
Switching Protocol Synthesis for Temporal Logic Specifications

Jun Liu, Necmiye Ozay, Ufuk Topcu, and Richard M. Murray

Abstract— We consider the problem of synthesizing a robust
switching controller for nonlinear hybrid systems to guaran-
tee that the trajectories of the system satisfy a high level
specification expressed in linear temporal logic. Two different
types of finite transition systems, namely under-approximations
and over-approximations, that abstract the behavior of the
underlying continuous dynamical system are defined. Using
these finite abstractions, it is possible to leverage tools from logic
and automata theory to synthesize discrete mode sequences or
strategies. In particular, we show that the discrete synthesis
problem for an under-approximation can be reformulated as a
model checking problem and that for an over-approximation
can be transformed into a two-player game, which can then be
solved by using off-the-shelf tools. By construction, existence
of a discrete switching strategy for the discrete synthesis
problem guarantees the existence of a continuous switching
protocol for the continuous synthesis problem, which can be
implemented at the continuous level to ensure the correctness
of the trajectories for the nonlinear hybrid system. Moreover, in
the case of over-approximations, it is shown that one can easily
accommodate specifications that require reacting to possibly
adversarial external events within the same framework.

I. INTRODUCTION

The objective of this paper is synthesizing switching
protocols that determine the sequence in which the modes
of a switched system are activated to satisfy certain high-
level specifications formally stated in linear temporal logic
(LTL). Different modes may correspond to, for example,
the evolution of the system under different, pre-designed
feedback controllers [2], so-called motion primitives in robot
motion planning [3], or different configurations of a system
(e.g., different gears in a car or aerodynamically different
phases of a flight). Each of these modes may meet certain
specifications but not necessarily the complete, mission-level
specification the system needs to satisfy. The purpose of the
switching protocol is to identify a switching sequence such
that the resulting switched system satisfies the mission-level
specification.

Specifically, given a family of system models, typically
as ordinary differential equations potentially with bounded
exogenous disturbances, and an LTL specification, our ap-
proach builds on a hierarchical representation of the sys-
tem in each mode. The continuous evolution is accounted
for at the low level. The higher level is composed of a
finite-state approximation of the continuous evolution. The
switching protocols are synthesized using the high-level,

This work was supported in part by the NSERC of Canada, the Multiscale
Systems Center, and the Boeing Corporation. A full length version of this
document is available at [1].

The authors are with Control and Dynamical Systems, California Institute
of Technology, Pasadena, CA 91125, USA. {liu, necmiye, utopcu,
murray}@cds.caltech.edu

discrete evolution. Simulation-type relations [4] between the
continuous and discrete models guarantee that the correctness
of the synthesized switching protocols is preserved in the
continuous implementation.

We consider two types of finite-state approximations for
continuous nonlinear systems, namely under- and over-
approximations. Roughly speaking, we call a finite transition
system T an under-approximation if every transition in T can
be continuously implemented for all allowable exogenous
disturbances. In the case in which an under-approximation
based finite-state abstraction is used, the switching proto-
col synthesis can be formulated as a model checking [5]
problem. On the other hand, a finite transition system T is
called an over-approximation if for each transition in T , there
is a possibility (due to either the exogenous disturbances
or the coarseness of the approximation) for continuously
implementing the strategy. We account for the mismatch
between the continuous model and its over-approximation
as adversarial uncertainty and model it nondeterministically.
Consequently, the corresponding switching protocol synthe-
sis problem is formulated as a two-player temporal logic
game (see [6] and references therein and the pioneering
work in [7]). This game formulation also allows us to
incorporate adversarial environment variables that do not
affect the dynamics of the system but constrain its behavior
through the specification.

Fragments of the switching protocol synthesis problem
considered here have attracted considerable attention. We
now give a very brief overview of some of the existing
work as it ties to the proposed methodology (a thorough
survey is beyond the scope of this paper). Jha et al. [8]
focuses on switching logics that guarantee the satisfaction of
certain safety and dwell-time requirements. Taly and Tiwari
[9], Cámara et al. [10], Asarin et al. [11], and Koo et
al. [12] consider a combination of safety and reachability
properties. Joint synthesis of switching logics and feedback
controllers for stability are studied by Lee and Dullerud
[13]. The work by Frazzoli et al. [3] on the concatenation
of a number of motion primitives from a finite library to
satisfy certain reachability properties constitutes an instance
of switching protocol synthesis problem. Our work also has
strong connections with the automata-based composition of
the so-called interfaces that describe the functionality and
the constraints on the correct behavior of a system [14].

The main contributions of the current paper are in extend-
ing the family of systems and specifications in switching pro-
tocol synthesis. The proposed methodology is applicable to
a large family of system models potentially with exogenous
disturbances along with an expressive specification language



(LTL in this case). The use of LTL enables to handle a wide
variety of specifications beyond mere safety and reachability,
as well as to account for potentially adversarial, a priori
unknown environments in which the system operates (and
therefore its correctness needs to be interpreted with respect
to the allowable environment behaviors). Furthermore, the
methodology improves the flexibility of switching protocol
synthesis by merging ideas from multiple complementing
directions and offering options that trade computational com-
plexity with conservatism (and expressivity). For example,
the resulting problem formulation with under-approximations
of continuous evolution is amenable to highly-optimized
software for model checking [15], [16], yet at the expense
of increased conservatism in modeling. On the other hand,
over-approximations are potentially easier to establish, yet
the resulting formulation is a two-player temporal logic
game (with publicly available solvers [17], [6] that are less
evolved compared to the currently available model checkers).
Another trade-off is in the family of two-player games con-
sidered here. Such games with complete LTL specifications is
known to have prohibitively high computational complexity
[18]. Therefore, we focus on an expressive fragment of LTL,
namely Generalized Reactivity (1), with favorable computa-
tional complexity [6].

