
The Information Bottleneck:

Theory and Applications

Thesis submitted for the degree “Doctor of Philosophy”

Noam Slonim

Submitted to the Senate of the Hebrew University in the year 2002

1



This work was carried out under the supervision of

Prof. Naftali Tishby

2



This thesis is dedicated to the memory of my father

3



Acknowledgments

First, I would like to express my deep gratitude to my advisor, Naftali Tishby. Tali has been, and still is,

a constant source of inspiration for me. His wisdom, patience and inexhaustible knowledge have guided

me safely through the last few years. This thesis is based on numerous fruitful conversations we have had,

which in particular resulted in eleven papers we collaborated on. Moreover, many sections of this thesis

have not been published elsewhere and are a direct result of our joint long discussions. His contribution to

this thesis, and to me, cannot be overemphasized.

Nir Friedman has been like a second advisor to me. I have had many enjoyable and fruitful discussions

with him which have led to three published papers, and hopefully many more to come. He showed me how

to combine Bayesian Networks with the Information Bottleneck and made the first important step toward

establishing the multivariate IB framework, which constitutes Part III of this thesis.

Yoram Singer guided me through the weird world of Information Retrieval. Moreover, whenever I needed

advice, or some help, he was there to provide it.

Yair Weiss made the first rigorous step to show the relationship between Maximum Likelihood and the

Information Bottleneck. Amazingly, he even succeeded in explaining it to me, and perhaps even more

surprisingly, convinced me that it is true. Our collaboration was both pleasant and educational, and resulted

in a joint paper which is presented in Appendix A.

Bill Bialek hosted me at NEC research institute at Princeton, for ten exciting days in May 1998, which

both Tali Tishby and he used to introduce me to the Information Bottleneck idea. Thanks to him, this was

the turning point of my studies. Until then, I was under the impression that I could earn my Ph.D. by writing

sitcom scripts. I’m grateful to Bill for this visit which eventually determined the course of my thesis.

I would like to thank the Ph.D. students of the Machine Learning group at the Hebrew University for their

friendship, support and significant help during this thesis. They include: Yoseph Barash, Gill Bejerano

(who I suspect still thinks I’m using his desk), Gal Chechick, Amir Globerson, Gal Elidan (who patiently

answered all my questions about Bayesian inference), Tommy Kaplan, Beata Klebanov, Ori Mosenzon (who

I hope will eventually find one Dojo to train in), Iftach Nachman, Amir Navot, Matan Ninio (who configured

my computer every time I asked him, and in some cases even when I did not ask him), Dana Pe’er, Eilon

Portugaly, Yevgeny Seldin and Shai Shalev-Shwartz. Special thanks are due to Koby Crammer, my great

roommate in Ross 61, and to Ran Gilad-Bachrach for bailing me out scientifically every time I needed it.

I would also like to express my gratitude to former members of the Machine Learning group: Itay Gat,

Daniel Gil, Ran El-Yaniv, Yuval Feinstein, Shai Fine, Elad Schneidman, Adi Schreibman, Lidror Troyansky,

and Golan Yona. Each and every one of them has supported me in different ways during the last few years.

Special thanks are due to Leonid Kontorovich for his help in many different occasions.

I had fascinating exchanges about galaxies with Ofer Lahav from the Institute of Astronomy at the Univer-

sity of Cambridge, and with Rachel Somerville, currently at the University of Michigan. These talks resulted

in a joint paper and many other unpublished material that hopefully will find its way to publication some day.

I’m especially grateful to Ofer for hosting me in Cambridge during our joint work, and in the workshop on

spectra and redshift surveys on the island of Porquerolles off the French Riviera (Astrophysicists certainly

know how to pick conference locations).

I very much enjoyed collaborating with Yonatan Bilu and Michal Linial. However, I was not able to find

any relations between our joint work and my thesis, so I’ll simply cite it here [12].

Idan Segev, the Director of ICNC, and Eilon Vaadia, the Head of the ICNC Ph.D. program, were both

helpful and willing any time I needed them.

Aliza Shadmi, the secretary of ICNC, has been a constant source of invaluable help while handling the

necessary bureaucracies during my Ph.D. studies. Ziva Rehani, Silvi Belisha, and Regina Krizhanovsky

from the administrative staff at the School of Computer Science and Engineering, have always been kind

and assisting in any way they could.

Esther Singer made a great effort to correct my English in every sentence in this thesis, except for this one.

4



The remaining errors are mine, not hers, where I shamelessly used my worn “jargon” excuse to leave them

in.

I would like to thank the Eshkol Fellowship of the Israeli Ministry of Science for its generous support

during three years of my studies.

Last, and most important, my deepest gratitude are to my family:� My mother, Nitza, for her support from the moment I was born.� My brothers, Yochi, Yoram, and Barak, for being there for me.� My son, Yahel, for making me laugh.� And my beloved wife, Dana, for her love.

5



Preface

Two papers mark the starting point of this thesis. The first was published in 1993 by Pereira, Tishby and

Lee [60] under the title “Distributional clustering of English words”. In this paper the authors suggested a

method for clustering words according to their distributions in particular syntactic contexts. More specif-

ically, Pereira et al. represented different nouns as conditional probability distributions over verbs. The

probability values were estimated to be proportional to the number of times a specific verb occurred with

the specific noun in the same sentence. Pereira at al. further suggested measuring the similarity between

different nouns through the KL divergence between the corresponding conditional verb distributions. They

described a hierarchical (“soft”) clustering procedure, motivated by a deterministic-annealing scheme, and

provided detailed experimental results. In particular, these results demonstrated how semantically related

nouns tend to be clustered together, and disambiguated nouns are naturally assigned to several clusters,

corresponding to their different possible senses.

Six years later, in 1999, another paper was published by Tishby, Pereira and Bialek [82], that was entitled

“The information bottleneck method”. In this paper, Tishby et al. showed that the 1993 work was in fact a

special case of a general variational principle that constitutes a new information-theoretic approach to data

analysis. Given some joint distribution, p(x; y), the basic idea was to search for a compact representation

of X that preserves the maximum information about Y . Thus, the information that X contains about Y is

squeezed through a compact “bottleneck”, formed by a limited set of new representatives, or clusters. In this

formulation, X and Y may correspond to any type of co-occurrence data, where analyzing co-occurrences

of nouns and verbs is just one possible application of this potentially rich framework. Moreover, Tishby et

al. suggested that their approach can be considered analogous to rate distortion theory, with an important

distinction: the distortion measure does not need to be defined in advance, but rather naturally emerges

from the joint statistics. They characterized the form of the optimal solution to this variational principle

and showed that the deterministic-annealing approach, suggested six years earlier, can be used to construct

solutions in practice.

This thesis first reviews in detail the Information Bottleneck (IB) approach and its relations to rate distor-

tion theory. We provide precise definitions of some of the ideas that were briefly mentioned in [82]. We

further suggest new algorithmic approaches to construct solutions to the IB problem and provide empirical

results that demonstrate the method’s usefulness in a variety of applications. Some of these applications

were first presented in [74, 75, 76, 77, 78, 83] and are based on joint work with Naftali Tishby, and addition-

ally with Nir Friedman, Ofer Lahav and Rachel Somerville. Inspired by these works, additional applications

have been suggested by other authors. Several examples are presented in [38, 41, 56, 67, 68, 87].

The second half of this thesis is devoted to a theoretic extension of the IB framework. This extension shows

that the primary principle of compressing one variable while preserving the information about another can be

extended to handle any finite number of random variables. In particular, this extension defines a novel family

of optimization problems, which are all special cases of one information-theoretic principle, the multivariate

IB principle. We further show that analogous to the original IB problem, it is possible to characterize the

form of the optimal solution to this multivariate principle. Additionally, we show how to extend all the

algorithmic approaches suggested for the original IB problem, and apply the resulting algorithms to the

analysis of a variety of real-world datasets. This part of the thesis is based on joint work with Nir Friedman,

Ori Mosenzon and Naftali Tishby, and its preliminary versions were first presented in [32, 73].

Last, but not least, in Appendix A of this thesis we discuss the relationships of the IB framework to

Maximum Likelihood of mixture models, which is a standard and well established approach to clustering.

This appendix is based on joint work with Yair Weiss, and was first introduced in [79].
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Abstract

This thesis introduces the first comprehensive review of the Information Bottleneck (IB) method along

with its recent extension, the multivariate IB. The IB method was originally suggested in [82] as a new

information-theoretic approach for data analysis. The basic idea is surprisingly simple: Given a joint distri-

bution p(x; y), find a compressed representation of X , denoted by T , that is as informative as possible aboutY . This idea can be formulated as a variational principle of minimizing the mutual information, I(T ;X)
(which controls the compactness of the representation T ), under some constraint on the minimal level of

mutual information that T preserves about Y , given by I(T ;Y ) . Hence, the fundamental trade-off between

the complexity of the model and its precision is expressed here in an entirely symmetric form, where the

exact same concept of information controls both its sides. Indeed, an equivalent posing of the IB principle

would be to maximize the information T maintains about Y , where the (compression) information I(T ;X)
is constrained to some maximal level.

As further shown in [82], this constrained optimization problem can be considered analogous to rate distor-

tion theory, but with an important distinction: the distortion measure does not need to be defined in advance,

but rather naturally emerges from the joint statistics, p(x; y). Moreover, it leads to a tractable mathematical

analysis which provides a formal characterization of the optimal solution to this problem. As an immedi-

ate implication, the IB method formulates a well defined information-theoretic framework for unsupervised

clustering problems, which is the main focus of this thesis. Nonetheless, it is important to keep in mind

that the same underlying principle of a trade-off between information terms may have further implications

in other related fields, as recently suggested in [37].

After the introduction in Part I, in Part II we provide a detailed description of the IB method and its

relations to rate distortion theory. We explicitly define some of the ideas that were briefly mentioned in [82],

and further suggest new algorithmic approaches to construct solutions to the IB problem. Moreover, we

provide empirical results that demonstrate the method’s usefulness in a variety of applications, and discuss

several related issues which are left for further research.

In Part III we suggest a general principled framework for multivariate extensions of the IB method. While

the original principle suggested compressing one variable while preserving the information about another,

this extension allows us to consider any finite number of random variables under the same framework. In

particular, this extended formulation defines a novel family of optimization problems in which the original

IB problem constitutes a special (important) case. These problems suggest novel approaches to data analysis,

that to the best of our knowledge have not been treated or defined elsewhere. Specifically, we suggest

considering multiple systems of data partitions that are interrelated, where Bayesian networks are utilized

to specify the systems of clusters and which information terms should be maintained.

Analogous to the original IB problem, we characterize the form of the optimal solution to this general

multivariate principle. That is, we are not satisfied with defining novel problems but also (formally) solve

all of them at once. We further show how to extend all the algorithmic approaches suggested to the original

IB problem, and apply the extended algorithms to solve three different IB variations with respect to several

real world datasets. Nonetheless, we emphasize that additional applications of this multivariate framework

still need be explored, and we expect that future research will elucidate such examples.

In the remainder of this abstract we provide a concise description of the chapters and appendices that

constitute this thesis.

Chapter 1 forms a basic introduction to the remaining chapters. We start with a high level description of the

fundamental precision-complexity trade-off and explain how the IB principle suggests a purely statistical and

symmetric formulation to this trade-off. We further introduce the basic concepts that will be used throughout

this thesis, and in particular the concepts of mutual and multi information.

In Chapter 2 we formally present the IB principle and its relationships to rate distortion theory. We define

the concept of the relevance-compression function as a characteristic function for a given joint distribution,p(x; y), and argue that this function can be considered as a natural extension to the well known rate-distortion
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function. In the last section of this chapter we present the characterization of the optimal solution to the IB

problem.

Chapter 3 describes four different and complementary algorithms that enable us to construct solutions in

practice. The first two were originally suggested in [60, 82] while the other two are novel. We discuss the

relationships between all these algorithms and suggest that combinations of these algorithms might also be

useful in some cases.

In Chapter 4 we consider several applications of all the algorithms and combinations of algorithms sug-

gested earlier. These applications further elucidate the earlier theoretical discussion, and demonstrate the

applicability of the method to a variety of tasks. Due to the lack of space only a few applications are

presented, while others are described in detail elsewhere [68, 75, 76, 77, 78, 83].

A preliminary assumption of the IB method is that the input is given in the form of a joint distribution.

Nonetheless, in many situations this may not be the most natural representation. In Chapter 5 we investigate

how to apply the IB framework to these situations as well, by applying a new pre-process procedure to the

input data, termed here Markovian relaxation. We present additional applications to a variety of data types

that demonstrate the effectiveness of combining this approach with the IB method.

Chapter 6 concludes the discussion regarding the original IB method. We present the relations between

this method, as presented in this thesis, to recent related contributions [10, 19, 37], and point out several

open problems and directions for further research.

In Chapter 7 we provide the necessary introduction to Part III. We motivate the search for a multivariate

extension to the original IB framework and introduce the concept of Bayesian networks, which is the main

tool we use in constructing this extension. We further relate this concept to the concept of multi-information

through several simple propositions, which are necessary for the following analysis.

Chapter 8 describes the multivariate IB principle which provides a general extension to the original for-

mulation. We further suggest an alternative and closely related variational principle that provides a different

interpretation for the method. We discuss the relations between these two principles and demonstrate how

to apply them in order to specify new (multivariate) IB-like variational problems.

In Chapter 9 we characterize the form of the optimal solution to the multivariate principles suggested in the

previous chapter. In other words, we provide a general solution to all the optimization problems included in

our multivariate framework. We demonstrate how this solution can be used as a “recipe” to induce concrete

solutions to different specifications of multivariate IB problems.

In Chapter 10 we show how to extend all the four algorithmic approaches suggested for the original IB

problem in order to solve multivariate IB constructions. Chapter 11 demonstrates several applications of the

general methodology. Specifically, we apply all the extended algorithms to construct solutions to different

multivariate IB problems with respect to a variety of real world datasets.

We conclude Part III in Chapter 12 where we discuss our results and some of their possible implications

for future research.

Last, there are four appendices to this work. Appendix A provides a detailed discussion as regard to the

relationships between the IB method and a well established probabilistic framework for clustering, known

as Maximum Likelihood of mixture models. Although both approaches stem from conceptually different

motivations, it turns out that in some cases there are some mathematical equivalences between them, as

discussed in detail in this appendix. In Appendix B we provide a theoretical analysis that relates the concept

of (relevant) mutual information with the supervised learning concept of precision. In particular, we show

that under certain assumptions, seeking clustering solutions which are closer to the “true” partition of the

input data is equivalent to seeking partitions that are more informative about the feature space of these

data. Appendix C and Appendix D present the proofs for the theorems and propositions that are introduced

throughout Part II and Part III, respectively.

8



Contents

I General Background 1

1 Introduction 2

1.1 The precision-complexity trade-off as a central paradigm . . . . . . . . . . . . . . . . . . . 2

1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Entropy and related concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Mutual information and multi-information . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.4 KL divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.5 JS divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Relevant versus irrelevant distinctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

II The Single Sided Information Bottleneck 16

2 The IB Variational Principle 17

2.1 Brief overview of rate distortion theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 The rate-distortion function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 The Blahut-Arimoto algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Relevance through another variable: the IB principle . . . . . . . . . . . . . . . . . . . . . 23

2.3 The relevance-compression function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Characterizing the solution to the IB principle . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 IB Algorithms 29

3.1 iIB: an iterative optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Convergence of the iIB algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 dIB: a deterministic annealing-like algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 aIB: an agglomerative algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 A local merging criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 sIB: a sequential optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Relations between the different algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Combining algorithms and reverse-annealing . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 IB Applications 41

4.1 sIB for word clustering with respect to different relevant variables . . . . . . . . . . . . . . 41

4.2 aIB with finite � for non-balanced clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 dIB for “soft” word clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Reverse annealing for estimating the relevance-compression function . . . . . . . . 50

4.4 iIB and sIB sensitivity to local optima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 sIB and aIB for unsupervised document classification . . . . . . . . . . . . . . . . . . . . . 52

9



4.5.1 The datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5.2 The evaluation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5.3 Other clustering algorithms for comparison . . . . . . . . . . . . . . . . . . . . . . 56

4.5.4 Maximizing information and cluster precision . . . . . . . . . . . . . . . . . . . . . 57

4.5.5 Results for small-scale experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.6 Results for medium-scale experiments . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.7 Improving cluster precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Applications through Markovian Relaxation 61

5.1 Pairwise distances and Markovian relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Relaxation of the mutual information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1 The Iris data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.2 Gene expression data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.3 Unsupervised OCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Isotropic blurring versus relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Discussion and Further Work 68

6.1 Finite sample effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.1 A relevant-coding theorem? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.2 Model selection and avoiding over-fit . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.3 Bounding the gap from the relevance-compression function . . . . . . . . . . . . . 73

6.2.4 Dealing with continuous distributions . . . . . . . . . . . . . . . . . . . . . . . . . 74

III Multivariate Information Bottleneck 75

7 Introduction 76

7.1 Bayesian networks and multi-information . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8 Multivariate Extensions of the IB Method 79

8.1 Multi-information bottleneck principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.2 Alternative variational principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.3 Relations between the two principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.4 Examples: IB variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.4.1 Parallel IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.4.2 Symmetric IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.4.3 Triplet IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9 Characterization of the Solution 87

9.1 A formal optimal solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

10 Multivariate IB Algorithms 90

10.1 Iterative optimization algorithm: multivariate iIB . . . . . . . . . . . . . . . . . . . . . . . 90

10.2 Deterministic annealing-like algorithm: multivariate dIB . . . . . . . . . . . . . . . . . . . 91

10.3 Agglomerative algorithm: multivariate aIB . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

10.3.1 Multivariate local merging criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

10.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

10



10.4 Sequential optimization algorithm: multivariate sIB . . . . . . . . . . . . . . . . . . . . . . 96

11 Multivariate IB Applications 98

11.1 Parallel IB applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

11.1.1 Parallel sIB for style versus topic text clustering . . . . . . . . . . . . . . . . . . . . 99

11.1.2 Parallel sIB for gene expression data analysis . . . . . . . . . . . . . . . . . . . . . 100

11.2 Symmetric IB applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

11.2.1 Symmetric dIB and iIB for word-topic clustering . . . . . . . . . . . . . . . . . . . 101

11.2.2 Symmetric sIB and aIB for protein clustering . . . . . . . . . . . . . . . . . . . . . 104

11.3 Triplet IB application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

11.3.1 Triplet sIB for natural language processing . . . . . . . . . . . . . . . . . . . . . . 109

12 Discussion and Future Work 113

12.1 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

12.1.1 Multivariate relevance-compression function and specifying Gin and Gout . . . . . 114

12.1.2 Parametric IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

12.1.3 Relation to network information theory . . . . . . . . . . . . . . . . . . . . . . . . 115

IV Bibliography 117

V Appendices 122

A Maximum Likelihood and the Information Bottleneck 123

A.1 Short review of ML for mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.2 The ML$ IB mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.3 Comparing ML and IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.3.1 Comparison for uniform p(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.3.2 Comparison for large sample size . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B Cluster accuracy and mutual information 130

B.1 Relating maximizing information to maximizing precision . . . . . . . . . . . . . . . . . . 130

C Proofs for Part II 133

C.1 Proofs for Section 2.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

C.2 Proofs for Section 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

C.3 Proofs for Section 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

C.4 Proofs for Section 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

C.5 Proofs for Section 3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

D Proofs for Part III 138

D.1 Proofs for Section 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

D.2 Proofs for Section 8.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

D.3 Proofs of Section 9.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

D.4 Proofs of Section 10.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

D.5 Proofs for Section 10.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

D.6 Proofs for Section 10.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

11



Part I

General Background

1



Chapter 1

Introduction

In this chapter we provide a basic introduction to the remaining chapters. In the first section we present high

level descriptions of the fundamental trade-off between precision and complexity. One important variant of

this trade-off is formulated as the problem of unsupervised clustering, which is the main problem we address

in this thesis. In the next section we present the necessary preliminaries for our analysis. We conclude this

chapter by presenting a simple example in order to elucidate the central ideas that will be discussed later on.

1.1 The precision-complexity trade-off as a central paradigm

We start by briefly adapting the general description of a model of supervised learning, as given in page 17

in [86]. Such a model can be described as consisting of three components:� A generator of random vectors x 2 Rd, drawn independently from an unknown probability distribu-

tion p(x).� A supervisor who returns a scalar output value y 2 R, according to an unknown conditional proba-

bility distribution p(y j x).� A learning machine capable of implementing a predefined set of functions, f(x; �) : Rd ��! R ,

where � is a set of parameters.

The problem of learning is that of choosing from the given set of functions, the one that best approximates

the supervisor’s response. The choice is typically based on a training set of n independent and identically

distributed pairs of observations drawn according to p(x; y) = p(x)p(y j x):f(x1; y1); : : : ; (xn; yn)g : (1.1)

The quality of the chosen function is estimated based on the (average) discrepancy between the “true”

response y of the supervisor to some new input x and the “machine” response provided by f(x; �) to the

same input.

A classic trade-off in this scenario is between the quality, or the precision of the approximation of the

given data versus the simplicity, or the class complexity of the approximating function. An illustration of

this trade-off is given in Figure 1.1. In this example, if one tries to approximate the supervisor’s response

through a relatively complex function (a polynomial of a high degree), it typically over-fits the training data.

That is, although the discrepancy between the true responses and the machine responses are minimized for

the training examples, the generalization ability is limited and the predicted y value for new examples will be

poor (left panel in the figure). On the other hand, if one approximates the response through an overly simple

function (e.g., a polynomial of a low degree), again the predictions for new examples are of low quality
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Figure 1.1: In all three panels, the horizontal axis corresponds to the x value while the vertical axis denotes the
supervisor’s response, y. Training examples are denoted by ’x’, while a single test (new) example is denoted by
’o’ (the same examples appear in all panels). Left: Approximating the training examples with a polynomial of a
high degree typically over-fits these examples, and thus provides a poor prediction with respect to the new example.
Middle: Approximating the training data with an overly simple function also provides poor test-set predictions. Right:

Optimizing the trade-off between the complexity of the model (the degree of the approximating polynomial in this
case) and the precision about the training examples typically yields good predictions with respect to new examples.

(middle panel in the figure). Therefore, a central goal is to obtain approximations which are simple enough

on the one hand, and yet provide relatively precise approximations of the training data. In other words,

one strikes a balance between the complexity of the model versus its precision about the training examples.

The implicit assumption is that an approximation that optimizes this precision-complexity trade-off will

be closer in nature to the real underlying process, which is formally expressed through p(x; y). Hence,

such an approximation is expected to minimize the prediction discrepancy with respect to new examples, as

demonstrated in the right panel of the figure.

The optimization of this well known trade-off can be addressed in different ways. Common approaches

include the Structural Risk Minimization (SRM) of Vapnik and Chervonenkis which stems from statistical

learning theory considerations [86], Bayesian methods in which preference in favor of simpler models is

implied through the prior (see, e.g., [13]), and Rissanen’s Minimum Description Length principle [62] which

is motivated by an information-theoretic analysis of the concept of randomness.

Although we introduced the precision-complexity trade-off in the context of supervised learning where

“labels” (or supervisor’s responses) are provided for the training examples, it is certainly prominent in

the unsupervised learning scenario as well. Using the above notations, in this scenario one is given a set

of unlabeled training examples, fx1; : : : ; xng; xi 2 Rd . Loosely speaking, the goal is to construct some

compact representation of these data, which in some sense reveals their hidden structure. This representation

can be used further to achieve a variety of goals, including reasoning, prediction, communication etc. (see,

e.g., [51], Chapter 23). As implied by the somewhat vague phrasing of the two previous sentences, the

definition of the problem of unsupervised learning, along with its goals, are less clear as compared to the

supervised learning scheme. There are numerous different techniques for unsupervised data analysis, and

comparing them is typically very difficult. Yet, one possible dichotomy splits unsupervised methods into

projection 1 versus clustering methods.

In projection methods one aims to find a low-dimensional representation of the given high-dimensional

data that preserves most of the “structure” contained in the original representation. Typically, some quality

criterion is suggested, and in practice one tries to find a new low dimensional representation that at least

1The term “projection” is loosely used here. Specifically, we include in this category linear projection methods such as PCA,

non-linear (continuous) dimensionality reduction methods such as SDR [37], and embedding techniques such as LLE [64].
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locally optimizes this criterion. The most common technique is Principal Component Analysis (PCA),

where one interpretation of this method states that it minimizes the squared distances from the original data

points to their projections in the lower dimensional space.

In clustering methods, one is tackling the problem of unsupervised learning with a somewhat different

approach. In its simplest form, a clustering solution is a partition of the input data into several exhaustive

and mutually exclusive clusters. Each cluster can be represented by a centroid which is typically estimated

as some weighted average of the cluster’s members. 2 A “good” partition should group “similar” data points

together, while “dissimilar” points are assigned to separate clusters. This implies that the quality of the

partition can be estimated through the average distortion between the data points and their corresponding

representatives (cluster centroids). In a more general formulation, first suggested in [60], each data point is

assigned to all the clusters with some normalized probability. Thus, a clustering solution corresponds to a

“soft” partition of the data points. In this case as well, the typical goal is to minimize the (weighted) average

distortion between data points and cluster centroids.

Clearly, projection and clustering define deeply related tasks of dimensionality reduction. In fact, it is

possible to formulate both approaches using very similar semantics, as done, e.g., in [48]. Nonetheless,

these relationships are not relevant to the current discussion, hence we disregard them at this point. We

henceforth concentrate on clustering methods, where first we are interested in exploring how the precision-

complexity trade-off is expressed in this setting.

To this end, let us consider the illustrative example given in Figure 1.2. In this example the data pointsxi are assumed to lie in R2 . As in the supervised learning case, different models at different complexity

levels can be suggested to cluster these data. For example, if we describe the data through two clusters

(represented by dotted lines in the figure), we will have a rather compact model. However, at least for

the right-hand cluster, the average distortion between data points and the cluster centroid will be relatively

high. In our terminology this means that representing each data point through its corresponding cluster

centroid will have poor precision. Thus, we might suggest a slightly more complex model which consists

of three clusters. This can be done, e.g., by splitting the more scattered cluster into two more specific ones.

Obviously, this more complex model will have better precision in the above sense. We may continue this line

of thought, and think of more complex models that consist of additional clusters and provide better precision

in their representation of the data. In the extreme case, each data point is assigned to a singleton cluster;

thus, we have maximal precision since there is no discrepancy between data points and their representatives.

Unfortunately, the description complexity is obviously maximized as well.

In information theory, which underlies most of the analysis presented in this thesis, this trade-off is treated

through the sub-field of rate distortion theory. In particular, the complexity of the model is then characterized

through its coding length, which in turn is proportional to the amount of (mutual) information between data

points and their new representatives (precise definitions of all these concepts will be given shortly). If we

term this information the “compression-information”, simpler models correspond to models with low values

of compression-information that enable more efficient communication. However, these models typically

suffer from a relatively high (expected) distortion. Hence, this fast communication comes with the cost of

lower precision of the sent messages. Thus, the familiar precision-complexity trade-off, which we already

encountered for supervised and unsupervised learning, arises again in the context of communication through

an information-theoretic analysis.

The tacit assumption of the above discussion is that a distortion measure between data points and cluster

centroids is provided as part of the problem setup. Obviously, clustering algorithms as well as the estimated

quality of their results crucially depend on the choice of the distortion measure. Unfortunately, to define such

a measure is in many cases an extremely difficult task. As a result, this choice is (too) often an arbitrary

2For simplicity’s sake we concentrate here on centroid based clustering techniques, also known as Vector Quantization algo-
rithms. We disregard, for the moment, another important class of pairwise clustering methods in which clusters are not necessarily

represented by centroids. We discuss the relations (in our context) between pairwise clustering and vector quantization in Chapter 5.
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Figure 1.2: The precision-complexity trade-off in the context of unsupervised clustering. A simple model of two
clusters will have low precision, in the sense that the distance (or distortion) between data points and their correspond-
ing cluster centroid will be high. A more complex model of three clusters, where we split the more scattered cluster
into two more specific ones, will have higher precision. That is, we can trade complexity with precision in a natural
way.

one, which of course suppresses any objective (i.e., distortion independent) interpretation of the resulting

clusters.

As we will see throughout this thesis, it is possible to cope with this potential pitfall in a well-defined

way. More precisely, as first suggested in [82], the precision-complexity trade-off can be formulated with-

out defining any distortion measure in advance. The basic idea is to use the exact same concept of mutual

information in both sides of this trade-off. In particular, this is done by introducing a relevant variable,

on which the mutual information should be preserved as high as possible, while the given data points

are compressed. Denoting the information about this relevant variable as the “relevant information”, the

precision-complexity trade-off is now formulated in an entirely symmetric form: we wish to minimize the

compression-information while preserving the relevant information as high as possible. In this purely sta-

tistical formulation, complexity and precision are two sides of a single problem, as discussed in detail in the

following chapters.

At first sight, this approach might look suspicious. In particular, it seems that we have replaced one

problem of choosing an appropriate distortion measure with a new one of choosing the relevant variable.

Although this statement is true, it turns out that in many practical situations the second problem is much

easier to handle. Moreover, we argue that identifying the relevant variable is an important step in providing

a more precise definition of the clustering task. In particular, it allows for a clear interpretation of the

resulting clusters in terms of the compactness of the new representation versus the amount of information

it preserves about the relevant variable. Furthermore, this formulation leads to a tractable mathematical

analysis which is intimately related to the corresponding analysis described in rate distortion theory.

It is important to keep in mind that although this thesis concentrates on clustering problems, the underly-

ing principle of a trade-off between two information terms, might have further implications in other related

fields. In fact, recent work by Globerson and Tishby [37] have already shown that the same idea can be

applied in the context of continuous dimensionality reduction methods, and a preliminary discussion of ad-

ditional alternatives is given in [11]. Finally, in the above discussion we used the term “mutual information”

without defining it precisely. In the next section we describe this definition along with the definitions of

other related concepts.
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1.2 Preliminaries

In this section we introduce the basic concepts required for the next chapters. We start with some nota-

tions, and further state the definitions of entropy, mutual and multi information, KL divergence and JS
divergence. Most of this section is based on Chapter 2 in [20], Chapter 3 in [5] (which provides a friendly

introduction to the concept of entropy), and a work in progress by Nemenman and Tishby [55], which

introduces a new axiomatic derivative of mutual and multi-information.

1.2.1 Notations

Throughout this thesis we use the following notations. Capital letters (X;Y; : : :) denote the names of ran-

dom variables. Lowercase letters (x; y; : : :) denote the realizations of the random variables, namely specific

values taken by these variables. As a shortened notation we use p(x) to denote p(X = x); i.e., the probabil-

ity that the assignment to the random variable X is the value x. We further use X � p(x) to denote that X
is distributed according to the probability distribution p(x) :

We use calligraphic notations, (X ;Y; : : :) for the spaces to which the values of the random variables

belong. Thus, X is the set of all possible values (or assignments) to X . The notation
Px means summation

over all x 2 X , and jX j stands for the cardinality of X .

For simplicity, in this thesis we limit the discussion to discrete random variables with a finite number of

possible values. That is, in our context, (jX j; jYj; : : :) are all finite. Nonetheless, we emphasize that much

of the following analysis can be extended to handle continuous random variables as well.

For Part III we need additional notations. We use boldface capital letters (X;Y; : : :) to denote sets of

random variables. Specific values taken by those sets are denoted by boldface lowercase letters (x;y; : : :).
The boldface calligraphic notation, XX , denotes the set of all possible values to X.

1.2.2 Entropy and related concepts

Consider the following situation. We are given a finite collection of documents, denoted byY � fy1; : : : ; yjYjg.
A person chooses to read a single document out of this collection, and our task is to guess which document

was chosen. Without any prior knowledge, all guesses are equally likely. We now further assume that we

have access to a definite set of (exhaustive and mutually exclusive) probabilities, denoted by p(y); y 2 Y ,

for all the possible choices. For example, let us assume that longer documents are more probable than shorter

ones. More specifically, that the probability of choosing each document is proportional to the (known) num-

ber of words that occur in it. If all the documents consist of exactly the same number of words, p(y) is

uniform and obviously we are back at the starting point where no guess is preferable. However, if one docu-

ment is much longer than all the others, p(y) will have a clear peak for this document, hence our chances of

providing the correct answer will improve. How can we quantify the difference between these two scenarios

in a well defined way?

Loosely speaking, we may say that we are interested in quantifying the amount of “uncertainty” in a given

probability distribution, p(y). Thus, we need to seek for a functional that will provide a quantitative measure

of the “uncertainty” associated with p(y). Let us designate this functional by H[p(y)]. An alternative

notation might be H(Y ) where Y is a random variable distributed according to p(y). Importantly, though,H should depend only on p(y), and not in any way on the correct value of Y (the chosen document in our

example), nor on the possible values of Y (document identities in our case).

Shannon [70] suggested establishing such a measure by specifying several conditions (or axioms) that any

such functional must satisfy. These conditions need to reflect our qualitative ideas about what a reasonable

measure of uncertainty would be. Shannon defined three simple and most intuitive such conditions, and

showed that there is only one mathematical functional that satisfies them. We now briefly review this classic

derivation.
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First, it is surely reasonable to require continuity. That is, we do not want infinitesimal changes in p(y) to

produce steep changes in the amount of uncertainty in p(y). The first condition is thus:

Condition 1.2.1: H(Y ) should be continuous in p(y) :
Second, if all possible inferences are specified to be equally probable and we increase the number of

inferences, it is intuitively acceptable that our uncertainty about the correct inference increases. In our

example, if p(y) is uniform, to guess what document was chosen is certainly easier for jYj = 2 than forjYj = 3. Therefore, the second condition is:

Condition 1.2.2: If p(y) = 1jYj then H(Y ) should be a monotonically increasing function of jYj.
The third and last condition can be considered as a consistency requirement. We want the amount of

uncertainty to be independent of the steps by which certainty may be achieved. Let us first work with a

concrete simple example. We assume that there are three documents , where the corresponding probabilities

are taken to be p(y1) = 12 ; p(y2) = 13 ; p(y3) = 16 : Formally, the amount of uncertainty in this case can be

expressed as H(12 ; 13 ; 16) . However, we might think of a two-step process, where we group the inferences

as t1 � fy1; y2g and as t2 � fy3g : We now first need to find out which is the correct group, where for this

task the amount of uncertainty is expressed by H(12 + 13 ; 16) = H(56 ; 16) : The second step is to determine

the correct inference (i.e., document). If t1 should happen to be the correct group, the remaining amount

of uncertainty would be H(35 ; 25). If the other group is the correct one the remaining uncertainty would beH(1). Since all we know is the probability of each group to be correct, it seems reasonable to assess the

amount of uncertainty in the second step by the weighted sum 56H(35 ; 25 )+ 16H(1). Thus, the total uncertainty

in the two-step process is taken as the uncertainty needed to determine the group plus the weighted sum of

the uncertainty needed to determine the correct inference, given the group. The consistency requirement

states that the amount of uncertainty expressed in this way should agree with the amount of uncertainty

expressed in the original one-step scheme. In our example, this means:H(12 ; 13 ; 16) = H(56 ; 16) + 56H(35 ; 25) + 16H(1) : (1.2)

The generalization of this idea is formally expressed in the following condition:

Condition 1.2.3 : For all possible groupings of Y = fy1; : : : ; yjYjg into the groups T � ft1; : : : ; tjT jg ,t � Y , the function H(Y ) should satisfy the consistency relation:H(Y ) = H[p(y)] = H[p(t)] +Xt p(t)H[p(y j t)] : (1.3)

The remarkable result is that these three simple conditions are sufficiently restrictive so that the mathemat-

ical function H(Y ) follows unambiguously. Specifically, the celebrated Boltzmann-Shannon entropy, given

in the following definition, is the only function that satisfies the above three requirements.

Definition 1.2.4 : Let Y be a discrete random variable distributed according to p(y). The entropy of Y is

defined by H(Y ) � H[p(y)] = �Xy p(y) log p(y) : (1.4)

This function is defined up to a multiplicative constant, the base of the logarithm, that merely sets the scale

for this measure. If the logarithm is chosen to be to the base 2, the entropy is expressed in bits. In this

case it has the appealing interpretation as the (expected) minimal number of ’yes’/’no’ questions required to

determine the value of Y (in the following, though, we typically use the natural logarithm). Additionally, the
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Figure 1.3: The entropy H(Y ) where Y has two possible values and p(y1) = � (the base of the logarithm is 2 in this
example). The entropy has a unique maximum for the uniform distribution (� = 0:5) and it tends to decrease as p(y)
becomes less balanced.

entropy arises as the answer to several natural questions, such as “what is the average length of the shortest

description of the random variable?”

Some immediate consequences of Definition 1.2.4 are given in the following proposition (see [20] for the

proofs).

Proposition 1.2.5: 0 � H(Y ) � log jYj and it is a concave function of p(y).
As a simple example consider the case where Y = y1 with probability � and Y = y2 with probability1� �. In this case it is easy to verify that H(Y ) = 0 if and only if � = 0 or � = 1. This coincides with our

understanding that for � = 0 or � = 1, the variable Y is not random and there is no uncertainty. On the other

hand, H(Y ) has a unique maximum for � = 12 , which also corresponds to our intuition that in this case the

uncertainty about the value of Y is maximized. Moreover, in Figure 1.3 we see that H(Y ) is continuous in�, as implied by Condition 1.2.1, and in particular that H(Y ) tends to decrease as the underlying distribution

becomes less balanced. This (somewhat loose) observation is true in the general case as well where jYj > 2.

We now extend the entropy definition to a set of random variables, Y � fY1; : : : ; Yng . Since obviouslyY is simply a single vector-valued random variable, there is nothing new in this definition.

Definition 1.2.6 : Let Y � fY1; : : : ; Yng be a set of n discrete random variables distributed according top(y1; : : : ; yn). The joint entropy of this set is defined asH(Y1; : : : ; Yn) = � Xy1;:::;yn p(y1; : : : ; yn) log p(y1; : : : ; yn) : (1.5)

In particular, if we have only two random variables, X and Y , we obtainH(X;Y ) = �Px;y p(x; y) log p(x; y) .

Additionally, the conditional entropy of a random variable given another is defined through the following

definition.

Definition 1.2.7: If (X;Y ) � p(x; y), then the conditional entropy of Y given X is defined asH(Y j X) =Xx p(x)H(Y j X = x) = �Xx p(x)Xy p(y j x) log p(y j x) : (1.6)

Expressed in words, H(Y j X) is the (expected) uncertainty remaining on Y once we know the value of X .

In the following subsection we show how these definitions are related to the concept of mutual and multi

information, which are the fundamental concepts we deal with throughout this thesis.
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1.2.3 Mutual information and multi-information

Let us reconsider our previous example of trying to guess what document was chosen. However, we now

assume that we have access not only to the prior distribution p(y), but rather to a joint distribution of Y
with some other random variable, X . For concreteness, if Y values correspond to all the possible document

identities, let us assume that X values correspond to all the distinct words occurring in this document

collection. Thus, more formally stated, we assume that we have access to the joint distribution p(x; y)
which indicates the probability that a random word position in the corpus is equal to x 2 X while the

document identity is y 2 Y . 3

We now further assume that after the document is chosen, we are informed about some of its contents,

that is about some words that occur in it. Clearly, these details, accompanied by the knowledge of p(x; y),
improve our chances. For example, assume that there is some specific word xi that occurs only in the

document yj . If we are lucky enough to have this word among the ones that we are told about, the game is

over and we have full certainty that the chosen document was yj . Hence, while we try to predict the value

of Y (which was sampled according to p(y)), knowing the (sampled) values of some correlated variable, X
provides some guidance, which we may fairly term as the “information” that X provides about Y .

