complete range of
possible threshold values. Such a curve thus neutralizes the effect of using a
single, specific threshold in a model and gives a more general picture of the
model’s performance as the threshold is varied.

3.3.1 Method

Materials and procedure

The materials are identical to those of Experiment 1. The procedure is iden-
tical to Experiment 1, with the exception that only the first of the ten cross-
validation sets is used.

Segmentation models

The crucial comparison will again be between purely statistical learning
models (TP, O/E) and StaGe. Rather than defining a single threshold for the
statistical learners, all relevant threshold values are considered. Thresholds
are derived from the statistical distribution after the models have processed
the training set.3 A simulation on the test set is conducted for each threshold
value using the same segmentation principle as in the previous experiment: If
the probability of a biphone is lower than the current threshold, a boundary
is inserted.

For StaGe the situation is slightly more complex, since StaGe uses two
induction thresholds (tM, tC). Testing all combinations of values for the two

3 Since there are 1,541 different biphones in the training set, each with a different probability, there
are 1,541 relevant threshold values.

61



simulations of segmentation using phonotactics

thresholds is not feasible. A range of thresholds for StaGe is tested, based on
the assumption that tM should be smaller than 1.0, and tC should be larger
than 1.0. A baseline configuration can thus be formulated: tM = 1.0; tC = 1.0.
In this case, all biphones with O/E < 1.0 result in the induction of a marked-
ness constraint, and all biphones with O/E > 1.0 result in the induction of
a contiguity constraint. As a consequence, the baseline configuration has no
‘neutral probability’ category. Such a category is introduced by pushing the
thresholds away from 1.0 towards the low- and high-probability edges of the
statistical distribution. Varying the induction thresholds causes changes in
the amount of specific constraints that are induced by the learner, and affects
the generalizations that are based on those constraints. For the induction
of markedness constraints the values {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1.0} are used for tM. Similarly, the values {1.0, 1.11, 1.25, 1.43, 1.67, 2.0, 2.5,
3.33, 5.0, 10.0} are used for tC (using logarithmic steps). This results in a total
of 10× 10 = 100 different configurations. Note that the configuration from
Experiment 1 (tM = 0.5; tC = 2.0) is exactly in the middle. Thresholds are
considered that are both less and more conservative than this configuration.

3.3.2 Results and discussion

The resulting ROC graph is shown in Figure 3.1. Random performance in an
ROC graph is illustrated by the diagonal line. For each point on this line, the
hit rate is equal to the false alarm rate, and the corresponding d′ value is zero.
d′ increases as the hit rate increases and/or the false alarm rate decreases.
Perfect performance would be found in the upper left corner of the ROC space
(i.e., where the hit rate is 1, and the false alarm rate is 0). In general, the closer
a model’s scores are to this point, the better its performance is (due to high
hit rate, low false alarm rate, or both).

Since StaGe uses O/E ratios for the induction of constraints, it is par-
ticularly interesting to look at the difference between the O/E line and the
different configurations of StaGe (represented as circles in the graph). The
TP performance is included for completeness. It should be noted, however,
that TP slightly outperforms O/E for a substantial part of the ROC graph.
The graph shows that most of the 100 configurations of StaGe lie above the
performance line of the statistical learning models (most notably O/E). This
should be interpreted as follows: If we make a comparison between StaGe and
statistical learning, based on model configurations with identical false alarm
rates, StaGe has a higher hit rate (and therefore a higher d′). Conversely, for
configurations with identical hit rates, StaGe has a lower false alarm rate (and
therefore a higher d′). This confirms the superior performance of StaGe that
was found in Experiment 1. StaGe tends to outperform statistical models,
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Figure 3.1: An ROC (Receiver Operating Characteristic) graph showing
the performance of segmentation models over various thresholds. TP =
transitional probability, O/E = observed / expected ratio, StaGe = Sta-
tistical learning and Generalization. The StaGe baseline configuration
(tM, tC = 1.0) is the solid circle, marked with ‘1’. Extreme contigu-
ity thresholds (tC = 5.0, or tC = 10.0) are marked with ‘2’, whereas
configurations with both extreme markedness and extreme contiguity
thresholds (tM = 0.1, or tM = 0.2; tC = 5.0, or tC = 10.0) are indicated
with ‘3’.
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regardless of the specific thresholds that are used (with some exceptions,
which are discussed below).

While the configuration from Experiment 1 (tM = 0.5; tC = 2.0) retrieved
about 44% of the word boundaries at a false alarm rate of 13% (resulting in a
d′ of 0.98), the results in the current experiment show that this performance
can be changed without great loss of d′. For example, the model can be made
less conservative, boosting the hit rate to 67%, when using the configuration
tM = 0.4, tC = 2.5. In this case, the false alarm rate is 30%. While both the
hit rate and false alarm rate are higher, the configuration yields a d′ that is
comparable to the original configuration: d′ = 0.97. Similarly, the model can
be made more conservative (e.g., tM = 0.3, tC = 1.43, hit rate: 0.32, false alarm
rate: 0.07, d′: 1.00).

Interestingly, the baseline configuration (the solid circle marked with “1”;
tM = 1.0; tC = 1.0) is positioned exactly on the curve of the O/E statistical
learning model. In fact, the baseline configuration has a performance that
is nearly identical to the statistical O/E model from Experiment 1 (with
segmentation threshold O/E = 1.0). In this case there appears to be neither
a positive nor a negative influence of constructing generalizations. This
is not surprising: Due to the high number of specific constraints in the
baseline model, and since specific constraints are typically ranked high in
the constraint set, the statistical values tend to overrule the complementary
role of phonological similarity. The result is that the model behaves similarly
to the purely statistical (O/E) model. Consider, for example, the sequence
/tx/ with O(tx)

E(tx) = 1.0451. In the baseline configuration, this sequence is
kept intact, since the learner induces a highly-ranked constraint Contig-
IO(tx). The statistical O/E model makes the same prediction: No boundary
is inserted, due to an O/E ratio that is slightly higher than 1.0. In contrast, a
model with tM = 0.5; tC = 2.0 ignores such biphones because of their neutral
probability. As a consequence, the sequence /tx/ is affected by a phonotactic
generalization, *x ∈{t,d};y ∈{k,x}, which favors segmentation of the sequence.
By pushing the induction thresholds to the edges of the statistical distribution,
a smaller role is attributed to probability-based segmentation, and a larger
role is attributed to phonological similarity to biphones at the edges of the
statistical distribution. This is indeed helpful: Inspection of the segmented
version of the corpus reveals 4,418 occurrences (85.6%) of /t.x/, against only
746 occurrences (14.4%) of /tx/.

Figure 3.1 also shows that there are cases in which StaGe performs worse
than the statistical learning models. In these cases, the model uses thresholds
which are too extreme. Specifically, the model fails for configurations in which
the threshold for contiguity constraints is high (tC = 5.0 or tC = 10.0, marked
with “2” in the graph). In such cases there are too few contiguity constraints to
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provide counter pressure against markedness constraints. The model therefore
inserts too many boundaries, resulting in a high number of errors. Finally, the
worst scores are obtained for configurations that, in addition to an extreme
contiguity threshold, employ an extreme markedness threshold (tM = 0.1 or
tM = 0.2; tC = 5.0 or tC = 10.0, marked with “3” in the graph). There are not
enough constraints for successful segmentation in this case, and the model’s
performance gets closer to random performance.

The current analysis shows that the superior performance of StaGe, com-
pared to purely statistical models, is stable for a wide range of thresholds. This
is an important finding, since there is currently no human data supporting
any specific value for these thresholds. The findings here indicate that the
learner would benefit from generalization for any combination of thresholds,
except when both thresholds are set to 1.0 (in which case generalization has
no effect), or when extreme thresholds are used (in which case there are too
few constraints).

A possible criticism of these experiments is that statistical learning was not
implemented in accordance with the original proposal by Saffran, Newport,
and Aslin (1996). In Experiments 1-2, statistical thresholds were used for the
direct application of probabilistic phonotactic cues to the speech segmentation
problem. In contrast, the work on statistical learning by Saffran, Newport,
and Aslin (1996) proposes that word boundaries are inserted at troughs in
transitional probability. In Experiment 3, a series of simulations is conducted
which is closer to the original proposal. Models are used which benefit from
context in the segmentation of continuous speech.

3.4 experiment 3: biphones in context

In Experiment 3, the same learning models are tested as in Experiment 1.
However, the models use a different segmentation strategy. Rather than
considering biphones in isolation, the learner uses the immediate context
of the biphone. That is, for each biphone xy, the learner also inspects its
neighboring biphones wx and yz.

3.4.1 Method

Materials and procedure

The materials and procedure are identical to those of Experiment 1. The same
training and test sets are used.
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Segmentation models

For the statistical models (TP and O/E), the trough-based segmentation strat-
egy is implemented as described in Brent (1999a) (and which is a formalization
of the original proposal by Saffran, Newport, and Aslin (1996)). Whenever the
statistical value (either TP or O/E) of the biphone under consideration (xy) is
lower than the statistical values of its adjacent neighbors, i.e. one biphone to
the left (wx) and one to the right (yz), a boundary is inserted into the biphone
xy. Note that trough-based segmentation is ‘threshold-free’, since it only
considers relative values of biphones.

Again, a simulation is included using Frequency-Driven Constraint In-
duction (FDCI) (i.e., without applying generalization) to show how much
of StaGe’s performance is due to statistical constraint induction, and how
much is due to feature-based abstraction. For FDCI and the complete version
of StaGe the original threshold configuration with thresholds tM = 0.5 and
tC = 2.0 is used. In this experiment we ask whether this configuration is better
at detecting word boundaries in continuous speech than the trough-based seg-
mentation models. The input to the OT segmentation model is the same as for
the trough-based model, namely wxyz sequences. Segmentation candidates
for these sequences are wxyz, w.xyz, wx.yz, and wxy.z (see Figure 2.1). The
model inserts a word boundary into a biphone whenever wx.yz is optimal.4

3.4.2 Results and discussion

Table 3.2 shows the estimated means, and 95% confidence intervals, of the hit
rates, false alarm rates, and d′ scores for each model.

In this experiment the random baseline performs slightly above chance, due
to the bias of not inserting boundaries at utterance-initial and utterance-final
biphones. In general, using context has a positive impact on segmentation:
The performance of all models has increased compared to the performance
found in Experiment 1, where biphones were considered in isolation. As in Ex-
periment 1, FDCI by itself is not able to account for the superior performance.
By adding Single-Feature Abstraction to the frequency-driven induction of
constraints, the model achieves a performance that is better than that of both
statistical models (as measured by d′). While the difference in d′ is smaller
than in Experiment 1, the difference is significant (due to non-overlapping
confidence intervals). As in Experiment 1, the formula used to implement

4 The segmentation models tested here do not consider the initial and final biphones of an utterance
as potential boundary positions, since the current segmentation setting requires neighboring
biphones on both sides. No boundaries are therefore inserted in these biphones. The size of this
bias is reflected in the random baseline, which uses the same wxyz-window, but makes random
decisions with respect to the segmentation of xy.
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Table 3.2: Simulation results for Experiment 3 (biphones embedded in
context).

Hit rate
Model 95% CI

Learning Segmentation Mean Lower Upper

- random 0.4900 0.4885 0.4915

TP troughs 0.6109 0.6093 0.6125

O/E troughs 0.5943 0.5930 0.5955

FDCI OT 0.3700 0.3684 0.3716

StaGe OT 0.4135 0.4062 0.4207

False alarm rate
Model 95% CI

Learning Segmentation Mean Lower Upper

- random 0.4580 0.4575 0.4586

TP troughs 0.2242 0.2235 0.2249

O/E troughs 0.2143 0.2138 0.2149

FDCI OT 0.1478 0.1471 0.1484

StaGe OT 0.0913 0.0882 0.0945

d’
Model 95% CI

Learning Segmentation Mean Lower Upper

- random 0.0803 0.0765 0.0840

TP troughs 1.0399 1.0346 1.0452

O/E troughs 1.0301 1.0258 1.0344

FDCI OT 0.7142 0.7096 0.7188

StaGe OT 1.1142 1.1081 1.1203

Note. The displayed scores are the means obtained through 10-fold cross-validation,
along with the 95% confidence interval (CI). TP = transitional probability, O/E = ob-
served/expected ratio, FDCI = Frequency-Driven Constraint Induction, StaGe = Statis-
tical learning and Generalization.
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statistical learning (TP vs. O/E) does not seem to have a substantial impact on
the segmentation results. Note that in this experiment the statistical models
have a higher hit rate than StaGe. However, this coincides with a much higher
false alarm rate. In contrast, StaGe is more conservative: It places fewer, but
more reliable, word boundaries than the models based on statistical learning.
The net result, as measured by d′, is that StaGe is better at distinguishing
sequences with and without word boundaries.

Although the infant should eventually learn to detect all word boundaries,
the relatively small amount of hits detected by the model does not necessarily
pose a large problem for the learning infant for two reasons. First, phonotac-
tics is merely one out of several segmentation cues. Some of the boundaries
that are not detected by the model might therefore still be detected by other
segmentation cues. Second, the high d′ score of the model is mainly the result
of a low false alarm rate. The model thus makes relatively few errors. Such
an undersegmentation strategy may in fact result in accurate proto-words,
i.e. chunks of speech which are larger than words, but to which meaning
can easily be attributed (e.g. ‘thisis.thedoggy’). In contrast, oversegmentation
(e.g. ‘this.is.the.do.ggy’) results in inaccurate lexical entries to which no mean-
ing can be attributed. The tendency towards undersegmentation, rather than
oversegmentation, is supported by developmental studies (e.g., Peters, 1983).
See Appendix C for a selection of marked-up utterances from the Spoken
Dutch Corpus which exemplify this undersegmentation behavior.

To get an impression of how robust the results in the current experiment
are, a range of threshold values was tested for StaGe. Because of the compu-
tational cost involved in running this type of simulation, a smaller range of
thresholds is considered than in Experiment 2, using only the first of our ten
cross-validation sets. A total of 9 different configurations were tested (3 thresh-
olds for each constraint category: tM = 0.4, 0.5, 0.6; tC = 1.67, 2.0, 2.5). Out
of these 9 configurations, one configuration (tM = 0.6, tC = 1.67) performed
worse than the statistical learning models (hit rate: 0.3712; false alarm rate:
0.1013; d′: 0.9455). The best performance was obtained using tM = 0.4 and
tC = 2.5 (hit rate: 0.5849; false alarm rate: 0.1506; d′: 1.2483). It thus appears
that, in the current setting, better performance can be obtained by pushing
the thresholds further towards the low- and high-probability edges.

The results of Experiment 3 are similar to the results of Experiments
1 and 2, and therefore provide additional support for the hypothesis that
learners benefit from generalizations in the segmentation of continuous speech.
Regardless of whether the learner employs a segmentation strategy that
considers biphones in isolation, or whether the learner exploits the context
of neighboring biphones, in both cases StaGe outperforms models that rely
solely on biphone probabilities. These findings show that the combined

68



3.5 experiment 4 : input quantity

strengths of statistical learning and generalization provide the learner with
more reliable cues for detecting word boundaries in continuous speech than
statistical learning alone (i.e. without generalization).

In Experiments 1–3 StaGe was tested at the end point of learning, i.e. after
the model had processed the complete training set. Experiment 4 looks at
how the segmentation performance of the model develops as a function of the
amount of input that has been processed by the model.

3.5 experiment 4: input quantity

The current experiment serves to illustrate developmental properties of the
model. That is, given the mechanisms of statistical learning and generalization,
how does the model’s segmentation behavior change as more input is given
to the learner? It should be stressed that the model’s trajectory should not
be taken literally as a time course of infant phonotactic learning. Several
unresolved issues (discussed below) complicate such a comparison. Nev-
ertheless, the experiment allows us to better understand StaGe’s learning
behavior. In particular, it is a valid question to ask whether the model has
reached stable segmentation performance after processing the training set. In
addition, the order in which different constraints are learned by the model
will be described.

3.5.1 Modeling the development of phonotactic learning

The current model works on the assumption that the segment inventory and
feature specifications have been established prior to phonotactic learning. It
is, however, likely that the processes of segmental acquisition and phono-
tactic acquisition will, at least partially, overlap during development. Since
StaGe makes no prediction regarding the development of the speech sounds
themselves (segments, features), and since there exists no corpus documenting
such a development, a static, adult-like segment inventory will be assumed
here.

StaGe models infant phonotactic learning as a combined effort of statistical
learning and generalization. Both mechanisms have been shown to be avail-
able to 9-month-old infants (biphone probabilities: Mattys & Jusczyk, 2001b;
similarity-based generalization: Saffran & Thiessen, 2003; Cristià & Seidl,
2008). StaGe can therefore be thought of as modeling phonotactic learning
in infants around this age. Unfortunately, developmental data regarding the
exact ages (or input quantities) at which each of these mechanisms become
active in phonotactic learning are currently lacking. In the current experiment
both mechanisms will be assumed to be used from the start. StaGe could
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in principle, however, start with statistical learning and only start making
generalizations after the model has accumulated a certain critical amount of
input data.

Another issue with respect to modeling development concerns the model’s
use of memory (Brent, 1999b). The current implementation of the model
assumes a perfect memory: All biphones that are encountered in the input are
stored, and are used for constraint induction. Hence, phonotactic constraints
are derived from accumulated statistical information about biphone occur-
rences. While the model’s processing of the input is incremental, the perfect
memory assumption obviously is a simplification of the learning problem.

Finally, the current set of simulations rely on static, manually-set thresholds
for the induction of markedness and contiguity constraints. StaGe is used
in the same form as in Experiment 1 (segmentation of biphones in isolation;
tM = 0.5, tC = 2.0). The difference with the previous experiments is that the
performance of the model is tested at various intermediate steps, rather than
only testing the model at the end point of learning.

3.5.2 Method

Materials and procedure

The materials are identical to those of Experiment 1. Only the first of the
ten cross-validation sets is used. The procedure is different: Rather than
presenting the complete training set to the model at once, the model is
presented with input in a stepwise fashion. The total training set (= 100%)
contains about 2 million data points (biphones). Starting with an empty
training set, the set is filled with training utterances which are added to the
set in random order. The model is trained repeatedly after having processed
specified percentages of the training set, using logarithmic steps. For each
intermediate training set, the model’s performance (hit rate, false alarm rate)
on the test set is measured. As a consequence, the model’s performance
progresses from random segmentation (at 0%) to the performance reported in
Experiment 1 (100%).

3.5.3 Results and discussion

The developmental trajectory of StaGe is shown in Figure 3.2, where the
hit rate and false alarm rate are plotted as a function of the input quantity
(measured as the number of biphones on a log10 scale). The model’s segmenta-
tion performance appears to become stable after processing ± 15,000 biphone
tokens (log10 ≈ 4.2), although the false alarm rate still decreases slightly after
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Figure 3.2: The development of StaGe, measuring segmentation perfor-
mance on the test set as a function of input quantity in the training set.
Initially, the learner segments at random (hit rate and false alarm rate
are 0.5). The learner starts by inducing contiguity constraints (reducing
the number of boundaries that are posited) and induces markedness
constraints only after a substantial amount of input has been processed.

this point. Starting from random segmentation in the initial state, the model
shows effects of undersegmentation after processing only a minimal amount
of input: Both the hit rate and the false alarm rate drop substantially. Inter-
estingly, the false alarm rate stays low throughout the whole trajectory. The
hit rate starts increasing after a substantial amount of input (± 650 biphones;
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log10 ≈ 2.8) has been processed, and becomes relatively stable at ± 15,000

biphones. Learning where not to put boundaries thus precedes the insertion
of word boundaries.

To explain the segmentation behavior of the model we consider the con-
straints that are induced at the various developmental stages. The first con-
straints to emerge in the model are contiguity constraints. This is caused by
overrepresentations in the statistical distribution at this point: Since only a
small amount of the total number biphones has been processed, all biphones
that do occur in this smaller set are likely to have high O/E ratios. The model
tends to induce contiguity generalizations that affect CV and VC biphones
(e.g., Contig-IO(x ∈ {t,d,s,z};y ∈{A,@})), and thereby prevents insertion of
boundaries into such biphones. The segmentation of CC and VV sequences is
left to random segmentation (and a relatively small number of specific con-
tiguity constraints). Among the high-ranked specific constraints are several
Dutch function words (e.g., Contig-IO(In), ‘in’; Contig-IO(d@), ‘the’), as well
as transitions between such words (e.g., Contig-IO(nd)). As a consequence,
function words tend to be glued together (e.g., /Ind@/). This type of underseg-
mentation continues to exist throughout the learning trajectory, and appears
to be a general property of the model.

As the distribution becomes more refined, statistical underrepresentations
start appearing, and more biphones fall into the markedness category. The
growing number of markedness constraints causes the hit rate to increase.
Some of the first specific markedness constraints are *@@ *tn, *nn, *e@, and *mt.
Generalizations start appearing after the model has processed about 1,500

biphones (log10 ≈ 3.2), such as *x ∈ {@};y ∈{I,E,i,@}, and *x ∈ {n};y ∈{l,r}.
The early-acquired markedness constraints seem to affect other types of
biphones (CC, VV) than the early-acquired contiguity constraints (CV, VC).
While the model ultimately learns a mixture of markedness and contiguity
constraints, affecting all types of biphones, this distinction is a general property
of the model.

Taking the modeling simplifications for granted, some of the findings
here are supported by developmental studies (e.g., undersegmentation: Pe-
ters, 1983). Conversely, new findings that follow from the computational
model could provide a basis for future experimental testing in developmental
research.

3.6 general discussion

This chapter investigated the potential role of phonotactic generalizations in
speech segmentation. It was hypothesized that learners would benefit from
constructing phonotactic generalizations in the segmentation of continuous
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speech. This hypothesis was confirmed in a series of computer simulations,
which demonstrated that StaGe, which acknowledges a role both for sta-
tistical learning and for generalization, and which uses a modified version
of OT to regulate interactions between constraints, was better at detecting
word boundaries in continuous speech data than models that rely solely
on biphone probabilities. Specifically, the generalizations seem to positively
affect the segmentation of biphones whose phonotactic probability cannot
reliably be classified as being either high or low. The superior performance
of StaGe was found regardless of the segmentation window that was used
(i.e., biphones in isolation or in context). An analysis of the developmental
trajectory of the model indicates that the model learns contiguity constraints
before markedness constraints, leading to strong initial undersegmentation.

StaGe relies on the edges of the statistical distribution, rather than on
the whole distribution. The model employs statistical thresholds to filter
out biphones that cannot be reliably classified as being of either high or low
probability. Successful generalization crucially depends on this categorization:
Experiment 2 showed that generalization has no effect if all biphones are
taken into account in the generalization process. In addition, the experiment
shows that generalization fails when the thresholds are set to extreme values.
StaGe thus provides an explicit description of how generalization relies on
statistical learning: statistical learning provides a basis for generalization. This
basis is constructed by the model through the use of thresholds on the values
that are obtained through statistical learning.

Although it is not known whether infants actually do learn phonotactic
generalizations from continuous speech, and use such generalizations in
speech segmentation, the current chapter provides indirect support for such
a strategy. The simulations show that infants would benefit from such an
approach in the segmentation of continuous speech. Of course, it remains
to be determined by experimental testing whether infants actually exploit
the benefits of both statistical learning and generalization in a way that is
predicted by the model. Nevertheless, the plausibility of StaGe as a model
of infant phonotactic learning is based on psycholinguistic evidence for the
learning mechanisms that it combines. Infants’ sensitivity to the co-occurrence
probabilities of segment pairs has been demonstrated (Jusczyk et al., 1994;
Mattys & Jusczyk, 2001b; White et al., 2008). In addition, infants’ capacity to
abstract over linguistic input in order to construct phonotactic generalizations
has been demonstrated (Saffran & Thiessen, 2003; Chambers et al., 2003). A
recent series of artificial grammar learning experiments by Finley and Badecker
(2009) provides further evidence for the role of feature-based generalizations
in phonological learning. There is thus evidence for both statistical learning
and feature-based generalization in phonotactic learning.
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In addition, StaGe is compatible with available evidence about infants’
representational units. The generalization algorithm implements phonological
features to express the similarity between segments. Although evidence for
the psychological reality of such abstract phonological features is limited,
infants have been shown to be sensitive to dimensions of acoustic similarity
(Jusczyk, Goodman, & Baumann, 1999; Saffran & Thiessen, 2003; White et
al., 2008). Furthermore, several studies suggest that abstract phonological
features may constrain infant phonotactic learning (Cristià & Seidl, 2008; Seidl
& Buckley, 2005).

Given these findings, StaGe seems to make reasonable assumptions about
the mechanisms and representations that are involved in phonotactic learning
by infants. However, the model is not committed to these representations
per se. The statistical learning component of the model, Frequency-Driven
Constraint Induction, could be applied to other units, such as syllables or
allophones. The generalization mechanism, Single-Feature Abstraction, could,
in principle, work with different types of features. It remains to be seen how
differences in assumptions about the representational units that are processed
by the model would affect the speech segmentation performance of the model.

In sum, the mechanisms used by StaGe have received much attention in
the psycholinguistic literature, and appear to be available to infant language
learners. StaGe provides a computational account of how statistical learning
and generalization might interact in the induction of phonotactics from contin-
uous speech. The combined strengths of statistical learning and generalization
provide the learner with a more reliable cue for detecting word boundaries in
continuous speech than statistical learning alone. The computational study in
this chapter thus demonstrates a potential role for phonotactic generalizations
in speech segmentation. In the next chapter, two open issues are addressed.
First, the issue of to what extent the generalizations learned by StaGe re-
flect known phonological constraints is addressed. Second, it is investigated
whether the model can account for human segmentation behavior, thereby
providing the first piece of evidence for the psychological plausibility of the
model.
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4

M O D E L I N G OCP-PLACE AND ITS EFFECT ON
SEGMENTATION

The previous chapters have shown that the computational mechanisms of sta-
tistical learning and generalization can account for the learning of phonotactic
constraints from continuous speech. Furthermore, phonotactic generalizations
improve the performance of the learner in computer simulations of speech
segmentation. The success of the model in these simulations raises two issues
for further investigation. While the model improves segmentation (as com-
pared to models that rely solely on segment co-occurrence probabilities), it is
not clear whether the model should also be taken as a possible account for
the induction of linguistic constraints. In order to be a valuable addition to
earlier linguistic models of constraint induction (e.g., Albright, 2009; Hayes &
Wilson, 2008), the model should be able to account for phonotactic constraints
that have been proposed in theoretical linguistics. The first issue is thus
the following: To what extent can the model induce constraints which have
been proposed in theoretical phonology? This is an important issue for the
following reason. In the previous chapters, it was argued that generalization
mechanisms such as the one implemented in StaGe may provide a crucial
link between statistical approaches to language acquisition, and traditional
linguistic approaches which assume more abstract representations. That is,
adding a generalization mechanism to the statistical learning of phonotactic
constraints leads to emerging (rather than innate) abstract phonological con-
straints (see also, Albright, 2009; Albright & Hayes, 2003). If the model is
to make any claim with respect to the acquisition of linguistic constraints, it
is important to see whether StaGe has the potential to model well-studied
phonological phenomena.

The second issue concerns the psychological plausibility of the model.
While the model is successful in corpus simulations, it is an open issue to
what extent the model can account for human segmentation behavior. Two
predictions of the model require empirical validation with human segmen-
tation data. First, StaGe induces a mixture of specific (segment-based) and
abstract (feature-based) constraints. Do human listeners segment speech in a
similar fashion? That is, do they use specific constraints, abstract constraints,
or both? Second, StaGe is built on the assumption of bottom-up learning
from the speech stream, rather than top-down learning from the lexicon. Do
human listeners rely on phonotactic knowledge that is derived from continu-
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ous speech? Or do phonotactic constraints for speech segmentation originate
from the lexicon?

In this chapter, these two issues are addressed in conjunction by investi-
gating to what extent StaGe can provide a learnability account of an abstract
phonotactic constraint which has been shown to affect speech segmentation.
The chapter connects to the work of Boll-Avetisyan and Kager (2008) who
show that OCP-Place (a phonological constraint which states that sequences
of consonants sharing place of articulation should be avoided) affects the
segmentation of continuous artificial languages by Dutch listeners. This leads
to two specific questions: (i) Can StaGe induce constraints which resemble
OCP-Place? (ii) Can StaGe account for the effect that OCP-Place has on the
segmentation of continuous speech by Dutch listeners?

The setup of the chapter is as follows. Section 4.1 gives an overview
of OCP-Place, and its effect on segmentation. In Section 4.2, the setup
for simulations of OCP-Place will be discussed, including the approach to
predicting human segmentation data. The chapter will proceed in Section 4.3
with examining the output of the model, and the predictions that follow from
the model with respect to word boundaries. The output of the model will
be used as a predictor for human segmentation data in Sections 4.4 and 4.5.
The implications of the findings will be discussed in Section 4.6, emphasizing
the contribution of the chapter to supporting the Speech-Based Learning
hypothesis.

4.1 introduction

Studies of phonological systems support the view that phonotactic constraints
are abstract in the sense of referring to natural classes, defined by phonological
features. The Obligatory Contour Principle (OCP) is a general principle which
restricts the co-occurrence of elements that share phonological properties
(e.g., Goldsmith, 1976; Leben, 1973; McCarthy, 1986, 1988). For example, the
constraint OCP-Place (McCarthy, 1988) states that sequences of consonants
that share place of articulation (‘homorganic’ consonants) should be avoided.
In many languages, this constraint has the particular gradient effect that pairs
of labials (across vowels) tend to be underattested in the lexicon (Arabic: Frisch
et al., 2004; English: Berkley, 2000; Muna: Coetzee & Pater, 2008; Japanese:
Kawahara, Ono, & Sudo, 2006; Dutch: Kager & Shatzman, 2007).

Different views exist regarding the status of OCP-Place in phonological
theory. McCarthy (1988) proposes that the OCP is one of three universal
phonological primitives (along with feature spreading and delinking). The
analysis assumes that the OCP holds on all feature-based tiers. Evidence
comes from word roots in Arabic, which avoid not only identical consonants
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(e.g., *smm), but also non-identical consonants sharing place of articulation
(e.g., *kbm). The occurrence of consecutive labials is restricted, since the OCP
forbids adjacent elements on the labial tier.

A different view is taken by Boersma (1998) who argues that the OCP is
not an autosegmental primitive, but rather is the result of functional principles.
In the functional interpretation, OCP effects emerge from an interaction of
constraints against perceptual confusion (i.e., adjacent identical elements are
hard to perceive), and constraints against repetition of articulatory gestures.
The consequence of this approach is that the OCP is regarded not as an innate
phonological device. Rather, OCP is reduced to more fundamental articulatory
and perceptual constraints.

A third view is that OCP-Place is a constraint that is the result of abstrac-
tion over word forms (or roots) in the lexicon. In an analysis of OCP-Place in
Arabic, Frisch et al. (2004) define a gradient constraint, whose degree of vi-
olation (as measured by the observed/expected ratio) is a function of the
similarity between consonant pairs in terms of shared natural classes. Highly
similar homorganic consonants are strongly underrepresented in the lexicon
of Arabic roots, whereas relatively dissimilar pairs are underrepresented to
a lesser degree. Frisch et al. distinguish a functional, diachronic perspective
from a formal, synchronic perspective. In their view, similarity avoidance
shapes the structure of the lexicon of the language. During language acquisi-
tion, individual speakers learn an abstract phonotactic constraint, OCP-Place,
from the set of root forms in this lexicon. In the view of Frisch et al. (2004),
abstract phonotactic constraints are the result of generalization over statisti-
cal patterns in the lexicon, and are thus not directly functionally grounded
(contrary to the view of Boersma, 1998; Hayes, 1999).

Frisch et al. (2004) propose a similarity metric as a predictor for gradient
OCP-Place effects in the lexicon. In their account, the degree of underattes-
tation in the lexicon is determined by the number of natural classes that are
shared by two consonants (similarity = # shared natural classes / (# shared
natural classes + # non-shared natural classes)). While the metric of Frisch et
al. is successful in predicting gradient OCP effects in the lexicon of Arabic
roots, they leave open the question of how individual speakers acquire the
abstract OCP-Place constraint from the lexicon.

OCP-Place does not reflect a universal distribution, regulating consonant
occurrences in all languages. Languages differ in their manifestation of OCP
effects, in particular with respect to the strength of OCP-Place for sequences
agreeing on other feature dimensions. Coetzee and Pater (2008) compare the
avoidance of homorganic consonants in Muna and Arabic. In both languages
the degree of attestedness of homorganic consonants is affected by similarity
on other featural dimensions. The languages differ, however, in the relative
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strengths of OCP-Place effects for different natural classes. While in Arabic
similarity avoidance is strongest for homorganic consonants that also agree
in sonorancy, Muna shows a more balanced OCP-Place effect for agreement
in voicing, sonorancy, and stricture. This observation is problematic for the
similarity-based account of Frisch et al. (2004). As Coetzee and Pater point
out, the similarity metric predicts only a limited amount of cross-linguistic
variation in similarity avoidance. Specifically, only differences in the size of
a natural class would lead to a cross-linguistic difference. Frisch et al. (2004)
point out that OCP-Place is weakest for coronals, due to the large number of
coronals in the segment inventory of Arabic. In Muna, however, the number
of labials, coronals, and dorsals varies only slightly. Nevertheless, Coetzee
and Pater report a substantial difference in the degree of underattestation
between these classes, dorsals being the most underattested, followed by
labials, and then coronals. The similarity metric thus is not able to account for
this variation, indicating that the learner needs to learn about the language-
specific co-occurrence patterns through exposure to such patterns during
learning.

