Study and Analysis of Scientific Scopes, Issues and Challenges towards Developing a Righteous Wireless Body Area Network

Shah Murtaza Rashid Al Masud

Abstract—The escalating applies of wireless networks and the constant tininess of electrical devices have empowered the development of Wireless Body Area Network (WBAN). In this network various sensors are attached on clothing or on the body or even implanted under the skin. This network enables medical doctor to distantly monitor essential signs and organs of patients and provide real time opinions for medical diagnosis. The numerous new, realistic and ground-breaking applications of WBAN facilitate to advance health care and the quality of life. By means of a WBAN, the patient experiences a superior and greater physical mobility and is no longer constrained to reside in the hospital. The amalgamation of low-power, miniaturized, lightweight sensors nodes lead to the development of a proactive and unobtrusive Wireless Body Area Network (WBAN). A WBAN presents a long term health monitoring of a patient devoid of any restriction on his/her normal daily life activities. It is the easiest and fastest way to monitor patient's health status effectively. Although WBAN is the efficient way to diagnose patients existing condition but the challenges related to developing an effective WBAN is not studied and analyzed significantly. The effectiveness of the WBAN strongly depends on controlling the energy consumption of sensor nodes. To achieve energy efficiency, low duty cycle MAC protocols are used. In this paper, we discuss about the basic idea and key components of WBAN, basic difference between wireless sensor networks (WSN) and WBAN. technical challenges, and its importance, quality of service (QoS) and security, analysis of MAC features, various applications, different sensors; physiological signals, their frequency; different data rate, latency of WBANs, issues related to energy or power efficiency, and existing WBAN technologies. Finally, the open research issues and challenges are also pointed out.

Index Terms-WBAN, WSN, MAC, QoS, Energy efficiency

I. INTRODUCTION

The elderly people in various countries and their poverty are unable to manage the rising expenses of health care which is the vital point to prompt beginning of novel technology motivated improvement to existing health care applications. Small and intelligent medical devices namely sensors are the recent advances in electronics which can be used on, around, in or implanted in the human body. These devices need to send their data to an external medical server where it can be analyzed and stored. Wired connection for transferring this data occupies a high cost for operation and preservation where the wireless technology enables an easier application which is cost efficient [1]. This also helps the patient to feel better physical mobility and is no longer constrained to reside in a health care clinic. This is the next step in enhancing the personal health care where e-health is defined as the health care practice supported by electronic processes and communication which is more mobile and is referred to as

Manuscript received on May, 2013.

Shah Murtaza Rashid Al Masud, Department of Computer Science, Najran University, Najran, Kingdom of Saudi Arabia.

m-health [2]. In order to completely utilize the profits of wireless technology in telemedicine, e-health and m-health, a wireless on-body network or a Wireless Body Area Network (WBAN) appeared around 2001 by Van Dam et al. [3] and several researchers found the same interest in this new research area [4]-[8]. Using a wireless Body Area Network the results of patient's health measurements can be recorded over a longer period of time, improving the quality of the measured data [9]. The tiny and intelligent devices like sensors are used externally or internally to measure certain parameters of the human body, examples include measuring the heartbeat, body temperature or recording a prolonged electrocardiogram (ECG). On the other hand actuators are used for some specific actions according to the data they receive from the sensors or through interaction with the user. In order to establish communication between devices like sensors, actuators, receiver, transceivers the researchers might be used the current techniques like Wireless Sensor Networks (WSNs) and ad hoc networks and current protocols. But these are not well suited for WBAN because of its typical, tiny properties. The major challenges of WBAN are differentiated with those of in WSN are illustrated in Table I.

Technical properties and major issues of WBAN technology are illustrated in Table II which is used by the IEEE [10]. In this research paper we present a detail analysis of the issues, scopes, and challenges in Wireless Body Area Networks. Our objective is to make available and endow with a better understanding of the current research issues in this up-and-coming meadow. The remainder of this paper is organized as follows. Section 2, the patient monitoring and WBAN applications are discussed in Section 3 the key components of WBAN is discussed in Section 4 physiological signals. Section 5 power efficient WBAN systems is discussed, in Section 6 MAC features are analyzed towards developing an energy efficient WBAN, in Section 7 QoS issues and reliability are explained, in Section 8 available wireless technology and WBAN described, and in Section 9 open research issues are mentioned and finally we conclude the paper in conclusion section.

Table	I: Differences	between	WSN and	WBAN

Challenges	WSN	WBAN	
Scale	Monitored environment (m/km)	As large as human body parts (millimetres/ centimetres),	

		Home on he day (any (m))
Node number Nodes'	Many redundant nodes for wide area coverage Through node	Fewer, more accurate sensors nodes required (limited by space) Through node
Result accuracy	redundancy	accuracy and robustness
Node tasks	Node performs a dedicated task	Single sensors, each performs multiple tasks
Node size	Small is preferred, but not important	Pervasive monitoring, small is essential
Network topology	Very likely to be fixed and static	More variable due to body movement
Data rates	Homogeneous	Heterogeneous WBAN may occur in a more periodic manner and stable data rate.
Latency	Nodes can be physically unreachable after deployment. It may be necessary to maximize battery life-time in WSN at the expense of higher latency.	Replacement of batteries in WBAN nodes is much easier done when energy conservation is definitely beneficial.
Node replacement/ Access	Performed easily, nodes even disposable	Replacement of implanted nodes difficult
Node lifetime	Several years/months	Several years/months, smaller battery capacity
Power supply	Accessible and likely to be replaced more easily and frequently	Inaccessible and difficult to replace in an implantable setting
Power demand	Likely to be large, energy supply easier	Likely to be lower, energy supply more difficult
Energy scavenging source	Most likely solar and wind power	Most likely motion (vibration) and thermal (body heat)
Biocompatib ility	Not a consideration in most applications	A must for implants and some external sensors
level	Lower	patient's information
Context awareness		Very important because body physiology is very sensitive to context change

