
A Friendly Introduction to RGP
Oliver Flasch

7. August 2014 (RGP release 0.4-1)

RGP is genetic programming system based on, as well as fully in-

tegrated into, the R environment. The system implements classical

tree-based genetic programming as well as other variants including,

for example, strongly typed genetic programming and Pareto genetic

programming. It strives for high modularity through a consistent

architecture that allows the customization and replacement of every

algorithm component, while maintaining accessibility for new users

by adhering to the ”convention over configuration” principle. Perfor-

mance critical sections have efficient implementations in C, making

the system suitable for real-world application. Typical GP applica-

tions are supported by well-known R ideoms. For example, symbolic

regression via GP is supported by the same ”formula interface” as

linear regression in R.

This text provides a friendly introduction to RGP, a flexible sys-

tem for genetic programming (GP) in the R environment for sta-

tistical computing. After section 1 introduces GP in the abstract

and section 2 sets the stage with typical applications of GP in gen-

eral and RGP in particular, section 3 outlines the range and depth

of RGP’s features. RGP is a large package that can be daunting for

the first-time user. To help getting started, section 4 provides a set

of hands-on tutorials, beginning with simple tasks, including getting

RGP up and running in an existing R installation, up to advanced

topics like strongly typed genetic programming. The outlook in sec-

tion 5 gives hints on where to go from here, including references to

GP literature as well as RGP’s comprehensive online documentation

and web resources.

1 Genetic Programming

GP is a collection of techniques from evolutionary computing (EC)

for the automatic generation of computer programs that perform a

user-defined task [Poli et al., 2008, Banzhaf et al., 1998]. Starting

with a high-level problem definition, GP creates a population of

random programs that are progressively refined through variation

and selection until a satisfactory solution is found.

An important advantage of GP is that no prior knowledge con-

cerning the solution structure is needed. Another advantage is the

representation of solutions as terms of a formal language (symbolic

expressions), i.e. in a form accessible to human reasoning. The main

drawback of GP is its high computational cost, due to the poten-

tially infinitely large search space of symbolic expressions. On the

other hand, the recent availability of fast multi-core systems has

enabled the practical application of GP in many real-world applica-

tion areas. This has lead to the development of a variety of software

frameworks for GP, including DataModeler, Discipulus, ECJ, Eure-

qua, and GPTIPS.

2 oliver flasch

All of these systems are complex aggregates of algorithms for

solving not only GP specific tasks, such as solution creation, vari-

ation, and evaluation, but also more general EC tasks, like single-

and multi-objective selection, and even largely general tasks like

the design of experiments, data pre-processing, result analysis and

visualization. Packages like Matlab, Mathematica, and R [R Devel-

opment Core Team, 2009] already provide solutions for the more

general tasks, greatly simplifying the development of GP systems

based on these environments and also lowering the barrier of entry

for users who already know the underlying package.

RGP1 is based on the R environment for several reasons. Firstly, 1 The RGP package and documenta-
tion is available at rsymbolic.org.there seems to be a beneficial trend towards employing statisti-

cal methods in the analysis and design of evolutionary algorithms,

including modern GP variants [Sun et al., 2009, Bartz-Beielstein

et al., 2010]. Secondly, R’s open development model has led to the

free availability of R packages for most methods from statistics and

many methods from EC. Also, the free availability of R itself makes

RGP accessible to a wide audience. Thirdly, the R language sup-

ports “computing on the language”, which greatly simplifies symbolic

computation inherent in most GP operations. In addition, paral-

lel execution of long-running GP runs is easily supported by the R

package.

2 Application Areas

GP in general, and RGP as a modular GP system in particular,

has a wide array of possible application areas. Basically, GP is a

evolutionary search heuristic for arbitrary symbolic expressions, i.e.

mathematical or logical formulas.. A non-exhaustive list of RGP-

applications include:

• Symbolic Regression: Given a set of measurement data divided

into dependent and independent variables, symbolic regression

can discover the functional relationship between dependent and

independent variables. This relationship is represented as a sym-

bolic expression, which can be used to gain insight into the data-

generating process or system (system identification), and as a

model to predict the values of dependent variables for unseen val-

ues of independent variables (intra- and extrapolation). Figure 1

provides a simple example.