This limitation of the similarity metric for predicting cross-linguistic varia-
tion is supported by analyses of similarity avoidance in Dutch. In Dutch, there
appears to be no significant correlation at all between the similarity metric and
the degree of underattestedness in the lexicon (Kager, Boll-Avetisyan, & Chen,
2009). The consequence is that language learners cannot rely on a general
mechanism for similarity avoidance. Instead, language-specific OCP effects
will have to be acquired from experience with language data (Boersma, 1998;
Coetzee & Pater, 2008; Frisch et al., 2004; Frisch & Zawaydeh, 2001).

Coetzee and Pater propose a universal set of multiple OCP-Place con-
straints (pharyngeal, dorsal, coronal, labial) relativized for agreement on sub-
sidiary features (sonorancy, stricture, voice, emphatic, prenasalization). Their
account is based on weighted constraints in Harmonic Grammar (Legendre
et al., 1990; Pater, 2009). The model obtains language-specific gradient well-
formedness scores for consonant sequences through language-specific weight-
ing of the universal constraints. The learner is presented with sequences of
non-identical homorganic consonants, which are distributed according to their
frequency of occurrence in the lexicon. Constraint weights are adjusted when-
ever the learner’s own output deviates from the observed learning datum.
Weights are adjusted by decreasing the weights of constraints that are violated
by the learning datum, and increasing the weights of constraints that are vio-
lated by the learner’s own output. After training the model is used to create
acceptability scores for consonant sequences by assessing the Harmony score
of a form relative to its most harmonic competitor. The acceptability scores
are then used to predict the O/E ratios of sequences in the lexicon. While
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this approach is feature-based, and able to capture cross-linguistic gradient
wellformedness, it is based on the assumption of a universal constraint set
that is given to the learner.

What is going to be presented in this chapter is an account of OCP-
Place effects using induced constraints. In Chapter 2, a computational model
was proposed for the induction of phonotactic constraints. The model works
on the assumption that the learner constructs feature-based generalizations on
the basis of statistically learned co-occurrence patterns. This view is similar to
the theoretical proposal of Frisch et al. (2004) that individual learners acquire
OCP-Place through abstraction over statistical patterns in the lexicon. It is
thus worthwhile to investigate whether StaGe can provide a formal account
of the induction of OCP-Place. Another reason for pursuing the induction
of OCP-Place using StaGe is that OCP-Place has been found to affect
speech processing in general, and speech segmentation in particular. Since
StaGe was developed as a model to account for the induction of phonotactic
cues for segmentation, the model potentially provides a unified account of
the learnability of OCP-Place, and its effect on segmentation. Note that
StaGe has been proposed as a bottom-up model (‘learning from continuous
speech’), rather than a top-down (‘learning from the lexicon’) model. The
model can, however, be trained on co-occurrence patterns from either source,
and this chapter will therefore explore both speech-based and lexicon-based
learning. Before outlining the proposal for the induction of OCP-Place using
StaGe, evidence for the psychological reality of OCP-Place will be briefly
discussed, focusing on the role of OCP-Place in speech segmentation.

4.1.1 OCP effects in speech segmentation

In addition to underattestation of OCP-violating words (such as /smaf/) in
the lexicons of various languages, OCP has been shown to affect listeners’
behavior in a variety of tasks. For example, Berent and Shimron (1997) found
that the avoidance of root-initial geminates (i.e., repeated consonants at the
beginning of a root) in Hebrew root morphemes affects the rating of nonwords
by native Hebrew speakers. In accordance with the structure of Hebrew roots,
root-initial gemination was judged to be unacceptable. Similar results were
obtained in a study of wellformedness judgments by native speakers of Arabic.
Novel roots containing a violation of OCP-Place were judged to be less word-
like than novel roots which did not violate OCP-Place (Frisch & Zawaydeh,
2001). The effect of OCP-Place was found after controlling for possible
effects of analogy to existing words, supporting the psychological reality of
an abstract phonotactic constraint. OCP-Place has also been found to affect
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speech perception by English listeners, particularly in phoneme identification
tasks (Coetzee, 2005).

There is also evidence that OCP-Place has an effect on speech segmenta-
tion. The cue provided by OCP-Place to segmentation relies on the following
observation. If consonants sharing place of articulation are avoided within
words in a language, then the occurrence of such consonant pairs in the
speech stream would indicate the presence of a word boundary to the listener.
Interpreting such consonants as belonging to a single word would constitute
a violation of OCP-Place. In contrast, breaking up a sequence of homorganic
consonants through the insertion of a word boundary would avoid viola-
tion of OCP-Place, resulting in two distinct words with a higher degree of
phonotactic wellformedness.

In a word spotting task, Kager and Shatzman (submitted) found that Dutch
listeners are faster at detecting labial-initial words when preceded by a labial-
initial syllable (e.g., bak ‘bin’ in foebak) than when preceded by a coronal-initial
syllable (e.g., soebak). Supposedly, the phonotactic wellformedness of soebak
slows down the detection of the embedded target bak. In contrast, the violation
of OCP-Place in foebak results in a phonotactically enforced word boundary
foe.bak which aligns with the onset of the target word bak. Such a boundary
would trigger initiating a new attempt at lexical access, which would speed
up the detection of the embedded target word (see e.g., Cutler & Norris, 1988).
Complementing earlier studies which show that listeners attend to feature
discontinuity in segmentation (e.g., a violation of vowel harmony in Finnish;
Suomi et al., 1997), Kager and Shatzman provide evidence that listeners also
use feature continuity (as reflected in a violation of OCP-Place) as a cue for
finding word boundaries in the speech stream.

Additional evidence for OCP effects in speech segmentation comes from
artificial language learning experiments. Boll-Avetisyan and Kager (2008)
tested whether human learners have indeed internalized an abstract OCP-
Place constraint, and use it as a cue for segmentation. The artificial languages
to which Dutch participants were exposed consisted of a continuous stream
of CV syllables where the consonant was either a labial (P) or a coronal
(T). The stream contained sequences of two labials followed by one coronal
(e.g., . . . TPPTPPT. . . ). The syllables in the language were concatenated in
such a way that the resulting stream contained no statistical cues to word
boundaries. The language could thus be segmented in three logically possible
ways: TPP, PPT, or PTP. In the test phase, participants were presented with
a two-alternative forced-choice task, in which they had to determine which
words were part of the language they had just heard. If participants use
OCP-Place, they should have a significant preference for PTP segmentations
(which respect the constraint) over PPT and TPP segmentations (which violate
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it). Indeed, participants showed a preference for PTP words over PPT words
and TPP words, indicating that participants used OCP-Place to segment the
speech stream. The study by Boll-Avetisyan and Kager (2008) shows that OCP-
Place can be used to extract novel words from the speech stream, indicating
a potential role for OCP-Place in word learning.

In sum, there is evidence that OCP-Place is a feature-based phonotactic
constraint which affects speech processing in a variety of languages. Due to
the language-specific nature of OCP effects, learners need to induce OCP-
Place from experience with input data. The observation that learning OCP-
Place requires abstracting over statistical patterns in the input, combined
with the evidence that OCP-Place affects speech segmentation, makes the
induction of OCP-Place a well-suited test case for the bottom-up speech-
based learning approach. In this chapter, we will look at whether StaGe is
able to account for the induction of OCP-Place. Importantly, StaGe uses no
explicit mechanism for similarity avoidance and assumes that constraints are
induced without referring to the lexicon as a basis for phonotactic learning.
The theoretical part of this chapter looks at whether the constraints induced by
StaGe reflect OCP-Place. The empirical part of this chapter will be concerned
with investigating whether StaGe is able to account for OCP effects in speech
segmentation. Human segmentation data will be used, taken from the study
by Boll-Avetisyan and Kager (2008). The ability of StaGe to account for
these data will be investigated. The main topics of interest are comparing
models that vary in the assumptions they make about the abstractness of
OCP-Place (consonant probabilities, StaGe, a single abstract OCP-Place;
Experiment 1), and comparing models that vary in the assumptions they make
about the input (continuous speech, word types, word tokens; Experiment 2).

4.1.2 Modeling OCP-Place with StaGe

The interpretation of OCP-Place in this chapter is somewhat different from
the view taken in earlier work. While OCP-Place has traditionally been
thought of as a constraint holding at the level of morphemes (such as root
morphemes in Arabic), the view adopted here will be one of a sublexical
constraint which is not restricted to apply within morpheme boundaries, but
rather operates on consonant sequences in fluent speech. This view traces back
to the Speech-Based Learning (SBL) hypothesis (proposed in Chapter 1), which
states that infants induce phonotactic constraints from continuous speech, and
subsequently use these constraints for the detection of word boundaries in
continuous speech. In this view, phonotactic constraints operate on continuous
speech input in order to facilitate the development of the mental lexicon.
The current chapter asks whether the same approach, which was based on
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phonotactic learning by infants, can provide a learnability account of abstract
phonotactic constraints that have been proposed in theoretical phonology. The
question is thus whether OCP-Place is learnable in a bottom-up fashion from
a corpus of transcribed continuous speech. If OCP-Place can be induced
from continuous speech, it may act as a valuable sublexical cue during word
learning, since the occurrence of consonants sharing place of articulation in the
speech stream would signal the presence of a word boundary to the learner.

The empirical part of the chapter is focused on the effects of OCP on
segmentation. In contrast, earlier studies have been concerned with either
predicting OCP effects in the lexicon (Coetzee & Pater, 2008; Frisch et al.,
2004), or effects of OCP constraints on human wellformedness judgments (e.g.,
Frisch & Zawaydeh, 2001). A complete account of OCP-Place has to be able to
explain OCP effects for wellformedness judgments, as well as OCP effects for
segmentation. The analysis presented in this chapter therefore provides only
a partial account of OCP-Place, complementing earlier empirical studies by
examining OCP effects for segmentation.1 One critical aspect that has become
clear from earlier studies is that a model of OCP-Place needs to be able
to account for effects of gradience, explaining different degrees of similarity
avoidance.

As explained in Chapter 2, the constraints induced by StaGe are evaluated
through strict domination. As a consequence, the model will always produce
the same output for a given input sequence (in contrast to models that use
stochastic evaluation, e.g., Boersma & Hayes, 2001), and in that sense the
model does not produce gradient effects. As will become clear later on in
this chapter, however, the model does produce gradient segmentation effects.
This is not caused by the model’s constraint evaluation mechanism, but rather
by the model’s use of context. In short, the model favors segmentation of
labial-labial sequences in most contexts, but not all. The result is a gradient
effect on segmentation, avoiding the occurrence of labial-labial sequences in
most cases, but allowing a violation of OCP-Place in cases where this would
avoid the violation of a higher ranked constraint. In Section 4.2, it will be
shown how these predictions can be used to model gradient preferences of
participants for experimental items in segmentation experiments.

Some general limitations for modeling OCP-Place effects with constraint
induction models were observed by Hayes and Wilson (2008). Hayes and
Wilson argue that since the notion of OCP relies heavily on similarity avoid-
ance, modeling the learning of a constraint such as OCP-Place would require
the implementation of a metric assessing the similarity between consonants
in a sequence. In addition, it would require taking the distance between

1 Some suggestions for deriving wellformedness predictions from the model are given in Chapter 6.
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consonants into account, since OCP effects are stronger for consonant pairs at
close distance than at greater distance.

StaGe faces the same problems as those mentioned by Hayes and Wilson
(2008). StaGe uses no explicit mechanism or bias for similarity avoidance to
learn phonotactic constraints. That is, the model does not assess the feature
difference between c1 and c2 in a sequence (e.g., c1Vc2). Also, the model has no
way of representing gradient distance effects. Taking the latter limitation for
granted, the focus will be on modeling local OCP effects (i.e., using consonant
pairs with only intervening vowels). I will follow the view of Frisch et al. (2004)
that similarity avoidance need not be encoded in the synchronic grammar.
Instead, OCP-Place may be learnable through abstraction over statistical
regularities in the input.

The observation that learning OCP-Place requires abstracting over a
language-specific distribution makes the induction of OCP-Place an inter-
esting test case for StaGe. StaGe was designed to perform exactly such
abstractions. StaGe’s Frequency-Driven Constraint Induction is used by the
learner to detect statistical patterns in the input (i.e., sequences which are
highly under- or overrepresented). Single-Feature Abstraction is subsequently
used by the learner as a mechanism to build abstract, feature-based constraints
on the basis of the statistically-induced constraints on specific segment se-
quences. It is thus interesting to ask whether the formal learning model
that was proposed in the previous chapters, when applied to sequences of
non-adjacent consonants, could result in the induction of OCP-Place.

The application of StaGe to the induction of OCP-Place raises several
issues worth investigating. The first issue concerns the level of abstractness of
OCP-Place. StaGe makes an interesting prediction with respect to this issue.
StaGe implements two learning mechanisms, segment-based statistical learn-
ing and feature-based generalization (see Chapter 2). Since the generalization
mechanism operates on segment-specific constraints, and all feature-based
generalizations are added to the constraint set, this approach results in a set of
constraints which vary in terms of their generality. StaGe thus predicts both
effects of specific consonant probabilities, as well as of general feature-based
regularities in the data (see also, Albright, 2009). In Experiment 1 (Section 4.4),
it is examined to what extent models that vary in their level of representation
can account for OCP effects on speech segmentation. That is, the mixed con-
straint set produced by StaGe is compared to a statistical model based purely
on consonant probabilities, and to a model that implements OCP-Place as a
single, categorical feature-based constraint. The experiment thus complements
the simulations in Chapter 3, where it was shown that adding generalization
to statistical learning improves the segmentation performance of the learner.
In this chapter, a different angle is taken by examining the effects of having
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specific constraints in addition to a constraint that is commonly assumed to be
an abstract feature-based constraint. The examination of the roles of both spe-
cific and abstract constraints in phonotactic learning and speech segmentation
is thereby continued.

The second issue deals with the input that is used by the learner for the
induction of OCP-Place. StaGe was built on the idea of speech-based learn-
ing. StaGe assumes that constraints are learned in a bottom-up fashion from
the speech stream, rather than from the lexicon. This raises the question of
whether OCP-Place can be learned from a language-specific distribution of
consonants in continuous speech, or whether the induction of OCP-Place re-
quires a lexicon. Since StaGe can in principle be applied to any statistical
distribution of biphones, regardless of whether the distribution is based on
sequences in continuous speech or sequences in the lexicon, both alternatives
will be explored in this chapter. Specifically, in Experiment 2 (Section 4.5) the
continuous speech-based learner will be compared to a lexicon-based version
of StaGe, employing either type or token probability distributions.

A final issue that deserves attention is the way in which the input is
presented to the learner. In Chapters 2 and 3, StaGe was presented with
adjacent segments for the induction of phonotactics. However, since OCP-
Place is a constraint restricting the occurrence of consonant pairs across vowels,
the constraint appears to be beyond the scope of the biphone-based model.
Similar problems were faced by Hayes and Wilson (2008) for the modeling of
Shona vowel harmony. Adopting the view that phonological processes often
target either exclusively vowels or exclusively consonants, Hayes and Wilson
chose to apply their induction model on a vowel projection. That is, the model
was presented with sequences of vowels in the data, ignoring intervening
consonants. This allowed the model to express the non-local process in
local terms. The same line of reasoning can be applied for the induction of
OCP-Place. StaGe can be presented with sequences of consonants, ignoring
intervening vowels, thereby reducing non-adjacent consonants to adjacent
segments on the consonantal tier.

A potential problem of this approach, however, is that such a projection
does not distinguish between sequences of consonants that are truly adjacent
(i.e., consonant clusters), and sequences of consonants that are separated by
vocalic material. The consonant projection may be reducing the data too much,
since adjacent consonants and non-adjacent consonants are often affected by
different phonological processes. For example, while non-adjacent consonants
in Dutch show effects of place dissimilation (OCP-Place, Kager & Shatzman,
2007), nasal-obstruent clusters in Dutch show effects of place assimilation
(Booij, 1995). Nasal place assimilation in Dutch transforms /pInpAs/ (‘ATM
card’) into /pImpAs/, containing two adjacent labials (and thus violating

84



4.1 introduction

OCP-Place). In a consonant projection, the distinction between adjacent and
non-adjacent processes is lost, which potentially hinders their learnability. The
approach taken here is to present the learner with non-adjacent consonants
exclusively. Specifically, the model is trained on C(V)C sequences (ignoring
intervening vowels). By presenting the model with consonant sequences that
occur across a vowel, the non-local dependency is expressed in local (bigram)
terms. The model can be straightforwardly applied to these representations.

A modification to the way in which our model processes the input naturally
leads to the question of whether such a modification is justified. Extensive
modifications to computational models can easily result in the criticism that
any phenomenon can be modeled with the right set of modifications. As
described above, the choice is supported by considerations of phonological
processes. In addition, two pieces of evidence from psycholinguistic stud-
ies seem to justify the processing assumption. The first piece of evidence
comes from research on statistical learning. Several studies have shown
that human learners are able to track transitional probabilities of consonants
across intervening vowels in a stream of CV sequences in artificial continuous
speech (Bonatti et al., 2005; Newport & Aslin, 2004). The statistical learning
component of StaGe is thus supported for the proposed modification of a
C(V)C processing window. These studies show that learners are, at least,
capable of learning dependencies across vowels.2 The question is whether
adding StaGe’s generalization component to the statistical learning of non-
adjacent consonant dependencies would result in a constraint that resembles
OCP-Place.

The second piece of evidence comes from research on feature-based gen-
eralization. Finley and Badecker (2009) show that human learners are able
to pick up patterns of vowel harmony from a set of words from an artificial
language. Since vowel harmony is a process requiring feature continuity
in vowels across consonants, the study by Finley and Badecker shows that
learners can perform feature-based generalization on non-adjacent segments.
Interestingly, also vowel harmony has been shown to effect speech segmenta-
tion (Suomi et al., 1997; Vroomen et al., 1998). It thus appears that abstract
constraints on non-adjacent segments are learnable, and have an effect on
speech processing. The basic operations performed by StaGe, segment-based
statistical learning and feature-based generalization, are supported by studies
on the learning of non-adjacent patterns by human learners. What remains

2 The findings of Newport and Aslin (2004) and Bonatti et al. (2005) can also be explained by
learning on a consonantal tier. However, the languages in these experiments only contained
non-adjacent consonants. Showing that learning takes place on a consonantal tier would require
showing that learners treat adjacent and non-adjacent consonants equally (since their distinction
is lost on a consonantal tier). A more parsimonious interpretation of the existing evidence is that
learners keep track of non-adjacent consonants in the speech stream.
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unknown is whether feature-based generalizations about non-adjacent con-
sonants can be learned from continuous speech input, and what the effect of
such generalizations is on speech segmentation.

4.2 methodology

The simulations of the induction of OCP-Place will be highly similar to
the induction of biphone constraints in the previous chapters. However, the
evaluation of the resulting constraint set will be radically different. While
in Chapter 3 learning models were evaluated with respect to their ability to
accurately predict the locations of word boundaries in a test set consisting
of novel unsegmented corpus utterances, the current set of simulations is
concerned with the ability of computational learning models to accurately
predict human segmentation behavior in an artificial language. That is, the
models are trained on native language (L1) input, and tested on a novel,
artificial language (AL). This section describes methodological issues involved
in setting up such a simulation, and discusses in detail how the computational
models are used to predict human data.

4.2.1 Materials

The simulations involve the induction of Dutch phonotactics affecting non-
adjacent consonants. The data consist of broad phonetic transcriptions of
the Spoken Dutch Corpus (Corpus Gesproken Nederlands, CGN; Goddijn &
Binnenpoorte, 2003). Representations of continuous speech were made by
removing all word boundaries within utterances. The complete corpus is
used as a training set (78,080 utterances, 660,424 words). The test set consists
of the artificial language created by Boll-Avetisyan and Kager (2008). In
this language, three positional slots are repeatedly filled with different CV
syllables to yield a continuous speech stream. Each positional slot is filled
with a syllable from a fixed set for that position. The first and second positions
contain syllables starting with a labial (Position 1: /pa/, /bi/, /mo/, Position
2: /po/, /be/, /ma/). The third position is filled with syllables starting with
a coronal (Position 3: /tu/, /do/, /ne/). Due to the CV structure of the
syllables, consonants are always separated from each other by an intervening
vowel. For example:

(4.1) ...papotumomanemopotupabetubiponemobenebimadomoponebi...

The language was carefully constructed in order to ensure that partic-
ipants in the study by Boll-Avetisyan and Kager relied on L1 phonotactic
constraints on non-adjacent consonants during segmentation of the artificial
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speech stream. In particular, the language was controlled for experimentally
induced statistical biases and for L1 phonotactics not of interest to their study.
Importantly, the language was controlled for statistical cues to word bound-
aries. Since each position is filled with one out of three syllables, transitional
probabilities between syllables were 0.33 throughout the speech stream, and
participants could thus not rely on syllable probabilities for segmentation
(contrary to earlier studies by Saffran, Newport, & Aslin, 1996, and others).
In addition, the language was controlled for possible L1 cues for segmenta-
tion, such as biphone probabilities, positional syllable frequencies, segmental
duration, and intonation.

4.2.2 Procedure

Simulations were conducted using the StaGe Software Package (see Ap-
pendix A). The learning model is trained on non-adjacent consonants (i.e.,
on consonant pairs that occur with intervening vowels). Input to the learner
consists of transcribed utterances of continuous speech. StaGe builds up
a statistical distribution of O/E ratios for non-adjacent consonants. From
this distribution the learner induces segment-specific constraints (Frequency-
Driven Constraint Induction) and feature-based generalizations on the basis
of the induced specific constraints (Single-Feature Abstraction). Thresholds
are set at tM = 0.5 for the induction of markedness constraints, and tC = 2.0
for the induction of contiguity constraints. Constraints are ranked using the
statistical measure of Expected frequency. (See Chapter 2 for details on the
types of constraints and the learning procedure used by StaGe.) The con-
straint induction procedure thus produces a ranked constraint set, containing
both specific and abstract constraints on non-adjacent consonants.

The induced constraint set is used to predict word boundaries in the
transcribed continuous artificial language. Vowels are expected not to affect the
segmentation of the language (L1 biphone probabilities had been controlled for
in the construction of the language), and are removed from the transcription.
The remaining sequences of consonants in the artificial language are submitted
to the OT segmentation model (see Chapter 2), which uses the constraint set
to predict optimal segmentations of chunks of input.

The learner inspects consonant sequences in context (wxyz-sequences),
using the segmentation procedure that was used in Experiment 3 in Chapter 3.
That is, neighboring consonant sequences (wx, yz) play a role in determining
whether the current sequence under inspection (xy) should be segmented. All
sequences of four consonants in the language are thus evaluated and con-
sidered for segmentation. Given the fact that the artificial language contains
sequences of two labials (P) followed by a coronal (T), the segmentation model
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is confronted with three different types of sequences: PP(.)TP, PT(.)PP, and
TP(.)PT, where ‘(.)’ indicates a potential word boundary. The candidate set
for a sequence wxyz consists of the following possible segmentations: {w.xyz,
wx.yz, wxy.z, wxyz}. A boundary is inserted into a sequence xy only if wx.yz
is returned as the optimal segmentation. For example, an input TPPT has the
possible segmentations {T.PPT, TP.PT, TPP.T, TPPT}, and will be segmented
only if candidate TP.PT is assessed as incurring the least serious constraint
violations (as compared to the other candidates) in the induced constraint set.

In sum, the output of the segmentation procedure consists of a hypothe-
sized segmentation of the continuous artificial language. The hypothesized
word boundaries are based on violations of induced constraints by consonant
sequences in the speech stream. It should be noted that the model can in
principle perfectly mimic a segmentation based on a categorical OCP-Place.
In order to do so the model should always insert boundaries in TPPT se-
quences, since the insertion of a boundary into PP avoids the violation of
OCP-Place (i.e., avoids the occurrence of a sequence of two labials).

4.2.3 Evaluation

In the evaluation of the hypothesized segmentation of the artificial language,
the output of the computer simulation will be matched to human segmen-
tation data. Specifically, the simulation output is used as a predictor for
the human judgments obtained by Boll-Avetisyan and Kager (2008). In their
study, participants listened to the artificial language (described above) for 10

minutes. After this familiarization phase participants were given a test phase
which was intended to assess how participants had segmented the artificial
speech stream. The specific interest was in determining whether participants
had used OCP-Place as a cue to finding word boundaries. This was done
by setting up comparisons between logically possible segmentations of the
speech stream. That is, participants could have heard PPT, PTP, or TPP words,
depending on where they inserted boundaries in the speech stream. Partic-
ipants were given a two-alternative forced-choice task in which they had to
indicate upon each trial which out of two words belonged to the language they
had just heard. In the experiment, 14 participants were assigned to each of
three different conditions: PTP-PPT, PTP-TPP, PPT-TPP. If participants relied
on OCP-Place, then they should have a preference for PTP words over PPT
and TPP words. In order to explore whether StaGe can accurately predict
participants’ preferences for experimental items, predictions of the model will
be matched with data from the PTP-PPT condition (which was the condition
that yielded the biggest learning effect in Boll-Avetisyan and Kager’s study).
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Table 4.1: Human judgments on experimental items.

PTP items PPT items

Item Score Item Score

madomo 0.8095 mobedo 0.5476

ponebi 0.7381 pabene 0.5476

ponemo 0.7381 papone 0.5000

podomo 0.6905 mobetu 0.4524

madobi 0.5714 papodo 0.4524

madopa 0.5714 pabedo 0.4048

ponepa 0.5714 pamado 0.4048

podobi 0.5476 pamatu 0.4048

potumo 0.5476 papotu 0.3810

podopa 0.4762 pabetu 0.3571

potubi 0.4524 pamane 0.3333

potupa 0.2381 mobene 0.2619

Note. Data from Boll-Avetisyan and Kager (2008).

Wellformedness scores are calculated for each experimental item by averag-
ing judgments across participants. For example, if an item is always selected
in the forced-choice trials, the item would get a score of 1. If an item is never
chosen, the score is 0. Intermediate values are simply proportions of how
often an item has been selected in the forced-choice task. For example, if
an item is selected in 70% of the trials, it gets a score of 0.7. A score of 0.5
indicates chance-level performance, in which case there is neither a preference
nor dispreference for an item. Values above 0.5 indicate that an item is gen-
erally preferred, whereas values below 0.5 indicate that an item is generally
dispreferred. Table 4.1 shows the items taken from Boll-Avetisyan and Kager
(2008) and their corresponding wellformedness scores.

The crucial part in the evaluation is to match the hypothesized segmenta-
tion of the artificial language with the item scores in Table 4.1. Recall that the
output produced by the simulations consists of a hypothesized segmentation
of the artificial language. Item score predictors are obtained by simply count-
ing how often each item occurs in the model’s segmentation output. That
is, whenever an item matches exactly with a stretch of speech between two
hypothesized word boundaries (with no intervening word boundaries), the
frequency count of the item is updated by 1. We thus use item frequencies in
the model’s segmentation output as a predictor for the human judgments on
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those items. For example, the segmentation output of a model could be the
following:

(4.2) pa.potu.momanemo.potupa.betu.bipo.nemobe.nebi.madomo.ponebi

In this case, the item frequencies of /potupa/, /madomo/, and /ponebi/
are increased. Note that the strict criterion of an exact word match implicitly
penalizes models that tend to over- or undersegment, since hypothesized
words that are larger or smaller than the actual item do not contribute to the
frequency counts of the item.

A measure of how well a model explains human segmentation behavior is
obtained by using the item frequencies as a predictor of the wellformedness
scores in statistical analyses based on linear regression. Before we look at
how well different models are able to account for the data, we simulate the
induction of OCP-Place using StaGe. The next section describes the contents
of the induced constraint set and the predictions it makes with respect to
word boundaries.

4.3 the induction of ocp-place

Before we look into how the model compares to other models and other input
data in explaining human segmentation behavior, we look at the output of
the learning procedure when training StaGe as described above. We first
look at the constraints that are induced by StaGe, and then proceed to the
predictions the model makes with respect to the locations of word boundaries
in the artificial language.

The output of the induction procedure

StaGe’s Frequency-Driven Constraint Induction creates specific constraints
from the statistical distribution. Specifically, underattested sequences (O/E <
0.5) trigger the induction of markedness constraints, whereas overattested se-
quences (O/E > 2.0) cause the induction of contiguity constraints. If StaGe is
able to induce a constraint set that encodes an abstract OCP-Place constraint,
then the specific constraints should provide the basis for such a general-
ization. That is, specific underrepresentations of labial-labial sequences in
the data should be picked up by the learner and be generalized (through
Single-Feature Abstraction) into a more abstract constraint affecting labials as
a natural class. Table 4.2 shows all specific constraints induced by the model
that affect labial-labial sequences across a vowel (PVP).

The first thing to note is that all specific PVP constraints are markedness
constraints. That is, there are no specific contiguity constraints that aim
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Table 4.2: Specific *PVP constraints (sequences with O/E < 0.5) with
corresponding ranking values.

CONSTRAINT RANKING

*[m]V[f] 1495.3318

*[b]V[m] 1480.8816

*[m]V[p] 1225.0285

*[m]V[b] 1159.8271

*[m]V[v] 996.4387

*[f]V[p] 812.7798

*[f]V[v] 661.1154

*[v]V[f] 579.2754

*[v]V[p] 474.5628

*[p]V[v] 288.5850

to preserve PVP sequences. The second thing to note is that not all PVP
sequences are underattested to such a degree that they trigger the induction
of a specific markedness constraint. Since the natural class of labials includes
5 segments (p, b, f, v, m)3 there are 5× 5 = 25 different PVP sequences. Out of
these 25 potential constraints, 10 (= 40%) specific constraints arise as a result
of Frequency-Driven Constraint Induction. The remaining 15 PVP sequences
have O/E values that lie between the values of the two induction thresholds
(0.5 ≤ O/E ≤ 2.0). Interestingly, the set of specific constraints only contains
markedness constraints against non-identical homorganic consonants. This is
in line with earlier studies that suggest that identical homorganic consonants
(e.g., mVm) may display different OCP effects than non-identical homorganic
consonants (e.g., Frisch & Zawaydeh, 2001).

The next question of interest is whether the 10 specific markedness con-
straints provide a sufficient basis for the construction of an abstract OCP-
Place constraint. Generalizations that are based on the specific PVP con-
straints (using Single-Feature Abstraction) are shown in Table 4.3. The con-
straint set illustrates several properties of StaGe’s generalization mechanism.
As discussed in Chapter 2, the model induces a multitude of constraints with
varying degrees of generality. The ranking of the constraints, which is based
on averaged expected frequencies, results in a hierarchy in which specific
constraints (and generalizations with strong statistical support by specific
constraints) are ranked higher than very broad generalizations, which are

3 /w/ is labio-dorsal, and is therefore not included in the set of labials proper.
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Table 4.3: Specific and abstract constraints affecting labial-labial se-
quences exclusively.

CONSTRAINT RANKING

*[m]V[f] 1495.3318

*[b]V[m] 1480.8816

*[m]V[p,f] 1360.1802

*[m]V[f,v] 1245.8852

*[m]V[p] 1225.0285

*[m]V[p,b,f,v] 1219.1565

*[m]V[p,b] 1192.4278

*[m]V[b] 1159.8271

*[m]V[b,v] 1078.1329

*[m]V[v] 996.4387

*[f]V[p] 812.7798

*[f]V[v] 661.1154

*[f,v]V[p] 643.6713

*[v]V[f] 579.2754

*[v]V[p,f] 526.9191

*[p,f]V[v] 474.8502

*[v]V[p] 474.5628

*[f,v]V[p,f] 466.6545

*[f,v]V[p,b,f,v] 315.9667

*[p]V[v] 288.5850

*[p,b,f,v]V[p,b,f,v] 176.0199

supported by only a limited number of specific constraints. As a result of the
absence of specific constraints targeting identical consonants, the constraint set
does not encode a strong tendency to avoid identical labials. Such sequences
are only affected by relatively low-ranked generalizations.

It should be noted that due to the feature set that is used, /m/ does
not group with the other labials. This is due to the inclusion of the feature
+/- sonorant in the feature set (see Appendix B). The feature is, however,
not required to provide each segment with a unique feature bundle. As a
consequence, obstruents and sonorants differ by at least two features (sonorant
+ some other feature). Since StaGe abstracts over single-feature differences,
generalizations cannot group obstruents and sonorants together. This can
be seen in the most general constraint, *[p,b,f,v]V[p,b,f,v], which matches
closely with OCP-Place (which can be written as *[p,b,f,v,m]V[p,b,f,v,m]),
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except for the absence of /m/ in the constraint. Note, however, that the
relatively large number of specific constraints affecting /m/ causes a tendency
to avoid sequences of /m/ followed by a labial. That is, while not all labials
are grouped together in a single OCP-Place constraint, the net effect of the
constraint set is that PVP sequences are avoided. There are, however, four
PVP sequences that are not affected by the constraints in Table 4.3: pVm, fVm,
vVm, and mVm. Inspection of the complete constraint set reveals that the
learner remains neutral with respect to these sequences.4 In sum, while not all
PVP sequences are underrepresented in the data, the constraint set displays
general tendencies to avoid PVP sequences due to Single-Feature Abstraction
over specific *PVP constraints.

