
International Journal of Soft Computing and Engineering (IJSCE) 
ISSN: 2231-2307, Volume-4 Issue-6, January 2015  

54 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

  
Abstract— Here it is explained how can be designed by an easy 
form, and using HDL tool, a thread for implement the algorithm 
for natural binary format to decimal (BCD) format. In order to 
achieve that, here is released an explanation of such algorithm in 
a fast and needed way. In VHDL, structural style will be used for 
build each one modules for the Arithmetic Unit as well as those 
modules for Control Unit. The program is the set of instructions. 
Each instruction is a single operation as a sum, a shift, a 
comparison and so on. Every those instructions are carried out by 
a single module in VHDL. The memory to store the program it is 
implement by array of registers. That array is executed in a 
sequence by which is driven by a Program Counter (PC). The 
complete architecture it is explain step by step in order to it can be 
used as application note or a tutorial, and repeated by teachers, 
students and hobbyist. The complete processor it is builds in a 
single CPLD from Lattice Semiconductor. That is the ispMACH 
LC4256ZE 5TN144C device. 
 
Index Terms— Binary natural to decimal BCD format, tutorial on 
how design a thread 

I.  INTRODUCTION 

From the point of view of a programmer user, a tread is just 
one instruction which is used in high level lenguage for do 
easier the task, nevertheless, from a point of view of a 
engineer designer a thread is a set of low level instructions and 
involves heavy work at hardware [1]. So, this work is an 
architecture for a thread, which deals with implementation of 
a single algorithm with a few instructions, it can be easily 
located inside of harvard model with a memory for the 
program and other one memory for data. The first is an array 
with a kind of flash registers built here with VHDL, and the 
last, actually is a temporary register for show in an external 
display the decimal number. The data is an input 8 bits 
number in natural binary format introduced by an external 
dipswitch. Just an external bit is used for enable and reset, 
nevertheless can be used an input bit for reset and other one 
for enable. 

 
Manuscript Received on December 2014. 

Dr. Gelacio Castillo C, Ingeniería en Sistemas Computacionales, 
Instituto Politécnico Nacional, Escuela Superior de Cómputo, México D. F. 
México.  

M. en C. Martha P. Jiménez V, Ingeniería en Sistemas 
Computacionales, Instituto Politécnico Nacional, Escuela Superior de 
Cómputo, México D. F.  México.  

M. en C. Aurora Aparicio C, Escuela Superior de Ingeniería Mecánica 
y Eléctrica, Instituto Politécnico Nacional, México D. F., México.  

 
Figure 1: Entity top level block diagram 

As it can see, only two inputs are used, the first is an 8 bits 
vector and the other one is a single bit input, for enable and 
reset. The main output is a buffered 12 bits register for 
decimal (BCD) format. Inside of the same device is 
implemented a BCD to seven segment encoder. Optionally 
other output can be leaves in order to monitoring inter flag or 
signal control of the process. All of these elements are shows 
in the Fig. 1. One guide for develop is given in the Chapter 5 
of Sajjan [2]. Documentation available can be download from 
web site of Lattice Semiconductor [3], [4]. A scheme, made 
by authors for this work, of the Breakout Board Evaluation 
Kit, it is shown in the Fig. 2. 

 
Figure 2: Breakout board development kit 

 

ASIC Thread for Decimal (BCD) Algorithm: A 
Tutorial on How Create a Thread and to Evaluate 

ISPMACH4256ZE CPLD 

Gelacio Castillo C, Martha P. Jiménez V, Aurora Aparicio C 



ASIC Thread for Decimal (BCD) Algorithm: A Tutorial  on How Create a Thread and to Evaluate ISPMACH4256ZE 
CPLD 

55 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

II.  BINARY NATURAL TO DECIMAL (BCD) ALGORITHM  

Any input data and output to a computer system, mainly are in 
decimal (BCD) format. However, because digital machines 
processes data from natural binary format, then a 
methodology for translate binary-decimal (BCD) format and 
decimal (BCD) to binary format it is needed. This 
methodology is the popular binary to decimal (BCD) 
algorithm and reverse. Such algorithm issued by the first time 
in 1997 by an application note of Xilinx Company [5]. The 
implementation this algorithm to translate a number in natural 
binary format to decimal (BCD) format it is released here. In 8 
bit, the bigger account reached is 11111111, which is 
equivalent to 255 in decimal format. So, a 12 bits register is 
needed to get decimal format, split it in 3 groups of 4 bit 
(nibble), each nibble for a digit.  
 