• Feature Selection: Not all independent variables must have an

influence on the values of the dependent variables. In many prac-

tical applications, only a small subset of independent variables

affect the dependent variables. The task then is to identify this

subset, which can be done by GP in a very robust fashion.

• Automatic Programming: As computer programs are symbolic

expression, GP can be used for automatic programming, which

explains the name of the method. This requires a set of program

building blocks and a fitness function that assigns a numerical

rsymbolic.org

rgp introduction 3

quality measure to each candidate program. For small programs

describing core algorithm components, this approach already

works in practice.

• General Expression Search: The applicability of GP even goes

beyond automatic programming. The method can be used to dis-

cover all structures that are representable by symbolic expressions

of moderate complexity. Examples include electrical circuits, an-

tenna designs, processing networks in manufacturing and logistics,

and many others.
0 2 4 6 8 10

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Symbolic Regression of a Damped Oscillator

budget = 5M tournaments, function set = {+,−,*,/,sin,cos,tan}
x

y

f(x) =
sin(2⋅x

0.636205
)

x2 + 2.81232
⋅ −2.419366

f(t) = x0 ⋅ exp(− δ ⋅ t) ⋅ sin(ω ⋅ t + phi0)

Figure 1: Symbolic regression of the

governing law of a damped oscillator:

RGP enables symbolic regression via
genetic programming. This example

shows how RGP is used to find the
governing physical law of a damped
oscillator. In contrast to other
regression methods, the solution is
expressed as a mathematical formula
accessible to human interpretation
and validation. In this figure, the
true oscillator law and behaviour are
shown in dashed red, the solution
found by RGP is shown in solid
black.

The RGP system is flexible enough to be applied in nearly all pos-

sible GP application areas. It already has been successfully applied

in such diverse areas as support vector machine kernel generation

for machine learning, surrogate model ensemble generation for engi-

neering optimization, and time series prediction for water resource

management applications.

3 Features

To give an idea of the extend and limits of RGP’s feature set, this

section provides an non-exhaustive overview of the system. Detailed

documentation of all functionality, including examples, can be found

in the online help of the package.

3.1 Solution Representation

RGP represents candidate solutions, i.e. GP individuals, as R expres-

sions that can be directly evaluated by the R interpreter. This allows

the whole spectrum of functions available in R to be used as building

blocks for GP. Because R expressions are internally represented as

trees, RGP may be seen as a tree-based GP system. However, the

individual representation can be easily replaced together with the

associated variation and evaluation operators, if an alternative repre-

sentation is found to be more effective for a given application [?].

Besides classical (untyped) GP, strongly typed GP is supported

by a type system based on simply typed lambda calculus [Barendregt

et al., 1992]. A distinctive feature of RGP’s typed tree representation

is the support for function defining subtrees, i.e. anonymous func-

tions or lambda abstractions. In combination with a type system

supporting function types, this allows the integration of common

higher order functions like folds, mappings, and convolutions, into

the set of GP building blocks, greatly increasing RGP’s applicability

in many “non-classical”GP application areas.

RGP also includes Rrules, a rule based translator for transforming

R expressions. This mechanism can be used to simplify GP individ-

uals as part of the evolution process as a means the reduce bloat,

or just to simplify solution expressions for presentation and later

use. The default rule base implements simplification of arithmetic

expressions. Rrules can be easily extended to simplify expressions

containing user-defined operators and functions.

4 oliver flasch

3.2 GP Operators

RGP provides default implementations for several initialization, vari-

ation, and selection operators. The system offers clear interfaces for

user-defined operators, as well as the possibility to replace the evo-

lutionary algorithm used for GP search with user defined variants,

without the need to rewrite other functionality.

Initialization Individual initialization can performed by the conven-

tional grow and full strategies of tree building. When using strongly-

typed GP, the provided individual initialization strategies respect

type constraints and will create only well-typed expressions. Initial-

ization strategies may be freely combined, e.g. to implement the well

known ramped-half-and-half strategy.

Variation RGP includes classical and type-safe subtree crossover

operators. Also, several classical and type-safe mutation operators

are provided. The variation pipeline can be freely configured by com-

bining several mutation and recombination operators to be applied in

parallel or consecutively, with freely configurable probabilities.