As in the entropy case, a natural desire is to quantify how much “information” X contains about Y .

Shannon already addressed this issue through his well known definition of mutual information.

Definition 1.2.8 : Let (X;Y ) be two discrete random variables, distributed according to p(x; y) and with

marginal distributions p(x) = Py p(x; y) and p(y) = Px p(x; y) . The mutual information between X
and Y is defined as I(X;Y ) � I[p(x; y)] =Xx Xy p(x; y) log p(x; y)p(x)p(y) : (1.7)

Using this definition and the above mentioned definitions, it is easy to obtainI(X;Y ) = H(X) +H(Y )�H(X;Y ) (1.8)I(X;Y ) = H(X) �H(X j Y ) = H(Y )�H(Y j X) : (1.9)

These relations are commonly expressed in a Venn diagram as in Figure 1.4 (which is reproduced here from

[20]). In particular, these relations suggest insightful interpretations as to the concept of mutual information.

For example, since the entropy is a lower bound on the minimal achievable code length for the corresponding

random variable, Eq. (1.8) implies that I(X;Y ) measures the average number of bits (if the logarithm is in

base 2) that can be gained by a joint compression of X and Y versus independent compression that ignores

their possible correlations. Alternatively, Eq. (1.9) states that the mutual information is the reduction in the

uncertainty of Y due to the knowledge of X . In particular, if we continue using logarithms to the base 2,

we may say that I(X;Y ) corresponds to the (expected) number of ’yes’/’no’ questions one should ask one

of the variables in order to learn all that it knows about the other [55]. In the extreme case where knowing

each value of X provides complete knowledge of the value of Y (i.e., Y is deterministic given any x 2 X ),

the information between X and Y is maximized, or equivalently the reduction in the uncertainty about Y
due to the knowledge of X is maximized.

As in the case of the entropy definition, the mutual information given by Definition 1.2.8 turns out to

be the natural answer to many fundamental questions in information theory. Perhaps the two most well

known results are the channel coding theorem and the rate distortion theorem which we discuss later on.

In particular, I(X;Y ) characterizes the (expected) maximal number of bits that can be reliably sent in a

(discrete memoryless) channel with a probability transition matrix p(y j x).
3For brevity we take the simplifying “bag of words” assumption, which implies that the order of the words in each document

has no effect on this distribution. More specifically, we may assume that p(x; y) is given by the number of occurrences of the wordx in the document y, normalized by the total number of words in the corpus.
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Figure 1.4: Relations between entropy, joint entropy, conditional entropy and mutual information for two random
variables.

Nonetheless, somewhat surprisingly, an axiomatic derivation of this concept (as was done for entropy by

Shannon), was introduced only recently by Nemenman and Tishby [55]. Specifically, they suggested a

natural and intuitive set of conditions (or axioms) that should reflect our qualitative notion of the concept of

“information” between random variables. The first three are natural extensions to the conditions suggested

for the entropy concept, while the fourth condition is a simple symmetry requirement. 4 We now briefly

review this derivation.

First, we want to ensure that small changes in p(x; y) will not produce abrupt changes in the information.

Condition 1.2.9: I(X;Y ) should be continuous in p(x; y) :
Second, let us assume that choosing a value for X or Y defines the other uniquely, and additionally p(x)

and p(y) are uniform and k � jX j = jYj . In this situation, it is reasonable to require that the information

between X and Y will increase with k. This gives rise to the second condition.

Condition 1.2.10: If p(x) = p(y) = 1k and choosing some value in X or in Y determines the other value

uniquely, then I(X;Y ) should be a monotonically increasing function of k.

Further, the entropy consistency requirement is also easily extended to this context. Again, we want the

amount of information to be independent of the steps by which this information is provided. This is formally

expressed in the next condition.

Condition 1.2.11: For all possible groupings ofX = fx1; x2; : : : ; xjX jg into the groups T � ft1; : : : ; tjT jg ,tk � X , 5 the function I(X;Y ) should satisfy the consistency relation:I(X;Y ) = I[p(x; y)] = I[p(t; y)] +Xt p(t)I[p(x; y j t)] : (1.10)

Last, it seems intuitively reasonable to ask for symmetry, i.e., that the information X provides about Y
will be equal to the information Y provides about X .

Condition 1.2.12: The information should be symmetric in its arguments:I(X;Y ) = I(Y ;X) : (1.11)

4An open question is whether this set is the minimal set required such that the information will be defined unambiguously. This

issue is not addressed in [55].
5Note that while in the previous section T denoted a partition of Y values, henceforth it denotes a partition of X values.
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As shown in [55], these four conditions suffice so that the mathematical function of information follows

unambiguously. In particular, the mutual information as defined in Definition 1.2.8 is the only function that

satisfies the above conditions.

To summarize, we saw that an axiomatic derivative for the concept of information between two random

variables is possible. An immediate question is whether this concept can be extended to quantify the shared

information between more than two random variables. A possible, and rather natural extension has been

suggested over the years (see, e.g., [80], and the references therein), and is described in the following

definition.

Definition 1.2.13 : Let (X1; : : : ;Xn) be a set of n discrete random variables, distributed according top(x1; : : : ; xn) and with marginal distributions p(xi) = Px1;:::;xi�1;xi+1;:::;xn p(x1; : : : ; xn) . The multi-

information between these n variables is defined asI(X1; : : : ;Xn) � I[p(x1; : : : ; xn)] = Xx1;:::;xn p(x1; : : : ; xn) log p(x1; : : : ; xn)p(x1) : : : p(xn) : (1.12)

Clearly, for n = 2 we are back in the standard pairwise concept of mutual information. The multi-

information captures how close the distribution p(x1; : : : ; xn) is to the factored distribution of the marginals.

If this quantity is small, we do not lose much by approximating p(x1; : : : ; xn) through the product distri-

bution. Alternatively, as in the mutual information case, it measures the average number of bits that can

be gained by a joint compression of the variables versus independent compression. The relations between

entropy and mutual information are also easily extended to the multi-information case. For example (see

[55]) I(X1; : : : ;Xn) = nXi=1 H(Xi)�H(X1; : : : ;Xn) ; (1.13)

which is the multivariate analogous to Eq. (1.8).

Naturally, we would like to provide some axiomatic derivative to this definition as well. To achieve this

goal Nemenman and Tishby showed that only one “inductive” condition should be added to the previous

four. This condition states that if a new variable is added, the multi-information increases exactly by the

amount of information between the new variable and its preceding ones. This requirement is expressed in

the next condition.

Condition 1.2.14: The multi-information should satisfyI(X1; : : : ;Xn+1) = I(X1; : : : ;Xn) + I(X1; : : : ;Xn;Xn+1) : (1.14)

Note that the second term in the right-hand side is the mutual information between the vector-valued

random variable X1 � : : : � Xn and Xn+1: As shown in [55], the only function that satisfies the five

conditions presented in this section is the multi-information as defined in Definition 1.2.13. Clearly, asp(x1; : : : ; xn) becomes “more similar” to p(x1) : : : p(xn), the multi-information drops accordingly. In the

next section, this relation is formally established.

1.2.4 KL divergence

Definition 1.2.15: The Kullback Leibler (KL) divergence between two probability distributions p1(x) andp2(x) is defined as DKL[p1jjp2] =Xx p1(x) log p1(x)p2(x) ; (1.15)

where the limits 0 log 0p2 ! 0; p1 log p10 !1 are implied.
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This divergence measure, also known as the relative entropy between p1(x) and p2(x), measures the

“distance” between its two arguments. Note, though, that it is certainly not a metric distance since it is not

symmetric and does not satisfy the triangle inequality. The KL arises in many fields as a natural divergence

measure between two distributions. In particular, it quantifies the coding inefficiency of assuming that the

distribution is p2(x) when the true distribution is p1(x). Specifically, if we have access to the true distributionp1(x), we can then construct a code for X with an average description length of H(X) = H[p1(x)] . If,

instead, we use the code for a distribution p2(x), we would need H[p1(x)]+DKL[p1(x)jjp2(x)] bits on the

average to describe the random variable (see [20], page 18).

Using this definition and the definitions of the previous section, it is easy to verify thatI(X1; : : : ;Xn) = DKL[p(x1; : : : ; xn)jjp(x1) : : : p(xn)] : (1.16)

That is, the multi-information is the KL divergence between the joint distribution and the factored distribu-

tion of the marginals. In particular, for the pairwise mutual information we haveI(X;Y ) = DKL[p(x; y)jjp(x)p(y)] : (1.17)

The following inequality, sometimes referred to as Information inequality, states that the KL divergence

is non-negative and equals zero if and only if p1 = p2 (see [20], page 26, for the proof).

Proposition 1.2.16: Let p1(x) and p2(x) be two probability distributions, thenDKL[p1(x)jjp2(x)] � 0 (1.18)

with equality if and only if p1(x) = p2(x); 8x 2 X .

Thus, using the last three equations we have that the multi-information and the mutual information are al-

ways non-negative, which agrees with the intuition about the required properties of an information measure.

The KL is not the only possible divergence measure between probability distributions. One alternative,

which is especially important in our context, is presented in the next section.

1.2.5 JS divergence

Definition 1.2.17 : The Jensen-Shannon (JS) divergence between two probability distributions p1(x) andp2(x) is defined as JS�[p1; p2] = �1DKL[p1jj�p] + �2DKL[p2jj�p] ; (1.19)

where � = f�1; �2g; 0 < �1; �2 < 1; �1 + �2 = 1 and �p = �1p1 + �2p2.

This divergence measure was first introduced in this form in [29]. However, it was first defined under this

name by Lin [50], and it appeared earlier in the literature under additional different names (see, e.g., [88]

where it was termed the increment of Shannon entropy). Lin used a somewhat different form, given by:JS�[p1; p2] = H[�p]� �1H[p1]� �2H[p2] ; (1.20)

where � and �p are defined as in Definition 1.2.17 and H[p] is Shannon entropy. Simple algebra can show

that Eq. (1.19) and Eq. (1.20) are equivalent.

The JS measure also has coding-theoretical motivation as thoroughly discussed in [69]. Using Proposi-

tion 1.2.16 it follows that it is non-negative and equals zero if and only if p1 = p2. It is also symmetric inp1 and p2, but it does not satisfy the triangle inequality, hence it is not a metric.

As shown by Gutman [42] and further discussed in [69], the JS measure is tightly related to the known

two-sample problem [49]. In its general formulation, the two-sample problem is to decide whether two
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samples independently drawn from two unknown distributions in a predefined family, are actually drawn

from the same distribution. Gutman showed that comparing the JS divergence between the two corre-

sponding empirical distributions (or types) with some predefined threshold, is (asymptotically) the optimal

test for this task. The optimality in this result is in the Neyman-Pearson sense (see [20], page 305), and the

only assumption is that the underlying family of distributions is the class of stationary and ergodic Markov

sources.

Another observation which is important in our context relates the JS divergence to the concept of mutual

information. In particular, Lin already suggested in [50] to extend Eq. (1.20) to measure the divergence

between more than two distributions, through:JS�[p1; : : : ; pn] = H[�p]� nXi=1 �iH[pi] ; (1.21)

where � = f�1; : : : ; �ng; 0 < �i < 1; Pni=1 �i = 1 and �p =Pni=1 �i pi . For a given joint distributionp(x; y), using the notations �i = p(xi); pi = p(y j xi); n = jX j, then clearly p(y) =Px p(x) p(y j x) =Pni=1 �i pi = �p . Using Eq. (1.9) we thus findI(X;Y ) = H[p(y)]�Xx p(x)H[p(y j x)] = H[�p]� nXi=1 �iH[pi] = JS�[p1; : : : ; pn] : (1.22)

In other words, if we take the weights in � as the prior probabilities p(x), the mutual information betweenX and Y is exactly the JS divergence between all the conditional distributions, p(y j x).
To gain some intuition into this equivalence we again consider the example of documents and words. If all

the conditional word distributions are the same (i.e., all documents have similar relative word frequencies)

the JS is clearly zero. Accordingly, in this case there is no information between X and Y and knowing

what words are present in the chosen document will be useless. On the other hand, if the conditional word

distributions are very different from each other (i.e., different documents typically consist of different words)

the JS will be relatively high. Accordingly, in this case there is a lot of information between X and Y , and

knowing the words in the chosen document will significantly improve our chances of guessing its identity.

An immediate corollary of Eq. (1.22) is that the JS is a bounded divergence measure (since the mutual

information is always bounded). This is in contrast to the KL divergence, which is not bounded in the

general case and in particular highly sensitive to low probability values in its second argument. Additionally,

the mutual information is known to be a concave function of p(x) for fixed p(y j x) and a convex function ofp(y j x) for fixed p(x) (see [20], page 31). Thus, using Eq. (1.22) we see that for fixed p1; : : : ; pn the JS is

a concave function of �. For the pairwise JS measure, this means that for fixed p1 6= p2 the JS approaches

zero when �1 ! 0 or �1 ! 1 , and reach its unique maximal value for �1 = �2 = 12 .

1.3 Relevant versus irrelevant distinctions

To end this introduction, let us reconsider one last variant of our game of guessing the chosen document

identity. Up to now we have assumed that we have access to the joint distribution of documents and words,

denoted by p(x; y). We now further assume that before making our guess we are allowed to get answers to

a limited number of binary questions regarding the document content. Specifically, possible questions must

be in the form of ’does the word xi appear (does not appear) in the document?’ or ’do any of the words intk appear (do not appear) in the document?’ (where tk � X is some subset of words).

Since the number of questions is limited we are obviously interested in asking the “most informative”

ones. While the mutual information can be viewed as the expected number of binary question we need to

ask about X in order to learn about Y , it provides no guidance whatsoever in our current context. To put it

bluntly, this concept does not tell us anything as regards what questions we need to ask.
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Table 1.1: A simple example where it is possible to partition X values into a small number of clusters such that in
each cluster all the conditional distributions, p(y j x) are identical. In this case, in order to preserve all the information
contained in X about Y , one needs only to preserve the distinctions between the clusters of X values.T X p(y1 j x) p(y2 j x) p(y3 j x)t1 x1 0:9 0:1 0:0x2 0:9 0:1 0:0x3 0:9 0:1 0:0x4 0:9 0:1 0:0t2 x5 0:2 0:1 0:7x6 0:2 0:1 0:7t3 x7 0:0 0:5 0:5x8 0:0 0:5 0:5

Nevertheless, it is intuitively clear that not all questions are equally helpful. For example, if some word xi
occurs exactly once in every document, asking about this specific word is clearly useless. On the other hand,

if xi occurs in exactly half of the documents, asking about it seems useful since the answer will substantially

reduce the number of alternatives (documents) between which we need to choose.

Additionally, since we are limited in the number of questions, in general it seems desirable to ask about

groups, or clusters of words, rather than about specific ones. As a simple example, let us assume that xi andxi0 always occur together, which formally means that their conditional document distributions are identical,

i.e., p(y j xi) = p(y j xi0) . In this case, if we get a positive (negative) answer while we ask about xi, there

is no point to further ask about xi0 since we surely know that the answer will be positive (negative) as well.

Thus, it seems reasonable to treat these two words as a single “feature” and ask whether any of the words int = fxi; xi0g occurs in the chosen document.

Extending this idea, let us assume that there are several clusters of words, denoted as T = ft1; : : : ; tjT jg ,

where in each such cluster all the conditional document distributions are identical. That is, xi; xi0 2 tk if and

only if p(y j xi) = p(y j xi0). Obviously, we can always find such a partition if we do not limit the number

of clusters. However, for the purposes of this discussion let us assume that there exists such a partition withjT j � jX j . This situation is demonstrated in Table 1.1. Obviously, in our specific task of predicting the

chosen value of Y , the distinctions inside each such cluster of words are irrelevant. Hence, detecting these

irrelevant distinctions should yield an optimal set of questions that focus solely on the presence or absence

of the corresponding word clusters, rather than on the words directly.

The above example seems a bit forced. Nonetheless, the same intuition holds even if we relax our previous

requirements. That is, we simply assume that words are assigned to the same cluster if their conditional

document distributions are “similar” in some sense. This situation is demonstrated in Table 1.2. Here,

again, several distinctions in X seems redundant, while others are highly relevant and informative aboutY . In particular, to inspect the corresponding word clusters seems like a useful way to extract most of the

information about Y through a minimal set of questions.

While the above arguments might be intuitively acceptable, real-life examples are obviously more compli-

cated. In particular, there is an exponential number of possible partitions of X values. Thus, some guiding

principle for choosing the “best” partition can provide much assistance. Recall that Condition 1.2.11 in the

axiomatic derivative of the mutual information states that the amount of information between X and Y is

independent of the steps (or questions) by which this information is provided. In particular, if we reconsider

Eq. (1.10) we see that the information can be viewed as a sum of two terms:I(X;Y ) = I[p(x; y)] = I[p(t; y)] +Xt p(t)I[p(x; y j t)] ; (1.23)
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Table 1.2: A relaxed variant of the example in Table 1.1. Even if the conditional distributions, p(y j x) in each clustert 2 T are just “similar” and not identical, the clusters preserve most of the information that X contains about Y .T X p(y1 j x) p(y2 j x) p(y3 j x)t1 x1 0:91 0:08 0:01x2 0:89 0:09 0:02x3 0:88 0:11 0:01x4 0:93 0:05 0:02t2 x5 0:18 0:08 0:74x6 0:16 0:12 0:72t3 x7 0:02 0:47 0:51x8 0:03 0:51 0:46
where T = ft1; : : : ; tjT jg defines a partition of X into exhaustive and mutually exclusive groups (or

clusters). It turns out that our intuitive hints a few lines ago are directly related to this presentation. More

specifically, a “good” partition of X , where words with “similar” (“non-similar”) conditional distributions

over the documents are grouped together (apart), corresponds to a high I[p(t; y)] value. This result which

might looks a bit vague at this point, is in the core of this thesis and thus will be discussed in detail later on.

In the above discussion, an implicit assumption is that there is some meaningful way to measure the “simi-

larity” between conditional distributions. However, in the previous section we saw two different divergence

measures between probability distributions, and many more exist but are not mentioned here. Which mea-

sure is preferable? A central and somewhat surprising result is that this question can be disregarded. More

precisely, if we accept that our guiding principle is to seek for partitions of X values that are highly infor-

mative about Y , there is no need to define some similarity or distance measure in advance. In particular,

the Information Bottleneck method provides a mathematical formulation for such a principle. Furthermore,

mathematical analysis of this principle serves to characterize the form of the optimal partitions of X values

that maximize the information about the value of Y . These results are the topic of the next part of this thesis.
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Part II

The Single Sided Information Bottleneck
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Chapter 2

The IB Variational Principle

We start this chapter by a brief overview of rate distortion theory which is mainly based on the corresponding

sections in [20, 82]. After this introduction we describe the IB variational principle and show that in several

respects, it can be considered as an extension of rate distortion theory. The last section of this chapter

characterizes the (formal) optimal solution to the IB principle.

2.1 Brief overview of rate distortion theory

Let X be a discrete random variable with a finite set of possible values, X , distributed according to p(x) .

As the cardinality jX j increases, a perfect representation of this random variables becomes more demanding.

However, as we will see later on, a perfect representation might be redundant and unnecessary, depending

on the task at hand.

Let T denote some other discrete random variable which is a compressed representation (or quantized

codebook) of X . This representation is defined through a (possibly stochastic) mapping between each valuex 2 X to each representative value t 2 T . Formally, this mapping can be characterized by a conditional

distribution p(t j x), inducing a soft partitioning of X values. Specifically, each value of X is associated

with all the codebook elements ( T values), with some normalized probability.

What determines the quality of this compressed representation? The first factor is obviously how com-

pressed it is. A standard measure for this quantity is the rate of a code with respect to a channel “trans-

mitting” between X and T . An exact definition of these concepts is not necessary for our needs and we

can be satisfied with a strongly related quantity given by the mutual information I(T ;X), which we will

term the compression-information. Note that this information is calculated based on the joint distributionp(x)p(t j x). Low values of this quantity imply more compact representations. For example, in the extreme

case where T has just a single value, clearly I(T ;X) = 0. On the other hand, redundant representations

imply high compression-information values. For example, if T simply copies X (i.e., no compression), we

have I(T ;X) = H(X) which is the upper bound of this term.

A more formal interpretation relates I(T ;X) to the maximal number of bits that can be reliably transmitted

from X to T . In the following we provide some intuition on this result. In principle, a reliable transmis-

sion requires that different input sequences will produce disjoint output sequences. Using the Asymptotic

Equipartition Property (AEP) [20], it is possible to see that for each (typical) n-sequence of T symbols,

there are � 2nH(XjT ) possible X (“input”) n-sequences, all of them are equally likely. Using again AEP

we see that the total number of (typical) X n-sequences is � 2nH(X). We need to ensure that no two X
sequences will “produce” the same T sequence. Hence, the set of possible X sequences has to be divided

into subsets of size 2nH(XjT ), where each subset corresponds to (or is “clustered into”) some different Tn-sequence. The total number of such disjoint subsets is upper bounded by 2n(H(X)�H(XjT )) = 2nI(T ;X).
Therefore, we can send at most� 2nI(T ;X) distinguishable sequences of length n fromX to T . In Figure 2.1
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Figure 2.1: An illustration of the relation between the compression-information, I(T ;X), and the maximal number
of bits that can be reliably transmitted between X and T . For every typical sequence of length n of T symbols
there are � 2nH(XjT ) possible (“input”) X sequences. Hence, the total number of � 2nH(X) X sequences needs
to be divided into disjoint subsets of size � 2nH(XjT ). The number of such subsets is therefore upper bounded by2n(H(X)�H(XjT )) = 2nI(T ;X). In other words, we can reliably send at most � 2nI(T ;X) sequences of length n
between X and T .

we illustrate this idea.

Summarizing the above arguments we see that I(T ;X) measures the compactness of the new represen-

tation, T . However, this quantity alone is not enough. Clearly the compression-information can always

be reduced by ignoring further details in X (e.g., by using only a single value in T ). Therefore, additional

constraints are needed. In rate distortion theory this is accomplished by defining a distortion measure which

measures the “distance” between the random variable and its new representation. Specifically, a functiond : X � T ! R+ must be defined to complete the setup of the problem, where the assumption is that

smaller distortion values imply a better representation. Given such a function, the partitioning of X induced

by p(t j x) has an expected distortion of:h d(x; t) ip(x)p(tjx) =Xx;t p(x)p(t j x)d(x; t) : (2.1)

The trade-off between the compactness of the new representation and its expected distortion is the fun-

damental trade-off in rate distortion theory. This trade-off was first characterized by Shannon through the

rate-distortion function, which is discussed in the next section.

2.1.1 The rate-distortion function

The rate-distortion function, denoted by R(D), is defined given the source statistics, p(x) and some distor-

tion measure d(x; t); 8x 2 X ; 8t 2 T . The “operational” definition defines R(D) as the infimum of all

rates R under a given constraint on the average distortion D. An alternative mathematical definition is given

by R(D) � minfp(tjx): h d(x;t) i�Dg I(T ;X) : (2.2)
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Figure 2.2: An illustration of a rate distortion function,R(D). This function defines a monotonic convex curve in the
distortion-compression plane with a slope of ��. When � ! 1 we focus solely on minimizing the distortion which
corresponds to the extreme case of the curve with h d(x; t) ip(x)p(tjx) ! 0. When � ! 0 we are only interested in
compression, which corresponds to the other extreme of the curve with R ! 0 : This curve characterizes the input
(source) statistics, p(x) with respect to a specific distortion measure and a specific choice of representatives, given byT values. The region above the curve is achievable while the region below it is non-achievable.

In other words, R(D) is the minimal achievable compression-information, where the minimization is over

all the normalized conditional distributions, p(t j x) for which the distortion constraint is satisfied.

The first main result of rate distortion theory, due to Shannon is that these two definitions are equivalent

(see, e.g., [20], page 342). Thus, for our needs we will concentrate on this second definition.

The trade-off characterized by R(D) is monotonic: higher D values (i.e., more relaxed distortion con-

straints) imply that stronger compression levels (lower I(T ;X) values) are attainable. Moreover, R(D) is

known to be a non-increasing convex function of D ([20], page 349) in the distortion-compression plane

where the horizontal axis corresponds to D and the vertical axis corresponds to I(T ;X). Clearly, the func-

tion R(D) separates two regions in this plane. The region above the curve (known as the rate distortion

region of the source) corresponds to all the achievable distortion-compression pairs, while the region below

the curve is non-achievable. In other words, let fD; Ig be such a distortion-compression pair. If this pair is

located above the curve, there is a compressed representation T with a compression level I(T ;X) = I and

an expected distortion which is upper bounded by D. Figure 2.2 illustrates these ideas.

Finding the rate-distortion function requires solving a minimization problem of a convex function over the

convex set of all the (normalized) conditional distributions p(t j x), satisfying the distortion constraint. This

problem can be solved by introducing a Lagrange multiplier, �, and then minimizing the functionalF [p(t j x)] = I(T ;X) + � h d(x; t) ip(x)p(tjx) ; (2.3)

under the normalization constraints
Pt p(t j x) = 1; 8x 2 X . This formulation has the following well

known consequences.

Theorem 2.1.1: The solution of the variational problemÆFÆp(t j x) = 0 ; 1 (2.4)

1We henceforth use the notation ÆFÆp(tjx) to emphasize that the analysis presented in this thesis can be extended to handle

continuous variables as well. Nonetheless, since for simplicity we concentrate on discrete random variables with a finite number of

values, an equivalent possible notation is @F@p(tjx) .
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Figure 2.3: An illustration of alternating minimization of the Euclidean distance between two convex sets in R2.
Since the minimized function (i.e., the Euclidean distance between the sets) is convex, the algorithm will always
converge to the global minimum distance, independently of the initialization. This is also true for minimizing the KL
divergence between two convex sets of probability distributions.

for normalized distributions p(t j x) is given by the exponential formp(t j x) = p(t)Z(x; �)e��d(x;t) ; (2.5)

where Z(x; �) is a normalization (partition) function. Moreover, the Lagrange multiplier �, determined by

the value of D, is positive and satisfies ÆRÆD = �� : (2.6)

Note that this solution is implicit since p(t) on the right hand side of Eq. (2.5), clearly depends on p(t j x)
through p(t) =Px;t p(x)p(t j x). The question of how to compute the rate-distortion function is the topic

of the next section.

It should be emphasized that the function R(D) is defined with respect to a fixed set of representatives,

given by T values. In general, choosing a different set of representatives will define a different distortion

matrix between X and T values, resulting in a different rate distortion function. The (important) question

of how to choose an optimal set of representatives is disregarded in the classical derivative of rate distortion

theory.

2.1.2 The Blahut-Arimoto algorithm

Consider the following problem: Given two convex sets A and B inRn, we would like to find the minimum

distance between them. A natural algorithm would be to choose some point a 2 A and find the pointb 2 B that is closest to it, then fix this b and find its closest point in A. Repeating this process must

converge since clearly the distance decreases with each iteration (see Figure 2.3). But does it converge

to the (global) minimum distance? Csiszár and Tusnády [23] have shown that if the two sets are convex

the answer is positive (under some requirements from the distance measure). In particular, for two sets of
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probability distributions and using the KL divergence as the “distance” measure, the algorithm converges

to the minimum KL between the two sets, and is known as the Blahut-Arimoto algorithm [3, 14]. 2

To apply this algorithm to calculating R(D) one must rewrite this function as a minimum of the KL
between two (convex) sets of distributions. To do this we need the following simple proposition.

Proposition 2.1.2 : Let p(x)p(t j x) be a given joint distribution. Then the prior distribution p(t) that

minimizes DKL[p(x)p(t j x)jjp(x)p(t)] is the corresponding marginal distribution, i.e.,p�(t) =Xx p(x)p(t j x) : (2.7)

Note that at the minimum, DKL[p(x)p(t j x)jjp(x)p(t)] is exactly the information, I(T ;X) calculated

on the basis of the joint distribution p(x)p(t j x). Hence, this KL divergence is an upper bound for the

compression-information term, and equality holds if and only if p(t) is set to be the marginal distribution ofp(x)p(t j x). This proposition allows us to rewrite the definition of the rate-distortion function as a double

minimization: R(D) = minfp(t)g minfp(tjx): h d(x;t) i�DgDKL[p(x)p(t j x)jjp(x)p(t)] : (2.8)

If A is the set of all joint distributions p(t; x) with marginal p(x) that satisfy the distortion constraint and ifB is the set of the product distributions p(t)p(x) with some normalized p(t), we getR(D) = minb2B mina2A DKL[ajjb] : (2.9)

We now apply the Blahut-Arimoto algorithm. We start by specifying � which determines D, namely the

distortion constraint. We define some initial guess for p(t) (i.e., choose a random point in B), and then use

Eq. (2.5) to find p(t j x) (i.e., a point inA) that minimizes the information subject to the distortion constraint.

Given this distribution we use Eq. (2.7) to find a new p(t) that further minimizes the same information (orKL divergence). Repeating this process monotonically reduces the right hand side of Eq. (2.8). Thus, the

algorithm converges to a limit, which was shown by Csiszár to be R(D) where the value of D depends on� [21]. More specifically, using Theorem 2.1.1 we see that the algorithm converges to a unique point on the

rate-distortion curve in which the slope of the curve equals�� [16]. Choosing different � values in principle

enables a numerical estimation of the full curve. For � ! 1 we focus solely on minimizing the distortion

which corresponds to the extreme case of the rate-distortion curve with h d(x; t) ip(x)p(tjx) ! 0. On the

other hand, for � ! 0 we are only interested in compression, which corresponds to the other extreme of the

curve with R! 0 (see Eq. (2.3) and Figure 2.2). A Pseudo-code of this algorithm is given in Figure 2.4.

Note that the minimization is done independently in the two sets of distributions. That is, although p(t)
depends on p(t j x), while minimizing with respect to p(t j x) we assume that p(t) is fixed. In the next

update step we minimize with respect to p(t) (assuming that p(t j x) is fixed) through Eq. (2.7). Only after

this step, p(t) is set to the proper marginal of p(x)p(t j x).
As already mentioned, this algorithm only deals with the optimal partitioning of X (induced by p(t j x))

with respect to a fixed set of representatives (T values). Thus, the set of all possible distortions d(x; t); 8x 2X ; 8t 2 T is pre-defined and fixed during the process, and the algorithm computes the rate-distortion

function with respect to this choice of representatives. In practice, it is also highly important to find the

optimal representatives, given the partition p(t j x). This joint optimization, however, in general does not

have a unique solution, as explained later on.

2The convergence in this case is due to the fact that the KL divergence is a convex function in both of its arguments simultane-

ously, see [20], page 30.
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Input:
Source distribution p(x) :
Trade-off parameter � and convergence parameter " :
A set of representative, given by T values.
Distortion measure d : X � T ! R+ ;8x 2 X ; 8 t 2 T :

Output:
Value of R(D) where its slope equals ��.

Initialization:
Initialize R(0)  1 and randomly initialize p(t) :

While True� P (m+1)(t j x) P (m)(t)Z(m+1)(x;�)e��d(x;t) ; 8 t 2 T ; 8 x 2 X :� P (m+1)(t) Px p(x)P (m+1)(t j x) ; 8 t 2 T :R(m+1)(D) = DKL[p(x)p(m+1)(t j x)jjp(x)p(m+1)(t)] :
If (R(m)(D)�R(m+1)(D)) � "

Break .

Figure 2.4: Pseudo-code of the Blahut-Arimoto algorithm. The input parameter � determines the trade-off between
the compression-information and the expected distortion, and in particular the value of D for which the rate-distortion
function is calculated. The algorithm converges to the value of a unique point on the rate-distortion curve in which the
slope of the curve equals �� [16]. Note that, in general, this curve depends on the choice of the representatives (T
values) and on the definition of the distortion measure between these representatives and X values.

22



2.2 Relevance through another variable: the IB principle

The main drawback of the rate distortion approach is that a distortion measure is a part of the problem

setup. Clearly, for a given source p(x), different choices of distortion measure will yield different results,

and in particular different rate-distortion functions (even for a fixed set of representatives). Therefore, the

characterization of the source statistics through R(D) relies on an “outside” definition which often has

nothing to do with the source properties. As a result, interpreting R(D) cannot be separated from the

(possibly arbitrary) choice of the distortion measure. It is not even clear what insights can be gained that

are solely relevant to the input source. Moreover, in many practical applications such as image and speech

coding, natural text analysis etc., defining an “appropriate” distortion measure is far from trivial.

The IB principle, suggested by Tishby, Pereira and Bialek [82] introduces an alternative approach, while

trying to cope with these difficulties. The motivation comes from the fact that in many cases, in contrast to

defining a distortion measure, defining a “target” variable with respect to X is a rather simple question with

a natural answer. Let us elaborate about this point since it is fundamental to the rest of this thesis.

Consider a simple example where p(x) describes the prior probabilities of all the different words in a given

collection of news articles. These articles might deal with different topics, and furthermore reflect different

writing styles corresponding to the different newspapers. 3 Clearly jX jmight be very large and let us assume

that we are interested in finding a compressed representation of X , denoted by T . Without further details

this is an ill posed task: What features of the original variable, X should be preserved by T ? How should

we choose the distortion measure between T and X values?

To answer these questions one must provide a more precise description of the task. For example, a rea-

sonable definition would be to require a compression of X that in some sense preserves the “information”

contained in the collection of articles. This is still vague if we do not specify “information about what” since

clearly a need for information is well defined only with respect to some other signal that we would like to

learn more about. Hence, continuing our example, we may look for a compressed representation of X that

preserves the information about, e.g., the topics present in the corpus. It turns out that formalizing this task

is rather simple and is done by defining a new random variable, denoted here by Y . 4 In our example, the

values of Y will correspond to all the different topics in the collection. This is our “target” variable, the

variable that we are interested in, or the relevant variable.

Instead of considering only p(x), we now consider the joint statistics, p(x; y) (which can be estimated

rather easily in this case). Once this joint distribution is given we can complete the formulation of the prob-

lem by suggesting to look for a compressed representation of X which maintains the (mutual) information

about the relevant variable, Y as high as possible. The interpretation of the obtained results will now be

straightforward: T compresses X while trying to preserve the relevant features in X with respect to the

different topics in the corpus. In some sense this formulation forces the “user” to define precisely his goals

while compressing X . For example, an entirely alternative task would be to compress X while preserving

the information about the different writing styles present in the collection. In this case, the values of the

relevant variable Y would be all the different writing styles, the estimated joint statistics, p(x; y) would be

different and obviously so would the results. Nonetheless, the interpretation of these results would still be

objective and clear: T now compresses X while trying to preserve the relevant features in X with respect to

the different writing styles in the corpus.

We now turn to a more formal description of the above discussion. As in rate distortion, the compactness of

the new representation is measured through the compression-information, I(T ;X). However, the distortion

upper bound constraint is now replaced by a lower bound constraint over the relevant information, given

by I(T ;Y ). In other words, we wish to minimize I(T ;X) while preserving I(T ;Y ) above some minimal

3For simplicity we assume the standard “bag-of-words” model, i.e., that the prior probability of some word is independent of its

neighbors and is estimated based on its relative frequency in the corpus.
4For simplicity we will assume that Y is discrete as well, although this assumption is not always necessary.
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Figure 2.5: The information between X and Y is squeezed through the compact “bottleneck” representation, T . In
particular, under some constraint over the minimal level of relevant information, I(T ;Y ), one is trying to minimize

the compression-information, I(T ;X) (note the similarity of the left part of the figure with Figure 2.1). In this
formulation the IB principle extends the rate distortion problem, in the sense that given p(x; y), the setup of the problem
is completed and no distortion measure need be defined. An equivalent formulation is to constraint the compression-
information to some maximal level, and then try to maximize the relevant information term. In this formulation the IB
principle is somewhat reminiscent of the channel coding problem. Specifically, in this case one is trying to maximize
the information transmitted through a (compact) channel, where the channel properties are governed by the constraint
over the compression-information.

level. In this sense, one is trying to squeeze the information X provides about Y through a compact “bot-

tleneck” formed by the compressed representation, T . An equivalent formulation would be to constrain the

compression-information to some maximal level, and then try to maximize the relevant information term.

Either way, the basic trade-off is between minimizing the compression-information while maximizing the

relevant-information. An illustration of this idea is given in Figure 2.5.

The first obvious observation is that since T is a compressed representation of X it should be completely

defined given X alone. That is, p(t j x; y) = p(t j x) which impliesp(x; y; t) = p(x; y)p(t j x) : (2.10)

An equivalent formulation is to require the following Markovian independence relation, which we will term

the IB Markovian relation: T $ X $ Y :5 (2.11)

Obviously the lossy compression T cannot convey more information than what is included in the original

data; that is, since T depends only on X it cannot provide any “new” information about Y , except for

the information already given by X . Using Data Processing Inequality ([20], page 32) and the above IB

Markovian relation it follows I(T ;Y ) � I(X;Y ) which formally expresses this intuition.

5As noted in [82], it is important to emphasize that this is not a modeling assumption about the quantization in T . In fact, this

is not an assumption but rather a definition of the problem setup, hence the marginal over p(x; y; t) with respect to X and Y is
always consistent with the input distribution, p(x; y). In contrast, the standard modeling approach defines T as a hidden variable

in a model of the data, where in this case one assumes the Markov independence relation X $ T $ Y , which is typically not
consistent with the input data. See Section A.5 for further discussion.
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Note that in particular the IB Markovian relation characterizes p(t) and p(y j t) through8<: p(t) =Px;y p(x; y; t) =Px p(x)p(t j x)p(y j t) = 1p(t)Px p(x; y; t) = 1p(t)Px p(x; y)p(t j x) : (2.12)

As in rate distortion, we wish to capture the above trade-off in a single variational principle and find the

optimal partitioning using the method of Lagrange multipliers. Specifically, Tishby et al. [82] suggested the

following IB variational principle, which we will also term the IB-functional:L[p(t j x)] = I(T ;X)� �I(T ;Y ) ; (2.13)

where I(T ;X); I(T ;Y ) are defined through p(t j x) and Eqs. (2.12). As in rate distortion, � is a Lagrange

multiplier controlling the trade-off and the free parameters correspond to the stochastic mapping p(t j x).
As � ! 0 we are interested solely in compression, hence all T values collapse to a single value to which allX values are assigned. Clearly, in this case the compression is optimal, I(T ;X) = 0, but all the relevant

information is lost as well, I(T ;Y ) = 0. On the other extreme, as � ! 1 we are focused only on

preservation of relevant information. In this case the (trivial) solution is where T copies X and through it

we obtain I(T ;Y ) = I(X;Y ) which is the upper bound for this term. However, in this case clearly there

is no compression since I(T ;X) = H(X) is maximized as well. The interesting cases are of course in

between, where for finite values of � we are able to extract rather compressed representations of X , while

still maintaining a significant fraction of the original information about Y . In Chapter 4 and in Chapter 5 we

present several such examples. More generally speaking, by varying the single parameter � one can explore

the trade-off between compression and preservation of relevant information for different resolutions. This

(monotonic) trade-off is fully characterized by a unique function, termed here the relevance-compression

function. This function, which is a natural extension of the rate-distortion function, is described in the next

section.