T C	X 11 1 1 1	
Impact of	Likely to be	More significant, may
data loss	compensated by	require additional
	redundant nodes	measures to ensure
		QoS and real-time
		data delivery
Wireless	Bluetooth,	Low power wireless
technology	Zigbee, GPRS,	technology required,
	WLAN,	with signal detection
		more challenging
Mobility	WSN nodes are	WBAN users may
	usually	move around. WBAN
	considered	nodes share the same
	stationary.	mobility pattern.
Authenticity	No need	Needs to install
of nodes		sensors on correct
installed on		place and correct
correct place		person
Real time	Not required in	Need grantee of
communicat	all the cases	accuracy and on time
ion		delivery of message
Architecture	Wires nodes	Sensors, actuators,
	communicate in	and central unit
	WiFi are ad-hoc	communicate through
	mode fashion	PDA

Table II: IEEE specification for WBAN technology

Distance/	2 m standard and 5 m special use; in,	
Network Density	2.4 nets/m2	
Network Size	Max : 100 devices/network, modest < 64 devices per BAN	
Target lifetime	Up to 5 year for implants Up to 1 week for wearable Ultra-long for implants Long for wearable	
Target frequency bands	MedRadio, ISM, WMTS, UWB Global Unlicensed and Medical bands	
Power Consumption	~1mW/ Mbps, support for several power management and consumption scheme	
Peak power consumption	Between 0.001–0.1mW in stand-by mode up to 30mW in fully active mode Scalable	
Network Throughput	100 Mbps Max	
Data rate	From sub kb/s up to 10 Mb/s Scalable	
МАС	Low power listening, wake up, turn-around and synchronization Scalable, reliable, versatile, self-forming	
Topology	Self-forming, distributed with multi-hop support Star, Mesh or Tree	
Device Duty cycle, Very Low, Low, and High duty cycle modes	From 0.001% up to 100% Adaptive, Scalable Allows device driven degradation of services	

Startup Time	$< 100 \ \mu s \ or < 10 \ \% \ of Tx \ slot$	
Latency	10 ms	
Network setup	< 1 sec (Per device setup time	
time	excludes network initialization)	
Coavistance	Simultaneous co-located operation	
COEXISIENCE	of up to 10	
	independent BANs	
	• BER: from 10–10 to 10–3	
	• P2P latency: from 10ms – 250ms	
QoS support and	 Reservation and prioritization 	
differentiation	Real-time waveform data, periodic	
	parametric	
	data, episodic data and emergency	
	alarms	
	Upgradeable, scalable, backwards	
	compatible, effective sleep mode,	
Future proof	peer to peer, point to multi point	
1	communication , QoS and	
	guaranteed bandwidth, high privacy	
Fault tolerance	Ability to isolate and recover from	
	single point of failure	
	Single point of failure	
Dynamic	nodes moving in and out of range of	
Environment	each other. Body shadowing	
Liivitoimient	(twisting, turning, running).	
	Attenuation	
	Authentication Authorization	
~ .	Privacy. Confidentiality.	
Security	Encryption. Message integrity:	
	Many levels, long term, short term,	
	light weight	
Safety/Biocompat	Meet regulatory requirements. e.g.,	
ibility	FDA, SAR and HIPPA; No harmful	
	effects of long term continuous use	
Enconomio	Non-invasive, unobtrusive, small	
Ergonomic	size, weight and form-factor Size,	
consideration	shape, weight and form factor	
	restricted by location and organ	
Reprogramming	Ability to reprogram, recalibrate,	
Calibration	tune and configure devices	
Customization	wirelessly; Personalized, integrated,	
Custonnization	configurable and context aware	
	services	
Antenna Pattern	Omni Directional, small, and	
	flexible	

International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-3, Issue-2, May 2013

reduces the risk of fainting and in later life blindness, loss of circulation and other complications [12]. Applications of WBAN can categorized depending on the domain of application. The major WBAN applications for medical treatment, healthcare and diagnosis are illustrated in the Table III mentioned bellow.

Table	III: Ap	plications	of	WBAN
		_		

Field of	Functions of WBAN
Applications/Diseases	
Cardiovascular Disease	The corresponding medical
(CVD): 30% of all global	staff can do treatment
deaths17.5 million	preparation in advance as they
Deaths per Year, 2015,	receive vital information
expected 20 million	regarding heart rate and
patients [13]	irregularities of the heart
Paraplegic: 2 million	Interaction between the data
people worldwide, live	from the sensors and the
with a spinal cord injury	actuators makes it possible to
(SCI). Each year 11,000	restore the ability to move
new injuries are reported.	[15]
Every 49 minutes a new	
injury occurs [14]	
Broken teeth & building	To reduce errors and improve
crowns and bridges	productivity in the
C	development of dental
	prosthetics
Cancer: 12.7 million	Sensor can be placed in the
cancer cases and 7.6	suspect locations and doctor
million cancer	can start treatment as soon as
deaths are estimated to	a cancer cell detected.
have occurred in 2008	
[16]	
Alzheimer, depression,	Wireless sensor network can
Hypertension: More than	help homebound and elderly
65 year old citizen. 357	people who often feel lonely
million in 1990 Expected	and depressed by detecting
761 million in 2025	any abnormal situation and
	alerting neighbors, family or
	the nearest hospital.
Diabetes: Worldwide,	If the sensor monitors a
more than 246 million	sudden drop of glucose, a
people, expected to rise	signal can be sent to the
to 380 million by 2025	actuator in order to start the
[17]	injection of insulin.
	Consequently, the patient will
	experience fewer nuisances
	from his disease [18]
Asthma: 300 million	Sensor nodes that can sense
people worldwide.	the allergic agents in the air
250,000 annual deaths	and report the status
[19]	continuously to the physician
	and/or to the patient himself
	[20]
Defective Tooth	For observing the patient's
positions treatments [21]	dental retainer usage.
I THE THE T	
Epileptic Seizures Strike:	The portable unit "Mobi" is
Early Warning 275,000	designed to detect abnormal
deaths from stroke each	brain activity that happens
year [22]	before a seizure. When the
	signs of electrical trouble are
	picked up the device will