Selection The system provides several single- and multi-objective

selection operators. Other selection strategies can be easily added

by the user. Multi-objective selection is supported via the EMOA

package.2 The multi-objective search strategy optimizes solution 2 The EMOA Evolutionary Multi-
objective Optimization Algorithm
toolbox for R is available at http://
git.datensplitter.net/cgit/emoa.

quality while, at the same time, controlling solution complexity and

population diversity. For this purpose, RGP implements multiple

complexity measures for GP individuals.

3.3 Analysis and Visualization

The RGP system provides tools for the analysis and visualization

of GP individuals and populations. GP individuals, i.e. symbolic

regressions, can be visualized as trees (in multiple levels of detail),

as formulas in mathematical notation, as points in a Pareto plot, or

as plots of their input/output behaviour. GP populations can be

visualized as forests of schematic trees, as Pareto plots, or as variable

presence charts.

As RGP is based on R, a vast array of statistical tools for analyz-

ing GP individuals, GP populations and GP system performance

are readily available. For example, integration with the SPOT pack-

age for sequential parameter optimization allows the automatic tun-

ing of critical GP algorithm parameters. The RGP online documen-

tation provides examples for typical applications of each visualization

and analysis technique.

Although RGP is basically a command-line driven system, like the

underlying R package, graphical user interfaces are provided where

they ease interaction and exploration. The web-based graphical

user interface for symbolic regression (see figure 2) allows direct

manipulation of the most important GP parameters. The graphical

http://git.datensplitter.net/cgit/emoa
http://git.datensplitter.net/cgit/emoa

rgp introduction 5

user interface RGPUI is delivered as an add-on package for RGP and

available on CRAN.

4 Tutorials

To help getting started with RGP, this section provides a set of

hands-on tutorials, beginning with simple tasks, including getting

RGP up and running in an existing R installation, up to advanced

topics like strongly typed genetic programming. All tutorials are

meant to be followed stepwise in a running R session.

4.1 Installation

RGP is available as an R package on the comprehensive R archive

network CRAN, making installation extremely simple. To install RGP

and all it’s dependencies, issue the following command in a running

R session:

> install.packages("rgp")

A prompt will appear asking to select a CRAN mirror will appear

if it is the first time an R package is installed in your R installation.

Just select a mirror location near you. The installation of RGP may

take some time, as dependencies are downloaded and compilation

steps are performed.

4.2 Getting Started

This tutorial provides an interactive walkthrough of solving a sim-

ple symbolic modelling problem with GP. Only basic low-level RGP

functionality is used, high-level convenience functions are intention-

ally avoided to make each step in the modelling process clear and

explicit.

In this first example, we configure RGP to create polynomial ap-

proximations of the sine function. To make RGP’s functionality

available in a running R session, the package has to be loaded via the

library command:

> library("rgp")

Defining the GP Search Space In RGP, candidate solutions are

represented as regular R functions. The bodies of these functions

are build from a set input variables, a set of constants, and a set of

function symbols. These members of these sets are often referred to

as GP building blocks. In other words, these three sets define the

symbolic expression search space.

As our example task is the approximation of the sine function

with polynomials, we create a function symbol set containing only

addition, multiplication, and subtraction.

> functionSet1 <- functionSet("+", "*", "-")

6 oliver flasch

We then create a set of input variables containing just the symbol

x. Thereby we restrict the search space to univariate functions, i.e.

function of one variable:.

> inputVariableSet1 <- inputVariableSet("x")

Finally, we create a set of constants. Constants are not created di-

rectly, but via constant factory functions. Each time a constant has

to be created during GP search, RGP calls a constant factory func-

tion. Here we use a single constant factory that returns constants

from a normal distribution:

> constantFactorySet1 <- constantFactorySet(function() rnorm(1))

Defining the Fitness Function The fitness function, or objective

function, associates a numerical fitness value to a candidate solution.

RGP relies on the fitness function to direct its evolutionary search.

The fitness function defines the problem to be solved by GP. As al-

ready mentioned, in this example, we will use RGP to find functions

approximating the sine function in the interval interval1 [−π, π].