Note that the above formulation of the principle is inherently asymmetric. Only X is compressed and onlyY serves as a relevant variable. This asymmetry suggests calling this principle the single-sided IB principle,

which is the title of this thesis part. In Part III we deal with a family of extensions to this principle, among

them are more symmetric formulations and more.

2.3 The relevance-compression function

Given a joint probability distribution p(x; y) the IB optimization problem can be stated as follows: find T
such that I(T ;X) is minimized, under the constraint I(T ;Y ) � D̂ (where T $ X $ Y ). Thus, it is

natural to define a mathematical function which is analogous to the rate-distortion function.

Definition 2.3.1: The relevance-compression function for a given joint distribution p(x; y) is defined asR̂(D̂) � minfp(tjx): I(T ;Y )�D̂g I(T ;X) ; (2.14)

where T $ X $ Y and the minimization is over all the normalized conditional distributions, p(t j x) for

which the constraint is satisfied.

In words, R̂(D̂) is the minimal achievable compression-information, for which the relevant information is

above D̂. Consider the relevance-compression plane where the horizontal axis corresponds to I(T ;X) and

the vertical axis corresponds to I(T ;Y ). This plane (termed the information plane in [82]) is the natural

equivalent to the distortion-compression plane in rate distortion, and we will further refer to the trajectory
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defined by the relevance-compression function in this plane as the relevance-compression curve. 6 From

Definition 2.3.1 it is clear that R̂(D̂) separates between two regions in this plane. The region below the

curve, which we may term the relevance-compression region of p(x; y), corresponds to all the achievable

relevance-compression pairs. In contrast, the region above the curve is non-achievable. In other words, letfIx; Iyg denote some levels of compression-information and relevant information, respectively. If this pair

is located below the curve, then (for the given p(x; y)) there is some compressed representation T with a

compression level I(T ;X) = Ix and a relevant information I(T ;Y ) = Iy.

The following proposition shows that the basic properties of the relevance-compression function are similar

to those of the rate-distortion function.

Proposition 2.3.2 : Let p(x; y) be some joint probability distribution. The corresponding relevance-

compression function, R̂(D̂) is a non-decreasing concave function of D̂. Moreover, the slope of this function

is determined through ÆD̂ÆR̂ = ��1 : (2.15)

As a result, the slope of the curve corresponding to R̂(D̂) gradually decreases while we shift our preferences

from compression to preservation of relevant information. Starting at the maximal compression end, � ! 0
and the slope approaches 1. At the other end, all the relevant information is preserved, � ! 1 and the

slope of the curve approaches 0.

Alternatively we may consider the cardinality of the compression variable, jT j which increases monoton-

ically along the curve. At the maximal compression end we look for the most compact representation, i.e.,jT j = 1. By gradually increasing � the constraint over I(T ;Y ) becomes more demanding. At some finite

(critical) � value, this constraint guides the system to focus not only on compression but also on the relevant

information term. Consequently, the single value of T bifurcates into two separate value, that fulfill the

relevant information constraint. This phenomenon is a phase-transition of the system. Successive increases

of � will reach additional phase transitions in which additional splits of some values of T emerge. At the

limit � ! 1, the system concentrates only on the relevant information term, T simply copies X and its

cardinality reaches its maximal required level, jT j = jX j.
One immediate outcome of this discussion is that in principle one can define a family of sub-optimal

characteristic curves, where each one corresponds to an additional constraint over the cardinality jT j. For

example, constraining this value to be upper bounded by 2 will yield a curve that is originally identical withR̂(D̂). At the critical value of � for which the two values of T split into three values, this curve separates

from R̂(D̂) and continues as a sub-optimal trajectory in the relevance-compression plane. The limit value

of this curve as � ! 1 reflects the most informative solution that can be found with only two values (or

two clusters) in T . Moreover, as discussed in the next section, this solution is deterministic, meaning that

each value of X is assigned to one value of T with probability 1, and to the second value with probability 0.

An illustration of the above discussion is given in the left panel of Figure 2.6.

As mentioned in the previous section, I(T ;Y ) is always upper bounded by the original information,I(X;Y ). Additionally, I(T ;X) is clearly upper bounded by the original compression-information, I(X;X) =H(X) (see Section 1.2.3). Therefore, in many cases it is also valuable to consider the normalized relevance-

compression plane (and function), where now the vertical axis is determined by
I(T ;Y )I(X;Y ) while the horizontal

axis corresponds to
I(T ;X)H(X) . The normalized relevance-compression function is thus always bounded be-

tween one and zero, hence different joint distributions p(x; y) can be characterized and compared by their

corresponding curves in these normalized plane. Roughly speaking, we may say that the existence of a

6In rate distortion the vertical axis corresponds to I(T ;X) but Tishby et al. [82] defined the horizontal axis to measure this

quantity. For consistency with their work we maintain this convention. As a result, the characteristic curves discussed in this section
are concave, with a monotonically decreasing positive slope, whereas the standard presentation of the rate-distortion function is as

a convex curve with a monotonically increasing negative slope.
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Figure 2.6: Left: An illustration of a relevance-compression function, R̂(D̂). This function defines a monotonic
concave curve in the relevance-compression plane (solid line in the figure). The region below the curve is achievable
while the region above it is non-achievable. An additional constraint over the number of clusters, jT j, defines addi-
tional sub-optimal curves in this plane (dotted lines in the figure). These curves fully characterize the input (source)
statistics, p(x; y) in terms of compression versus preservation of relevance information. Right: Different joint dis-
tributions will generally yield different curves in the normalized relevance-compression plane. A “natural structure”
in p(x; y) means that most of the relevant information can be captured by a relatively compact representation. This

in turn yields a characteristic curve in the form of R̂1(D̂). On the other hand, if any attempt to compress X loses a

significant fraction of the relevant information about Y , the corresponding curve (R̂2(D̂) in the figure) will be near
the main diagonal of the normalized plane.

“natural structure” in p(x; y) means that most of the relevant information can be captured by a relatively

compact representation. This in turn yields a normalized relevance-compression curve which is near unity

even when
I(T ;X)H(X) is small. On the opposite extreme, if any attempt to compress X loses a significant frac-

tion of the relevant information about Y , the corresponding curve will be near the main diagonal of this

plane. In the right panel of Figure 2.6 we illustrate these two cases. Note that analyzing joint distributions

in the normalized relevance-compression plane must always be accompanied by considering the absolute

information values.

Finally, we should emphasize the basic distinction between the relevance-compression and the rate-distortion

functions. In contrast to rate distortion, the relevance-compression characteristic function is based purely

on the “input” statistics. Indeed, the assumption about the input is somewhat more challenging, since we

assume we have access to the joint distribution p(x; y), not only to p(x). Nonetheless, once this distribution

(or a reasonable estimate of it) is available, the problem setup is completed. No distortion measure or any

other “outside” (not statistically oriented) definitions are required and R̂(D̂) with its sub-optimal variants

fully characterizes p(x; y) in terms of compression versus preservation of relevant information.

2.4 Characterizing the solution to the IB principle

In Section 2.1.1 we saw that it is possible to characterize the general form of the optimal solution to the rate

distortion problem (Theorem 2.1.1). Is it possible to describe an analogous result to the IB problem? An

immediate obstacle is the fact that in rate distortion the problem setup includes the definition of a distortion

measure which is also present in the form of the optimal solution. On the other hand, in the IB case no

distortion measure is provided in advance. Moreover, while the constraint in rate distortion is linear in the

desired mapping, p(t j x) (see Eq. (2.1)), this is not the case for the IB problem. Specifically, the dependency

of I(T ;Y ) in p(t j x) is non-linear, and as a result the corresponding variational problem is in principle

much harder.

27



In spite of these potential pitfalls, Tishby et al. [82] introduced a complete formal characterization of the

optimal solution to the IB problem which is given in the following theorem.

Theorem 2.4.1: Assume that p(x; y) and � are given and that T $ X $ Y . The conditional distributionp(t j x) is a stationary point of L = I(T ;X)� �I(T ;Y ) if and only ifp(t j x) = p(t)Z(x; �)e��DKL[p(yjx)jjp(yjt)] ;8t 2 T ; 8x 2 X ; (2.16)

where as before, Z(x; �) is a normalization (partition) function.

Clearly this is a formal solution since p(t); p(y j t) are determined implicitly through p(t j x) by

Eqs. (2.12). Note that these two equations together with Eq. (2.16) determine self-consistently the opti-

mal solution. In particular, the optimization here is also over the cluster representatives, p(y j t). This is

in contrast to rate distortion theory, where the selection of the representatives is a separate problem. An

iterative algorithm that constructs a (locally) optimal solution by iterating over these three sets of equations

is described in Section 3.1.

It is important to emphasize that the KL divergence, DKL[p(y j x)jjp(y j t)] emerges as the effective

distortion measure from the IB variational principle, rather then being assumed in advance. Therefore, in

this sense, this is the correct distortion measure to this problem. The essence of the above theorem is that

it defines p(t j x) in terms of this measure. When p(y j t) becomes more similar to p(y j x) we may

say that the performance of t as a representative of x is improved. In this case the corresponding KL
decreases and consequently the membership probability p(t j x) increases. On the other hand, if t is not a

good representative of x the corresponding KL is large and the membership probability p(t j x) is reduced

accordingly.

Considering again Eq. (2.16) we see that the value of � determines how diffused the conditional distribu-

tions p(t j x) are. Small values of � imply high diffusion since � reduces the differences between the KL
distortions for different values of T . In the limit � ! 0 there is maximal diffusion and in fact p(t j x) does

not depend on the value of X . This effectively means a single value in T , i.e., maximal compression.

As � increases most of the conditional probability mass is assigned to the value t with the smallest KL
distortion. In the limit � ! 1 this value will contain all the probability mass, i.e., p(t j x) becomes

deterministic and every value of X is assigned to a single value of T with a probability of one. This

limit corresponds to the extreme end of the relevance-compression curves where all the emphasis is on

preservation of relevant information.

As already mentioned, the characterization of the optimal solution is a formal characterization. The ques-

tion of how to construct optimal or approximated solutions to the IB problem in practice, is the topic of the

next chapter.
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Chapter 3

IB Algorithms

We now consider algorithms for constructing exact or approximated solutions to the IB variational principle.

We describe four different complementary approaches to this task. The first two were originally suggested

in [60, 82] and are presented in detail in the first two sections of this chapter. The other two approaches are

novel, and were first introduced in [74, 76]. These two methods are described in Section 3.3 and Section 3.4,

respectively. In Section 3.5 we discuss the relationships between the different approaches, and in the last

section of this chapter we show that combinations of these approaches are also plausible in some cases.

3.1 iIB: an iterative optimization algorithm

We start with the case where � is fixed. In this case, following standard strategy in variational methods, we

simply apply the fixed-point equations given in Eq.(2.16). More precisely, we use an iterative algorithm,

that at the m’th iteration maintains the conditional distributions fP (m)(t j x)g. At the m + 1’th iteration,

the algorithm applies an update step:P (m+1)(t j x) P (m)(t)Z(m+1)(x; �)e��DKL[p(yjx)jjP (m)(yjt)] (3.1)

where P (m)(t) and P (m)(y j t) are computed using the conditional probabilities fP (m)(t j x)g, and the IB

Markovian relation, T $ X $ Y . Specifically, following Eqs. (2.12) we have8><>: P (m)(t) =Px p(x)P (m)(t j x)P (m)(y j t) = 1P (m)(t)Px P (m)(t j x)p(x; y) : (3.2)

We will term this algorithm the iterative IB (iIB) algorithm. A Pseudo-code is given in Figure 3.1 and an

illustration of the process is given in Figure 3.2.

Note that this algorithm is a natural extension of the Blahut-Arimoto algorithm (Section 2.1.2). However,

there is an important distinction. The Blahut-Arimoto algorithm, in principle allows to converge to a point

on the relevance-compression curve in which the slope is ��. This curve is defined with respect to a given

distortion measure and a given fixed set of representatives (T values). Hence, the alternating minimization

is done only over the sets fp(t j x)g; fp(t)g. In contrast, the iIB algorithm tries to converge to a point

on the relevance-compression curve in which the slope equals ��1. This curve does not depend on a pre-

definition of a distortion measure, non on fixing the set of representatives. In particular, in the iIB algorithm

the minimization is additionally over the set of representative distributions (or clusters centroids), fp(y j t)g.
As a result, in general there is no guarantee of the uniqueness of the solution, and all one can expect is to

converge to a locally optimal solution, as explained in the next section.
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Input:
Joint distribution p(x; y) :
Trade-off parameter � :
Cardinality parameter M and a convergence parameter " :

Output:
A (typically “soft”) partition T of X into M clusters.

Initialization:
Randomly initialize p(t j x) and find the correspondingp(t); p(y j t) through Eqs. (3.2).

While True� P (m+1)(t j x) P (m)(t)Z(m+1)(x;�)e��DKL[p(yjx)jjp(yjt)] ; 8 t 2 T ; 8 x 2 X :� P (m+1)(t) Px p(x)P (m+1)(t j x) ; 8 t 2 T :� P (m+1)(y j t) = 1P (m+1)(t) Px P (m+1)(t j x)p(x; y) ; 8 t 2 T ; 8 y 2 Y :
If 8 x 2 X ; JS 12 ; 12 [P (m+1)(t j x); P (m)(t j x)] � " ;

Break .

Figure 3.1: Pseudo-code of the iterative IB (iIB) algorithm. JS denotes the Jensen-Shannon divergence (Defini-
tion 1.2.17). In principle we repeat this procedure for different initializations and choose the solution which minimizesL = I(T ;X)� �I(T ;Y ) :

p(t|x)

p(y|t)

)t(p

Figure 3.2: Illustration of the iIB algorithm. The (alternating) minimization is performed over three convex sets of
distributions. At each step two distributions in two sets are kept constant, and the algorithm finds a third distribution
in the third set that further minimizes the IB-functional. Since the IB-functional is not convex in the product space of
these three sets, different initializations might lead to different local optima.
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3.1.1 Convergence of the iIB algorithm

Theorem 3.1.1 : Iterating over the fixed-point equations given in Eq. (3.1) converges to a stationary fixed

point of the IB-functional.

Proof: Since the proof of this theorem provides further insights about the method, we outline it below (a

shorter version already appeared in [82]). We start by introducing the following auxiliary functional:FIB � � h logZ(x; �) ip(x)p(tjx) = �Xx;t p(x)p(t j x) logZ(x; �) ; (3.3)

where, as before, Z(x; �) is the normalization (partition) function of p(t j x) : In other words, FIB is

(minus) the expectation over the log of the partition functions (and is known in physics as the “free energy”

of the system).

The general idea of the proof is to show that updates defined by the iIB algorithm can only reduce FIB ,

and since FIB is shown to be lower-bounded, we are guaranteed to converge to a self-consistent solution.

Lemma 3.1.2: FIB is non-negative and convex with respect to each of its arguments independently.

Proof: Using Eq.(2.16) we find that� logZ(x; �) = log p(t j x)p(t) + �DKL[p(y j x)jjp(y j t)] ; (3.4)

Thus we obtainFIB =Xx;t p(x)p(t j x) log p(t j x)p(t) + �Xx;t p(x)p(t j x)DKL[p(y j x)jjp(y j t)] : (3.5)

Therefore, FIB is a sum of KL divergences, and in particular non negative. Moreover, by Log sum inequal-

ity ([20], page 29) it is easy to verify that the KL divergence is (strictly) convex with respect to each of its

arguments. Since a sum of convex functions is also convex, and since � > 0, we achieve the desired result.

Recall that after updating p(t) by the iIB algorithm, p(t) becomes exactly the marginal of the joint distri-

bution p(x)p(t j x) : Hence, after this update the first term in FIB corresponds to I(T ;X) (and at any stage

it is an upper bound of this information, see Proposition 2.1.2). The second term in FIB can be considered

to be an expected “relevant-distortion” term, analogous to the standard expected distortion term in rate dis-

tortion (see Eq. (2.1) and Eq. (2.3)). The analogy to rate distortion is now even more evident. However, we

should keep in mind that the “relevant-distortion” term is non-linear in p(t j x) since p(y j t) is set through

this mapping. As a result, FIB is not convex in all of its three arguments simultaneously. Therefore, in

general there might be multiple local optima to this functional (for a given �). It is also straightforward to

relate the relevant-distortion term to the relevant information term. Specifically,Xx;t p(x)p(t j x)DKL[p(y j x)jjp(y j t)] = I(X;Y )� I(T ;Y ) :1 (3.6)

Since I(X;Y ) is a constant, after updating p(t) and p(y j t) by the iIB algorithm we have FIB = I(T ;X)+�(I(X;Y )� I(T ;Y )) / L :
1Proof:

Px;t p(x)p(tjx)DKL[p(yjx)jjp(yjt)] + I(T ;Y ) = Px;y;t p(x; t)p(yjx) log p(yjx)p(yjt) +Px;y;t p(x; y; t) log p(yjt)p(y) =Px;y;t p(x; y; t)(log p(yjx)p(yjt) + log p(yjt)p(y) ) = I(X;Y ), where in the second step we used the IB Markovian relation.
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Lemma 3.1.3: If any of the iIB update equations changes the corresponding distribution, FIB is reduced.

Proof: The iIB update equations are given by Eq. (3.1) and Eqs. (3.2). It is straightforward to verify that the

derivatives of FIB with respect to each of its arguments (under proper normalization constraints), provide

exactly these three equations. For example, consider ~FIB � FIB +Px �(x)[Pt p(t j x) � 1] ; where

the second term corresponds to the normalization constraints. Taking the derivative of ~FIB with respect top(t j x) and equating to zero will give exactly Eq. (3.1). A similar procedure for the other arguments ofFIB , will yield exactly the other two iIB update equations. We now note that updating by equating some

derivative of FIB to zero (while the other two arguments of FIB remain constant), can only reduce FIB .

This is simply due to the fact that FIB is strictly convex in each of its arguments (independently) and all its

arguments correspond to convex sets. Hence, equating some derivative to zero is equivalent to finding the

projection of FIB in the corresponding convex set. This can only reduce FIB , or leave it unchanged, where

in this case the update step has no effect.

Combining the above two lemmas we see that through the iIB updates, FIB converges to a (local) min-

imum. At this point all the update steps (including Eq. (3.1)) reach a self-consistent solution. Therefore,

from Theorem 2.4.1 we are at a fixed-point of the IB-functional, as required.

A key question is how to initialize the iIB procedure. As already mentioned, different initializations can

lead to different solutions which correspond to different local stationary points of L. Additionally, in some

cases we are interested in exploring a hierarchy of solutions for different values of the trade-off parameter�. Tishby et al. [82] suggested addressing these two issues through a deterministic annealing-like procedure

[63] which is described in the next section.

3.2 dIB: a deterministic annealing-like algorithm

In general, a deterministic annealing procedure works by iteratively increasing the parameter � and then

adapting the solution for the previous value of � to the new one [63]. In our context, this allows the algorithm

to “track” the changes in the solution as the system shifts its preferences from compression to preservation

of relevant information. 2 In other words, by gradually increasing � the algorithm tries to reconstruct the

optimal relevance-compression curve, R̂(D̂).
Recall that when � ! 0, the solution consists of essentially one cluster, i.e., jT j = 1. Successive increases

of � will reach consecutive phase transitions in which the current values of T split in order to support the

required minimal level of I(T ;Y ). The general idea is to try to identify these value (i.e., cluster) bifurcations.

At the end of the procedure we record the obtained bifurcating structure that traces the sequence of solutions

at different values of � (see, for example, Figure 4.3).

The main technical problem is how to detect such bifurcations. One option is at each step to take the

solution from the previous step (i.e., for the previous value of � we considered) and construct an initial

problem in which we duplicate each value of T . To define such an initial setting we need to specify the

conditional probabilities of these duplicated values given each value of X . Suppose that t1 and t2 are two

such duplications of the value t. Then we set p�(t1 j x) = p(t j x) � 12 + ��̂(t; x)� and p�(t2 j x) = p(t jx) �12 � ��̂(t; x)� ; where �̂(t; x) is a (stochastic) noise term randomly drawn out of U [�12 ; 12 ] and � > 0
is a (typically small) scale parameter. Thus, each copy t1 and t2 is a slightly perturbed version of t. If � is

high enough, this random perturbation suffices to allow the two copies of t to diverge. If � is too small to

support such bifurcation, both perturbed versions will collapse to the same solution.

After constructing this initial point, we iteratively perform the update equations of the iIB algorithm until

convergence. If after the convergence the behavior of t1 and t2 is sufficiently different then we declare that

2In deterministic annealing terminology, 1� is the “temperature” of the system, and thus increasing � corresponds to “cooling”

the system.
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Input:
Similar to the iIB algorithm.
Additional Parameters: �; "� ; and dmin

Output:
(Typically “soft”) partitions T of X into m = 1; : : : ;M clusters.

Initialization:�  0T  ftg; p(t j x) = 1 :
Main annealing loop:�  f(�; "�)

Duplicate clusters:

For every t 2 T and every x 2 X ;
Randomly draw �̂(t; x) � U [� 12 ; 12 ] and define:p�(t1 j x) = p(t j x) � 12 + ��̂(t; x)�p�(t2 j x) = p(t j x) � 12 � ��̂(t; x)�

Apply iIB using the duplicated cluster set as initialization.

Check for Splits:8 t 2 T , if JS 12 ; 12 [p(y j t1); p(y j t2)] � dmin ,T  fT n ftgg [ ft1; t2g
If jT j �M , return.

Figure 3.3: Pseudo-code of the deterministic annealing-like algorithm (dIB). JS denotes the Jensen-Shannon diver-
gence (Definition 1.2.17). f(�; "�) is a simple function used to increment � based on its current value and on some
scaling parameter "� . dmin is a scalar parameter used to determine a bifurcation of two copies of some value into two
independent values. Note that in principle this parameter should be set as a function of � and not with a fixed value.
The algorithm stops when the maximal cardinality of T is exceeded. Alternatively, it is possible to use generalization
considerations to limit the maximal value of � (see the discussion in Section 6.2.2).

the value t has split, and incorporate t1 and t2 into the bifurcation hierarchy we construct for T . Finally,

we increase � and repeat the whole process. We will term this algorithm the dIB algorithm. A Pseudo-code

is given in Figure 3.3.

There are several technical difficulties with applying this algorithm. First, several parameters (see Fig-

ure 3.3) must be tuned to detect cluster splits. Setting these parameters without any prior knowledge about

the data is not a trivial issue. Moreover, it is not a priory clear that these parameters should be fixed dur-

ing the process. A possible alternative is to set them as a function of � (see Section 4.3 for an example).

Additionally, the rate of increasing � should be tuned, otherwise cluster splits might be “skipped” by the

process. Lastly, the duplication process is stochastic in nature (and involves additional parameters) which in

principle is not a desirable property of a clustering procedure.

In the following section we describe a much simpler procedure. This is a fully deterministic non-parametric

approach. However, in contrast to the dIB algorithm, the extracted solutions have no guarantee of being even

a local stationary point of the IB-functional. Thus, we oppose an approximated simple algorithm, versus an

exact complicated one.
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3.3 aIB: an agglomerative algorithm

The agglomerative Information Bottleneck (aIB) algorithm employs a greedy agglomerative clustering tech-

nique to find a hierarchical clustering tree in a bottom-up fashion. In several works it has been shown to

be useful for a variety of real-world problems, including supervised and unsupervised text classification

[77, 78, 87], gene expression analysis [83], neural code analysis [67, 68], image clustering [38], protein

sequence analysis [56], natural language processing [41] and galaxy spectra analysis [75]. In this section,

following the preliminary work in [76], we present this algorithm in detail. For consistency with [76] we

consider the problem of maximizing Lmax = I(T ;Y )� ��1I(T ;X) ; (3.7)

which is clearly equivalent for minimizing the IB-functional defined by Eq. (2.13) (dividing Eq. (2.13) by�� yields Eq. (3.7)).

We consider a procedure that typically starts with the most fine-grained solution where T = X . That is,

each value of X is assigned to a unique singleton cluster in T . Following this initialization we iteratively

reduce the cardinality of T by merging two values ti and tj into a single value �t. To formalize this notion

we need to specify the membership probability of the new cluster resulting from the merger fti; tjg ) �t.
This is done rather naturally throughp(�t j x) = p(ti j x) + p(tj j x) ;8x 2 X : (3.8)

In other words, we view the event �t as the union of the events ti and tj .
Using this specification and the IB Markovian relation we can characterize the prior probability and the

centroid distribution of the new cluster. This is done through the following simple proposition.

Proposition 3.3.1: Let fti; tjg ) �t be some merger in T defined through Eq. (3.8). If T $ X $ Y thenp(�t) = p(ti) + p(tj) ; (3.9)

and p(y j �t) = �i � p(y j ti) + �j � p(y j tj) ; (3.10)

where � = f�i; �jg = fp(ti)p(�t) ; p(tj)p(�t) g ; (3.11)

is the “merger distribution”.

In particular, this proposition together with Eq. (3.8) allows us to calculate I(T ;X); I(T ;Y ) after each

merger. Also note that the merger distribution, denoted by � is indeed a proper normalized distribution.

The basic question in an agglomerative process is of course which pair to merge at each step. The merger

“cost” in our terms is exactly the difference between the values of Lmax, before and after the merger. LetT bef and T aft denote the random variables that correspond to T , before and after the merger, respectively.

Thus, the corresponding values of Lmax are calculated based on T bef and T aft . The merger cost is then

defined by, �Lmax(ti; tj) = Lbefmax �Laftmax : (3.12)

The greedy procedure evaluates all the potential mergers in T and then applies the best one (i.e., the one

that minimizes �Lmax(ti; tj)). This is repeated until T degenerates into a single value. The resulting tree

describes a range of clustering solutions at all the different resolutions.
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Input:
Joint distribution p(x; y) :
Trade-off parameter �:

Output:
Partitions T of X into m = 1; : : : ; jX j clusters.

Initialization:T  X :8 ti; tj 2 T calculate �Lmax(ti; tj) = p(�t) � �d(ti; tj) :
Main Loop:

While jT j > 1fi; jg = argmini0;j0�Lmax(ti0 ; tj0) :
Merge fti; tjg ) �t in T :
Calculate �Lmax(�t; t); 8t 2 T :

Figure 3.4: Pseudo-code of the agglomerative IB (aIB) algorithm.

3.3.1 A local merging criterion

In the procedure outlined above, at every step there are O(jT j2) possible mergers of values of T . Since at

the initialization, jT j = jX j, a direct calculation (through Eq. (3.12)) of all the potential merger costs might

be unfeasible if jX j is relatively large.

However, it turns out that one may calculate �Lmax(ti; tj) while examining only the probability distribu-

tions that involve ti and tj directly.

Proposition 3.3.2: Let ti; tj 2 T be two clusters. Then,�Lmax(ti; tj) = p(�t) � �d(ti; tj) ; (3.13)

where �d(ti; tj) � JS�[p(y j ti); p(y j tj)]� ��1JS�[p(x j ti); p(x j tj)] : (3.14)

Thus, the merger cost is a multiplication of the “weight” of the merger components, p(�t), with their “dis-

tance” given by �d(ti; tj). Due to the properties of the JS divergence this “distance” is symmetric but it is

not a metric. In addition, its two components have opposite signs. Thus, the “distance” between two clusters

is a trade-off between these two factors. Roughly speaking, we may say that it is minimized for pairs that

give similar predictions about the relevance variable Y and have different predictions, or minimum overlap

about the compressed variable, X . Note that for ��1 ! 0 we get exactly the algorithm presented in [76].

Also note that after applying a merger we need only calculate the merger costs with respect to the new re-

sulting cluster, �t, while all the other costs remain unchanged. A Pseudo-code of this algorithm is given in

Figure 3.4.

An important special case is the “hard” clustering case where T is a deterministic function of X . That is,p(t j x) can only take values of zero or one, meaning every x 2 X is assigned to exactly one cluster t 2 T
with a probability of one and to all the others with a probability of zero. Clearly in this case H(T j X) = 0,

hence I(T ;X) = H(T ). Namely, we are trying to minimize H(T ) while preserving I(T ;Y ) as high as

possible. As already mentioned in Section 1.2.2, H[p] tends to decrease for “less balanced” probability

distributions p. Therefore, increasing ��1 results in a tendency to look for less balanced “hard”partitions

and vice versa. A typical result consists of one big cluster and many additional small clusters. Since the

algorithm also aims at maximizing I(T ;Y ) the big cluster usually consists of the values of X which are
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Table 3.1: An example for sub-optimality of aIB. Taking ��1 = 0 and assuming p(x) = 1jX j , aIB will first merge(x2; x3) ) �t, and then will merge �t with x1. This yields two clusters with I(T ;Y ) � 0:017 which is 62% of the
original relevant information, I(X ;Y ). However, merging x1 with x2, and then x3 with x4, yields a partition T such
that I(T ;Y ) � 0:021, which is 77% of the original information. In other words, the greedy aIB procedure is tempted
by the “best” merger in the first step, leading to a rather poor merger in the second step, and to an overall sub-optimal
result.

. X p(y j x)x1 [ 0:50 0:50 ]x2 [ 0:61 0:39 ]x3 [ 0:70 0:30 ]x4 [ 0:80 0:20 ]
less informative about Y . Thus, a value of X must be highly informative about Y to stay out of this

cluster. In this sense, increasing ��1 is equivalent to inducing a “noise-filter”, that leaves only the most

relevant features of X in specific clusters. A demonstration of this effect is given in Section 4.2. It is

also worth mentioning that in this “hard” clustering case the second term in �d(ti; tj) is simplified throughJS�[p(x j ti); p(x j tj)] = H[�].
3.4 sIB: a sequential optimization algorithm

There are two main difficulties in applying an agglomerative approach. First, an agglomerative procedure is

greedy in nature, and as such there is no guarantee it will find even a locally optimal solution (see Table 3.1

for an example). In fact, it may not even find a “stable” solution, in the sense that each object belongs

to the cluster it is “most similar” to. Second, the time complexity of this procedure is typically on the

order of O(jX j3jYj), and the space complexity is O(jX j2), which makes it unfeasible for relatively large

datasets. In [74], Slonim et al. describe a simple framework for casting a known agglomerative algorithm

into a “sequential K-means like” algorithm. In particular, the resulting algorithm is guaranteed (under

some loosely restricted conditions) to converge to a “stable” solution in time and space complexity which

are significantly better than those of an agglomerative procedure. Following this work we describe here in

detail how to apply this idea in our context.

Unlike agglomerative clustering, the sequential procedure maintains a (flat) partition in T with exactly M
clusters. The initialization of T can be based upon a random partition of X into M clusters, or alternatively

by employing more sophisticated initialization techniques (e.g., [18]). Additionally, in principle it is possible

to use some (non-optimal) output of any other IB algorithm as the initialization.

Given the initial partition, at each step we “draw” some x 2 X from its current cluster t(x) and represent

it as a new singleton cluster. 3 Using our known greedy agglomeration procedure (Eq. (3.13)), we can now

merge x into tnew such that tnew = argmint2T�Lmax(fxg; t), to obtain a (possibly new) partition T new,

with the appropriate cardinality. Assuming that tnew 6= t(x) it is easy to verify that this step increases the

value of the functional Lmax defined in Eq. (3.7). Since for any finite � this functional is upper bounded, this

sequential procedure is guaranteed to converge to a “stable” solution in the sense that no more assignment

updates can further improve Lmax.

What is the complexity of this approach? In every “draw-and-merge” step we need to calculate the merger

costs with respect to each cluster in T , which is on the order of O(jT jjYj). Our time complexity is thus

3For simplicity we describe this algorithm for the case of “hard” clustering. In principle it is possible to extend this approach to
handle “soft” clustering as well.
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Input:
Joint distribution p(x; y) :
Trade-off parameter �:
Cardinality value M :

Output:
A partition T of X into M clusters.

Initialization:T  random partition of X into M clusters.

Main Loop:
While not DoneDone TRUE :

For every x 2 X :
Remove x from current cluster, t(x) :tnew(x) = argmint2T�Lmax(fxg; t)
If tnew(x) 6= t(x);Done FALSE :
Merge x into tnew(x)

Figure 3.5: Pseudo-code of the sequential IB (sIB) algorithm. In principle we repeat this procedure for different
initializations and choose the solution which maximizes Lmax = I(T ;Y )� ��1I(T ;X).
bounded by O(` jX jjT jjYj) where ` is the number of loops we should perform over X until convergence

is attained. Since typically ` � jT j � jX j2 we get significant run time improvement.

Additionally, we dramatically improve our memory consumption to be on the order of O(jT j2).
As in the case of iIB, to reduce the potential sensitivity for local optima, we can repeat this procedure

for N different random initializations of T to obtain N different solutions, from which we choose the one

which maximizes Lmax. We will term this algorithm the sequential IB (sIB) algorithm. A Pseudo-code is

given in Figure 3.5.

Note that as for the aIB algorithm, a straightforward implementation of this algorithm would result in

“hard” clustering solutions. In this case, reducing � will yield less balanced partitions while increasing �
will have the opposite effect.

3.5 Relations between the different algorithms

Several relationships between the above mentioned algorithms should be noted specifically. We first note

the difference between the merging criterion of the aIB algorithm (Eq. (3.13)), and the effective distortion

measure that controls the iIB algorithm, given in Eq. (3.1). In the iIB case the optimization is governed by

the KL divergences between data and cluster centroids (or by the likelihood that the data were generated by

the centroid distribution). On the other hand, for the aIB algorithm the optimization is controlled through

the JS divergences, i.e., the likelihood that the two clusters now being merged have a common source (see

Section 1.2.5).

The aIB approach is the simplest and most easy to use method. It is completely non-parametric (except

for the need to specify �) and fully deterministic. Moreover, it provides a full clustering tree hierarchy. This

agglomerative approach is different in several respects from the deterministic annealing-like algorithm. In

the dIB case, by “cooling” (i.e., increasing) �, we move along a trade-off curve, from the trivial (single clus-

ter) solution toward solutions with higher resolutions that preserve more relevant information. In contrast,
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when using aIB we progress in the opposite direction. We start with high resolution clustering and as the

merging process proceeds we move toward coarser solutions. During this process � is kept constant and the

driving force is the reduction in the cardinality of T . In particular this allows us to look for solutions in dif-

ferent resolutions for a fixed trade-off parameter � which is not possible while using dIB. However, in many

real-world applications, complexity considerations might rule out using such an agglomerative technique.

In many practical situations the requested number of clusters already implies a significant compression,

namely jT j � jXj. In these cases, one might be interested in maximizing the relevant information term

for the given number of clusters, without inducing a further constraint over the compression information. A

simple way to achieve this is to take � ! 1 (or ��1 ! 0) while forcing T to the appropriate cardinality.

The natural choice in these cases is to use the sIB or the aIB algorithms, that can be easily applied with these� values.

The sIB algorithm is in some sense similar to the iterative optimization algorithm, iIB. Both algorithms

provide a stable solution for a fixed cardinality value and a fixed � value. However, there is a clear distinction

between these two approaches. The iIB algorithm applies parallel update steps. In this scheme, we first

update all the membership probabilities, p(t j x) and only then update the distributions, p(t) and p(y j t). On

the other hand, sIB applies sequential update steps. Under this routine, after every single assignment update,

the corresponding centroid and prior distributions are updated as well. In this context the sIB approach seems

to have some relations to the incremental variant of the EM algorithm for maximum likelihood [54], which

still needs to be explored.

Another distinction between both approaches is of course due to the fact that iIB extracts “soft” clustering

solutions, while a typical implementation of sIB extracts “hard” solutions. Nonetheless, as mentioned ear-

lier, as � increases, the partitions considered by iIB become (approximately) deterministic. In this case, the

analogy between both algorithms is more evident. A natural question is whether locally optimal solutions

obtained by one algorithm would be considered as locally optimal by the other. It turns out that the answer

to this question is negative. In other words, an (approximately “hard”) optimal solution found by the iIB

algorithm might be further improved by the sIB algorithm. A concrete example is given in Table 3.2. This

example demonstrates the possible presence of multiple local optima to the IB-functional. In particular, if

the iIB algorithm is trapped in such a locally optimal solution (due to “unlucky” initializations), it has no

way out since it is not concerned with its surroundings. Once an optimal solution is found, no stochastic

mechanism is applied to check whether better optima are available. On the other hand, sIB always considers

all the available local steps from its current solution. In this sense, it always explores the full discrete grid of

“hard” solutions surrounding its current solution. If one of these solutions is superior, the sIB will identify

it and will perform the necessary update. This property suggests that the sIB will in general be less sensitive

to the presence of local optima (even for medium � values) than the iIB algorithm. In Section 4.4 we present

some empirical evidence supporting this suggestion.

Although in many applications one may be satisfied with “hard” clustering solutions, it should be empha-

sized that for any finite choice of �, these solutions are typically not the global optimum of the IB-functional.

This observation is an immediate corollary of Theorem 2.4.1. Specifically, the mappings p(t j x) that cor-

respond to stationary fixed-points of the IB-functional are stochastic in nature (for a finite �). In particular

this implies that the global optimum is typically stochastic. Given this fact, it is important to keep in mind

that in principle the basic analysis regarding the aIB and the sIB algorithms (including the derivation of the

local merging criterion) holds for “soft” clustering as well. This raises the possibility of using an agglomer-

ative procedure over “soft” clustering partitions, which is left for future research. Alternatively we may use

“hard” clustering solutions as a platform to extract (optimal) “soft” clustering solutions. This alternative is

discussed in the next section.

The above four approaches define an arsenal of heuristics which are all aimed at optimizing the same target

functional, the IB-functional. Each of these heuristics has different advantages and disadvantages, and none

of them guarantees a globally optimal solution (in general this is an NP -hard problem [33]). Generally
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Table 3.2: An example demonstrating that a locally optimal solution found by the iIB algorithm might be further
improved by the sIB algorithm. The left column indicates the value in X . The next two columns describe the input
distribution, given by p(x) and p(y j x), respectively. The last two columns describe a locally optimal solution found
by the iIB algorithm for � = 50 and jT j = 2. Since � is relatively high, the solution is approximately deterministic.
In particular, every x is assigned with the T value that minimizes the corresponding KL divergence. Nonetheless,
this is not an sIB optimal partition. Specifically, performing a draw-and-merge step for x1 we see that the cost of
merging it back to t1 (for � = 50) is � 0:004, but the cost of merging it to t2 is � �0:002. Hence, the sIB algorithm
will move x from t1 to t2, and by that will indeed improve the relevant information from I(T ;Y ) � 0:0175 towardI(T ;Y ) � 0:028 (which is about 80% of the original information, I(X ;Y )). Although the compression-information,I(T ;X) is smaller for the iIB solution (0:32 versus 0:69 respectively), if we consider the complete trade-off described
by the IB-functional, we see that the iIB solution is clearly inferior. Specifically, for � = 50 we get L = �0:55 for
the iIB solution, and L = �0:71 for the sIB solution.
. x p(x) p(y j x) p(t1 j x) p(t2 j x)x1 0:45 [ 0:4 0:6 ] 0:998 0:002x2 0:45 [ 0:6 0:4 ] 1:000 0:000x3 0:10 [ 0:2 0:8 ] 0:001 0:999
speaking, the question of which algorithm or combination of algorithms to use, given some input joint

distribution, depends on the specific data and on the user’s goals and resources. It should be stressed that the

above approaches are certainly not a complete list, and other algorithms might be employed under the same

information theoretic framework. Several such algorithms, aiming at optimizing similar functionals can be

found in [6, 25, 30, 35, 58, 81].