An interesting property of Single-Feature Abstraction is that OCP effects
sometimes arise from constraints that do not specifically target homorganic
consonants. OCP effects can be obtained indirectly, as a result of generalization
over natural classes that include (but are not limited to) labials. The following
hypothetical example illustrates how such effects can occur. When Frequency-
Driven Constraint Induction produces three specific constraints *[p]V[d],
*[t]V[d], *[t]V[b], a generalization will be constructed stating that voiceless
anterior plosives may not be followed by voiced anterior plosives: *[p,t]V[b,d].
This generalization disfavors the labial-labial sequence pVb. In this case,
pVb is avoided even though there is no constraint specifically targeting the
avoidance of labial-labial sequences. The OCP effect in this case is due to
abstract constraints affecting other natural classes which include labials. In
fact, there is quite a large number of constraints which affect PVP sequences,
but not exclusively. Examples of such constraints can be found in Table
4.4. These constraints arise due to the fact that the learner picks up various
segment-based constraints (both OCP and non-OCP) which all contribute to
the construction of feature-based generalizations.

This observation raises the question of whether OCP effects that have been
demonstrated in previous studies (both lexicon-based analyses and experi-
mental judgments) should even be attributed to OCP-Place, or whether they
should be attributed to alternative constraints affecting sequences of natural
classes including labial consonants, but not classes of labials exclusively. Be-
low the question of to what extent OCP-like behavior should be attributed to
OCP-Place is addressed for the case of speech segmentation.

In sum, even though there is no explicit similarity avoidance mechanism,
and not all PVP sequences are underrepresented in the data, StaGe arrives

4 Inspection of O/E values for these sequences shows that a slightly less conservative induction
threshold would have resulted in inclusion of specific constraints for the sequences in the
constraint set; pVm, mVm: O/E < 0.6; fVm, vVm: O/E < 0.7. This shows that the sequences
are underrepresented in the data, albeit not as strongly as the other sequences. See Chapter 3

(Experiment 2) for a discussion of the consequences of changing threshold values.
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Table 4.4: Abstract constraints affecting a variety of natural classes that
include labials.

CONSTRAINT RANKING

*[f]V[p,t] 2256.3592

*[f,v]V[p,t] 1786.8968

*[v]V[p,t] 1317.4345

*[f,v]V[p,t,f,s] 1126.9261

*[v]V[p,t,f,s] 1125.6727

*[f,v,s,z]V[p,t] 965.3505

*[v]V[f,s] 933.9110

*[f,v]V[p,t,k,f,s,S,x] 833.5898

*[v,z]V[p,t] 802.5214

*[v]V[p,t,k,f,s,S,x] 787.2657

*[f]V[v,z] 752.6590

*[v]V[f,s,S,x] 718.9978

*[f,v]V[p,b,t,d,f,v,s,z] 657.5455

*[v,z]V[p,t,f,s] 634.7384

*[f,v,s,z]V[p,t,f,s] 599.4141

*[f,v]V[f,s,S,x] 565.3337

*[f]V[C] 560.1140

*[v,z]V[p] 524.8896

*[f]V[v,z,Z,G,h] 507.3987

*[f,v,s,z]V[p] 465.6398

*[f]V[f,v,s,z,S,Z,x,G,h] 464.8525

*[f,v]V[C] 452.2714

etc. . . .
Note. V = vowel, C = obstruents = [p,b,t,d,k,g,f,v,s,z,S,Z,x,G,h,Ã].

at a general, feature-based tendency to avoid PVP sequences. It achieves
this through generalization over underrepresented sequences. These gen-
eralizations have different levels of generality and need not affect labials
exclusively. Similarity avoidance can thus be encoded in the constraint set
through generalization over statistical underrepresentations.

4.3.1 Predictions of the constraint set with respect to word boundaries

The ranking of the constraints determines which constraints are actually used
by the learner during segmentation. Constraints relevant for segmentation
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Table 4.5: Constraints used in segmentation of the artificial language.

FREQUENCY
CONSTRAINT RANKING Count Percentage

*[b]V[m] 1480.8816 27 (11.1%)
*[m]V[p,f] 1360.1801 27 (11.1%)
*[m]V[p,b,f,v] 1219.1565 27 (11.1%)
*[C]V[p,t] 376.2584 98 (40.3%)
*[p,b,f,v]V[p,b,t,d,f,v,s,z] 337.7910 54 (22.2%)
*[p,f]V[C] 295.7494 12 (4.9%)
*[C]V[t,s,S] 288.4389 8 (3.3%)
*[p,b,f,v]V[t,d,s,z,S,Z,Ã] 287.5739 6 (2.5%)
*[C]V[p,b,t,d] 229.1519 4 (1.6%)

Note. The frequency of use (FREQUENCY) indicates how many wxyz-sequences in
the language (out of a total of 243) are affected by the constraint during evaluation.
V = vowel, C = obstruents = [p,b,t,d,k,g,f,v,s,z,S,Z,x,G,h,Ã].

of the artificial language were extracted by considering OT tableaus for all
PPTP, PTPP, and TPPT sequences that were presented to the model. The term
‘relevant’ is used here to indicate that the constraint caused a reduction in the
size of the candidate set. Table 4.5 shows that, while StaGe creates a large
number of generalizations, only 9 constraints were relevant for segmentation
of the artificial language. Due to OT’s strict domination, the vast majority of
lower-ranked constraints do not play a role in speech segmentation. While
this is a general property of the model, the effect is rather extreme here
due to the simple structure of the artificial language, which only contains 6

different consonants. It is therefore not surprising that only a limited number
of constraints are relevant in this case. The table also indicates the frequency
of use for each constraint, which is a count of how many sequences were
affected by the constraint during segmentation. This gives insight into the
relative importance of the different constraints.

The relevant constraints appear to be of two types. At the top of the
hierarchy in Table 4.5 there are situated three high-ranked constraints affecting
labials exclusively. These constraints represent more specific versions of
OCP-Place, affecting labials, but not all labials. The high ranking values of
these constraints ensure that the model often behaves like OCP-Place, and
favors segmentation of PVP sequences (see Figure 4.1 for an example). In
addition, there are six low-ranked constraints affecting natural classes that
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The following OT tableaus should be cropped from this document, and saved
as separate files for inclusion as Figures in APA-style paper.

Tableau 1: OCP-like segmentation behavior

Input: mapodomo *[m]V[p,f]
(r = 1360.18)

! ma.podomo
mapo.domo *
mapodo.mo *
mapodomo *

Tableau 2: Non-OCP-like segmentation behavior

Input: bipotubi *[C]V[p,t] *[p,f]V[C]
(r = 376.26) (r = 295.75)

bi.potubi * *
! bipo.tubi *

bipotu.bi ** *
bipotubi ** *

1

Figure 4.1: An OT tableau showing how the model creates OCP-like
segmentation behavior. The optimal location of a word boundary
is between labials /m/ and /p/ due to a highly ranked constraint
disfavoring mVp and mVf sequences.

The following OT tableaus should be cropped from this document, and saved
as separate files for inclusion as Figures in APA-style paper.

Tableau 1: OCP-like segmentation behavior

Input: mapodomo *[m]V[p,f]
(r = 1360.18)

! ma.podomo
mapo.domo *
mapodo.mo *
mapodomo *

Tableau 2: Non-OCP-like segmentation behavior

Input: bipotubi *[C]V[p,t] *[p,f]V[C]
(r = 376.26) (r = 295.75)

bi.potubi * *
! bipo.tubi *

bipotu.bi ** *
bipotubi ** *

1

Figure 4.2: An OT tableau showing how the model creates segmentation
behavior that is different from OCP-based segmentation. The optimal
location of a word boundary is between labial /p/ and coronal /t/ due
to a highly ranked constraint favoring /p/ (and /f/) in final position
(i.e., before a word boundary).

include, but are not limited to, labials. For example, *[C]V[p,t] militates against
obstruents followed by voiceless anterior plosives. While such constraints
can produce OCP-like behavior (since they affect sequences of labials), they
can also produce segmentations that deviate from the predictions of OCP-
Place (see Figure 4.2). Since these constraints affect a large number of
wxyz-sequences in the artificial language, the constraints provide a source for
segmentation behavior that is different from OCP-based segmentation.

The constraints in Figure 4.2 are particularly interesting for two reasons.
The first issue concerns alignment. The two constraints in Figure 4.2 affect a
maximally large natural class (given the limitations imposed by the feature set
in use) on one side of the vowel and only a small natural class on the other
side. Such ‘single-sided generalizations’ produce the effect of an alignment
constraint. That is, the constraints are markedness constraints that disfavor
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4.3 the induction of ocp-place

the occurrence of some specific consonants when either followed or preceded
by whatever other consonant (i.e., regardless of the quality of that neighboring
consonant). These constraints therefore always favor the insertion of a word
boundary right after or before such a consonant. In other words, the constraint
says that such a particular consonant should be word-final or word-initial,
respectively. For example, the constraint *[p,f]V[C] states that a word boundary
should be inserted after /p/ or /f/, regardless of which obstruent follows.
That is, whenever the learner encounters /p/ or /f/ in the speech stream,
he/she should treat the consonant as word-final. Conversely, the constraint
*[C]V[p,t] states that /p/ and /t/ should be word-initial. It thus appears
that purely sequential markedness constraints are able to mimic the effect of
alignment constraints. The model is thereby able to capture positional effects
without explicitly encoding word edges in the structure of the constraints. The
alignment effect simply emerges as a result of feature-based generalizations
over sequential constraints.

The second issue concerns gradience. The constraints in the tableau in
Figure 4.2 have a preference for /p/-initial words, unless /p/ is followed by
/t/ in the speech stream (in which case it is preferred to have /t/ in word-
initial position, and /p/ in word-final position). The tableau illustrates that,
while the constraint set encodes an overall preference for PTP words, there
are exceptions to this tendency, in which case the model decides on a different
segmentation. This decision is based on the context in which a sequence
occurs. That is, the model decides not to insert a boundary into bVp in
bipotubi because bVp occurs here in the context of a following /t/. According
to the constraint set, the occurrence of pVt is worse than the occurrence bVp,
and the model therefore has difficulty segmenting potubi. The model will
only segment potubi from the speech stream if it is preceded by a consonant
which would be ruled out by a higher ranked constraint than the constraints
shown in the tableau. Context thus has the effect that different PTP words are
extracted from the speech stream with different frequencies. As a consequence,
the model produces gradient effects in segmentation. In the next section, it
will be assessed whether the model also produces the right gradient effects.

In order to get insight into the model’s gradient segmentation behavior, a
quantitative analysis was conducted which classifies the boundaries inserted
by the model in terms of natural class sequences. Table 4.6 shows how often
the model inserted boundaries into PPTP, PTPP, and TPPT sequences. Overall,
about 30% of the sequences were broken up by a boundary. This shows that
the model on average inserts a boundary after about three syllables. This
roughly corresponds to the structure of the artificial language, which consists
of a three-syllable pattern. The tableau in Figure 4.2, however, suggests that
the model does not exclusively segment TP.PT sequences. Inspection of the
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Table 4.6: Absolute count and percentage of word boundaries inserted
into the different natural class sequences in the artificial language by
StaGe.

Sequence Number of occurrences Number of boundaries Percentage

PP(.)TP 899 183.50 20.41%
PT(.)PP 899 118.25 13.15%
TP(.)PT 899 510.00 56.73%

Total: 2697 811.75 30.10%

Note. ‘(.)’ indicates a boundary location. Calculations are based on tableau predictions.
Fractions can occur when a tableau is uncertain (i.e., when the tableau produces
multiple optimal candidates), in which case the number of remaining candidates
determines the probability of each remaining candidate being selected as winner.

number of boundaries inserted in each type of sequence indeed reveals that
boundaries are inserted into all types of sequences. The model does, however,
insert boundaries into TPPT sequences far more often (56.73%) than into PPTP
(20.41%) or PTPP (13.15%) sequences. These data show that the model has a
strong (but not absolute) preference for PTP words, which satisfy OCP-Place.

In sum, the model is inclined to segment words that respect OCP-Place,
but also every now and then favors a different segmentation. This raises the
question which model best reflects human segmentation behavior: a model
that always favors PTP words, or a model that generally favors PTP words,
but also produces some PPT or TPP words. Experiment 1 addresses this issue
by comparing models that make different assumptions about the nature of
OCP-Place. Several models will be tested on their ability to predict human
judgments on the experimental items. Specifically, StaGe is compared to both
a categorical interpretation of OCP-Place, and to a gradient interpretation of
OCP-Place. It should be noted that the empirical studies in this chapter are
only of modest size. That is, they are based on an experiment involving human
judgments on 24 different items (averaged over 14 participants). Nevertheless,
the analyses highlight several interesting differences between models of OCP-
Place, and their effects on segmentation.
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4.4 experiment 1 : model comparisons

4.4 experiment 1: model comparisons

The first study looks at how well StaGe is able to account for human segmen-
tation data. StaGe induces feature-based regularities resembling OCP-Place,
but does not show a categorical ban on PVP sequences. In order to see which
segmentation strategy provides a better account of the human data, StaGe is
compared to a categorical feature-based interpretation of OCP-Place. That is,
an interpretation of OCP-Place which categorically rules out all sequences of
consonants which have the same place of articulation. There is, however, a
second interpretation of OCP-Place that is worth investigating. Several stud-
ies have argued that OCP-Place is a gradient constraint, affecting different
sequences of homorganic consonants to different degrees. The strength of this
gradient constraint is typically measured as the degree of under-attestation (as
measured by O/E ratio) in the lexicon (Pierrehumbert, 1993; Frisch et al., 2004;
Coetzee & Pater, 2008). The second comparison is thus between StaGe and
a segmentation model based on O/E ratios. Specifically, StaGe will be com-
pared to O/E ratios calculated over C(V)C sequences in continuous speech.
This is done because the resulting gradient model is basically identical to the
statistical learning model used in Chapter 3. As a result, the experiment sets
up the same comparison as in Chapter 3, namely between a model based solely
on segment probabilities, and a model based on segment probabilities plus
feature-based generalization. StaGe uses O/E ratios in continuous speech as
a basis for the induction of phonotactic constraints. A comparison between
O/E ratios and StaGe thus assesses whether feature-based generalization
improves the segmentation performance of the learner, as compared to the
purely segment-based baseline model. A crucial difference with the simula-
tions in Chapter 3 is that ‘segmentation performance’ here means the model’s
fit to human data, rather than the model’s ability to predict word boundaries
in corpus transcriptions.

In sum, StaGe is compared to two opposite extremes: A categorical,
feature-based constraint on the one hand, and a gradient, purely statistical
consonant distribution on the other hand. StaGe lies between these two
extremes: It is based on consonant co-occurrence probabilities, and uses
these probabilities to induce abstract feature-based constraints. Since the
model retains consonant-specific constraints, the model is able to capture both
segment-specific exceptions, as well as feature-based regularities.

4.4.1 Segmentation models

A comparison is set up between three different models: StaGe, OCP-Placecat,
and O/E ratio. The learning mechanisms and segmentation behavior of
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StaGe have been discussed in the previous section, and will therefore not be
repeated here. OCP-Placecat is the categorical interpretation of OCP-Place.
For the current set of simulations this constraint is simply given to the learner.
The constraint categorically rules out all PVP sequences. Applying OCP-
Placecat to the segmentation of the artificial language therefore results in
a consistent PTP.PTP.PT. . . segmentation. Consequently, the model has an
absolute preference for PTP words.

Since we are interested in the added value of feature-based generalization
in explaining human data, the gradient OCP-Place model is based on O/E
ratios calculated over continuous utterances in the Spoken Dutch Corpus.
StaGe is based on these O/E values, but adds Frequency-Driven Constraint
Induction and Single-Feature Abstraction in order to induce phonotactic
constraints. Both StaGe and the O/E model make use of context (neighboring
sequences) when making decisions about segmentation. The O/E model is
thus implemented in the same way as the trough-based statistical learner from
Chapter 3: The model inserts a boundary into a sequence wxyz whenever
the O/E ratio of xy is lower that the O/E ratio of wx and yz. The difference
between the O/E model and StaGe is thus that StaGe uses Frequency-Driven
Constraint Induction and Single-Feature Abstraction for the induction of
phonotactic constraints, whereas the O/E model uses consonant probabilities
directly for trough-based segmentation.

4.4.2 Linear regression analyses

All three models create a different segmentation of the artificial language. As
explained in the Methodology section, the frequencies of test items in the
model’s output are counted, and used as a predictor for the human judgments
on those items. Table 4.7 shows the test items, along with their wellformedness
scores (taken from Table 4.1), and frequency of occurrence which was counted
separately for each model. The upper half of the table contains scores and
frequencies for PTP words, the lower half the values for PPT words. The
counts clearly show that all models dislike PPT words: These items almost
never occur in the models’ segmentation outputs. While OCP-Placecat has an
absolute ban against PPT words, the other models occasionally (but rarely)
pick up such a word. The models seem to differ more radically in how they
judge PTP words. While OCP-Placecat assigns high frequency scores to all
PTP words, the other models give high frequencies to some PTP words, but
low frequencies to other PTP words.5 In fact, StaGe gives high frequencies to
only 6 of the 12 PTP words, 4 of which belong to the most highly rated test

5 The frequencies of PTP words in the categorical model vary slightly due to the randomized
construction of the language.
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Table 4.7: Human judgments and model output frequencies for experi-
mental items (Experiment 1).

Item Score StaGe OCP-Placecat O/E ratio

madomo 0.8095 16 39 39

ponebi 0.7381 18 34 21

ponemo 0.7381 26 36 20

podomo 0.6905 26 38 17

madobi 0.5714 4 32 30

madopa 0.5714 3 25 3

ponepa 0.5714 16 35 19

podobi 0.5476 24 38 17

potumo 0.5476 4 33 23

podopa 0.4762 8 40 4

potubi 0.4524 3 37 20

potupa 0.2381 2 33 14

mobedo 0.5476 0 0 0

pabene 0.5476 2 0 0

papone 0.5000 0 0 0

mobetu 0.4524 0 0 0

papodo 0.4524 0 0 0

pabedo 0.4048 0 0 0

pamado 0.4048 1 0 0

pamatu 0.4048 1 0 0

papotu 0.3810 0 0 0

pabetu 0.3571 0 0 2

pamane 0.3333 1 0 0

mobene 0.2619 0 0 0

items by the human participants. The overall frequencies of StaGe are thus in
general lower than for the other models.6

The results of the linear regression analyses are shown in Table 4.8. Step-
wise regression analyses, in which predictors are added one at a time, show
that StaGe explains additional variance over each of the other models (and
not vice versa). That is, after taking out the variance explained by OCP-
Placecat or O/E ratio, StaGe is still a significant predictor of the remaining
variance. StaGe is thus the best predictor of the human data.

6 A discussion of StaGe’s general tendency to produce undersegmentations is given in Chapter 3.
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Table 4.8: Results of linear regression analyses (Experiment 1).

Model adj. R2 Significance level

StaGe 0.5111 p < 0.001
OCP-Placecat 0.2917 p < 0.01
O/E ratio 0.3969 p < 0.001

Note. Stepwise analyses show that StaGe explains additional variance over other
models:

StaGe*** + OCP-Placecat (n.s.) OCP-Placecat** + StaGe**
StaGe*** + O/E ratio (n.s.) O/E ratio *** + StaGe**

4.4.3 Discussion

The results show that StaGe is able to explain a substantial amount of the
variance in the human data (about 50%). Importantly, StaGe outperforms both
the categorical and the gradient interpretation of OCP-Place. These findings
indicate that, at least for the current experiment, StaGe is a better model of
human speech segmentation than a model based on a categorical OCP-Place,
or a model based on consonant probabilities alone. In particular, the results
support the view that speech segmentation by human learners is affected
by both specific and abstract phonotactic constraints. StaGe produces both
categorical OCP effects (PTP > PPT) and gradient OCP effects (e.g., ponemo
> potubi). The mix of specific and abstract constraints that was induced by
StaGe provides the best fit to human data.

The success of StaGe in accounting for the segmentation of an artificial
language by human participants was obtained by a speech-based learner:
The model was trained on utterances of unsegmented speech. This approach
assumes that the learner does not rely on the lexicon for the induction of
phonotactic constraints for speech segmentation. While the approach is a
plausible model of infant phonotactic learning, since infants are only at the
beginning stages of developing a mental lexicon, it should be noted that the
participants in the study by Boll-Avetisyan and Kager (2008) were adults. It
may thus very well be the case that the participants in segmenting the artificial
speech stream relied on phonotactics that was derived from the lexicon,
rather than from continuous speech. Experiment 2 therefore addresses the
input issue: Which type of input provides the best account of explaining the
human segmentation data? This is done by training three different versions
of StaGe: a learner based on continuous speech input, a learner based on
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word types in the lexicon, and a learner based on word tokens in the lexicon.
In addition to investigating the most plausible input source for artificial
language segmentation, the experiment allows us to investigate the effect that
the various sorts of input have on the type of constraints that are induced by
StaGe.

4.5 experiment 2: input comparisons

The second study addresses the input issue in phonotactic learning. Previous
proposals for the learning of phonotactic constraints argue that constraints
are the result of abstractions over statistical patterns in the lexicon (Frisch et
al., 2004; Hayes & Wilson, 2008). In contrast, StaGe abstracts over statistical
patterns in continuous speech. This lexicon-free approach is able to produce a
variety of phonotactic constraints which have proven to be useful in speech
segmentation. This raises the question which of the two sources of input is
most valuable for the induction of phonotactic constraints for speech segmen-
tation, the lexicon or continuous speech? Furthermore, the simulations in this
chapter have shown that StaGe, when trained on continuous speech, induces
constraints that resemble, but do not exactly match, OCP-Place. It is worth
investigating whether a different type of input would result in a constraint set
that matches OCP-Place more closely. The input issue is addressed by train-
ing StaGe on different input representations. By keeping all other properties
of the model fixed, a clear picture of the effect of changing the input can be
obtained.

4.5.1 Segmentation models

Transcribed utterances in the Spoken Dutch Corpus (Goddijn & Binnenpoorte,
2003) were used to train three different versions of StaGe. The first version
is the continuous speech-based learner that was also used in Experiment 1,
which will be referred to as StaGecont. The second and third versions of
StaGe are trained on word types (StaGetype) and word tokens (StaGetoken),
respectively. In order to allow for a pure analysis of the structure of the input,
the same underlying corpus was used. That is, a lexicon of word forms was
constructed from the segmented corpus. The word forms were not reduced to
canonical transcriptions, thereby preserving variations due to assimilations
and reductions. Any differences between the models’ outputs are therefore
due to the structure of the input, and not due to differences in transcriptions.

The differences are found along two dimensions. First, the learner is either
presented with between-word sequences, or not. Second, the learner either
weighs sequences according to a word’s frequency of occurrence, or not. The
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Table 4.9: Models with different input structures.

Model Input BWS Frequency weighting

StaGecont Continuous utterances yes yes
StaGetype Word types no no
StaGetoken Word tokens no yes

Note. BWS = between-word sequences

different forms are best illustrated with a toy example. Consider an utterance
abc abc in the corpus. This is a repetition of a single word abc. The utterance
would be presented to StaGecont as an unsegmented utterance abcabc. There
are three different sequences in this utterance: ab, bc, and ca. The word-
internal sequences each occur twice. In addition, there is one occurrence
of the between-word sequence ca. The learner thus includes between-word
sequences in building up a statistical distribution. Furthermore, the structure
of the unsegmented speech stream is such that sequence frequencies are
weighted according to the frequency of occurrence of words in the stream.
Note that the learner is blind with respect to whether a sequence is a within-
word or a between-word sequence. The learner simply counts occurrences of
sequences in the input.

The other learners, StaGetoken and StaGetype, are presented with a lexicon
of isolated words which is derived from the same underlying corpus. The mini-
corpus abcabc has the following lexicon: abc (2). That is, it has the word abc,
which occurs twice. Crucially, between-word sequences are not represented in
the lexicon. Such sequences do not affect the statistical distribution that is built
up by the lexicon-based learners. These models only process the word-internal
sequences ab and bc. The difference between type-based and token-based
learning is whether or not to include the frequency of occurrence of the word.
The token-based learner assigns a frequency of 2 to the sequences, whereas the
type-based learner counts the sequences as a single occurrence (i.e., within a
single word). Note that, since the token-based learner takes word frequencies
into account, the only difference with the continuous speech-based learner is
the absence of the between word sequence ca. The differences are summarized
in Table 4.9.

The effect of the input manipulation is that each model is based on a
different statistical distribution of C(V)C sequences. This results in a different
constraint set for each model, and a different hypothesized segmentation of
the artificial language. The question is which of the input representations
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provides the best account of the human item preferences, and which constraint
set most closely resembles OCP-Place. Note that a different distribution may
require a shift of the induction thresholds that are used by StaGe. That is, the
thresholds used so far (tM = 0.5, tC = 2.0) worked well for the speech-based
learner, but might be less suitable for the others.

In order to establish that a difference in performance between the models is
due to the input structure, and not to a specific threshold configuration used,
two different types of analyses were performed. The first analysis evaluates
the models based on an identical threshold configuration (tM = 0.5, tC = 2.0).
In the second analysis, to rule out the potential advantage or disadvantage of a
particular threshold configuration, the models are evaluated on a best-fit basis.
Multiple simulations were run for each model. Each simulation was based
on a different set of thresholds. As discussed in Experiment 2 of Chapter 3, a
different set of induction thresholds causes changes in the amount of specific
markedness and contiguity constraints that are induced by the learner, which
subsequently affects the generalizations that are based on those constraints.

The same thresholds are considered as in Experiment 2 of Chapter 3: {0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} as possible values for tM (markedness
constraints), and {1.0, 1.11, 1.25, 1.43, 1.67, 2.0, 2.5, 3.33, 5.0, 10.0} as values for
tC (contiguity constraints). Combining these thresholds exhaustively results
in a total of 10x10 = 100 different configurations. Note that the ‘standard’
configuration (tM = 0.5; tC = 2.0) is exactly in the middle. The simulations
will thus produce models that are both less and more conservative than this
configuration. For the comparison of StaGecont, StaGetype, and StaGetoken,
the configuration of each model which produces the best fit to the human data
will be used. The result is that the models are compared on both a fixed set
of thresholds (tM = 0.5; tC = 2.0; Analysis 1) and a varying set of thresholds
(best fit; Analysis 2).

4.5.2 Linear regression analyses

As in Experiment 1, the frequencies of the test items in the segmentation
outputs of the different models are used as a predictor of the human judg-
ments on those items. The output frequencies are given in Table 4.10. The
frequency counts in Analysis 1 (fixed thresholds) show that the StaGetype and
StaGetoken yield very different results. StaGetype has a clear preference for
PTP words, assigning high frequencies to all PTP words, and near-to-zero
frequencies to PPT words. It thereby displays segmentation behavior very
similar to OCP-Placecat (see Table 4.7). In contrast, StaGetoken has higher
frequencies for PPT words than for PTP words, and does not seem to produce
any OCP-like behavior.
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Table 4.10: Human judgments and model output frequencies for experi-
mental items (Experiment 2).

StaGe - Analysis 1 StaGe - Analysis 2

(fixed thresholds) (best-fit thresholds)
Item Score cont type token cont type token

madomo 0.8095 15 39 0 17 39 15

ponebi 0.7381 18 29 4 18 18 4

ponemo 0.7381 23 36 5 23 36 8

podomo 0.6905 29 38 0 27 38 13

madobi 0.5714 3 29 5 7 13 5

madopa 0.5714 2 16 0 2 13 0

ponepa 0.5714 15 30 2 15 12 0

podobi 0.5476 24 32 2 24 19 4

potumo 0.5476 4 33 1 4 4 4

podopa 0.4762 8 27 0 8 24 0

potubi 0.4524 3 35 3 3 2 0

potupa 0.2381 2 22 4 2 5 0

mobedo 0.5476 0 0 20 0 0 0

pabene 0.5476 1 0 7 0 0 6

papone 0.5000 0 0 6 0 0 4

mobetu 0.4524 0 0 17 0 0 0

papodo 0.4524 0 0 16 0 0 0

pabedo 0.4048 0 1 30 0 0 0

pamado 0.4048 2 0 17 2 0 0

pamatu 0.4048 0 0 6 2 0 0

papotu 0.3810 0 0 14 0 0 0

pabetu 0.3571 0 3 21 0 0 0

pamane 0.3333 0 0 3 2 0 6

mobene 0.2619 0 0 3 0 0 0

Note. Thresholds used in Analysis 1: StaGecont,type,token: tM = 0.5, tC = 2.0. Best-fit
thresholds used in Analysis 2: StaGecont: tM = 0.5, tC = 3.33; StaGetype: tM =
0.4, tC = 1.43; StaGetoken: tM = 0.3, tC = 1.11.

Regression analyses for StaGecont, StaGetype, and StaGetoken are given in
Table 4.11. The results for Analysis 1 shows that StaGecont and StaGetype are
significant predictors of the human wellformedness scores, but StaGetoken is
not. Stepwise regression analyses indicate that both StaGecont and StaGetype ex-
plain additional variance over StaGetoken. In addition, stepwise analyses
indicate that StaGecont explains additional variance over StaGetype: When
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Table 4.11: Results of linear regression analyses (Experiment 2).

StaGe - Analysis 1 StaGe - Analysis 2

(fixed thresholds) (best-fit thresholds)
Input adj. R2 Significance level adj. R2 Significance level

cont 0.4790 p < 0.001 0.5026 p < 0.001
type 0.3826 p < 0.001 0.5721 p < 0.001
token 0.0798 n.s. 0.4596 p < 0.001

Note. Stepwise analyses:
Analysis 1:
cont* + type (n.s.) type (n.s.) + cont*
cont*** + token (n.s.) token (n.s.) + cont***
type** + token (n.s.) token (n.s.) + type**
Analysis 2:
cont (n.s.) + type (n.s.) type (n.s.) + cont (n.s.)
cont* + token* token* + cont*
type** + token (n.s.) token (n.s.) + type**

StaGetype is entered first into the regression model, then StaGecont is still a
significant predictor (p < 0.05). The reverse is not true. In sum, Analysis 1

shows that StaGecont again is the best predictor of the human data from the
artificial language learning experiment by Boll-Avetisyan and Kager (2008).

Inspection of the constraint sets used by StaGetype and StaGetoken during
segmentation reveals the source of the difference in performance between
the two models. The set of constraints used by StaGetype closely matches
OCP-Place: The majority of the constraints restrict the occurrence of PVP
sequences (see Table 4.12). In addition, there are some relatively low ranked
constraints disfavoring dVp and tVp, resulting in somewhat lower occurrence
frequencies for items violating these constraints (such as madopa, potupa). The
constraint set induced by StaGetoken shows a completely different picture (see
Table 4.13). Here the most high-ranked constraints include constraints against
TVP sequences (most notably against dVP). This explains why the model
has a preference for PPT segmentations: It often inserts a boundary between
coronals and labials, resulting in PT.PPT.PPT. . . segmentations. Interestingly,
the model also induces a contiguity constraint Contig-IO([n]V[m]), which
aims to preserve nVm sequences. This constraint has the effect that, while in
general PPT words are preferred, words that end with an /n/-initial syllable
(e.g., pabene) are dispreferred. The contiguity constraint militates against the
insertion of a boundary after such syllables. Since few boundaries are posited
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Table 4.12: Constraints used in segmentation of the artificial language
by StaGetype (tM = 0.5, tC = 2.0).

FREQUENCY
CONSTRAINT RANKING Count Percentage

*[m]V[m] 308.8524 27 (11.1%)
*[b]V[m] 289.7448 27 (11.1%)
*[p,b]V[m] 249.5673 27 (11.1%)
*[m]V[p,f] 180.4863 27 (11.1%)
*[b]V[p] 161.8902 27 (11.1%)
*[m]V[p,b,f,v] 155.1712 27 (11.1%)
*[p,b,f,v]V[p] 117.6980 27 (11.1%)
*[b,d,v,z]V[p] 92.2151 8 (3.3%)
*[p,b,t,d,f,v,s,z]V[p] 69.5577 8 (3.3%)
*[p,b,f,v]V[p,t,k,f,s,S,x] 64.1567 10 (4.1%)
*[b,d,v,z]V[p,b] 53.4554 19 (7.8%)
*[p,b,f,v]V[p,b,f,v] 43.3952 15 (6.2%)

Note. The frequency of use (FREQUENCY) indicates how many wxyz-sequences in the
language (out of a total of 243) are affected by the constraint.

after /n/, there are few words ending with an /n/-initial syllable in the
model’s segmentation output.

In sum, it seems that, while StaGetype most closely resembles the predic-
tions of a categorical OCP-Place constraint, it does not match the gradient
preferences of participants in the experiment as well as StaGecont does. The
latter obtains a better match to the data by distinguishing between the well-
formedness of different PTP words. In addition, the token-based learner fails
in accounting for the human data. One question that comes up is why the
token-based performs so much worse than the type-based learner.