Patients continuous monitoring is vital and the usefulness

II. PATIENTS' MONITORING AND WBAN APPLICATIONS

of WBAN regarding this issue is easily understandable. The researchers from many medical disciplines have already presented that the main cause of death in the world is Cardio Vascular Disease (CVD), representing 30% of all global deaths. According to the World Health Organization, worldwide about 17.5 million people die of heart attacks or strokes each year; in 2015, almost 20 million people will die from CVD. These deaths can often be prevented with proper health care [11]. Worldwide, more than 246 million people suffer from diabetes, a number that is expected to rise to 380 million by 2025 [12]. Frequent monitoring enables proper dosing and

	1
	transmit a warning to a receiver and the patient could then take steps to set down or tell someone.
Pain treatment	Actuator is a spinal cord Stimulator implanted in the body for long-term pain relief.
Visually impaired: 285 million people are visually impaired, worldwide: 39 million are blind and 246 have low vision [23]	An artificial retina, consisting of a matrix of micro sensors, can be implanted into the eye beneath the surface of the retina. The artificial retina translates the electrical impulses into neurological signals. The input can be obtained locally from light sensitive sensors or by an external camera mounted on a pair of glasses
High Blood pressure: High blood pressure contributes to more than 12.7 million strokes worldwide. [22]	If the sensor monitors a change in blood pressure more than threshold value, a signal can be sent to the actuator in order to start the injection medicine. Consequently, there are lesser chance of strokes
Parkinson's disease: An estimated seven to 10 million people worldwide are living with Parkinson's disease [24], [25]	estimate the severity of tremor, bradykinesia, and dyskinesia from accelerometer data and performed a thorough assessment [26]
Renal failure 2008, 2 million people with end-stage kidney disease due to diabetes in United States [17]	Can provide portable, noninvasive fall risk assessment in end stage renal disease patients on hemodialysis
Post operative monitoring	the patient will no longer need to stay in bed, but will be able to move around freely

III. THE KEY COMPONENTS OF WBAN

Towards bridging the physical world and electronic systems of WBAN the researchers, academicians, industrial personnel must use sensors as the central and key component. The frequency and amplitude range of human physiological signals are comparatively low; thus, a low sampling frequency and low data transmission rate would be sufficient. However, what kind of and how many sensors a WBAN system employs depend largely on the application scenario and the system infrastructure. To better monitor a human's vital signals, behavior, and surrounding environment, a wide range of commercially available sensors can be deployed, accelerometer such as and gyroscope, ECG, electromyography (EMG), and electroencephalography (EEG) electrodes, pulse oximetry, respiration, carbon dioxide (CO2), blood pressure, blood sugar, humidity, and temperature sensors etc [27].These will help to measure the physiological data characteristics, as shown in Table IV. It also notices the wide variation in data rate, bit error rate (BER), delay tolerance, duty cycle, and lifetime, which requires scalable solutions with quality of service (QoS) provisions.

Tuble I VI Bells	sons enuracteristic	s used in () Dilit
Sensors	How it works	Data rate(kbps), Bit error rate (BER), Setup time, Duty cycle, Desired battery lifetime, P2P latency
Accelerometer	Measures the acceleration relative to freefall in three axes	High, <10 kbps up to 12 nodes, <10 ⁻¹⁰ , <3s, <1%, >1 week, < 250 ms
Gyroscope	Measures the orientation based on the principles of angular momentum	High, <10 kbps up to 12 nodes, <10 ⁻¹⁰ , <3s, <1%, >1 week, < 250 ms
ECG	Measures potential difference across electrodes put on corresponding parts of the body	High, 6.0, <10 ⁻¹⁰ , <3s, <10%, >1 week, <250 ms
EMG	Measures potential difference across electrodes put on corresponding parts of the body	High, 1.536 Mbps for up to 6 nodes,<10 ⁻¹⁰ , <3s, <10%, >1 week, < 250 ms
EEG	Measures potential difference across electrodes put on corresponding parts of the body	High, 3.6, <10 ⁻¹⁰ , <3s, <10%, >1 week, < 250 ms
Pulse Oximetry	Measures ratio of changing absorbance of the red and infrared light passing from one side to the other of a thin part of the body's anatomy	Low, <10 ⁻¹⁰ , <3s, <1%, >1 week, < 250 ms
Respiration	Uses two electrodes, cathode and anode covered by a thin membrane to measure the oxygen dissolved in a liquid	Low, 0.24; <10 ⁻¹⁰ , <3s, <1%, >1 week, < 250 ms
Carbon dioxide	Uses the infrared light and measures the	Low, $<10^{-10}$, $<3s$, <1%, >1 week, <250 ms