3.6 Combining algorithms and reverse-annealing

An obvious observation is that combining different algorithms might be beneficial in certain circumstances.

Two such examples are discussed in this section.

As already mentioned, the aIB algorithm is not guaranteed to extract “stable” solutions. However, com-

bining it with the sIB algorithm can overcome this disadvantage. More precisely, we may start by using the

aIB algorithm. At some point we can apply sIB, using the current aIB solution as an initial point. This will

result in a better solution (in terms of Lmax) for the same cardinality value. We now may proceed with aIB,

later on apply sIB again, and so forth. Roughly speaking, every application of the sIB algorithm “bounces”

the solution into the right direction, while correcting previous “bad” moves of the greedy aIB procedure. On

the other hand, using the aIB temporary solutions as the input for sIB provides typically good initializations

(in contrast to random initializations). In this sense, by this combination, each algorithm attempts to use its

relative advantages to compensate for the disadvantages of its companion.

Another possibility for combining different algorithms, first suggested in [76], is extracting optimal “soft”

solutions out of “hard” solutions using a reverse-annealing process. To do this recall that any stochastic

mapping, p(t j x) which is characterized through Eq. (2.16), becomes deterministic at the limit � ! 1.

As a result, given some deterministic mapping p(t j x) (found by aIB or sIB), we can use it as a platform

to recover a stochastic mapping. Specifically this is done by representing this mapping through Eq. (2.16)

with a large enough � (under which the mapping is indeed deterministic for any practical need). We can

now use this representation as an initialization to the iIB algorithm, and by this converge to a local stationary

point of the IB-functional. We further slightly reduce �, use the previous (optimal) p(t j x) mapping as an

initialization and apply again the iIB algorithm to extract a new mapping which is slightly more stochastic

and also corresponds to a stationary point of the IB-functional. Continuing this process we obtain a series of
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solutions which become more stochastic as � decreases. In principle, these solutions correspond to a curve

in the relevance-compression plane, which is upper bounded by the optimal relevance-compression function,R̂(D̂) (see Figure 2.6, left panel). In contrast to the curve found by the dIB algorithm, this curve is extracted

without the need to identify cluster splits which is rather tricky. Moreover, given some “hard” solution as

the initialization, the process of extracting the curve is deterministic (although it might be sensitive to the

rate of decreasing �). At the end of this process � ! 0 and we obtain the most stochastic solution available.

In this limit all the cluster representatives are equivalent, i.e., there is effectively just a single value in T and

the compression is maximized.

It is important to note the two different roles of � in the above procedure. We first set � to some fixed value

and use the aIB or the sIB algorithm to find a range of “hard” clustering solutions at different resolutions.

This fixed � value controls the value of H(T ) in each of these solutions. We now choose one of these

solutions and use it as an initial point to recover “soft” solutions. To this task we “plug-in” a (new) high

value of � into the deterministic mapping p(t j x), and by gradually decreasing this parameter, together with

applying the iIB algorithm, we extract a series of locally optimal “soft” solutions, which become softer (and

more compressed) as � approaches zero. A demonstration of this process is given in Section 4.3.1 (see the

right panels of Figure 4.5).
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Chapter 4

IB Applications

In this chapter we examine a few applications of the IB algorithms described previously. There are two main

purposes to this chapter. First, we would like to examine the different algorithms and the related theoretical

concepts put to practical use. Second, we argue that the method is useful for applications with high practical

importance, as demonstrated in the last section of this chapter.

An immediate obstacle in applying our theoretical framework is that in practice, typically we do not have

access to the true joint distribution p(x; y). Instead, all we have is a finite sample out of this distribution,

represented in the form of a count matrix (sometimes termed a contingency table). In the applications

presented in this thesis, a pragmatic approach was taken, where we estimated the distribution p(x; y) through

a simple normalization of the given count matrix. As we show in the following, our results are satisfactory

even in extreme under-sampling situations. Moreover, some of the IB algorithms are well motivated in these

situations as well, as we discuss in Section 6.1. Nonetheless, the finite sample effect over our methodology

clearly calls for further investigation which is out of the scope of this work.

It is important to keep in mind that an appealing property of the IB framework is that it can be applied

to a wide variety of data types in exactly the same manner. There is no need to tailor the algorithms to the

specific data, or define a (data specific) distortion measure. Once a reasonable estimate of a joint distribution

is provided, the setup is completed. Moreover, the quality of the results can be measured objectively in terms

of compression versus preservation of relevant information.

During the research reported in this thesis, many different applications were examined, which are not pre-

sented here. These include using word-clusters for supervised and unsupervised text classification [77, 78],

galaxy spectra analysis [75], neural code analysis [68], and gene expression data analysis [83]. Additionally,

following our preliminary work in [76], new applications have began to emerge in different domains, such as

image clustering [38], protein sequence analysis [56], and natural language processing [41, 87]. However,

due to the lack of space and for the sake of coherence we concentrate in this chapter on text processing

applications that provide a natural testing ground for our methodology.

4.1 sIB for word clustering with respect to different relevant variables

We start with a simple example to demonstrate the effect of choosing different relevant variables on the

results. The “4 Universities Data Set” contains 8; 282 WWW-pages collected from computer science de-

partments of various universities by the CMU text learning group. All pages were manually classified into

the following topical categories: ’Student’, ’Faculty’, ’Staff’, ’Department’, ’Course’, ’Project’ and ’Other’

(where we ignored this last “general” topic). However, there is an additional possible classification of these

pages, according to the origin universities: Cornell, Texas, Washington, Wisconsin or ’Other’ (where again,

we ignored the last general category). Therefore, in principle, it is possible to extract (at least) two different

word count matrices out of these data. In the first matrix, denoted here as Mtopic, the counter in each entry
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indicates the number of occurrences of a specific word in pages that were assigned to one of the six different

topics. In the second matrix, denoted here as Muniv, the counter in each entry indicates the number of

occurrences of a specific word in pages originating from a specific university. Although both matrices refer

(approximately) to the same set of words, the statistics in each matrix is entirely different. Hence, if we are

interested in compressing the word-variable, there are two natural choices for the relevant variable. Each

choice will yield different results, as we show below.

Following standard pre-process steps 1 we had two count matrices. In Mtopic we had 7; 777 distinct

words with respect to the six topics. In Muniv we had 9; 840 distinct words with respect to the four

universities. Applying direct normalizations we ended up with two (estimated) joint probabilities. In

the first one, p(w; ctopic) we had jWj = 7; 777; jCtopicj = 6. In the second one, p(w; cuniv) we hadjWj = 9; 840; jCunivj = 4.

For both matrices we decided to compressW into a new variable, denoted by Ttopic and Tuniv , respectively.

For simplicity we decided to consider “flat” solutions (rather than a hierarchy of solutions), and in particular

we set jTtopicj = jTunivj = 10. Since this setting already implies a significant compression, we were able to

take ��1 = 0, thus to remain focused on maximizing the relevant information terms, I(Ttopic;Ctopic) andI(Tuniv;Cuniv). Consequently, the natural choice was to use the sIB algorithm (since setting ��1 = 0 for

the iIB algorithm causes numerical difficulties). For each matrix we performed ten restarts using ten different

random initializations, and eventually chose the solution which maximized the relevant information.

For p(w; ctopic), with only ten clusters we got I(Ttopic;Ctopic) � 0:14, which is about 68% of the original

information. For p(w; cuniv), with the same number of clusters, we got I(Tuniv;Cuniv) � 0:09, which

is about 74% of the original information. That is, for both choices of the relevant variable, a significant

compression implies only a rather minor loss of relevant information.

We further considered the clusters extracted in each case. We sorted all ten clusters in Ttopic by their

contribution to I(Ttopic;Ctopic), given byI(ttopic) � p(ttopic) Xctopic p(ctopic j ttopic) log p(ctopic j ttopic)p(ctopic) : (4.1)

For each of the five most informative clusters, we present in the upper part of Table 4.1 the five most probable

words, which are the words that maximize p(w j ttopic). Clearly, each of these clusters is predictive of one

of the values of Ctopic, or in other words, the partitioning ofW is informative about the different topics in

the data.

We perform an identical analysis for the ten clusters in Tuniv . The results are presented in the lower part

of Table 4.1. As expected, the partition ofW is entirely different. In particular, this partition is predictive

of the values of Cuniv, namely about the different sources of the WWW-pages in those data.

4.2 aIB with finite � for non-balanced clustering

In many applications, clustering is used as a tool for analyzing the properties of a large collection of objects.

For example, in gene expression data analysis (see, e.g., [28]), one might be interested in clustering on the

order of 104 genes, according to their expression patterns. Although in some cases clustering the genes

into a large number of clusters might be useful, clearly the analysis of, e.g., � 103 different clusters is very

time consuming, and in fact not feasible in some cases. Hence, clustering the data into a relatively small

number of, e.g., ten clusters, is desirable. However, in this case, a “balanced” clustering solution (which is a

typical result for a standard clustering method) will yield around � 1; 000 genes in each cluster. Therefore,

considering each and every object in a specific cluster might be also too demanding.

1We used rainbow software [52] for this pre-process. Specifically we followed the steps suggested in http://www-

2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/, from which the data are also available on-line. To avoid too high di-

mensionality, we further ignored in each matrix words with fewer than ten occurrences.
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Table 4.1: Results for word clustering with respect to different target variables, over the “4 Universities Data Set”.
The first five rows describe the results for compressing the words while preserving the information about the different
topics in the corpus. Results are presented for the five clusters with the highest contribution to I(Ttopic;Ctopic) (see
Eq. (4.1)). The first column indicates the value ttopic 2 Ttopic. The second column indicates the value of Ctopic for
which p(ctopic j ttopic) is maximized, where this maximizing value is given in the next column. The last column
presents the ten most probable words in this cluster, ordered by p(w j ttopic). (“<time>” stands for a string in the
page representing the time of day, and ’$’ stands for any digit character.) The last five rows in the table present the
same analysis for compressing the words while preserving the information about the different sources of the pages.
Clearly, changing the relevance variable yields an entirely different partition ofW .T value Most probable p(c j t) Most probable

relevant value memberst(1)topic ’Course’ 0:83 <time>, will, course, class, your, homework,

lecture, hours, assignment, assignments.t(2)topic ’Student’ 0:69 my, am, me, working, cornell, personal, austin,

stuff, resume, ve.t(3)topic ’Faculty’ 0:72 professor, conference, he, acm, international,

ieee, pp, his, journal, member.t(4)topic ’Course’ 0:53 $$, $, $$..., be, programming, office, not,

postcript, fall, cs$$$.t(5)topic ’Project’ 0:33 system, parallel, group, based, our, performance,

applications, laboratory, high, real.t(1)univ Washington 0:94 washington, cse, cse$$$, seattle, emacs,

wa, sieg, ladner, pst, tompa.t(2)univ Texas 0:89 austin, texas, utexas, ut, qualitative, hello, ans,

tx, mooney, inductive, acquisition.t(3)univ Wisconsin 0:95 wisc, madison, wisconsin, ece, wi, const, char,

scores, shore, stl.t(4)univ Cornell 0:85 cornell, video, slide, rivl, ithaca, ny, upson,

audio, hours, mpeg.t(5)univ Texas 0:33 university, systems, system, research, software,

language, based, pages, group, sciences.
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Figure 4.1: Details of the 20NG corpus. The collection contains about 20; 000 messages evenly distributed among20 different UseNet discussion groups, which define 20 different textual categories (or “topics”). These categories
are presented in the figure in a hierarchical manner, which was done manually for purposes of presentation. For each
category we indicate the average number of words in its messages, after the pre-process described in the text. As
noted in [66], a small amount of these messages (less than 5%) are present in more than one group, hence it might be
considered as a multi-labeled corpus. However, we ignored this observation in the experiments reported in this thesis.

Bearing this in mind, in some circumstances one might be interested in non-balanced clustering solutions.

In this case, the number of clusters is rather small, but still most of the clusters are relatively compact,

consisting of a small number of objects. It turns out that applying this idea in our context is straightfor-

ward. Recall that for “hard” clustering, the compression-information, I(T ;X) is simply the entropy of the

compression variable, H(T ) (see Section 3.3.1). Therefore, using the sIB or the aIB algorithm with a finite� value, yields a clustering solution which aims at maximizing the relevant information while minimizing

this entropy. Since the entropy decreases as the distribution drifts away from the uniform (most balanced)

distribution, finite (small) � values will yield non-balanced clustering solutions. A typical result will consist

of one big cluster and additional much smaller clusters. Since we are also concerned with maximizing the

relevant information, the values that are merged into the big cluster are usually the less informative ones.

In this sense, reducing � is equivalent to inducing a “noise filter”, that leaves only the most informative

features of X in specific (compact) clusters.

To demonstrate this effect we used a subset of the 20-newsgroups (20NG) corpus, collected by Lang [47].

This collection contains about 20; 000 messages evenly distributed among 20 UseNet discussion groups,

some of which have very similar topics (see Figure 4.1 for the details). In this application we concen-

trated on the 4; 000 messages taken from the four “science” discussion groups: ’sci.crypt’, ’sci.electronics’,

’sci.med’ and ’sci.space’. We removed all file headers, leaving the body and subject line only for each mes-

sage. After lowering upper case characters, uniting all digits into one symbol, ignoring non alpha-numeric

characters and removing stop-words and words that occurred only once, we had a counts matrix of 25; 896
distinct words versus 4; 000 documents. Normalizing by the total counts we obtained (an estimate of) a joint

distribution, p(w; d), which is the probability that a random word position is equal to w 2 W and at the

same time the document is d 2 D. To avoid overly high dimensionality we further sorted all words by their
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contribution to I(W ;D), given by I(w) � p(w)Pd p(d j w) log p(djw)p(d) and selected the top 2; 000. 2 After

re-normalization we ended up with a joint distribution, p(w; d) with jWj = 2; 000; jDj = 4; 000.

Since we were interested to see the effect of reducing � for different resolutions, we applied the aIB al-

gorithm to this joint distribution, using ��1 = 0 and ��1 = 0:1. In the lower right panel of Figure 4.2 we

see the two (approximated) normalized relevance-compression curves that were obtained by the algorithm.

The horizontal axis corresponds to the normalized compression-information,
H(Tw)H(W ) . The vertical axis corre-

sponds to the normalized relevant information,
I(Tw ;D)I(W ;D) . Clearly, constraining the compression term as well

(by taking a finite �) provides a better (higher) curve. Specifically, for any given level of compression, for��1 = 0:1, aIB preserves more relevant information about D than for ��1 = 0.

Further considering the results for jTwj = 20, we see that as expected, the prior probability p(tw) is much

more balanced for ��1 = 0. Specifically, in this case H(Tw) � 2:84 while for ��1 = 0:1 we get H(Tw) �2:11. At the same resolution, the reduction in relevant information is minor: From I(Tw;D) � 0:56 to� 0:54, respectively. Alternatively we may consider the cluster sizes, i.e, the number of words that were

assigned to each cluster. Again, as expected, for ��1 = 0:1 we see that the solution consists of one big

cluster (with almost half of the words), and additional much smaller ones. In Figure 4.2 we present the

centroids, p(d j tw) for this big cluster and for some of the smaller clusters. Clearly the small clusters

are more informative about the structure of D. Moreover, considering the words in each cluster we see

that indeed the words in the big cluster are less informative about this structure. Alternatively, words that

“passed” the “�-filter” form more informative clusters.

As mentioned at the beginning of this section, a natural application for non-balanced clustering is in gene

expression data analysis. However, this application is reserved for future research.

4.3 dIB for “soft” word clustering

In the two previous sections we applied the aIB and the sIB algorithms for “hard” clustering of words.

However, as we already mentioned, in our context (for finite � values) “hard” partitions are typically sub-

optimal (see Section 3.5). Moreover, a signal of natural language is stochastic in nature. In particular,

words may have different meanings, which creates the need to be able to assign a word to different clusters

corresponding to the different word senses (see, for example, [60]).

In this section we address this issue by first applying the dIB algorithm to the (full) 20NG corpus. After

the same pre-process described in the previous section we got a count matrix of jDj = 19; 997 documents

versus jW j = 74; 000 distinct words. By summing the counts of all the documents in each class (based on

the document labels) and applying simple normalization, we extracted out of this matrix an estimate of a

joint distribution, p(w; c), of words versus textual categories (topics) with jCj = 20. We further sorted all

words by their contribution to I(W ;C) (given by p(w)Pc p(c j w) log p(cjw)p(c) ) and selected the 200 most

informative ones (which capture about 15% of the original information). After re-normalization we ended

up with a joint distribution with jWj = 200; jCj = 20 .

Given this joint distribution we applied the dIB algorithm to form a hierarchy of word clusters, Tw. The

implementation details were as follows. The rate of increasing � was defined through f� = (1+"�)�; "� =0:001. The parameter used for detecting splits was defined as dmin = 1� , i.e., as � increases the algorithm

becomes more “liberal” in declaring cluster splits. The scaling factor for the stochastic duplication was set

to � = 0:005.

In Figure 4.3 we present the extracted bifurcating “tree” that traces the solutions at different � values. In

each level, every cluster tw 2 Tw is represented by the four words, w 2 W , that maximize the membership

probability, p(tw j w). The numbers below each bifurcation indicate the corresponding � value for which the

2Note that this feature selection scheme does not use the document class-labels.
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Figure 4.2: aIB results for non-balanced clustering with ��1 = 0:1; jTwj = 20. The first five figures presentp(d j tw) for five word clusters, tw 2 Tw. Documents 1 � 1000 belong to the sci.crypt category, 1001 � 2000 to
sci.electronics, 2001� 3000 to sci.med and 3001� 4000 to sci.space. In the title of each panel we present the words
that maximized p(w j tw) in each cluster. The “big” cluster (upper left panel) is clearly less informative about the
structure of D than the smaller clusters. In the lower right panel we see the two normalized relevance-compression
curves. Given some compression level, for ��1 = 0:1 aIB preserves more relevant information about D than for��1 = 0.
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Table 4.2: “Disambiguated” words in the 20NG word-category data, based on the dIB results for jTwj = 20. For
each word, w 2 W we present all clusters with p(tw j w) > 0:05. The first column indicates the word and the second
column presents its membership probabilities. For each cluster, tw 2 Tw we indicate in the third column the category
for which p(c j tw) is maximized, where this maximizing value is given in parentheses. In the last column we present
the five words that maximize p(tw j w) (where ’$’ stands for any digit character).W value P (tw j w) Typical prediction Typical members

speed 0:49 comp.graphics (0:16) code, version, file, screen, ftp0:39 rec.sport.hockey (0:26) leafs, nhl, hockey, season, team0:07 comp.sys.ibm.pc.hardware (0:44) scsi$, ide, scsi, bios, controller

killed 0:62 talk.politics.misc (0:10) believe, say, science, people, life0:26 talk.politics.guns (0:39) firearms, atf, gun, guns, batf0:11 talk.politics.mideast (0:84) armenians, arabs, armenian, israeli, armenia

price 0:70 rec.sport.hockey (0:26) leafs, nhl, hockey, season. teams0:23 comp.graphics (0:16) code, version, file, screen, ftp

rights 0:57 talk.politics.guns (0:39) firearms, atf, gun, guns, batf0:43 talk.politics.misc (0:10) believe, say, science, people, life

religious 0:73 talk.politics.misc (0:10) believe, say, science, people, life0:25 soc.religion.christian (0:40) sin, christianity, christians, christ, bible

truth 0:78 soc.religion.christian (0:40) sin, christianity, christians, christ, bible0:22 talk.politics.misc (0:10) believe, say, science, people, life

manager 0:91 comp.graphics (0:16) code, version, file, screen, ftp0:06 rec.sport.hockey (0:26) leafs, nhl, hockey, season, team

earth 0:92 talk.politics.misc (0:10) believe, say, science, people, life0:06 sci.space (0:79) spacecraft, shuttle, orbit, launch, moon

split occur. As can be seen in the figure, as � increases additional splits emerge, revealing a finer structure

of the data, which is indeed informative about the topics of the corpus. Specifically, as the resolution (i.e.,

the number of clusters jTwj) increases, additional clusters become more specific in their prediction, which

is reflected by the semantic relation of their members to one of the topics in the corpus. Additionally, note

that the splits typically divide into several “groups”, where each “group” occurs in a small range of � values

(see also Figure 4.4).

Considering a specific level in this hierarchy of solutions, for jTwj = 20, we see that for words that are

relevant to predicting more than a single topic, the mapping P (tw j w) is indeed stochastic. For example,

the word ’speed’ is assigned with a probability of 0:49 to a cluster which is predictive of the “computer

topics” and with a probability of 0:39 to a different cluster which is predictive of the “sport topics”. Hence,

since ’speed’ is disambiguated with respect to our relevant variable, the algorithm assigns it to more than

one cluster. Other examples are given in Table 4.2.

Although the above examples are intuitively clear, our objective performance measure is how well the

dIB algorithm optimizes the trade-off defined by the IB-functional. To examine this, in the left panel of

Figure 4.5 we present the normalized relevance-compression curve that corresponds to the dIB solutions.

For comparison we also present the relevance-compression curve of the “hard” solutions extracted by the

aIB algorithm for jTwj = 200; 199; : : : ; 1 (with ��1 = 0). As expected, the stochastic nature of the dIB

solutions is reflected in a better curve, where for a given compression level, the dIB solution preserves a

higher fraction of the original relevant information.
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Figure 4.3: dIB results for the 20NG word-category data. Each word cluster is represented by the four words that
maximize the membership probability, p(tw j w), where the value of this probability is indicated in parentheses. (’$’
stands for any digit character.) The serial numbers on the left of each cluster indicate the order of splits, and the
numbers below each split indicate the corresponding � values. As � increases, more clusters are needed to attain
the required minimal level of relevant information. As a result, clusters bifurcate into more specific ones that are
predictive of specific topics in the corpus. This is reflected by the semantic relationship of the members in each cluster
to one of the topics in the corpus. For example, considering the emphasized cluster in the lower level, we see that
its members are semantically related to the ’rec.motorcycles’ category. If we consider the predictions of this cluster
over the categories, given by p(c j tw), we see that this probability is indeed maximized (and equals � 0:87) for the
related ’rec.motorcycles’ category. Note that after each increment of �, all the membership probabilities, p(tw j w) are
updated (where the previous solution is only used for the initialization). Hence, the values of p(tw j w) in the figure
reflect the values right after the split, and might be different after further splits. Moreover, the extracted hierarchy does
not necessarily construct a tree, and in principle values that are assigned to some branch might be assigned later on to
other branches.
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Figure 4.5: Estimates of normalized relevance-compression curves for the 20NG word-category data. The original
relevant information is I(W ;C) � 0:84, and the original compression-information is H(W ) � 4:34. Left: Compari-
son of the curves extracted by dIB and aIB. The stochastic nature of the dIB solutions results in a higher (i.e., “better”)
curve. Middle: Reverse-annealing curves, where the “hard” aIB solutions are used as the initialization. Note that all
these curves converge to the same “envelope” curve, which is the curve we find by initializing the reverse-annealing
process at the trivial “hard” solution of 200 clusters, where Tw � W . This suggests that this “envelope” curve is the
globally optimal relevance-compression curve for these data. Right: Comparison of the “envelope” reverse-annealing
curve with the dIB curve. Reverse-annealing yields a slightly higher curve, suggesting that this process, which is not
required to detect clusters bifurcations, is more robust to the presence of local optima.
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4.3.1 Reverse annealing for estimating the relevance-compression function

An alternative way of extracting a sequence of “soft” solutions is through the process of reverse-annealing

discussed in Section 3.6. Recall that in this scheme we start from a “hard” solution that can be (approxi-

mately) represented through Eq. (2.16) with a large enough �. We now gradually decrease � and for each

new � value we use the iIB algorithm to extract a locally optimal solution, where the previous solution is

used as the initialization.

We applied this scheme to the same data where we used the “hard” aIB solutions as platforms for recover-

ing sequences of (perhaps locally) optimal “soft” solutions. 3 In the middle panel of Figure 4.5 we present

several normalized relevance-compression curves, corresponding to these sequences of solutions. Interest-

ingly, all these curves (including curves that are not presented to ease the presentation) converged to the

same “envelope” curve, which is the curve we got by initializing the reverse-annealing process at the trivial

“hard” solution of 200 clusters, where Tw =W .

These results match the theoretical analysis in Section 2.3 (in particular note the similarity to the illustration

in Figure 2.6). The curves that resulted from a “hard” solution with jTwj < jWj correspond to the sub-

optimal relevance-compression curves that are further constrained by the cardinality, jTwj. Apparently, each

of these curves converges to the “envelope” curve at some point which defines a critical � value, where

higher � values require more clusters to remain on the (globally) optimal curve.

In the right panel of Figure 4.5 we further compare the “envelope” reverse-annealing curve with the curve

we got through dIB. As seen in the figure, the differences are minor, where there is a small (although

consistent) advantage in favor of the reverse-annealing curve. Note that while in the dIB case the number

of representative clusters changes along the curve, in the reverse-annealing case this number is fixed (and

equals 200 in this case). However, as we continue to decrease �, the effective number of clusters decreases.

That is, different representatives are collapsing to the same p(tw j w) distribution, and by that reduce

(compress) I(Tw;W ), as required.

Although we cannot guarantee that the reverse-annealing “envelope” curve is indeed the globally optimal

relevance-compression curve, the fact that empirically all the reverse-annealing sub-optimal curves (withjTwj < jWj) are converging to it supports this conjecture. If this is the case, we can conclude that the collec-

tion of these reverse-annealing curves provides a full characterization of our input, in terms of compression

versus preservation of relevant information.

4.4 iIB and sIB sensitivity to local optima

As already discussed in Section 3.1.1, even for a given �, the IB-functional in general have multiple local

optima. Therefore, given a joint distribution p(x; y), different initializations of the iIB or the sIB algorithms

will typically converge to different locally optimal solutions. An important question is to characterize how

sensitive these algorithms are to the presence of local optima. In this section we show that this sensitivity is

fairly low if the joint distribution is well estimated and the problem has a “natural” solution.

To address this issue under clear (and controlled) conditions, we use synthetic data in this application.

To generate the data we used a standard multinomial mixture model. The model and its relationships to

the IB method are discussed in detail in Appendix A. For completeness we repeat here the description of

the generative process that underlies it. We assume that y takes on discrete values and sample it from a

multinomial distribution �(yjc(x)), where c(x) denotes the (hidden) class label of some x 2 X . We further

assume [44] [61] that there can be multiple observations of y corresponding to a single x but they are all

sampled from the same multinomial distribution. Therefore, the generative process can be described as

follows.� For each x 2 X choose a unique class label c(x) by sampling from �(c).
3The � values we tested with were 100; 99:5; : : : ; 50:5; 50; 49:9; : : : ; 0:2; 0:1; 0:099; : : : ; 0:002; 0:001.
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� For k = 1 : N
– Choose x 2 X by sampling from 
(x).
– Choose y 2 Y by sampling from �(yjc(x)) and increase n(x; y) by one.

The estimated joint distribution is then given by p̂(x; y) = n(x;y)N . The parameters of the model, �(c); 
(x)
and �(y j x) correspond to the class prior probability, X prior probability and the class conditional (hidden)

probabilities, respectively.

As the sample size N increases, the estimates of p(y j c), given by every p̂(y j x); s:t: c(x) = c improve.

Therefore, roughly speaking, if the classes are sufficiently different from each other, for N ! 1, the

problem of clustering X values has a “natural” unique solution, which is the partitioning that corresponds

to the “correct” partition, given by the hidden class labels. In this sense we may say that the convexity of

the problem increases as N increases. Therefore, in particular we expect that for a large enough N the

sensitivity of the iIB and sIB algorithms to the initialization would be minor.

We used a real document-word count matrix to estimate the model parameters. Specifically we used the

Multi101 subset of the 20NG corpus (which is described in detail in Section 4.5). This subset consists of500 documents randomly chosen from ten different discussion groups. The corresponding count matrix

refers to the 2; 000 words that maximize the information about the documents. Therefore, we have jDj =500; jWj = 2; 000; jCj = 10. Using the document class labels it is straightforward to get an estimate for

the model parameters. Based on these estimates and on the generative model we produced several different

count matrices for different sample sizes, ending up with different estimates of the joint distribution, p(d;w).
For each of these estimates we first applied the iIB algorithm to cluster the documents into ten clusters, that

is we took jTdj = 10. We further set � = 20 and applied 100 different initializations for each input matrix,

yielding 100 (locally) optimal solutions for each value of N .

In Figure 4.6 we present the results for N = 50; 000; 200; 000; 500; 000. In the upper panel we present

all solutions in the relevance-compression plane. As the sample size N increases, the scatter of the solutions

in this plane becomes more concentrate, as predicted. Considering the same solutions in the normalized

relevance-compression plane we see the same phenomenon. Note that in this plane, as N increases, the

solutions found by the algorithm typically preserve a higher fraction of the original (“empirical”) relevant

information. This is a direct result of a well known effect of an upper bias in the estimate of the empirical

mutual information due to a small sample size (see, e.g., [84]). Namely, our estimates to the original relevant

information, I(D;W ) are upper biased for lower N . Therefore, our estimations of
I(Td;W )I(D;W ) are typically

biased downward (i.e., provide a “worst-case” estimation) for small sample sizes. We further discuss this

issue in Section 6.1.

In the lower panel of Figure 4.6 we consider the Precision of each solution given by its correlation to the

“correct” partition (this term is defined explicitly in Section 4.5.2). Considering the histogram of the 100
precision values for each N , we see that as N increases the precision is (significantly) improving. That is,

for larger N , more solutions are well correlated with the “correct” partitioning of the (synthetic) documents.

Moreover, in this histogram as well we see that the scatter of the solutions is decreased as N increases,

which also implies that the number of different locally optimal solutions is decreasing.

We further applied the sIB algorithm to different estimates of p(d;w). We used the same setting as in the

iIB case, that is jTdj = 10; � = 20 and applied 100 different initializations for each input matrix, yielding100 (locally) optimal solutions for each value of N . Recall that the solution space of sIB consists of “hard”

clustering solutions only, hence it is dramatically smaller than the full solution space which is explored by

iIB. Additionally, the definition of local optimality here is with respect to a different optimization routine.

Namely, convergence is declared when no more single (and discrete) assignment updates can improve the

IB-functional.

In Figure 4.7 we present the results for this algorithm. It was found to be significantly less sensitive to the

initialization than the iIB algorithm. In fact, only for a very small sample size this sensitivity was clearly
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evident, hence in this case we present the results for for N = 5; 5000; 50; 000; 200; 000. 4 In the upper

panel we present all solutions in the relevance-compression plane and in the middle panel we present the

same solutions in the normalized relevance-compression plane. Clearly, for all sample sizes the scatter of

the solutions is much smaller as opposed to the iIB results. Moreover, the sIB solutions typically attain

higher relevant information values, but also higher compression-information values, which is probably due

to the fact that sIB extracts “hard” clustering solutions.

Although in the relevance-compression plane even for N = 5; 500 there is apparently no significant dif-

ference between the 100 different solutions, while considering the precision histogram (lower panel) the

picture is quite different. Specifically, different initializations yield different solutions with a relatively wide

range of precision levels (very similar to what we got for iIB with a ten-times larger N ). As the sample size

increases, more initializations converge effectively to the same solution. In particular, for N = 200; 000, we

find that 83 out of the 100 initializations converge to the same solution in terms of the IB-functional (upper

right dot in the figure). Moreover, for all these solutions the precision is exactly 89:6%, also implying that

all these solutions correspond effectively to a single solution. It is reasonable to assume that this solution is

in fact the globally optimal solution of the IB-functional (for this sample size and � value), among all the

possible “hard” solutions.

4.5 sIB and aIB for unsupervised document classification

In the last section of this chapter we investigate a more practically oriented application. Unsupervised

document clustering is a central problem in information retrieval. Possible applications include use of

clustering for improving retrieval [85], and for navigating and browsing large document collections [27,

43, 89]. Several recent works suggest using clustering techniques for unsupervised document classification

[30, 73, 77]. In this task, we are given a collection of unlabeled documents and attempt to find clusters that

are highly correlated with the true topics of the documents. This practical situation is especially difficult

since no labeled examples are provided for the topics, hence unsupervised methods must be employed.

In this section, following [74], we address this task using the sIB and the aIB algorithms and provide a

thorough comparison of their performance with other clustering techniques. In our evaluation, on small

and medium size real world corpora, the sIB algorithm is found to be consistently superior to all the other

clustering methods we examine, typically by a significant margin. Moreover, the sIB results are comparable

to those obtained by a supervised Naive Bayes classifier. Finally, we propose a simple procedure for trading

cluster recall to gain higher precision, and show how this approach can extract clusters which match the

existing topics of the corpus almost perfectly. A preliminary theoretical analysis that supports our empirical

findings is given in Appendix B

4.5.1 The datasets

Following [30, 77] we used several standard labeled datasets to evaluate the different clustering methods. As

our first dataset we again used the 20NG corpus [47]. For small-scale experiments we used the nine subsets

of this corpus already used in [30, 77]. Each of these subsets consists of 500 documents randomly chosen

from several discussion groups (see Table 4.5.1). For each subset we performed the exact same pre-process

described in Section 4.2, and further normalized the counts in each document independently (to avoid a

bias due to different documents lengths). Thus, we ended up with nine (estimated) joint probabilities, withjDj = 500; jWj = 2; 000; p(d) = 1jDj .
For a medium scale experiment we used the whole corpus. We again performed the same pre-process

and further ignored documents which were left with less than ten word occurrences, ending up with an

4For the smallest sample size, to ensure that each “document” will have at least one “word” occurrence, we first sampled a

single y 2 Y for every x 2 X , and then added 5; 000 samples according to the model, ending up with N = 5; 500.
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Figure 4.6: iIB results for N = 50; 000; 200; 000; 500; 000. Upper panel: Results for 100 different initializations
of the iIB algorithm in the relevance-compression plane for different sample sizes. As the sample size increases, the
scatter of the solutions becomes more concentrated. Middle panel: The same results in the normalized relevance-
compression plane. For larger N values the solutions found by the algorithm preserve a higher fraction of the original
(empirical) relevant information, which is upper biased for small sample sizes. Lower panel: Histograms of the 100
precision values for different sample sizes. As the sample size increases the average precision improves. Additionally,
more initializations tend to yield the same precision level, which implies less sensitivity to the presence of local optima.
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Figure 4.7: sIB results for N = 5; 500; 50; 000; 200; 000. Upper panel: Results for 100 different initializations
of the sIB algorithm in the relevance-compression plane for different sample sizes. Middle panel: The same results
in the normalized relevance-compression plane. Clearly, the scatter of the results is much lower than the iIB results.
Additionally, the sIB solutions typically attain higher relevant and compression information values. Lower panel:

Histograms of the 100 precision values for different sample sizes. For N = 200; 000, there are 83 solutions with
the same precision of 89:6% and the same value of the IB-functional (upper right dot in the upper right figure). This
implies that all these 83 initializations converged effectively to the same optimal solution, which is presumably the
global optimum of the IB-functional in this setting, among all the possible “hard” solutions.
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Table 4.3: Datasets details for the nine small subsets of the 20NG corpus. For example, for each of the three Binary

datasets we randomly chose 500 documents, evenly distributed between the discussion groups talk.politics.mideast and
talk.politics.misc. This resulted in three document collections, Binary1, Binary2 and Binary3, each of which consisted
of 500 documents.

Dataset Newsgroups included #docs Total

per group #docs

Binary1;2;3 talk.politics.mideast, 250 500
talk.politics.misc.

Multi51;2;3 comp.graphics, rec.motorcycles, rec.sport.baseball, 100 500
sci.space, talk.politics.mideast.

Multi101;2;3 alt.atheism, comp.sys.mac.hardware, misc.forsale, 50 500
rec.autos, rec.sport.hockey, sci.crypt, sci.med,

sci.electronics, sci.space, talk.politics.guns.

estimated joint distribution, p(w; d) with jDj = 17; 446; jWj = 2; 000; p(d) = 1jDj . We constructed

two different tests over these data. First we measured our performance with respect to all the 20 different

classes. Additionally we applied an easier test where we measured our performance with respect to ten

meta-categories in this corpus. 5 We term these two tests NG20 and NG10 respectively.

As an additional medium scale test we used the 10; 789 documents of the ten most frequent categories in

the Reuters-21578 corpus 6 under the ModApte split. After the same pre-process we got an estimated joint

distribution with jDj = 8; 796; jWj = 2; 000; p(d) = 1jDj .
As the last medium scale test we used a subset of the new release of the Reuters-2000 corpus. Specifically

we used the 22; 498 documents of the ten most frequent categories in the ten first days of this corpus (last ten

days in August 1996). After the same pre-process (except for not uniting digits due to a technical reason),

we ended up with an estimated joint distribution with jDj = 22; 463; jWj = 2; 000; p(d) = 1jDj . Note that

these two last Reuters corpora are multi labeled.

4.5.2 The evaluation method

As our evaluation measures we used micro-averaged precision and recall. To estimate these measures we

first assign all the documents in some cluster td 2 Td with the most dominant label in that cluster. 7 Given

these uni-labeled assignments we can estimate for each category c 2 C the following quantities: A1(c; Td)
defines the number of documents correctly assigned to c (i.e., their true label sets include c), A2(c; Td)
defines the number of documents incorrectly assigned to c and A3(c; Td) defines the number of documents

incorrectly not assigned to c. The micro-averaged precision is now defined through (see, e.g, [71]):Prec(Td) = PcA1(c; Td)PcA1(c; Td) +A2(c; Td) ; (4.2)

5Specifically we united the five “computer” categories, the three “religion” categories, the three “politics” categories, the two
“sport” categories and the two “transportation” categories into five big meta-categories.

6Available at http://www.daviddlewis.com/resources/testcollections/reuters21578/.
7The underlying assumption here is that if the cluster is relatively homogeneous the user will be able to correctly identify its

most dominant topic.
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while the micro-averaged recall is defined byRec(Td) = PcA1(c; Td)PcA1(c; Td) +A3(c; Td) : (4.3)

It is easy to verify that if the corpus and the algorithm are both uni-labeled then Prec(Td) = Rec(Td), thus

for our uni-labeled datasets we will report only Prec(Td).
As a simplifying assumption we assume that the user is (approximately) aware of the correct number of

categories in the corpus. Therefore, for all the unsupervised techniques we measure Prec(Td) and Rec(Td)
for jTdj = jCj. Choosing the appropriate number of clusters is in general a question of model selection

which we do not address in this application (see Section 6.2.2 for a discussion).

4.5.3 Other clustering algorithms for comparison

The theoretical analysis in Appendix B suggests that solutions that preserve more relevant information tend

to attain higher precision. In our context this means that we should set ��1 = 0 so as to concentrate solely

on maximizing I(Td;W ). As discussed in Section 3.5, for this setting the natural choice is to use the sIB

and the aIB algorithms. Additionally, under this setting, the merging criterion used by the sIB algorithm is

simply �L(d; td) = (p(d) + p(td)) � �d(d; td) ; (4.4)

where d 2 D is some document (in a singleton cluster), td 2 Td is some cluster, and �d(d; td) = JS�[p(w jd); p(w j td)].
An immediate observation is that in principle we can use exactly the same sequential optimization routine

of the sIB algorithm (Figure 3.5), while using different choices for �d(d; td). For purposes of comparison we

construct several such algorithms.