 
Figure 3: What it must do by algorithm 

To start the explanation, the main idea it is to note that after a 
complete rotation of a binary number it not changes. That idea 
it is shows in the following Fig. 4. The MSB bit, in the “source 
register” it is placed in LSB position of the target 8 bits 
register. This is just the idea. 
 

 
Figure 4: The first idea of algorithm 

So, it must do some operations in order put the number inside 
a register of 12 bit instead a register of 8 bit, and at the same 
time leave that in decimal (BCD) format. What it must do, it is 
shows in the Fig. 5. 
 

 
Figure 5: Activity inside registers 

Operations what it must do are: 1A.- Rotation by one bit in 
each iteration. The MSB in the source register (of 8 bit) 
replace to the LSB target register (of 12 bit). An iteration start 
with a rotation. 2A.- Then, the 12 bit register it must be split in 
3 nibbles; Low Nibble (L-N), Intermediate Nibble (I-N), and 
Higher Nibble (H-N). 3A.- Now follows comparisons. If L-N 
> 0100 then add 0011 else do nothing. If I-N > 0100 then add 
0011 else do nothing. If H-N > 0100 then add 0011 else do 
nothing. 4A.-Ok, now follows join them together, concatenate 
(with & in VHDL) the three nibbles in order to recovery the 
12 bits register. 5A.- Finally do rotation by one bit on the 
register of 12 bit. This point is the end of the iteration. 
However, the number of iterations is the same as the number 
of bits in the source register. 

III.  INSTRUCTIONS 

According with algorithm there are a little instructions and 
these are very simple. These shown in the following Table 1. 

Table 1: Instructions 

 

Init is the instruction by which are initialized the registers of 8 
and 12 bit respectively. Furthermore, this is the module by 
which reset is carried out by external bit EN/R. ReadPort is 
the instruction by which is read the number in binary format 
from external dipswitch (input 8 bit data). Sust is the 
instruction by which the substitution were carried out from 
MSB bit in the register of 8 bit to the LSB bit in the register of 
12 bit. CompAdd is the module by which is carried out (a) 
split in nibbles, (b) comparison, and (c) add by 0011 if it is 
necessary in each nibble. This is because they are very simple 
operations. So, CompAdd is just an instruction. Shift8 is the 
instruction for shift by one bit, from the right to left, in the 
register of 8 bit. Shift12 carries out shift by one bit, from the 
right to the left in the register of 12 bit. The last are 
component in Arithmetic and Logic Unit (ALU). There is two 
needed counters; a counter program (PC) and counter 
iterations (ItC). Actually, the PC is a pointer to the next 
instruction that read from E2PROM. ItC will have the control 
on the number of iterations, of course. Some others modules 
where implemented in order to get the complete design of the 
Unit Control, along with PC and ItC. Modules in the Unit 
control are not instruction. Two of these are PC, ItC. 
ReadCode is a module that read the following operation from 
E2PROM. Accumulators for 8 and 12 bits registers, which are 
temporary register. Module for codec to translate from 
decimal (BCD) format in 12 bit to seven segments display. 
Complete architecture it is draws in the Figure 6. 

 



International Journal of Soft Computing and Engineering (IJSCE) 
ISSN: 2231-2307, Volume-4 Issue-6, January 2015  

56 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

 
Figure 6: Block diagram architecture 

IV.  STATES MACHINE 

In the following Fig. 7, is drawn the states machine by which 
was designed in VHDL the algorithm. With EN/R = '0' the 
process return to Init state, that is; initialize PC then read code 
of Init instruction, execute instruction Init and initialize 
accumulators, however ItC is not increased and so PC is not 
increased. With EN/R = '1' the process go to the next state by 
increasing PC and ItC, that implies that PC is initialized to 
"0000" when EN/R = '0' and it is increased when EN/R = '1', 
after the respective accumulator has been executed, and if ItC 
has been increased. At the end of each iteration, the ItC is 
increased and if its account is minor of number of bit in the 
source register. If ItC it is not increased at the end of an 
iteration, the process it is stoped. Each instruction late four 
cycles of clock module of Control Unit take at least three 
cycle of clock. The registers of PC, ItC and "codop" are all of 
four bits, however all of these have different rolls. Each 
module has two flags. One input Flag, and one output Flag. 
Through these flags, the dialog it is carry out in all the 
process. 