We sample this interval in steps of size 0.1:

> interval1 <- seq(from = -pi, to = pi, by = 0.1)

> fitnessFunction1 <- function(f) rmse(f(interval1), sin(interval1))

By default, RGP minimizes fitness values, so lower values should

be associated with better solutions. Here, we use the root mean error

(RMSE) of a given sine approximation against the true sine function

as a fitness function.3 3 The problem defined here is a

typical symbolic regression problem.
RGP also features a simple interface
for symbolic regression, which is
introduced in the next tutorial on
symbolic regression.

Performing the GP Run We are now ready to start the search for

symbolic expressions of good fitness values, i.e. start the GP run:

> set.seed(1)

> gpResult1 <- geneticProgramming(functionSet = functionSet1,

+ inputVariables = inputVariableSet1,

+ constantSet = constantFactorySet1,

+ fitnessFunction = fitnessFunction1,

+ stopCondition = makeTimeStopCondition(5 * 60))

The first command will first set R’s random number generator

seed to a defined value (here 1) to create reproducible results. Then,

we perform a GP run that stops after 5 minutes and store the re-

sults of this run in the R variable gpResult1. The GP runtime bud-

get can be adjusted by changing the parameter to makeTimeStop-

Condition.

Analyzing the Result Population Finally, we select the best sine

approximation found during the GP run:

> bestSolution1 <- gpResult1$population[[which.min(gpResult1$fitnessValues)]]

rgp introduction 7

We then create a plot of the approximation created by bestSolution1

versus the true sine function (see figure 3):

> plot(y = bestSolution1(interval1), x = interval1, type = "l",

+ lty = 1, xlab = "x", ylab = "y")

> lines(y = sin(interval1), x = interval1, lty = 2)

Next Steps This concludes this basic tutorial. Of course there is

much room for experimentation. For example, we could change the

members of functionSet1 by adding the cosine function cos and

observe the effects on the GP result.

Please note that we omitted many RGP convenience functions

that would have made this particular example much shorter. Also

note that in this example, we only dealt with a single optimization

criterion and functions defined on real numbers. RGP also supports

multi-objective optimization of functions that work on arbitrary data

types. The next tutorials give practical examples of some of these

more advanced features.

4.3 Symbolic Regression

RGP offers convenience functions to simplify the solution of common

GP tasks. This tutorial shows how to use the symbolicRegres-

sion function to solve symbolic modelling and regression tasks with

minimal configuration work.

Theme of this tutorial is the discovery of a mathematical formula

describing the behaviour of a physical system based on measurement

data, i.e. symbolic regression. For sake of simplicity and clarity,

we generate this data by applying a text-book formula describing a

damped pendulum. The task of RGP then becomes the rediscovery of

that formula and the numerical values of the formula’s parameters.

Task Definition The formula below, given as an R function factory,

represents a damped pendulum. The arguments are the starting

amplitude A0, gravity g, pendulum length l, phase φ (phi), damping

factor γ (gamma), and radial frequency ω (omega).

> makeDampedPendulum <- function(A0 = 1, g = 9.81, l = 0.1, phi = pi, gamma = 0.5) {

+ omega <- sqrt(g/l)

+ function(t) A0 * exp(-gamma * t) * cos(omega * t + phi)

+ }

This function factory can now be used to generate functions de-

scribing the deflection of concrete pendulums of different specifica-

tions at a certain point in time t:

> pendulum1 <- makeDampedPendulum(l = 0.5)

> pendulum2 <- makeDampedPendulum(l = 1.2, A0 = 0.5)

The deflection of these pendulums can easily be plotted against

time (see figure 4):

8 oliver flasch

> interval1 <- seq(from = 0, to = 10, by = 0.05)

> plot(y = pendulum1(interval1), x = interval1, type = "l",

+ lty = 1, xlab = "t", ylab = "deflection")

> lines(y = pendulum2(interval1), x = interval1, lty = 2)

Creating Data We create a data frame of 512 samples of pendulum1

in the time interval [1, 10]. To simulate real measurement data, we

add normally distributed noise with mean 0 and standard deviation

0.01 to the simulated values.

> xs1 <- seq(from = 1, to = 10, length.out = 512)

> pendulum1Data <- data.frame(time = xs1,

+ deflection = pendulum1(xs1) + rnorm(length(xs1), sd = 0.01))

Symbolic Regression Run We are now ready to start a symbolic re-

gression run. Make sure to load the RGP package via library("rgp").