First, we define �d(d; td) = DKL[p(w j d)jjp(w j td)] and refer to the resulting algorithm as the ’sKL’

algorithm. Second, we use another common divergence measure among probability distributions which is

the L1 norm, given by k(p(w)�q(w)k1 =Pw j p(w)� q(w) j. Unlike the JS (and theKL) divergence theL1 norm satisfies all the metric properties. It is also known to approximate the JS divergence for “similar”

distributions [50]. Therefore we define the ’sL1’ algorithm by setting �d(d; td) = kp(w j d) � p(w j td)k1.

Lastly, we use the standard cosine measure under the vector space model [65]. Specifically we define�d(d; td) = hd̂; t̂di where d̂ is the (tf) counts vector of d normalized such that kd̂k2 = 1. The centroid t̂d
is defined as the average of all the (normalized) count vectors representing the documents assigned into td
(again, normalized to 1 under the L2 norm). Due to this normalization hd̂; t̂di is simply the cosine of the

angle between these two vectors (and is proportional with an opposite sign to kd̂ � t̂dk22). Note that in this

case we update the assignments by merging d into tnewd (d) = argmaxtdhd̂; t̂di , i.e., in particular there is

no multiplication with the “priors” p(d); p(td) which are not well defined in this setting. We will term this

algorithm ’sK-means’. We also implemented a standard parallel version of this algorithm which we will

term ’K-means’. In this version, given some partition T we re-assign every d 2 D into its closest centroid

(under the L2 norm) and only then re-calculate the centroids. We repeat this process until convergence.

Finally, we also compare our results to the recent Iterative Double Clustering (IDC) procedure suggested

by El-Yaniv and Souroujon [30]. This method, which is a natural extension of our previous work in [77],

uses an iterative double-clustering procedure over documents and words. It was shown in [30] to work

extremely well on relatively small datasets, and even to be competitive with a supervised SVM classifier

trained on a small training set.

One last issue we need to address is how to evaluate different restarts (initializations) of the algorithms. For

the sIB we naturally choose the run that maximized I(Td;W ) and report results for it. For other algorithms,

we can use their respective scoring function. However, to ensure that this does not lead to poor performance,

we choose to present for each of these algorithms the best result, in terms of the correlation (precision) to
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Figure 4.8: Left: Progress of I(Td;W ) and Prec(Td) during the assignment updates of sIB over the NG10 dataset.
Middle: Correlation of final values of I(Td;W ) and Prec(Td) for all 15 random restarts of sIB over each of the three
Multi5 tests. Right: Correlation of final values of I(Td;W ) and Prec(Td) for all 10 random restarts of sIB over the
NG20 test.

the true classification, out of all different restarts. This choice provides an overestimate of the precision of

these algorithms, and thus penalizes the sIB algorithm in the comparisons below.

4.5.4 Maximizing information and cluster precision

A first natural question to ask is what differences there are in the performance of the sIB algorithm versus

the aIB algorithm in terms of maximizing the relevant information, I(Td;W ). Comparing the results over

the nine small datasets (for which running aIB is feasible) we found that sIB (with 15 reatsrts) always

extracts solutions that preserve significantly more relevant information than aIB (the improvement is of17% on the average). Moreover, even if we do not choose the best restart for sIB but compare all the 15
random initialization (for every data set) with the aIB results, we found that more than 90% of these runs

preserve more relevant information than aIB. These results clearly demonstrate the fact that in contrast to

the (greedy) aIB algorithm, the sIB algorithm is always guaranteed to converge to a locally optimal solution

of the IB-functional.

The next question we address is whether clustering solutions that preserve more relevant information are

better correlated with the real statistical sources (i.e., the categories). In Figure 4.8(a) we present the progress

of the relevant information and the precision for a specific restart of sIB over the NG10 dataset. We clearly

see that while the information increases for every assignment update (as guaranteed by the algorithm),Prec(Td) increases in parallel. In fact, less than 5% of the updates reduced Prec(Td). Similar results

obtained for all the other datasets.

Lastly, we would like to check whether choosing the restart which maximized I(Td;W ) is a reasonable

(unsupervised) criterion for identifying solutions with high precision. In Figure 4.8(b,c) we see the final

values of I(Td;W ) versus Prec(Td) for all the random restarts of sIB over the three Multi5 tests and the

NG20 test. Clearly these final values are well correlated. In fact, in 9 out of our 13 tests the iteration which

maximized I(Td;W ) also maximized Prec(Td), and when it did not the gap was relatively small.

4.5.5 Results for small-scale experiments

In Table 4.4 we present the precision results for the nine small-scale subsets of the 20NG corpus. The results

for the IDC algorithm are taken from [30]. For all the unsupervised algorithms we applied 15 different

random initializations and limited the number of iterations over D to 30. However, all algorithms except for

sL1 attained full convergence in all 15 restarts and over all datasets after less than 30 loops.
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Table 4.4: Micro-averaged precision results over the nine small datasets. In all unsupervised algorithms the number
of clusters was taken to be identical with the number of real categories (indicated in parentheses). For K-means, sK-

means, sL1, and sKL the reported precision results are the best results out of all 15 restarts. For sIB the results are for
the restart which maximized I(Td;W ). The test set for the NB classifier consisted of the same 500 documents in each
dataset while the training set consisted of additional 500 documents randomly chosen from the appropriate categories.
We repeated this process 10 times and averaged the results.Prec(Td) sIB IDC sK-means K-means aIB sL1 sKL NB

Binary1 (2) 91.4 85 62.4 65.6 84.0 74.4 50.4 87.8

Binary2 (2) 89.2 83 54.6 61.8 59.8 58.0 50.2 85.4

Binary3 (2) 93.0 80 63.2 64.0 85.0 76.6 51.8 88.1

Multi51 (5) 89.4 86 47.0 47.4 56.6 51.6 20.6 92.8

Multi52 (5) 91.2 88 47.0 46.0 63.8 45.2 20.6 92.6

Multi53 (5) 94.2 86 57.0 50.4 76.8 52.4 20.6 93.2

Multi101 (10) 70.2 56 31.0 30.8 42.4 34.2 10.4 73.5

Multi102 (10) 63.8 49 32.8 31.0 34.0 31.2 10.0 74.6

Multi103 (10) 67.0 55 33.8 31.4 38.8 31.4 10.2 74.6

Average 83.3 74.0 47.6 47.6 60.1 50.6 27.2 84.7

To gain some perspective about how hard the classification task is we also present the results of a su-

pervised Naive Bayes (NB) classifier (see [78] for the details of the implementation). The test set for this

classifier consisted of the same 500 documents in each dataset while the training set consisted of additional500 documents randomly chosen from the appropriate categories. We repeated this process 10 times and

averaged the results.

Several results should be noted specifically:� sIB outperformed all the other unsupervised techniques in all datasets, typically by a significant gap.

Given that for the other techniques we present an “unfair” choice of the best result (out of all 15
restarts) we see these results as especially encouraging.� In particular, sIB was clearly superior to IDC and aIB which are also both motivated by the IB method.

Nonetheless, in contrast to sIB, the specific implementation of IDC in [30] is not guaranteed to max-

imize I(Td;W ) which might explain its inferior performance. We believe that the same explanation

holds for the inferiority of aIB.� sIB was also competitive with the supervised NB classifier. A significant difference was evident only

for the three Multi10 subsets, i.e., only when the number of categories was relatively high.� The poor performance of the sKL algorithm was due to a typical fast convergence into one big cluster

which consisted of almost all documents. This tendency is due to the over sensitivity of this algorithms

to “zero” probabilities in the centroid representations and it was clearly less dominant in the medium

scale experiments.

4.5.6 Results for medium-scale experiments

In Table 4.5 we present the results for the medium-scale datasets. To the best of our knowledge these are

the first reported results (using direct evaluation measures as precision and recall) for unsupervised methods

over corpora of this magnitude (on the order of 104 documents).

58



Table 4.5: Micro-averaged precision results over the medium scale datasets. In all the unsupervised algorithms the
number of clusters was taken to be identical with the number of real categories (indicated in parentheses). For K-

means, sK-means, sL1, and sKL the reported precision results are the best results out of all 10 restarts. For sIB the
results are for the restart which maximized I(Td;W ). The NB classifier was trained over 1; 000 randomly chosen
documents and tested over the remaining. We repeated this process 10 times and averaged the results.Prec(Td) sIB sK-means K-means sL1 sKL NB

NG10 (10) 79.5 76.3 70.3 27.7 58.8 80.8

NG20 (20) 57.5 54.1 53.4 15.3 28.8 65.0

Reuters (10) 85.8 64.9 66.4 70.1 59.4 90.8

new-Reuters (10) 83.5 66.9 67.3 73.0 81.0 85.8

Average 76.6 65.6 64.4 46.5 57.0 80.6

For all the unsupervised algorithms we performed N = 10 different restarts and limited the number of

iterations over D to 10. We note here that this limitation was in fact probably too low for some of the

algorithms (see below). For these tests as well we applied the supervised NB classifier. For each test, the

training set consisted of 1; 000 documents, randomly chosen out of the dataset, while the test set consisted

of the remaining documents. Again, we repeated this process 10 times and averaged the results.

Note that the two Reuters datasets are multi-labeled while all our classification schemes are uni-labeled.

Therefore the recall of these schemes is inherently limited in these two cases. This is especially evident for

the new-Reuters data in which the average number of labels per document was 1:78 and hence the maximum

attained (micro-averaged) recall was limited to 56%.

Our main findings are listed in the following.� Similar to the small-scale experiments, sIB outperforms all the other unsupervised techniques, typi-

cally by a significant margin and in spite of the “unfair” comparison.� Interestingly, sIB was almost competitive with the supervised NB classifier which was trained over1; 000 labeled documents.� Both our sequential and parallel K-means implementations performed surprisingly well, especially

over the uni-labeled NG10 and NG20 tests. As in the small datasets, the differences between the

parallel and the sequential implementation were minor.� The convergence rate of the sIB and the sK-means algorithms were typically better than those of the

other algorithms. In particular, sIB and sK-means converged for most of their initializations, while,

for example, sL1 did not converge in all restarts.

4.5.7 Improving cluster precision

In supervised text classification one is able to trade off precision with recall by defining some thresholding

strategy. In the following we suggest a similar idea for the unsupervised scenario. Note that once a partitionTd is obtained we are able to estimate �d(d; td(d)) 8d 2 D. This measure provides an estimate of how

“typical” d is in td(d). Specifically in the context of sIB, �d(d; td(d)) is related to the minimal loss of

relevant information by not holding d as a singleton cluster.

By sorting the documents in each cluster td 2 Td with respect to �d(d; td(d)) and “labeling” only the topr% of the documents in that cluster we can now reduce the recall while (hopefully) improving the precision.

More specifically while defining the “label” for every cluster we only use documents that were sorted among
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Figure 4.9: Precision-Recall curves for some of our medium scale tests. For the other tests the results were similar.
Note that the results for sIB are for the specific restart which maximized I(Td;W ) while for the other methods we
present the best result over all 10 restarts.

the top r% for that cluster (and refer to the remaining as “unlabeled”). Note that this procedure is indepen-

dent of the specific definition of �d(d; td(d)) and thus could be applied to all the sequential algorithms we

tested.

In Figure 4.9 we present the Precision-Recall curves for some of our medium scale tests. Again, we find

sIB to be superior to all the other unsupervised methods examined. In particular for r = 10% sIB attains

very high precision in an entirely unsupervised manner for our real world corpora.
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Chapter 5

Applications through Markovian Relaxation

A preliminary assumption of the IB method is that the input is given in the form of a joint distribution.

Nonetheless, in many situations this may not be the most natural representation.

One important class of clustering methods deal with cases where the data are given as a matrix of pairwise

distances or (dis)similarity measures. Often these distances come from empirical measurements or some

complex process, and there is no direct access, or even precise definition, of the distance function. In many

cases this distance does not form a metric, or it may even be non-symmetric. Such data do not necessarily

come as a sample of some meaningful distribution and even the issue of generalization and sample to sample

fluctuations is not well defined. Clustering algorithms that only use the pairwise distances, without explicit

use of the distance measure itself, employ statistical mechanics analogies [17] or collective graph theoret-

ical properties [34], etc. The points are then grouped based on some global criteria, such as connected

components, small cuts, or minimum alignment energy. Such algorithms are sometimes computationally

inefficient and in most cases it is difficult to interpret the resulting clusters; i.e., it is hard to determine a

common property of all the points in one cluster - other than that the clusters “look reasonable”.

A second class of clustering methods is represented by the generalized vector quantization (VQ) algo-

rithm. Here one fits a model (e.g., Gaussian distributions) to the points in each cluster, such that an average

(known) distortion between the data points and their corresponding representative is minimized. This type

of algorithms may rely on theoretical frameworks, such as rate distortion theory, and provide a better in-

terpretation for the resulting clusters. VQ type algorithms can also be more computationally efficient since

they require the calculation of distances, or distortions, only between the data and the centroid models, not

between every pair of data points. On the other hand, they require knowledge of the distortion function and

thus make specific assumptions about the underlying structure or model of the data.

As we discussed in Section 2.2, the IB method can be used to bypass this difficulty, by introducing the con-

cept of a relevant variable. In this case, no distortion measure need be defined in advance, and the problem

amounts to optimizing the trade-off between the compression-information and the relevant information.

In this chapter, following [83], we investigate how to apply this framework in the context of pairwise

clustering. We show how to define a “relevant” variable in these situations as well, which leads to an

intuitive interpretation for the resulting clusters. The idea is based on turning the distance matrix into a

Markov process and then examining the decay of mutual information during the relaxation of this process.

The clusters emerge as quasi-stable structures during this relaxation, and are then extracted using the IB

method. These clusters capture the information about the initial point of the relaxation in the most effective

way. The suggested approach can cluster data with no geometric or other bias and makes no assumptions

about the underlying distribution.
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5.1 Pairwise distances and Markovian relaxation

The first step is to turn the pairwise distance matrix into a Markov process, through the following simple

intuition. Assign a state of a Markov chain to each of the data points and define the transition probabilities

between the states/points as a function of their pairwise distances. Thus the data can be considered as a

directed graph with the points as nodes and the pairwise distances, which need not be symmetric or form

a metric, as the lengths of the graph arcs. Distances are normally considered additive; i.e., the length of a

trajectory on the graph is the sum of the arc-lengths. Probabilities, on the other hand, are multiplicative for

independent events. Thus, if we want the probability of a (random) trajectory on the graph to be naturally

related to its length, the transition probabilities between points should be exponential in their distance.

Denoting by d(xi; xj) the pairwise distance from xj to xi, then the transition probability that our Markov

chain will move from point xj at time n to point xi at time n+ 1, is defined as,p(xi(n+ 1)jxj(n)) / e(��jd(xi;xj)) ; (5.1)

where �j is a length scaling factor defined by �j = f�d(k; j) ; (5.2)

where f is some constant and �d(k; j) is the mean pairwise distance of the k nearest neighbors to point xj .
The details of this rescaling are not crucial for the final results, and a similar exponentiation of the distances,

without our probabilistic interpretation, has been performed in other clustering works (e.g., [17, 34]). A

proper normalization of each row is required to turn this matrix into a stochastic transition matrix.

Given this transition matrix, one can imagine a random walk starting at every point on the graph. Specifi-

cally, the probability distribution of the positions of a random walk, starting at xj after n time steps, is given

by the j-th row of the n� th iteration of the 1-step transition matrix. Denoting by P n the n-step transition

matrix, P n = (P )n, is indeed the n-th power of the 1-step transition probability matrix. The probability of

a random walk starting at xj at time 0, to be at xi at time n is thus:p(xi(n)jxj(0)) = P ni;j : (5.3)

If we assume that all the given pairwise distances are finite we obtain in this way an ergodic Markov process

with a single stationary distribution, denoted here by �. This distribution is a right-eigenvector of the n-step

transition matrix (for every n), since, �i = Pj Pi;j�j : It is also the limit distribution of p(xi(n)jxj(0))
for all j, i.e., limn!1 p(xi(n)jxj(0)) = �i. During the dynamics of the Markov process any initial state

distribution will relax to this final stationary distribution and the information about the initial point of a

random walk is completely lost, as described in the following.

5.2 Relaxation of the mutual information

The natural way to quantify the information loss during this relaxation process is by the mutual information

between the initial point variable, X(0) = fxj(0)g and the point of the random walk at time n, X(n) =fxi(n)g. That is,I(n) � I(X(0);X(n)) =Xj PjXi P ni;j log P ni;jP ni =Xj PjDKL[P ni;jjjP ni ] ; (5.4)

where Pj is the prior probability of the states, and P ni = Pj P ni;jPj is the unconditioned probability of xi
at time n. As n!1, all the rows P n�;j and the unconditional probabilities P ni relax to �, hence all the KL
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Figure 5.1: Left: An example of (synthetic) data, consisting of 150 points in R2. Right: The rate of information

loss, �dI(n)dn , during the relaxation (where we set f = 1; k = 3 for calculating �j). The information loss is slower
when the “random walks” stabilize on some sub structures of the data - our proposed clusters. Thus, at these points
we expect to see a local minimum in this rate. The first minimum of the rate corresponds to the emergence of the
first sub-structure (the partition into three circles). The second minimum corresponds to the emergence of the second
sub-structure in the hierarchy, which is the partition of the two lower circles as one cluster, versus the upper circle as
the second cluster. Note that the process has no prior information about circles or ellipses.

divergences relax to zero; i.e., I(n) !n!1 0. While it is clear that the information about the initial point,I(n), decays monotonically (exponentially asymptotically) to zero, the rate of this decay at finite n conveys

much information on the structure of the data points.

Consider, as a simple example, the planar data points shown in Figure 5.1, with d(xi; xj) taken as the

(squared) L2 norm. As can be seen, the rate of information loss about the initial point of the random walk,�dI(n)dn , while always positive - slows down at specific times during the relaxation. These relaxation loca-

tions indicate the formation of quasi-stable structures on the graph. Those structures form natural clusters

of initial points that contain the same information on the position at time n. Another way to see this phe-

nomenon is by observing the rows of P n, which are the conditional distributions p(xi(n)jxj(0)). The rows

that are almost indistinguishable, following the partial relaxation, correspond to points xj with similar con-

ditional distribution on the rest of the graph at time n. Such points should belong to the same structure, or

cluster on the graph. This can be seen directly by observing the matrix P n during the relaxation, as shown

in Figure 5.2.

The quasi-stable structures on the graph, during the relaxation process, are precisely the desirable mean-

ingful clusters. At these relaxation times the transition probability matrix is approximately a projection

matrix (satisfying P 2 = P ) where the almost invariant subgraphs correspond to the clusters. These approx-

imate stationary transitions correspond to slow information loss, which can be identified by examining the

derivative of the information change.

The remaining question pertains to the correct way to group the initial points into clusters. Can we replace

the initial point with an initial cluster that enables prediction of the location on the graph at time n, with

similar accuracy? The answer to this question is naturally provided via the IB method. In particular the

compression variable is taken as X = X(0), while the relevant variable is defined as Y = X(n). Thus,

applying one of the IB algorithms to a partially relaxed transition probability matrix will yield clusters of

data points that capture the information about the position on the graph after n-steps in the most effective

way.
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Figure 5.2: The relaxation process as seen directly on the matrix Pn, for different relaxation times, for the example
data of Figure 5.1. The darker (red) colors correspond to higher probability density in every row. Since the points are
ordered by the 3 ellipses, 50 in each ellipse, it is easy to see the clear emergence of 3 blocks of conditional distributions
- the rows of the matrix - during the relaxation process (n � 25). As the relaxation continues the two upper blocks
(corresponding to the two lower circles in Figure 5.1) are mixed with each other. At n � 215 there is a new quasi-stable
structure, partitioning the data into two clusters. At n! 230 all the rows converge to the stationary distribution of the
data. At that point, all the information about the initial point is lost and we have I(n)! 0.

5.3 Applications

In the following we present several applications of combining Markovian relaxation with the IB method.

In all these applications, for the sake of simplicity, we used the sIB algorithm with ��1 = 0 (since the

cardinality jT j already implied significant compression). We set jT j as the true number of classes in the

data and performed ten different random initializations, from which we choose the run that maximized the

relevant information.

5.3.1 The Iris data

We start with a simple application to the famous “Iris-data” [31]. These data contain geometric measures of

three types of iris flowers, each represented as a 4-dimensional real vector. While one of the classes is easily

linearly separable, the two others are difficult to separate in this representation.

From the raw data we calculated a 150�150 similarity matrix using the (squared) L2 norm as the distance

measure. Using Eq. (5.1) we extracted from this matrix the transition probability matrix (where we setf = 1; k = 10 for calculating �j). In Figure 5.3 (left panel) we present the rate of information loss during

the relaxation process. Here the emergence of the three classes is harder to identify on the relaxation curve,

while the separation into two clusters is easily noted. More specifically, for n � 24 the rate of information

loss is slightly decreased, which corresponds to the first quasi-stable structure, i.e., the emergence of three

clusters. Next, there is a wide range of n values (between 210 and 225) that corresponds to the second

quasi-stable structure, that is, the emergence of two clusters.

Although the first quasi-stable structure seems hard to identify, applying the sIB algorithm at the proper

relaxation time (n = 24) reveals the original classes with only five “misclassified” points (where these points

are located on the border between the corresponding classes, see the right panel of Figure 5.3). In terms of
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Figure 5.3: Left: Rate of information loss during the relaxation for the Iris data. The first quasi-stable structure
emerges around n = 24. The second quasi-stable structure is present for 210 � n � 225. For n � 235 the informa-
tion converges to its asymptotic zero value. Right: The Iris data, consisting of 150 points in R3 (where the second
coordinate which has the lowest variance is ignored for this presentation). Applying sIB to the partially relaxed tran-
sition probability matrix (with n = 24) yields three clusters with almost perfect correlation to the true partition. The
“misclassified” points are circled in the figure. Note that these points are on the border between the two corresponding
classes.

information, the resulting three clusters capture � 58% of the original information, I(X(0);X(n)) � 1:65.

5.3.2 Gene expression data analysis

A more interesting application was obtained on well known gene expression data, the Colon cancer dataset

provided by Alon et. al [1]. These dataset consists of 62 tissue samples out of which 22 came from tumors

and the rest are “normal” biopsies of colon parts from the same patients. Gene expression levels were given

for 2; 000 genes (oligonucleotides), resulting in a 62 over 2; 000 matrix.

As done in other studies of these data, the pairwise distances we calculated were based on the Pearson

correlation, Kp(u; v) (see, e.g., [28]) between the u and v expression rows. Specifically,Kp(u; v) � E [(ui �E [u])(vi �E [v])]pVar [u] Var [v] : (5.5)

We transformed these similarity measures into “distances” through a simple transformation, given by d(u; v) =1�Kp(u;v)1+Kp(u;v) . Using these distances we obtained the transition probabilities through Eq. (5.1), where we setf = 5; k = 5 for calculating �j . Note that tuning these two parameters is done based on the raw data alone,

and in particular without any use of the true labels, where all we need to look for is “good” behavior in the

rate of information loss, indicating the emergence of quasi-stable structures.

In the left panel of Figure 5.4 we present the rate of information loss for these data. For n > 225 this rate

clearly starts to decrease, indicating the emergence of some sub-structure in the data. We further applied

the sIB algorithm to all the partially relaxed matrices (for n = 20 : : : 245), and measured the correlation of

the resulting two clusters with respect to the true partition (i.e., the micro-averaged precision, as defined in

Section 4.5.2). In the right panel of Figure 5.4 we present these results. As expected, when the sub-structure

starts to emerge (n � 226), the sIB algorithm recovers the original tissue classes with very high accuracy. In

particular, only 8 samples are “misclassified”. For comparison, seven sophisticated supervised techniques

were applied in [9] to these data. Six of them had at least 12 misclassified points , and their best results had7 missclasifed tissues. As the information converges to its asymptotic zero value, the accuracy also drops to

its baseline value that corresponds to a random partitioning of the samples into two clusters.
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Figure 5.4: Left: The rate of information loss for the colon cancer data. The rate starts to decrease for n �226, indicating the emergence of a sub-structure in the data. However, for n � 240, in spite of the slower rate, all
the information is already lost since all the conditional distributions converge to the stationary distribution. Right:

Correlation (or micro-averaged precision) of the two clusters extracted by sIB with respect to the true labels, for
different relaxation times. Note that as the rate of information loss is decreasing, the accuracy of the extracted clusters
is increasing. That is, the structure of the data becomes evident and easy to recover for these relaxation times.

5.3.3 Unsupervised OCR

Last, we consider applying our methodology to a standard Optical Character Recognition (OCR) task. The

MNIST database 1, consists of 60; 000 (training) examples of handwritten digit images. Each example is

associated with a digit from ’0’ to ’9’, and represented as a 28� 28 pixel image, where each pixel can have

a gray level between 0 and 255.

Typically these data are used for evaluating supervised classification techniques (e.g., [8]). However, since

we were interested in an unsupervised application, we used only a small subset of these data. Specifically

we randomly chose 300 examples, evenly distributed among the digits ’1’, ’3’ and ’8’. To extract the

transition probabilities we used the Pearson correlation again, exactly as in the previous section (where we

set f = 15; k = 2).

In Figure 5.5 we present the rate of information loss. Note that there are two minima present in this curve.

The first, at n � 227, corresponds to the emergence of the first sub-structure, namely the partition into three

classes. Applying the sIB algorithm (with jT j = 3) to this partially relaxed matrix, yields three clusters

which are well correlated with these classes (the micro-averaged precision is 91:3%). Moreover, with only

three clusters we have I(T ;X(n)) = 0:89, which is � 45% of the original information.

The second minimum occurs around n � 234. At this point, a new sub-structure emerges that naturally

corresponds to partitioning the data into the ’1’ digits versus all the rest. That is, at this point the classes

’3’ and ’8’ are mixed, hence we are at a lower level of the hierarchy of structures for these data. Applying

the sIB algorithm (with jT j = 2) to this matrix, yields two clusters with almost perfect correlation to this

dichotomy (the micro-averaged precision is 96:7%). In terms of information, I(T ;X(n)) � 0:43 which is49% of the original information.

5.4 Isotropic blurring versus relaxation

In the IB method, when varying the trade-off parameter � (the inverse “temperature” of the system), one

explores the structure of the data in various resolutions. For high � values, the resolution is high and each

point eventually appears in a cluster of its own. For low � all points are grouped into one cluster. This

1Available at http://www.research.att.com/~yann/exdb/mnist/index.html.
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Figure 5.5: Rate of information loss for a subset of the MNIST data. The rate is first minimized for n � 227. Applying
the sIB algorithm at this point yields three clusters which are well correlated with the true partition into ’1’, ’3’, and
’8’ digits. The second minimum for the rate is around n � 234. At this point classes ’3’ and ’8’ are already mixed,
hence we have a new sub-structure. Applying the sIB at this point extracts two clusters that almost perfectly match the
partition of ’1’ digits versus ’3’ and ’8’ digits.

process resembles the appearance of the structure during the relaxation. However, there is an important

difference between these two mechanisms.

In the IB case clusters are formed by isotropically blurring the conditional distributions that correspond

to each data point. Points are clustered together when these distributions become sufficiently similar. This

process is not sensitive to the global topology of the graph representing the data. This can be understood by

looking at the example in Figure 5.1. If we consider two diametrically opposed points on one of the ellipses,

they will be clustered together only when their blurred distributions overlap. In this example, unfortunately,

this happens when the three ellipses are completely indistinguishable. A direct application of some IB

algorithm to the original transition matrix is therefore bound to fail in this case.

In the relaxation process, on the other hand, the distributions are merged through the Markovian dynamics

on the graph. In our specific example, two opposing points become similar when they reach the other states

with similar probabilities following partial relaxation. This process better preserves the fine structure of the

underlying graph, and thus enables finer partitioning of the data.

It is thus necessary to combine the two procedures. In the first stage, one should relax the Markov process

to a quasi-stable point in terms of the rate of information loss. At this point some natural underlying structure

emerges, and reflected in the partially relaxed transition matrix, P n. In the second stage we use one of

the IB algorithms to identify the information preserving clusters. As shown in the previous sections, this

combination enables to successfully extract a hierarchy of structures out of pairwise distance data.
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Chapter 6

Discussion and Further Work

In the first part of this thesis we introduced the single-sided IB principle. From a theoretical perspective

we showed that it can be considered as an extension to rate distortion theory. In both cases the underlying

principle is constraint minimization of the compression-information between the source random variable, X ,

and its new representation, T . However, while in rate distortion theory the constraint is over the expected

distortion, in the IB case it is associated with the minimal level of relevant information about the target

variable, Y . Consequently, the problem setup is completed once the joint distribution, p(x; y) is provided.

No distortion measure need be defined in advance, and the input statistics are fully characterized by a single

function, the relevance-compression function.

As mentioned previously, a dual formulation of the IB principle is to maximize the relevant information

under a constraint over the maximal level of the compression-information. Taking this view, the IB prin-

ciple is related to channel coding theory, in which the fundamental problem is maximizing the information

transmitted through a channel, under a constraint over the channel properties.

Interestingly, this type of duality was already pointed out by Shannon himself. In his words: “There is

a curious and provacative duality between the properties of a source with a distortion measure and those

of a channel. This duality is enhanced if we consider channels in which there is a “cost” associated with

the different input letters and it is designed to find the capacity subject to the constraint that the expected

cost not exceed a certain quantity (...) . This problem amounts, mathematically, to maixmizing a mutual

information (...) with a linear inequality as constraint. The solution of this problem leads to a capacity

cost function C(a) for the channel. It can be shown readily that this function is concave downward (...) .

In a somewhat dual way, evaluating the rate distortion function R(D) for source amounts, mathematically,

to minimizing a mutual information under variation (...), again with a linear inequality as constraint. The

solution leads to a function R(D) which is convex downward.” 1

While in this classic formulation the duality requires associating a “cost” with the channel input letters

(which provides the analogous component to the distortion constraint), in the IB formulation the duality is,

in this sense, articulated in the principle in a more natural way. Since in the “rate distortion view” of the IB no

distortion is pre-defined, there is no need to refer to a “cost” while taking the “channel coding” perspective.

Both sides of the IB principle are constructed out of exactly the same concept of mutual information. We

wish to minimize the compression-information while maximizing the relevant information, and apparently

it is not important which one we wish to use as a constraint and which one we choose to optimize.

Moreover, in contrast to standard rate distortion thoery, the constraint in the IB principle is not linear in

the paramteres of the problem, the mapping p(t j x). Nevertheless, Tishby et al. [82] succeeded in showing

that it is possible to characterize the form of the optimal solution, even in this more complicated scenario

(see Section 2.4). Additionally, while in rate-distortion the problem is defined with respect to a fixed set

1This quote from Shannon is taken from a recent position paper by S. K. Mitter, in IEEE Information Theory Society Newsletter,

December 2000. The discussion in [15] is also insightful in this context.
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of representatives, in the IB case there is no such prerequisite. On the contrary, the representatives (given

as cluster centroids, p(y j t) in this case) depend directly on the mapping p(t j x), and thus necessarily

change while this mapping is optimized. Hence, the general formulation of the problem is defined with

respect to any choice of representatives, and so is the unique characteristic function of p(x; y), the relevance-

compression function.

This type of joint optimization typically comes with a cost, and in this context the IB problem is no

exception. Specifically, the IB-functional is not convex in all of its arguments simultaneously. As a result,

constructing optimal solutions in practice can be shown to be NP -hard in general (see, e.g., [33]). Hence,

different heuristics must be employed. We have presented several such heuristics and demonstrated their

applicability in different contexts. In particular we saw that in many cases it is possible to extract (sometimes

extremely) compact representations that still maintain a significant fraction of the relevant information about

the target variable.

These applications also demonstrate the practical implications of the IB method. For example, our results

for document clustering are superior to other state-of-the-art clustering techniques. This superiority is not

only in terms of the IB-functional but also in terms of a “practically oriented” measure; namely, how well

the extracted clusters correlate with the corpus topics. Moreover, in [74] we show that our results are even

superior to algorithms that are especially designed for text classification tasks. In Appendix B we provide a

theoretical analysis that shed more light on these empirical findings.

We further demonstrated that the IB method can be applied to analyze a complex real world data given

in the form of a natural language text. This analysis can take different forms. One may extract word

clusters that preserve information about the topics in the corpus (Section 4.1, Section 4.3 and [78, 87]),

the origins of the documents (Section 4.1), the documents themselves [77], the neighboring words [41,

60], and so on. Additionally, the method is certainly not limited to text applications, and in principle can

be applied to any type of (co-occurrence) data that can be represented as a joint distribution. A variety

of such applications to different data types are presented in [38, 56, 68, 75, 83] and in Chapter 5. All

these presumably different tasks are addressed in a well defined way through a single information theoretic

principle, the IB principle. Moreover, the interpretation of the results is objective and data-independent. The

quality of the clusters is quantified explicitly in terms of the trade-off between the compression information

and the relevant information that these clusters capture.

An important issue is to characterize the relationship between the IB method and other probabilistic cluster-

ing techniques. In particular, a standard and well established approach to clustering is Maximum likelihood

(ML) of mixture models (see, e.g., [53]). Although both approaches stem from conceptually different moti-

vations, it turns out that in some cases there are some mathematical equivalences between them. As a result,

it is possible to show that under certain conditions, every algorithm that solves one of the problems induces

a solution to the other. These results are discussed in detail in Appendix A.

An interesting special case of the IB framework relates it to the notion of a time series, and in particular to

extracting compact representations of the past of a series that maximally preserve the information about its

future. This type of application was already mentioned in [11]. Furthermore, Bialek et al. [10] formulated

the notion of predictive information in a stream of data x(t). Denoting the last k symbols of the stream

(or series) as xpast � [x(�k) x(�k + 1) : : : x(�1)] 2 X k and the next k0 symbols as xfuture �[x(0) x(1) : : : x(k0 � 1)] 2 X k0 , the predictive information is defined as the mutual information betweenxpast and xfuture, i.e., I(k; k0) � Pxpast;xfuture p(xpast; xfuture) log p(xfuturejxpast)p(xfuture) . A thorough analysis

in [10] relates this definition to the level of complexity of the series x(t). In our context, a natural question to

ask is whether it is possible to compress xpast while still preserving most of the information about xfuture.
Intuitively it is clear that not all of the details in xpast are indeed informative about xfuture, therefore this

type of application seems highly suitable for our framework. Although we did not examine it directly, a

somewhat reminiscent application is presented in Section 11.3.1.

Chechik and Tishby [19] have recently pointed out that in many cases it is also possible to specify what
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is irrelevant for the task at hand. Identifying the relevant structures in the data can thus be improved by

also minimizing the information about another, irrelevant variable. One way to formalize this notion is to

add an “irrelevant-information” term to the IB-functional given in Eq. (2.13). Specifically, Chechik and

Tishby considered the functional L = I(T ;X) � � [I(T ;Y +)� 
I(T ;Y �)], where Y + and Y � denotes

the relevant and the irrelevant variables, respectively, and 
 is a second Lagrange multiplier that determines

the trade-off between preservation of information about Y + and loss of information about Y �. Using again

the same IB Markovian relation (Eq. (2.10)), it is easy to verify that the form of the optimal solution is

analogous to the solution of the original IB principle (Eq. (2.16)). The only difference is in the form of

the exponent. In addition to the “relevant-distortion” term, DKL[p(y+ j x)jjp(y+ j t)], there is also an

“irrelevant-distortion” term, DKL[p(y� j x)jjp(y� j t)] multiplied by 
 and with an opposite sign [19].

While the original IB principle is related to rate distortion theory, this new extension of it is related to rate

distortion with side information (see [20], page 438).

Last, another contribution, which is closely related (and somewhat complementary) to the IB method,

was recently introduced by Globerson and Tishby [37]. In contrast to the clustering based approach dis-

cussed in this thesis, they suggested extracting continuous feature functions of X that maximize the in-

formation about Y , under some natural constraints that these functions should maintain. More precisely,

denoting these functions by ~� � f�1; : : : ; �dg; �i(x) : X ! R , given p(x; y) the problem is to find~�� = argmax~�(x)min~p(x;y)2Q I[~p(x; y)] , where Q is the class of all distributions ~p(x; y) with marginalsp(x); p(y) and expected measurements h~�(x)i~p(xjy) = h~�(x)ip(xjy); 8y 2 Y . Thus, as in the original IB

formulation, one faces a min-max problem of minimizing information on the one hand and maximizing it

on the other. Note, though, that while in the IB case the minimization part was required to force compres-

sion (as in rate distortion), here the compression is implied by the choice of the input parameter d which

determines the dimension of the extracted new representation. The minimization of I[~p(x; y)] in this case

is similar in motivation to the maximum entropy principle [46], where it guarantees that the representation~p(x; y) will contain only the information given by the measurement values ~�(x) .

As shown by Globerson and Tishby, although this variational principle does not define a generative sta-

tistical model for the data, the resulting distribution ~p(x; y) is necessarily of an exponential form and can

be interpreted as a generative model in this class. Hence, the above problem is equivalent to a (maximum

likelihood) problem of minimizing the KL divergence between the input distribution p(x; y) and a family of

distributions of an exponential form. Specifically, the approximation is given by ~p(x; y) / ePdi=1 �i(x) i(y),
where the functions  i : Y ! R provide simultaneously continuous functions of Y which are informative

about X . In a sense, the two sets of d functions, ~� and ~ , can be considered as approximate sufficient

statistics for a sample of one variable about the other one. Due to its tight link to the concept of sufficient

statistics (see, e.g, [20], page 36) this method was termed Sufficient Dimensionality Reduction (SDR).

Clearly, both approaches stem from similar motivations and seek similar goals of extracting a low di-

mensional, yet informative representation of a given joint distribution p(x; y). Nonetheless, clarifying the

relationships between these two approaches still requires further investigation. In some cases, where the

relation between X and Y comes from some hidden low-dimensional continuous structure, applying SDR

seems more reasonable. On the other hand, if the distributions p(y j x) utilize the whole simplex in RjYj,
but still form some natural clusters, applying SDR will typically fail to yield significant results, while an IB

clustering approach may reveal the hidden structure. Hence, for different input distributions one approach

might be more appropriate than the other. An interesting issue is to try to combine these two approaches.

That is, in some cases it might be useful to apply SDR for extracting a low dimensional representation of

the original data. This (presumably more robust) representation could then be used as the input for an IB al-

gorithm to further compress the data without losing much of the relevant information. The opposite scheme

where we start with IB clustering and continue through SDR might also be plausible.
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6.1 Finite sample effects

The underlying assumption of our methodology is that we have access to the true joint distribution, p(x; y).
However, in practice, all we have are empirical estimates based on a finite sample of this distribution.

Although it might be possible to characterize the required sample complexity (which depends on jX j andjYj) for a uniform convergence of these estimates to their true values, an intriguing question is how sensitive

our framework is to finite sample effects.

Our empirical findings show that in practice we can achieve reasonably good performance while only

using estimates of p(x; y). For example, in Section 4.4 we saw that the sIB algorithm can achieve good

results, even for very small sample sizes. Specifically in this case we had jX j = 500; jYj = 2; 000 (i.e.,106 entries in the joint distribution p(x; y)) and for a sample size of N = 50; 000 the obtained clusters were

typically highly correlated with the “true” partitioning of the data. In Section 4.5 we saw that in a real-world

application, our results are superior to other state-of-the-art techniques.