 
 
 

 
Figure 7: State machine 

V. INIT  INSTRUCTION 

The Fig. 8 shows a block diagram of Init module. Remember 
this is an instrucction and its code is "0000". Module Init in 
the Fig. 8 shows two input bit, "clkinit" of course is the clock 
signal, and "inFlaginit" comes from "read code" module, as 
well as "codopinit" just when the process it is initialized, and 
after that the process it is carried out according with diagram 
of Fig. 7. Initialization to 12 and 8 bits accumulators is carry 
out by "outAC8init" and "outAC12init", enabled with the 
flags "outFlag8init" and "outFlag12init" respectively. Fig. 9 
is the flow diagram for Init module. 

 

 
Figure 8: Entity module Init 

Now in the Fig. 9 it is going to show details of flow for its 
proramming on VHDL. 

 



ASIC Thread for Decimal (BCD) Algorithm: A Tutorial  on How Create a Thread and to Evaluate ISPMACH4256ZE 
CPLD 

57 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

 
Figure 9: Flow diagram Init instruction 

In the Fig. 9, "aux0" and "aux1" are variables inside it module 
VHDL. Both of these have the same roll, aboid that this part 
of process it is execute twice. Furthermore, operation of 
initializing must be executed under two conditions: (a) the 
first one when algorithm is solicited by the first time, 
"inFlaginit" can has '0' at the start of process, (b) the second 
one when EN/R = '1', it must be guarantised accumulators are 
put in '0's. After each accumulator, 8 bit or 12 bit, has been 
executed PC it is increased if and only when EN/R = '1'. If 
EN/R = '0' PC must not be increased. Only in the first step, 
both accumulators it is execute at the same time. Then, when 
the process is inside of the cycle of iterations, just one 
accumulator executed at the time. While outFlagIter = '1', then 
PC is increased if the other flags are accomplished. The 
instruction "Init" is executed just one time, at the beginning 
the process. The instruction "ReadPort", also executed only 
one time, after of "Init". Both of these instructions are not part 
of iterations. Table 2 which include circle and rows, shows 
those instruction part of iterations, "Sust", "CompAdd", 
"shift8", and "shift12". Remember that each cycle it is execute 
as the state machine in the Fig. 7. 

Table 2: Cycle 

 

VI.  READ-PORT INSTRUCTION  

Fig. 10 shows block entity for the ReadPort Instruction. Input 
"inPortALp" read external data from dipswitch. Input 
"inFlagLp" come from "read code from the next instruction". 

 

 
Figure 10: Entity ReadPort 

Input "codopLP" also come from "read code from the next 
instruction". Bus "outPortALp" go to the 8 bits accumulator. 
The output "outFlagLP" also go to the accumulator. The logic 
of the code VHDL it is show in the Fig. 11. 

 

 
Figure 11: Flow Diagram ReadPort 

At the end of of the instruction "ReadPort" the bus 
"outPortALp" must be put in high impedance 'Z', due to the 
bus of 8 bit could be used by others instructions. Furthermore, 
although "codop" it is "0001" the data it is not put on 
outPortALp until "inFlagLp" = '1'. Furthermore outFlagLp is 
put in high value, “1” logic, so, accumulator of 8 bit know that 
a data must be saved, such as indicated in the state machine in 
the Fig. 7. 



International Journal of Soft Computing and Engineering (IJSCE) 
ISSN: 2231-2307, Volume-4 Issue-6, January 2015  

58 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

VII.  SUST INSTRUCTION  

Fig. 12 shows block entity for the “Sust” instruction. As stated 
earlier, the LSB in 12 bits register it is replace by MSB from 8 
bits register. This is the only thing that makes by the module 
“Sust” instruction. 