As mentioned earlier, the difference between the models may be caused
by the fact that the statistical distributions are different, while at the same
time the induction thresholds are the same for all models. It could be the
case that OCP-Place is learnable by a token-based model if the statistical
distribution is simply cut off at different points. In addition, we may get
better StaGecont and StaGetype models simply by using different induction
thresholds. Analysis 2 is therefore concerned with models that have been
optimized for their threshold configuration. The best fit to the human data
was found for the following configurations: StaGecont: tM = 0.5, tC = 3.33;
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Table 4.13: Constraints used in segmentation of the artificial language
by StaGetoken (tM = 0.5, tC = 2.0).

FREQUENCY
CONSTRAINT RANKING Count Percentage

*[d]V[m] 2406.2062 27 (11.1%)
*[b,d]V[m] 1635.3616 26 (10.7%)
*[m]V[m] 1559.1889 20 (8.2%)
Contig-IO([n]V[m]) 1224.5688 19 (7.8%)
*[d]V[p,f] 1218.6504 25 (10.3%)
*[d]V[p,b] 1049.2083 19 (7.8%)
*[p,b,t,d]V[m] 925.8681 36 (14.8%)
*[t,d]V[b] 803.8574 18 (7.4%)
*[m]V[p,f] 789.6689 10 (4.1%)
*[t,d]V[p,b] 695.9537 17 (7.0%)
*[b,d,v,z]V[p,t,k] 684.5911 12 (4.9%)
*[m]V[p,b] 679.8727 8 (3.3%)
*[p,b]V[m] 648.6330 1 (0.4%)
*[m,n]V[b] 533.5175 8 (3.3%)
*[p,b,t,d,f,v,s,z]V[p,t,k] 524.2290 8 (3.3%)
*[p,b,f,v]V[t,d,s,z] 496.0740 2 (0.8%)
*[m,n]V[p,b] 457.2829 6 (2.5%)
*[b,d,v,z]V[p,b] 362.2443 1 (0.4%)
*[p,b,t,d,f,v,s,z]V[p,b,t,d] 338.8520 1 (0.4%)

Note. The frequency of use (FREQUENCY) indicates how many wxyz-sequences in the
language (out of a total of 243) are affected by the constraint.

StaGetype: tM = 0.4, tC = 1.43; StaGetoken: tM = 0.3, tC = 1.11. The output
frequencies of the models are shown in Table 4.10 (Analysis 2).

Interestingly, the configuration of StaGecont was already optimal: The
output frequencies are nearly identical to those in the earlier runs of the
model. It should be noted that the small deviations found for the different
runs of StaGecont are not due to a different constraint set, but rather to a
small number of sequences for which there is no single optimal segmentation
candidate. In such cases a winner is chosen at random. For this reason the
exact frequency of a test item may vary slightly between different runs. Also
note that the value for tC is irrelevant here, since only markedness constraints
are used for segmentation of the artificial language. The constraint sets used
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Table 4.14: Constraints used in segmentation of the artificial language
by StaGetype (tM = 0.4, tC = 1.43; best fit).

FREQUENCY
CONSTRAINT RANKING Count Percentage

Contig-IO([m]V[n]) 938.8947 27 (11.1%)
*[m]V[m] 308.8524 27 (11.1%)
Contig-IO([n]V[m]) 299.5556 20 (8.2%)
*[b]V[m] 289.7448 27 (11.1%)
Contig-IO([m]V[d]) 285.7460 13 (5.3%)
*[p,b]V[m] 249.5673 27 (11.1%)
*[m]V[p,f] 180.4863 27 (11.1%)
*[m]V[p,b,f,v] 155.1712 27 (11.1%)
*[p,b,f,v]V[p,t,k,f,s,S,x] 36.3611 70 (28.8%)
Contig-IO([t,d,s,z]V[C]) 32.2084 20 (8.2%)
Contig-IO([C]V[p,b,f,v]) 24.5104 54 (22.2%)
*[b,v]V[C] 23.5896 14 (5.8%)
Contig-IO([C]V[p,b,t,d]) 23.1961 2 (0.8%)

Note. The frequency of use (FREQUENCY) indicates how many wxyz-sequences
in the language (out of a total of 243) are affected by the constraint. V = vowel,
C = obstruents = [p,b,t,d,k,g,f,v,s,z,S,Z,x,G,h,Ã].

by StaGecont in Experiments 1 and 2 (both Analysis 1 and 2) are thus the
same.

The type-based learner (StaGetype) also resembles its counterpart from
Analysis 1, but assigns lower frequencies to several PTP words. The model
therefore makes some clear distinctions between the predicted wellformedness
of different PTP words. The token-based learner’s optimal performance was
obtained by making the model extremely conservative. It assigns low fre-
quencies (and many zero-frequencies) to most words, with somewhat higher
frequencies for madomo and podomo. The results of the linear regression analy-
ses for these models are shown in Table 4.11 (Analysis 2). The performance
of the models in terms of their optimized R2 are relatively similar. Step-
wise analyses indicate that the only conclusion that can be drawn is that
StaGetype is a better predictor than StaGetoken. This result, together with
the low frequencies in the model’s output, leads to the conclusion that the
token-based learner again fails to accurately predict the human wellformed-
ness scores. The token-based learner does not match with the human data
as well as the other models do. Furthermore, the model’s constraint set does
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Table 4.15: Constraints used in segmentation of the artificial language
by StaGetoken (tM = 0.3, tC = 1.11; best fit).

FREQUENCY
CONSTRAINT RANKING Count Percentage

Contig-IO([m]V[n]) 6511.2649 27 (11.1%)
Contig-IO([b,d]V[t]) 5347.2605 27 (11.1%)
Contig-IO([m]V[t]) 5098.1932 27 (11.1%)
Contig-IO([b,d]V[t,d]) 3653.2264 27 (11.1%)
Contig-IO([m]V[t,d]) 3483.0647 27 (11.1%)
Contig-IO([p,b,t,d]V[t,s]) 2100.9127 27 (11.1%)
Contig-IO([p,t,k,f,s,S,x]V[n]) 1833.5053 27 (11.1%)
Contig-IO([p,b,t,d]V[t,d,s,z]) 1389.6902 27 (11.1%)
Contig-IO([b,d]V[p,b,t,d,f,v,s,z]) 1363.1418 92 (37.9%)
Contig-IO([n]V[m]) 1224.5688 27 (11.1%)
Contig-IO([C]V[n]) 1206.8609 27 (11.1%)
Contig-IO([p,b,t,d]V[p,t,f,s]) 1063.6762 47 (19.3%)
Contig-IO([p,t,k,f,s,S,x]V[m,n]) 1048.7304 53 (21.8%)
*[b]V[m] 864.5170 27 (11.1%)
*[m]V[p,f] 789.6689 27 (11.1%)
Contig-IO([p,b,t,d]V[p,b,t,d,f,v,s,z]) 710.5020 45 (18.5%)
*[m]V[p,b] 679.8727 27 (11.1%)
Contig-IO([C]V[m,n]) 661.1707 12 (4.9%)
*[m,n]V[b] 533.5175 18 (7.4%)
*[m,n]V[p,b] 457.2829 24 (9.9%)

Note. The frequency of use (FREQUENCY) indicates how many wxyz-sequences
in the language (out of a total of 243) are affected by the constraint. V = vowel,
C = obstruents = [p,b,t,d,k,g,f,v,s,z,S,Z,x,G,h,Ã].

not resemble OCP-Place. The conservativeness of the model is illustrated by
the constraint set that was used by the model: The model relied on a large
number of contiguity constraints (see Table 4.15). Since contiguity constraints
aim to preserve sequences, the result is a hypothesized segmentation that
contains very few word boundaries.

There is no significant difference between the performances of StaGecont and
StaGetype. Inspection of their constraint sets does reveal some differences,
however. Whereas StaGecont exclusively uses markedness constraints (Ta-
ble 4.5), StaGetype has both markedness constraints against PVP, and contigu-
ity constraints preserving various sequences (Table 4.14). The net effect is that
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this model favors PTP words, but with some exceptions, such as words starting
with pVt. StaGecont also has low frequencies for words starting with pVt,
but in addition also has low frequencies for words starting with mVd. These
models, like the human participants, thus show a general OCP-Place effect,
resulting in a general preference for PTP words. At the same time, however,
both humans and the models show effects of gradience: Not all PTP words
are judged equally wellformed. It appears that such finer-grained distinctions
make these models a better model of the human segmentation data.

4.5.3 Discussion

The results of Experiment 2 show that a continuous-speech-based learner has
a better fit than a type-based learner (Analysis 1) or a fit comparable to a type-
based learner (Analysis 2) in predicting human preferences in the artificial
language segmentation experiment by Boll-Avetisyan and Kager (2008). The
success of both the type-based and the continuous speech-based model can
be attributed to the mixture of abstract and specific constraints. This allows
the models to capture both general tendencies and fine-grained preferences in
the human data. Interestingly, a token-based learner fails, regardless of the
specific threshold configuration that is used.

In order to explain the failure of the token-based learner, a more detailed
examination of the statistical distribution is required. The difference between
the type-based and the token-based learner is whether or not the learner is
sensitive to word frequencies. A closer look at the lexicon (based on the Corpus
Gesproken Nederlands) that was used by the token-based learner shows that
the failure can be attributed to the phonotactic structure of the most highly
frequent words in the lexicon. The most highly frequent words containing
CVC sequences are function words that consist of TVT sequences (e.g., /dAt/
‘that’, /nit/ ‘not’, /dAn/ ‘then’), or PVT sequences (e.g., /fAn/ ‘of’, /mEt/ ‘with’,
/mar/ ‘but’). The use of token frequencies results in an inflation of the differ-
ence in the degree of attestedness between sequences that occur in function
words, and sequences which do not occur in function words. Sequences in
TVT function words (such as /dAt/ and /dAn/) are overrepresented, which in
effect makes sequences which do not form function words (e.g., TVP sequences
such as /dAp/ and /dAm/) relatively underrepresented. Depending on the
thresholds that are used, this could lead to the induction of markedness con-
straints against TP sequences and/or the induction of contiguity constraints
favoring TT sequences. Similarly, inflation of the frequencies of PVT function
words (/fAn/, /mEt/) causes underattestation of sequences of PP consonants
due to relatively low occurrence frequencies of such sequences (/fAm/, /mEp/).
In this case, the frequency boost leads to markedness constraints against PP
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sequences, and/or contiguity constraints favoring PT sequences. Examples
of these types of constraints are indeed found in the constraint sets that are
used by the token-based learner (e.g., *TP and *PP constraints in Table 4.13;
Contig-IO(PT) and *PP constraints in Table 4.15).

The high frequencies of CVC function words also has an effect on the rank-
ing of the constraints. Specifically, the high-frequency function words involve
coronals, which leads to an increase in the individual segment frequencies of
coronals, and thus has the effect that the expected frequencies of sequences
involving coronals increases. The consequence is that constraints affecting
coronals will in general be ranked higher than sequences affecting labials
exclusively. This again can be seen in the constraint sets that are used by the
token-based learner during segmentation. Constraints affecting coronals tend
to be ranked higher than constraints affecting labials (*TP � *PP, in Table 4.13;
Contig-IO(PT) � Contig-IO(PP), *PP, in Table 4.15).

While the phonotactic structure of CVC function words can account for
the difference between a type-based and a token-based learner, it does not
explain why the continuous speech-based learner performs so well. Since the
speech-based learner counts all occurrences of sequences in the speech stream,
it is in fact also a token-based learner. The crucial difference, however, is that
the speech-based learner includes between-word sequences in the statistical
distribution. Occurrences of between-word sequences apparently neutralize
the inflation of the distribution that was found in the token-based learner.
Specifically, they have the effect of boosting the frequency counts of sequences
that do not occur in function words. That is, while sequences such as dVp or
tVp do not occur in highly frequent function words, they do occur frequently
between words. In fact, the frequency neutralization effect is possibly, at
least in part, due to function words that consist of 2 segments, occurring in
sequence with labial-initial words. For example, dVp benefits in terms of
frequency from the fact that /d@/ is a highly-frequent function word, and that
there are many Dutch words starting with /p/. Since 2-segment function
words typically do not start with labials, the attestedness of PVP sequences
is affected to a lesser degree. As a consequence, there is still evidence for
OCP-Place in the speech stream, and OCP-Place is thus learnable from
continuous speech. Further research on different languages would in the end
have to show to what extent these results are specific to Dutch, and to what
extent the learning approach presented here provides a general account for
the induction of phonotactic constraints, such as OCP-Place.
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4.6 general discussion

The current chapter aimed to provide a constraint induction account of the
learning of OCP-Place. The speech-based learning approach that was de-
veloped in the previous chapters was extended to the induction of abstract,
feature-based constraints on non-adjacent consonants (i.e., consonants with
intervening vowels). The model, StaGe, uses no explicit mechanism for simi-
larity avoidance and assumes that constraints are induced without referring to
the lexicon as a basis for phonotactic learning. The main theoretical issue was
whether StaGe, when applied to non-adjacent consonants in transcriptions of
continuous speech utterances, could induce constraints that resemble OCP-
Place. The empirical part of this chapter was concerned with investigating
whether StaGe is able to account for the OCP effects on speech segmentation
that were found in a study by Boll-Avetisyan and Kager (2008) using artificial
language learning experiments.

Experiment 1 compared StaGe to both categorical and gradient interpreta-
tions of OCP-Place. It was found that the output produced by StaGe better
resembles human preferences for experimental items than a categorical feature-
based OCP-Place constraint banning all homorganic consonants. In addition,
it was found that StaGe also performs better than a gradient model based
on consonant probabilities. Since StaGe induces both general, feature-based
constraints and finer-grained segment-based constraints, the results support
the view that segmentation involves both specific and abstract phonotactic
constraints. In Experiment 2, the question was addressed which type of input
structure best accounts for the induction of OCP-Place, and its effect on
segmentation. The speech-based version of StaGe performed better than
(Analysis 1) or comparable to (Analysis 2) a version of StaGe that was trained
on word types. Both models outperformed a version of the model that was
trained on word tokens.

The results in this chapter provide the first support for the psychological
plausibility of StaGe. While the simulations in Chapter 3 were evaluated on
the ability to accurately predict the locations of word boundaries in a corpus
of unsegmented speech, the simulations in this chapter focused on the ability
of StaGe to accurately predict human segmentation behavior. The empirical
finding that neither categorical nor gradient interpretations of OCP-Place,
and also neither type-based nor token-based versions were better predictors of
the human data than StaGe trained on continuous speech, combined with the
fact that the mechanisms used by StaGe are based on learning mechanisms
that have been shown to be available to human language learners, indicates
that StaGe has some potential as a model of human phonotactic learning and
speech segmentation.
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In Chapter 3, it was found that adding feature-based generalizations to
the statistical learning of phonotactic constraints improves the segmentation
performance of the learner. Importantly, Experiment 1 of the current chapter
demonstrates the added value of feature-based generalization in accounting
for human segmentation data. It was found that generalization improves
the fit to human data, as compared to models that rely on pure consonant
distributions. Since the lexicon-free approach also outperforms a single, pre-
defined OCP-Place, the results suggest that the success of the approach can be
attributed to the mix of specific and abstract constraints. Also in Experiment 2,
the success of both the continuous speech-based model and the type-based
model can be attributed to the mixture of specific and general constraints.

These results complement the findings of the previous chapter: Feature-
based generalizations improve the segmentation performance of the learner in
both corpus simulations and simulations of human data. The findings of Chap-
ter 3 and Chapter 4 thus provide converging evidence that the segmentation
of continuous speech using phonotactics involves both specific and abstract
phonotactic constraints. The success of StaGe as a model of the induction
of phonotactic constraints for speech segmentation can thus be attributed to
the learning mechanisms it employs: segment-based statistical learning and
feature-based generalization. The resulting mix of specific and more general
constraints has proven to be successful in both types of empirical studies that
have been conducted, corpus simulations and simulations of human data.

The second topic of interest concerns the comparison of models that vary
in the assumptions they make about the input (continuous speech, word types,
word tokens; Experiment 2). This issue is closely related to the investigation of
the speech-based learning (SBL) hypothesis, as outlined in Chapter 1. The SBL
hypothesis states that phonotactics is induced from continuous speech input,
and subsequently facilitates the formation of the mental lexicon through the
detection of word boundaries in continuous speech. In contrast, the lexicon-
based learning (LBL) approach assumes that phonotactics is learned from the
lexicon, and thus is the result of, rather than a prerequisite for, word learning.
In line with the SBL hypotheses, it was attempted to induce OCP-Place from
continuous speech input. StaGe, when applied to C(V)C sequences in unseg-
mented utterances, induces a constraint set which contains constraints with
varying levels of generality. The set contains constraints that resemble but do
not exactly match OCP-Place. Some of the constraints are more specific, some
are more general and affect a different natural class not exclusively consisting
of labial sequences. The fact that the constraint set to a large degree mimics
the behavior of OCP-Place, and even outperforms categorical and gradient
interpretations of OCP-Place in simulating human data, provides support
for the SBL approach. Specifically, it shows that neither a similarity avoid-
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ance mechanism nor a lexicon are absolute requirements for the induction
of OCP-Place. Our account of the learning of OCP-Place therefore partly
corresponds to the proposal by Frisch et al. (2004). Our account shares with
theirs that similarity avoidance need not be encoded in the synchronic gram-
mar, but rather may be learned indirectly through abstractions over statistical
patterns in the input. However, our account adds to theirs the possibility that
OCP-Place need not be the result of abstractions over patterns in the lexicon.
Our simulations show that it is also conceivable that OCP-Place is learned
through abstractions over statistical patterns found in the learner’s direct
speech input, without referring to internal representations of word forms in
the mental lexicon.

A strong test for the SBL approach is the comparison between different
input structures in Experiment 2. This directly contrasts speech-based learn-
ers with lexicon-based learners. The comparison was intended to highlight
qualitative differences between input consisting of continuous speech, word
types, and word tokens. While the statistical distribution produced by word
tokens is qualitatively different from distributions that are derived from both
continuous speech and word types, the distributions of continuous speech
and word types are relatively similar. Both models produced constraint sets
that resulted in similar segmentation behavior. On the basis of the current set
of results, no conclusion can be drawn with respect to which of these models
provides a better account of the induction of OCP-Place, and of its effect
on human speech segmentation. The type-based learner and the continuous
speech-based learner, however, make radically different assumptions with
respect to the learner’s learning capacities. The type-based (or any lexicon-
based) learner assumes that the learner has already built up a lexicon, and
derives phonotactic constraints from patterns in the lexicon. This requires
the a priori ability to segment speech before phonotactic learning can take
place. In contrast, the continuous speech-based learner induces constraints
from unsegmented input, and uses phonotactics in the construction of the
lexicon. While it is still conceivable that a type-based learner was responsible
for the phonotactic knowledge used by adult participants in the study by
Boll-Avetisyan and Kager (2008), such a model is not a very plausible account
of phonotactic learning by infants, who are only at the beginning stages of
developing a mental lexicon.

The speech-based learner is compatible with findings from studies on
infant phonotactic learning, and at the same time is able to account for adult
segmentation data. This view thus provides a unified, lexicon-free approach to
phonotactic learning in which adults and infants rely on the same phonotactic
learning and segmentation mechanisms. More research is needed to find cases
where the two models make clearly different predictions, which can be tested
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empirically. For now, the conclusion is that speech-based learning is able to
account for the induction of phonotactic constraints, and for their usage in
speech segmentation.

A possible direction for future research on the input issue would be a
comparison of StaGe to other lexicon-based learning models. In the current
study, all models were based on the same learning mechanisms. This allowed
for a comparison that zooms in on the role of differently structured input
in phonotactic learning and speech segmentation. While StaGe as a general
model is based on the idea of abstractions over statistical patterns in the
input, and can thus be applied to both segmented and unsegmented input,
it is not known how StaGe would perform when compared to other lexicon-
based learning models. An interesting case would for example be to train
the Hayes and Wilson (2008) learner on the Dutch lexicon and see to what
extent the model induces constraints that resemble OCP-Place. While the
model by Hayes and Wilson was not designed to make predictions about
speech segmentation, it could still be trained on the same data as StaGe was.
Since their model produces constraints that are accompanied by numerical
weights, one could even imagine feeding the constraints and weights to the
OT segmentation model and inspecting its predictions with respect to the
locations of word boundaries. Conversely, StaGe could be adjusted to predict
the wellformedness judgments on which the Hayes and Wilson model was
evaluated.

The finding that a model based on type frequencies better accounts for
human phonotactic learning than a model based on token frequencies is in
line with a substantial body of research that advocates word types as the main
source for phonotactic learning (Pierrehumbert, 2003; Hay, Pierrehumbert, &
Beckman, 2004; Albright, 2009; Richtsmeier, Gerken, & Ohala, 2009; Hamann
& Ernestus, submitted). While effects of token frequency have been found (e.g.,
Bailey & Hahn, 2001), type frequencies have been shown to be essential for
phonotactic learning (Richtsmeier et al., 2009; Hamann & Ernestus, submitted).
The current study provides additional evidence in favor of type frequencies
as compared to token frequencies in phonotactic learning. While type and
token frequencies are correlated, and the advantage of type frequencies over
token frequencies has typically been reported as being of modest size (e.g.,
Albright & Hayes, 2003; Hayes & Wilson, 2008; Albright, 2009), the simulations
described in this chapter indicate that the use of type or token frequencies can
lead to qualitatively different results. At least for the learning of constraints on
non-adjacent consonants, different statistical distributions can lead to different
generalizations built upon those distributions (such as the *TP constraints
induced by the token-based learner).
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In addition, our study investigates a third potential source of phonotactic
learning, which has not been considered in earlier studies. While a learner
based on token frequencies fails, our learner based on consonant sequence
frequencies in continuous speech has a comparable performance to a type-
based learner in simulating the induction of OCP-Place, and in accounting
for its effect on speech segmentation by human participants. It would be
interesting to push the speech-based learning hypothesis further and see to
what extent the approach is able to account for the induction of phonotactics
in general. This would crucially involve setting up a comparison where a type-
based learner and a continuous speech-based learner would make different
predictions with respect to phonotactic learning.

A final note on the different input structures concerns a more principled
distinction between type and token frequencies. In the current study, we
assumed that the distinction between type and token frequencies was merely
quantitative. Token frequencies result in a boost of the frequencies of sequences
that occur in highly frequent words. In this view, since StaGe is simply
counting occurrences across the lexicon, there is no principled distinction
between a sequence occurring 2 times in 80 different words and the same
sequence occurring 4 times in 40 different words. Both result in a total of 160

occurrences across the lexicon and thus would lead to equivalent results in
our model. A recent study by Hamann and Ernestus (submitted), however,
showed that the former improved adults’ learning of phonotactic restrictions,
whereas the latter did not. This suggests a more principled distinction between
type and token frequencies than is commonly assumed. Hamann, Apoussidou,
and Boersma (to appear) propose that this difference can be accounted for by
incorporating a semantic level into the model, along the lines of Apoussidou
(2007).

The constraint set induced by StaGe revealed an interesting property of
the abstraction mechanism of the model. Part of the success of the continuous
speech-based learner was due to the induction of constraints that behave as
alignment constraints during segmentation (e.g., *[C]V[p,t], see Table 4.5).
These constraints are in fact markedness constraints where one consonant po-
sition is free and the other restricted. For example, a constraint *Xp states that
whenever /p/ occurs, it should be preceded by a word boundary, regardless
of the preceding consonant. In other words, /p/ should be word-initial. Not
inserted a boundary before /p/ (and thus not treating /p/ as a word-initial
consonant) would constitute a violation of the markedness constraint. Such
single-sided generalizations are an automatic consequence of abstraction over
statistically induced segment-specific constraints. The model thus constructs
constraints that resemble alignment constraints without any specific bias or
new constraint type. The effect of a new type of constraint (alignment) is sim-
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ply due to the statistical patterns in the input, combined with the feature-based
generalization mechanism.

To conclude, the current chapter provides evidence that StaGe is able to
induce constraints that resemble OCP-Place. Positive results were found
for versions of the model that were trained either on continuous speech, or
on type frequencies. Both models induced general OCP-Place constraints,
augmented with constraints favoring or restricting specific consonant co-
occurrences. This allowed the models to capture both general tendencies
and fine-grained preferences in the human segmentation data. The chapter
thus provides additional evidence for the role of feature-based generalizations
in speech segmentation, and further highlights the potential usefulness of
continuous speech as a source for phonotactic learning.
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5

T H E I N D U C T I O N O F N O V E L P H O N O TA C T I C S
B Y H U M A N L E A R N E R S

The remainder of this dissertation is concerned with extending the psycholin-
guistic evidence for the Speech-Based Learning hypothesis. Computer simula-
tions in the previous chapters have shown that phonotactics can be learned
from continuous speech through a combination of statistical learning and gen-
eralization. This approach was shown to be effective in simulations of speech
segmentation using unsegmented corpora (Chapter 3), and could account for
human data concerning the segmentation of continuous artificial languages
(Chapter 4). The current chapter aims at providing direct evidence that human
learners can learn phonotactics from continuous speech, by setting up a series
of phonotactic learning experiments in which adult participants are tested on
their ability to induce novel phonotactic constraints from a continuous stream
of speech from an artificial language. The speech streams are constructed in
such a way that it is unlikely that participants would derive phonotactics from
statistically learned word forms. In addition, this chapter aims at providing
evidence for an assumption that was made in Chapter 4, namely that learners
have the ability to ignore intervening vowels for the induction of constraints
on non-adjacent consonants. This processing assumption was made to allow
for the induction of OCP-Place by StaGe. The current chapter examines to
what extent human learners can induce novel phonotactics of this kind as a
result from exposure to continuous speech input.

In Section 5.1, an overview is given of earlier psycholinguistic work on
phonotactic learning, statistical learning, and feature-based generalization.
Sections 5.2 and 5.3 describe two artificial language learning experiments
which focus on providing new evidence for the statistical learning of con-
straints on non-adjacent consonants. Section 5.4 describes the third experiment
which examines whether learners induce feature-based generalizations from
continuous speech. Finally, the implications of the findings as well as sugges-
tions for future work are given in Section 5.5.

5.1 introduction

Experimental studies addressing the induction of phonotactics by human
learners show that a variety of constraints can be induced, and are learned
by both adults and infants from exposure to language data conforming to
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these constraints. These studies provide insight into the types of phonotactic
constraints that can be learned by human learners, and into the level of
abstraction at which these constraints are represented.

Onishi et al. (2002) show that adult learners can learn phonotactic regu-
larities from a set of training words after only several minutes of exposure.
The study examined the learning of first-order phonotactic constraints, in
which specific consonants were confined to either word-initial or word-final
position (e.g., /bæp/, not */pæb/), and second-order constraints, in which
consonant-vowel sequences were linked (e.g., /bæp/ or /pIb/, but not */pæb/
or */bIp/). During familiarization participants heard CVC words that showed
the phonotactic restriction. In the test phase, participants were faster at repeat-
ing novel test words which obeyed the experiment-induced constraints, than
test words which violated those constraints. These effects were found both
for the learning of first-order constraints, and for the learning of second-order
constraints.

In a follow-up study by Chambers, Onishi, and Fisher (2010), adult par-
ticipants were trained on CVC words with phonotactic constraints on initial
and final consonants, and were subsequently tested on words containing
vowels not heard during familiarization. Learners responded more rapidly to
legal words with a novel vowel than to illegal words with that same vowel.
Their results show that learners are able to abstract across vowel contexts,
and are able to learn proper first-order constraints. The study thereby pro-
vides evidence that consonants and vowels are processed independently in
phonotactic learning (see also, Newport & Aslin, 2004; Bonatti et al., 2005).
Phonotactic generalizations in which consonants are restricted to onset or
coda position have been shown to be learnable by 16.5-month-old infants.
Infants listen longer to unstudied illegal syllables than to unstudied legal
syllables (Chambers et al., 2003). It thus appears that both adults and infants
can induce constraints that link consonants to specific positions.

A study by Saffran and Thiessen (2003) indicates that infants more easily
learn phonotactic patterns when positions are assigned to segments from
the same natural class, than when assigned to unrelated segments. During
familiarization, 9-month-old infants heard AVBAVB words, where A and B
were natural classes of voiceless stops (p, t, k) and voiced stops (b, d, g),
separated by vowels (V). Infants were able to distinguish novel test items
that followed the voicing pattern to which they had been familiarized from
test items that followed the opposite voicing pattern. In contrast, when the
positions contained featurally mixed classes (p, d, k in one position; b, t, g
in the other position) infants did not learn the pattern to which they had
been exposed. These findings suggest that phonotactic constraints on natural
classes may be easier to learn than constraints on arbitrary segment classes.

122



5.1 introduction

One aspect that all of the above-mentioned studies have in common is that
participants are tested on their ability to generalize the experimentally induced
phonotactic constraint to novel words (i.e., to items that did not occur in the
familiarization phase). That is, in order to assess whether participants have
abstracted the phonotactic structure of the words, as opposed to memorizing
training items as a whole, participants are tested on novel items conforming to
the same phonotactic regularities as the training words. Such a test phase rules
out the possibility that participants were simply learning words, rather than
learning phonotactics. In order to test whether participants represent phono-
tactic constraints at the level of the phonological feature, an even stronger
test for generalization is needed. Since feature-based phonotactic constraints
affect natural classes of segments, a proper test for feature-based abstraction
would be to familiarize participants with items that contain segments from
a subset of the natural class, and test them on items that contain a different
subset of the natural class. In other words, test items should be novel words
that contain novel segments, which were not heard during familiarization.

Seidl and Buckley (2005) exposed 9-month-old infants to training words
that followed a pattern at the level of natural classes. In their first experiment,
two different artificial languages were constructed. One followed a natural (i.e.,
phonetically grounded) pattern in which oral stops were restricted to word-
initial position, and fricatives and affricates were restricted to intervocalic
position (e.g., /pasat/). The other language consisted of the reverse positional
structure, resulting in an arbitrary (i.e., not grounded) pattern of word-initial
fricatives and affricates, followed by intervocalic stops (e.g., /sapat/). They
found that both the natural and the arbitrary patterns were learned by infants
after only a few minutes of exposure. Similar results were found in their
second experiment for the learning of consonant-vowel sequences sharing
place features (natural pattern) and sequences not sharing place of articula-
tion (arbitrary pattern). The results are consistent with the view that infants
can learn a phonotactic pattern, either natural or arbitrary, when the pattern
affects a natural class of segments. However, while the test words contained
some novel consonants from the same natural class, in addition to familiar
consonants heard during training, the effect of these novel segments was
not analyzed independently from words with familiar consonants. The re-
sults could therefore have been driven solely by the occurrence of familiar
consonants in the test items.

In a follow-up study, Cristià and Seidl (2008) used test words in which
the restricted position was made up exclusively of consonants that had not
occurred during familiarization. In their study, 7-month-old infants were
exposed to CVC words from an artificial language that either had onsets
with segments that formed a natural class (plosives + nasals, which share
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the specification ‘−continuant’) or onsets with segments that did not form a
natural class (fricatives + nasals, which do not form a coherent class). During
the test phase, infants listened to words that contained novel plosives and
fricatives. When trained on the natural class, infants distinguished between
words that did or did not conform to the phonotactic structure of the training
language. In contrast, infants trained on the incoherent class were not able to
distinguish legal from illegal test items. In a control experiment, they showed
that the difference in learning difficulty was not to due an inherent difference
between plosives and fricatives. These results provide evidence that infants
represent phonotactic generalizations at the level of phonological features,
and support the view that infants learn phonotactic constraints which are
more general than the specific segments that were used during training.

Similar results were obtained in other studies of phonological learning
by infants. White et al. (2008) show that infants can learn stop and fricative
voicing alternations. Infants were presented with distributional information
that could be used to infer that two segments were related by a phonological
process (and hence refer to a single underlying phoneme). While the responses
of 8.5-month-old infants were found to be driven by transitional probabilities
(and not by the phonological alternation), 12-month-old infants showed the
capacity to generalize two segments in complementary distribution into a
single phonemic category. In addition, Maye et al. (2008) show that exposing
8-month-old infants to a bimodal distribution of Voice Onset Time (VOT)
for one place of articulation (e.g., da/ta contrast for dentals) facilitates the
discrimination of a voicing contrast for a different place of articulation (e.g.,
ga/ka contrast for velars). These findings are consistent with the view that
infants construct generalizations at the level of an abstract feature voice as a
result of exposure to a specific training items.

Further evidence for feature-based generalization comes from a study by
Finley and Badecker (2009) who show that adult learners are able to learn
patterns of vowel harmony which generalize to novel vowels in test items.
Participants were trained on alternations that displayed front/back vowel
harmony. The subset used for training consisted of either low or mid vowels.
The test items contained members of the vowel subset (low or mid) not used
during training. In control conditions, participants heard stems only, and
thus received no evidence of vowel harmony in alternations. They found that
participants trained on vowel harmony patterns were able to generalize to
both novel stem vowels and novel suffix vowels.

In sum, these studies provide evidence that phonotactic constraints do not
only affect specific segments, but also natural classes of segments. Patterns
of segments that form natural classes are easier to learn than patterns that
form arbitrary classes. In addition, based on exposure to patterns of specific
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segments from a natural class, learners abstract over the feature-based sim-
ilarity between these segments and induce constraints that go beyond the
training segments, affecting the natural class as a whole. Similar findings have
been reported in studies on phonotactic learning through speech production.
There is evidence that adult learners can induce experiment-wide phonotac-
tics on specific segments as a result of pronouncing experimental items (e.g.,
Dell, Reed, Adams, & Meyer, 2000; Goldrick & Larson, 2008). In addition to
constraints on specific segments, there is evidence that phonological features
affect phonotactic learning in speech production (Goldrick, 2004).