Leaving practical considerations aside, a remaining question is the theoretical interpretation of our results

when the true p(x; y) is not available. It turns out that it is possible to suggest an alternative view of our

framework which stems from a long line of works in the statistical literature. Specifically we are interested

in different methodologies that were suggested over the years regarding the problem of when and how to

collapse (i.e., to merge) rows or columns in a given two-way contingency table. The motivation behind these

works is ’to get a more parsimonious and compact description of the data’ while revealing existing ’patterns

of association’. Typically, a statistical criterion (e.g., the reduction in the chi-square statistic) is used to

decide which rows (or columns) should be merged (see [36] and the references therein). To interpret our

work in this context, recall that the JS measure is closely related to a classic statistical test, the two-sample

problem (Section 1.2.5). However, the same divergence measure is the cornerstone of the merging criterion

used by the aIB and the sIB algorithms (Eq. (3.8), where for simplicity we assume here ��1 = 0). Thus, we

may consider the input distributions p(y j x) as finite sample estimates of some hidden statistical sources. In

this view, while using the IB merging criterion we are in fact seeking for the pair of (empirical) distributions

which are most likely to be considered as two (types of) samples from the same statistical source. Once such

a pair is found we merge it to a single entity, and repeat the process until some halt criterion is satisfied.

Thus, although our original motivation is different, at least some of the IB algorithms are well motivated

under this framework, with no need to require access to the true distribution, p(x; y).
Another issue which is affected by finite sample effects is the estimation of the relevance-compression

function. In a limited sampling scenario, direct measurements of the information terms involved in our

analysis (based on the empirical distribution) will generally be incorrect, and in fact (on the average) over

estimated [84]. Different methods have suggested how to correct this upper bias. One simple and intuitive

approach is described in [57]. In this approach one randomly shuffles all the entries of the empirical joint

distribution and calculates the “information” in the resulting random matrix. Repeating this procedure for

several independent trials and averaging the results typically yields a reasonable estimate of the correction

term. Hence, in principle, while estimating the relevance-compression function, it is possible to use such an

approach to correct our estimates.

6.2 Future research

The analysis and the results presented in the first part of this thesis raise several issues that call for further

investigation. We now briefly consider a few such examples.
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6.2.1 A relevant-coding theorem?

The definition of the relevance-compression function (Definition 2.3.1), R̂(D̂) is essentially a mathematical

definition. In this sense it is analogous to the mathematical definition of the rate-distortion function, R(D)
(Eq. (2.2)). However, rate distortion theory provides an alternative definition to this function, which is

sometimes referred to as an “operational” definition. This definition is based on the concept of a rate-

distortion code and its associated distortion (see [20], page 340). Specifically, the rate-distortion function is

then defined as the infimum of rates R such that there exists a (possibly infinite) sequence of rate-distortion

codes with an associated distortion which is asymptotically upper bounded by the distortion constraint, D.

Note that this definition does not directly involve the concept of mutual information.

The first main result of rate distortion theory shows that these two definitions are equivalent. In particular,

it is shown (e.g., [20], page 351) that the rate-distortion function is achievable; in other words, that for anyD and any R > R(D) there exists a sequence of rate-distortion codes with rate R and asymptotic distortionD. In this sense it means that the bound defined by the rate-distortion function is tight. Specifically, by

increasing the length of the transmitted blocks, in principle one can always achieve the minimal rate defined

by this function without exceeding the distortion constraint.

A natural goal is to try to formalize the IB analysis in a similar way. In particular, such an analysis

will require a rigorous definition of a “relevant code” associated with a relevant-distortion term, which are

both based solely on the input distribution, p(x; y). These definitions should further lead to an “operational”

definition of the relevance-compression function that does not directly involve the compression-information,I(T ;X). The next step would be to try to extend the above mentioned rate distortion theorem to our

context. Specifically, we should try to verify whether this (potential) definition is equivalent to our original

mathematical one. Lastly, one should search for an (asymptotic) existence theorem, showing that such

“relevant codes” which satisfy the relevant information constraint, while utilizing a minimal rate (as defined

by R̂(D̂)) do exist. Clearly, this issue calls for a separate investigation which is beyond the scope of this

work.

6.2.2 Model selection and avoiding over-fit

A challenging question in cluster analysis is the estimation of the “correct” number of clusters in the given

data. As discussed in Section 2.3, in our context the number of clusters, jT j is related to the trade-off

parameter �. Low � values imply significant compression, which in turn suggests a relatively small number

of clusters. In contrast, high � values shift the focus toward the relevant information term, by that suggesting

that a large number of clusters should be employed.

Hence, the question of setting the “correct” number of clusters can be (roughly) translated into the ques-

tion of setting the appropriate � value. One approach to handle this issue, already suggested in [60], is

to apply generalization considerations. More precisely, Pereira et al. suggested splitting the input data

into a training set and held out data (i.e., test set). Using the dIB algorithm, the training data are then

clustered for monotonically increasing � values. For each such value, the expected relevant-distortion (Sec-

tion 3.1.1) is given by hDi � Px;t p(x)p(t j x)DKL[p(y j x)jjp(y j t)], where all the distributions are

estimated based on the training data alone. As � increases, additional clusters are employed (through phase-

transitions, or cluster bifurcations), and hDi monotonically decreases. To determine a good stopping point

for this process, it was suggested to consider a “generalization” expected relevant-distortion term, defined byhDhi � Px;t p(x)p(t j x)DKL[ph(y j x)jjp(y j t)], where ph(y j x) are estimated from the held-out data.

This term will initially also decrease as � increases, but at some critical � value, it is expected to change

its tendency, i.e., to start increasing [60]. Roughly speaking, this (empirical) phenomenon indicates that

from this point on we are over-fitting our training data, and consequently losing the generalization power

of our clusters. Repeating this process for different splits into training and test set will presumably yield an

estimate of this critical � value.
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A more rigorous approach can be achieved by applying statistical learning theoretical techniques (see,

e.g., [86]), which we briefly discuss in the following. First, recall that our fundamental quantity is d(x; t) �DKL[p(y j x)jjp(y j t)], which governs the form of the optimal solution to the IB-functional (Eq. (2.16)).

However, in practice we have a finite sample estimate, given by d̂(x; t) � DKL[p̂(y j x)jjp(y j t)], wherep̂(y j x) is estimated using our input data. Our aim is to provide a bound to the gap between these two

values. Taking the (strong) assumption that our finite sample estimates of p(y j x) converge uniformly to

their true values, a general form of such a bound is given by Prfkd(x; t) � d̂(x; t)k > "g < Æ, where Æ is

some (small) safety parameter. The gap is then (probabilistically) bounded by ", which in general depends

on the sample size N and on the complexity of the family of distributions p(y j x), which we roughly

denote here through �. In principle, such a bound typically implies that with probability (1 � Æ), we haved̂(x; t) � d(x; t)� f(�)N� 12 , where f(�) is some function of �. This can be transformed into e��d̂(x;t) �e��d(x;t)e��f(�)N� 12 . We may refer to the right-hand side as a multiplication of a “signal” (given by the

first term) and “noise” (the second term). If we further assume that the “signal” is approximately of some

known constant value, �d � � � d(x; t), we may argue that the left hand side cannot be trusted beyond some

critical � value, given by �c � �d � pNf(�) (since at that point the “signal” exponent and the “noise” exponent

are of the same magnitude). Note that an interesting possibility is to estimate �c empirically, using the

previous mentioned approach of held-out data. Once this value is estimated, we can in principle obtain an

empirical estimation of f(�) (through our last equality), which provides an estimate about the complexity

of the family of distributions, p(y j x).
Finally, we note here that a simple, yet plausible approach is to use our estimates of the relevance-

compression function. A common empirical finding in general clustering applications is that the averaged

distortion between data objects and cluster centroids decreases monotonically as the number of clusters is

increased, but at some point this decrease flattens markedly (see, e.g., [40]). It is therefore intuitively reason-

able to use the location of such an “elbow” as an indication of the “appropriate” number of clusters. Apply-

ing this idea in our context simply means to look for sudden drops in the estimated relevance-compression

curve (which more rigorously might be characterized through the second derivative of this curve). It is im-

portant to keep in mind, though, that the question of how many clusters to use might have more than one

answer. In particular, if there is some natural hierarchical structure in the input data, different numbers of

clusters will correspond to different levels in this hierarchy, and each of these solutions should be consid-

ered. In principle, identifying these different resolutions can be done by considering the rate of the increase

in � along the relevance-compression curve. A detailed discussion of this issue will be presented elsewhere.

6.2.3 Bounding the gap from the relevance-compression function

As discussed in Section 2.3, it is possible to consider the quality of the obtained clusters in the normalized

relevance-compression plane. In particular, there are natural upper bounds over I(T ;Y ) and I(T ;X), given

by I(X;Y ) and H(X), respectively. However, a tighter upper bound is defined through the relevance-

compression function, R̂(D̂). Given some minimal required level of relevant information, this function

characterizes precisely the minimal achievable level of compression. Unfortunately, while we can estimateI(X;Y ) and H(X), estimating this function is not simple. Nonetheless, attaining reasonable bounds to

this function is of significant practical importance. For example, let us assume that applying one heuristic

extracts clusters that maintain 50% of the original information, I(X;Y ), while the compression-information

term is 20% of its original value, H(X). Since any heuristic we apply can in general guarantee only locally

optimal solutions, it is certainly not clear in this situation how far we are from the global optimum. In other

words, should we apply other heuristics or perhaps be satisfied with the current solution?

Providing some non-trivial bounds to the relevance-compression function can therefore guide us to a useful

answer. Note that providing such bounds does not necessarily require constructing better clustering solu-

tions, but rather suggesting more precise estimates as to the quality of the current solution. The fact that the
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relevance-compression curve is concave and that its slope is given by ��1 (Proposition 2.3.2) can provide

some guidance. In particular this means that even if we can bound only a small number of discrete points

on this curve (for known � values), it might lead to a reasonable bound over the whole curve (using simple

geometrical considerations). However, even bounding a single point on this curve is in general a difficult

task.

A possible approach to address this issue is through spectral analysis techniques. For example, it is possible

to relate the � values for which cluster bifurcations emerge to the singular values of the Covariance matrix,

corresponding to the distortions between the p(y j x) distributions and the centroids, p(y j t) in the current

solution (see [63]). Alternatively, we may consider the stochastic matrix Pi;j / e���di;j (see Eq. (5.1))

where di;j is, e.g., the KL divergence between p(y j xi) and p(y j xj). It is intuitively clear that the

singular values of this matrix are closely related to the form of the relevance-compression function. To

demonstrate this we consider two extreme, yet informative scenarios. First we assume that p(y j x) (and

hence, p(x; y)) is deterministic and in particular diagonal, which in fact implies X � Y . In this case, any

attempt to compress X will obviously lose a significant fraction of “relevant” information, therefore the

normalized relevance-compression function is necessarily very close to the main diagonal in the normalized

relevance-compression plane (much like the lower curve in the right panel of Figure 2.6). It is easy to verify

that in this case fPgi;j is also diagonal, hence it is a full rank matrix and all its singular values equal one.

In other words, a situation of “bad” relevance-compression curve is translated into constant singular values

of fPgi;j . On the other extreme, let us assume that p(x; y) consists of k blocks, where in each block all thep(y j x) distributions are equal to each other. Assuming that k � jX j it is clearly possible to construct a

compact representation of k clusters, without losing any relevant information, which means that a “good”

relevance-compression curve (as in the upper curve of the right panel of Figure 2.6) exists for these data. In

this situation, it is easy to verify that fPgi;j will be k-blocks diagonal. That is, its first k singular values will

be constant, while all the rest equal zero. Hence, a “good” relevance-compression curve is translated into a

situation where only a small number of the singular values of fPgi;j are positive, while all the rest approach

zero. Relaxing these two extreme examples, it is possible to construct more realistic scenarios, where the

form of the singular values of fPgi;j determines the form of the relevance-compression curve. However, a

more rigorous analysis is required.

Lastly, we note that in rate distortion theory there are special cases corresponding to specific assumptions

about the input data for which an analytic closed-form expression can be obtained to the rate-distortion

function, R(D) (see, e.g., [20], page 342). Thus, it is reasonable to expect that such cases also exist in our

context. Characterizing these situations along with their corresponding relevance-compression functions is

left for future research.

6.2.4 Dealing with continuous distributions

A simplifying assumption, taken throughout this thesis, is that the input random variables, X and Y are

both discrete, and so is the constructed compression variable. A natural direction for future research is to

extend our analysis into the context of continuous random variables. Partial extensions, where, e.g.,X is still

discrete but Y is continuous, should also be of interest. It seems that much of the mathematical derivation

presented in Chapter 2 should hold in this case as well. Moreover, for special cases this analysis might be

simplified. For example, if all the representative distributions, p(y j x) are given in the form of Gaussians,

it should be reasonable to constraint the centroids p(y j t) to the form of Gaussians mixtures. Additionally,

in this case there are sufficient statistics for the representative distributions, which might also be exploited

in the analysis.

A more general approach for adapting the IB framework to handle the compression of continuous distribu-

tions, given in the form of some parametric family, might be obtained through the multivariate IB method.

This recent extension of the single-sided IB framework is the topic of next part of this thesis.

74



Part III

Multivariate Information Bottleneck
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Chapter 7

Introduction

The original formulation of the single-sided IB principle concentrated on compressing one variable, X ,

while preserving the information it maintains about some other, relevant, variable Y . This formulation is

inherently a-symmetric. Only X is compressed while only Y serves as a relevant variable. A more sym-

metric formulation would ask for two systems of clusters: one of X and one of Y that are informative about

each other. A possible application is relating documents to words, where we seek clustering of documents

according to word usage, and a corresponding clustering of words. Clearly, the two systems of clusters are

in interaction, and we want a unifying principle that shows how to construct them simultaneously.

Another possible extension of the original IB formulation is to compress X into several independent sys-

tems of clusters. Our aim here is to capture independent aspects of the information X conveys about Y .

A possible example is the analysis of gene expression data, where multiple independent distinctions about

tissues (healthy vs. tumor, epithelial vs. muscle, etc.) are relevant for the expression of genes.

Furthermore, it is possible to think of more complicated scenarios, where there are more than two input

variables. A most general formulation would require considering multiple compression variables that are

inter-related by compressing different subsets of the input variables, while maximizing the information about

other pre-defined subsets. In this part we provide such a principled general formulation.

To address this issue, we first need to define the amount of information that the variables X1; : : : ;Xn; n >2 contain about each other. To that end we use the concept of multi-information, which is a natural extension

of the concept of mutual information we used earlier. Our approach further utilizes the theory of probabilistic

graphical models such as Bayesian Networks for specifying the systems of clusters and which information

terms should be maintained. These concepts and their relationships are discussed in the next section.

In Chapter 8 we present the multivariate IB principle. In particular, we use one Bayesian network, denoted

as Gin , to specify a set of variables which are compressed versions of the observed variables (each new

variable compresses its parents in the network). A second network, Gout , specifies the relations, or depen-

dencies, that should be maintained or predicted (each variable is predicted by its parents in the network). We

formulate the general principle as a trade-off between the multi-information each network carries. We want

to minimize the information maintained by Gin and at the same time to maximize the information main-

tained by Gout . We further give another interpretation to this principle, as a trade-off between compression

of the source (given by Gin ) and fitness to a target model, where the model is described byGout . We discuss

the relations between these two formulations in Section 8.3.

We show that, as with the original IB, it is possible to characterize the form of the optimal solution to the

general multivariate principle. This derivation, including some concrete examples, is given in Chapter 9. In

Chapter 10 we further show that all the four algorithmic approaches for the original IB-problem are naturally

extended into the multivariate case, which enables one to construct solutions in practice.

There are many possible applications to this new principle and algorithms. In Chapter 11 we consider just

a few of them. In particular, we apply the method to several real world problems over a variety of data types,
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including text processing applications, gene expression data analysis, and protein sequence analysis.

Finally, we summarize our findings and suggest several directions for future research in Chapter 12. In

Appendix D we provide proofs for the theorems and propositions that are included in our analysis.

7.1 Bayesian networks and multi-information

A Bayesian network structure over a set of random variables X � fX1; : : : ;Xng is a Directed A-cyclic

Graph ( DAG ) G in which vertices are annotated by names of random variables (see, e.g., [59]). For each

variable Xi, we denote by PaGXi the (potentially empty) set of parents of Xi in G, and by paGXi a specific

assignment to this set of variables. We say that a distribution p is consistent with G, if and only if p can be

factored in the form: p(x1; : : : ; xn) =Yi p(xi j paGXi) (7.1)

and use the notation p j= G to denote that.

One of the main concepts that we will deal with is the amount of information that variables X1; : : : ;Xn
contain about each other. As described in Section 1.2.3, a quantity that captures this is the multi-information

given by Definition 1.2.13. For completeness, we repeat here this definition, in a slightly different form:I(X1; : : : ;Xn) = DKL[p(x1; : : : ; xn)jjp(x1) : : : p(xn)]= EP [log p(x1; : : : ; xn)p(x1) : : : p(xn) ] :
Recall that the multi-information captures how close the distribution p(x1; : : : ; xn) is to the factored distri-

bution of the marginals. If this quantity is small, we do not lose much by approximating p by the product

distribution. Alternatively, it measures the average number of bits that can be gained by a joint compression

of the variables versus independent compression. The multi-information is a natural generalization of the

pairwise concept of mutual information. Like mutual information, it is non-negative, and equal to zero if

and only if all the variables are independent. As shown in [55], it is possible to provide a simple axiomatic

derivation for this concept. That is, the multi-information is the only function that satisfies the five simple

conditions described in Section 1.2.3.

When p has additional known independence relations, we can rewrite the multi-information in terms of the

dependencies among the variables:

Proposition 7.1.1 : Let G be a Bayesian network structure over X = fX1; : : : ;Xng, and let p be a

distribution over X such that p j= G. Then,I(X) = I[p(x)] =Xi I(Xi;PaGXi) : (7.2)

That is, the multi-information is the sum of local mutual information terms between each variable and its

parents. Note that in general, even if p(x) is not consistent with G the above sum is well defined. Hence,

we state the following definition.

Definition 7.1.2 : The multi-information in p(x) with respect to a given Bayesian network structure G is

defined as IG �Xi I(Xi;PaGXi) ; (7.3)

where each of the local mutual information terms is calculated using the marginal distributions of p(x).
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Note that if p is not consistent with G then in general the real multi-information in p, given by I(X),
is different from IG. In this case we often want to know how close p is to some distribution which is

consistent with G. That is, what the “distance” (or distortion) of p is from its projection onto the sub-space

of distributions consistent with G. We define this distortion asDKL[pjjG] � minqj=GDKL[pjjq] :1 (7.4)

The following proposition specifies the form of q for which the minimum is attained.

Proposition 7.1.3: Let p(x) be a distribution and let G be a DAG . ThenDKL[pjjG] = DKL[pjjq�] ; (7.5)

where q� is given by q�(x) =Yi p(xi j paGXi) : (7.6)

Expressed in words, q� is equivalent to the factorization of p using the conditional independences implied

by G. Note that this proposition is a general extension of Proposition 2.1.2. The next proposition provides

two possible interpretations of DKL[pjjG], in terms of the structure of G.

Proposition 7.1.4 : Let G be a Bayesian network structure over X = fX1; : : : ;Xng where X � p(x) .

Assume that the order X1; : : : ;Xn is consistent with the DAG G (i.e., PaGXi � fX1; : : : ;Xi�1g). ThenDKL[pjjG] = Xi I(Xi; fX1; : : : ;Xi�1g n fPaGXig j PaGXi)= I(X)� IG :
Thus, we see that DKL[pjjG] can be expressed as a sum of local conditional information terms, where

each term corresponds to a (possible violation of a) Markov independence assumption with respect to the

structure ofG. If every Xi is independent of fX1; : : : ;Xi�1gnPaGXig given fPaGXig (as implied byG) thenDKL[pjjG] becomes zero. As these (conditional) independence assumptions are more extremely violated inp, the corresponding DKL[pjjG] will increase. Recall that the Markov independence assumptions (with

respect to a given order) are necessary and sufficient to require the factored form of distributions consistent

with G [59]. Therefore, we see that DKL[pjjG] = 0 if and only if p is consistent with G.

An alternative interpretation of this measure is given in terms of multi-information terms. Specifically,

we see that DKL[pjjG] can be written as the difference between the real multi-information, I(X), and the

multi-information as though p j= G, denoted by IG. Hence, we can think of DKL[pjjG] as the amount of

information between the variables that is not captured by the dependencies that are implied in the structure

of G.

1Note that the minimization is over the second KL argument, while the first argument remains constant. This is in contrast to
the known definition of the I-projection [22] of a distribution p on a set of distributions q, given by q� = argminq2QDKL[qjjp],
where here the minimization is over the first KL argument.
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Chapter 8

Multivariate Extensions of the IB Method

In this chapter we introduce a general formulation for a multivariate extension of the single-sided IB prin-

ciple. In the first two sections we develop the multivariate IB principle, and an alternative principle which

provides a different interpretation for the method. We discuss the relationships between these two alterna-

tives in Section 8.3, and conclude with several concrete examples in the last section. We will further use

these examples in the following chapters.

8.1 Multi-information bottleneck principle

The concept of multi-information allows us to introduce a simple “lift-up” of the original IB variational

principle to the multivariate case, using the semantics of Bayesian networks. Given a set of observed (or,

input) variables, X = fX1; : : : ;Xng, instead of one compression variable T , we now specify a set of

random variables T = fT1; : : : ; Tkg, which corresponds to different partitions of various subsets of the

observed variables. This specification should address two issues. First, loosely speaking, we need to

specify “what compresses what”. More formally stated, for each subset ofX that we would like to compress,

we specify a corresponding subset of the compression variables T. Second, analogous to the original IB

problem, we define the solution space in terms of the independences we require between the observed X
variables and the compression T variables. Recall that for the original IB problem this is achieved through

the IB Markovian relation T $ X $ Y . As a result, the solution space consists of all the distributions

over X;Y; T , such that p(x; y; t) = p(x; y)p(tjx), where the free parameters correspond to the stochastic

mapping between X and T . In the multivariate case, the analogous situation would be to define the solution

space through a set of IB Markovian independence relations, which imply that each compression variable,Tj 2 T, is completely defined given the variables it compresses, denoted here as Uj � X .

We achieve these two goals by first introducing a DAG Gin overX[Twhere the variables inT are leafs.

Given a joint distribution over the observed variables, p(x), Gin is defined such that p(x) is consistent with

its structure restricted to X. The edges from X to T define “what compresses what” and the independences

implied by Gin correspond to the required set of IB Markovian independence relations. In particular this

implies that every Tj is independent of all the other variables, given the variables it compresses, Uj =PaGinTj � X . Hence, the multivariate IB solution space consists of all the distributions over X [ T that

satisfy Gin . Specifically, the form of these distributions is given byp(x; t) = p(x) kYj=1 p(tj j paGinTj ) ; (8.1)
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where the free parameters correspond to the stochastic mappings p(tj j paGinTj ). 1 Analogously to the

original IB formulation, the information that we would like to minimize is now given by IGin . Sincep(x; t) j= Gin then IGin = I(X;T), i.e., this is the real multi-information in p(x; t). Minimizing this

quantity attempts to make the T variables as independent of the X variables as possible. Note that we only

modify conditional distributions that refer to variables in T, and we do not modify the dependencies among

the original observed X variables.

Once Gin is defined we need to specify the relevant information that we want to preserve. We do that by

specifying another DAG , Gout . Roughly speaking, Gout determines “what predicts what”. More formally

stated, for each Tj , we define inGout which variables it should predict, or preserve information about. These

are simply its children in Gout . Thus, using Definition 7.1.2, we may think of IGout as a measure of how

much information the variables in T maintain about their target variables. This suggests that we should

maximize IGout .
The multivariate IB-functional can now be written asL(1)[p(x; t)] = IGin � �IGout ; (8.2)

where the variation is done subject to the normalization constraints on the partition distributions, and � is a

positive Lagrange multiplier controlling the trade-off. 2 It leads to a tractable formal solution, as we show in

the next chapter. Note that this functional is a direct generalization of the original IB-functional, Eq. (2.13).

Again, we try to balance between minimizing the compression (multi) information, now defined throughIGin , and maximizing the relevant (multi) information, now defined through IGout .
As for the original IB principle the range of � for the multivariate formulation is between 0 to 1. For� ! 0 we concentrate on compression only which yields a trivial solution in which the Tj’s are independent

of their parents. In other words, in this case each Tj consists of one value to which all the values of PaGinTj
are mapped. Hence, all the distinctions between these values (relevant or not) are lost. For � ! 1 we

ignore the need for compression and concentrate on maintaining the relevant information terms as high as

possible. This, in turn, yields a trivial solution of the opposite extreme, in which each Tj is simply a copy

of PaGinTj . The interesting cases are in between, where � takes positive final values.

Example 8.1.1 : As a simple example, consider application of the multivariate variational principle withGin and G(a)out of Figure 8.1. Gin specifies that T compresses X and G(a)out specifies that we want T to

preserve information about Y . For this choice of DAGs, IGin = I(T ;X)+I(X;Y ) and IGout = I(T ;Y ).
The resulting functional is L(1) = I(X;Y ) + I(T ;X) � �I(T ;Y ) :
Since, I(X;Y ) is constant, we can ignore it, and we end up with a functional equivalent to that of the

original IB principle, given in Eq. (2.13).

8.2 Alternative variational principle

We now describe an alternative and closely related variational principle. This principle is based on approxi-

mating distributions with respect to a class defined by the Bayesian networkGout , rather than on preservation

of multi-information.

1For simplicity, we restrict attention to cases where the input distribution p(x) is consistent only with the complete graph overX. Hence, Gin restricted to X must form a complete graph.
2Since IGout typically consists of several mutual information terms (Eq. (7.3)), in principle it is also possible to define a

separate Lagrange multiplier for each of these terms. In some situations this option might be useful, for example if for some reason
the preservation of one information term is of greater significance than the preservation of the others. Nonetheless, for the sake of

simplicity we do not discuss this alternative in the following and leave it for future research.
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Figure 8.1: The source (left panel) and target networks for the original single-sided IB. The target network for the
multivariate IB principle is presented in the middle panel. The target network for the alternative principle is described
in the right panel.

We again face the problem of choosing the conditional distributions p(tj j paGinTj ). Therefore, we must

specify our aim in constructing these variables. As with the original IB method, we assume that there are

two goals.

On the one hand, we want to compress, or partition, the values of the observed variables. As before the

natural multivariate form of this is to minimize the multi-information of p(x; t), denoted by IGin (recall thatp j= Gin , therefore IGin = I[p(x; t)] ).

While in the previous section the second goal was to preserve the multi-information about some (target,

relevant) variables, here we think of a target class of model distributions, specified by a target Bayesian

network. In this interpretation the compressed variables should help us in describing the joint distribution

with respect to a different desired structure. We specify this structure by the DAG Gout , that now represents

which dependencies and independences we would like to impose.

To make this more concrete consider again the two-variable case shown in Figure 8.1. In this example, we

are given the distribution of two variables X and Y . The DAG Gin specifies that T is a compressed version

of X . The ideal situation in our context is when T preserves all the information about Y . The following

proposition shows that this is equivalent to the situation where T separates between X and Y , 3 which is

specified by the DAG G(b)out of Figure 8.1.

Proposition 8.2.1: Assume that T $ X $ Y , then I(T ;Y ) = I(X;Y ) if and only if X $ T $ Y .

The question now is how to force a construction of p(t j x) such that it will lead to the independences

that are specified in the target DAG , Gout . Note that these Gin and Gout are, in general, incompatible:

Except for trivial cases, we cannot achieve both sets of independences simultaneously. Instead, we aim to

come as close as possible to achieving this by a trade-off between the two. We formalize this by requiring

that p can be closely approximated by a distribution consistent with Gout . As previously discussed, a

possible information theoretic measure to this approximation is DKL[pjjG], the minimal KL divergence

from p to distributions consistent with Gout . Recall that DKL[pjjGout ] measures the amount of conditional

information between variables that are supposed to be conditionally independent in Gout . Thus, minimizingDKL[pjjGout ] strives to weaken these dependencies as much as possible.

Extending this idea to the general case is straightforward. As before, we introduce a Lagrange multiplier

that controls the trade-off between the two objectives. To distinguish it from the previous parameter, we

denote this parameter by 
. The functional we want to minimize in this formulation is thus:L(2)[p(x; t)] = IGin + 
DKL[pjjGout ] (8.3)

3We say that A separates B and C if B and C are conditionally independent given A, i.e., B $ A$ C.
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where the parameters that we can change during the minimization are again the (normalized) parameters of

the conditional distributions p(tj j paGinTj ).
The range of 
 is between 0, in which case we have the trivial (maximally compressed) solution, and1,

in which we strive to make p as close as possible to Gout .
Example 8.2.2: Consider again the example of Figure 8.1 with Gin and G(b)out . In this case, we have IGin =I(X;Y ) + I(T ;X) and IGout = I(T ;X) + I(T ;Y ). Using Proposition 7.1.4, we have DKL[pjjGout ] =IGin � IGout . Putting these together, we getL(2) = I(T ;X) � 
I(T ;Y ) + (1 + 
)I(X;Y )
As before, by ignoring the constant I(X;Y ) term we end up with the original IB-functional (setting 
 = �).

Thus, we can think of the original IB problem as finding a compression T of X that results in a joint

distribution that is as close as possible to the DAG where X and Y are independent given T .

8.3 Relations between the two principles

Going back to the general case, we can apply Proposition 7.1.4 to rewrite the alternative multivariate IB-

functional in terms of multi-informations:L(2) = IGin + 
(IGin � IGout ) = (1 + 
)IGin � 
IGout
which is similar to the functional L(1) presented in the previous section, under the transformation � = 
1+
 .

In this transformation the range 
 2 [0;1) corresponds to the range � 2 [0; 1). Note that when � = 1, we

have L(1) = DKL[pjjGout ], which is the extreme case of L(2). Thus, from a mathematical perspective, L(2)
is a special case of L(1) with the restriction � � 1.

This transformation raises the question of the relation between the two functionals. As we have seen in

Example 8.1.1 for each principle we need different versions of Gout to reconstruct the single-sided IB-

functional. More generally, for a given principle, different choices of Gout will yield different optimization

problems. Alternatively, given Gout , different choices of the variational principle will yield different opti-

mization problems. In the previous example we saw that these two effects can compensate for each other.

In other words, using the alternative variational principle with a different choice of Gout ends up with the

same optimization problem, which in this case is equivalent to the original IB problem.

To further understand the differences between the two principles, we consider the range of solutions for

extreme values of � and 
. When � ! 0 and 
 ! 0, in both formulations we simply minimize IGin . That

is, the emphasis is on compression, namely losing information in the transformation from X to T. In the

other extreme case, the two principles differ. When � ! 1, minimizing L(1) is equivalent to maximizingIGout . That is, the emphasis is on preserving information about variables that have parents in Gout . For

example, in the application of L(1) in Example 8.1.1 with G(a)out , this extreme case results in maximization

of I(T ;Y ). On the other hand, if we apply L(1) with G(b)out , then we maximize I(T ;X) + I(T ;Y ). In this

case, when � approaches1 information about X will be preserved even if it is irrelevant to Y .

When 
 ! 1, minimizing L(2) is equivalent to minimizing DKL[pjjGout ]. By Proposition 7.1.4 this is

equivalent to minimizing the violations of conditional independences implied by Gout . Thus, for G(b)out , this

minimizes I(X;Y j T ). Using the structure of Gin and Proposition 7.1.4, we can write I(X;Y j T ) =I(X;Y ) � I(T ;Y ), hence this is equivalent to maximizing I(T ;Y ). If instead we use G(a)out , by the same

proposition we see that we minimize the information I(X;Y j T ) = I(X;Y ) + I(T ;X)� I(T ;Y ). Thus,

we minimize I(T ;X) while maximizing I(T ;Y ). Unlike the application of L(1) to G(a)out , we cannot ignore

the term I(T ;X).
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To summarize, we might loosely say that L(1) focuses on the edges that are present in Gout , while L(2)
focuses on the edges that are not present in Gout (or more precisely, the conditional independences they

imply). This explains the somewhat different intuitions that apply to understanding the solutions found by

the variational principles. Thus, although both principles can be applied to any choice ofGout , some choices

can make more sense for L(1) than for L(2), and vice versa.

8.4 Examples: IB variations

We now consider a few examples of these principles applied to different situations. In particular this should

help us to further elucidate the relationships between these two formulations.

8.4.1 Parallel IB

We first consider a simple extension of the original IB. Suppose we introduce k compression variablesT1; : : : ; Tk instead of one. As specified in Gin of Figure 8.2 (upper panel), all of these variables are

stochastic functions of X . In addition, similarly to the original IB, we want T1; : : : ; Tk to preserve the

information X maintains about Y as high as possible. This is specified by the DAG G(a)out in the same

figure. We call this example the parallel IB, as T1; : : : ; Tk compress X in “parallel”.

Based on these two choices we get, IGin = I(X;Y ) +Pkj=1 I(Tj ;X) and IG(a)out = I(T1; : : : ; Tk;Y ).
After dropping the constant term I(X;Y ), the Lagrangian L(1) can be written asL(1)a = kXj=1 I(Tj ;X)� �I(T1; : : : ; Tk;Y ) : (8.4)

Thus, we attempt to minimize the information between X and every Tj while maximizing the information

all the Tj’s preserve together about Y . Using the structure of Gin we find that all the Tj’s are independent

given X . Therefore, we can also rewrite 4kXj=1 I(Tj ;X) = I(T1; : : : ; Tk;X) + I(T1; : : : ; Tk) ; (8.5)

where I(T1; : : : ; Tk) is the multi-information of all the compression variables. Thus, minimizing
Pkj=1 I(Tj ;X)

is equivalent to minimizing I(T1; : : : ; Tk;X) + I(T1; : : : ; Tk). Using this last result we haveL(1)a = I(T1; : : : ; Tk;X) + I(T1; : : : ; Tk)� �I(T1; : : : ; Tk;Y ) : (8.6)

In other words, another interpretation for the above optimization is that we aim to find T1; : : : ; Tk that

together try to compress X , preserve the information about Y and remain independent of each other as

much as possible. In this sense, we can say that we are trying to decompose the information X contains

about Y into k “orthogonal” components.

Recall, that using L(2) we aim at minimizing violation of independences in Gout . This suggests that

the DAG G(b)out of Figure 8.2 (upper panel) captures our intuitions above. In this DAG , X and Y are

independent given every Tj . Moreover, here again G(b)out specifies an additional independence requirement

4Proof: I(T1; : : : ; Tk;X) = E[log p(x;t1;:::;tk)p(x)p(t1;:::;tk) ] = E[log p(x)p(t1jx):::p(tkjx)p(x)p(t1;:::;tk) � p(t1):::p(tk)p(t1):::p(tk) ] = Pkj=1 I(Tj ;X) �I(T1; : : : ; Tk).
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over T1; : : : ; Tk. To see this we examine the functional defined by these specifications. In this case, IG(b)out =I(T1; : : : ; Tk;X) + I(T1; : : : ; Tk;Y ). Using Eq. (8.5) the functional L(2) can be written asL(2)b = kXj=1 I(Tj ;X) + 
(I(T1; : : : ; Tk)� I(T1; : : : ; Tk;Y )) ;
which is reminiscent of Eq. (8.6). Again, we attempt to find compressed versions of X that together maxi-

mize the information they maintain about Y while remaining independent of each other as possible.

8.4.2 Symmetric IB

We now consider another natural extension of the original IB which we term symmetric IB. In this case, we

want to compress X into TX and Y into TY such that TX extracts the information X contains about Y , and

at the same time TY extracts the information Y contains about X . The DAG Gin of Figure 8.2 (middle

panel) captures the form of the compression. The choice of Gout is less obvious.

One alternative, shown as G(a)out in the figure, attempts to make each of TX and TY sufficient to separate X
from Y . As we can see, in this network X is independent of Y (and TY ) given TX . Similarly, TY separatesY from the other variables. The structure of the network states that TX and TY are dependent of each other.

Developing the functional defined by this network, we obtain:L(2)a = I(TX ;X) + I(TY ;Y )� 
I(TX ;TY ) (8.7)

Thus, on one hand we attempt to compress, and on the other hand we attempt to make TX and TY as

informative about each other as possible. (Note that if TX is informative about TY , then it is also informative

about Y .)

Alternatively, we might argue that TX and TY should each compress different aspects of the information

between X and Y . This intuition is specified by the target network G(b)out of Figure 8.2 (middle panel). In

this network TX and TY are independent of each other, and both are needed to make X and Y conditionally

independent. In this sense, our aim is to find TX and TY that capture independent attributes of the connection

between X and Y . Indeed, following arithmetic similar to that of the previous example (and using the

conditional independences implied by Gin ), we can write the functional as:L(2)b = I(TX ;X) + I(TY ;Y )� 
(I(TX ;Y ) + I(TY ;X) � 2I(TX ;TY ))
That is, we attempt to maximize the information TX maintains about Y and TY about X , and at the same

time - in contrast to the previous case - try to minimize the information between TX and TY . 5

8.4.3 Triplet IB

In sequential data, such as natural language text or DNA sequences, an important question is to identify

features relevant to predicting a symbol in the sequence. Typically these features are different for “forward

prediction” versus “backward prediction”. For example, the textual features that predict the next symbol

(word) to be “information” are clearly different from those that predict the previous symbol to be “informa-

tion”. Here we address this issue by extracting features of both types such that their combination is highly

informative with respect to predicting a symbol between other known symbols.

5It is straightforward to extend this example to include k compression variables, instead of two, as we did in the previous parallel

IB example. In this case we seek for k compression variables that capture different attributes of the information between X and Y ,
and try to remain independent of each other as possible.
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Figure 8.2: Possible source and target DAG s for the symmetric, parallel, and triplet IB examples.
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The DAG Gin of Figure 8.2 (lower panel) is one way of capturing the form of the compression, where we

denote by Xp; Y;Xn the previous, current and next symbol in a given sequence, respectively. In this case,Tp compresses Xp while Tn compresses Xn. For the choice of Gout we consider again two alternatives.

First, we simply require that the combination of Tp and Tn will maximally preserve the information Xp
and Xn hold about the current symbol Y . This is specified by the DAG G(a)out in the figure. Based on these

choices we get, L(1)a = I(Tp;Xp) + I(Tn;Xn)� �I(Tp; Tn;Y ) : (8.8)

Hence, we are looking for compressed versions of Xp and Xn, that maximally preserve the information

about a symbol between them, denoted by Y .

Second, we use the alternative L(2) principle. Recall that in this case we are interested in satisfying (as

much as possible) the conditional independences implied by Gout . This suggests that the DAG G(b)out of

Figure 8.2 may represent our desired target model. In this network, Tp and Tn are independent, and both

are needed to make Y (conditionally) independent of Xp and Xn. Hence, we may see the resulting Tp andTn partitions as providing compact independent and informative evidences, regarding the value of Y . This

specification yields L(2)b = I(Tp;Xp) + I(Tn;Xn)� 
I(Tp; Tn;Y ) ; (8.9)

which is equivalent to Eq. (8.8). In other words, as in Example 8.1.1 we see that by using the alternative

variational principle, L(2), and a different specification of Gout we end up with the same optimization

problem as by using L(1). We will term this example the triplet IB.
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Chapter 9

Characterization of the Solution

In Section 2.4 we saw that it is possible to characterize the form of the optimal solution to the original IB-

problem. Can we provide such a characterization to the multivariate IB principles discussed in the previous

chapter? It turns out that the answer to this question is positive, as we show below.