 

 
Figure 12: Entity “Sust” 

Module in the Fig. 12 has codop because such module is an 
instruction. Has "inAC8bitsu" which come from accumulator 
of 8 bit, "inAC12bitsu" that come from accumulator of 12 bit. 
The last it is due to this module replace LSB in the register of 
12 bit by MSB from the register of 8 bit, such it is shows in the 
Fig. 5. "inFlagsu" come from whether, accumulator of 8 bit or 
accumulator of 12 bit. The register of 8 bit is not update, 
however the register of 12 bit it changes. It has a bus 
"outAC12bitsu" which go to accumulator of 12 bits. Output 
"outsust" it is not needed, however it is used as RAM or 
buffer. Flag called "outFlagsu" inform to accumulator of 12 
bit that the data it is ready to be stored. Fig. 13 shows flow for 
the VHDL code. It can see from Fig. 11 and 13, how the logic 
is the same. The block in the bottom from Figure 13, in the 
first two lines. The register "outsust" is not needed is the 
simplest form of RAM storage. It can see from Figure 11 and 
13, how the logic is the same. The block in the bottom from 
Fig. 13, in the first two lines. The register "outsust" is not 
needed is the simplest form of RAM storage. 

 

 
Figure 13: Flow diagram “Sust” module 

VIII.  COMPADD INSTRUCTION  

Any other instruction have similar architecture. However, in 
order to be clearer, block diagram, for "CompAdd" 
instruction is in the Fig. 14. Entity is shown, with a data input 
of 12 bit called "inBuf12ca", on this data it is carried out 
operation of split register, comparison  of nibbles with the 
binary number "0100", add if it is needed and concatenation. 
 

 
Figure 14: Entity CompAdd 

Due to deal with an ASIC processor and operations are very 
simple, the design of this module include operations 
previously given; (splits register of 12 bit in nibbles, 
comparisons, add and concatenation). Its flow diagram given 
in the Fig. 15. That shows the first part of flow of the logic for 
do this module. Fig. 16 is the second part of the flow diagram. 
 

 
Figure 15: Flow diagram “CompAdd” first part 



ASIC Thread for Decimal (BCD) Algorithm: A Tutorial  on How Create a Thread and to Evaluate ISPMACH4256ZE 
CPLD 

59 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

 
Figure 16: Flow diagram “CompAdd” second part 

Note that if codop = "0011" then input to "inFlagac", else 
nothing it is done and so module it is switch off from output by 
high impedance 'Z' leaving free the bus. Signals "snibb" 
defined inside of architecture of VHDL syntax. The variable 
“aux” it is define inside of process and is revalued in the next 
clock cycle in order to not to repeat the operation. It must be 
ensured that at a first stage "inFlagac" = '1' and then '0', in 
order to can do operations. After that, when '0' concatenation 
is carried out and sent to the output. In others word, circled ∆0 
block must be done in the first step, and then "inFlagac" = '0' 
block. 

IX.  SHIFT 8BIT INSTRUCTION  

Shift8bit instruction deal with shift by one bit in the register of 
8 bit from of right to left. Fig. 17 shows block diagram this 
module. 
 

 
Figure 17: Entity “Shift8bit” 

The "inFlagms8" and "codopms8" comes from "ReadCode" 
module, however "inACms8" comes from 8 bits accumulator 
(see Fig. 7). At the end, when "outFlagms8" = '1', 8 bit 
accumulator is updated by the data on the bus "outACms8" 
shown in Fig. 17. Fig. 18 shows logic flow for shift by one bit. 
If "codopms8" = "0100" then do it shift, else switch off from 
output by high impedance in the bus. Shift on accumulator of 
12 bit is equal except by size of register. Modules "PC", "read 
code", ItC, "AC 12 bit", and "AC 8 bit" are modules of Unit 
Control UC (Fig. 7). However, the logic flow is alike of 
instruction in the ALU. 
 

 
Figure 18: Flow diagram “Shift8bit” 

X. ACCUMULATOR OF 8 BIT  

Accumulator save result of an operation, then this data is 
ready for a next operation. The chat on every one modules on 
all this architecture it is carry out by "inFlag" and "outFlag" of 
each module whether is module of instruction on ALU, or 
module on UC. 
 