While the learning of novel phonotactics from isolated word forms has
been studied extensively, the learning of phonotactics from continuous speech
has been addressed only indirectly. Specifically, such studies focus on the role
of segment probabilities in word segmentation (Newport & Aslin, 2004; Bon-
atti et al., 2005; Toro et al., 2008). Newport and Aslin (2004) show that adult
learners are able to track consonant-to-consonant transitional probabilities as
well as vowel-to-vowel transitional probabilities, in a continuous stream of
artificial speech consisting of CV syllables. Since low probabilities are typi-
cally associated with word boundaries in segmentation (Saffran, Newport, &
Aslin, 1996), the ability to track phonotactic probabilities in the speech stream
provides learners with a cue for word segmentation. During the test phase,
participants had to choose between ‘words’, consisting of high-probability
sequences, and ‘part-words’, containing a low-probability sequence, thereby
straddling a word boundary as defined by the statistical structure of the
speech stream. Languages in which consonant probabilities were manipulated
and languages in which vowel probabilities were manipulated were learnable,
as shown by a significant preference for words over part-words. These results
indicate that segment co-occurrence probabilities assist speech segmentation.
Moreover, the study provides evidence that co-occurrence probabilities can be
learned when segments are not immediately adjacent, but are separated by
intervening vowels or consonants in the speech stream.

In a similar study, Bonatti et al. (2005) found a different pattern of results.
When using artificial languages that were slightly more complex than those
used by Newport and Aslin (in terms of the number of word frames, and
immediate frame repetitions), learners were able to exploit consonant proba-
bilities but not vowel probabilities for segmentation. They conclude that the
statistical learning of vowel dependencies is more difficult than the statistical
learning of consonant dependencies. They argue that this is due to a func-
tional distinction between consonants and vowels (namely that consonants are
used for word identification and vowels carry information about syntax, see
Nespor, Peña, & Mehler, 2003). In addition to demonstrating the relevance
of consonant probabilities for word segmentation, Bonatti et al. showed that
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learners learn the phonotactic structure of the words. When trained on a
continuous artificial language containing 9 words that are structured in such
a way that they exhibit statistical regularities on both the consonantal and
the vocalic tier, learners pick up the consonant structure of these words and
generalize these structures to test items containing a novel vowel structure.
The preference of consonant phonotactics over vowel phonotactics is reflected
in the significant preference for words respecting the consonant structure of
the training language (with new vowel structures) over words respecting the
vowel structure of the training language (with new consonant structures).

There are two ways in which the results of the study by Bonatti et al. (2005)
can be interpreted. The first interpretation is that learners induce phonotactics
directly from the speech stream. That is, it is possible that participants in the
experiment did not use consonant probabilities for word segmentation, but
instead learned only consonant dependencies. The consequence would be
that word roots were learned, rather than actual words (Bonatti et al., 2005).
This could explain the generalization to novel vowels, since simply no vowel
information was extracted from the speech stream. The second interpretation
is that learners induce phonotactics from a statistically learned lexicon of word
forms. That is, it may be the case that participants used consonant probabilities
to align their segmentation of the speech stream, and subsequently learned
the artificial lexicon (containing the actual multisyllabic words) from the
speech stream. This statistically learned lexicon could then have been used
to derive the phonotactic structure of these words, allowing participants to
generalize to novel words that have the same consonant structure. Indeed,
it has been argued that statistical learning provides a basis for an initial
lexicon, from which further linguistic generalizations can be derived (e.g.,
Swingley, 2005; Thiessen & Saffran, 2003). Note that these two interpretations
sharply contrast the Speech-Based Learning hypothesis and the Lexicon-Based
Learning hypothesis (as formulated in Chapter 1). The latter predicts that the
phonotactic structure of words is derived from the (proto-)lexicon, while the
former predicts that the structure of words is learned from continuous speech
directly.

The current chapter attempts to disentangle these two possible explana-
tions, and aims at showing that phonotactics can be learned from continuous
speech without mediation of a lexicon of word forms. In order to provide
evidence in favor of the Speech-Based Learning hypothesis, artificial languages
are constructed in such a way that it is unlikely that learners construct a lexi-
con from sequences in the speech stream. This is done by either substantially
increasing the number of words that would have to be learned, or by inserting
randomly selected vowels into the speech stream, resulting in the absence of
recurring words in the language. In addition, this chapter looks at whether
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participants learn phonotactic constraints on specific consonants, or whether
they induce feature-based generalizations from the continuous speech stream.

The current experiments

Since most previous studies have used artificial languages that consisted of
only a few words (typically about 9 or 12) with many occurrences in the
speech stream, it is possible that learners build up a lexicon of CVCVCV
word forms while listening, and project any generalizations (e.g., CXCXCX
word roots, Bonatti et al., 2005; XAXBXA structural generalizations based
on vowels, Toro et al., 2008; or AXC structural generalizations based on
syllables, Peña et al., 2002) from this lexicon. Indeed, it has been argued
that cues facilitating word segmentation allow for the extraction of structural
generalizations from the speech stream (Peña et al., 2002; Toro et al., 2008).
Here, we ask whether CXCXCX word roots can be learned under conditions in
which the segmentation of whole words is particularly difficult. This is done
by constructing languages that have many different CVCVCV word forms
with only a few occurrences (Experiment 1), or languages in which vowels
occur at random, thereby eliminating the notion of recurring word forms
altogether (Experiment 2). If learners can still pick up word roots in these
conditions, distinguishing between low-frequency (Experiment 1) or novel
(Experiment 2) word forms in the test phase, then this would constitute strong
evidence for the SBL hypothesis. It would indicate that, in accordance with
the SBL hypothesis, the phonotactic structure of words is learnable without
reference to actual word forms. That is, it would show that phonotactic
constraints are learnable directly from continuous speech input.

The learning of feature-based generalizations from continuous speech
has not been addressed in earlier studies. Therefore, in addition to testing
for lexicon-based versus speech-based learning, the chapter will look into
whether learners induce feature-based phonotactic constraints from the speech
stream (Experiment 3). Crucially, such constraints should generalize to test
items containing novel segments taken from the same natural class as the
segments used in the training language. This would constitute even stronger
evidence for the SBL hypothesis, since it would show that not only word
roots, but also generalizations in terms of abstract levels of representation
(natural classes) would be learnable from continuous speech. This would be
in direct contradiction with studies that argue that learning mechanisms with
different forms of computation (statistical learning, generalization) operate
on different sorts of input (Peña et al., 2002; Toro et al., 2008). Specifically, it
would contradict the view spelled out in these studies that statistical learning
operates on continuous input, and that generalization operates on segmented
input.
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The goal of the first experiment is to assess whether learners can exploit
phonotactic probabilities for segmentation in an artificial language that con-
sists of a multitude of word forms, each with only a few occurrences. The
structure of the language has two important properties. First, as a result of a
relatively large number of consonant frames, combined with a large number
of intervening vowels, the language entails a vocabulary that is far larger than
those used in earlier studies (e.g., Newport & Aslin, 2004; Bonatti et al., 2005).
The large number of words makes it unlikely that learners acquire the actual
vocabulary of word forms during familiarization, and use those word forms
for the induction of phonotactics (as would be predicted by the Lexicon-Based
Learning hypothesis). While this possibility cannot be ruled out, it seems more
likely that phonotactic knowledge arises from abstraction over the speech
stream, by tracking the probabilities of consonants across vowels. Second, in
order to allow for the possibility of feature-based abstractions from specific
training segments to natural classes, the consonant sequences in the lan-
guage display substantial phonological similarities. As a consequence of this
setup, the difference between ‘within-word’ and ‘between-word’ consonant
probabilities is smaller than in any earlier study on consonant probabilities
(TPwithin = 0.5, TPbetween = 0.33).1 Before testing the types of generalizations
that may be extracted from such a language, Experiment 1 is concerned with
the question of whether the statistical structure of the language is learnable
under these relatively difficult learning conditions.

5.2 experiment 1

The first experiment focuses on two natural classes of consonants that co-
occur across intervening vowels in a continuous speech stream. In the speech
stream, fricatives (natural class A) are always followed by plosives (natural
class B). A third class of unrelated segments (arbitrary class X) was included
to create a 3-syllable pattern. The AB sequence was presented to participants
as either a within-word or a between-word sequence. This was done by
manipulating the statistical structure of the continuous speech stream. The
stream was a continuous concatenation of either ABX or BXA words, resulting
in higher probabilities for sequences within words than for sequences between
words. The languages will be referred to as the ‘ABX language’ (with AB as a
within-word sequence), and the ‘BXA language’ (with AB as a between-word

1 In contrast to earlier chapters in this dissertation, statistical dependencies in this chapter are
expressed in terms of transitional probability (TP) rather than in terms of observed/expected
(O/E) ratio. This is done because TP has been the standard measure used in studies on artificial
language learning. The results, however, are compatible with either measure (see e.g., Aslin et al.,
1998). In addition, computational studies have shown that the two formulas produce roughly
equivalent results (e.g., Swingley, 1999; see also Chapter 3 of this dissertation).
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sequence). If participants learn the statistical structure of the language they
are trained on, then they should show a preference for words that conform to
the words from their training language (either ABX or BXA) as compared to
words from the other language.

A critical aspect of artificial language learning experiments is whether
the preference for a particular set of items can be genuinely attributed to
exposure to the artificial language (see, Reber & Perruchet, 2003; Redington
& Chater, 1996, for a discussion). Two factors are potentially problematic
for such a conclusion. First, preferences may be due to the participant’s
native language, rather than to knowledge that was induced from the artificial
language. Second, preferences may be due to the structure of test items, rather
than to the structure of the training language. In order to rule out these
potential confounds, the current experiment employs two different training
languages and one single set of test items. That is, participants are exposed to
one of the two training languages, and are subsequently tested on the same set
of items. If participants base their decisions solely on knowledge from their
native language, or on the structure of test items, then they would display
the same preferences in the test phase, regardless of their training condition.
Conversely, if there is a significant difference between the preferences of
participants in the two groups, then this has to be due to the structure
of the different training languages (since test items are identical in both
conditions). In the current experiment, the two training languages contain the
same continuous sequences, but the statistical structures of the two languages
were manipulated such that they would indicate different segmentations. A
significant difference between preferences in the two training conditions thus
would indicate that participants are sensitive to the statistical structure of the
training languages.

It should be noted that the current experiment does not provide a test for
generalization. Specifically, it is not a test for the construction of feature-based
generalizations, since all segments had occurred in the familiarization stream.
Also, it is not a test for the abstraction of word roots, since test items had
occurred in the familiarization language (albeit with rather low occurrence
frequencies). Rather, the experiment is a first exploration intended to see
whether participants can learn the statistical structure of continuous artificial
languages under conditions that are more difficult than those in earlier studies
(e.g., Bonatti et al., 2005; Newport & Aslin, 2004). Specifically, the current
experiment employs languages that are more complex in terms of the total
number of words in the language, and the relatively small differences in
transitional probability in the continuous speech stream.
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Table 5.1: Artificial languages for Experiment 1

ABX language BXA language
Consonant frames Vowel fillers Consonant frames Vowel fillers
(C1 C2 C3 ) ( V1 V2 V3) (C2 C3 C1 ) ( V2 V3 V1)

f b x [ a][ e][ o] b x f [ e][ o][ a]
f d l [ i][ u][ y] d l f [ u][ y][ i]
s p n [ Ei][ œy][ Au] p n s [ œy][ Au][ Ei]
s b l b l s
z p x p x z
z d n d n z

Note. A = fricatives, B = plosives, X = ‘arbitrary’ class.

5.2.1 Method

Participants

Forty native speakers of Dutch (33 female, 7 male) were recruited from the
Utrecht Institute of Linguistics OTS subject pool (mean age: 21.6, range: 18-34).
Participants received 5 euros for participation. Participants were assigned
randomly to either the ABX or the BXA condition.

Materials

Words are defined by 6 consonant frames (C C C ), which are combined
exhaustively with 9 different Dutch vowels2 (three for each vowel position).
As a result, the language contains a total of 162 different CVCVCV words (6
consonant frames times 3× 3× 3 vowel frames). Two different languages (ABX
and BXA) were created, which contain different orderings of three classes of
consonants. Class A consists of fricatives /f/, /s/, and /z/. Class B consists
of plosives /p/, /b/, and /d/. The arbitrary class X consists of /x/, /n/, and
/l/. The consonant frames and vowel fillers for each language are given in
Table 5.1.

The two languages are different segmentations derived from the same
underlying consonant sequencing:

(5.1) . . . ABXABXABXABXABXABX. . .

2 Only tense vowels were used, as lax vowels are restricted to occur only in word-medial position
in Dutch. Diphthongs were included to expand the vowel set.
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The ABX language is characterized by having AB as a word-internal
sequence. In this language, each fricative can be followed by 2 different
plosives. Similarly, each plosive can be followed by 2 different consonants
from the arbitrary class. This results in a ‘within-word’ consonant transitional
probability (TP) of 0.5. Every final consonant (from the X class) can be followed
by each of the 3 initial consonants (from the A class). The ‘between-word’
consonant TP is thus 0.33. Each of 3 different vowels can occupy a vowel
slot, resulting in vowel transitional probabilities of 0.33 (both within words
and between words). The statistical structure of the language, with lower
probabilities for XA sequences than for AB and BX sequences, predicts the
following segmentation of the continuous speech stream:

(5.2) . . . ABX.ABX.ABX.ABX.ABX.ABX. . . (ABX language)

The BXA language has the same basic structure, but predicts a segmen-
tation that is shifted one element to the right. In this case, each plosive can
be followed by 2 different consonants from the arbitrary class, and each ar-
bitrary consonant can be followed by 2 different fricatives. Crucially, since
fricatives occur in the word-final syllable, they are followed by 3 different
word-initial plosives. In this language, AB sequences are thus predicted to be
interpreted as between-word sequences, due to lower transitional probabilities
of between-word sequences:

(5.3) . . . A.BXA.BXA.BXA.BXA.BXA.BX. . . (BXA language)

Note that the vowels are still linked to the same consonants (see Table 5.1).
The only difference between the ABX and BXA languages is the location of the
statistical word boundaries in the speech stream (due to lower probabilities
between words than within words).

For each language, a continuous sequence of CV syllables was generated
by concatenating 4 different pseudo-random orderings of the 162 different
words in the language. Each of the 162 words thus occurred 4 times in the
speech stream, and, since the stream was presented twice to participants,
each word occurred a total of 8 times during familiarization. In order to
control for syllable TPs, restrictions were defined on which syllables could
follow each other. Specifically, since syllables could have 6 possible successors
within words (since each syllable has 2 successor consonants combined with 3

different vowels), the allowed syllable sequences between words in the language
were restricted to match this number. This ensured that participants could not
rely on between-word versus within-word syllable TPs during segmentation.
The exact statistical structures of the languages are as follows: Consonant
TPs are 0.5 within words, and 0.33 between words (range: 0.28-0.4, ABX
language; 0.3-0.36, BXA language). Vowel TPs are 0.33 within words, and also
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between words (range: 0.25-0.39, ABX language; 0.30-0.38, BXA language).
Finally, syllable TPs are 0.17 within words and between words (range: 0.08-
0.24, ABX language; 0.11-0.24, BXA language). The resulting continuous
language contains 1944 CV syllables. An audio stream was generated using
the MBROLA text-to-speech system (Dutoit, Pagel, Pierret, Bataille, & Vrecken,
1996), using the Dutch ‘nl2’ voice. The stream was synthesized with flat
intonation and had a total duration of 7.5 minutes (average syllable duration:
232 ms).

For the test phase, 36 items were selected from each language. The selection
was such that each test item consisted of a consonant frame with a mixed set
of vowels (i.e., one long vowel: /a/,/e/,/o/, one short vowel: /i/,/u/,/y/,
and one diphthong: /Ei/,/œy/,/Au/), occurring at different positions. A list of
test trials was created for use in a 2-alternative forced-choice task. Every trial
consisted of one ABX word and one BXA word (e.g., /fibexAu/ – /bœylosi/).
The complete list of test items is given in Appendix D. The test items were
synthesized with the same settings as the familiarization stream.

Procedure

Participants were tested in a sound-attenuated booth. Participants were given
written instructions which were explained to them by the experimenter. Audio
was presented over a pair of headphones. Participants’ responses were given
by selecting one out of two response options (indicated visually with ‘1’
and ‘2’) by clicking with a mouse on the screen. The instructions given to
participants were that they would hear a novel (‘Martian’) language, and that
their task was to discover the words of this language. Before starting the
actual experiment, participants were given a short pre-test in which they had
to indicate whether a particular syllable had occurred in first or in second
position in a trial. This was done to familiarize participants with the setup of
the experiment.

The 7.5-minute familiarization stream was presented twice, with a 2-minute
silence between presentations of the stream. As a consequence, total famil-
iarization time was 15 minutes. The stream started with a 5-second fade-in,
and ended with a 5-second fade-out. There were thus no indications of word
endings or word beginnings in the speech stream. After familiarization, par-
ticipants were given a two-alternative forced-choice (2AFC) task in which they
had to indicate for each trial which out of two words sounded more like the
Martian language they had just heard. After the experiment had finished,
participants were asked to fill in a debriefing questionnaire, which was in-
tended to check whether there had been any specific items or potential L1

interferences (such as embedded words) systematically affecting participants’
preferences.
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The questionnaire asked participants to indicate the following:

(i) which words from the Martian language they could remember (and were asked
to make a guess if they could not remember the exact word),

(ii) whether they had noticed any existing Dutch words while listening, and, if so,
which ones,

(iii) whether they had employed specific strategies in making their decisions in the
test phase, or whether they had simply been guessing,

(iv) what their general impression of the experiment was, and whether they had
been clearly instructed,

(v) whether they had participated in similar experiments before.

5.2.2 Results and discussion

The mean preference of each individual participant is plotted in Figure 5.1.
A mixed logit model (see e.g., Jaeger, 2008) with subjects and items as ran-
dom factors showed that there was no significant effect of training condition
(p = 0.4484).3 These results thereby provide no evidence that participants
learned the statistical structure of the continuous language to which they had
been exposed. An additional analysis tested whether the conditions, when
analyzed separately, are significantly different from chance-level performance.
This analysis indicates that participants in both conditions have a significant
preference for BXA words over ABX words (ABX condition: p < 0.01, BXA
condition: p < 0.001). There thus appears to be a bias in favor of BXA over
ABX words, which was driven by factors independent of training. There is no
evidence that participants learned the statistical structure of the language and
used the structure to learn words from the speech stream.

The experiment, which failed to show an effect of statistical learning,
illustrates the necessity for control groups in artificial language learning (see
also, Reber & Perruchet, 2003; Redington & Chater, 1996). On the basis of the
results for the BXA language alone, one could be inclined to conclude that
participants indeed learned the statistical structure of the continuous speech
stream, and segmented the continuous stream accordingly into word-like units.
Presenting participants with a language with the opposite statistical structure
(the ABX pattern), however, did not result in a different segmentation of the
speech stream. Regardless of the statistical structure of the familiarization
stream, participants had a general preference for BXA over ABX words.

Interestingly, many participants had quite consistent responses, as shown
by their near-categorical preferences (see Figure 5.1). That is, only a few

3 Many studies use t-tests (on participants’ aggregated preferences) for the analysis of 2AFC data.
See Jaeger (2008) for an extensive discussion of why t-tests should not be used for the analysis of
categorical outcomes.
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Figure 5.1: Results for the ABX and BXA training languages. The circles
indicate mean preferences for individual participants. Triangles indicate
the mean score for each condition.

participants had preferences that were close to random (i.e., approaching 50%).
This could be interpreted to mean that participants picked up a repeating
pattern, and consolidated this pattern through listening (rather than not
being affected by the training language at all). This is also illustrated by two
participants in the ABX condition who displayed a systematic preference for
ABX words, choosing ABX over BXA in all trials. It is thus possible that the
bias in favor of one of the two word types was active during segmentation in
the training phase, rather than during the judgment of experimental items in
the test phase.
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The question then arises what caused the large majority of participants to
segment the speech stream according to the BXA pattern. This was examined
in two different ways. First, the debriefing questionnaires were checked for any
recurring items, patterns, or strategies that participants had been aware of, and
could have influenced their decisions. Second, the ABX and BXA items were
analyzed in terms of various phonotactic probabilities in Dutch, the native
language of the participants. Several studies have shown that L1 phonotactics
can interfere with artificial language segmentation (Boll-Avetisyan & Kager,
2008; Finn & Hudson Kam, 2008; Onnis et al., 2005). Corpus analyses were
conducted to see whether there were L1 segmentation cues that could have
interfered with participants’ segmentation of the artificial language. These
post-hoc analyses of the results were not meant to provide conclusive evidence
about what strategy participants had used in the experiment, but rather
were meant to highlight potentially interfering factors, which could then be
controlled in a follow-up experiment.

The questionnaires showed no indication of specific items or embedded
words systematically affecting the results. Participants in both conditions
mainly had remembered words that conformed to the BXA pattern. Out
of a total 124 words that were written down as remembered items, about
74% conformed to the BXA pattern, and about 22% conformed to the ABX
pattern. This roughly reflects the results shown in Figure 5.1. Several existing
Dutch words had been heard in the familiarization phase. These were mainly
monosyllabic words, such as zij (‘they’), doe (‘do’), nu (‘now’). Interestingly,
whenever participants had heard a sequence of multiple Dutch syllables, these
were usually ABX sequences (zij doen nu, ‘they do now’, zeg dan niet, ‘say then
not’). Apparently, these sequences had not interfered with the segmentation
of the speech stream. Few participants reported Dutch BXA sequences. When
this did occur, these were low-frequent words, such as delusie (‘delusion’) or
doelloosheid (‘purposelessness’). Thus, the questionnaires showed no indication
that participants’ preference for BXA words was due to embedded Dutch
words.

Several participants (22 out of 40 ) had written down a strategy that
they had used during the test phase. Although participants’ learning of the
artificial words may have been implicit, and participants thus may not have
been aware of the strategies they had actually employed, inspection of these
strategies could reveal properties of the artificial languages that may have been
particularly salient for the participants. The reported strategies varied from
very general remarks, such as ‘I paid attention to word endings’ to specific
reports on the patterns of the words, such as ‘many words started with /p/,
had medial /x/, and ended with /s/’. Some participants reported that they
had based their decisions on the final vowel of the word. Specifically, they
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reported that they had chosen words ending with /i/. Inspection of the words
that participants had listed as remembered items confirms this: 44% of these
words ended with /i/. Inspection of the BXA test items also indicates that
BXA items ending with /i/ overall (i.e., averaged over different participants)
received somewhat higher scores than BXA words ending with /a/ or /Ei/
(ABX condition: /i/ - 73.8%, /a/ - 70.4%, /Ei/ - 68.8%; BXA condition: /i/ -
84.2%, /a/ - 75.4%, /Ei/ - 77.1%), suggesting that participants may have used
final-/i/ as a segmentation cue.4

In order to assess whether word-final vowels indeed could have provided
a segmentation cue, the vowels used in the experiment were compared on
the basis of their frequency in word-final position in Dutch words. If there
is a segmentation strategy based on word-final vowels, then this should be
reflected in higher word-final frequencies for those vowels that occur in final
positions in BXA sequences, than vowels at the ends of ABX or XAB sequences.
The distribution of word-final vowels across Dutch words was calculated using
the CELEX lexical database (Baayen, Piepenbrock, & Gulikers, 1995). The
counts indicate that final vowels in BXA words indeed have higher frequencies
than final vowels in ABX or XAB words (BXA: /i/ – 3050, /a/ – 796, /Ei/ –
616; ABX: /o/ – 598, /y/ – 45, /Au/ – 16; XAB: /e/ – 331, /u/ – 63, /œy/
– 34). These counts make it seem plausible that participants may have been
sensitive to the position of /i/ in the speech stream, since there are many
more Dutch words ending with /i/ than with any of the other vowels. Note
that the claim that word-final vowels affect segmentation has not been proven
here. In order to so, an experiment should be designed specifically aimed at
such a hypothesis. Rather, the data reported here indicate that it may be wise
to be cautious when using /i/ in artificial segmentation experiments with
Dutch participants. In general, artificial languages should be controlled for
interferences stemming from the native language as much as possible. The
current analyses indicate that possible effects of word-final vowels should be
considered for the list of factors that need to be controlled for.

One way to dispose of any potential interferences from vowels is to make
sure that vowels do not appear at fixed positions in the consonant pattern.
That is, vowels can be disconnected from consonant frames by simply inserting
them at random into vowel slots in the speech stream. If vowels are inserted
at random, then they cannot be used by listeners to align their segmentations
into a fixed, repeating pattern. Thus, random vowel insertions render vowels
completely useless as a segmentation cue. The insertion of vowels at random
positions has the additional advantage that it provides an even stronger test

4 The ‘final-/i/’ strategy does not necessarily result in higher scores for /i/-final words. That is, if
/i/ is used by participants to align their segmentation into the BXA pattern, then this does not
imply that words ending with /i/ are better words than other BXA words, but rather means that
/i/-alignment is used to prefer BXA segmentations over ABX segmentations.
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for the Speech-Based Learning hypothesis. If vowels are randomly inserted
into the speech stream, then there are simply no systematically recurring
words (i.e., CVCVCV sequences) in the language.This makes it highly unlikely
that learners induce the phonotactic structure of words from a statistically
learned lexicon of CVCVCV word forms. Rather, it seems likely that learners
would induce phonotactics directly from the speech stream.

An alternative explanation for the current findings is that acoustic prop-
erties of the speech stream, rather than L1 knowledge, may have pushed
participants into systematic BXA segmentation. For example, the articulation
of plosives requires closing the vocal tract in order to build up pressure before
the release. This causes a short silence in the acoustic signal prior to the burst
of air. Such fine-grained acoustic properties of the speech signal may poten-
tially provide a cue for segmentation. However, no evidence for a systematic
‘plosive-initial’ strategy was found in the debriefing questionnaires. One way
to rule out this possibility would be to create a control condition in which the
familiarization stream consists of randomly ordered syllables. Such a control
condition would take away any systematic phonetic bias in the speech stream,
while still allowing for L1 transfer to items in the test phase.

Instead of running such a control condition, it was decided to construct
new languages in Experiment 2, distributing plosives and fricatives equally
across consonant positions in the speech stream. Phonetic differences between
plosives and fricatives could therefore not lead to a systematic segmentation
bias. It should nevertheless be noted that natural classes are defined by
articulatory features and thus typically result in specific acoustic regularities
(such as pre-burst silences) in the speech stream. The challenge is to construct
artificial languages in such a way that they contain only a minimal amount
of acoustic cues to boundaries. In Experiment 2, two new languages were
constructed in which consonant frames were interleaved with random vowels.

5.3 experiment 2

Experiment 2 is again concerned with the induction of CXCXCX word roots
from continuous speech. In order to control for possible interference of vowel
structures, vowel fillers are selected at random. Consonant frames consist of
segments from three natural classes: voiceless obstruents (class A), voiced
obstruents (class B), and dorsal obstruents (both voiceless and voiced, class
C). These classes are used to created two languages which are defined by
different statistical structures: an ABC language and a BCA language. Test
items in this experiment are novel combinations of consonant frames and
vowel fillers, which had not occurred in the speech stream. The experiment
thus tests whether the knowledge that is acquired by participants generalizes
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to novel words that have the same consonantal structure as the sequences in
the familiarization language.

5.3.1 Method

Participants

Forty native speakers of Dutch (33 female, 7 male) were recruited from the
Utrecht Institute of Linguistics OTS subject pool (mean age: 21.4, range: 18-39).
Participants received 5 euros for participation. Participants were assigned
randomly to either the ABC or the BCA condition.

Materials

Six new C C C consonant frames are used to create the languages. Con-
sonants were taken from natural classes of obstruents. Class A consists of
voiceless obstruents /p/, /t/, /s/. Class B consists of the voiced counterparts
of those obstruents: /b/, /d/, /z/. The third class, class C, has three dorsal
obstruents /k/, /g/, and /x/. Note that two segments were intentionally
withheld from the A and B classes. Specifically, voiceless obstruent /f/ was
not presented as member of the A class, and voiced obstruent /v/ was not
presented as member of the B class. These segments were kept for future test-
ing of feature-based generalizations from the specific consonants in the class
to novel segments in Experiment 3 (Section 5.4). The consonants are again
sequenced in two different ways. One language is made up of ABC consonant
frames, having higher probabilities for AB and BC (‘within-frame’) sequences
than for CA (‘between-frame’) sequences. The second language consists of
BCA consonant frames, resulting in higher probabilities in the speech stream
for BC and CA (‘within-frame’) sequences than for AB (‘between-frame’)
sequences. The materials are given in Table 5.2.

Continuous sequences of consonants were generated by concatenating 600

randomly selected frames for each language. The resulting speech stream had
600× 3 = 1800 consonants. The two languages differed with respect to their
consonant co-occurrence probabilities (in the same way as in Experiment 1):
Within-frame probabilities were 0.5 (consonants had 2 possible successors
within frames), while between-frame probabilities were 0.33 (consonants had
3 possible successors between frames). The hypothesized segmentation of the
two languages is thus as follows:

(5.4) . . . ABC.ABC.ABC.ABC.ABC.ABC. . . (ABC language)

(5.5) . . . A.BCA.BCA.BCA.BCA.BCA.BC. . . (BCA language)
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Table 5.2: Artificial languages for Experiment 2

ABC language BCA language
Consonant frames Vowel fillers Consonant frames Vowel fillers
(C1 C2 C3 ) (random) (C2 C3 C1 ) (random)

p d g [ a, e, o, i, u, y] d g p [ a, e, o, i, u, y]
p z k z k p
t b x b x t
t z g z g t
s b k b k s
s d x d x s

Note. A = voiceless obstruents, B = voiced obstruents, C = dorsal obstruents. Vowel
fillers are inserted at random into the speech stream.

where ‘.’ indicates a boundary as predicted by a low transitional probability
between consonants.

A set of six vowels (/a/,/e/,/o/,/i,/u/,/y/) was used to fill the vowel
slots in the continuous sequence of consonant frames. For each vowel slot, a
filler was selected from the set of vowels at random. This procedure resulted
in the following statistical structure for the languages: Consonant TPs were 0.5
within words (range: 0.48-0.52, ABX language; 0.48-0.52, BXA language), and
0.33 between words (range: 0.31-0.35, ABX language; 0.32-0.35, BXA language).
Vowel TPs were 0.17 within words, and also between words (range: 0.14-0.2,
ABX language; 0.14-0.2, BXA language). Note that there is a small difference
between within-word and between-word syllable transitional probabilities in
the setup used in this experiment. While any syllable can have 12 possible
successors (2 consonants times 6 vowels) within words, there are 18 possible
successors (3 consonants times 6 vowels) between words. Theoretically, syllable
TPs are thus 0.08 within words, and 0.06 between words. However, this
theoretical difference is not reflected in the actual speech stream. Due to
the random insertion of vowels, there are many different syllable bigrams,
each with very low occurrence frequencies. Each language contains about 675

different syllable bigrams. Since the total speech stream contains 1799 bigram
tokens, each syllable bigram on average occurs 2.7 times. In contrast, the set of
consonant bigrams is much smaller, and such bigrams have higher occurrence
frequencies. There are 21 different consonant bigrams, and consonant bigrams
on average occur 85.7 times each. The consequence is that consonant TPs
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can be estimated much more reliably from the continuous speech stream
than syllable TPs. The estimated values for consonant bigrams approach the
theoretical values (as can be seen from the TP ranges listed above), whereas
syllable TPs take on a wide range of values: 0.02-0.29 within words, and 0.02-
0.21 between words (in both languages). Importantly, the fact that within-word
and between-word TP ranges are largely overlapping, indicates that syllable
TPs are an unreliable segmentation cue in this experiment. That is, within-
word syllable probabilities are not systematically higher than between-word
syllable probabilities.

Due to the design of the language, there are no systematically recurring
word forms in the speech stream, and phonotactic learning is hypothesized
to operate on the speech stream, rather than on a statistically learned lexicon.
However, CVCVCV word forms might occasionally recur in the speech stream
due to chance. In order to see how often this had occurred, the continuous
ABC and BCA languages were analyzed for recurring CVCVCV sequences.
Frequency counts indicate that there were 485 different ABC word forms in the
speech stream (with each ‘word’ being a CVCVCV combination of one of the
consonant frames and three randomly selected vowels). The average frequency
of occurrence was 1.2. Similarly, the BCA language contained 482 different
BCA forms, with an average frequency of 1.2. Most forms occurred only once,
and a small number of forms occurred up to a maximum of 4 times in the
speech stream. In contrast, the original work on word segmentation by Saffran,
Newport, and Aslin (1996) used 6 different word forms which each occurred
300 times in the speech stream. It thus seems unlikely that participants in the
current experiment would learn this large set of different word forms. Rather,
it seems plausible to assume that any phonotactic knowledge was due to the
learning of consonant structures directly from the speech stream.