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Continuous-time switched systems

Consider a family of nonlinear systems,

ẋ = fp(x, d), p ∈ P, (1)

where x(t) ∈ X ⊆ Rn is the state at time t and d(t) ∈
D ⊆ Rd is the exogenous disturbance, P is a finite index
set, and {fp : p ∈ P} is a family of nonlinear vector fields
satisfying the usual conditions to guarantee the existence and
uniqueness of solutions for each of the subsystems in (1). A
switched system generated by the family (1) can be written
as

ẋ = fσ(x, d), (2)

where σ is a switching signal taking values in P . The
value of σ at a given time t may depend on t or x(t),
or both, or may be generated by using more sophisticated
design techniques [2]. We emphasize that, although the above
formulation does not explicitly include a control input in
its formulation, it can capture different situations where
control inputs can be included, e.g., within each mode p, we
may either assign a constant valued control input up, which
can further belong to a finite number of quantized levels{
u1
p, u

2
p, · · · , u

Lp
p

}
⊆ Rm, or choose a feedback controller

u(t) = Kp(x(t)). Depending on different applications,
each mode in (1) may represent, for example, a control
component [14], [19], a motion primitive (which belongs
to, e.g., a finite library of flight maneuvers [3], or a set of
pre-designed behaviors [20]), and, in general, an operating
mode of a multi-modal dynamical system [8], [9]. To achieve
complex tasks, it is often necessary to compose these basic

components. The composition can be enforced at a high-
level control layer by implementing a switching protocol
for mission-level specification. Designing correct switching
protocols, however, can be a challenging issue [8], [11], [12],
[14].

The goal of this paper is to propose methods for auto-
matically synthesizing σ such that solutions of the result-
ing switched system (2) satisfy, by construction, a given
linear temporal logic (LTL) specification, for all possible
exogenous disturbances. LTL is a rich specification language
that can express many desired properties, including safety,
reachability, invariance, response, and/or a combination of
these [21] (see also [22] for examples).

B. Problem description and solution strategy

Before formally stating the problem, we present a
schematic description of the problem and its solution ap-
proach. The problem can be described as: given a family of
system models in (1) and its specification expressed in LTL,
synthesize a switching control protocol that, by construction,
guarantees that the system satisfies its specification for all
allowable exogenous disturbance. Within the same formula-
tion, we also aim to incorporate environmental adversaries,
which do not directly impact the dynamics of the system but
constrain its behavior through the specification, and synthe-
size effective switching controllers for all valid environment
behaviors. The solution of this problem enables us, e.g., to
compose available controllers, which are predesigned to meet
certain specifications, to achieve a high-level specification, as
illustrated in Figure 1.

.

.

.

P

σ=1

σ=N KN(P)

K1(P)

se

Fig. 1: P represents a plant subject to exogenous distur-
bances, {Ki(P ) : i = 1, · · · , N} is a family of controllers,
s represents the overall system behavior, e represents en-
vironmental adversaries, which do not directly impact the
dynamics of the system but constrain its behavior through
the specification. The objective is to design σ such that the
overall system satisfies a high-level specification ϕ expressed
in LTL.

Based on the continuous-time nonlinear system model (1),
our hierarchical approach to the switching synthesis problem
consists of two steps:
(i) We first establish finite-state approximations of the family
of systems (1), which are a family of finite transition systems
that approximate the dynamics in each mode.
(ii) We then synthesize a switching protocol based on high-
level, discrete abstraction that, when continuously imple-



mented, ensures the correctness of the trajectories of the
resulting switched system (2).

More specifically, we formulate two different types of
discrete abstractions, namely under-approximation and over-
approximation, respectively. For an under-approximation,
the synthesis of a switching protocol is formulated as an
LTL model checking [5] problem, which is amenable to
highly optimized software implementations [15], [16]. For
an over-approximation, we formulate the problem as a two-
player temporal logic game. While solving two-player games
with general LTL winning conditions is known to have
prohibitively high computational complexity [18], we restrict
ourselves to an expressive fragment of LTL, namely General-
ized Reactivity (1), with favorable computational complexity
[6].

While exogenous disturbances are accounted for in the
continuous level, adversarial environment behaviors are di-
verse and not necessarily amenable to modeling as an or-
dinary differential equation. Therefore, we defer the formal
introduction of environment variables to Section III-B, where
a two-player game formulation allows us to incorporate
adversarial environment variables that do not affect the
continuous-level dynamics of the system but rather constrain
its behavior through the high-level specification.

C. Finite-state approximations

To formally state the synthesis problem, we define two
types of finite-state abstractions of the continuous evolution
in (1) and introduce the specification language LTL. LTL for-
mulas are built upon a finite number of atomic propositions.
An atomic proposition is a statement on system variables
of interest that has a unique truth value (True or False)
for a given value (called state) of each system variable. To
formulate the switching synthesis problem, we are at least
interested in two types of variables: the plant variable x and
the switching mode variable p. Let Π := {π1, π2, · · · , πn}
be a set of atomic propositions. For example, each propo-
sition πi ∈ Π can represent a domain in Rn and a set of
modes in P of interest. Formally, for system (2), we associate
an observation map h : Rn × P → 2Π, which maps the
continuous states and the discrete modes to a finite set of
propositions. Without loss of generality, we consider h to be
defined on the whole state space instead of some bounded
invariant set. We also allow overlapping set of propositions
since h is set-valued instead of single-valued.