 
Figure 19: Entity 8 bits accumulator 

From entity Fig. 19, the data “inac8” and "inFlagac8" comes 
from the last 8 bits operation, and enables to this accumulator 
to save the new data. As has been indicated, variable "aux" 
allows update the accumulator just one time, although this 
module could delay for more one clock cycle. 



International Journal of Soft Computing and Engineering (IJSCE) 
ISSN: 2231-2307, Volume-4 Issue-6, January 2015  

60 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

 
Figure 20: Flow diagram “ac8bit” 

XI.  ACCUMULATOR OF 12 BITS 

Module for 12 bit accumulator has the same logic of 8 bit 
accumulator shown in the Fig. 19 and 20, except that is of 12 
bit. 

XII.  PROGRAM COUNTER (PC) 

Block diagram of module PC is in the Fig. 21. In this 
processor, which is actually a thread, PC module is the most 
complex, although it is quite simple and easy. 
 

 
Figure 21: Entity PC 

Fig. 22 is a first part of flow diagram PC for build it in VHDL 
code. As it was shown previously from the Fig. 7, after one 
operation which is carried out by instruction, accumulator it is 
executed for save the new data, and then PC it is increased, 
just until accumulator module have finished, whether it is 8 or 
12 bit. PC module knows that information by "inFlagAC8bit" 

and "inFlagAC12bit" respectively, which comes from 
accumulators. Actually "outpc" it is the pointer to memory. 
The "outFlagpc" = '1' means that PC module has been 
increased. After that, the following module it is "ReadCode" 
(Fig. 7), which is part of UC. Such module read code from 
memory, the data which pointed by PC. The second part in the 
flow of logic it is show by the Fig. 23. 
 

 
Figure 22: Flow diagram PC first part 



ASIC Thread for Decimal (BCD) Algorithm: A Tutorial  on How Create a Thread and to Evaluate ISPMACH4256ZE 
CPLD 

61 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

 
Figure 23: Flow diagram PC second part 

Iteration counter "ItC" it is increased until an iteration cycle 
has finished, after "shift12" and before "Sust" modules, as it is 
shown in the Table 2. Fig. 24 shows the last part of logic flow 
of PC module. Fig. 22, 23 and 24 outlines logic flow for PC as 
part of Unit Control (CU). As it can see, this is the more 
complex module inside the UC. Remember that PC it is 
increased until accumulator has finished. That is true if the 
account of ItC has not achieved his higher value. When ItC 
has its higher value, “ItC” and then PC stop. PC know such 
information by input flags "inFlagAC8bit", "inFlagAC12bit", 
which come from accumulators, as well as flag from ItC 
module"flagiter", as is seen from state machine in the Fig. 7 
and in the last block at the bottom Fig. 24. Note that "outpc" = 
"0010" it is the code for "Sust" instruction. 

 
Figure 24: Flow diagram PC third and last part 

XIII.  READ CODE M ODULE  

Flag "inFlagInstrom" in the Fig. 25 comes from PC, as well as 
"inPCrom". Flag "outFlagrom" enables to next instruction 
and "outcode" is the code of this. 
 

 
Figure 25: Entity ReadCode module 



International Journal of Soft Computing and Engineering (IJSCE) 
ISSN: 2231-2307, Volume-4 Issue-6, January 2015  

62 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

 
Figure 26: Flow diagram “ReadCode” 

Program memory is very simple it is a constant array 
"arrayrom" from VHDL. Datas are accesed by PC as pointer 
toward such address memory. That module is part of Unit 
Control (UC) and it is included on State Machine as "read 
code for the next instruction" from Figure 7. Until this point, 
it has nine entities delivered as well as his respective 
architecture. Although in total were eleven module for 
implement algorithm, some of them as 12 bits accumulator 
and 12 bits shift have similar architecture with the respective 
8 bits modules. In addition, the Iteration Counter module did 
not shown, however it has similar architecture with the PC. 
Fig. 1 has inside the top-level entity has input and output. 
Placed inside of such box, which is the symbol for entity and 
CPLD also, are all modules. At this level, the connections 
were made, with every one modules previously outlined. In 
order to get common busses such data and address it were 
used signals defined in VHDL syntax, one, four, eight and 
twelve bits respectively. Furthermore other four modules 
attached also, although such modules do not are parts of BCD 
algorithm, however they used to get display. Those four 
modules are, (1) timer to get two frequency for display, (2) 
counter ring, (3) mux in order to display decimal format in 
seven segments and (4) coder from BCD to seven segments. 