Note that a solution to the multivariate IB principle inherently requires a higher level of abstraction. Specif-

ically, it should apply to any specification of Gin and Gout . Hence, we expect to use such a solution as a

recipe. Once the specification is provided, it induces a concrete solution out of the general form, that char-

acterizes the optimal solution to the optimization problem defined by the choices of Gin and Gout .
9.1 A formal optimal solution

We assume thatGin ,Gout , and � (or 
) are given. We now want to describe the properties of the distributionsp(tj j paGinTj ) which optimize the trade-off defined by each of the two alternative principles. We present this

characterization to the functionals of the form of L(1). However, we can easily recover the corresponding

characterization to functionals of the form L(2) (using the transformation � = 
1+
 ). As we will see later

on, the characterization of the optimal solution provides a general extension to the optimal solution of the

original IB problem, presented in Section 2.4.

In the presentation of this characterization, we need some additional notational shorthands, given byUj =PaGinTj , VTj = PaGoutTj , and VXi = PaGoutXi . We also denote V�jT` = VT` n fTjg and similarly for V�jXi =VXi n fTjg: To simplify the presentation, we also assume that Uj \ VTj = ;. In addition, we use the

notation Ep(�juj)[DKL[p(y j z;uj)jjp(y j z; tj)]]= Xz p(z j uj)DKL[p(y j z;uj)jjp(y j z; tj)]= Ep(y;zjuj)[log p(y j z;uj)p(y j z; tj) ]
where Y is a random variable and Z is a set of random variables. Note that this term implies averaging over

all values of Y and Z using the conditional distribution. In particular, if Y or Z intersects with Uj , then

only the values consistent with uj have positive weights in this averaging. Also note that if Z is empty, then

this term reduces to the standard KL divergence between p(y j uj) and p(y j tj).
The main result of this chapter is as follows.

Theorem 9.1.1 : Assume that p(x), Gin , Gout , and � are given and that p(x; t) j= Gin . The conditional

87



distributions fp(tj j uj)gkj=1 are a stationary point of L(1)[p(x; t)] = IGin � �IGout if and only ifp(tj j uj) = p(tj)ZTj (uj ; �)e��d(tj ;uj); 8 tj 2 Tj; 8 uj 2 UU j ; (9.1)

where ZTj (uj ; �) is a normalization function, andd(tj ;uj) � Xi:Tj2VXi Ep(�juj)[DKL[p(xi j v�jXi ;uj)jjp(xi j v�jXi ; tj)]]+ X`:Tj2VT` Ep(�juj)[DKL[p(t` j v�jT` ;uj)jjp(t` j v�jT` ; tj)]]+DKL[p(vTj j uj)jjp(vTj j tj)] : (9.2)

Note that the first summation is over all the variables Xi such that Tj is aimed at preserving information

about. The second summation is over all the variables T` such that Tj is suppose to preserve information

about. The last term corresponds to a situation where information should also be maintained about Tj (byVTj ).

The essence of this theorem is that it defines p(tj j uj) in terms of the multivariate relevant-distortiond(tj ;uj). This distortion measures the degree of proximity of the conditional distributions in which uj is

involved into these where we replace uj with tj . In other words, we can understand this as measuring how

well tj performs as a “representative” of the particular assignment uj . As this representative behaves more

similarly to uj , d(tj ;uj) becomes smaller, which in turn increases the membership probability, p(tj j uj).
As in the single-sided IB problem, the above theorem also allows us to understand the role of �. When� is small, each conditional distribution, p(tj j uj) is diffused, since � reduces the differences between

the distortions for different values of Tj . On the other hand, when � is large, the exponential term acts as

a “soft-max” gate, and most of the conditional probability mass will be assigned to the value tj with the

smallest distortion. Moreover, in the limit � ! 1 this value will contain all the probability mass, i.e., the

above stochastic mapping will become deterministic. This behavior also matches our understanding that

when � is small, most of the emphasis is on compressing the input variables Uj into Tj . When � is large,

most of the emphasis is on predicting the target variables of Tj , as specified by Gout .
Lastly, note that as in the original IB problem, the effective (multivariate) distortion measure, d(tj ;uj),

emerges directly from the variational principle L(1), rather then being assumed in advance in any way. In

other words, this is the correct distortion measure to this multivariate principle.

9.2 Examples

First, as a simple sanity-check, we reconsider Example 8.1.1, where we formulate the single-sided IB prob-

lem using the specification of Gin and G(a)out of Figure 8.1, and the functional L(1). For these choices it is

easy to verify that the multivariate relevant-distortion (Eq. (9.2)) simply amounts tod(t; x) = DKL[p(y j x)jjp(y j t)] ; (9.3)

which is in full analogous to Eq. (2.16), as required. We further use the general form of Eq. (9.2) to obtain

the effective distortion in our additional IB-like variations.

Example 9.2.1: We start by reconsidering the parallel IB case of G(a)out in Figure 8.2, Section 8.4.1. Apply-

ing the theorem to the corresponding L(1) (Eq. (8.4)), we see that the distortion term for every Tj isd(tj ; x) = Ep(�jx)[DKL[p(y j t�j; xjjp(y j t�j; tj)]] ; (9.4)
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where we used the notation T�j = T n fTjg. This distortion term corresponds to the information of Y andT = fT1; : : : ; Tkg. We see that p(tj j x) increases when the predictions of Y given tj are similar to those

given x (when averaging over t�j).
Example 9.2.2: Consider now the symmetric IB case of G(a)out in Figure 8.2, Section 8.4.2. By dropping the

edge between TX and X and the edge between TY and Y we get a different specification of Gout . Using the

first variational principle for this specification, we get L(1) = I(TX ;X) + I(TY ;Y )� �I(TX ;TY ), which

is equivalent to Eq. (8.7). Applying the theorem for this functional (and Gout ) we haved(tX ; x) = Ep(�jx)[DKL[p(tY j x)jjp(tY j tX)]] : (9.5)

Thus, TX attempts to make predictions as similar to those of X about TY (and similarly TY attempts to

make predictions as similar to those of Y about TX ).

Example 9.2.3 : Last, we consider the triplet IB of G(a)out in the lower panel of Figure 8.2, Section 8.4.3.

Applying the theorem again, we have the distortion term for Tp:d(tp; xp) = Ep(�jxp)[DKL[p(y j tn; xp)jjp(y j tn; tp)]] : (9.6)

This term corresponds to the information of Y and Tp; Tn. We see that p(tp j xp) increases when the

predictions about Y given by tp are similar to those given by xp (when averaging over Tn). The distortion

term for Tn is defined analogously.
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Chapter 10

Multivariate IB Algorithms

Similarly to the single-sided IB-functional, the multivariate IB-functional is not convex with all of its ar-

guments simultaneously. Hence, different heuristics must be employed to obtain at least locally optimal

solutions. In this chapter we show that all the four algorithmic approaches suggested to the original IB

problem in Chapter 3 are naturally extended into the multivariate case. In particular this allows to construct

solutions in practice to different multivariate IB problems.

The organization of this chapter is similar to that of Chapter 3. That is, in the first section we present the

extension to the iIB algorithm. Next, we describe the extensions to the dIB and the aIB algorithm, and finally

in Section 10.4 we present the multivariate sIB algorithm. For completeness, some of the descriptions used

in Chapter 3 are used again in the following. However, as regard to combining different algorithms and the

relations between these algorithms, the discussion in Section 3.5 and Section 3.6 is immediately extended

into the multivariate scenario, hence we do not repeat it here.

In the following presentation we concentrate on the variational principle L(1). Again, applying the same

algorithms for L(2) is straightforward.

10.1 Iterative optimization algorithm: multivariate iIB

We start with the case where � is fixed. In this case, following the strategy suggested in the original iIB

algorithm we simply apply the fixed point equations given in Eq. (9.1). Thus, we use an iterative algorithm,

that at the m’th iteration maintains the conditional distributions fp(m)(tj j uj)gkj=1. At the m + 1’th

iteration, the algorithm applies an update step:p(m+1)(tj j uj) p(m)(tj)Z(m+1)Tj (uj ; �)e��d(m)(tj ;uj) (10.1)

where p(m)(tj) and d(m)(tj ;uj) are computed from p(x; t) with respect to the conditional probabilitiesfp(m)(tj j uj)gkj=1, and using the conditional independences implied by Gin .

There are two main variants of this algorithm. In the synchronous variant, we apply the update step

for all the conditional distributions in each iteration. That is, each conditional probability p(tj j uj) is

updated by computing the distortions based on the conditional probabilities of the previous iteration. In the

asynchronous variant, we choose one variable Tj , and perform the update only for this variable. For all` 6= j, we set p(m+1)(t` j u`) = p(m)(t` j u`). The main difference between the two variants is that the

update of Tj in the asynchronous case incorporates the implications of the updates of all its “preceding”

variables. Additionally, it seems that in the general case, only the asynchronous variant is guaranteed to

converge to a (locally) optimal solution. This is specified by the following theorem.
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Input:
Joint distribution p(x) :
Trade-off parameter � :
Source DAG : Gin ; with leafs Tj ; j = 1 : k , and Target DAG : Gout :
Cardinality parameters Mj ; j = 1 : k; and convergence parameter " :

Output:
A (typically “soft”) partition Tj of UUj into Mj clusters 8j = 1 : k :

Initialization:
Randomly initialize p(tj j uj) 8j = 1 : k :

While True

For j = 1 : k ;� p(m+1)(tj j uj) p(m)(tj)Z(m+1)Tj (uj ;�)e��d(m)(tj ;uj) ; 8 tj 2 Tj ; 8 uj 2 UUj :� p(m+1)(tj) Puj p(m+1)(tj j uj)p(uj) ; 8 tj 2 Tj :� Update all the distributions in d(tj ;uj) that explicitly involve Tj ;
using the independences implied by Gin and p(m+1)(tj j uj) :

If 8 j = 1 : k; 8 uj 2 UUj ; JS 12 ; 12 [p(m+1)(tj j uj); p(m)(tj j uj)] � " ;
Break.

Figure 10.1: Pseudo-code of the multivariate iterative IB algorithm (multivariate iIB), with asynchronous updates.JS denotes the Jensen-Shannon divergence (Definition 1.2.17). In principle we repeat this procedure for different
initializations, and choose the solution which minimizes L = IGin � �IGout .
Theorem 10.1.1 : Asynchronous iterations of the fixed-point equations given in Eq. (10.1) converge to a

stationary point of the multivariate IB-functional, L(1).
Note that this theorem extends the convergence theorem of the single-sided iIB algorithm (Theorem 3.1.1).

Moreover, the proof technique is based on the proof of that theorem, hence we delay it to Appendix D. In

Figure 10.1 we present Pseudo-code for this asynchronous variant which we will term multivariate iIB.

The question of how to initialize this procedure, which is evident for the original iIB algorithm, might be

even more acute in the multivariate case. Again, different initializations in general lead to different locally

optimal solutions. Moreover, exploring a hierarchy of solutions for different � values is clearly desirable in

some cases. To address these issues we present in the next section a multivariate deterministic annealing-like

procedure, extending the original dIB algorithm.

10.2 Deterministic annealing-like algorithm: multivariate dIB

Recall that a deterministic annealing procedure works by iteratively increasing the parameter � and then

adapting the solution for the previous value of � to the new one. This allows the algorithm to “track” the

changes in the solution as the system shifts its preferences from compression to prediction. When � ! 0,

the optimization problem tends to make each Tj independent of its parents. At this point the solution consists
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of essentially one cluster for each Tj which is not predictive about any other variable. As we increase �, at

some (critical) point the values of some Tj diverge and show two different behaviors. Successive increases

of � will reach additional phase transitions in which additional splits of some values of the Tj’s emerge. Our

goal is to identify these cluster bifurcations and eventually record for each Tj a bifurcating tree that traces

the sequence of solutions at different values of � (see, for example, Figure 11.1).

To detect these bifurcations we adopt the method of the single-sided dIB algorithm to multiple variables.

At each step, we take the solution from the previous � value we considered and construct an initial problem

in which we duplicate each value of every Tj . Thus, we need to specify the conditional membership proba-

bilities of these duplicated values. Suppose that tj̀ and trj are two such duplications of some value tj 2 Tj .
Then we set p�(tj̀ j uj) = p(tj j uj) �12 + ��̂(tj ;uj)� and p�(trj j uj) = p(tj j uj) �12 � ��̂(tj;uj)� ;
where �̂(tj ;uj) is a (stochastic) noise term randomly drawn out of U [�12 ; 12 ] and � > 0 is a (small) scale

parameter. Thus, each copy tj̀ and trj is a slightly perturbed version of tj . If � is high enough, this random

perturbation suffices to allow the two copies of tj to diverge. If � is too small to support such bifurcation,

both perturbed versions will collapse to the same solution.

Given this initial point, we simply apply the (asynchronous) multivariate iIB algorithm. After convergence

is attained, if the behavior of tj̀ and trj is “sufficiently different” 1 then we declare that the value tj has

split, and incorporate tj̀ and trj into the hierarchy we construct for Tj . Finally, we increase � and repeat

the whole process. We will term this algorithm multivariate dIB. A Pseudo-code is given in Figure 10.2.

As in its original single-sided variant, there are some technical difficulties with applying this algorithm.

For example, the parameters d(j)min; j = 1 : k; that control the detection of cluster splits, need to be tuned.

As before, it is not clear whether these parameters should be fixed during the process, where a possible

alternative is to set them as a function of � (see, e.g., Section 11.2.1). Additionally, one needs to tune the

rate of increasing � otherwise cluster splits might be “skipped”. Last, as for the original dIB algorithm,

the duplication process is stochastic in nature (and involves additional parameters) which in principle is not

desirable. In the following section we describe a simpler (although approximated) approach, which extends

the single-sided aIB algorithm described in Section 3.3.

10.3 Agglomerative algorithm: multivariate aIB

Following the preliminary work in [73], we now present in detail an extension of the aIB algorithm into

the context of multivariate IB problems. For consistency with [73] and with Section 3.3 we examine the

problem of maximizing Lmax = IGout � ��1 � IGin ; (10.2)

which is clearly equivalent to minimizing the functional L(1) defined by Eq. (8.2).

We consider procedures that start with a set of clusters (i.e., values) in each Tj (usually the most fine-

grained solution we can consider where Tj = Uj) and then iteratively reduce the cardinality of one of theTj’s by merging two values, tj̀ and trj of Tj into a single value �tj . To formalize this notion we need to define

the membership probability of a new cluster �tj , resulting from merging ftj̀ ; trjg ) �tj in Tj . Similarly to

Eq. (3.8), this is done through: p(�tj j uj) = p(tj̀ j uj) + p(trj j uj) : (10.3)

Thus, we view the event �tj as the union of the events tj̀ and trj .
For the following analysis we need the next definition.

1Specifically, we denote byNeGoutTj the set of Tj ’s neighbors in Gout , and consider the divergence between p(neGoutTj j tj̀) andp(neGoutTj j trj ) . Other techniques are also plausible.
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Input:
Similar to the multivariate iIB.

Additional Parameters: �; "�; and d(j)min; j = 1 : k :
Output:

(Typically “soft”) partitions Tj of UUj into m = 1; : : : ;Mj clusters 8j = 1 : k :
Initialization:�  0

For j = 1 : kTj  ftjg; p(tj j uj) = 1 :
Main Annealing Loop:�  f(�; "�)

Duplicate clusters:

For j = 1 : k; 8 tj 2 Tj and 8 uj 2 UUj ;
Randomly draw �̂(tj ;uj) � U [� 12 ; 12 ] and define:p�(tj̀ j uj) = p(tj j uj) � 12 + ��̂(tj ;uj)�p�(trj j uj) = p(tj j uj) � 12 � ��̂(tj ;uj)�

Apply multivariate iIB using the duplicated clusters set as initialization.

Check for Splits:

For j = 1 : k ;8 tj 2 Tj ;
If JS 12 ; 12 [p(neGoutTj j tj̀); p(neGoutTj j trj)] � d(j)min ,Tj  fTj n ftjgg [ ftj̀ ; trjg

If 8 j = 1 : k; jTj j �Mj ; return.

Figure 10.2: Pseudo-code of the multivariate deterministic annealing-like algorithm (multivariate dIB). JS denotes
the Jensen-Shannon divergence (Definition 1.2.17). NeGoutTj denotes the neighbors of Tj in Gout (i.e., parents or

direct descendants). f(�; "�) is a simple function used to increment � based on its current value and on some scaling
parameter "�.
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Definition 10.3.1: The conditional merger distribution of the merger ftj̀ ; trjg ) �tj in Tj is defined by�z = f�`;z; �r;zg = fp(tj̀ j z)p(�tj j z) ; p(trj j z)p(�tj j z)g : (10.4)

Note that if Z = ; then �z = � = fp(tj̀)p(�tj) ; p(trj )p(�tj)g , as in Eq. (3.11).

Given the membership probabilities, at each step we can draw the connection between Tj and the other

variables. This is done using the following proposition which is based on the conditional independence

assumptions implied by Gin , and extends Proposition 3.3.1.

Proposition 10.3.2: Let Y;Z � X [T . Then,p(z; �tj) = p(z; tj̀) + p(z; trj) ; (10.5)

and p(y j z; �tj) = �`;z � p(y j z; tj̀) + �r;z � p(y j z; trj) : (10.6)

In particular, this proposition allows us to evaluate all the predictions defined in Gout and all the information

terms in Lmax that involve Tj . Additionally, an immediate corollary of this proposition is that �z is indeed

a proper normalized distribution.

To apply an agglomerative procedure we need to characterize each merger “cost”. As before, this cost is

given by the reduction in Lmax do to some merger. Let T befj and T aftj denote the random variables that

correspond to Tj , before and after a merger in Tj , respectively. Thus, the corresponding values of Lmax are

calculated based on T befj and T aftj , and the merger cost is then given by�Lmax(tj̀ ; trj) = Lbefmax �Laftmax : (10.7)

The greedy procedure evaluates all the potential mergers (for each Tj) and then applies the one that min-

imizes �Lmax(tj̀; trj). This is repeated until all the variables in T degenerate into trivial clusters. The

resulting set of trees describe a range of solutions at all the different resolutions.

10.3.1 Multivariate local merging criteria

The above procedure requires at every step to calculate � O(jTj j2) merger-costs for every Tj . A direct

calculation of all these costs, using Eq. (10.7) is typically unfeasible. However, as in the original aIB

algorithm, it turns out that one may calculate �Lmax(tj̀ ; trj) while examining only the distributions that

involve tj̀ and trj directly. This is specified in the following theorem which generalizes the corresponding

result of Section 3.3.1.

Theorem 10.3.3: Let tj̀; trj 2 Tj be two clusters. Then,�Lmax(tj̀ ; trj) = p(�tj) � �d(tj̀ ; trj) ; (10.8)

where �d(tj̀ ; trj) � Xi:Tj2VXi Ep(�j�tj)[JS�v�jXi [p(xi j tj̀;v�jXi ); p(xi j trj ;v�jXi )]]+ X`:Tj2VT` Ep(�j�tj)[JS�v�jT` [p(t` j tj̀ ;v�jT` ); p(t` j trj ;v�jT` )]]+JS�[p(vTj j tj̀); p(vTj j trj)]� ��1 � JS�[p(uj j tj̀); p(uj j trj)] : (10.9)
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There is a natural analogy between this merging criterion and the effective distortion measure that controls

the multivariate iIB algorithm (Eq. (9.2)). As in the single-sided case, while for the multivariate iIB the

optimization is governed by the KL divergences between data and cluster centroids, for the multivariate

aIB algorithm the optimization is controlled through the JS divergences. Specifically, the merger cost is

(again) a multiplication of the “weight” of the merger components, p(�tj), with their “distance” given by�d(tj̀ ; trj). Note that due to the properties of the JS divergence this “distance” is symmetric but it is not a

metric. In addition, the last term has the opposite sign to the first three terms. Thus, the “distance” between

two clusters is a trade-off between these two factors. Roughly speaking, we may say that it is minimized

for pairs which give similar predictions about the variables connected with Tj in Gout (the variables that Tj
should predict), and have different predictions, or minimum overlap about the variables connected with Tj
in Gin (the variables that Tj should compress).

Next, we note that after applying a merger, only a small portion of the other merger costs change. The

following proposition characterizes these costs.

Proposition 10.3.4: The merger ftj̀ ; trjg ) �tj in Tj can change the cost �Lmax(ts̀; trs) only if p(�tj; �ts) > 0
and Tj ; Ts co-appear in some information term in IGout .

This proposition is especially useful when we consider “hard” clustering where Tj is a deterministic func-

tion of Uj . In this case, p(�tj ; �ts) is often zero (especially when Tj and Ts compress similar variables, i.e.,Uj \Us 6= ;). In particular, after the merger ftj̀ ; trjg ) �tj , we do not have to reevaluate merger costs of

other values of Tj , except for mergers of �tj with each of these values.

In the case of “hard” clustering we also have I(Tj ;Uj) = H(Tj). Therefore, as in the single-sided case,

increasing ��1 results in a tendency to look for less balanced “hard” partitions. Additionally (as already

mentioned in Section 3.3.1), in this case the last term in �d(tj̀; trj) is simplified through JS�[p(uj j tj̀); p(uj jtrj)] = H[�]. For brevity, in the rest of this section we focus on this simpler case of “hard” clustering. We

emphasize, though, that all of the above analysis holds for “soft” clustering as well, hence in principle it is

possible to apply this agglomerative procedure over “soft” partitions. Moreover, as shown in Section 3.6,

the obtained “hard” partitions can be used as a platform to find “soft” clustering solutions through a process

of “reverse annealing”.

10.3.2 Examples

We now briefly consider our previous examples using the general result of Theorem 10.3.3. We first consider

the original IB problem, specified in our formulation through Gin and G(a)out in Figure 8.1. The merger cost

in this case is given by,�Lmax(tl; tr) = p(�t) � (JS�[p(y j tl); p(y j tr)]� ��1H[�]) ; (10.10)

which is analogous to Eq. (3.14), as required.

Considering the parallel IB described by the two left upper panels of Figure 8.2 we find that the merger

cost for every Tj is given by,�Lmax(tj̀ ; trj) = p(�tj) � (Ep(�j�tj)[JS�t�j [p(y j t�j; tj̀); p(y j t�j ; trj)]]� ��1H[�]) ; (10.11)

where again we used T�j = T n fTjg.
Finally, we consider the symmetric IB described in the two left middle panels of Figure 8.2, and the

alternative variational principle (Eq. (8.3)). As already mentioned (Example 9.2.2), equivalently we may

drop the edges between TX and X and between TY and Y (in Gout ), and use the first variational principle

(Eq. (8.2)). Having done that we obtain�Lmax(tX̀ ; trX) = p(�tX) � (JS�[p(tY j tX̀); p(tY j trX)]� ��1H[�]) ; (10.12)
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Input:
Joint distribution p(x) :
Trade-off parameter � :
Source DAG : Gin ; with leafs Tj ; j = 1 : k , and Target DAG : Gout :

Output:
Partitions Tj of UUj into m = 1; : : : ; j UUj j clusters 8j = 1 : k :

Initialization:Tj  Uj ;8j = 1 : k :
For j = 1 : k8 tj̀ ; trj 2 Tj calculate �Lmax(tj̀ ; trj ) = p(�tj) � �d(tj̀ ; trj)

Main Loop:
While 9 j; jTj j > 1fj; `; rg = argminj0;`0;r0�Lmax(t`0j0 ; tr0j0 )

Merge ftj̀ ; trjg ) �tj in Tj
Update �Lmax(t`0j0 ; tr0j0 ) costs w.r.t. �tj (only for costs that need an update)

Figure 10.3: Pseudo-code of the multivariate agglomerative IB algorithm (multivariate aIB).

and an analogous expression for mergers in TY .

Applying the same theorem for the last example of the triplet IB is left to the interested reader. A Pseudo-

code of the general procedure is given in Figure 10.3.

10.4 Sequential optimization algorithm: multivariate sIB

The main disadvantages of an agglomerative approach are its relatively high complexity and that in general

it does not guarantee even locally optimal solutions. The multivariate aIB is no exception in this sense. In

particular, if we start from Tj = Uj the time complexity is typically an order of O(Pkj=1 j UU j j3 j VVjj), 2

while the space complexity is an order of O(Pkj=1 j UU j j2). For the original IB problem we suggested in

Section 3.4 a sequential optimization routine to handle these difficulties. In the following we extend this

algorithm to solve multivariate IB problems.

Unlike agglomerative clustering, this procedure maintains for each Tj a flat partition with exactly Mj
clusters. Given some (e.g., random) initial partitions, at each step we “draw” some uj 2 UU j out of its

current cluster tj(uj) and represent it as a new singleton cluster. Using our multivariate agglomeration

procedure (Eq. (10.8)), we can now merge uj into tnewj such that tnewj = argmintj2Tj�Lmax(fujg; tj), to

obtain a (possibly new) partition T newj , with the appropriate cardinality. Assuming that tnewj 6= tj(uj) it is

easy to verify that this step increases the value of the functional Lmax defined in Eq. (10.2). Since for any

finite � this functional is upper bounded, this sequential procedure is guaranteed to converge to a “stable”

solution in the sense that no more assignment updates can further improve Lmax.

In each “draw-and-merge” step we need to calculate the merger costs with respect to each cluster in Tj ,
which is an order of O(jTjjjVVjj). Our time complexity is thus bounded by O(` �Pj j UU j jjTj jjVVjj) where ` is

the number of iterations we should perform until convergence is attained. Since typically ` � jTjj � j UU jj2
we get a significant run time improvement. Additionally, we improve our memory consumption toward an

order of O(Pj jTjj2).
As in the case of the multivariate iIB, to reduce the potential sensitivity to local optima, we can repeat this

2The notation j VVj j is loosely used here to refer to the complexity of calculating a single merger in Tj .
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Input:
Similar to the multivariate aIB.
Additional Parameters: Cardinality values Mj ; j = 1 : k .

Output:
A partition Tj of UUj into Mj clusters 8j = 1 : k :

Initialization:
For j = 1 : k; Tj  random partition of UUj into Mj clusters.

Main Loop:
While not DoneDone TRUE :

For j = 1 : k,8 uj 2 UUj
Remove uj out of tj(uj) :tnewj (uj) = argmintj2Tj �Lmax(fujg; tj) :
If tnewj (uj) 6= tj(uj);Done FALSE :
Merge uj into tnewj (uj) :

Figure 10.4: Pseudo-code of the multivariate sequential IB algorithm (multivariate sIB). In principle we repeat this
procedure for different initializations and choose the solution which maximizes Lmax = IGout � ��1IGin .

procedure for different initializations of T to obtain different solutions, from which we choose the one that

maximizes Lmax. We will term this algorithm multivariate sIB. A Pseudo-code is given in Figure 10.4.

Note that in general, different optimization routines are possible to this algorithm. One alternative is to

define the outer loop with respect to the X variables. Here, for every Xi 2 X we iterate over all x 2 Xi.
For each such value, we perform a “draw-and-merge” step with respect to every Tj for which Xi 2 Uj .
The second alternative, presented in the figure, is to define the outer loop with respect to the variables in T.

Here, for every Tj 2 T we iterate over all uj 2 UU j , and perform a “draw-and-merge” step for every such

value. Other optimization routines are also plausible, and one additional example to the parallel IB case is

mentioned in Section 11.1. Obviously different routines will lead to different solutions, and the question of

which one is preferable still needs to be explored.
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Chapter 11

Multivariate IB Applications

In this chapter we examine a few applications of the general methodology. For brevity, we remain focused

on our three running examples: parallel IB, symmetric IB, and triplet IB. For each of these examples we

present different applications, using one (ore more) of the algorithmic approaches presented in the previous

chapter.

11.1 Parallel IB applications

We consider the specification of Gin and G(a)out of Figure 8.2 (upper panel). The relevant distortion measures

are given in Eq. (9.4), Eq. (10.11). The complexity of calculating these measures is in principle exponential

in k (due to the expectation with respect to T�j). However, while concentrating on “hard” clustering only,

one may verify that out of the exponential number of terms, only a few are non zero. Specifically, these

terms correspond to the assignments of T�j such that their disjunction with tj or with �tj are not empty

(recall that each assignment of some Tj defines a cluster of X values). Therefore, in this application we

concentrate on “hard” clustering solutions only.

Using Eq. (8.6) and Eq. (10.2) we face the problem of maximizingL = I(T1; : : : ; Tk;Y ))� ��1(I(T1; : : : ; Tk;X) + I(T1; : : : ; Tk)) : (11.1)

We further should choose between the multivariate aIB versus sIB algorithms. In this case, the choice is

rather simple. Recall that aIB is initialized by singleton clusters, i.e., Tj = X for all j = 1; : : : ; k. As a

result, at the initial point jTT j = �kj=1jTjj = jX jk, which is extremely redundant. Moreover, it is easy to

verify that in this case, the merging criterion of Eq. (10.11) degenerates. Specifically, the JS terms remain

equal to zero until we reach a point where jTT j � jX j. Only from this point on, we indeed start to compressX (and lose information about Y ). 1 To avoid this difficulty we use the sIB approach and choose the initial

cardinality values such that jTT j � jX j.
As mentioned in Section 10.4 there are different possible optimization routines for the multivariate sIB.

Here we describe one alternative which seems suitable in our context. We first perform m sIB restarts with

different initializations and k = 1, and choose the solution that maximizes Eq. (11.1). 2 We now “freeze”

this solution, denoted by T1, and perform again m sIB iterations with k = 2. In other words, given T1, we

look for T2 such that I(T1; T2;Y ))���1(I(T1; T2;X)+I(T1; T2)) is maximized. We can now “freeze” T1
and T2 to look for T3, and so forth. Loosely speaking, in T1 we aim to extract the first “principal partition” of

the data. In T2 we seek for the second “principal partition” that is approximately orthogonal (independent)

to the first one, and so on.

1In fact, this is an inherent problem of the multivariate aIB, which will be eminent for every choice of Gin in which some Xi is

compressed by more than one of the T variables.
2Note that for k = 1 the parallel IB is equivalent to the single-sided IB problem.
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Table 11.1: Results for parallel sIB applied to style versus topic text clustering. Each entry indicates the number of
“documents” in some cluster and some class. For example, the upper left entry indicates that the first cluster of the
first partition, T1;a, includes 315 “documents” taken from the book The Beasts of Tarzan. The first partition, T1 is
correlated with the writing style, while the second partition, T2 is correlated with a partition according to the topic.T1;a T1;b T2;a T2;b

The Beast of Tarzan (Burroughs) 315 2 315 2

The Gods of Mars (Burroughs) 407 0 1 406

The Jungle Book (Kipling) 0 255 254 1

Rewards and Fairies (Kipling) 0 367 42 325

11.1.1 Parallel sIB for style versus topic text clustering

A well known difficulty in clustering tasks is that there might be more than one meaningful way to partition

the data. El-Yaniv and Souroujon [30] mention such a hypothetic example, where a given collection of text

documents have two possible dichotomies: by their topics and by their writing styles. Here we construct

such an example in practice and solve it using our parallel IB approach.

We selected two authors: E. R. Burroughs and R. Kipling, and downloaded four books from the web site

of the Gutenberg Project (http://promo.net/pg/). These are The Beasts of Tarzan and The Gods of Mars by

Burroughs, and The Jungle Book and Rewards and Fairies by Kipling. Due to this choice, except for the

natural partition (according to the writing style), there is indeed an additional possible topic partition (of the

“jungle” topic versus all the rest). Our pre-processing included lowering upper case characters, uniting all

digits into one symbol and ignoring non alpha-numeric characters. We also ignored the chapter serial titles

(“Chapter 1”,”Chapter 2”, etc.) which were present only in the books by Burroughs. We further split each

book into “documents” (paragraphs) consisted of 200 (successive) words each, which resulted with 1; 346
documents and 15; 528 distinct words (ignoring the last “short” paragraph in each book). After simple

normalization we got an estimated joint distribution p(d;w), where p(d) = 1jDj .
Given these data, we applied the previously described parallel sIB optimization routine to cluster the

documents into two clustering hierarchies of two clusters each. Note that this setting implies significant

compression, hence we were able to set ��1 = 0. In other words, we simply concentrated on maximizingI(T;W ) = I(T1; T2;W ). Note, though, that even in this case, independent Tj’s are preferable to dependent

ones (since this independence increases the potential expression power of T). The number of restarts for

every Tj was set to be m = 5.

In Table 11.1 we present the two different partitions obtained by the algorithm with respect to the different

document sources. We see that the first partition, T1, shows almost perfect correlation to an authorship

partitioning. However, the second partition, T2 is correlated with a topical partitioning, extracting a clus-

ter of mainly “jungle” topic documents, versus a cluster of all the rest. Moreover, I(T1;T2) � 0:0007,

i.e., these two partitions are indeed (approximately) independent. Additionally, with only four clusters,I(T1; T2;W ) � 0:28 which is about 12:8% of the original information, I(D;W ).
We further sorted all words by their contribution to I(T1;W ), given byI(T1;w) � p(w) Xt12T1 p(t1 j w) log p(t1 j w)p(t1) : (11.2)

In Table 11.2 we present the top five words according to this sort. Clearly for both authors there are dif-

ferent preferences regarding the use of stop words. For example, Burroughs uses the preposition ’of’ more

frequently than Kipling, while Kipling uses the verb ’said’ more often than Burroughs (in these specific

books). It is reasonable to assume that due to this difference, the first partition, T1, is correlated with an
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Table 11.2: Informative words for the results of parallel sIB, applied to style versus topic text clustering. The left
column indicates the word, i.e., W value. The second column specifies its contribution to I(Tj ;W ). The last four
columns indicate the relative frequency of this word in each book (where the larger two values are emphasized). The
top five rows are due to a sorting with respect to I(T1;W ). The lower five rows are due to a sorting with respect toI(T2;W ). W I(T1;w) The Beasts The Gods The Jungle Rewards

of Tarzan of Mars Book and Fairies

’upon’ 0.002 0.008 0.006 0.0005 0.0003

’said’ 0.001 0.001 0.002 0.009 0.01

’of’ 0.001 0.037 0.039 0.024 0.018

’the’ 0.001 0.09 0.076 0.068 0.051

’says’ 0.001 0.00005 0.00001 0.0002 0.004I(T2;w)
’I’ 0.002 0.003 0.025 0.012 0.023

’tarzan’ 0.001 0.006 0 0 0

’my’ 0.001 0.001 0.01 0.004 0.008

’jungle’ 0.001 0.003 0 0.003 0

’he’ 0.001 0.02 0.006 0.02 0.02

authorship partitioning.

Sorting all words by their contribution to I(T2;W ) (lower rows of Table 11.2), may explain the correlation

of the second partition, T2 with a topical partitioning. Specifically, the word ’jungle’ seems to be a dom-

inant term, “pushing” for this result, as could be expected. However, somewhat unexpectedly, there were

additional features, such as ’I’ and ’my’, supporting this partition.

11.1.2 Parallel sIB for gene expression data analysis

As our second example we used the gene expression measurements of � 6800 genes in 72 samples of

leukemia [39]. As in many other biological datasets, these data include different (sometimes independent)

annotations of their components. Specifically, the sample annotations include type of leukemia (ALL vs.

AML), type of cells, donating hospital, and more.

In our pre-processing we removed � 1500 genes that were not expressed in the data and normalized the

measurements of the remaining 5288 genes in each sample to get an (estimated) joint distribution p(s; g)
over samples and genes (with uniform prior over samples). We sorted all genes by their contribution toI(S;G) (given by p(g)Ps p(s j g) log p(sjg)p(s) ) and selected the 500 most informative ones (which capture47% of the original information). After re-normalization of the measurements in each sample we ended up

with an estimated joint distribution with jSj = 72; jGj = 500 and p(s) = 1jSj .
Given these data we applied the parallel sIB algorithm to cluster the samples into four clustering hierar-

chies, with jTjj = 2; 8j = 1 : 4 : The parameter setting was as in the previous section (��1 = 0; m = 5).

In Table 11.3 we present the four different partitions extracted by the algorithm with respect to different

annotations of the data. Note that, again, this comparison is for verification only since these annotations

are not used during the clustering process which is based on the expression data alone. We see that the first

partition, T1, almost perfectly matches the AML vs. ALL annotation. The second partition is correlated with

the split between B-cells and T-cells (among the samples for which this annotation is provided). For the
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Table 11.3: Results for parallel sIB applied to gene expression measurements of leukemia samples [39]. In the upper
four rows, each entry indicates the number of samples in some cluster and some class. For example, the upper left
entry indicates that the first cluster of the first partition, T1;a, includes 23 samples that are all annotated as AML. The
last row indicates the average PS score of all the cluster samples. Each of the first three partitions is correlated with
a different “annotation-dimension” of the samples. Note that T-cell/B-cell annotations are available only for samples
annotated as ALL type. T1;a T1;b T2;a T2;b T3;a T3;b T4;a T4;b

AML 23 2 14 11 12 13 13 12

ALL 0 47 37 10 9 38 22 25

B-cell 0 38 37 1 6 32 20 18

T-cell 0 9 0 9 3 6 2 7

average PS 0.64 0.72 0.71 0.66 0.53 0.76 0.70 0.69

third partition we note that the average “Prediction Strength” (PS) score 3 is very different between both

clusters. In particular, in the first cluster, only 3 samples (out of 21) had a PS score greater than 0:75 while

in the second cluster, 34 samples (out of 51) exceed this 0:75 threshold.

For the fourth partition we were not able to find any clear correlation with one of the available annotations.

This raises the possibility that while extracting this partition the algorithm in fact over fits the data. In terms

of information, I(T;G) preserves almost 54% of the original information, I(S;G) � 0:23.

11.2 Symmetric IB applications

We consider the specification of Gin and G(a)out of Figure 8.2 (middle panel) and the alternative variational

principle (Eq. (8.3)). As already mentioned (Example 9.2.2), equivalently we may drop the edges betweenTX and X and between TY and Y (in Gout ), and use the first variational principle (Eq. (8.2)). Either way

we face the problem of minimizingL = I(TX ;X) + I(TY ;Y )� �I(TX ;TY ) ; (11.3)

or maximizing L = I(TX ;TY )� ��1(I(TX ;X) + I(TY ;Y )) : (11.4)

The relevant distortion measures are given in Eq. (9.5) and Eq. (10.12). In contrast to the previous parallel

IB example, here there are no major complexity difficulties. Therefore, we are able to apply all the different

algorithmic approaches as we demonstrate in the following.

11.2.1 Symmetric dIB and iIB for word-topic clustering

We start with a simple text processing example. We use the same subset of the 20NG corpus, already

described in Section 4.3. Specifically, this subset is represented as an estimated joint distribution p(w; c)
of 200 “informative” words versus 20 (topical) categories. That is, jWj = 200; jCj = 20, and each entry

indicates the estimated probability that a random word position is equal to w 2 W while at the same time

the topic of its document is c 2 C.

3The Prediction Strength (PS) score was defined in [39] as an estimate (between 0 to 1) of how well one may predict the type of

leukemia, based on the expression levels of a fixed subset of genes. This subset was chosen based on their expression correlation
with the class distinction in the initial (“training”) set of 38 samples. See [39] for the details.
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Given these data we applied the symmetric dIB algorithm (with asynchronous updates) to cluster both

dimensions into two sets of clusters: clusters of words, Tw, and clusters of categories, Tc. The implementa-

tion details were similar to those mentioned in Section 4.3 for applying the single-sided dIB to these data.