Abstractions for each of the subsystems in (1) can be
considered by defining an abstraction map T : Rn → Q,
which maps each state x ∈ Rn into a finite set Q :=
{qi : i = 1, · · · ,M}. The map T essentially defines a parti-
tion of the state space Rn by

{
T−1(q) : q ∈ Q

}
. We shall

refer to elements in Q as discrete states of an abstraction.
Finite-state approximations are defined in the following.

Definition 1: A finite transition system is a tuple T :=
(Q,Q0,→), where Q is a finite set of states, Q0 ⊆ Q is a set
of initial states, and→⊆ Q×Q is a transition relation. Given
states q, q′ ∈ Q, we write q → q′ if there is a transition from
q to q′ in T .

Consider a family of finite transition systems{
Tp := (Q,Q0,

p→) : p ∈ P
}
. (3)

Definition 2: The family of finite transition systems in (3)
is said to be an under-approximation of (1) if the following
two statements hold.

(i) Given states q, q′ ∈ Q such that q′ 6= q, if there is a
transition q

p→ q′, then for all x0 ∈ T−1(q), there exists
some τ > 0 such that, for all exogenous disturbances
d : [0, τ ] → D ⊆ Rd, trajectories ξ of pth subsystem
of (1) starting from x0, i.e., ξ : [0, τ ]→ Rn with

ξ(0) = x0, ξ̇(t) = fp(ξ(t), d(t)), ∀t ∈ (0, τ),

satisfy

ξ(τ) ∈ T−1(q′) ξ(t) ∈ T−1(q)∪T−1(q′), t ∈ [0, τ ].

(ii) For any q ∈ Q, if there is a self-transition q
p→ q, then,

for all x0 ∈ T−1(q) and all exogenous disturbances d :
[0,∞)→ D ⊆ Rd, trajectories ξ of the pth subsystem
of (1) starting from x0 satisfy ξ(t) ∈ T−1(q), ∀t ∈
[0,∞), i.e., T−1(q) is a positively invariant set for the
pth subsystem under all exogenous disturbances.

Definition 3: The family of finite transition systems in (3)
is said to be an over-approximation for (1) if the following
two statements hold.

(i) Given states q, q′ ∈ Q such that q′ 6= q, there is a
transition q

p→ q′, if there exists x0 ∈ T−1(q), τ > 0,
and some exogenous disturbance d : [0, τ ] → D ⊆
Rd such that the corresponding trajectory ξ of the pth
subsystem of (1) starting from x0 satisfies

ξ(τ) ∈ T−1(q′) ξ(t) ∈ T−1(q)∪T−1(q′), t ∈ [0, τ ].

(ii) For any q ∈ Q, there is a self-transition q
p→ q, if there

exists x0 ∈ T−1(q) and some exogenous disturbance
d : [0,∞)→ D ⊆ Rd such that the complete trajectory
ξ of the pth subsystem of (1) on [0,∞) starting from
x0 is contained in T−1(q).

Intuitively, in an over-approximation, a discrete transition
q

p→ q′ is included in Tp as long as there is a possibility
(either induced by disturbances or a coarse partition) for the
continuous system to implement the transition, whereas, in an
under-approximation, a discrete transition q

p→ q′ is included
in Tp only if the continuous flow can strictly implement the
transition. In other words, an under-approximation includes
only transitions that can be implemented by the continuous
dynamics and an over-approximation includes all possible
transitions.

In both approximations, time is abstracted out in the
sense that we do not care how much time it takes to reach
one discrete state from another. As the focus of this paper
is on the automatic synthesis of switching protocols, we
shall assume that we are given or we can construct a finite
abstraction of the subsystems in (1), which is either an under-
approximation or an over-approximation by Definitions 2 and
3.



For the above finite approximations to be consistent with
continuous dynamics, they should preserve propositions of
interest in the sense that for all x, y ∈ Rn and p ∈ P ,

T (x) = T (y)⇒ h(x, p) = h(y, p), (4)

where h is the observation map defined earlier. In other
words, if two continuous states belong to the same subset of
the continuous state space corresponding to the same discrete
state in Q, they should map to the same propositions under
h.

D. LTL Syntax and Semantics

We use linear temporal logic (LTL) [23], [21] to formally
specify system properties. Standard LTL is built upon a finite
set of atomic propositions, logical operators ¬ (negation) and
∨ (disjunction), and the temporal modal operators © (next)
and U (until).

Formally, given a set of atomic propositions Π, the set of
LTL formulas over Π can be defined inductively as follows:
(1) any atomic proposition π ∈ Π is an LTL formula;
(2) if ϕ and ψ are LTL formulas, so are ¬ϕ, ©ϕ, ϕ ∨ ψ,

and ϕUψ.
Additional logical operators, such as ∧ (conjunction), →
(material implication), and temporal modal operators ♦
(eventually), and � (always), are defined by:
(a) ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ);
(b) ϕ→ ψ := ¬ϕ ∨ ψ;
(c) True := p ∨ ¬p, where p ∈ Π;
(d) ♦ϕ := TrueUϕ;
(e) �ϕ := ¬♦¬ϕ.
A propositional formula is one that does not include any
temporal operators.