XIV.  TOOLS 

The main approach and concern on this work is academic, 
however a simple assessment on performance and scope of 
device used, can be carry out. This exercise was focussed and 
addressed to teach and shows how can be designed small and 
simples threads, from configurable and Hardware Description 
Languages (HDL) tools. Device under assesment is 
ispMACH 4256ZE CPLD (LC4256ZE-5TN144C), from 
Lattice Semiconductor. Such device has 256 macro-cells, and 
some data from performance are show in the next section. 
Software for VHDL design is ispLever Classic from Lattice 
Semiconductor [5]. In the following tables, results are shows. 

XV.  VHDL  CODES 

Now in this section it will show list of codes VHDL. These 
codes, it can be obtain by e-mail and then instaled inside of a 
project. That implies structural style in VHDL and 
environment ispLever Classic under which was developmed 
[6], but is not exclusive. It can be used other development 
environment.  
 

 
 
 
 
 
 
 
 
 

 
List 1: VHDL codes 

Here some VHDL codes of modules are delivered, which are 
not part in the solution of algorithm, for example, (a) 
"coderNibbles06", (b) "contring06", (c) "div06", and (c) 
"mux06". These modules were for down to frequency and to 
multiplex seven segment display. 

XVI.  REPORTS FROM SINTHESIS FROM VHDL  PROJECT 

The next Tables are results sinthesis, implementation and 
fitter report from the development tools and of course, it is 
can be found from such report. 

Table 3: Project_Summary 
Project Name processorv07 

Project Path C:\...\processorv07 

Device M4256_96 

Package 144 

GLB Input Mux Size 33 

Available Blocks 16 

Speed -5.8 

Part Number LC4256ZE-5TN144C 

Source Format Pure_VHDL 

Table 4: Compilation_Times 
Prefit Time 0 secs 

Load Design Time 0.05 secs 

Partition Time 0.23 secs 

Place Time 0.00 secs 

Route Time 0.00 secs 

Total Fit Time 00:00:01 

Table 5: Design_Summary 
Total Input Pins 11 

Total Logic Functions 201 

Total Output Pins 45 

Total Bidir I/O Pins 2 

Total Buried Nodes 154 

Total Flip-Flops 188 

Total D Flip-Flops 177 

Total T Flip-Flops 8 

Total Latches 3 

Total Product Terms 791 

Total Locked Pins 57 

Total Unique Output Enables 2 

Total Unique Clocks 3 

Total Unique Clock Enables 10 

Total Unique Resets 1 

Fmax Logic Levels 2 

ac8bit06.vhd 
ac12bit06.vhd 
coderNibbles06.vhd 
compadd06.vhd 
contIter06.vhd 
contring06.vhd 
div06.vhd 
init06.vhd 
ReadCode06.vhd 
 

mux06.vhd 
packagep06.vhd 
pcinc06.vhd 
ReadPort06.vhd 
shift8bit06.vhd 
shift12bit06.vhd 
sust06.vhd 
topp06.vhd 



ASIC Thread for Decimal (BCD) Algorithm: A Tutorial  on How Create a Thread and to Evaluate ISPMACH4256ZE 
CPLD 

63 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

Table 6: Device_Resource_Summary 

 Device 
Total 

Used Not 
Used 

Utili 
zation 

Dedicated Pins 
Clock/Input Pins 4 1 3 25 
Input-Only Pins 10 2 8 20 
I/O / Enable Pins 2 2 0 100 
I/O Pins 94 53 41 56 
Logic Functions 256 201 55 78 
Input Registers 96 0 96 0 
GLB Inputs 576 433 143 75 
Logical Product 
Terms 

1280 604 676 47 

Occupied GLBs 16 16 0 100 
Macrocells 256 201 55 78 

Control Product Terms: 
GLB Clock/Clock 
Enables 

16 15 1 93 

GLB Reset/Presets 16 0 16 0 
Macrocell Clocks 256 3 253 1 
Macrocell Clock 
Enables 

256 88 168 34 

Macrocell Enables 256 0 256 0 
Macrocell Resets 256 5 251 1 
Macrocell Presets 256 0 256 0 
Global Routing Pool 356 201 155 56 

Maybe could come to be tediouse read this Tables, however 
they have important datas from which it is possible do 
assesment for performance of such type of solutions for 
algorithm. 