We choose a time budget of 2 minutes:

> modelSet1 <- symbolicRegression(deflection ~ time, data = pendulum1Data,

+ stopCondition = makeTimeStopCondition(2 * 60))

Result Analysis Selection and plotting of the model with best fit-

ness can be performed as follows:

> bestModel1 <- modelSet1$population[[which.min(modelSet1$fitnessValues)]]

> plot(y = bestModel1(xs1), x = xs1, type = "l",

+ lty = 1, xlab = "x", ylab = "y")

> lines(y = pendulum1(xs1), x = xs1, lty = 2)

A slightly improved version of the output produced by these com-

mands is shown in figure 1.

Next Steps The symbolicRegression commands offers many con-

figuration options to explore. See the online help available by typing

?symbolicRegression on an R command line for details or visit the

RGP website at rsymbolic.org.

Perhaps most importantly, symbolicRegression supports multi-

variate regression simply via R’s formula interface. To perform sym-

bolic regression in two variables x1 and x2 with output variable y,

the formula y x1 + x2 can be used as the first argument to symboli-

cRegression.

4.4 Strongly Typed Genetic Programming

Theme of this tutorial is the evolution of boolean functions via

strongly typed genetic programming. Although slightly more com-

plex than the previous tutorials, it will prepare you apply RGP to a

much broader set of tasks.

rsymbolic.org

rgp introduction 9

Task Definition An example, we will use typed genetic program-

ming to discover symbolic representations of the 3-parity function.4 4 The 3-parity function is the parity

function for 3 bits, i.e. a with 3 input
parameters.

For reasons of flexibility, we start with an R-implementation of the

general parity function:

> parity <- function(x) {

+ numberOfOnes <- sum(sapply(x, function(bit) if (bit) 1 else 0))

+ numberOfOnes %% 2 != 0

+ }

For a boolean input vector x, the parity function returns true if

the number of ones in x is odd. We specialize this general function

to three parameters with the following wrapper function:

> parity3 <- function(x1, x2, x3) parity(c(x1, x2, x3))

Next, we use the RGP tool function makeBooleanFitnessFunc-

tion to convert parity3 to a fitness function. The resulting parity-

FitnessFunction returns the number of different places in the value

table of a boolean function presented as a parameter and the value

table of the parity3 function:

> parityFitnessFunction <- makeBooleanFitnessFunction(parity3)

This fitness function represents a distance metric: The Hamming

distance of a 3-parameter boolean function given as the fitness func-

tion parameter from the parity3 function, i.e. a norm. In other

words, the parityFitnessFunction returns the number of input

vectors for which a given boolean functions differs in output from

the parity3 function. As there are 23 = 8 different possible boolean

input vectors of length 3, the worst fitness is 8, and the best fitness

is 0. Note the ambiguity of the term “worst fitness” in this case, as

simply negating the output of a function of worst fitness yields a

function with a perfect fitness of 0. GP search spaces of rich and

interesting structure are very common, and it is often beneficial

to customize GP search heuristic to exploit existing knowledge on

search space structure to speed up search considerably.

As in the previous tutorials, we have to load the RGP package

by issuing the library("rgp") command. Next, we define the set

of symbolic expressions to be searched by RGP by providing GP

building blocks for boolean functions. The constant factory set con-

tains a single constant factory that creates boolean constants by fair

coin-tosses:

> booleanConstantFactory <- function() runif(1) > .5

> booleanConstantSet <- constantFactorySet(

+ "booleanConstantFactory" %::% (list() %->% st("logical")))

The function set contains the boolean functions and (&), or (|)

and not (!):

> booleanFunctionSet <- functionSet(

+ "&" %::% (list(st("logical"), st("logical")) %->% st("logical")),

10 oliver flasch

+ "|" %::% (list(st("logical"), st("logical")) %->% st("logical")),

+ "!" %::% (list(st("logical")) %->% st("logical")))

The input variable set contains the three function parameters x1,

x2, and x3:

> booleanInputVariableSet <- inputVariableSet(

+ "x1" %::% st("logical"),

+ "x2" %::% st("logical"),

+ "x3" %::% st("logical"))

The building block definitions above use a special RGP syntax

for type annotations. The expression %::% type operator asso-

ciates an R expression with an RGP type. An RGP type is either a

base type of the form st(type name) or a function type of the form

list(parameter type 1, parameter type 2, ...) %->% re-

sult type. This is a recursive definition, meaning that RGP types

can express types for higher order functions, making them quite flex-

ible. The theoretical basis of RGP’s type system is the simply typed

lambda calculus [Barendregt et al., 1992]. A noteworthy limitation of

this system is the lack of the generic types available in programming

languages such as C++ or Java.