Continuous Semantics of LTL: An LTL formula for
the continuous-time switching system (2) is interpreted over
its trajectories (x, σ). Formally, given an LTL formula ϕ
without the next operator ©, we can recursively define the
satisfaction of ϕ over a trajectory (x(t), σ(t)) at time t,
written (x(t), σ(t)) � ϕ, as follows:
(1) for any atomic proposition π ∈ Π, (x(t), σ(t)) � π if

and only if π ∈ h(x(t), σ(t));
(2) (x(t), σ(t)) � ¬ϕ if and only if (x(t), σ(t)) 2 ϕ;
(3) (x(t), σ(t)) � ϕ ∨ ψ if and only if (x(t), σ(t)) � ϕ or

(x(t), σ(t)) � ψ; and
(4) (x(t), σ(t)) � ϕUψ if and only if there exists t′ ≥ t

such that (x(t′), σ(t′)) � ψ and (x(s), σ(s)) � ϕ for all
s ∈ [t, t′).

A trajectory (x, σ) starting at t0 is said to satisfy ϕ, written
(x, σ) �t0 ϕ, if (x(t0), σ(t0)) � ϕ. If the initial time is not
significant, we simply write (x, σ) � ϕ.

Discrete Semantics of LTL: An LTL formula for a
switched system given by the family of transition sys-
tems (3) is interpreted over its switching executions.
Given an LTL formula ϕ, we can recursively define the
satisfaction of ϕ over a switching execution (q, p) =
(q0, p0)(q1, p1)(q2, p2) · · · at position i, written (qi, pi) � ϕ,
as follows:

(1) for any atomic proposition π ∈ Π, (qi, pi) � π if and
only if there exists xi ∈ T−1(qi) such that π ∈ h(xi, pi);

(2) (qi, pi) � ¬ϕ if and only if (qi, pi) 2 ϕ;
(3) (qi, pi) � ©ϕ if and only if (qi+1, pi+1) � ϕ;
(4) (qi, pi) � ϕ∨ψ if and only if (qi, pi) � ϕ or (qi, pi) � ψ;
(5) (qi, pi) � ϕUψ if and only if there exists j ≥ i such

that (qj , pj) � ψ and (qk, pk) � ϕ for all k ∈ [i, j).
A switching execution (q, p) = (q0, p0)(q1, p1)(q2, p2) · · · is
said to satisfy ϕ, written (q, p) � ϕ, if (q0, p0) � ϕ.

E. Problem Formulation

Now we are ready to formally state our switching synthesis
problems.

Continuous Switching Synthesis Problem: Given a fam-
ily of continuous-time subsystems in (1) and a specification
ϕ, synthesize a switching strategy that generates only correct
trajectories (x, σ) in the sense that (x, σ) � ϕ.

Discrete Switching Synthesis Problem: Given a family
of finite transition systems in (3) and a specification ϕ,
synthesize a switching strategy that generates only correct
switching executions (q, p) in the sense that (q, p) � ϕ.

We focus on the discrete synthesis problem and propose
two different approaches depending on the types of ab-
stractions in the sense of Definitions 2 and 3. It will be
shown that, by construction, our solutions to the discrete
switching synthesis problems from both approaches can be
continuously implemented to generate a solution for the
continuous switching synthesis problem.

III. SYNTHESIS OF SWITCHING PROTOCOLS

In this section, we propose two approaches, one for each
of the two types of finite-state approximations, to the discrete
synthesis problem formulated in the previous section.

A. Switching synthesis by model checking

We start with the synthesis of switching protocol for an
under-approximation of (1). Given such a finite approxi-
mation, the discrete synthesis problem can be reformulated
as a model checking problem. Model checking [5], [24] is
an automated verification technique that, given a finite-state
model of a system and a formal specification, systematically
checks whether this specification is satisfied. If not, the
model checker provides a counterexample that indicates how
the model could violate the specification. This counterexam-
ple is usually given as an execution path that violates the
property being verified [5]. This execution path can either
be finite, which leads from the initial system state to a
single state that violates the property being verified, or be
infinite, which leads to a loop of states, which is repeated
infinitely many times and violates the property being verified.
The counterexample being finite or infinite depends on the
property being verified. Roughly speaking, a counterexample
for safety and invariant properties is a finite path, while a
counterexample for reachability and liveness properties is an
infinite execution path [5].

Formally, to solve the switching synthesis problem by
model checking, we construct a product transition system



(Q×P,Q0 ×P0,→) from the family of transition systems
{Tp} in (3). Here Q×P is a set of system states that consist
of switching modes P and plant states Q, Q0×P0 represents
initial states, and →⊆ (Q × P) × (Q × P) is a transition
relation: given states (qi, pi) and (qj , pj), there is a transition
from (qi, pi) to (qj , pj) and we write (qi, pi) → (qj , pj), if
qi

pi→ qj , i.e., there exists a transition from qi to qj in the
mode pi.

We can solve a switching synthesis problem for a specifi-
cation given by a temporal logic formula ϕ in the following
procedure:
(1) Negate the formula ϕ to get ¬ϕ;
(2) Given the transition system (Q×P,Q0×P0,→) and the
LTL formula ¬ϕ, determine if all executions of the transition
system satisfy ¬ϕ.

The second step above is a model checking problem and
can be solved by off-the-shelf software, e.g., the SPIN model
checker [16] and the NuSMV symbolic model checker [15].
Solving this problem, there are two possible outcomes: (i)
the model checker verifies that ¬ϕ is true for the transition
system T ; (ii) the model checker finds that ¬ϕ is not true
and provides a counterexample.