Table IV: Sensors' characteristics used in WBAN

	absorption of the	
	gas presented	
Blood pressure	Measures the	Low, 0.05, <10
1	systolic pressure	kbps up to 12
	(peak pressure)	nodes. $<10^{-10}$. $<3s$.
	and diastolic	<1%. >1 week. <
	pressure	250 ms
	(minimum	250 ms
	(minimum prossure)	
Dlood anger	Traditionally	Low <10 ⁻¹⁰ <20
blood sugar	analyzas drama of	L0W, <10, <58,
	anaryzes drops of	<1%, >1 week, <
	blood from a	250 ms
	tinger tip	
	recently, uses	
	non-invasive	
	method including	
	a near infrared	
	spectroscopy,	
	ultrasound,	
	optical	
	measurement at	
	the eve. and the	
	use of breath	
	analysis	
Humidity	Measures the	Very low
mannanty	conductivity	very low
	conductivity changes of the	
	lavel of humidity	
TT (level of numidity	X7 1
Temperature	Uses a silicon	Very low,
	integrated circuit	0.0024-0,05;
	to detect the	$<10^{10}$, $<3s$, $<1\%$,
	temperature	>1 week, < 250 ms
	changes by	
	measuring the	
	measuring the	
	resistance	
Drug delivery	resistance	<16
Drug delivery Deep brain	resistance	<16 <320, <10 ⁻³ , <3s,
Drug delivery Deep brain simulations	resistance	<16 <320, <10 ⁻³ , <3s, <50%,>3 years, <
Drug delivery Deep brain simulations	resistance	<16 <320, <10 ⁻³ , <3s, <50%,>3 years, < 250 ms
Drug delivery Deep brain simulations Hearing Aid	resistance	<16 <320, <10 ⁻³ , <3s, <50%,>3 years, < 250 ms 70, <10 ⁻¹⁰ , <3s.
Drug delivery Deep brain simulations Hearing Aid	resistance	<16 <320, <10 ⁻³ , <3s, <50%,>3 years, < 250 ms 70, <10 ⁻¹⁰ , <3s, <10%, >40 hours. <
Drug delivery Deep brain simulations Hearing Aid	resistance	<16 <320, <10 ⁻³ , <3s, <50%,>3 years, < 250 ms 70, <10 ⁻¹⁰ , <3s, <10%, >40 hours, < 250 ms
Drug delivery Deep brain simulations Hearing Aid	resistance	
Drug delivery Deep brain simulations Hearing Aid Capsule Endoscope	resistance	<16 <320, <10 ⁻³ , <3s, <50%,>3 years, < 250 ms 70, <10 ⁻¹⁰ , <3s, <10%, >40 hours, < 250 ms 500, <10 ⁻¹⁰ , <3s, <50% >24 hours <
Drug delivery Deep brain simulations Hearing Aid Capsule Endoscope	resistance	<16 <320, <10 ⁻³ , <3s, <50%,>3 years, < 250 ms 70, <10 ⁻¹⁰ , <3s, <10%, >40 hours, < 250 ms 500, <10 ⁻¹⁰ , <3s, <50%, >24 hours, < 250 ms
Drug delivery Deep brain simulations Hearing Aid Capsule Endoscope	resistance	$\begin{array}{r} <16 \\ <320, <10^{-3}, <3s, \\ <50\%, >3 \text{ years, } < \\ 250 \text{ ms} \\ \hline 70, <10^{-10}, <3s, \\ <10\%, >40 \text{ hours, } < \\ 250 \text{ ms} \\ \hline 500, <10^{-10}, <3s, \\ <50\%, >24 \text{ hours, } < \\ 250 \text{ ms} \\ \hline c 0.5 <10^{-10} = <2 \\ \hline \end{array}$
Drug delivery Deep brain simulations Hearing Aid Capsule Endoscope Drug Dosage		$\begin{array}{r c c c c c c c c c c c c c c c c c c c$
Drug delivery Deep brain simulations Hearing Aid Capsule Endoscope Drug Dosage		$\begin{array}{r c c c c c c c c c c c c c c c c c c c$
Drug delivery Deep brain simulations Hearing Aid Capsule Endoscope Drug Dosage		$\begin{array}{r} <16 \\ <320, <10^{-3}, <3s, \\ <50\%, >3 \ years, <250 \ ms \\ \hline 70, <10^{-10}, <3s, \\ <10\%, >40 \ hours, <250 \ ms \\ \hline 500, <10^{-10}, <3s, \\ <50\%, >24 \ hours, <250 \ ms \\ <0.5, <10^{-10}, <3s, \\ <1\%, >24 \ hours, <250 \ ms \\ \hline <0.5, <10^{-10}, <3s, \\ <1\%, >24 \ hours, <250 \ ms \\ \hline \end{array}$
Drug delivery Deep brain simulations Hearing Aid Capsule Endoscope Drug Dosage Audio		
Drug delivery Deep brain simulations Hearing Aid Capsule Endoscope Drug Dosage Audio		$\begin{array}{r} <16 \\ <320, <10^{-3}, <3s, \\ <50\%, >3 \ years, <250 \ ms \\ \hline 70, <10^{-10}, <3s, \\ <10\%, >40 \ hours, <250 \ ms \\ \hline 500, <10^{-10}, <3s, \\ <50\%, >24 \ hours, <250 \ ms \\ <0.5, <10^{-10}, <3s, \\ <1\%, >24 \ hours, <250 \ ms \\ \hline <0.5, <10^{-10}, <3s, \\ <1\%, >24 \ hours, <250 \ ms \\ \hline 1 \ Mbps \ for \ 3 \ nodes, \\ <10^{-5}, <3s, <50\%, \\ \end{array}$
Drug delivery Deep brain simulations Hearing Aid Capsule Endoscope Drug Dosage Audio		$\begin{array}{r c c c c c c c c c c c c c c c c c c c$
Drug delivery Deep brain simulations Hearing Aid Capsule Endoscope Drug Dosage Audio		
Drug delivery Deep brain simulations Hearing Aid Capsule Endoscope Drug Dosage Audio		$\begin{array}{r c c c c c c c c c c c c c c c c c c c$
Drug delivery Deep brain simulations Hearing Aid Capsule Endoscope Drug Dosage Audio Video/ Medical		$\begin{array}{r llllllllllllllllllllllllllllllllllll$
Drug delivery Deep brain simulations Hearing Aid Capsule Endoscope Drug Dosage Audio Video/ Medical Imaging		

IV. PHYSIOLOGICAL SIGNALS

Physiological signals are the raw data that we must send and receive through wireless technology like sensors as shown in Table V. Most physiological signals are low frequency in nature and occupy a small information bandwidth. At such low frequencies and low amplitudes,

International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-3, Issue-2, May 2013

some problems inherent to circuits need additional attention [27].