With these definitions, we are able to explain the semantics of the

types associated with the GP building blocks above:

• list() %->% st("logical") is the type of a function with no

arguments that returns a boolean value.5 This is the type of the 5 a logical in R’s terminology

single constant factory in the booleanConstantSet defined above.

• list(st("logical"), st("logical")) %->% st("logical")

is the type of a function taking two boolean arguments and re-

turning a boolean value. This is the type of each function in the

booleanFunctionSet defined above.

• Trivially, st("logical") is the type of boolean values. This is

the type of each input variable in the booleanInputVariableSet

defined above.

Strongly Typed Genetic Programming Run With the fitness function

and search space defined, we are now ready to start a strongly typed

GP run:

> typedGpResult1 <- typedGeneticProgramming(parityFitnessFunction, st("logical"),

+ functionSet = booleanFunctionSet,

+ inputVariables = booleanInputVariableSet,

+ constantSet = booleanConstantSet,

+ stopCondition = makeTimeStopCondition(30))

Note that typedGeneticProgramming expects the result type of

the solution functions to generate as a second parameter, as this

is not explicit from the building block definition. As we generate

boolean functions, we state st("logical") here.

rgp introduction 11

After running for 30 seconds, the result of the GP run is assigned

to the variable typedGpResult1. As in the previous tutorials, the

runtime (in seconds) can be adjusted by changing the parameter to

makeTimeStopCondition.

Result Analysis Selection of the boolean function with best fitness

is performed much like in the previous tutorials:

> bestFunction1 <- typedGpResult1$population[[which.min(typedGpResult1$fitnessValues)]]

See RGP’s online documentation for details on visualizing and an-

alyzing typed GP results. For example, the Rrules package includes

as a RGP dependency can be employed for rule-based simplification

of boolean functions.

4.5 Sequential Parameter Optimization for Genetic Programming

Finding good algorithm parameter settings for concrete Genetic

Programming applications is a complex task. Sequential parameter

optimization (SPO) provides a framework for applying modern

statistical methods to solve this task. This tutorial shows how to

apply the sequential parameter optimization toolbox (SPOT) to a

very simple RGP setup.

SPOT Installation As RGP, SPOT is available as an R package on

the comprehensive R archive network CRAN. To install SPOT and

all it’s dependencies, issue the following command in a running R

session:

> install.packages("SPOT")

SPO Definition The SPOT package includes a very simple exam-

ple for tuning RGP algorithm parameters. In this example, RGP is

configured to use single-objective GP with tournament selection to

solve the two-dimensional symbolic regression problem given in the

following R script:

> x1 <- seq(0, 4 * pi, length.out = 201)

> x2 <- seq(0, 4 * pi, length.out = 201)

> y <- sin(x1) + cos(2 * x2)

> data1 <- data.frame(y = y, x1 = x1, x2 = x2)

> result1 <- symbolicRegression(y ~ x1 + x2,

+ data = data1,

+ populationSize = populationSize,

+ selectionFunction = makeTournamentSelection(tournamentSize = tournamentSize),

+ functionSet = arithmeticFunctionSet,

+ stopCondition = makeTimeStopCondition(time))

> bestFitness <- min(sapply(result1$population, result$fitnessFunction))

This R script is part of the SPOT package and does not need to

entered by hand. It is reproduced here for illustrative purposes.

12 oliver flasch

SPO is applied to find parameter settings for populationSize

and tournamentSize that optimize (i.e. minimize) bestFitness.

The region of interest (ROI) for this optimization given in the file

rgp0001.roi and shown in Table 1. Parameters belonging to the

problem design, in this case just the parameter time, giving the

maximum runtime in seconds for a symbolic regression run, are

given in the file rgp0001.apd. Parameters for SPOT are given in the

file demo17Rgp.conf. All these files can be found in the directory

indicated by the R expression file.path(find.package("SPOT"),

"demo17Rgp").