We are particularly interested in case (ii), since it provides
a switching strategy that realizes ϕ and therefore solves
our switching synthesis problem. Actually, a counterexample
given by the model checker provides either a finite or infinite
path of the form

(q0, p0)→ (q1, p1)→ (q2, p2)→ (q3, p3)→ · · · (5)

that violates the formula ¬ϕ, or in other words, satisfies ϕ. A
switching strategy can be extracted from a counterexample
found by model checking and given in the form (5).

Switching Strategy: Given a counterexample in the form
(5), we consider two cases:
(i) if the path in (5) is infinite, we apply the switching
sequence p0p1p2p3 · · · to ensure that the execution

(q, p) = (q0, p0)(q1, p1)(q2, p2)(q3, p3) · · ·

satisfies ϕ;
(ii) if the path in (5) is finite and terminates at state (qt, pt),
we apply any switching sequence with prefix p0p1p2p3 · · · pt
to ensure that the execution

(q, p) = (q0, p0)(q1, p1)(q2, p2)(q3, p3) · · · (qt, pt) · · ·

satisfies ϕ.
The switching protocol given by model checking is es-

sentially an open loop strategy. It gives a mode sequence,
by executing which the system is guaranteed to satisfy the
specification. The correctness of the above switching strategy
relies on the assumption that executions under the switching
strategy can replicate the same state sequence as provided
by the counterexample in the form (5). This assumption is
implied if the family of transition systems (3) are an under-
approximation of (1) in the sense of Definition 2. Formally,
this is summarized in the following theorem.

Theorem 1: Given an under-approximation of (1), a
switching strategy extracted from a counterexample found

by model checking and given in the form (5) solves the
discrete switching synthesis problem. This strategy can be
continuously implemented to give a solution to the continu-
ous switching synthesis problem, provided that {Tp : p ∈ P}
is an under-approximation of (1).

Remark 1: Based on an under-approximation, a model
checker may verify that ¬ϕ is true for the transition system
T . In such case, it does not necessarily mean that the
switching synthesis problem does not have a solution. It
could be the case that transition systems in (3), which serve
as an abstract model for the underlying physical systems,
are too crude for the switching synthesis problem to have
a solution. A finer approximation may be needed for the
discrete synthesis problem to be solvable.

B. Switching synthesis by game solving

In this subsection, we consider the case in which the fam-
ily of transition subsystems in (3) are an over-approximation
of (1). Our approach leverages recent work on reactive
synthesis [6] of controllers for systems interacting with
adversarial environments [22], where a control protocol is
synthesized to generate a sequence of control signals to
ensure that a plant meets its specification for all allowable
behaviors of the environment. The synthesis problem is
viewed as a two-player game between the environment and
the plant: the environment attempts to falsify the specification
and the plant tries to satisfy it.

We propose a temporal logic game approach to switch-
ing synthesis with an abstraction that gives an over-
approximation. Due to nondeterminism inherent in an over-
approximation, we may not be able to exactly reason about
the discrete state transitions within each mode. Rather, we
seek to construct mode sequences that can force the system
to satisfy a given specification despite the nondeterminism
of the state transitions in each mode. A game is constructed
by regarding the discrete plant variable q as the environment
part, which tries to falsify the specification, and a switching
mode p as the controllable part, which tries to satisfy the
specification. While automatic synthesis of digital designs
from general LTL specifications is one of the most chal-
lenging problems in computer science [6], for specifications
in the form of the so-called Generalized Reactivity 1, or
simply GR(1), formulas, it has been shown that checking its
realizability and synthesizing the corresponding automaton
can be accomplished in polynomial time in the number of
states of the reactive system [6].

We consider GR(1) specifications of the form ϕ = (ϕq →
ϕs), where, roughly speaking, ϕq characterizes the non-
deterministic transitions each subsystems can make, and
ϕs describes the correct behavior of the overall switching
system. Here, the non-deterministic transitions of the plant,
specified in ϕq , are regarded as adversaries that try to falsify
ϕs, while the switching mode is the controlled variable that
tries to force the overall system to satisfy ϕs. We emphasize
that, within the same framework, we can incorporate real en-
vironment into the system, by adding environment variables
e that explicitly accounts for adversaries. Such adversaries do



not impact the continuous dynamics of the system directly,
but rather constrain its behavior through GR(1) specifications
of the form

ϕ = ((ϕq ∧ ϕe)→ ϕs), (6)

where ϕe specifies allowable environment behaviors and ϕs
is a system level specification that enforces correct behaviors
for all valid environment behaviors. To be more precise, for
α ∈ {q, s, e}, each ϕα in (6) has the following structure:

ϕα := ϕαinit ∧
∧
i∈Iα1

�ϕα1,i ∧
∧
i∈Iα2

�♦ϕα2,i,

where ϕαinit is a propositional formula characterizing the
initial conditions; ϕα1,i are transition relations characterizing
safe, allowable moves and propositional formulas character-
izing invariants; and ϕα2,i are propositional formulas charac-
terizing states that should be attained infinitely often. Many
interesting temporal specifications can be transformed into
this form. The readers can refer to [6] for more precise
treatment on how to use GR(1) game to solve LTL synthesis
in many interesting cases (see also [22] for more examples).
A winning strategy for the system, i.e., a strategy such
that formula (6) is satisfied, can be solved by a symbolic
algorithm within time complexity that is quadratic in the
size of the state space [6].