Table V: Physiological signal and its parameters

Physiological	Signal frequency	Range of
		Range 01
Signal	range/ Bandwidth	parameter
	(Hz)	
ECG signal	0.01-250	0.5-4 mV
Respiratory rate	0.1-10	2-50
		breaths/min
Blood pressure	0-50	10-400 mg/Hg
(BP)		
Blood flow	0-20	1-300 ml/s
Blood pH	0-2	6.8-7.8 pH
EEG	0.5-60	3µV-300µV
Body	0-0.1	32-40 ⁰ C
temperature		
EMG (Electro	10-5000	10µV-15mV
myogram)		
GSR (Galvanic	0.03-20	30µV-3mV
Skin Reflex)		
Cardiac rate	0.4-5	
Oximetry	0-30	
Arterial pressure	0-60	
Nerve potentials	Max 10,000	0.01-3 mV

V. POWER EFFICIENT WBAN SYSTEM

Several attributes need to be considered for the design of an energy-efficient MAC protocol for a WBAN. The prime attribute is energy efficiency. WBAN devices, being operated by a battery require stringent restriction on the use of energy resources. To achieve this goal, design of energy-aware communication protocol is required. Energy-efficiency can be increased by minimizing the energy wastes identified below. However, WBANs are intended to support life saving critical applications. Hence reliability, safety and security are considered important metrics besides energy efficiency. The QoS is also an important factor of a good MAC protocol. Other parameters of importance include scalability, adaptability to changes in network topology, throughput, jitter, latency and bandwidth utilization. Throughput, jitter and latency requirements depend on the nature of the application. In case of medical applications, latency should be less than 125ms for QoS packet, whereas in case of consumer electronics (CE) applications, jitter and latency should be less than 50ms and 250ms, respectively [28].

Almost all the devices in wireless sensor networks are battery operated therefore, power challenge is present in almost every area of application of wireless sensor networks, but limitation of a smart sensor implanted on a person still poses even further challenge. In a full active mode a node can't operate more than a month because a typical alkaline battery provides about 50 watt-hours of energy [29]. Any commercial applications have to guarantee that all the devices will work for at least a year without any maintenance / replacement. For example heart pacemaker's devices. The developers have to design better scheduling algorithms and power management schemes to deal with these power issues. Critical parameters in the design of a power efficient WBAN system are described in Table VI.

Parameter	Functions	
Average bandwidth	Influences the active communication time of wireless controllers and therefore the duty cycle of the system	
Maximum required Bandwidth	Critical for bursts of urgent messages, and affects the maximum latency for data transmissions	
Active power	Determines the type, size and weight of the battery, as well as the battery life.	
Standby power	Determines the maximum battery life, as a function of the system duty cycle	
Startup time	Represents the overhead and determines the efficiency of individual transmissions	
Communication Setup	Protocol-related timing parameter that represents time necessary to (re)establish a connection between nodes or a node and a gateway	
Standards based communication technology	Influences the system interoperability and application development time	
Protocol stack size and processing requirements	Determine characteristics of the wireless sensor Platform	

Table VI: Parameters in the design of power efficientWBAN and their functions

VI. ANALYSIS THE MAC FEATURES TOWARDS DEVELOPING EFFICIENT WBAN

The main schemes of media access control (MAC) protocols for WBANs are grouped into contention-based or random access and contention free or scheduled based protocols. Contention-based MAC such as Carrier Sense Multiple Access/ Collision Avoidance (CSMA/CA) protocols nodes competes for the channel to transmit data. Nodes have to perform CCA before transmission of data. If the channel is busy, the node defers its transmission till it becomes idle. The Time Division Multiple Access (TDMA) is a scheduled based multiple access technique where transmission of packets are managed in the form of time frames and time slot. A time slot can be seen as a dedicated transmission resource used to carry data with minimum or no overhead. In a TDMA, the channels are divided into fixed/variable time slots which are assigned to a particular sensor node that transmit during its slot period. However, other scheduled based MAC like Code Division Multiple Access (CDMA) and Frequency Division Multiple Access (FDMA) protocols are not suitable in the context of sensor networks, since the sensors are often constrained in terms of limited frequency bands and computation capability. CSMA based MAC protocols such as S-MAC [30], T-MAC [31], B-MAC [32] and WiseMAC [33] have not proved to be energy efficient for WBANs. TDMA based contention-free MAC protocols such as PACT [34], LEACH [35], FLAMA

[36] and HEED [37] are unable to satisfy the stringent requirements of WBAN. Other MAC protocols such as Preamble-based TDMA [38], Heartbeat Driven MAC (H-MAC) [39], Reservation-based Dynamic TDMA (DTDMA) [40], Distributed Queuing Body Area Network (DQBAN) [41], [42] and [43] have also been investigated for WBAN in recent literature. A comparison between TDMA and CSMA protocols are summarized in Table VII as reported in literatures.

(Key features of WBAN MAC Protocols)		
Performance	Scheduled	Random Access
parameters	MAC:TDM	MAC:CSMA/CS
(MAC Features)	А	
Power consumption,	Low	High
energy efficiency		
Traffic handling	High	Low
capability		
Bandwidth	Maximum	Low
utilization		
Network Scalability	Poor	Good
Effect of packet	Fixed/Laten	Variable/Low
failure, Delay/Loss	су	
Transmission	High	Very Low
efficiency		
Time	Required/Es	Not applicable
Synchronization	sential	

Table VII: Comparison between TDMA and CSMA/CA (Key features of WBAN MAC Protocols)

VII. QUALITY OF SERVICE ISSUES AND RELIABILITY

According to [44], [45], [46] proper quality of service (QoS) handling is an important part in the framework of risk management of medical applications. A crucial issue is the reliability of the transmission in order to guarantee that the monitored data is received correctly by the health care professionals. The reliability can be considered either end to-end or on a per link base. Examples of reliability include the guaranteed delivery of data (i.e. packet delivery ratio), in-order-delivery. Moreover, messages should be delivered in reasonable time. The reliability of the network directly affects the quality of patient monitoring and in a worst-case scenario; it can be fatal when a life-threatening event has gone undetected. WBAN QoS for all network layers is described in Table VIII bellow.