Audio streams were generated for the two languages using MBROLA
(Dutoit et al., 1996), using the Dutch ‘nl2’ voice. The streams were synthesized
with flat intonation and had total durations of 7 minutes (with average syllable
durations of 232 ms). For the test phase 36 novel three-syllabic sequences
were created for each language. The test items were made by combining
consonant frames with vowel structures in such a way that there were no
vowel repetitions in the item (i.e., each word had 3 different vowels), and that
the exact combination of consonants and vowels had not occurred in either
of the two familiarization languages. Care was taken to ensure that no other
factor than the consonant probabilities in the artificial language could affect
decisions in the test trials. Importantly, any remaining possible effect of vowel
structure in the test items was neutralized by employing pairs of test trials
in which the consonant frame for each item was the same in both trials, but
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the vowel frame was switched between items.5 That is, for each trial (e.g.,
/tibaxo/ – /dugopa/) a counterpart was created in which vowel frames had
been switched (e.g., /tuboxa/ – /digapo/). If participants would base their
decisions on vowel frames of the test items, then chance-level performance
should occur, since vowel frames were distributed evenly between ABC and
BCA items. Any significant learning effect is thus due to the consonant
structure of the words. Vowel frames for the test items were chosen in such a
way that there was a minimal difference in cohort density (i.e., the number of
Dutch words starting with the initial CV syllable) between two items in a trial.
For example, /ti-/ and /du-/ have comparable cohort densities (as do /tu-/
and /di-/). Test items were synthesized with the same settings as those for the
familiarization stream. The complete set of test trials is given in Appendix D.

Procedure

The procedure was the same as in Experiment 1. Each stream lasted 7 minutes,
and was presented twice with a 2-min pause in between. Total familiarization
time was 14 minutes.

5.3.2 Results and discussion

The mean preference of each individual participant is plotted in Figure 5.2.
A mixed logit model with subjects and items as random factors revealed a
significant effect of training condition (p = 0.0168). The significant differ-
ence between groups indicates that participants’ preferences were affected by
the statistical structure of the continuous language to which they had been
exposed. Importantly, these results show that learners have the ability to
induce phonotactics directly from the speech stream. Since participants in
both conditions were tested on the same items, the different results cannot be
reduced to effects from the native language, nor to learning during the test
phase. An additional analysis tested whether the separate conditions were
different from chance-level performance. Participants in the ABC condition
showed no significant preference for either ABC or BCA items (p = 0.114). In
contrast, participants in the BCA condition showed a significant preference
for BCA words over ABC words (p < 0.001).

The results of the current experiment can be interpreted in different ways.
It is possible that there was a general bias in favor of BCA words. If this is
true, then participants in the ABC condition neutralized this bias as a result
of exposure to the opposite statistical pattern (and leading to chance-level
performance during the test phase). An alternative explanation is that there

5 I thank Tom Lentz for this suggestion.
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Figure 5.2: Results for the ABC and BCA training languages. The circles
indicate mean preferences for individual participants. Triangles indicate
the mean score for each condition.

was no bias for either type of structure. In that case, participants in the ABC
condition simply did not pick up the pattern from their training language,
whereas participants in the BCA condition did. Either way, the significant
difference between training conditions shows that participants were sensitive
to the statistical structure of the familiarization language. The results show
that participants were able to induce CXCXCX consonant roots from the
continuous artificial speech stream, generalizing to novel words conforming
to those roots in the test phase.
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The results indicate that learners’ ability to learn consonant structures from
continuous speech is stronger than previously shown. Compared to earlier
studies (Bonatti et al., 2005; Newport & Aslin, 2004), the languages used in
this chapter displayed smaller differences in consonant TPs (the current study:
TPwithin = 0.5, TPbetween = 0.33; earlier studies: TPwithin = 1.0, TPbetween = 0.5).
In addition, the languages in the current experiment contained randomly
inserted vowels. The lack of systematically recurring CVCVCV word forms in
the speech stream makes it unlikely that participants relied on a statistically
learned lexicon to learn the word roots. Rather, it seems plausible that learners
picked up phonotactics (consonant structures) directly from the continuous
speech stream. This finding supports the Speech-Based Learning hypothesis,
which states that phonotactics is learned from continuous speech, rather than
from the lexicon.

Furthermore, the test words did not occur in the familiarization stream.
Despite the difficult learning conditions, participants were able to learn the
phonotactic structure of the training language from continuous speech, and
generalize these structures to previously unheard test words. While the
learning effect is not particularly large, it should be noted that the design
allows for the conclusion that the learning effect is truly due to the statistical
dependency of consonants in the artificial languages, and not to effects from
the native language. The learning effect can thus be attributed to the induction
of novel phonotactics from continuous speech.

The languages were made up of segments from three different natural
classes, voiceless obstruents, voiced obstruents, and dorsal obstruents (both
voiced and voiceless). However, not all members of these natural classes
were presented to the learners. Specifically, the labial fricatives /f/ and /v/
did not occur in the familiarization languages. The model of phonotactic
learning that has been proposed in this dissertation, StaGe (see Chapter 2),
assumes that the learner constructs feature-based generalizations on the basis
of statistically learned phonotactic constraints. In this view, constraints on
specific consonants that form a subset of a natural class result in the construc-
tion of a generalization which affects the natural class as a whole. That is,
constraints affecting classes A (voiceless obstruents) and B (voiced obstruents)
should generalize to novel segments from the same natural class (/f/ and /v/,
respectively) which were not heard during familiarization. Experiment 3 tests
whether participants perform feature-based generalization to novel segments
from the same natural class.
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5.4 experiment 3

Experiment 3 asks whether participants induce feature-based generalizations
(phonotactic constraints targeting natural classes as a whole) from continuous
speech. The continuous stream of the BCA language from Experiment 2 was
used as familiarization language. A random control language serves to check
that any effect found would not be due to L1 preferences. The control language
consists of random combinations of consonants and vowels.6 Instead of testing
whether participants pick up specific CXCXCX word roots, participants are
tested on whether they learn the natural class structure of word roots. This
is done by presenting them with test items which contain novel word roots.
Specifically, each test item contains one novel consonant that was not heard
during familiarization.

The task of participants is to choose between novel items that conform
to the natural class pattern of the training language, and novel items that
violate the natural class pattern of the training language. If participants
construct feature-based generalizations on the basis of occurrences of specific
consonants in the training language, then participants should prefer test items
in which a consonant has been replaced by a novel segment from the same
natural class over test items in which a consonant has been replaced by a novel
segment from a different natural class. In contrast, no such preference should
be found for participants that are trained on the random control language.
A significant difference between the training conditions would indicate that
participants learn feature-based generalizations from the continuous speech
stream. Importantly, since neither the legal nor the illegal novel segment
occurred in the familiarization languages, a difference between conditions
would indicate that participants relied on a phonotactic constraint at the level
of natural classes, and not on a constraint affecting specific consonants in the
familiarization language.

5.4.1 Method

Participants

Forty native speakers of Dutch (34 female, 6 male) were recruited from the
Utrecht Institute of Linguistics OTS subject pool (mean age: 22.3, range: 18-28).
Participants received 5 euros for participation. Participants were assigned
randomly to either the BCA or the Random condition.

6 The ABC language from Experiment 2 was not used in the current experiment, since the language
produced no significant preference for either type of word structure. It was thus not expected
that training participants on this language would lead to accurate feature-based generalizations.
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Materials

The familiarization stream was identical to the BCA condition in Experiment 2.
The stream consists of a continuous sequence of consonant frames where
voiced obstruents (class B) are followed by dorsal obstruents (class C) and
voiceless obstruents (class A). Vowel slots were filled with randomly chosen
vowels. (See Table 5.2 for the specific materials used in the language.) A
control condition (Random) was created in which all consonants and all
vowels occurred at random. The continuous stream of the Random condition
was of the same length as the BCA stream (1800 CV syllables). The same
consonants and vowels were used as in the BCA language, but consonant slots
and vowels slots were filled randomly with segments from the inventory.

All test items consisted of BCA frames in which either the initial consonant
(from class B) or the final consonant (from class A) was replaced with a novel
consonant. The novel consonant was either from the same natural class as
the replaced segment (i.e., legal substitution), or from a different natural class
(i.e., illegal substitution). The novel consonants were /f/ (voiceless obstruent,
belonging to class A) and /v/ (voiced obstruent, belonging to class B). In
the substitutions of initial consonants, the legal item would be vCA (e.g.,
/vygate/, conforming to the BCA pattern), and the illegal item would be
fCA (e.g., */fykape/, violating the BCA pattern). Conversely, in word-final
position the legal item would be BCf (e.g., /dagefo/, conforming to the BCA
pattern), and the illegal item would be BCv (e.g., */zakevo/, violating the BCA
pattern). A preference for legal over illegal substitutions would indicate that
participants had learned the BCA pattern.

Trials were constructed such that both the legal and the illegal item had
the same vowel structure, but different consonant structures (e.g., /vygate/
– /fykape/, /dagefo/ – /zakevo/). Any effect found would thus be due to the
consonant structure of the test items, and not to vowel structure. Trials were
constructed in such a way that the items had comparable cohort densities.
Participants received trials with substitutions in initial position, and trials
with substitutions in final position. The order of test trials was randomized.
The order of presentation of legal and illegal items within trials was balanced
within and across participants. The complete set of test trials is given in
Appendix D. All materials were synthesized using MBROLA (Dutoit et al.,
1996), using the Dutch ‘nl2’ voice.

Procedure

The procedure was the same as in Experiments 1 and 2. Total familiarization
time was 14 minutes for both conditions (BCA and Random).
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Figure 5.3: Results for the BCA and Random training languages. ‘%
correct’ indicates how often participants chose legal items over illegal
items. The circles indicate mean preferences for individual participants.
Triangles indicate the mean score for each condition.

5.4.2 Results and discussion

The percentages of correct responses (i.e., choosing legal over illegal items) for
each participant are shown in Figure 5.3. A mixed logit model with subjects
and items as random factors indicates that there was no significant effect
of training condition, no significant effect of substitution position (initial or
final), and no significant interaction between training condition and position.
When analyzed separately, neither condition was significantly different from
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chance. The experiment thus provides no evidence for the learning of feature-
based generalization. That is, participants did not generalize constraints
on consonants to which they had been exposed during familiarization to
novel consonants from the same natural class. In addition, there appears
not to have been any L1 preference for either items containing /f/ or items
containing /v/, as indicated by chance-level performance in both the BCA
and the control condition. It should be noted that this null result does not
show that participants cannot induce feature-based generalizations, but rather
that there is no evidence supporting the view that they can.

Chance-level performance in both conditions could be taken to indicate
that participants had difficulty perceiving the difference between /f/ and /v/.
If participants do not hear the difference between these two sounds, then they
cannot distinguish between legal and illegal items in the test phase. There are
two sources that could have caused perceptual confusion. First, the contrast
between /f/ and /v/ does not surface reliably in spoken Dutch. Specifically,
words with underlying /v/ are often pronounced as /f/. The strength
of this effect varies between different regions in the Netherlands. Second,
perceptual confusion could have been caused by the fact that participants
heard synthesized speech, rather than natural speech. The use of synthesized
speech inevitably comes with loss of phonetic detail and thus may contribute
to the difficulty in distinguishing between voiced and unvoiced fricatives.

A second possible explanation of the null result is the complexity of the
artificial languages used here, as compared to earlier studies (e.g., Bonatti et al.,
2005; Newport & Aslin, 2004). As described in Experiment 2 (Section 5.3), the
BCA language contains relatively small differences between within-word and
between-word consonant transitional probabilities, and contained randomly
inserted vowels. These factors may have made it difficult for participants to
induce a robust feature-based generalization after 14 minutes of exposure.

Finally, one would have to consider the possibility that the hypothesis
is wrong. It may be the case that phonotactic constraints on natural classes
of consonants are not learnable from continuous speech input. It has been
argued that different forms of computation operate on different sorts of input
(Peña et al., 2002). Specifically, Peña et al. (2002) argue that statistical learning
operates on continuous speech, while generalization mechanisms operate on
word forms. In their study, it was found that generalizations were learnable
only after the insertion of acoustic segmentation cues (brief silences) into
the speech stream. It should be noted, however, that the study by Peña et
al. (2002) focused on structural generalizations (e.g., AXC syllable patterns,
where A predicts C across intervening syllables), and not on feature-based
generalizations (where specific elements from class A would generalize to
other, unheard elements from that same class). Further research is thus
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needed to show whether or not feature-based generalizations are learnable
from continuous speech.

Possible follow-up experiments could focus on reducing the difficulty
of learning the specific consonant structures, either through the use of less
complex languages, or through increasing the exposure time. In addition,
it would be worth investigating whether a different set of consonant classes
could be used for familiarization and testing. Specifically, the current design,
which focuses on distinguishing between consonants that are either legal or
illegal at a certain position, requires that the novel segments can be accurately
perceived. The challenge is thus to find a pattern of natural classes which is
not likely to be perceptually confused, and at the same time is not heavily
biased in terms of L1 phonotactics.

In addition, in order to support the claim by Peña et al. (2002) that general-
ization operates on segmented word forms, rather than on continuous speech,
one could consider conducting an experiment in which the BCA frames from
the current experiment would be separated by brief silences in the speech
stream. However, the conclusions that could be drawn from such an experi-
ment are still limited. If BCA patterns are learnable from segmented speech,
then this could also be taken to show that a reduction in the complexity
of the learning task (i.e., facilitating segmentation through the insertion of
acoustic cues into the speech stream) enables the learning of feature-based
generalizations. A stronger case for learning generalizations from word forms
could be made if learning from continuous speech still fails after substantially
increased exposure time.

5.5 general discussion

Human learners, both adults and infants, have been shown to be capable of
learning novel phonotactic regularities from a set of isolated word forms (e.g.,
Onishi et al., 2002; Saffran & Thiessen, 2003). The current chapter focused
on whether adult learners can induce novel phonotactic constraints when
presented with a stream of continuous speech from an artificial language.
In line with the Speech-Based Learning hypothesis, it was predicted that
phonotactic constraints can be learned directly from the continuous speech
stream, without reference to a statistically learned lexicon of word forms. This
prediction was tested by creating artificial languages in which the formation
of a lexicon would be rather difficult. Compared to earlier studies (e.g.,
Bonatti et al., 2005; Newport & Aslin, 2004), these languages showed increased
complexity both in terms of their consonantal structure and in terms of their
vocalic structure. Importantly, the combination of a relatively large number of
consonant frames and a large set of intervening vowels resulted in languages
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which either had a large vocabulary of word forms (162 words, Experiment 1),
or had no recurring word forms at all (due to the random insertion of vowels,
Experiment 2). This setup makes it likely that participants would induce
phonotactics directly from the speech stream, rather than from a statistically
learned lexicon.

No evidence for phonotactic learning was found in Experiment 1. This
was found to be due to a general bias stemming from the participants’ native
language. Experiment 2 showed that, when carefully controlling for such L1

factors, participants were able to learn phonotactics from continuous speech.
The experimentally-induced phonotactic knowledge of consonant frames
generalized to novel word forms in the test phase.

The findings of Experiment 2 shed light on the types of input that are used
by human learners as a source for the induction of phonotactics. As outlined
in Chapter 1, the Speech-Based Learning (SBL) hypothesis states that contin-
uous speech is the input for phonotactic learning. Using the mechanisms of
statistical learning and generalization, learners detect phonotactic regularities
in the input. Phonotactics is subsequently used for the detection of word
boundaries in the speech stream, and thus contributes to the development of
the mental lexicon. In contrast, the Lexicon-Based Learning (LBL) hypothesis
assumes that phonotactic constraints are the result of abstractions over statisti-
cal patterns in the lexicon. The LBL hypothesis thus states that phonotactics is
not learned directly from the continuous speech stream.

In Experiment 2 it was found that adult learners can pick up phonotactic
patterns directly from the speech stream. The results show that learners need
not be presented with word forms to learn phonotactics. The experiment thus
provides support for the SBL hypothesis. The findings are also in line with
Bonatti et al. (2005) who suggest that learners learn the consonant structure of
words from continuous speech, and do not necessarily extract a sequence of
syllables to form a lexicon. It should be noted that the experiment does not
contradict earlier studies that have demonstrated phonotactic learning from
isolated word forms. Rather, it is a demonstration that word forms are not
required for the learning of phonotactics. This is an important finding, since
infant language learners are confronted with continuous speech input, and
are faced with the task of developing a mental lexicon. The capacity to induce
phonotactics from continuous speech could serve as a way of bootstrapping
into lexical acquisition, since phonotactics can be used to hypothesize the
locations of word boundaries in the speech stream. The finding thus provides
support for the psychological plausibility of the computational learning ap-
proach that was proposed earlier in this dissertation. In Chapters 2 and 3

it was shown that phonotactic constraints can be learned from a corpus of
transcribed continuous speech, and that such constraints provide a useful cue
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for the segmentation of continuous speech. Here, it was shown that human
learners can indeed induce phonotactics from continuous speech input.

In Experiment 3 the possible role of feature-based generalizations in phono-
tactic learning was investigated. By training participants on a subset of the
consonants from a natural class, and testing them on novel consonants which
were not presented during familiarization, the experiment examined whether
the induced phonotactic knowledge generalized to novel segments from the
same natural class. The experiment produced a null result, and thus provides
no evidence that learners induce feature-based generalizations from contin-
uous speech input. Possible explanations for the failure of the experiment
include perceptual confusion of the novel consonants, and the structure of the
artificial language, which was possibly too complex to result in a feature-based
generalization during familiarization. Further research on this issue is needed
to determine which types of phonotactic constraints can be learned from
different sorts of input. With respect to the computational model presented
in Chapter 2 it remains to be demonstrated that participants perform feature-
based abstractions on the basis of statistically learned bigram constraints.

Several previous studies have argued that consonants and vowels are pro-
cessed differently in phonotactic learning (Bonatti et al., 2005; Chambers et al.,
2010). The results of Experiment 2 are compatible with this view. Consonant
probabilities were learned across randomly occurring intervening vowels. That
is, the occurrence of vowels between consonants did not hinder the learning
of the dependencies between consonants. This provides support for an as-
sumption that was made in Chapter 4. In Chapter 4, the computational model,
StaGe, was applied to consonant bigrams that occurred with intervening
vowels in the corpus. These intervening vowels were removed from CVC
sequences before applying the model. This modification to the processing of
input by the model was necessary to allow for the model to capture restric-
tions non-adjacent consonants. The findings of the current chapter provide
psycholinguistic evidence that human learners can indeed process consonant
sequences independently from intervening vowels. The modification that
was made to the processing window of the model (allowing it to focus on
non-adjacent consonants) thus seems to be justified by the current findings.

In Experiment 1, a bias was found for one type of segmentation over the
other, independent of the training condition. Possible explanations of these
biases were found in phonotactic properties of the native language, which
may have affected the segmentation of the artificial language. Several previous
studies have shown that properties of the native language can influence the
segmentation of artificial languages (Boll-Avetisyan & Kager, 2008; Finn &
Hudson Kam, 2008; Onnis et al., 2005). The fact that no artificial language
is likely to be completely neutral with respect to the native language of the
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participants calls for the use of proper control groups (Reber & Perruchet,
2003; Redington & Chater, 1996). That is, a learning effect cannot be reliably
established by comparison of a single experimental condition to chance-level
performance. Control groups should be employed before concluding that any
significant result is due to the structure imposed by the artificial language. In
the current chapter, effects due to interference from the native language were
checked through the use of languages that have opposite statistical structures
(such as in Experiments 1 and 2), or languages that have no structure at all
(such as the random language in Experiment 3). As a consequence, it was
possible to disentangle general biases from learning effects.

A final issue concerns possible formalizations of what exactly is learned
by participants in artificial language learning studies such as those presented
here. In Chapter 2 an explicit model for the induction of phonotactics from
continuous speech was proposed. It should be noted that the data in this
chapter support the learning of phonotactics from continuous speech, but the
learning of feature-based generalizations from continuous speech remains to
be demonstrated. While it is difficult to set up an experiment that provides
conclusive evidence for a computational model, it is nevertheless interesting
to speculate how learners could come up with general preferences for certain
phonotactic patterns. What does StaGe predict with respect to the induction
of phonotactics from the continuous artificial languages in the current chapter?
Below, a sketch will be provided of how the model can be modified to induce
phonotactic constraints from the artificial languages used in this chapter. The
sketch should, however, not be taken as evidence for the model, nor as an
account of the present findings. While some of the findings in this chapter
support the ideas behind StaGe, further experimentation is needed to test
detailed predictions that follow from the model.

StaGe categorizes bigrams into markedness constraints (*xy) and contigu-
ity constraints (Contig-IO(xy)). This categorization relies on O/E thresholds
that separate high-probability sequences from low-probability sequences. The
markedness threshold (tM) and continuity threshold (tC) can be set to catego-
rize the consonant sequences in the artificial languages into sets of specific
markedness and contiguity constraints. This requires calculating the O/E val-
ues for the consonant sequences in the language. In the current set of artificial
languages, the ‘within-word’ transitional probability of 0.5 corresponds to
O/E = 4.5, and the ‘between-word’ transitional probability of 0.33 corresponds
to O/E = 3.0. It should be noted that, due to the relatively small number
of consonant bigrams in the artificial language, both the between-word and
within-word O/E values are statistically overrepresented (that is, O/E > 1.0).
Capturing the distinction between ‘high’ and ‘low’ probabilities thus requires
that we set both thresholds relatively high (e.g., tM = 3.5, tC = 4.0).
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The result of this threshold configuration is that the model induces *xy
constraints for sequences between frames, and Contig-IO(xy) for sequences
within frames. Importantly, with this configuration StaGe induces different
constraints in different training conditions. For example, in the ABC language
from Experiment 2, the model induces Contig-IO(AB) constraints which
prevent the insertion of word boundaries into AB sequences (e.g., Contig-
IO(pVz), Contig-IO(tVb)). In contrast, the statistical structure of the BCA
speech stream is such that the model would induce *AB constraints (e.g., *pVz,
*tVb), which favor the insertion of boundaries into these sequences.

The phonological structure of the word frames used in the languages
is such that StaGe’s generalization mechanism, Single-Feature Abstraction,
would construct a more general constraint based on these specific constraints.
For example, in the BCA condition in Experiment 2 the specific constraints
against AB sequences (e.g., *pVz, *tVd, etc.) would trigger the generalization
*x ∈ {p,t,f,s};y ∈{b,d,v,z}. Conversely, in the ABC condition the model
predicts the induction of Contig-IO(x ∈ {p,t,f,s};y ∈{b,d,v,z}). The model
thus predicts that the novel segments /f/ and /v/, which did not occur in the
ABC and BCA training languages, are affected by this generalization.

An interesting prediction that follows from the model is the strength of
feature-based generalizations. StaGe typically assigns lower ranking values to
generalizations than to specific constraints. Indeed, when applying the model
to the artificial languages in the way described above, the generalizations
affecting the A and B classes as a whole end up at the bottom of the constraint
hierarchy. While the model predicts that novel consonants are affected by
natural class constraints (as a result of feature-based generalizations over
specific consonants), it may be that these constraints are too weak (as reflected
by the low ranking value) to produce any observable effects in experiments
such as the ones reported in this chapter.

To conclude, the current chapter provides support for the Speech-Based
Learning hypothesis, since it shows that human learners are able to induce
novel phonotactics from continuous speech input. With respect to the pre-
cise learning mechanisms that are involved, and the types of input these
mechanisms operate on, many issues require further research. Specifically, it
remains an open issue whether feature-based generalizations are learnable
from continuous speech input.
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S U M M A RY, D I S C U S S I O N , A N D C O N C L U S I O N S

When hearing speech, listeners are confronted with an acoustic signal which
contains no clear indications of word boundaries. In order to understand
spoken language, listeners thus face the challenge of breaking up the speech
stream into words. The process of speech segmentation is aided by several
types of linguistic cues which indicate word boundaries in the speech stream.
Metrical cues, fine-grained acoustic cues, and phonotactic cues all contribute
to the recognition of spoken words. These cues may be particularly important
for language learners. Infants, who have not yet acquired the vocabulary of
the native language, hear continuous speech in their environment, and need
to develop strategies to extract word-like units from speech. Infants exploit
metrical, acoustic, and phonotactic cues for the development of a lexicon from
continuous speech input. The question arises how infants acquire these cues
(which are language-specific) in the absence of a lexicon.

The focus of this dissertation has been on learning phonotactic cues for
segmentation. Phonotactic constraints affect segmentation, since they define
which sound sequences cannot occur within the words of a language (e.g., *pf
in Dutch). The occurrence of such sequences in the speech stream therefore
indicates the presence of a word boundary within the sequence. It was pre-
dicted that phonotactic constraints can be learned from continuous speech,
using the mechanisms of statistical learning and generalization. Moreover,
it was predicted that these constraints would subsequently be used by the
learner for the detection of word boundaries in continuous speech. This hy-
pothesis, which was referred to as the Speech-Based Learning hypothesis, was
investigated using a combination of (i) computational modeling, providing a
formal account of how phonotactics can be learned, (ii) computer simulations,
assessing the relevance of phonotactic constraints for speech segmentation,
(iii) simulations of human data, assessing the ability of the computer model
to account for segmentation behavior, and (iv) artificial language learning
experiments, testing the capacity of human learners (adults) to induce novel
phonotactics from a continuous speech stream. Through the use of computa-
tional modeling and psycholinguistic experiments, this dissertation has aimed
at providing a formal account of the induction of phonotactics for speech seg-
mentation, which is supported by experimental data from both computational
and human learners.
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A particular focus of this dissertation has been on bridging the gap between
models of speech segmentation and models of phonotactic learning. While
both types of models address the learning of co-occurrence patterns, they make
radically different assumptions about the input of phonotactic learning, and
the level of abstractness of phonotactic constraints. Specifically, segmentation
models have assumed that phonotactics is learned from continuous speech, while
phonotactic learning models have assumed that phonotactic constraints are
learned from the lexicon. In addition, segmentation models have assumed that
phonotactic constraints refer to specific segments, whereas phonotactic learning
models have assumed that phonotactic constraints target patterns of natural
classes of segments, as defined by abstract phonological features. Evidence from
infant studies indicates that phonotactic constraints on natural classes are
learned before the infant’s lexicon has reached a substantial size. This led to
the specific hypothesis that abstract phonotactic constraints are learned from
continuous speech during early stages of phonological development. The
approach taken in the dissertation thus combines the input assumption of
segmentation models with the representational assumption from phonotactic
learning models. Below, a summary is given of the dissertation (Section 6.1).
The chapter then proceeds to critically assess the findings, and to provide
suggestions for future work in this area (Section 6.2). Finally, some concluding
remarks are made (Section 6.3).

6.1 summary of the dissertation

6.1.1 A combined perspective

In light of the above, this dissertation has addressed the issue of how language
learners induce phonotactic constraints that will help them to break up the
continuous speech stream into words. Phonotactic constraints define which
sound sequences are allowed, and which sound sequences are disallowed
within the words of a language. Occurrences of sequences in the continuous
speech stream that are not allowed within words have the potential to indicate
the location of a word boundary to the learner. While the relevance of
phonotactics has been demonstrated for speech segmentation by adults (e.g.,
McQueen, 1998) and infants (e.g., Mattys & Jusczyk, 2001b), little is known
about the acquisition of these constraints. The acquisition of phonotactics
by infants poses a particularly interesting problem, since infants are only
beginning to develop a mental lexicon, and thus seem to be able to infer the
sound structure of words, without knowing the words themselves.

Through an investigation of the induction of phonotactic constraints for
speech segmentation, the dissertation has aimed at providing insight into
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several related problems, which are typically studied in separate research
areas. First and foremost, the dissertation takes a computational perspective.
This entails that the research has been mainly concerned with specifying the
exact computations that are performed by learners when confronted with
input data. This algorithmic view results in an explicit proposal for the case
of phonotactic learning, and for the application of phonotactic constraints to
the speech segmentation problem.

Second, the dissertation takes a linguistic perspective. That is, it was
attempted to provide a linguistic characterization of the knowledge that is
learned by infants, and could be used by infants to break up the speech stream.
The linguistic characterization critically involves phonological features, which
are used by the learner to construct more abstract phonotactic constraints.
The dissertation addresses the roles of both segment-based and feature-based
constraints in segmentation. The output of the computational learning model
is represented as a set of phonological constraints, which are interpreted using
the linguistic framework of Optimality Theory (Prince & Smolensky, 1993).
The linguistic interpretation of the output allows for an exact description
of the knowledge that is constructed as a result of learning, and it allows
for a specification of the types of phonotactic knowledge that are relevant
for segmentation. Importantly, the approach is data-driven: It focuses on
knowledge that is learned on the basis of input data, and, in contrast to the
traditional view of Optimality Theory, it does not make the assumption of an
innate constraint set.

Third, the dissertation takes a psychological perspective. The model that
has been proposed is based on learning mechanisms that have been shown to
be available to human language learners. Moreover, the model is presented
with transcribed utterances of continuous speech, and thus does not rely on
a previously acquired lexicon of word forms for the induction of phonotac-
tics. The lexicon-free approach to phonotactic learning is compatible with
psycholinguistic studies showing that infants possess knowledge of the phono-
tactics of their native language at the age when they start acquiring a lexicon.
In addition to psycholinguistic motivations behind the learning model, the
dissertation provides new data on human phonotactic learning mechanisms.
In a series of artificial language learning experiments with human participants,
it was examined which types of phonotactic knowledge can be learned from
a stream of continuous speech input. In sum, this dissertation has aimed to
contribute to our understanding of human phonotactic learning and speech
segmentation. An explicit proposal was formulated which subsequently was
evaluated in different types of empirical studies, involving both computer
simulations and experiments with human participants.
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The dissertation’s theoretical focus is on the input that is used for phono-
tactic learning, and the mechanisms that are used in phonotactic learning. The
input issue concerns the question of whether the learner is presented with
a lexicon of word forms (either types or tokens) for phonotactic learning, or
whether the learner is presented with utterances that contain a continuous
stream of segments (with no apparent word boundaries). The issue of learn-
ing mechanisms deals with how the learner derives phonotactic knowledge
from the input. Various sources of evidence point towards roles for two
mechanisms: statistical learning and generalization. The former specifies how
learners accumulate data about occurrences of specific structures in the input.
The latter is concerned with learners’ ability to derive more abstract linguistic
knowledge, such as rules and constraints, from the data. This dissertation
aims at specifying the nature of each mechanism individually, as well as ex-
plaining how the mechanisms interact. Specifically, the question is addressed
how statistical learning can provide a basis upon which the learner can build
phonotactic generalizations.

6.1.2 The learning path

Phonotactic learning, as discussed in this dissertation, can follow two different
paths. The traditional assumption in studies on phonotactic learning has
been that phonotactic constraints are induced from the lexicon (e.g., Frisch
et al., 2004; Hayes & Wilson, 2008; Pierrehumbert, 2003). I have called this
the Lexicon-Based Learning (LBL) hypothesis. From an acquisition point of
view, the LBL hypothesis may be problematic. Infants have notably small
lexicons (consisting of less than 30 words by the age of 8 months, Fenson
et al., 1994). Nevertheless, there is evidence that infants have fine-grained
probabilistic knowledge of the phonotactics of their native language (e.g.,
Jusczyk, Friederici, et al., 1993; Jusczyk et al., 1994) by the age of 9 months.
It seems unlikely that infants induce their initial knowledge of phonotactics
from such a small lexicon. Also, there is the question how infants learn their
first words from the continuous speech stream. Several studies have shown
that infants use phonotactics for speech segmentation (Mattys et al., 1999;
Mattys & Jusczyk, 2001b). Knowledge of phonotactics may thus be used by
infants to bootstrap into word learning (e.g., Cairns et al., 1997). If this is the
case, then infants use phonotactics for the development of the mental lexicon,
rather than relying on the lexicon for the learning of phonotactics.

This dissertation has investigated the consequences of these considerations,
and addressed what I have called the Speech-Based Learning (SBL) hypothesis.
In this view, phonotactic constraints are learned from continuous speech input,
and are subsequently used for the detection of word boundaries in the speech
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stream. Phonotactics thus contributes to the development of the mental lexicon.
The dissertation presents a computational model which implements the SBL
hypothesis. Three different types of empirical studies in the dissertation are
concerned with providing both computational and psycholinguistic support
for the SBL hypothesis.

6.1.3 The proposal and its evaluation

Chapter 2 presents the computational model, StaGe (Statistical learning and
Generalization), which is an implementation of the SBL hypothesis. Specif-
ically, the chapter shows that a model based on learning mechanisms that
have been demonstrated to be available to human language learners allows
for the induction of phonotactic constraints from continuous speech. The
model induces biphone constraints through the statistical analysis of segment
co-occurrences in continuous speech (Frequency-Driven Constraint Induction),
and generalizes over phonologically similar biphone constraints to create
more general, natural-class-based constraints (Single-Feature Abstraction).
The model learns phonotactic constraints of two different types: markedness
constraints (*xy) and contiguity constraints (Contig-IO(xy)). The former type
exerts pressure towards the insertion of boundaries into the speech stream,
while the latter type militates against the insertion of boundaries. Conflicts
between constraints are resolved using the OT segmentation model.

In Chapter 3, a series of computer simulations is presented which demon-
strate the potential usefulness of the SBL hypothesis, as implemented by
StaGe. The chapter focuses on the contributions of different learning mech-
anisms to segmentation by asking whether a crucial property of the model,
feature-based generalization, improves the segmentation performance of the
learner. Experiments 1–3 zoom in on the complementary roles of statistical
learning and generalization in phonotactic learning and speech segmentation.
Experiment 4 shows the development of the model’s segmentation perfor-
mance as a function of input quantity. The main finding of the chapter is that
StaGe outperforms purely statistical models, indicating a potential role for
feature-based phonotactic generalizations in speech segmentation. The chap-
ter thus provides support for the SBL hypothesis, since it demonstrates that
phonotactic learning contributes to better segmentation, and thus facilitates
the development of the mental lexicon.