Parameter Type ROI Interval

populationSize Integer [20, 1000]

tournamentSize Integer [20, 1000]

Table 1: Region of interest used in
the SPOT example for tuning RGP

algorithm parameters.

SPO Run To start the SPO run, issue the following commands:

> library("SPOT")

> confPath <- find.package("SPOT")

> confPath <- file.path(confPath, "demo17Rgp")

> confFile <- file.path(confPath, "rgp0001.conf")

> spotConfig <- spot(confFile)

SPO Result Analysis After the SPO run, results are available in a

list data structure stored in the spotConfig variable. See the SPOT

online documentation for details.

5 Outlook

This concludes the short introduction to RGP. There are many more

possibilities and use case scenarios not touched upon here. Also,

RGP is a evolving system, so new functionality might be present to

improve the performance or ease of use at tasks described in the

tutorials. The Rsymbolic website6 provides the most current informa- 6 see rsymbolic.org

tion on the current state of RGP, as well as additional tutorials and

documentation. This website also contains a roadmap of planned

features, access to development versions, as well as instructions on

how to contribute to the project.

As already mentioned, RGP also offers detailed online documen-

tation of all its functionality. Type help(package = "rgp") in a

running R session to get an overview of this documentation.

References

Wolfgang Banzhaf, Frank D. Francone, Robert E. Keller, and Pe-

ter Nordin. Genetic programming: an introduction: on the auto-

matic evolution of computer programs and its applications. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1998. ISBN

1-55860-510-X.

rsymbolic.org

rgp introduction 13

Henk Barendregt, S. Abramsky, D. M. Gabbay, T. S. E. Maibaum,

and H. P. Barendregt. Lambda calculi with types. In Handbook

of Logic in Computer Science, pages 117–309. Oxford University

Press, 1992.

Thomas Bartz-Beielstein, Marco Chiarandini, Luis Paquete, and

Mike Preuss, editors. Experimental Methods for the Analysis of

Optimization Algorithms. Springer, Berlin, Heidelberg, New York,

2010.

Riccardo Poli, William B. Langdon, and Nicholas Freitag

McPhee. A field guide to genetic programming. Published via

http://lulu.com and freely available at http://www.gp-field-

guide.org.uk, 2008. URL http://www.gp-field-guide.org.uk.

(With contributions by J. R. Koza).

R Development Core Team. R: A Language and Environment for

Statistical Computing. R Foundation for Statistical Computing,

Vienna, Austria, 2009. URL http://www.R-project.org. ISBN

3-900051-07-0.

Yi Sun, Daan Wierstra, Tom Schaul, and Juergen Schmidhuber.

Efficient natural evolution strategies. In GECCO ’09: Proceedings

of the 11th Annual conference on Genetic and evolutionary com-

putation, pages 539–546, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-325-9.

http://www.gp-field-guide.org.uk
http://www.R-project.org

14 oliver flasch

Figure 2: RGP’s graphical user

interface for symbolic regression: Al-
though RGP is basically a command-

line driven system, much like the
underlying R environment, graphical
user interfaces are provided where
they ease interaction and exploration.
The web-based graphical user inter-
face for symbolic regression, available
in form of the CRAN package RGPUI,
allows the direct manipulation of the
most important GP parameters.

rgp introduction 15

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

Figure 3: Best GP-generated poly-
nomial approximation (solid line)

versus true sine function (dashed

line).

0 2 4 6 8 10

−
1.

0
−

0.
5

0.
0

0.
5

t

de
fle

ct
io

n

Figure 4: Deflection against time of

two example pendulums: pendulum1
is shown as a solid line, pendulum2 is
shown as a dashed line.

Imprint

Oliver Flasch

SPOTSeven group / Rsymbolic project

Cologne University of Applied Sciences

Steinmüllerallee 1

51643 Gummersbach

Germany

Web: rsymbolic.org

Email: oliver.flasch@fh-koeln.de

© 2010-13 Rsymbolic project

All other trademarks and copyrights are

the property of their respective owners.

rsymbolic.org

	Genetic Programming
	Application Areas
	Features
	Tutorials
	Outlook