Table VII	I: QoS	issues	in	WB	AN
-----------	--------	--------	----	----	----

Layers	QoS issues		
Application Layer	It includes system lifetime,		
	response time, data novelty,		
	detection probability, data		
	reliability and data resolution.		
Transport Layer	It includes reliability, bandwidth,		
	latency, and cost.		
Network Layer	It includes path latency, routing		
	maintenance, congestion		
	probability, routing robustness and		
	energy efficiency.		
Connectivity	it includes network diameter,		
Maintenance	network capacity, average path cost,		
Layer	connectivity, robustness and		

	connectivity maintenance
Coverage Maintenance Layer	It includes coverage percentage, coverage reliability, coverage robustness, coverage maintenance.
MAC Layer	It includes communication range, throughput, transmission reliability, and energy efficiency
Physical Layer	It includes physical capabilities impose resource

VIII. AVAILABLE WIRELESS TECHNOLOGY AND WBAN

We analyzed several wireless technologies that are available and foremost contenders in the emerging market of WBANs. Table IX summarizes the PHY characteristics of these technologies along with their merits and demerits. Note that end-to-end performance is determined by the complete protocol stack (i.e., including PHY and upper protocol layers). The names of technologies are: Bluetooth (http://www.bluetooth.com), Bluetooth Low Energy (BTLE), ZigBee (http://www.zigbee.org), ANT (http://www.thisisant.com), Sensium (http://www.toumaz.com), Zarlink (http://www.zarlink.com), BodyLAN (www.fitlinxx.com) and Z-Wave (www.zwave.com).

Table IX: Existing wireless technology for WBAN

Tashnalarr	DUV	Marrit Damarrit
Technology	PHY	Ment-Dement
	Characteristics:	
	(Spectrum,	
	Modulation,	
	Channels, Data	
	rate, Operating	
	space, Peak	
	Power, nJ/b,	
	Topology, Join	
	time)	
Bluetooth	2.4 GHz, GFSK,	Established standard,
classic	79,1–3 Mb/s,	widespread adoption in
	1–10 m on-body	cell
	only,	phones and laptops,
	~45mA@3.3V,	health device profile
	50, Scatter net,	defined, sufficient data
	~3 s	rate, low cost
		Higher power, limited
		scalability, limited
		OoS, coexistence with
		ISM band
		technologies, limited
		security, on-body only
		, , , , , , , , , , , , , , , , , , ,
Bluetooth	2.4 GHz, GFSK,	Interoperable with
Low	3,1Mb/s, 1–10 m	Bluetooth, lower
Energy	on-body only,	power than Bluetooth,
	~28mA @3.3V,	leverage Bluetooth
	92, Scatter net.	brand Compatibility
	<100ms	requirements limit
		design freedom.
		limited scalability.
		limited OoS.
		coexistence with ISM

ZigBee	2.4 GHz, O-QPSK,16,250 kb/s, 10–100 m on-body only, ~16.5mA @3.3V, 119, Star, Mesh; 30ms	band technologies, on-body only Emerging standard, healthcare profile defined, lower power than Bluetooth, scalable, smaller memory footprint, Low data rate, limited QoS, coexistence with ISM band technologies, on-body only
ANT	2.4 GHz, GFSK, 125,1Mb/s, 10–30 m on-body only, ~22mA @3.3V, 73, Star, Tree or Mesh; Not defined	Simple protocol, low power, healthcare device profiles defined, smaller footprint Proprietary, limited throughput, limited QoS, coexistence with ISM band technologies, general-purpose design, on-body only
Sensium	868 MHz-915 MHz, BFSK, 16,50 kb/s, 1–5 m on-body only, ~3mA @3.3V, 72, Star, <3 s	Ultra-low-power, custom designed for BANs Proprietary, low data rate, limited QoS, coexistence with ISM band technologies
Zarlink ZL70101	402–405 MHz, 433–434 MHz, 2FSK/4FSK, 10 MedRadio, 2 ISM, 200–800 kb/s, 2 m on-body only, ~5mA @3.3V, 21, P2P, <2 s	Ultra-low power, Med Radio compliant, custom designed for implants Proprietary, implants only

IX. OPEN RESEARCH ISSUES

Although a lot of research and examine are going on, still a lot of open issues exist, they are:

- The propagation of electromagnetic waves in and on the body and a few models for the physical layer are proposed.
- New emerging technologies such as galvanic coupling and transformation of information via the bones offer promising results and need to be investigated more thoroughly.
- On the data link layer, more WBAN specific MAC-protocols need to be developed. A BAN needs efficient handling of resources. To maintain a high performance and smooth flow in the network, it should be as hassle-free as possible in terms of operations. Power saving and low delay are the important factors. Hence, we evidently think that a MAC protocol for BAN should consider the following design issues:
- Minimize power consumption to increase the lifetime of the nodes
- Maximize sleep time for a node

- Minimize unnecessary wakeup periods to save power
- Minimize overheads (e.g. control packets overheads) in the Network
- Minimize idle listening time
- Minimize collision and retransmission of a packet
- Minimize delay
- Efficient and quick response to emergency situations with minimum delay
- The mobility of the nodes of WBAN.
- Additional low-power features such as an adaptive duty cycle for lowering the idle listening and overhearing,
- The use of the human physiology such as heart beat to ensure time synchronization.
- Concerning the network layer, a promising research track is the combination of thermal routing with more energy efficient mechanisms.
- More efficient QoS and reliability mechanisms are needed.
- Mobility support embedded in the protocol
- Security
- Inter operability issue.

With an orderly combination of lower energy protocols and energy scavenging, the optimal solution for achieving independent Wireless Body Area Networks can be reached. For a WBAN, energy scavenging from on-body sources such as body heat and body vibration seems very well suited. The definitive objective is to produce a small and smart band aid containing all necessary technology for sensing and communication with a base station.