Chapter 4 examines whether StaGe can provide a learnability account
of a phonological constraint, OCP-Place (restricting the co-occurrence of
consonants sharing place of articulation), and of its effect on segmentation. The
chapter examines the output of the constraint induction procedure, applied
to non-adjacent consonants in the speech stream, to see to what extent the
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induced constraint set reflects OCP-Place. In addition, the model is used
to predict word boundaries in an artificial language from a study by Boll-
Avetisyan and Kager (2008). The segmentation output is evaluated on its
goodness of fit to human item preferences in the artificial language learning
study. The chapter provides a detailed examination of the contents of the
constraint set that is induced by the model, and of the ability of this constraint
set to account for human segmentation behavior. Experiment 1 shows that
StaGe (which uses feature-based generalization) has a better fit to human data
than models that rely on pure consonant distributions. In addition, the model
outperforms a categorical interpretation of OCP-Place. The success of the
approach was found to be due to the mix of specific and abstract constraints.
Experiment 2 addresses the input issue. It was found that a continuous
speech-based learner has a fit to the human data comparable to a type-
based learner, and a better fit than a token-based learner. The chapter shows
that StaGe successfully learns constraints that resemble OCP-Place through
abstractions over statistical patterns found in continuous speech. The model
shows tendencies towards similarity avoidance, without employing a metric to
assess the similarity between consonants in a sequence, and without relying on
a lexicon of word forms for constraint induction. In addition, the simulations
show that both specific and abstract phonotactic constraints are needed to
account for human segmentation behavior.

Chapter 5 investigates whether human learners can learn novel phonotactic
structures from a continuous speech stream. In a series of artificial language
learning experiments, the chapter examines the psychological plausibility
of the phonotactic learning approach. In addition, the chapter provides a
test for the assumption that learners can induce phonotactic constraints on
non-adjacent consonants from continuous speech (while ignoring intervening
vowels). Experiment 1 shows that a bias (probably due to interference from
L1 phonotactics) influences the segmentation of the artificial language by
adult participants, and hinders the learning of the statistical structure of
the artificial language. Experiment 2 shows that, when carefully controlling
for potential biases, human learners can induce novel phonotactics from
continuous speech. The experiment demonstrates that learners generalize
phonotactics, learned from continuous speech input during familiarization, to
novel items in the test phase. The results were obtained with languages that
had only subtle differences in ‘within-word’ and ‘between-word’ probabilities,
and the experiment thus provides new evidence for the strong capacity of
human learners to induce consonant dependencies using a statistical learning
mechanism. However, in Experiment 3, no evidence was found for feature-
based generalization to novel consonants (i.e., consonants not presented during
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training). This null result was possibly due to perceptual confusion, or due to
the complexity of the training language.

6.2 discussion and future work

This dissertation has proposed a theoretical model, implemented as a com-
puter program, and has presented a total of 9 empirical studies that assess the
proposal. These studies use different methodologies: computer simulations,
computer simulations linked to human data (taken from earlier studies), and
phonotactic learning experiments with human participants (i.e., new human
data). Four experiments assess the ability of the model to detect word bound-
aries in a corpus of unsegmented speech in a series of computer simulations
(Chapter 3). Two experiments are concerned with linking the output of phono-
tactic learning simulations to results from artificial language segmentation
by human learners (Chapter 4). Finally, three experiments present new data
on the learning of artificial language phonotactics by human participants
(Chapter 5). Before summing up the evidence for the SBL hypothesis, I will
compare the proposed model to other models of constraint induction. While
such models have provided learnability accounts of adult phonotactic knowl-
edge, rather than infant phonotactic knowledge, and have been concerned
with wellformedness judgments, rather than with segmentation, the models
have some interesting similarities and differences. Below, some of these issues
will be discussed. Suggestions will be provided for future work which might
lead to a more direct comparison between these models and StaGe.

6.2.1 Comparison to other constraint induction models

Here, I will discuss StaGe in comparison to two earlier models of phonotactic
constraint induction: the maximum-entropy learner of Hayes and Wilson
(2008), and the feature-based model by Albright (2009). While StaGe was
primarily designed as a model for the induction of phonotactic constraints for
speech segmentation, and the models of Hayes and Wilson (2008) and Albright
(2009) were meant to account for human wellformedness data, the models
are similar in the sense that they induce abstract, feature-based phonotactic
constraints. The models thus do not rely on a universal constraint set, but
rather construct phonotactic constraints as a response to input data. It is
therefore worthwhile to consider the differences and similarities between
these models of constraint induction.

One basic assumption that is common to all three models is that the learner
has access to the feature specifications of the segments in the language’s inven-
tory, and that these specifications are used to learn phonotactic generalizations.
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In addition, the three models assume similar constraint formats. Hayes and
Wilson (2008) define markedness constraints of the form *[a][b][c] . . . where [a],
[b], and [c] are feature bundles. The scope of the constraints (i.e., the number
of bundles in a sequence) can be varied, but large values (say, larger that
3) should be avoided, since those would result in an unmanageable search
space. Both the model of Albright (2009) and StaGe have a biphone scope
(although they are not in principle limited to this scope). All three models
assume constraints that are sequential in nature. No word edges are encoded
in the format of the constraints. However, the models can be made to produce
positional constraints, simply by training them on positional data (e.g., onset
sequences).

There are differences in how phonotactic generalizations come into ex-
istence. Hayes and Wilson (2008) assume a space of possible phonotactic
constraints, from which constraints are selected and incorporated into the
language-specific phonotactic grammar. The constraint space contains all
logically possible constraints, given the feature specifications and the defined
constraint scope. Using maximum-entropy learning, constraints are selected
from the space that are maximally accurate with respect to the training data,
and maximally general. In contrast, Albright’s model is based on feature-based
generalization over observed sequences in the training data (rather than from
a pre-defined constraint space). The model decomposes words into biphone
units, and assigns a wellformedness score to the word based on probabilities
over combinations of natural classes (rather than over combinations of specific
segments). StaGe constructs feature-based generalizations on the basis of
statistical patterns in the input. The model relies on a statistical learning
component which induces specific markedness and contiguity constraints
from the data. More general (feature-based) constraints are derived from
the specific constraints by abstracting over single-feature differences between
specific constraints. The mechanism used by StaGe is similar to the model of
Albright (2009) in the sense that generalizations are made only after the learner
is presented with input data. In contrast, the model by Hayes and Wilson
(2008) creates an a priori set of possible constraints, and selects constraints
from this set in response to input data.

Albright (2009) shows that, when tested against English onset cluster data
(taken from Scholes, 1966), his model outperforms the model of Hayes and Wil-
son in accounting for gradient judgments of sequences that are well-attested
in the language. The two models had comparable performance in accounting
for unattested sequences. Importantly for the current dissertation, Albright
(2009) reports independent effects of segment-based and feature-based prob-
abilities. He suggests that these effects may be due to two different levels
of evaluation. While the simulations in this dissertation address a different
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problem, namely the segmentation of continuous speech, similar results were
found. That is, feature-based generalizations were found to improve the seg-
mentation performance of the learner as compared to segment-based biphone
probabilities (Chapter 3). Moreover, when the statistical induction thresholds
of StaGe were set such that all biphones participated in generalization, the
added value of generalization was lost. The findings in this dissertation
are thus compatible with the view of Albright (2009) that segments and fea-
tures may have independent contributions in a model of phonotactics. This
independence is a crucial aspect of the architecture of StaGe: StaGe uses
segment-based statistical learning, and adds feature-based generalization to
statistically induced biphone constraints. In contrast to Albright’s model, the
effects that follow from specific biphone probabilities and natural class-based
generalizations arise from a single set of constraints with varying levels of
generality. Decisions on whether or not to insert a word boundary into the
speech stream are based on evaluation of this single constraint set, and thus
no distinct levels of evaluation are assumed.

A point for future research concerns the evaluation of the induced phono-
tactic constraint set. Throughout this dissertation I have tested the induced
phonotactics for its contribution to solving the speech segmentation problem.
This approach is motivated by the fact that phonotactics is used in speech
processing and segmentation. Traditionally, however, phonologists have tested
theories of phonotactics against wellformedness data (e.g., Scholes, 1966; Bai-
ley & Hahn, 2001; Albright, 2009; Hayes & Wilson, 2008). A comparison of
StaGe against models like those of Albright (2009) and Hayes and Wilson
(2008) would require generating predictions about the wellformedness of
nonwords from the model. A first step towards modeling wellformedness
was taken in Chapter 4, where StaGe was used to predict human judgments
on experimental items in an artificial language learning task. I speculate that
two properties of the model would be useful for generating wellformedness
scores for isolated word forms. The first property concerns the three dis-
tinct phonotactic categories that are predicted by StaGe. StaGe categorizes
phonotactic sequences into categories of low, high, and neutral probability.
A gradient distinction between nonwords could perhaps be derived from
the model using this categorization. For example, when trained on Dutch
onset clusters in the Spoken Dutch Corpus, the model induces markedness
constraints for sequences that are illformed (e.g., *sr), contiguity constraints
for sequences that are wellformed (e.g., Contig-IO(st)), and no constraints
for sequences that have a questionable status (e.g., /sn/, which is legal, but
relatively infrequent).

A second property of the model that could be further exploited concerns
the ranking values of the constraints. Gradient predictions within the phono-
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tactic categories could perhaps be derived by comparing respective rankings
of constraints (see Coetzee, 2004). For example, when StaGe is trained on
consonant clusters in Dutch continuous speech, the model predicts *nr �
*mr. Alternatively, the ranking values could be used as weights, rather than
as strict rankings (see e.g., Hayes & Wilson, 2008; Legendre et al., 1990; Pater,
2009). The gradient prediction that would follow from these interpretations is
that Dutch participants judge mrok to be a better nonword than nrok.1 These
proposals for deriving gradient predictions from StaGe are preliminary, and
would need to be worked out (and empirically validated). Conversely, it
would be interesting to see whether earlier models of phonotactic learning
can be modified to provide a plausible account for human segmentation data.
Since phonotactics affects both the rating of nonwords, and the segmentation
of continuous speech, a complete model of phonotactic learning should be
able to account for both effects.

6.2.2 What is the input for phonotactic learning?

A primary concern of the dissertation has been the input issue: Is phonotactics
learned from continuous speech or from the lexicon? All empirical studies
in the dissertation bear on this issue. It was argued in Chapter 1 that infants
would need to learn phonotactics from continuous speech in order to rely
on phonotactics to detect word boundaries in continuous speech. In order to
evaluate this proposal a theoretical model was outlined, from which testable
predictions were derived. Importantly, in order for the learning approach to
be successful, there should be a mechanism that allows learners to pick up
information from the continuous speech stream. Moreover, the continuous
speech stream should be rich enough for information to be derived from it
using these mechanisms. I would like to stress the importance of showing
an exact mechanism that can be used by learners to actually pick up the
information that is hidden in the input. That is to say, linguistic information,
present in the data, is rather useless if human learners do not possess the
mechanisms that will allow them to acquire this information from the data.

The computational model proposed in Chapter 2 shows that an approach to
phonotactic learning from continuous speech can be defined and implemented.
The model is based on learning mechanisms that are available to infants, and
allow them to pick up information from the speech stream. The example
provided in Chapter 2 indicates that, using these mechanisms, the learner
can learn phonotactic regularities, as well as specific exceptions to these

1 A similar gradient prediction can be made with respect to segmentation. The model predicts that
Dutch listeners would be faster at detecting the embedded Dutch word rok in finrok than in fimrok.
(See McQueen, 1998, for a study of categorical effects of these sequences on segmentation.)
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regularities, from the continuous speech stream (see Figure 2.5). The structure
of continuous speech input thus seems to be rich enough to allow for the
induction of phonotactics using the mechanisms of statistical learning and
generalization. The empirical studies in Chapters 3–5 further explore this
issue.

The computer simulations in Chapter 3 show that the constraints that are
learned from continuous speech are useful for segmentation. In Chapter 4,
it was shown that the structure of consonant sequences across intervening
vowels in the speech stream also appears to be rich enough to allow for the
induction of OCP-Place, a constraint against the co-occurrence of consonants
sharing place of articulation. That is, when applying the learning model to
such consonant sequences (while ignoring intervening vowels), the resulting
constraint set contains phonotactic generalizations that resemble OCP-Place.
In addition, the continuous speech-based learner has comparable performance
to a learner based on word forms (types) in accounting for human segmenta-
tion data. For the induction of OCP-Place (using the mechanisms of statistical
learning and generalization), there thus appears to be no advantage of having
access to a lexicon as an input source. Finally, Experiment 2 in Chapter 5

provides direct evidence that human learners can learn phonotactics from
continuous speech input. While the results in Chapter 4 can be explained by
both a speech-based and a lexicon-based learner, the results of the artificial
language learning experiment in Chapter 5 can only be due to learning from
continuous speech, since there were simply no recurring word forms in the
speech stream.

The claim that phonotactics can be learned from continuous speech is thus
supported by a learning model, as well as by three different types of empirical
studies involving both computational and human learners. The implication
of these findings is that studies on phonotactic learning should consider
continuous speech as a possible source of phonotactic knowledge. Previous
studies have accounted for phonotactic knowledge either by abstraction over
patterns in the lexicon (Hayes & Wilson, 2008; Pierrehumbert, 2003) or by
innate universal preferences (e.g., Berent, Steriade, Lennertz, & Vaknin, 2007).
Specifically, some studies have concluded that the absence of a particular
sequence in the lexicon implies that language learners never encounter such a
sequence in their native language (e.g., Berent et al., 2007). However, sequences
that are illegal within words are still likely to occur across word boundaries.
As a consequence, virtually all sequences occur in the speech streams that
learners hear. The findings in this dissertation show that occurrences of
such sequences may provide a valuable source of data for the learning of
phonotactic constraints.
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With respect to the input issue, future studies could focus on pushing
phonotactic learning from continuous speech to its limits. Specifically, studies
could focus on the types of phonotactic generalizations that can and cannot be
learned from continuous speech input. Importantly for the current proposal,
it remains to be demonstrated that human learners can learn feature-based
generalizations directly from the speech stream. A related issue is whether
the phonological features that are used by models of phonotactic learning can
be learned from continuous speech (e.g., Lin & Mielke, 2008).

An open issue is when and how the lexicon comes into play in phonotactic
learning. Assuming that phonotactic acquisition starts with learning from
the continuous speech stream, it is possible that the lexicon at some point
during development takes over, and becomes the most important source
of phonotactic knowledge. That is, while phonotactics contributes to the
development of the mental lexicon, the lexicon might provide an important
source of phonotactic knowledge as soon as it has developed to a substantial
size. The question is which types of constraints would become available as a
result of learning from the lexicon. For example, constraints that explicitly link
sequences to word edges might only become available after the learner starts
learning from lexical items. Much work is needed to explain the development
of phonotactic knowledge from infancy to adulthood. Explaining phonotactic
development requires experiments documenting the types of phonotactic
constraints that learners acquire at different ages, and computer models which
can explain how different constraints can be learned at different stages of
language acquisition.

6.2.3 Which mechanisms are involved in phonotactic learning and segmentation?

An important issue in this dissertation concerns the nature of the mechanisms
by which language learners acquire phonotactics. Psycholinguistic studies
show that at least two mechanisms are available to human learners: statistical
learning and generalization. An important question is what the contribution
of each of these mechanisms is to language acquisition in general, and to
phonotactic learning in particular. While it has been widely acknowledged
that both mechanisms are active during acquisition (e.g., Gómez & Gerken,
1999; Marcus et al., 1999; Toro et al., 2008; White et al., 2008), very little
is known about how these mechanisms jointly contribute to the acquisition
process, and how these mechanisms interact. The computational model
presented in Chapter 2 provides a proposal for the interaction of the two
mechanisms. The main claim is that statistical learning provides a basis
for further linguistic generalizations. The learner collects data about co-
occurrences, and generalizes to more abstract representations. This view
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was explored throughout Chapters 3–5 by asking what the added value is
of phonotactic generalizations that are based on statistical co-occurrences of
specific segments in the speech stream. That is, the main question is whether
feature-based generalization contributes to better phonotactic learning, and,
as a consequence, to better speech segmentation.

The computer simulations in Chapter 3 show that adding generalization
to statistical learning improves segmentation performance. This indicates
a previously unexplored potential role for the generalization mechanism
in speech segmentation. The simulations in Chapter 4 show that adding
generalization to statistical learning results in phonotactic knowledge which
closely resembles abstract constraints that have been proposed in theoretical
phonology (such as OCP-Place). The generalization mechanism captures
phonological regularities that are missed (or incompletely captured) by pure
statistical learners. In addition, adding generalization to statistical learning
improves the model’s fit to human segmentation data, thereby strengthening
the claim that there is a role for the generalization mechanism in speech
segmentation. The findings suggest that the speech segmentation problem
is not solved using statistical mechanisms alone. In Chapter 5, evidence was
provided for statistically learned phonotactics from continuous speech by
human learners. Unfortunately, no evidence was found for the learning of
feature-based generalizations from continuous speech by human learners.
The null result of Experiment 3 in Chapter 5 leaves the demonstration of the
induction of constraints on natural classes from continuous speech as a topic
for further research.

This dissertation has aimed at connecting statistical approaches to lan-
guage acquisition (e.g., Saffran, Newport, & Aslin, 1996) with more traditional
linguistic theories of language acquisition (e.g., Chomsky, 1981; Prince &
Smolensky, 1993). That is, a view has been proposed in which statistical
learning provides a basis for the learning of abstract linguistic constraints. In
contrast to earlier linguistic theories that have assumed abstract phonotactic
constraints to be innate (e.g., Prince & Smolensky, 1993; Prince & Tesar, 2004),
the model presented here derives abstract phonotactic constraints from input
data. The gap between statistical patterns and abstract constraints is bridged
by a generalization mechanism which constructs abstract constraints on the
basis of statistical regularities in the input. The proposed interaction of sta-
tistical learning and generalization thus has the consequence that learners
construct abstract linguistic knowledge through generalization over observed
data. This view is in line with studies that aim to minimize the role of Univer-
sal Grammar in explaining language acquisition, while still acknowledging
the existence of abstract representations and constraints (e.g., Hayes, 1999;
Hayes & Wilson, 2008). In addition, the learning model presented in this dis-
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sertation induces markedness and contiguity constraints with varying degrees
of generality. The mixed constraint set, combined with the use of constraint
interaction through strict domination, allows for the learning of linguistic
generalizations, as well as exceptions to these generalizations. The model thus
makes no principled distinction between ‘exceptions’ and ‘regularities’. These
notions have been incorporated into a single constraint set with varying levels
of abstractness (see Albright & Hayes, 2003, for a similar proposal).

The proposal is in line with a growing body of research that show that
phonotactic constraints are encoded both at the level of segments and the
level of features (e.g., Goldrick, 2004; Albright, 2009). StaGe makes this
distinction as a consequence of combining segment-based statistical learning
and feature-based generalizations based on those segments. The result is a
single constraint set that contains constraints at both the segment and feature
level. This allows the model to represent phonotactic regularities as well as
exceptions to those regularities, in a single formal framework. A distinction
between exceptions and regularities simply follows from the model through
differences in the level of generality, and the respective ranking of constraints.

There are many issues in the current proposal that need further investiga-
tion. As mentioned above, the exact conditions under which feature-based
generalizations are constructed by human learners remain unclear. In addition,
several properties of the computational model remain to be tested with psy-
cholinguistic experiments. A topic for further investigation could, for example,
be the psychological plausibility of the statistical induction thresholds that are
used by the model. It was shown in Chapters 2 and 3 that setting thresholds
on statistical values allows for a categorization of bigrams into ‘low’, ‘high’,
and ‘neutral’ probability categories. These categories have different effects on
segmentation (pressure towards segmentation, pressure towards contiguity,
and no pressure, respectively). While the exact values of these thresholds were
found not to affect the claim that generalization over specific bigrams within
these categories improves segmentation, the psychological status of induction
thresholds is unknown. One way to address this issue would be to set up
experiments in which the effect of sequences from different categories on seg-
mentation is tested. For example, spotting a target word CmVCn in a sequence
CkVClCmVCn is predicted to be facilitated by a markedness constraint *ClCm
(since it would result in a phonotactic boundary which is aligned with the tar-
get word, and would thus result in faster responses). Conversely, spotting the
target word would be hindered by a contiguity constraint Contig-IO(ClCm)
(which would prevent the insertion of a word boundary before the onset of
the targer word, and, hence, would result in slower responses). It would
be interesting to see at which thresholds (i.e., O/E ratios) listeners start to
show such effects (provided that such effects are found at all). Note that
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earlier models have also relied on statistical thresholds for segmentation (e.g.,
Cairns et al., 1997; Swingley, 2005). It is currently an open issue whether such
thresholds have any cognitive status, or whether they are simply parameters
that are required for the implementation of computational models of these
sorts.

From a modeling perspective, it would be interesting to investigate how
the model’s learning of generalizations is affected by using different types of
transcriptions and/or different sets of phonological features. For example, seg-
ment and feature transcriptions could be used that are closer to the phonetic
properties of the speech signal, thereby reducing the a priori assumptions in the
current implementation that the learner has already acquired the full segment
and feature inventory of the native language. Another possible area of future
exploration would be to investigate whether the combination of statistical
learning and generalization, as proposed in the constraint induction model,
could also be applied to the induction of other linguistic segmentation cues.
Swingley (2005) suggests that statistical clustering of syllable n-grams could
serve as a basis to bootstrap into the Metrical Segmentation Strategy (Cutler
& Norris, 1988). While it is unclear what the exact generalization mechanism
would look like in this case, the general view that statistical learning serves as
a basis for generalization is in accordance with the predictions of StaGe. A
similar view has been proposed for a different type of phonological learning
by infants: White et al. (2008) propose that learning phonological alternations
requires two different forms of computation. Infants first learn about depen-
dencies between specific sounds in the input, and then group similar sounds
that occur in complementary distribution into a single phonemic category.

A final issue with respect to the induction mechanism concerns the model’s
use of memory. The model derives phonotactic constraints from accumulated
statistical information about biphone occurrences. The model thus assumes a
perfect memory, which is a simplification of the learning problem. A more
psychologically motivated memory implementation could be obtained by
adding memory decay to the model: Biphones that were encountered a long
time ago should be “forgotten”. A similar approach has been proposed by
Perruchet and Vinter (1998), who argue for the implementation of laws of
associative learning and memory, such as temporal proximity, in segmentation
models.

Two lines of research could provide more insight into the segmentation
procedure that is used by human learners. First, more work needs to be done
on specifying the relative contributions of specific and abstract constraints to
segmentation. While segmentation studies in psycholinguistics so far have
focused on one or other type of constraint, the results from Chapters 3 and 4

indicate that both may play an important role in segmentation. This calls for
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experiments in which both types of constraints are considered (e.g., Moreton,
2002). A particularly interesting case would be to set up conflicts between
specific and general constraints, similar to the conflicts that predicted by the
computational model (see e.g., Figure 2.5). This could also shed light on the
conflict resolution mechanism that is used by the learner. While the current
implementation of the computational model is based on strict constraint
domination, in which a higher-ranked constraint neutralizes the effects of
any lower-ranked constraints, one could also conceive of a version of the
segmentation model that is based on weighted constraints (e.g., Legendre et
al., 1990; Pater, 2009). In this case, multiple lower-ranked constraints can join
forces in order to defeat a higher-ranked constraint.

A second line of future work on segmentation could focus on the role of
context in speech processing. That is, to what extent do neighboring sequences
(e.g., wx and yz in a sequence wxyz) affect the detection of a word boundary
in a sequence (e.g., xy in wxyz)? Computational and psycholinguistic studies
have indicated that both the probability of the sequence itself (xy) and that of
its immediate neighbors (wx and yz) can affect speech segmentation. Inter-
estingly, the OT segmentation model has the potential to capture both types
of effects. That is, if the model is presented with a sequence wxyz, then the
model will only insert a word boundary if (a) there is a constraint *xy, and (b)
*xy is ranked higher than *wx and *yz. This way, both the wellformedness of
xy and the wellformedness of its neighbors play a role in segmentation. In
contrast, earlier statistical segmentation models implemented either strategies
based on the probability of xy (‘threshold-based segmentation’, e.g., Cairns et
al., 1997), or strategies based on the probability of xy relative to its neighbors
(‘trough-based segmentation’, e.g., Brent, 1999a). The OT segmentation model
is thus the first model to integrate these two segmentation strategies into a
single evaluation mechanism. Future experimental studies could investigate
whether human learners segment speech in a similar integrated fashion.

6.2.4 The formation of a proto-lexicon

One property of StaGe that became apparent in the simulations in Chapters 3

and 4 is that the model has the tendency to undersegment. That is, while
the model makes few errors, it also misses a substantial number of word
boundaries. The consequence is that the stretches of speech that are found
between consecutive boundaries in the speech stream tend to be units that
are larger than words. (See Appendix C for some examples of the output
produced by StaGe.) Indeed, developmental studies have argued that the
initial contents of the child’s lexicon do not correspond to adult word forms,
but rather contain larger units that need to be broken down further into
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word-sized units (e.g., Peters, 1983). Frequency effects of larger-than-word
units have also been found in adult speech processing (Arnon & Snider, 2010),
indicating that learners may indeed store multiword phrases.

The ‘proto-words’ that were the result of the model’s segmentation of
the artificial language in Chapter 4 were used as a predictor for human
judgments on experimental items. The words produced by StaGe were a
better predictor of human item preferences than words produced by statistical
learning models, and words produced by applying a categorical segmentation
based on OCP-Place. This provides a first indication that the proto-words
that are generated by the model could be a plausible starting point for lexical
acquisition. More work needs to be done to determine whether the output
produced by StaGe can indeed be used to bootstrap into lexical acquisition.
Future work on StaGe’s output could be done along two lines. First, it
would be interesting to investigate how closely the proto-words that are
created by StaGe resemble the initial contents of the infant’s vocabulary.
A close resemblance would provide strong support for the proposed view
that phonotactics facilitates the development of the mental lexicon. Second,
it would be interesting to see whether contents of the proto-lexicon can be
decomposed into a more adult-like lexicon of word forms. This could be done
through a combination of bottom-up segmentation based on phonotactics,
and top-down segmentation based on recurring patterns in the proto-lexicon
(Apoussidou, 2010). In this view, phonotactic learning provides the building
blocks for lexical acquisition, which subsequently requires refining the lexical
entries in the proto-lexicon.

Another line of research would be to implement multiple bottom-up seg-
mentation cues (e.g., phonotactic cues and metrical cues) into a single model
in order to create a more accurate proto-lexicon. That is, other segmentation
cues potentially provide a means of further breaking up larger chunks into
actual words. Indeed, the use of multiple segmentation cues in a single model
has been found to improve segmentation performance (Christiansen et al.,
1998), and studies with both adults and infants show that various cues affect
segmentation (Mattys et al., 1999, 2005). An interesting open issue is whether
such additional cues would be able to detect exactly those boundaries that are
missed by StaGe, thereby increasing the total number of boundaries that are
detected by the learner, or whether such cues would overlap with phonotactic
cues, and would thus contribute simply by providing a more robust cue for
the discovery of proto-word boundaries.
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6.2.5 Language-specific phonotactic learning

All studies in this dissertation used Dutch language data, and the experiments
were conducted with participants that had Dutch as a native language. It
would be interesting to conduct simulations using speech corpora from dif-
ferent languages. (See Appendix A for software that could be used for this
purpose.) Note that phonotactics may not provide a useful segmentation cue
in all languages. In general, more work needs to be done on establishing the
contribution of phonotactics to the speech segmentation problem for a variety
of languages. Of specific interest would be to investigate what the different
units are that are targeted by phonotactic constraints in different languages.
For example, a continuous speech stream in Hawaiian does not contain conso-
nant clusters, due to the absence of codas and complex onsets in the language
(e.g., Pukui & Elbert, 1986; Adler, 2006). For the case of Hawaiian, phonotactic
constraints for segmentation cannot be based on consonant clusters. Listeners
of such a language potentially develop constraints for segmentation that target
sequences of syllables, or sequences of non-adjacent consonants. It is an open
issue to what extent StaGe can account for speech segmentation in languages
that have a phonotactic structure that is fundamentally different from Dutch.

A related issue for future research would be to apply the model to the
problem of second language (L2) acquisition. It has been shown that learners
of a second language acquire the phonotactic properties of the target language
(Weber & Cutler, 2006; Trapman & Kager, 2009; Lentz & Kager, 2009). It
seems worthwhile to investigate whether StaGe can provide a learnability
account of second language learners’ knowledge of L2 phonotactics. Such an
enterprise could start from the assumption that the learner’s L1 phonological
knowledge is transferred and used as the initial state for L2 acquisition
(e.g., Escudero & Boersma, 2004). The simplest approach to simulating L2

acquisition with StaGe would be to present the model with L1 input to which
different amounts of L2 input has been added (e.g., Flege, 1995). Note that
this would require L1 and L2 corpora which are comparable in terms of
level of transcription. The result of adding L2 input would be a statistical
database with accumulated statistics over L1 and L2 input. This would lead
to a phonotactic grammar that is different from the L1 grammar, but also
different from the L2 grammar. The ‘mixed’ statistics lead to different biphone
constraints, which trigger different generalizations. Segmentation predictions
can be derived from this mixed L1+L2 model, and these predictions can be
tested experimentally. For example, a comparison can be made between the
model trained on L1-only, L2-only, or L1+L2 data. The latter should provide
the best fit to experimental data obtained from L2 learners. An alternative
modeling approach could be to train two independent models (for L1 and
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L2), and to compare harmony scores for segmentation candidates in both
languages. Such a view would be more compatible with different languages
modes for L1 and L2 (e.g., Grosjean, 2001).

6.2.6 A methodological note on the computational modeling of language acquisition

The central enterprise of this dissertation has been the computational modeling
of language acquisition. While the dissertation has been mainly concerned
with the problem of learning phonotactics, and the segmentation of continuous
speech, the approach taken here could prove useful for other studies focused
on unraveling the mechanisms of human language acquisition. In particular,
I would like to stress the importance of using both computational learners
and human learners for the study of language acquisition. I believe that a
psycholinguistic perspective is essential for any model that aims to explain
human learning mechanisms. Therefore, the general approach taken here
was to create a computational model based on psycholinguistic evidence of
infant learning mechanisms. The predictions of the model can be tested using
computer simulations. While computer simulations by themselves do not
provide a strong test for the psychological plausibility of the model, they are
very useful to provide insight into the learnability of linguistic knowledge,
and into the contributions of different mechanisms to solving the learning
problem. For example, the computer simulations in this dissertation have
shown that phonotactic constraints are learnable from continuous speech, and
that feature-based generalization improves the accuracy of the segmentation
model.

Importantly, the model should also be tested for its psychological plausi-
bility. There are two ways to address this issue. The first and most common
approach is to test the model against human data, such as a set of wellformed-
ness judgments. In Chapter 4, a similar approach was taken by testing different
models for their fit against human segmentation data. Note, however, that a
potential weakness of this approach is that computational models typically
have a large number of parameters that can be modified in order to improve
the fit of the model to the data. That is, a potential criticism of computational
modeling is that, with the right parameter settings, any phenomenon or data
set can be modeled. In addition to reporting such ‘best-fit’ results, it would be
insightful if modelers would report a more complete picture of the model’s
performance, either through testing the complete parameter space (e.g., the
ROC curves in Experiment 2, Chapter 3) or by including ‘worst-fit’ numbers.

I propose that a stronger test for the psychological plausibility of a compu-
tational model is to derive novel predictions from the model, and to set up
new experiments that are specifically aimed at testing these predictions (Kager
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& Adriaans, 2008). The artificial language learning paradigm provides an
important methodological tool for the study of human learning mechanisms.
By training participants on artificial languages with particular constraints
and testing their acquired knowledge of the language, artificial language
learning makes it possible to investigate the language learning abilities of
infants and adults in a highly controlled environment. This controlled envi-
ronment may, however, come at the expense of the naturalness of the input
(e.g., Johnson & Tyler, 2010). This is why the combination of computational
modeling and artificial language learning may prove to be especially fruitful:
Computational models provide explicit descriptions of learning mechanisms,
and can be trained on realistic data from natural languages (such as accurately
transcribed speech corpora). Artificial language learning can provide a test
for the psychological plausibility of these mechanisms by presenting human
language learners with highly controlled, but simplified, data. In sum, the
computational modeling of language acquisition would benefit from a cycle
that includes both computer modeling and psychological experiments.