XVII.  CONCLUSIONS 

Here has been outlined the building of a thread by using, as an 
example, the algorithm to translate a number given in natural 
binary format to decimal (BCD) format. In order to shows and 
teach how is go on and developed the process it is possible 
down to external frequence to see slowly the process and then 
up to it frequency. External 12 leds array can be connected to 
see activity of 12 bits register as well as 8 bit register, of 
course, three seven segments display. Furthermore, one led 
for each flag it is can connected to see its activity. That 
processor has excellent performance from a teaching point of 
view. Actually this is a thread, and so, can be done many 
others threads. Apendix A has bus architectiue. 

REFERENCES 
[1] Intel. "Tutorial: Intel® Threading Building Blocks". Intel. Document 

Number 319872-009US. URL: http://www.intel.com/. 
"TBBtutorial.pdf". Intel: Developer Zone. 
https://software.intel.com/en-us/articles/intel-threading-building-bloc
ks-tutorial-pdf. 

[2] Sajjan G. Shiva, "Computer Organization, Design, and Architecture". 
Boca Raton, FL, 33487, USA. Ed. CRC Press Taylor and Francis 
Group 2014, pp. 185-214. International Standard Book Number 13: 
978-1-4665-8554-6 (Book: Hardback). Purchased Book. It is not 
available from web site http://www.taylorandfrancis.com/. Only 
referenced. 

[3] Lattice Semiconductor. User’s Guide. ispMACH 4256ZE Breakout 
Board Evaluation Kit. March 2012 Revision: EB65_01.1. 
http://www.latticesemi.com/. Available from web site: 

http://www.latticesemi.com/en/Products/DevelopmentBoardsAndKits
/ispMACH4256ZEBreakoutBoard.aspx. 

[4] Lattice Semiconductor. Data Sheet DS1022. ispMACH 4000ZE 
Family. 1.8V In-System Programmable Ultra Low Power PLDs. 
August 2013. http://www.latticesemi.com/. From URL: 
http://www.latticesemi.com/en/Products/FPGAandCPLD/ispMACH4
000ZE.aspx. 

[5] Peter Alfke and Bernie New. Application Note. Serial Code 
Conversion between BCD and Binary. XAPP 029 October 27, 1997 
(Version 1.1). Xilinx. Online available as XAPP 029. 

[6] Lattice Semiconductor. Habel-HDL Reference Manual (ispLever 
Classic) 2003. Hillsboro, OR 97124. http://www.latticesemi.com/. 
Available from URL: 
http://www.latticesemi.com/en/Products/DesignSoftwareAndIP/FPG
AandLDS/ispLEVERClassic.aspx 

 
 
 
Dr. Gelacio Castillo Cabrera, Professor from Escuela Superior de 
Cómputo, Instituto Politécnico Nacional. Digital Systems and Computer 
Architectura are some of his courses taught at the Institute. Some of his 
published articles are (1): "CMOS prototype for retinal prosthesis 
applications with analog processing", and (2): "Performance evaluation of an 
architecture for the characterization of photo-divices: design, fabrication test 
on CMOS technology", (3): "Prótesis de retina: Innovación para el futuro", 
(4): "Procesamiento biológico: el desafío actual más importante". Many 
other of his works are find in proceeding. His main interest in research are 
"design of werable devices", "analog devices" and how teach them. 

 
M. en C. Martha P. Jiménez V, Professor from Escuela Superior de 
Cómputo, Instituto Politécnico Nacional. Her main interest is on research for 
methodology for teaching mathematical in higher education. Many others of 
her published works are find in proceedings. She has some institutional 
books as "Matematicas discretas". 

 
 

M. en C. Aurora Apericio C, Professor from Escuela Superior de 
Ingeniería Mecánica y Eléctrica, Instituto Politécnico Nacional. Her main 
interest is on research for analog devices and control applications. Some of 
her courses taught are on "analog systems" and "Control System". She has 
some institutional books as "Material de Apoyo para la Asignatura de 
Control". Many other works are find in proceedings. 
 
 