X. CONCLUSION

Wireless Body Area Network is a promising technology that can revolutionize next-generation healthcare and entertainment applications. WBAN brings out a new set of challenges in terms of scalability, energy efficiency, antenna design, QoS, coexistence, interference, mitigation, security, and privacy to name a few, which are highlighted in this article. We also discussed the state-of-the-art technologies and MAC standards relevant to WBANs, and their merits and demerits. WBAN standard formed by IEEE 802.15.6 Task Group also discussed. In this paper we presented a complete appraisal and outlook of several promising and potential fields of WBAN research arenas and enabling technologies, including application scenarios, sensor/actuator devices, radio systems, and interconnection of WBANs. WBAN skills, technology and tools need the blessing of key stakeholders in the medicine, healthcare, and hospital domain including the medical electronics industry, patients, physicians, caregivers, policy makers, patient advocacy groups, and payers (insurance companies) for it to become omnipresent technology. Educators, the engineers. researchers, and practitioners from manifold disciplines must come together and must struggle hard to defeat technical roadblocks in order to bring the vision of a ubiquitous healthcare network to reality.

REFERENCES

 D. Cypher, N. Chevrollier, N. Montavont, and N. Golmie, \Prevailing over wires in healthcare environments: benefits and challenges," IEEE Communications Magazine, vol. 44, no. 4, pp. 56{63, Apr. 2006.

- [2] R. S. H. Istepanian, E. Jovanov, and Y. T. Zhang, \Guest editorial introduction to the special section on m-health: Beyond seamless mobility and global wireless health-care connectivity," Information Technology in Biomedicine, IEEETransactions on, vol. 8, no. 4, pp. 405{414, Dec. 2004.
- [3] K. Van Dam, S. Pitchers, and M. Barnard, \Body area networks: Towards a wearable future," in Proceedings of WWRF kick o_ meeting, Munich, Germany, 6-7 March 2001.
- [4] R. Schmidt, T. Norgall, J. M• orsdorf, J. Bernhard, and T. von der G"un, \Body area network ban{a key infrastructure element for patient centered medical applications." Biomedizinische Technik. Biomedical engineering, vol. 47, no. 1, pp. 365{368, 2002.
- [5] B. Gyselinckx, C. Van Hoof, J. Ryckaert, R. F. Yazicioglu, P. Fiorini, and V. Leonov, \Human++: autonomous wireless sensors for body area networks," in Custom IntegratedCircuits Conference, 2005. Proceedings of the IEEE 2005, Sep. 2005, pp. 13-19.
- [6] C. Otto, A. Milenkovic, C. Sanders, and E. Jovanov, \System architecture of a wireless body area sensor network for ubiquitous health monitoring," Journal of Mobile Multimedia, vol. 1, no. 4, pp. 307{326, 2006.
- [7] B. Lo and G.-Z. Yang, \Body sensor networks: Infrastructure for life science sensing research," in Life ScienceSystems and Applications Workshop, 2006. IEEE/NLM, Bethesda, MD,, Jul. 2006, pp. 1-2. 8.
- [8] A. D. Jurik and A. C. Weaver, \Remote medical monitoring," Computer, vol. 41, no. 4, pp. 96{99, 2008.
- [9] S. Park and S. Jayaraman, \Enhancing the quality of life through wearable technology," IEEE Engineering in Medi- cine and Biology Magazine, vol. 22, no. 3, pp. 41{48, May/Jun. 2003.
- [10] IEEE 802.15 WPAN Task Group 6 Body Area Networks. [Online]. Available: http://www.ieee802.org/15/pub/SGmban.html
- [11] World Health Organization [online] http://www.who.int/mediacentre/factsheets/fs317/en/index.html
- [12] International Diabetes Federation (IDF) [Online] http://www.idf.org/.
- [13] WHO, Global atlas on cardiovascular disease prevention and control
- [14] "Facts & statistics," Spinal Injuries Association, 2011. [Online]. Available: http://www.spinal.com.au/information/facts-statistics/.
- [15] H. Zhou and H. Hu, "Human motion tracking for rehabilitation—Asurvey," Biomedical Signal Processing and Control, vol. 3, no. 1,pp. 1-18, Jan. 2008.
- [16] A. Jemal, F. Bray, and J. Ferlay, "Global Cancer Statistics," American Cancer Society, Inc, vol. 61, no. 2, pp. 69-90, 2011.
- [17] "Diabetes Statistics," Association, American Diabetes, 2011.[Online].

Available:http://www.diabetes.org/diabetesbasics/diabetes-statistics/

- [18] J. Zhao, S. Carolina, O. Mems, I. Diabetes, U. States, and U. States, "A MEMS Viscometric Glucose Monitoring Device," in 13th International Conference on Solid-State Sensors, Actuator sand Microsystems, 2005, pp. 1816-1819.
- [19] "Asthma Statistics," American Academy of Allergy Asthma &Immunology, 2011. [Online]. Available:http://www.aaaai.org/about-the-aaaai/newsroom/asthmast atistics.aspx.
- [20] L. J. Akinbami, J. E. Moorman, and X. Liu, "Asthma prevalence health care use, and mortality: United States, 2005-2009.,"National health statistics reports, no. 32, pp. 1-14, Jan. 2011
- [21] Martin Brandl, Julius Grabner, Karlheinz Kellner, Franz Seifert, Johann Nicolics, Sabina Grabner, and Gerald Grabner, "A Low-Cost Wireless Sensor System and Its Application in Dental Retainers", IEEE SENSORS JOURNAL, VOL. 9, NO. 3, MARCH2009
- [22] Stroke," U.S News Health, 2011. [Online]. Available:http://health.usnews.com/health-conditions/brain-health/st roke.
- [23] "Visual impairment and blindness," World Health Organization,2011.

Available:http://www.who.int/mediacentre/factsheets/fs282/en/.

- [24] "Statistics on Parkinson's," Parkinson's disease Foundation, 2011. [Online]. Available: http://www.pdf.org/en/parkinson_statistics.
- [25] "Neurology and public health," World Health Organization, 2011.[Online]Available:http://www.who.int/mental_health/neurolog y/en/.
- [26] S. Patel et al., "Monitoring motor fluctuations in patients with Parkinson's disease using wearable sensors.," IEEE transactions on information technology in biomedicine, vol. 13, no. 6, pp. 864-73,Nov. 2009.