6.3 conclusions

This dissertation has been concerned with the mechanisms that allow lan-
guage learners to induce phonotactic constraints for speech segmentation. It
was shown that phonotactics can be learned from continuous speech by com-
bining mechanisms that have been shown to be available to infant and adult
language learners. These mechanisms, statistical learning and generalization,
allow for the induction of a set of phonotactic constraints with varying levels
of abstraction, which can subsequently be used to predict the locations of
word boundaries in the speech stream. The proposed combination of sta-
tistical learning and feature-based generalization provides a better account
of speech segmentation than models that rely solely on statistical learning.
This result was found both in computer simulations, and in simulations of
human segmentation data. In addition, it was shown that human learners can
learn novel phonotactic constraints from a continuous speech stream from an
artificial language. The dissertation advocates an approach to the study of
language acquisition that focuses on both computational and human learners.
By integrating evidence from computational and human learners, models can
be developed which are both formally explicit and psychologically plausible.
Such converging evidence brings us closer to a thorough understanding of
the mechanisms that are involved in language acquisition.
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This manual describes how to use the StaGe Software Package (SSP). The software can
be used to run phonotactic learning and speech segmentation simulations, as described
throughout this dissertation (see also, Adriaans & Kager, 2010). In addition, it allows
the user to train models on new data sets, with the possibility to use other statistical
measures, thresholds, and a different inventory of phonological segments and features.
The package implements several learning models (StaGe, transitional probability,
observed/expected ratio) and segmentation models (Optimality Theory, threshold-
based segmentation, trough-based segmentation). Please see Chapters 2 and 3 for
details about these models. This manual describes how to run simulations with SSP.

getting started

The software (SSP.zip) can be downloaded from:

http://www.hum.uu.nl/medewerkers/f.w.adriaans/resources/

The program uses configuration files, which specify how to run the software. In
addition, the user will need to provide a training/test corpus and an inventory file
specifying phonological segments and features.1 The contents and required format of
these files are described in the next sections.

Contents of the package

• ssp.pl - The main script, written in Perl.

• Input - This is the folder where the corpus and inventory files should be placed.

• Modules - This contains several Perl modules which are used by the main script.

• Output - This is the folder where the program writes its output to. A new folder
will be created for each configuration file that is used to run the program.

• ssp manual.pdf - This manual.

• Several configuration files (.txt) have been included which can be used to
replicate the simulations reported in the dissertation, and which can be modified
to create new simulations.

1 Examples of configuration files and an inventory file for Dutch are included in the package. The
Spoken Dutch Corpus (Corpus Gesproken Nederlands) is distributed by the Dutch HLT Agency
(TST-centrale; http://www.inl.nl/tst-centrale) and can be ordered there.
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Running the program

To start the program, use Command Prompt (Windows) or Terminal (Unix, Mac OS X)
to go to the SSP folder and type:

perl ssp.pl configuration.txt

where the configuration file ‘configuration.txt’ can be replaced by any other file name.
Please note that running Single-Feature Abstraction may take several minutes, while
the segmentation of wxyz sequences (‘segmentation using context’) may take up to
several hours, depending on the speed of your computer.

input files

All input files (corpus files, feature definitions) should be placed in the Input folder.

Corpora

Input to the program consists of the following:

• Training file - A training file is a single text (.txt) file with phonemic transcrip-
tions. Each segment should be represented by a single ASCII character (such as
in the CELEX DISC alphabet). Each line contains a sequence of segments. This
can either be a single word or multiple words glued together. The sequences
are optionally preceded by a digit (utterance IDs) and optionally followed by
a digit specifying a (token) frequency count. The entries should be tab-separated.

Some examples:

(a) A corpus of transcribed utterances of continuous speech (with utterance IDs):

5 dizKnv@rstElbardor@tsKnsxufpot@

6 d}s@hKstadnyOps@nlaxlaxst@stAnt
7 laG@rdAnsokAni

. . . . . .
(b) A lexicon of isolated words (with token frequencies):

dQg 2061

k{t 1195

. . . . . .
(c) Sequences of segments:

mademobetumopodemopotubipotumo

. . .

• Test file - The trained model can be used to predict the locations of word
boundaries in a test set. Similar to the training file, a test file consists of
sequences of segments, optionally preceded by a digit to identify the utterance.
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• Correct file - A ‘correct’ file can be specified to evaluate the model’s segmenta-
tion of the test set. In order to link the correct segmentation of an utterance to the
predicted segmentation of the test set, the user can specify utterance ID digits in
both files, so that the program knows which correct utterance corresponds to
which predicted utterance in the test set.
For example:

6 d} s@ hKstad ny Op s@n lax lax st@stAnt (Test file)
6 d}s @ hK stad ny Op s@n lax laxst@ stAnt (Correct file)

If no utterance IDs have been specified, the program will assume identical
orderings in both files (i.e., the first utterance in the test file corresponds to the
first utterance in the correct file, etc.).

Segment/feature inventory

A tab-separated text file is used to define the segment inventory with corresponding
feature values. Each line contains one such specification:

Segment1 Feature1=Value1 Feature2=Value2 . . .
Segment2 Feature1=Value1 Feature2=Value2 . . .

. . . . . . . . . . . .

For example:

p . . . Cons=1 Voice=0 Place=Lab . . .
b . . . Cons=1 Voice=1 Place=Lab . . .

. . . . . . . . . . . . . . . . . .

Note that such an inventory only needs to be specified when using StaGe. The
statistical learning models (TP, O/E) do not require inventory files. The user is free
to use different names for features and feature values (as long as they are consistent
within the file). There is no restriction with respect to possible feature values.2 That
is, any two different values for a single feature is counted as a feature difference (e.g.,
Voice=0 6= Voice=1; Voice=+ 6= Voice=-, Voice=abc 6= Voice=cba, etc.).

Some restrictions hold with respect to feature definitions. First, the order in which
the features are specified for each segment should be fixed. Second, the file should not
contain multiple segments with identical feature specifications. Segments with such
zero-feature differences should be replaced by a single (segment) symbol representing
that feature specification. Third, the model only processes constraint pairs that have
feature vectors of the same length. Each segment should thus be fully specified.
Note that the user may use different features for consonants and vowels. In this
case, consonant and vowel vectors will have different lengths and are not compared
to each other. The consequence is that the model only compares CV constraints to
CV constraints, CC constraints to CC constraints, etc. An example of such a feature

2 With the exception of the symbol ‘?’, which is used for program-internal purposes
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definition is included in the software package (inventory-dutch.txt). Finally, make
sure that all segments that occur in the corpus are defined in the inventory.

configuration files

A configuration file is a text file specifying how to run the software. The user may
modify parameters in configuration files in order to apply models to new data sets, or
may alter the way in which a model processes its input, when it induces constraints,
etc.3 (See also the example configuration files that are included in the package.) Table
A.1 shows some basic parameters for the program, such as a specification of which
learning model is to be used (MODEL); which training and/or test data the model should
be applied to (TRAININGSET, TESTSET); where to find the the correct segmentations
for the test set (CORRECT); and, if StaGe is used, which feature set should be used
(INVENTORY).

Several input processing parameters are given in Table A.2. The user controls
what type of sequences are extracted from the corpus (TRAININGPATTERN). The default
sequence is a simple biphone pattern (TRAININGPATTERN = xy). The software also
supports more sophisticated processing windows, such as non-adjacent dependencies.
For example, the model can be trained on non-adjacent consonants by specifying
a larger, feature-based pattern (TRAININGPATTERN = [syll=0][syll=1][syll=0]).4

When such a larger window is used for training, the user needs to specify the positions
for which the statistical dependency is to be computed. In the current example, a
dependency between the first and third positions needs to be specified (i.e., ignoring
the vowel in the second position): DEPENDENCY = 1-3. The user may specify whether
token frequencies (which are optionally included in the training set) are to be used in
training the model (COUNT).

It should be noted that the resulting model is always ‘biphone’-based. That
is, only the two dependent elements are encoded in the model (e.g., *CC rather
than *C(V)C). The constraints are applied directly to the test set (i.e., the test set is
not pre-processed in any way). Therefore, when non-adjacent constraints are used,
the user may want to filter the test set accordingly (e.g., removing all vowels from
a test set containing CVCVCV. . . sequences, resulting in a test set containing only
CCC. . . sequences). During testing the model either uses context or not (CONTEXT).
That is, the test set is processed using either an xy (i.e., CONTEXT = no) or a wxyz (i.e.,
CONTEXT = yes) window.

Several additional (optional) parameters control more technical aspects of the
learning and segmentation models (see Tables A.3 and A.4). The user can change the
statistical learning formula that is used to create the statistical distribution (SLFORMULA)
using any of the measures described in Table A.5; change the statistical measure that

3 The flexibility provided by the various parameters in SSP is provided to encourage and facilitate
research on phonotactic learning and speech segmentation. It is the responsibility of the user, of
course, to decide whether a particular new configuration makes any theoretical/empirical sense.

4 The features that are used in the pattern are defined by the user in the segment/feature inven-
tory. A pattern may also involve multiple (comma-separated) features (e.g., [syll=0, son=0,

cont=1])
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is used to compute constraint ranking values (RANKING); change the constraint induc-
tion thresholds (THRESHOLD M, THRESHOLD C) for StaGe; and change the segmentation
thresholds (THRESHOLD OE, THRESHOLD TP) for the threshold-based statistical learning
models. Finally, a default boundary probability (BOUNDARYPROB) can be specified for
missing biphones, random baselines, etc.

output files

For each simulation, a new folder will be created within the Output folder. This
folder carries the name of the configuration file that was used in the simulation and,
depending on the particular configuration that was used, will contain one or more of
the following output files:

• Configuration-model.txt

– . . . contains either the constraint set with ranking values (StaGe), or bi-
phones with associated transitional probabilities or observed/expected
ratios (TP, O/E).

• Configuration-decisions.txt

– . . . contains all sequences that were processed in the test set (i.e., either xy
or wxyz sequences). For each sequence, a classification is given, which is
the probability of a boundary appearing in the middle of the sequence.
That is, a classification of ‘0’ means that a boundary is never inserted, the
classification ‘1’ means that a boundary is always inserted, and values
between 0 and 1 indicate the probability of the insertion of a boundary into
sequence in the test set. The final column displays how often the sequence
appears in the test set.

• Configuration-segmentation.txt

– . . . contains the segmentation of the complete test set, as predicted by the
model.

• Configuration-results.data

– . . . contains evaluation metrics (hit rate, false alarm rate) reflecting the
model’s ability to predict word boundaries in the test set.

More precisely:

Predicted segmentation Correct segmentation Label
‘x.y’ ‘x.y’ TruePositive
‘x.y’ ‘xy’ FalsePositive
‘xy’ ‘xy’ TrueNegative
‘xy’ ‘x.y’ FalseNegative
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Hit rate (H):

H =
TruePositives

TruePositives + FalseNegatives
(A.1)

False alarm rate (F):

F =
FalsePositives

FalsePositives + TrueNegatives
(A.2)

• Configuration-tableaus.txt

– . . . contains OT tableaus for each sequence in the test set. The optimal
candidate is indicated by an arrow ’->’ and decides the classification
(boundary probability) of the sequence. (only applies to StaGe)

ssp configuration file parameters

The tables on the following pages (Table A.1 - Table A.5) define parameters which can
be specified by the user in the configuration files.
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Table A.1: Basic model and file parameters.

Parameter Possible values Description

MODEL1 StaGe, O/E, TP, random The learning model
TRAININGSET1 File name Training file
TESTSET File name Test file
CORRECT File name Correct file
INVENTORY2 File name Segment and feature definitions

Note. 1 = required fields, 2 = required if StaGe is used.

Table A.2: Input processing parameters.

Parameter Possible values Description Default

TRAININGPATTERN xy,
[F1=v1][F2=v2][. . . ]

Phonological pattern
used for training.

xy

DEPENDENCY 1-3, 1-2, 2-3, etc. The positions of the ele-
ments for which the sta-
tistical dependency is to
be computed.

-

COUNT type, token Specifies whether word
frequency counts in the
training file should be
taken into account.

type

CONTEXT yes, no Specifies whether context
is to be used during seg-
mentation.

no

Table A.3: Learning parameters for StaGe.

Parameter Possible values Description Default

SLFORMULA (See Table A.5) Formula that is used to implement O/E

statistical learning.
RANKING (See Table A.5) Statistical measure that is used to E

rank the constraints.
THRESHOLD M Any number. Statistical threshold for the induction 0.5

of a markedness constraint.
THRESHOLD C Any number. Statistical threshold for the induction 2.0

of a contiguity constraint.
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Table A.4: Segmentation parameters for statistical learning models (TP,
O/E) and random baselines (random).

Parameter Possible values Description Default

THRESHOLD OE Any positive real
number

Segmentation threshold
for O/E threshold-based
segmentation.

1.0

THRESHOLD TP Any probability
between 0 and 1

Segmentation threshold
for TP threshold-based
segmentation.

Thresholdxy = 1
|Yx |

DEFAULTPROB Any probability
between 0 and 1

Probability of inserting a
word boundary in case
the learning model can-
not decide (e.g., unseen
biphones, random base-
lines)

0.5

Note. If no fixed TP threshold is specified by the user, the program will calculate a
threshold based on the default assumption that all successors of a segment are a priori
equally probable. The threshold thus equals 1

|Yx | , where |Yx| is the number of possible
successors for x.

Table A.5: Statistical measures.

Symbol Description

O observed frequency (= biphone frequency of occurrence)
Fx observed frequency of ”x ” (= frequency of first-position uniphone)
Fy observed frequency of ” y” (= frequency of second-position uniphone)
E expected frequency (= uniphone-based estimated biphone frequency)
O/E observed / expected ratio
O-E observed minus expected (= the difference between O and E)
logO/E log observed/expected ratio, with base 10

MI pointwise mutual information (= log O/E ratio, with base 2)
TP forward transitional probability
logTP log forward transitional probability, with base 10

TPb backward transitional probability
logTPb log backward transitional probability, with base 10
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consonants

DISC: p b t d k g f v s z S Z
IPA: p b t d k g f v s z S Z
syl − − − − − − − − − − − −

cons + + + + + + + + + + + +
appr − − − − − − − − − − − −
son − − − − − − − − − − − −
cont − − − − − − + + + + + +
nas − − − − − − − − − − − −

voice − + − + − + − + − + − +
place lab lab cor cor dors dors lab lab cor cor cor cor
ant + + + + − − + + + + − −
lat − − − − − − − − − − − −

DISC: x G m n N r l w j h
IPA: x G Ã m n N r l w j h
syl − − − − − − − − − − −

cons + + + + + + + + − − +
appr − − − − − − + + + + −
son − − − + + + + + + + −
cont + + − − − − + + + + +
nas − − − + + + − − − − −

voice − + + + + + + + + + +
place dors dors cor lab cor dors cor cor labdors cor glot
ant − − − + + − + + + − −
lat − − − − − − − + − − −
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vowels

DISC: i ! I y ( u e E ) | } * o O
IPA: i i: I y y: u e: E E: ø: 0 œ: o: O
high + + + + + + − − − − − − − −
low − − − − − − − − − − − − − −
back − − − − − + − − − − − − + +

round − − − + + + − − − + + + + +
long − + − − + − + − + + − + + −
tense + + − + + + + − − + − − + −
nasd − − − − − − − − − − − − − −

DISC: < @ a A K L M q 0 ∼ ˆ 3 #
IPA: O: @ a: A ei œy Au Ã: Ẽ: Õ: 0̃: 3: A:
high − − − − −+ −+ −+ − − − − − −
low − − + + − − − + − − − − +
back + + + + − − + + − + − + +

round + − − − − + + − − + + − −
long + − + − + + + + + + + + +
tense − − + − + + + − − − − − −
nasd − − − − − − − + + + + − −

182



C
E X A M P L E S O F S E G M E N TAT I O N O U T P U T

Orthography: Ik zou natuurlijk idioot zijn als ik ja zou zeggen he?
Translation: ‘I would of course be an idiot if I would say yes.’
Transcription: Ik zAu natyl@k idijot sEin Als Ik ja zAu zEG@ hE

StaGe: Ik zAunatyl@k idijot sEin AlsIk jazAuzEG@ hE
O/E: Ik zAu natyl @k idijo tsEin Al sIk ja zAu zE G@ hE
TP: Ik zAunat yl@k idij ots Ein Als Ik ja zAuzE G@ hE

Orthography: Toch een heel bekend standaardwerk.
Translation: ‘Just a well-known standard work.’
Transcription: tOx @n hel b@kEnt stAndardwEr@k

StaGe: tOx@n helb@kEnt stAndard wEr@k
O/E: tOx@ nhel b@k En tst And ard wEr @k
TP: tOx@n hel b@k Ent st And ard wE r@k

Orthography: Liefde is de enige manier om je tegen de dood te verzetten.
Translation: ‘Love is the only way to resist death.’
Transcription: livd@ Is @t en@G@ manir Om j@ teG@ d@ dot t@ v@rzEt@

StaGe: liv d@ Is@ten@G@manirOm j@teG@d@dot t@v@r zEt@
O/E: liv d@ Is@t en @G@ ma ni rOm j@t eG@ d@dot t@v@r zE t@
TP: liv d@ Is@t en@ G@ manir Om j@t eG@ d@d ot t@ v@r zE t@

Orthography: Vond ik heel erg boeiend.
Translation: ‘I found (it) very interesting indeed.’
Transcription: fOnd Ik hel Er@x buj@nt

StaGe: fOndIk helEr@x buj@nt
O/E: fO nd Ik hel Er @x buj@nt
TP: fOnd Ik hel Er@x buj@nt
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Orthography: En ik heb ook in ieder geval uh ja een paar collega’s waarmee ik heel
goed daarmee zou kunnen samenwerken.

Translation: ‘And I also have in any case uh yes a couple of colleagues with
whom I might very well collaborate.’

Transcription: En Ik hEp ok @n id@ x@fAl @ ja @m par kOlexas wame Ik hel xut
dame zAu k0n@ sam@wEr@k@

StaGe: EnIk hEpok@nid@x@fAl@ja @m parkOlexas wame Ik hel xut
damezAuk0n@s am@wEr@k@

O/E: En Ik hEp ok @ni d@ x@ fAl@ ja @mp ar kO le xa swa me Ik hel xut
dame zAu k0n @s am @wEr @k@

TP: En Ik hEp ok@n id@ x@ fA l@ ja @m par kO le xas wa me Ik hel xut
damez Auk 0n@s am@ wE r@ k@

Orthography: Ik weet nog niet precies hoe ik zal gaan.
Translation: ‘I don’t know yet precisely how I will go.’
Transcription: k wet nOG nit pr@sis hu wIk sAl xan

StaGe: kwet nOG nit pr@sis hu wIk sAlxan
O/E: kwet nOG nit pr @sis hu wIks Al xan
TP: kwet nOG nit pr@s is hu wIks Al xan

Orthography: Maar in ieder geval in die film heeft ie wat langer haar.
Translation: ‘But in any case in this film his hair is somewhat longer.’
Transcription: ma In i fAl In di fIlm heft i wAt lAN@ har

StaGe: ma InifAlIndifIlm hef ti wAt lAN@ har
O/E: ma Ini fAl In difIl mhef tiwAt lAN @h ar
TP: ma Ini fAl Indi fIlm he ft iwAt lA N@ har

Orthography: Een paar jaar geleden heeft ze haar restaurant verkocht.
Translation: ‘A few years ago she sold her restaurant.’
Transcription: @m pa ja x@led@n heft s@ ha rEsturÃ: f@rkOxt

StaGe: @m pajax@led@n heft s@ harEsturÃ:f@r kOxt
O/E: @mp aja x@ le d@ nhef ts @h arE stu rÃ:f @r kOxt
TP: @m paja x@ led@n he fts@ har Est ur Ã:f@r kOxt
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Orthography: Binnen in de vuurtoren zit een groot dier in een schommelstoel.
Translation: ‘Inside the lighthouse a large animal is sitting in a rocking chair.’
Transcription: bIn@n In d@ vyrtor@n zIt @N xrod dir In @n sxOmOstul

StaGe: bIn@n Ind@vyrtor@n zI t@N xrod dirIn @n sxOmO stul
O/E: bIn @n Ind@v yrt or @nzI t@ Nx rod di rIn @n sx OmO st ul
TP: bIn @n In d@v yrt or@n zI t@ Nxrod dir In @n sx Om Ost ul

Orthography: Die horizon kan toch ook naar ons komen.
Translation: ‘That horizon may also come to us.’
Transcription: di horizOn kAn tOx ok nar Ons kom@

StaGe: dihorizOn kAn tOxok narOns kom@
O/E: di hor iz On kAn tOx ok nar Ons kom@
TP: di hor izOn kAnt Ox ok nar Ons kom@
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Table D.1: Test trials for Experiment 1

Trial ABX word BXA word Trial ABX word BXA word

1 fabuxAu dœylyfa 19 sabœyly punosEi
2 sapunAu dœylofi 20 zapœyxy punAusa
3 sapœyny penysEi 21 zapuxAu dulofEi
4 fabœyxy penAusi 22 zadunAu dulAufa
5 fEibexy dunozEi 23 zadœyny pœynysa
6 fEidely dunAuza 24 fadœyly pœynosi
7 fEidulo bœyxyfa 25 fidelAu belysEi
8 sEibulo bœyxofi 26 zidenAu belAusi
9 sEibely denAuzi 27 zidœyno pœyxozi

10 zEideny denyzEi 28 sibœylo pœyxyza
11 zEiduno buxofEi 29 sibelAu bulAusa
12 fEibuxo buxAufa 30 sipenAu bulosEi
13 fibexAu bœylosi 31 sipœyno puxAuza
14 zipexAu bœylysa 32 fidœylo puxozEi
15 zipœyxo pexAuzi 33 sEipeny dœynyza
16 fibœyxo pexyzEi 34 zEipexy dœynozi
17 fadulAu delAufi 35 zEipuxo bexyfEi
18 sabulAu delyfEi 36 sEipuno bexAufi

Note. The order of test trials was randomized. The order of presentation of ABX and
BXA items within trials was balanced within and across participants.
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Table D.2: Test trials for Experiment 2

Trial ABC word BCA word Trial ABC word BCA word

1 padego zekypa 19 tozagu zikepy
2 pedyga zakepo 20 tizegy zokapu
3 pazeky zegotu 21 tibaxo dugopa
4 pezoku zagety 22 tuboxa digapo
5 pedugo bixeta 23 tizoge duxeso
6 pidega bexuto 24 tuzego dixose
7 peziku bikasy 25 sabiku dexyso
8 pizaky bekisu 26 sebyko daxisu
9 pydige duxosy 27 sadyxe degopu

10 pudogy dyxise 28 sedoxu dagype
11 pyzoke dugypa 29 sybeka zokape
12 puzyka dygope 30 sobake zykepa
13 tabixe bokesa 31 sydaxu zogity
14 tobexa bakise 32 sodixy zygatu
15 tazugo boxeta 33 sabeky bixute
16 tozega baxuto 34 sibuke baxety
17 tobaxe ziguto 35 sadexu bikosa
18 tibuxo zogate 36 sidoxa bakesu

Note. The order of test trials was randomized. The order of presentation of ABC and
BCA items within trials was balanced within and across participants.
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Table D.3: Test trials for Experiment 3

Initial Final
Trial Legal (vCA) Illegal (fCA) Trial Legal (BCf) Illegal (BCv)

1 vygate fykape 19 dagefo zakevo
2 viguta fikusa 20 bukyfa dugyva
3 vikopy figoty 21 zekofa degova
4 vekaso fegato 22 dygafu bykavu
5 vigaty fixasy 23 dugefy buxevy
6 vagepo fakeso 24 zikofy bixovy
7 vyxasu fygatu 25 byxufe dyguve
8 vukesy fugepy 26 byxifo zykivo
9 vexuta fekusa 27 zekafo dexavo

10 vygupe fyxute 28 zygafe bykave
11 vukose fuxote 29 daxofu zakovu
12 vexota fegopa 30 bikyfa zigyva
13 vyxetu fykepu 31 byxefu zygevu
14 vugypa fuxysa 32 zagife daxive
15 vykipo fyxiso 33 zigufa bixuva
16 vaxise fagipe 34 dexufa zeguva
17 vixysa fikypa 35 bikafy dixavy
18 vakopu faxotu 36 duxofe bukove

Note. The order of test trials was randomized. The order of presentation of legal and
illegal items within trials was balanced within and across participants.
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S A M E N VAT T I N G I N H E T N E D E R L A N D S

Bij het luisteren naar spraak worden luisteraars geconfronteerd met een
akoestisch signaal dat geen duidelijke aanwijzingen bevat voor woordgrenzen.
Om gesproken taal te kunnen verstaan, moeten luisteraars het doorlopende
spraaksignaal opdelen in individuele woorden. Dit proces, spraaksegmentatie,
wordt ondersteund door verschillende typen taalkundige kennis. Klemtoon-
patronen, gedetailleerde akoestische informatie en fonotactische restricties
dragen bij aan het herkennen van woorden in het spraaksignaal. Dit soort
kennis is van cruciaal belang voor taalleerders. Eén van de belangrijkste
uitdagingen voor baby’s is om de woorden van de moedertaal te leren. Baby’s
horen echter ook een continu spraaksignaal en moeten dus strategieën on-
twikkelen om woordeenheden uit spraak te segmenteren. Ook voor baby’s
is het aangetoond dat ze voor het leren van woorden gebruik maken klem-
toonpatronen, akoestische informatie en fonotactische kennis. De vraag is hoe
baby’s dit soort kennis (die voor elke taal anders is) kunnen verwerven, nog
voordat ze een woordenschat hebben opgebouwd.

Dit proefschrift gaat over het leren van fonotactische kennis die gebruikt
kan worden voor spraaksegmentatie. Fonotactische restricties definiëren welke
klankreeksen zijn toegestaan binnen de woorden van een taal. Nederlandse
woorden bevatten bijvoorbeeld niet de reeks /pf/ (in tegenstelling tot Duitse
woorden, zoals pfeffer). Kennis van klankreeksen is nuttig voor spraakseg-
mentatie, omdat het aangeeft waar zich mogelijke woordgrenzen bevinden in
het spraaksignaal. Bij het horen van de continue zin /d@lAmpfil/ (de lamp viel)
geeft de restrictie *pf aan dat er een woordgrens zit tussen /lAmp/ en /fil/.
(Een Duitse luisteraar daarentegen zou wellicht geneigd zijn om /pfil/ als één
woord waar te nemen.)

De stelling die in dit proefschrift verdedigd wordt, is dat fonotactische
restricties geleerd worden uit het continue spraaksignaal. Dit gebeurt met
behulp van twee leermechanismen: statistisch leren en generalisatie. De voor-
spelling is dat de fonotactische kennis die op deze manier geleerd wordt,
gebruikt kan worden voor het ontdekken van woordgrenzen in het spraaksig-
naal. Deze veronderstelde methode, Spraak-Gebaseerd Leren (SGL), wordt
onderzocht middels een combinatie van (i) computermodellering, om formeel
te beschrijven hoe fonotactische kennis geleerd wordt, (ii) computersimu-
laties, om te testen of de geı̈nduceerde fonotactische kennis nuttig is voor
spraaksegmentatie, (iii) simulaties van menselijke data, om te testen of het
computermodel menselijk segmentatiegedrag kan verklaren en (iv) exper-
imenten met kunstmatige talen, om te toetsen of menselijke leerders (vol-
wassenen) in staat zijn om nieuwe fonotactische restricties te leren uit een
continu spraaksignaal. Door gebruik te maken van zowel computermodeller-
ing, als psycholinguı̈stische experimenten, tracht dit proefschrift een formele
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verklaring te geven voor het induceren van fonotactiek voor spraaksegmen-
tatie, die wordt ondersteund door bevindingen met zowel computationele als
menselijke leerders.

Dit proefschrift richt zich specifiek op het verbinden van eerder onderzoek
op het gebied van het modelleren van spraaksegmentatie en het modelleren
van fonotactisch leren. Beide typen modellen richten zich op het leren van
klankreeksen, maar maken sterk verschillende aannames over de input van
het fonotactische leerproces en over het niveau van abstractie waarop fono-
tactische restricties gerepresenteerd worden. Segmentatiemodellen gaan er
van uit dat klankreeksen geleerd worden uit continue spraak. Fonotactische
leermodellen daarentegen gaan er van uit dat kennis van klankreeksen ver-
worven wordt uit het lexicon. Segmentatiemodellen gaan er bovendien van
uit dat fonotactische restricties verwijzen naar specifieke fonologische segmenten,
terwijl fonotactische leermodellen er doorgaans van uit gaan dat deze restric-
ties verwijzen naar natuurlijke klassen van segmenten (die gedefiniëerd worden
door fonologische features). Psycholinguı̈stiche studies met baby’s maken het
aannemelijk dat fonotactische restricties op het niveau van natuurlijke klassen
inderdaad geleerd worden, al voordat het lexicon zich volledig ontwikkeld
heeft. Deze bevindingen leiden tot de specifieke hypothese dat abstracte
restricties (dat wil zeggen, restricties met betrekking tot natuurlijke klassen)
geleerd worden uit continue spraak in een vroeg stadium van fonologische
ontwikkeling. Dit proefschrift benadert het probleem van fonotactisch leren
door de input-aanname van segmentatiemodellen (namelijk, continue spraak)
te combineren met de representatie-aanname van fonotactische leermodellen
(namelijk, abstracte restricties).

In Hoofdstuk 2 wordt een nieuw computationeel model gepresenteerd:
StaGe. Dit model implementeert de SGL-hypothese. Het hoofdstuk laat
zien dat fonotactische restricties geleerd kunnen worden uit continue spraak
door gebruik te maken van leermechanismen waarvan is aangetoond dat
baby’s ze tot hun beschikking hebben: statistisch leren en generalisatie. Het
model leert twee typen fonotactische restricties: (i) ‘markedness constraints’
(*xy), die aangeven welke reeksen niet voor mogen komen binnen woorden
(en dus waarschijnlijk woordgrenzen bevatten), (ii) ‘contiguity constraints’
(Contig-IO(xy)), die aangeven welke reeksen juist wel binnen woorden mogen
voorkomen (en dus waarschijnlijk geen woordgrenzen bevatten). Eventuele
conflicten tussen deze restricties worden opgelost met behulp van het OT
segmentatiemodel (gebaseerd op principes uit Optimality Theory).

Hoofdstuk 3 laat de potentiële bruikbaarheid zien van de SGL-hypothese
door middel van computersimulaties. Het hoofdstuk richt zich specifiek op
de toegevoegde waarde van generalisatie. De voornaamste bevinding is dat
StaGe beter in staat is om woordgrenzen te detecteren in continue spraak
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dan puur statistische modellen. Dit geeft aan dat generalisatie, zoals gebruikt
door StaGe, mogelijk ook gebruikt wordt door menselijke leerders. Het
hoofdstuk geeft computationele evidentie voor de SGL-hypothese, doordat
het laat zien dat fonotactisch leren uit continue spraak bijdraagt aan betere
woordherkenning.

In Hoofdstuk 4 wordt gekeken of StaGe een verklaring kan geven voor
de leerbaarheid van een fonotactische restrictie uit de theoretische fonologie.
OCP-Place zegt dat consonanten met dezelfde plaats van articulatie niet
naast elkaar voor mogen komen. Dit hoofdstuk bekijkt of de set van restricties
die geı̈nduceerd wordt door StaGe sporen van OCP-Place bevat. Daarnaast
wordt in dit hoofdstuk bekeken of het model het effect kan verklaren dat
OCP-Place heeft op menselijk segmentatiegedrag (zoals aangetoond door
Boll-Avetisyan & Kager, 2008). De bevinding is dat StaGe inderdaad restric-
ties leert die lijken op OCP-Place. Bovendien is het model beter in staat om
menselijke segmentatie te verklaren dan puur statistische modellen en mod-
ellen die gebaseerd zijn op een categorische interpretatie van OCP-Place. Het
hoofdstuk laat zien dat de combinatie van leermechanismen, zoals gebruikt
door StaGe, in staat is om data over menselijke segmentatie te verklaren.

Hoofdstuk 5 onderzoekt of menselijke leerders in staat zijn om nieuwe
fonotactische restricties te leren uit continue spraak. Dit wordt gedaan door
volwassen proefpersonen te laten luisteren naar continue spraak uit een kun-
stmatige taal. Vervolgens wordt gekeken welke woorden de proefpersonen
menen te hebben gehoord. Deze experimenten testen of de SGL benadering
van StaGe psychologisch plausibel is. De bevinding dit hoofdstuk is dat
menselijke leerders in ieder geval restricties op het niveau van specifieke seg-
menten kunnen leren uit continue spraak. Er werd geen evidentie gevonden
voor het leren van fonotactische generalisaties. Het leren van generalisaties
uit continue spraak zal in de toekomst nog nader onderzocht moeten worden.

Het proefschrift laat zien dat fonotactische kennis voor spraaksegmen-
tatie geleerd kan worden met een combinatie van mechanismen waarvan is
aangetoond dat menselijke taalleerders ze tot hun beschikking hebben. Het
voorgestelde model leert fonotactische restricties met verschillende abstrac-
tieniveaus. Deze restricties kunnen vervolgens gebruikt worden om woord-
grenzen te herkennen in het spraaksignaal. De combinatie van statistisch
leren en generalisatie in het model geeft een betere verklaring van spraakseg-
mentatie dan modellen die alleen gebruik maken van statistisch leren. Dit
resultaat werd gevonden voor zowel computationele, als menselijke leerders.
Daarnaast werd aangetoond dat menselijke leerders nieuwe fonotactische
restricties kunnen leren uit een continu spraaksignaal. Het vergelijken van
bevindingen met computationele en menselijke leerders stelt ons in staat
om leermodellen te ontwikkelen die formeel expliciet zijn en die bovendien
psychologisch plausibel zijn. Het proefschrift draagt hierdoor bij aan een beter
begrip van de processen die een rol spelen bij taalverwerving.
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