We can formally describe our game approach for switching
synthesis as follows.
Two-Player Game: A state of the game s = (e, q, p) is
in E × Q × P , where E , Q, and P represent finite sets
of environment states, plant states, and switching modes,
respectively. A transition of the game is a move of the
environment and a move of the plant, followed by a move
of the switching mode. A switching strategy can be defined
as a partial function (s0s1 · · · st−1, (qt, et)) 7→ pt, which
chooses a switching mode based on the state sequence so
far and the current moves of the environment and the plant.
In this sense, a switching strategy is a winning strategy
for the switching system such that the specification ϕ is
met for all behaviors of the environment and the plant.
We say that ϕ is realizable if such a winning strategy
exists. If the specification is realizable, solving the two-
player game gives a finite automaton that effectively gives a
state-feedback switching protocol. More specifically, at each
state, the system executes a switching mode, which drives
the system to a number of possible states that are allowed in
an over-approximation. By observing which state the system
enters, the next switching mode is chosen accordingly by
reading the finite automaton. By exploiting properties of an
over-approximation, we can show the following result.

Theorem 2: Given an over-approximation of (1), a switch-
ing strategy obtained by solving a two-player game solves the
discrete synthesis problem. This strategy can be continuously
implemented to give a solution to the continuous switching
synthesis problem, provided that {Tp : p ∈ P} is an over-
approximation of (1).

Remark 2: Given a two-player game structure and a
GR(1) specification, the digital design synthesis tool imple-
mented in JTLV [25] (a framework for developing temporal

verification algorithm [6]) generates a finite automaton that
represents a switching strategy for the system. The Temporal
Logic Planning (TuLiP) Toolbox, a collection of Python-
based code for automatic synthesis of correct-by-construction
embedded control software as discussed in [22], [26] pro-
vides an interface to JTLV, which has been used for other
applications [22], [26]–[29] and is also used to solve the
examples later in this paper.

Remark 3: Continuous implementations of a switching
strategy may exhibit Zeno behavior, appropriate assumptions
similar to that in [11] can be imposed to exclude such
behavior. In particular, an emptiness criterion of the form⋂l
i=1 T

−1(qf+i) = ∅, can be checked to rule out Zeno
behavior. Here, the states qf+i are from an execution of the
switching strategy of the form

(q, p) = (q0, p0) · · · (qf , pf )
(

(qf+1, pf+1) · · · (qf+l, pf+l)
)ω
,

where l ∈ Z+, and ω indicates a loop of states that
are periodically repeated. More detailed discussions can be
found in [1].

IV. APPLICATION TO ROBOT MOTION PLANNING

Consider a kinematic model of a unicycle-type wheeled
mobile robot [20] in 2D plane:ẋẏ

θ̇

 =

cos θ 0
sin θ 0

0 1

 [v
w

]
. (7)

Here, x, y are the coordinates of the middle point tween
the driving wheels; θ is the heading angle of the vehicle
relative to the x-axis of the coordinate system; v and w are
the control inputs, which are the linear and angular velocity,
respectively.

To cast the motion planning of this robot as a switching
synthesis problem, we consider a situation where the heading
angles are restricted to a finite set {θp : p = 1, · · · , 8},
where θp ∈ Ip and Ip are non-overlapping subintervals
of [0, 2π). Here we allow the heading angle to be within
certain intervals to capture possible measurements errors or
disturbances. The set of angles considered in this example
are {θi : i = 1, · · · , 8}, where each θi can be an arbitrary
angle in ((i− 1)π/4, iπ/4), for i = 1, · · · , 8.

Equation (7) can now be viewed as a switched system with
eight different modes[

ẋ
ẏ

]
=

[
v0 cos θp
v0 sin θp

]
, (8)

where v0 > 0 is some constant speed. These dynamics can
be achieved with inputs (v, w) = (v0, 0) in (7) with a desired
heading angle in θp ∈ Ip. Transitions between different
heading angles are now regarded as mode transitions, and
the transition can be rendered through ẋ = ẏ = 0 and
θ̇ = ω0, by letting inputs (v, w) = (0, w0) in (7). In this
sense, transitions can be made freely among different modes.

We consider a workspace shown on the left side of Figure
2, which is a square of size 10. The robot is expected to
satisfy the following desired properties:



q0

q1 q3

q2 q0

q1 q3

q2

Fig. 2: The workspace for Example 3 and its partition.

(P1) Visit each of the blue cells, labeled as q1, q2, and q3,
infinitely often.

(P2) Eventually go to the green cell q0 after a PARK signal
is received.

Here, the PARK signal is an environment variable that con-
strains the behavior of the robot. The following assumption
is made on the PARK signal.
(S1) Infinitely often, PARK signal is not received.

Fig. 3: Simulation results for Example 3: (a) The upper
left figure shows simulation results without obstacles; (b)
the upper middle and right figures show simulation results
with different static obstacles; (c) the lower figures show
simulation results with a moving obstacle that occupies a
square of size 2 and rambles horizontally under certain
assumptions on its speed. The blue squares are the regions
that the robot has to visit infinitely often. The green square is
where the robot should eventually visit once a PARK signal is
received. The obstacles are indicated by red, the trajectories
of the robot are depicted by black curves, and the current
positions of the robot are represented by the magenta dots.