International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-3, Issue-2, May 2013

- [27] Huasong Cao and Victor Leung, Cupid Chow and Henry Chan "Enabling Technologies for Wireless Body Area Networks: A Survey and Outlook", IEEE Communications Magazine, December 2009
- [28] M. Arif Siddiqui, Shah Murtaza Rashid Al-Masud, "Towards Design of Novel Low Power MAC Protocol for Wireless Body Area Networks", International Journal of Computer Information Systems, Vol. 4, No. 4, 2012
- [29] Deena M. Barakah, Muhammad Ammad uddin, " A Survey of Challenges and Applications of Wireless Body Area Network (WBAN) and Role of A Virtual Doctor Server in Existing Architecture", 2012 Third International Conference on Intelligent Systems Modeling and Simulation
- [30] W. Ye, J. Heidemann, and D. Estrin, "An energy-efficient MACprotocol for wireless sensor networks", In Proceedings of theIEEE Infocom, New York, USA, pp. 1567-1576, Jun. 2002.
- [31] T. Van Dam and K. Langendoen, "An adaptive energy-efficientMAC protocol for wireless sensor networks", In ACMConference on Embedded Networked Sensor Systems (Sensys),Los Angeles, USA, pp. 171-180, Nov. 2003.
- [32] J. Polastre, J. Hill, and D. Culler, "Versatile low power media access for wireless sensor networks", In ACM Conference onEmbedded Networked Sensor Systems (Sensys), Baltimore, Maryland, USA, pp. 95-107, Nov. 2004.
- [33] A. El-Hoiydi, J.D. Decotignie, and J. Hernandez, "Low powerMAC protocols for infrastructure wireless sensor networks", InProc of the fifth European Wireless Conference (EW'04), Barcelona, Spain, pp. 563-569, Feb. 2004.
- [34] G. Pei and C. Chien, "Low power TDMA in large wirelesssensor networks", IEEE Military Communications Conference(MILCOM), pp. 347-351, Oct. 2001.
- [35] W.B.Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, "An application-specific protocol architecture for wirelessmicrosensor networks", IEEE Transactions on WirelessCommunications. vol. 1, no. 4, pp. 660-670, Oct 2002.
- [36] V. Rajendran, J.J. Garcia-Luna-Aveces, and K. Obraczka, "Energy-efficient, application-aware medium access for sensornetworks", In Proceedings of 2nd IEEE Conference on MobileAdhoc and Sensor Systems Conference, Washington, DC, USA, Dec. 2005.
- [37] O. Younis and S. Fahmy, "HEED: A hybrid, energy-efficient, distributed clustering approach for adhoc sensor networks", IEEE Transactions on Mobile Computing, vol. 3, no. 4, pp. 366-379, Oct. 2004.
- [38] S.Ullah, R. Islam, A. Nessa, Y. Zhong, and K.S. Kwak, "Performance analysis of preamble based TDMA protocol forwireless body area network", Journal of CommunicationSoftware and Systems, vol. 4, no. 3, pp. 222-226, Sept. 2008.
- [39] H.M. Li and J.D. Tan. "Heartbeat driven MAC for body sensornetworks", In Proc of the 1stACM SIGMOBILE internationalworkshop on systems and networking support for healthcareand assisted living environments, San Juan, Puerto Rico, pp. 25-30, Jun. 2007.
 [40] C. Li, H.B. Li, and R. Kohno, "Reservation-based dynamic TDMA
- [40] C. Li, H.B. Li, and R. Kohno, "Reservation-based dynamic TDMA protocol for medical body area networks", IEICETransactions on Communications, E92.B (2), pp. 387-395,2009.
- [41] B. Otal, L. Alonso, and C. Verikoukis, "Highly reliable energysaving MAC for wireless body sensor networks in healthcaresystems", IEEE Journal on Selected Areas in Communications, vol. 27, no. 4, pp. 553-565, 2009.
- [42] H. Su and X. Shang. "Battery-dynamics driven TDMA MAC protocols for wireless body area monitoring networks inhealthcare applications", IEEE Journal on Selected Areas inCommunications, vol. 27, no. 4, pp. 424-434, 2009.
- [43] C. Li, L. Wang, J. Li, B. Zhen, H.B. Li, and R. Kohno, "Scalable and robust medium access control protocol in wirelessbody area networks", IEEE 20th International Symposium onPersonal, Indoor and Mobile Radio Communications, pp.2127-2131, 2009.
- [44] B. Zhen, H.-bang Li, and R. Kohno, "Networking issues in medical implant communications," International Journal of Multimedia and Ubiquitous Engineering, vol. 4, no. 1, 2009.
- [45] M. Ameen, A. Nessa, and K. S. Kwak, "QoS Issues with Focus on Wireless Body Area Networks," in 2008 Third International Conference on Convergence and Hybrid Information Technology, 2008, pp. 801-807.
- [46] C. Li, H.-B. Li, and R. Kohno, "Performance Evaluation of IEEE 802.15.4 for Wireless Body Area Network (WBAN)," in 2009 IEEE International Conference

Shah Murtaza Rashid Al Masud is a lecturer at the faculty of Computer Science and Information Systems, Najran University, Najran, KSA. He received his M.Sc and B.Sc in Computer Engineering in the specialization of Computer intellect systems and networks in 2000, and 2001 respectively from Khrakov State University of Radio Electronics, Kharkov, Ukraine. His current research interest include parallel and distributed systems, GIS, GRID, Cloud computing, wireless BAN, expert systems, fuzzy logic, physical computation and thermodynamics, reversible logic, , and quantum computation. He has also published papers in accredited national and international journals and conference proceedings. Besides that, he also serves as a reviewer for various conferences and journals. Currently he is the member in various academic and scientific organizations.