To synthesize a planner for this example, we introduce
a partition of the workspace as shown on the right side
of Figure 2, in which each cell of size 1 is partitioned
into two triangles. In each mode, we can determine the
discrete transition relations according to Definition 3 and
obtain an over-approximation of the system. Solving a two-
player game as introduced in Section III-B gives a winning
strategy that guarantees that the robot satisfies the given
properties (P1) and (P2). In addition, we synthesize switching

strategies for a workspace occupied with both static and
moving obstacles. Snapshots of simulation results are shown
in Figure 3, which illustrate continuous implementations of
different switching strategies that are synthesized to achieve
the specification under different situations with or without
obstacles.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we considered the problem of synthesizing
switching protocols for nonlinear hybrid systems subject to
exogenous disturbances. These protocols guarantee that the
trajectories of the system satisfy certain high-level specifi-
cations expressed in linear temporal logic. We employed a
hierarchical approach where the switching synthesis problem
was lifted to discrete domain through finite-state abstractions.
Two different types of finite-state transition systems, namely
under-approximations and over-approximations, that abstract
the behavior of the underlying continuous dynamical system
were introduced. It was shown that the discrete synthesis
problem for an under-approximation led to a model checking
problem. On the other hand, the discrete synthesis problem
for an over-approximation was recast as a two-player tem-
poral logic game. In both cases, off-the-shelf software can
be used to solve the resulting problems. Moreover, existence
of solutions to the discrete synthesis problem guarantees the
existence of continuous implementations that are correct by
construction.

This paper can be seen in the context of abstraction-
based methods for controller synthesis and, in this sense,
is closely related to existing work on construction of finite
abstractions for nonlinear and hybrid systems (see [4] for
an earlier review). Exact finite discrete abstractions, in the
sense of bisimulation relations, are known to only exist for
rather limited classes of systems [4]. Recent work therefore
has focused on formulating relaxed notions of simulation
relations, such as approximate and alternating simulation
relations [30], [31]. In [32]–[34], it has been shown that
approximate and approximate alternating bismulations can
be obtained between a quantized control system and a
finite transition system, if the underlying continuous-time
nonlinear system is incrementally stable. In particular, the
work by Girard et al. [32] focuses on incrementally stable
switched systems. More recently, Zamani et al. [35] shows
that such stability conditions can be further relaxed to
incremental forward completeness. In general, these works
focus on proving existence of approximate abstractions, and
do not explicitly address the problem of controller synthesis
for enforcing high-level specifications. Exceptions are [36]
and [37], where approximate simulations and approximate
alternating simulations are used to synthesize time-optimal
controllers, which aim to steer, in minimal time, the state of
the system to a desired target while remaining safe.

In this paper, we defined two types of abstractions, namely
under- and over-approximations. While they resemble sim-
ulation and alternating simulation relations, respectively, in
a certain sense, they are stronger notions in the sense that
language inclusions between the continuous-time systems



and the discrete transitions systems are also embedded in
the definitions. This feature is important in ensuring that the
control strategies synthesized at the discrete level, when im-
plemented continuously, can guarantee that the continuous-
time systems satisfy certain LTL specifications. In this sense,
our results are complementary to the aforementioned tech-
niques and our contributions are twofold: (1) we formulated
appropriate discrete approximations for systems with general
nonlinear dynamics, rather than focusing on fully actuated
or linear dynamics as considered in [22], [38]–[41]; (2) with
the game formulation, we can explicitly account for non-
determinism (regarded as adversarial) rather than lifting non-
deterministic transition systems to deterministic ones [37],
[42]. One advantage of doing so is to incorporate environ-
mental adversaries within the same formulation, whereas
none of the approaches mentioned above considers adver-
sarial environment, with [40] as an exception. By restricting
ourselves to the GR(1) fragment of LTL, the checking of re-
alizability of the game and the synthesis of a discrete strategy
have been shown to be of polynomial-time complexity [6].
Another advantage of considering non-deterministic approx-
imations is that they are potentially easier to compute than
deterministic approximations, by essentially allowing more
flexibility in adding transitions (though non-deterministic)
in the abstract systems. In the appendix of [1], we have
discussed algorithms to apply or adapt existing techniques
for computing both under- and over- approximations. Future
work will focus on finding more efficient algorithms for
computing such approximations for systems with general
underlying dynamics.

REFERENCES

[1] J. Liu, N. Ozay, T. Ufuk, and R. Murray, “Synthesis of switching
protocols from temporal logic specifications,” Caltech, Tech. Rep.,
2011.

[2] D. Liberzon and A. Morse, “Basic problems in stability and design of
switched systems,” IEEE Cont. Syst. Mag., vol. 19, pp. 59–70, 1999.

[3] E. Frazzoli, M. Dahleh, and E. Feron, “Maneuver-based motion
planning for nonlinear systems with symmetries,” IEEE Trans. on
Robotics, vol. 21, pp. 1077–1091, 2005.

[4] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” Proc. of the IEEE, vol. 88, pp. 971–
984, 2000.

[5] C. Baier and J. Katoen, Principles of Model Checking. MIT Press,
2008.

[6] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Saar,
“Synthesis of reactive (1) designs,” J. Comput. System Sci., vol. 78,
pp. 911–938, 2012.

[7] A. Church, “Logic, arithmetic and automata,” in Proc. of the ICM,
1962, pp. 23–35.

[8] S. Jha, S. Gulwani, S. Seshia, and A. Tiwari, “Synthesizing switch-
ing logic for safety and dwell-time requirements,” in Proc. of the
ACM/IEEE ICCPS, 2010, pp. 22–31.

[9] A. Taly and A. Tiwari, “Switching logic synthesis for reachability,” in
Proc. of the ACM EMSOFT, 2010, pp. 19–28.

[10] J. Cámara, A. Girard, and G. Gössler, “Synthesis of switching
controllers using approximately bisimilar multiscale abstractions,” in
HSCC, 2011, pp. 191–200.

[11] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli, “Effective
synthesis of switching controllers for linear systems,” Proc. of the
IEEE, vol. 88, pp. 1011–1025, 2000.

[12] T. Koo, G. Pappas, and S. Sastry, “Mode switching synthesis for
reachability specifications,” in HSCC. Springer, 2001, pp. 333–346.

[13] J.-W. Lee and G. E. Dullerud, “Joint synthesis of switching and
feedback for linear systems in discrete time,” in HSCC, 2011, pp.
201–210.

[14] G. Weiss and R. Alur, “Automata based interfaces for control and
scheduling,” in HSCC. Springer, 2007, pp. 601–613.

[15] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NUSMV: a
new Symbolic Model Verifier,” in Proc. of CAV, 1999, pp. 495–499.

[16] G. Holzmann, The Spin Model Checker: Primer and Reference Man-
ual. Addison-Wesley Professional, 2003.

[17] B. Jobstmann and R. Bloem, “Optimizations for ltl synthesis,” in Proc.
of FMCAD, 2006, pp. 117–124.

[18] A. Pnueli and R. Rosner, “On the synthesis of an asynchronous reactive
module,” in Proc. of ICALP, 1989, pp. 652–671.

[19] D. Fisman and O. Kupferman, “Reasoning about finite-state switched
systems,” in Proc. of the International Conf. on Hardware and
Software: Verification and Testing, 2011, pp. 71–86.

[20] J. Toibero, F. Roberti, and R. Carelli, “Stable contour-following control
of wheeled mobile robots,” Robotica, vol. 27, pp. 1–12, 2009.

[21] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer, 1992, vol. 1.

[22] T. Wongpiromsarn, U. Topcu, and R. Murray, “Receding horizon
temporal logic planning,” IEEE TAC, to appear, 2012.

[23] A. Pnueli, “The temporal logic of programs,” in Proc. of the Annual
Symp. on Foundations of Computer Science, 1977, pp. 46–57.

[24] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
2000.

[25] A. Pnueli, Y. Sa’ar, and L. Zuck, “JTLV: A framework for developing
verification algorithms,” in Proc. of CAV, 2010, pp. 171–174.

[26] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. Murray, “TuLiP:
a software toolbox for receding horizon temporal logic planning,” in
HSCC, 2011, pp. 313–314.

[27] T. Wongpiromsarn, U. Topcu, and R. Murray, “Formal synthesis
of embedded control software: Application to vehicle management
systems,” in Proc. of the AIAA Infotech@Aerospace Conf., 2011.

[28] N. Ozay, U. Topcu, T. Wongpiromsarn, and R. Murray, “Distributed
synthesis of control protocols for smart camera networks,” in Proc. of
the ACM/IEEE ICCPS, 2011.

[29] N. Ozay, U. Topcu, and R. Murray, “Distributed power allocation for
vehicle management systems,” in Proc. of the IEEE CDC, 2011.

[30] A. Girard and G. Pappas, “Approximation metrics for discrete and
continuous systems,” IEEE TAC, vol. 52, pp. 782–798, 2007.

[31] P. Tabuada, Verification and control of hybrid systems: a symbolic
approach. Springer-Verlag, 2009.

[32] A. Girard, G. Pola, and P. Tabuada, “Approximately bisimilar symbolic
models for incrementally stable switched systems,” IEEE TAC, vol. 55,
pp. 116–126, 2010.

[33] G. Pola, A. Girard, and P. Tabuada, “Approximately bisimilar symbolic
models for nonlinear control systems,” Automatica, vol. 44, pp. 2508–
2516, 2008.

[34] G. Pola and P. Tabuada, “Symbolic models for nonlinear control
systems: Alternating approximate bisimulations,” SIAM J. Control
Optim., vol. 48, pp. 719–733, 2009.

[35] M. Zamani, G. Pola, M. Mazo Jr, and P. Tabuada, “Symbolic models
for nonlinear control systems without stability assumptions,” IEEE
TAC, to appear, 2012.

[36] A. Girard, “Synthesis using approximately bisimilar abstractions: time-
optimal control problems,” in Proc. of the IEEE CDC, 2010, pp. 5893–
5898.

[37] M. Mazo Jr and P. Tabuada, “Symbolic approximate time-optimal
control,” Systems Control Lett., vol. 60, pp. 256–263, 2011.

[38] G. Fainekos, H. Kress-Gazit, and G. Pappas, “Temporal logic motion
planning for mobile robots,” in Proc. of the IEEE ICRA, 2005, pp.
2020–2025.

[39] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE TAC, vol. 53,
pp. 287–297, 2008.

[40] H. Kress-Gazit, G. Fainekos, and G. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE Trans. on Robotics,
vol. 25, pp. 1370–1381, 2009.

[41] J. Tumova, B. Yordanov, C. Belta, I. Cerna, and J. Barnat, “A symbolic
approach to controlling piecewise affine systems,” in Proc. of the IEEE
CDC, 2010, pp. 4230–4235.

[42] M. Kloetzer and C. Belta, “Dealing with nondeterminism in symbolic
control,” in HSCC. Springer, 2008, pp. 287–300.