Specifically the rate of increasing � was defined through f� = (1 + "�)�; "� = 0:001. The parameters

used for detecting splits were defined by dmin = 1� (for both TX and TY ), i.e., as � increases the algorithm

becomes more “liberal” for declaring cluster splits. The scaling factor for the stochastic duplication was set

to � = 0:005. 4

The partition of C induced by TC was typically “hard”, i.e., for every c 2 C, p(tc j c) was approximately 1
for one cluster and 0 for all the others. Hence, we are able to present the hierarchy found by Tc as a simple

tree-like structure, given in Figure 11.1. This hierarchy is in high agreement with a topical partitioning of

the categories. However, it is not really a tree. Specifically, the electronics category is assigned to the left

branch after the first split (or phase transition). After the next split it is assigned to a cluster in the right

branch. Finally, after another split, it is assigned back to a cluster in the left branch.

Considering the word clusters of the Tw hierarchy (after four splits) we see that each of these clusters is

correlated with one of the clusters in Tc. To demonstrate this we find for every tc 2 Tc its most probable

word cluster, given by t�w = argmaxtwp(tw j tc). For this cluster we present in Figure 11.1 its five most

probable words, i.e., the five words that maximize p(w j t�w). Clearly, these words show high semantic

agreement with the topics of the relevant category cluster. The mapping of W values into Tw also utilized

the “soft” clustering utility, which is available by the algorithm to deal with words that are relevant to several

category clusters. Thus, some of the words were assigned to more than one cluster. For example, the word

’war’ was assigned with high probability to a cluster tw, for which the most probable category cluster, t�c ,
was the “politics” cluster. Additionally, it was assigned with lower probability to two other word clusters

for which t�c was the “religion-mideast” cluster. Other examples are given in Table 11.4 (which is, naturally,

somewhat reminiscent of Table 4.2).

In terms of information, after four splits, we get jTwj = 14; jTcj = 9 and I(Tw;Tc) = 0:59, which is

about 71% of the original information, I(W ;C). In other words, although the number of entries in the

joint distribution matrix p(tw; tc) is only 3% with respect to the number of entries in p(w; c), most of the

information is preserved.

We further applied the symmetric iIB algorithm to the same data. For purposes of comparison, the input

parameters were set by using the dIB result. Specifically we set jTwj = 14; jTcj = 9 and � � 22:72 which

corresponds to the � value right after the fourth split in dIB. We performed 100 different random (“hard”)

initializations and used " = 0:001 to declare convergence. In Figure 11.2 we see that only 8 of these 100
restarts converged to a better minimum of L than the one found by dIB. In particular, in these 8 cases (and

also in another single case), the iIB solution attained (slightly) higher I(Tw;Tc) than the dIB solution. These

results highlight several issues. First, even for a relatively simple problem, many different locally optimal

solutions are present (as we already saw for the original single-sided IB problem). Second, by “tracking”

the changes in the solution, starting at the simple case of two clusters in each hierarchy, dIB succeeds in

finding a relatively good solution. Moreover, it provides more details by describing a hierarchy of solutions

in different resolutions. Nonetheless, if one is interested in a “flat” solution for a given number of clusters,

using iIB with a sufficient number of initializations will probably provide a better optimum.

Considering Tc for the best iIB solution (in terms of L), we see that although it is different from the

dIB solution, both solutions are strongly correlated. For example, the three “religion” categories are still

in a single cluster, and so are the two “sport” categories, the two “hardware” categories and the autos and

motorcycles categories. Interestingly, the ambiguity regarding the “electronics” category also remains in this

4It is easy to verify that p(tj j uj) = p(tj) is a (trivial) fixed point of the symmetric IB-functional that we are trying to optimize,

for any value of �. On the other hand, if � is small, we initialize the first two copies in TX by p(tX j x) � p(tX) � 0:5 (and
similarly for TY ). Thus, before the first split, the initialization of the duplicated copies in TX and TY is typically very close to this

trivial fixed-point. To avoid this attractor one must use a larger � value, and we chose �1 = 0:95. Note that this value is utilized

only before the first split.
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Figure 11.1: Application of the Symmetric dIB to the 20NG word-category data. The learned cluster hierarchy of
categories, Tc, is presented after four phase transitions. The numerical value inside each ellipse denotes the value
of � for which the corresponding cluster bifurcated. In general, this hierarchy is in high agreement with a topical
partitioning of the categories. In the lower level, for each tc 2 Tc we find the most probable cluster of words (defined
as t�w = argmaxtw2Twp(tw j tc)). Given this cluster we sort all words by p(w j t�w) and present the top five words. As
can be seen from the figure, these words are well correlated with the corresponding category cluster (the character ’$’
stands for a digit character). Also note that at the early stages, the algorithm is inconclusive regarding the assignment
of the electronics category. After the first split it is in the left branch of the tree. After the next bifurcation it is assigned
to a cluster in the right branch, and after another phase transition, it is returned to the left branch. This phenomenon
demonstrates that the hierarchy obtained by the dIB algorithm does not necessarily construct a tree.
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Table 11.4: Results for “soft” word clustering using symmetric dIB over the 20NG word-category data. The first
column indicates the word, i.e., W value. The second column presents p(tw j w) for all the different clusters tw 2 Tw
for which this probability was non zero. Given each tw, t�c denotes the most probable category cluster, i.e., the
category cluster that maximizes p(tc j tw). It is represented in the table (in the third column) by the joint topic of its
members, which are the categories for which p(t�c j c) � 1 (see Figure 11.1). The last column presents the probability
of this cluster given tw. W p(tw j w) t�c p(t�c j tw)

war 0.92 politics 0.44
0.06 religion-mideast 0.34
0.02 religion-mideast 0.93

killed 0.86 politics 0.44
0.08 religion-mideast 0.34
0.06 religion-mideast 0.93

evidence 0.77 religion-mideast 0.34
0.23 politics 0.44

price 0.74 hardware 0.31
0.26 sport 0.35

speed 0.99 hardware 0.31
0.01 sport 0.35

application 0.58 hardware 0.31
0.42 windows 0.84

Table 11.5: Dataset details of the protein GST domain test.

class family name #proteinsc1 GST - no class label 298c2 S crystallin 29c3 Alpha class GST 40c4 Mue class GST 32c5 Pi class GST 22
iIB solution. Specifically, it is assigned with probability 0:9 to the “hardware” cluster and with probability0:1 to the autos and motorcycles cluster.

11.2.2 Symmetric sIB and aIB for protein clustering

As a second example we used a subset of five protein classes taken from the PRINTS database [4] (see

Table 11.5 for details). 5 These data were already used in [72] to examine the effectiveness of supervised

classification techniques. All five classes share a common domain (a domain is an independent protein

structural unit), known as the glutathione S-transferase (GST) domain. We specifically chose this test since

a well established database of protein families HMMs, 6 currently considered the state-of-the-art in gener-

ative modeling of protein families, has chosen not to model these groups separately, due to high sequence

similarity between members of the different groups. In spite of this potential pitfall, we find that unsu-

pervised clustering using symmetric IB algorithms may extract clusters that are well correlated with the

5The author is grateful to Gill Bejerano for preparing these data and for his help in analyzing the results presented in this section.
6The Pfam database, http://www.sanger.ac.uk/Pfam.
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Figure 11.2: Application of symmetric dIB and symmetric iIB to the 20NG word-category data. In 8 out of 100
different initializations, iIB converges to a better minimum of L = I(Tw;W ) + I(Tc;C)� 22:72 � I(Tw;Tc).
different groups.

For these data, obviously there is no clear definition of “words”, and usually each protein is described by its

ordered sequence of amino-acids. Our pre-processing included representing each protein as a counts vector

with respect to all the different 4-grams of amino-acids present in these data. Denoting this set of features byF and the set of proteins byR, we got a counts matrix of jRj = 421 proteins versus jFj = 38; 421 features.

After normalizing the counts for each protein to unity we got a joint distribution p(r; f) with p(r) = 1jRj .
To avoid overly high dimensionality, we sorted all features by their contribution to I(F ;R) and selected the

top 2; 000 (which capture about 22% of the original information). After re-normalization we ended up with

a joint distribution p(r; f) with jRj = 421; jFj = 2; 000 and p(r) = 1jRj .
As in the previous text example, we apply two algorithms to these data. The symmetric aIB provides a (tree

structure) hierarchy of solutions at all the different resolutions. In contrast, the symmetric sIB provides m
different “flat” solutions (at a given resolution), from which the best one should be used. As in Section 11.1.1

we set ��1 = 0, hence we were interested in extracting clusters of proteins, TR, and clusters of 4-grams of

amino-acids, TF , such that L = I(TR;TF ) is maximized. We start by describing the results obtained by

the symmetric sIB, for jTRj = 10; jTF j = 10.

One issue we should address while using the symmetric sIB is how to initialize TR and TF . Consider

the relevant distortion measure given in Eq. (10.12). Random initialization of both TR and TF is clearly

problematic since the mergers in TR and TF will initially take place based on an effectively random joint

distribution p(tR; tF ). A possible solution is to use the strategy described in [77]. Specifically, we ran-

domly initialize only TF and optimize it using the original single-sided sIB algorithm, such that I(TF ;R) is

maximized. The obtained set of clusters provides a robust low-dimensional representation for the proteins.

Given this representation we randomly initialize TR and use again the original single-sided sIB algorithm to

optimize it such that I(TR;TF ) is maximized. We use these two solutions as the initialization to the sym-

metric sIB algorithm, and continue by the general framework described in Figure 10.4 until convergence

is attained. We repeat this procedure 100 different times and select the best solution, i.e., the one which

maximizes I(TR;TF ).
For this solution we find that with only ten clusters of proteins and ten clusters of features, I(TR;TF ) =1:06 which is about 30% of the original information. In Table 11.6 we see that the correlation of the
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Table 11.6: Results for applying symmetric sIB to the GST protein dataset with jTRj = 10; jTF j = 10. Each entry
indicates the number of proteins in some cluster and some class. For example, the upper left entry indicates that the
first cluster tR1 , includes 107 proteins, all of them from the (“unlabeled”) class c1. All the ten protein clusters are well
correlated with the (biological) partition of the proteins into classes. The last row indicates the number of “errors” for
each cluster, defined as the number of proteins in this cluster, which are not labeled by the cluster’s most dominant
label. Overall, there are 17 errors among the 421 proteins, i.e., the correlation (or the micro-averaged precision) is96%.

class/cluster tR1 tR2 tR3 tR4 tR5 tR6 tR7 tR8 tR9 tR10c1 107 49 47 42 30 17 4 1 1 0c2 0 0 0 0 0 0 29 0 0 0c3 0 0 0 0 0 0 0 39 0 1c4 0 0 0 0 0 2 0 0 30 0c5 0 7 0 0 0 0 0 0 1 14

Errors 0 7 0 0 0 2 4 1 2 1

protein clusters with the available class labels is almost perfect. Hence, the algorithm recovers the (manual)

biological partitioning of the proteins into classes.

As in the previous text example, we further analyze the feature clusters given in TF . First we identify

for each tR 2 TR its most probable feature cluster, defined as t�F = argmaxtF p(tF j tR). For this cluster

we present in Table 11.7 its three most probable features, i.e., the three 4-grams that maximize p(f j t�F ).
Examining the relative frequencies of these features in the different classes, we see that almost all of them

are good indicators for the biological class that is correlated with the protein cluster, tR.

To summarize, although our analysis is entirely unsupervised, we are able to extract clusters that are corre-

lated with a manual partitioning of the proteins into biologically meaningful classes. Moreover, we identify

features (4-grams) that seem to be good indicators for each such class. Further analysis of these results,

including the possible biological functionality of the features presented in Table 11.7, will be presented

elsewhere.

Lastly, we apply the symmetric aIB to the same data. Recall that this algorithm extracts solutions in all the

different resolutions. For purposes of comparison, we first consider the solution at jTRj = 10; jTF j = 10.

In terms of information, this result is clearly inferior to the symmetric sIB result. Specifically, using aIB we

have I(TR;TF ) = 0:93 which is about 26:5% of the original information. Moreover, all the 100 different

solutions obtained by symmetric sIB attained higher information values, which demonstrates the fact that

the aIB approach is not guaranteed to converge even to a locally optimal solution. However, a more careful

examination of these results shows that the differences are mainly in the TF partition. In other words, the

aIB TR solution is strongly correlated with the corresponding sIB solution (and thus, also well correlated

with the protein class labels). Therefore we conclude that the TF solution found by aIB is sub-optimal,

which leads to the overall inferiority in terms of information.

Nonetheless, one of the advantages of the aIB algorithm is that one may consider a hierarchy of solutions.

In Figure 11.3 we present this tree structured hierarchy (for TR). We see that one branch of the tree contains

mostly proteins from the classes c2; c3 and c4. The other branch consists of almost all the “unlabeled”

(c1 class) proteins, accompanied by the Pi class proteins (class c5). Since we have several clusters that

correspond to the “unlabeled” c1 class, we suggest that these clusters are correlated with additional, yet

unknown sub classes in the GST domain.

In fact, after completing our experiments it was brought to our attention that one such new class was

recently defined in a different database, the InterPro database [2]. Out of the 95 proteins available for this
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Table 11.7: Results for symmetric sIB: Indicative features for GST protein classes. The left column indicates the
index of the cluster in TR (indices are the same as in Table 11.6) and the most dominant class in this cluster. The
second column indicates the index of the cluster in TF for which p(tF j tR) is maximized (denoted by t�F ). The next
column indicates this maximizing value, i.e., p(t�F j tR). Results are presented only when this value is greater than 0:8,
indicating high coupling between the feature cluster and the protein cluster. We further sort all features by p(f j t�F )
and present the top three features in the next column. The last five columns indicate for each of these features, its
relative frequency in all five classes (estimated as the number of occurrences of this feature in proteins from the class,
divided by the total number of occurrences of all features in this class). As can be seen in the table, the extracted
features are correlated with the biological class associated with the protein cluster, tR. Recall that these results are
based on an entirely unsupervised analysis.TR value t�F p(t�F j tR) Feature p(f j t�F ) c1 c2 c3 c4 c5tR7 (c2) tF10 0.91 RYLA 0.022 0.002 0.009 0 0.002 0

GRGR 0.020 0.001 0.006 0.005 0 0
NGRG 0.019 0.001 0.006 0.003 0 0tR9 (c4) tF8 0.89 FPNL 0.025 0.001 0 0 0.014 0
AILR 0.018 0.001 0 0 0.007 0.006
SNAI 0.017 0.001 0 0 0.008 0.004tR10 (c5) tF2 0.85 LDLL 0.019 0.001 0 0.001 0 0.006

SFAD 0.017 0.001 0 0 0 0.006

FETL 0.017 0.001 0 0 0 0.006tR8 (c3) tF1 0.85 FPLL 0.018 0 0 0.007 0 0.008

YGKD 0.017 0.001 0 0.007 0 0.005
AAGV 0.016 0.001 0 0.006 0 0tR5 (c1) tF9 0.83 TLVD 0.015 0.003 0 0 0 0
WESR 0.015 0.003 0 0 0 0
EFLK 0.015 0.002 0 0 0.002 0tR4 (c1) tF5 0.80 IPVL 0.010 0.002 0 0 0 0
ARFW 0.010 0.002 0 0 0 0
KIPV 0.009 0.002 0 0 0 0
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Figure 11.3: Application of the symmetric aIB to the GST protein dataset. The learned protein cluster hierarchy,TR is presented from jTRj = 10 and below. In each cluster the number of proteins from every class is indicated.
For example, in the extreme right (upper) cluster there are 39 proteins from the class c3 and a single protein from
the unlabeled class c1. In general, the right branches correspond to proteins from the classes c2; c3 and c4. The left
branches correspond to proteins from the class c5 and from the unlabeled class, c1. After completing the experiments
we found out that 36 of the proteins in this class were recently labeled as Omega class. This class is denoted by c6 in
the figure. Note that all its proteins were clustered in the three left-most clusters.

new (Omega) class, 36 were present in our data (labeled as c1). 7 In Figure 11.3 we see that these 36
proteins are present in three (“c1”) clusters, which are all merged together in a later stage (with no additional

clusters). Note especially that one of these clusters consists of 26 Omega proteins and 15 unlabeled C1
proteins. This suggests that at least some of these 15 proteins will also be identified as Omega class proteins

in the future.

11.3 Triplet IB application

We conclude this chapter with a simple application of the triplet IB in the context of natural language

modeling. We consider the specification of Gin and G(a)out of Figure 8.2 (lower panel) and the first variational

7Currently this class is also defined in the PRINTS database [4]. However, since the 16 proteins available for it were included

among the 95 available from InterPro, we used the InterPro data for this class.
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principle given in Eq. (8.2). As already mentioned in Section 8.4.3, equivalently we may consider the

specification G(b)out in the same figure and the alternative variational principle, Eq. (8.3). In both cases we

face the problem of maximizingL = I(Tp; Tn;Y )� ��1(I(Tp;Xp) + I(Tn;Xn)) : (11.5)

Due to similar complexity considerations as those mentioned in Section 11.1, the natural and most simple

choice in this case is to use the sIB algorithm. Using Theorem 10.3.3 we find that the relevant distortion

measure is given by�L(tp̀; trp) = p(�tp) � (Ep(�j�tp)[JS�tn [p(y j tn; tp̀); p(y j tn; trp)]]� ��1H(�)) ; (11.6)

and an analogous expression for mergers in Tn.

11.3.1 Triplet sIB for natural language processing

To collect the input joint statistics we used the seven Tarzan books by E. R. Burroughs, available from

the Gutenberg project. These are Tarzan and the Jewels of Opar, Tarzan of the Apes, Tarzan the Terrible,

Tarzan the Untamed, The Beasts of Tarzan, The Jungle Tales of Tarzan, and The Return of Tarzan. We

followed the same pre-processing steps as in Section 11.1.1, ending up with a sequence of 580; 806 words

taken from a vocabulary of 19; 458 distinct words. We defined three random variables, corresponding to

the previous, current and the next word in the sequence. We denote these variables by Wp; W; and Wn;
respectively. To avoid complexity difficulties we defined W to be the set of ten most frequent words in the

above books, which are not stop-words. Specifically, these were ’apemans’, ’apes’, ’eyes’, ’girl’, ’great’,

’jungle’ ’tarzan’, ’time’, ’two’ and ’way’. Hence, we considered word triplets in which the middle word

was one of these ten words. After ignoring triplets with less than three occurrences, we had 672 different

triplets with a total of 4; 479 occurrences. In these triplets, the number of distinct first-words was 90 and

the number of distinct last-words was 233. Thus, after simple normalization we had an estimated joint

distribution p(wp; w;wn) with jWpj = 90; jWj = 10; jWnj = 233.

Given these data we applied the triplet sIB algorithm to construct two systems of clusters: Tp for the first-

word in the triplets, and Tn for the last-word in the triplets. We set jTpj = 10; jTnj = 10, and since this

setting already implies significant compression we were able to take ��1 = 0 and simply concentrate on

maximizing I(Tp; Tn;W ). As in the symmetric IB case, a direct random initialization of both Tp and Tn
might be problematic since in this case the first mergers will take place based on an effectively random joint

distribution (see Eq. (11.6)). Hence, we randomly initialize Tp and optimize it using the original single-

sided sIB algorithm, such that I(Tp;W ) is maximized. Similarly, we initialize Tn such that I(Tn;W ) is

maximized. Using these initializations and the general scheme described in Figure 10.4, we optimize both

systems of clusters until they converge to a local maximum of I(Tp; Tn;W ). We repeat this procedure for50 different initializations to extract different locally optimal solutions.

In terms of information, each of these 50 solutions preserved more than 91% of the original information,I(Wp;Wn;W ) = 1:63. This result is of special interest, taking into account that the dimensions of the joint

distribution p(tp; w; tn) are more than 200 times smaller than those of the original matrix, p(wp; w;wn). The

best solution preserved about 93:5% of the original information and we further concentrate on this solution.

In Table 11.8 we present for every w 2 W , the couple of clusters, t�p; t�n for which p(tp; w; tn) is

maximized. For each such couple we sort all members, wp 2 t�p; wn 2 t�n by p(w j wp; wn) and present

the top four pairs. In many cases these pairs are indicative of the “in-between” word, w, which reflects howTp and Tn preserve the information about W .

We further validate the predictive power of Tp and Tn about W by the following experiment, in which we

scan another book by E. R. Burroughs (again, taken from the Gutenberg project), which is The Son of Tarzan.

Note that this book was not used during our “training”, where we estimated p(wp; w;wn) and extracted Tp
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Table 11.8: Results for triplet sIB. In the left column we present the word w 2 W . The next two columns indicate the
couple of clusters, t�p 2 Tp; t�n 2 Tn for which p(tp; w; tn) is maximized. This maximizing value is presented in the
fourth column. The next three columns indicate the four pairs of words, wp 2 t�p; wn 2 t�n for which p(w j wp; wn)
is maximized, where the middle word is repeated here for convenience (ties are solved by a further sorting with respect
to p(wp; wn)). The last column presents the probability of the middle word given these pairs.W value t�p t�n p(t�p; w; t�n) Wp value W value Wn value p(w j wp; wn)

apeman tp3 tn3 0.05 the apeman leaped 0.67
the apeman knew 0.64
the apeman took 0.63
the apeman realized 0.62

apes tp3 tn3 0.03 the apes mighty 0.63
the apes became 0.50
the apes did 0.50
the apes sat 0.44

eyes tp6 tn3 0.02 his eyes were 1.00
his eyes wandered 1.00
his eyes had 1.00
his eyes narrowed 1.00

girl tp3 tn6 0.02 the girl shuddered 1.00
the girl cast 1.00
the girl heard 1.00
the girl asked 1.00

great tp3 tn2 0.07 the great apes 1.00
the great beast 1.00
the great ape 1.00
the great cat 1.00

jungle tp3 tn7 0.03 the jungle before 0.73
the jungle his 0.63
the jungle there 0.63
the jungle as 0.50

tarzan tp8 tn3 0.04 which tarzan had 1.00
as tarzan had 1.00
which tarzan was 1.00
but tarzan was 1.00

time tp5 tn10 0.02 this time he 1.00
this time the 1.00
long time he 1.00
same time he 1.00

two tp3 tn1 0.02 the two men 1.00
the two priests 1.00
the two approached 1.00
the two lay 1.00

way tp6 tn5 0.01 his way with 1.00
his way toward 0.77
his way to 0.73
her way to 0.33
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and Tn. For every occurrence in this book of one of the ten words inW , we try to predict it using its two

immediate neighbors, in several different ways. Let wp and wn be the previous and next word, before and

after a word w, respectively. If these two words occurred in our training data, 8 i.e., wp 2 Wp; wn 2 Wn
then their assignments in Tp; Tn define a specific couple of clusters, tp 2 Tp; tn 2 Tn. Given this couple,

we predict the in-between word to be ŵ = argmaxwp(w j tp; tn). Given these predictions, for everyw 2 W we can calculate the following quantities: A1(w) defines the number of w occurrences correctly

predicted as w (true-positives), A2(w) defines the number of words incorrectly predicted as w (false-

positives), and A3(w) defines the number of w occurrences incorrectly not predicted as w (false-negatives).

The precision and recall for w is then defined as Prec(w) = A1(w)A1(w)+A2(w) ; Rec(w) = A1(w)A1(w)+A3(w) , where

the micro-averaged precision and recall are defined by (see Section 4.5.2)< Prec >= PwA1(w)Pw A1(w) +A2(w) ; < Rec >= Pw A1(w)PwA1(w) +A3(w) : (11.7)

for purposes of comparison we applied two additional prediction schemes. The first uses the original joint

statistics, p(wp; w;wn), estimated by the training data. Namely, given wp and wn we predict the in-between

word to be ŵ = argmaxwp(w j wp; wn). The second and third use just one neighbor for the prediction.

Namely, given wp we predict the next word to be ŵ = argmaxwp(w j wp), and given wn we predict the

previous word to be ŵ = argmaxwp(w j wn). In Table 11.9 we present the precision and recall for all the

ten words in W , using all the above mentioned prediction schemes. Interestingly, in spite of the significant

compression implied by Tp and Tn, the (averaged) precision of its predictions is similar to those obtained

using the original complete joint statistics. Moreover, in terms of recall, predictions that use the triplet IB

clusters are (on the average) superior to those using the original Wp; Wn variables. This is probably due to

the fact that while using p(wp; w;wn) to predict the in-between word in a specific triplet, this specific triplet

must occur in the training data. On the other hand, while using p(tp; w; tn) a prediction can be provided even

for new triplets, for which only their individual components occurred in the training data. Lastly, we observe

that using both word neighbors, instead of using only the previous or next word, significantly improves the

precision of the predictions.

It should be noted that in principle this type of application might be useful in tasks like speech recogni-

tion, optical character recognition and more. Moreover, for these tasks typically it is not feasible to use

the original joint distribution due to its high dimensionality. Using the triplet IB clusters might be a rea-

sonable alternative in these situations, which is dramatically less demanding. Additionally, for biological

sequence data, the analysis demonstrated in this section might be useful to gain further insights about the

data properties.

8Note that this is not necessarily true, since we test over a new sequence. In these cases no prediction is provided.
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Table 11.9: Precision and Recall results for triplet sIB. The left column indicates the wordw 2 W and in parentheses
its number of occurrences in the test sequence. The next column presents the precision of the predictions while
using the triplet sIB clusters statistics, i.e., p(w j tp; tn). The third column presents the precision while using the
original joint statistics, i.e., p(w j wp; wn). Note that this joint distribution matrix is about 200 times larger than the
previous one. The next two columns present the precision while using only one word neighbor for the prediction, i.e.,p(w j wp) and p(w j wn), respectively. The last four columns indicate the recall of the predictions while using these
four different prediction schemes. The last row presents the micro-averaged precision and recall.

Precision RecallW Tp; Tn Wp;Wn Wp Wn Tp; Tn Wp;Wn Wp Wn
apeman (33) 5.9 7.4 4.3 1.5 24.2 30.3 81.8 3.0

apes (78) 43.3 25.6 93.6 11.4 16.7 14.1 37.2 6.4

eyes (177) 82.6 80.7 58.0 65.3 32.2 28.3 49.2 18.1

girl (240) 43.3 30.0 0.0 37.5 5.4 1.3 0.0 1.3

great (219) 91.7 92.0 58.0 91.0 50.2 47.5 21.5 55.7

jungle (241) 49.3 53.7 0.0 37.6 27.4 24.1 0.0 18.3

tarzan (48) 41.3 66.7 30.9 7.7 39.6 25.0 60.4 47.9

time (145) 70.4 82.2 70.6 31.1 47.6 25.5 53.1 34.5

two (148) 41.0 92.3 84.6 91.7 10.8 8.1 7.4 14.9

way (101) 59.6 80.8 61.3 61.3 27.7 20.8 18.8 18.8

Micro-averaged 53.3 55.4 28.2 34.3 27.9 22.2 22.8 22.5
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Chapter 12

Discussion and Future Work

In the second part of this thesis, we presented a new framework for data analysis. This framework gener-

alizes the original single-sided IB principle. It enables one to define and solve a rich and novel family of

optimization problems, which are all motivated by a single information theoretic principle, the multivariate

IB principle. On the practical level, it suggests different ways to extract structure from data under a well

defined theoretical framework.

We presented examples for several IB like constructions, including parallel IB, symmetric IB, and triplet

IB. It should be clear, though, that future research could elucidate further problems and their applications.

Similarly to the single-sided IB-functional, the multivariate IB-functional is not convex with all of its

arguments simultaneously. Thus, to construct solutions in practice one must employ different heuristics. We

showed how to extend all the four algorithmic approaches suggested to the original IB principle into the

multivariate scenario. We further demonstrated their usability to analyze real world data through different

multivariate IB constructions. For each of these approaches, the specification of the algorithm is completed,

once a specification of Gin and Gout is provided.

Much of the discussion related to the single-sided IB principle (Chapter 6) is relevant to the multivariate

principle as well. For example, finite sample effects that were discussed in Section 6.1 might be even

more acute when dealing with joint distributions over more than two random variables. Nonetheless, the

alternative interpretation of the aIB and the sIB algorithms (relating them to the two-sample problem) is

relevant for their multivariate extensions as well. The discussion regarding model selection issues and

how to avoid over-fit (Section 6.2.2) is also naturally extended in our context. In particular, generalization

considerations, similar to those suggested in [60] can be employed for estimating the maximal value of �
(or the maximal number of clusters) that should be used.

Many possible connections with other data analysis methods merit further investigation. For example,

the general structure of the multivariate iIB algorithm (Figure 10.1) is reminiscent of EM [24]. Moreover,

as discussed in Appendix A there are strong relationships between the original IB problem and Maximum

Likelihood estimation for mixture models. Hence, it is natural to look for further relationships between

generative models and different multivariate IB problems. Specifically, this might suggest new generative

models that are worth exploring. Other connections are, for example, to other dimensionality reduction

techniques, such as Independent Component Analysis (ICA) [7]. The parallel IB provides an ICA-like

decomposition with an important distinction. In contrast to ICA, it is aimed at preserving information about

specific aspects of the data, defined by the user in specifying Gout .
The suggested multivariate IB framework addresses a rich family of optimization problems that involve

minimization versus maximization of mutual information terms. However, this family is not complete in the

sense that possible related problems are not captured by our formulation. The discriminative IB [19], which

we already mentioned in Chapter 6 is one example. Recall that in this case the relevant information term

(which we would like to maximize) is composed as a difference between two mutual information terms.
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Nonetheless, it seems that a simple extension of our framework, where we define three networks: Gin , G+out
and G�out , would be able to capture such discriminative problems as well. Specifically, in this case instead

of minimizing L(1) = IGin � �IGout we may consider the minimization of IGin � �+IG+out + ��IG�out ,
where �+ and �� are positive Lagrange multipliers, IG+out refers to the information terms that we would like

to maximize, and IG�out refers to the (“irrelevant”) information terms that we wish to minimize. Extending

our theoretical analysis to handle this situation seems to be straightforward.

12.1 Future Research

There are many possible directions for future research. Below we mention several examples.

12.1.1 Multivariate relevance-compression function and specifying Gin and Gout
In the original IB problem the trade-off in the IB-functional is quantified by a single function, the relevance-

compression function (Definition 2.3.1). As explained in Section 2.3 and illustrated in Figure 2.6, this

function characterizes how well one can compress the variable X while preserving the information about

the relevant variable Y . An important issue is to extend this discussion to the multivariate case. A possible

way to do this is through the following definition.

Definition 12.1.1: The multivariate relevance-compression function for a given joint distribution p(x) and

a given specification of Gin and Gout , is defined asR̂(D̂) � minffp(tjjuj)gkj=1: IGout�D̂g IGin ; (12.1)

where p(x; t) j= Gin and the minimization is over all the normalized conditional distributions, fp(tj juj)gkj=1 for which the constraint is satisfied.

As in the single-sided IB case, this function separates between an achievable and a non-achievable region in

a multivariate relevance-compression plane. In particular it is easy to verify that Definition 2.3.1 is a special

case of this definition with Gin and G(a)out of Figure 8.1. Additionally, is seems straightforward to extend

Proposition 2.3.2, to show that, in general, R̂(D̂) is a non-decreasing concave function of D̂, where its slope

determined through ÆD̂ÆR̂ = ��1.

However, an important distinction is that this definition requires the specification ofGin and Gout . That is,

given some joint distribution p(x), there are many different possible (multivariate) relevance-compression

functions, each one of them characterizes the “structure” in p(x) in a different way. The underlying as-

sumption in our formulation is that Gin and Gout are provided as part of the problem setup. Nonethe-

less, specifying these two networks might be far from trivial. For example, in the parallel IB case, whereT = fT1; : : : ; Tkg , setting the “correct” value of k can be seen as a model selection task, and certainly not

an easy one.

An important goal is to develop automatic methods for choosing “good” Gin and Gout specifications. Pos-

sible guidance can come from the above mentioned multivariate relevance-compression function. Specifi-

cally, it seems reasonable to prefer specifications that yield “better” relevance-compression curves, where

“better” in our context means a higher curve in the multivariate relevance-compression plane (see Figure 2.6,

right panel). Clearly, this issue calls for further research.

12.1.2 Parametric IB

Possible choices of Gin and Gout imply that our T variables will produce redundant (as opposed to com-

pressed) representations of the observed X variables. Consider, for example, the parallel IB (Figure 8.2,
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upper panel) where jTT j = �kj=1jTj j � jX j. This is a typical situation for large enough k, even if every Tj
has only two possible values (or clusters). In this construction, a trivial solution is available, where we assign

each X value with some unique T value, and by that preserve all the relevant information about Y . Using

a parametric variant of our framework serves to avoid these situations and make these cases challenging as

well.

To achieve this we need to consider the alternative multivariate IB principle, L(2), discussed in Section 8.2.

Recall that in this formulation we aim to minimize IGin while at the same time minimize the KL divergence

with respect to the target class, defined as the family of distributions which are consistent with Gout . 1 In

principle, we might define this family not only through the independences implied by Gout , but also through

some specific parametric form, which is further induced over p(x; t). In this case, minimizing DKL[pjjGout ]
becomes a question of finding p(x; t) with minimum violation of the conditional independences implied byGout and with the appropriate parametric form. In particular, this means that the number of free parameters

can be drastically reduced, hence avoiding possible redundant solutions. A detailed discussion of this issue

will be given elsewhere.

12.1.3 Relation to network information theory

The single-sided IB is intimately related to rate distortion theory, as we discussed in detail in Chapter 2. In

particular, we noted in Section 6.2.1 that it might be possible to formulate the original IB problem through

a “relevant-coding theorem”, somewhat similarly to the rate distortion theorem.

Extending this discussion in our context, it seems that the multivariate IB principle is related to network

information theory (see, e.g., [20], Chapter 14). This theory is concerned with the analysis of a commu-

nication system between many senders and receivers, that includes elements as cooperation, interference

and feedback. The general problem of this theory can be stated as follows. Given a channel transition ma-

trix which describes the effects of the interference and the noise in the network, decide whether or not the

sources can be transmitted over the channel. This problem involves data compression as well as finding the

capacity region of the network, and except for various special cases it has not yet been solved ([20], page

374).

Hence, the search for a “multivariate relevant-coding theorem”, needs to be done on a shakier ground.

While for the single-sided IB principle, the known rate distortion theorem can provide considerable guid-

ance, this is not true for the multivariate IB. Nonetheless, an intriguing open question is whether it is possi-

ble to formulate the multivariate IB principle through a “multivariate relevant-coding” theorem. Obviously

such a formulation will require a definition of a “multivariate relevant code”, associated with a multivariate

relevant-distortion term which can be derived directly from p(x; t) (and will be related to IGout in our con-

text). As in the single-sided IB case, this issue obviously requires a separate investigation, and is beyond

the scope of this thesis. Nonetheless, we note here that such a rigorous formulation of the multivariate IB

principle might provide some hints in regard to open problems in network information theory.

1Note that this KL minimization is in general different from the standard KL minimization in maximum likelihood estimation.

See Section A.5 for a discussion.
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Epilogue

The volume of available data in a variety of domains has grown rapidly over the last few years. Examples

include the consistent growth in the amount of on-line text due to the expansion of the World Wide Web, and

the dramatic increase in the available genomic information due to the development of new technologies for

gathering such data. As a result, there is a crucial need for complex data analysis methods. A major goal in

this context is the development of new unsupervised dimensionality reduction methods that serve to reveal

the inherent hidden structure in a given body of complex data. One important class of such methods are

clustering techniques. Although numerous clustering algorithms exist, typically, the results they generate

are hard to interpret. Clearly, a sound interpretation should arise from a combination of a clear intuition

on the one hand, accompanied by well defined theoretical groundwork on the other. We argue that the IB

method, as described in this thesis, responds satisfactorily to both criteria.

More specifically, the IB principle leads to a rich theoretical framework which is nicely analogous, and

in some sense unifies, the well established rate distortion theory on one hand, as well as some aspects of

channel coding theory on the other. At the same time, the basic idea is simple and intuitive: We seek

clusters that are as informative (as possible) about some predefined target, or relevant variable. In particular,

we argue that this prerequisite of specifying the relevant variable in advance, suggests a natural scheme of

posing clustering problems which immediately leads to an objective interpretation of the resulting clusters

in terms of the information they capture about this relevant variable.

The first half of this thesis makes several contributions. First, we provide a primary detailed review of

the original IB method. Second, we suggest new algorithms that prove to be crucial in order to construct

solutions in practice to the IB problem. Last, we describe rich empirical evidence that establish the method

as a major data analysis approach that successfully competes, and usually outperforms previous standard

methods.

The contributions of the second half of this thesis are as follows. First, we fully extend the theory of the

original IB framework to cope with any finite number of variables. We further extend all the algorithmic

approaches suggested for the original problem to handle multivariate IB constructions. Finally, we demon-

strate the applicability of these multivariate algorithms in solving different data analysis tasks over a variety

of real world datasets.

This multivariate formulation defines a rich family of novel optimization problems which are all unified

under a single information-theoretic principle, the multivariate IB principle. In particular this allows us to

extract structure from data in many different ways. In the second part of this thesis we investigated only

three examples, but we believe that this is only the tip of the iceberg.

An immediate corollary of this analysis is that the general term of clustering conceals a broad family of

many distinct problems which deserve special consideration. To the best of our knowledge, the multivariate

IB framework described in this thesis is the first successful attempt to define these sub-problems, solve them,

and demonstrate their importance.
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Appendix A

Maximum Likelihood and the Information

Bottleneck

The IB method provides an information theoretic formulation to address clustering problems. However, a

standard and well established approach to clustering is Maximum likelihood (ML) of mixture models. In

this appendix, following [79], we investigate how the two methods are related.

In mixture modeling we assume the measurements y for each x come from one of jT j possible statistical

sources, each with its own parameters �t (e.g. �t; �t in Gaussian mixtures). Clustering corresponds to first

finding the maximum likelihood estimates of �t and then using these parameters to calculate the posterior

probability that the measurements at x were generated by each source. These posterior probabilities define

a “soft” clustering of X .

While the ML and the IB approaches try to solve the same problem, the viewpoints are quite different. In

the information theoretic approach no assumption is made regarding how the data were generated but we

assume that the joint distribution p(x; y) is known exactly. In the maximum likelihood approach we assume

a specific generative model for the data and assume we have samples n(x; y), not the true probability.

In spite of these conceptual differences we show that under a proper choice of the generative model, these

two problems are strongly related. Specifically we use the multinomial mixture model (a.k.a. the one-sided

clustering model [44] or the asymmetric clustering model [61]), and provide a simple “mapping” between

the concepts of one problem to the concepts of the other. Using this mapping we show that in general,

searching for a solution to one problem induces a search in the solution space of the other. Furthermore, for

uniform input distribution over X or for large sample sizes, we show that the problems are mathematically

equivalent. Specifically, in these cases, every fixed point of the IB-functional defines a fixed point of the

likelihood and vice versa. Moreover, the values of the functionals at the fixed points are equal under simple

linear transformations. As a result, in these cases, every algorithm that solves one of the problems induces a

solution to the other.

A.1 Short review of ML for mixture models

In the Gaussian mixture model we generate an observation y at index x by first choosing a label t(x) by

sampling from �(t) and then sampling y(x) from a Gaussian with mean �t(x) and variance �2t(x). In a

multinomial mixture model, we assume that y takes on discrete values and sample it from a multinomial

distribution �(yjt(x)). In the one-sided clustering model [44] [61] we further assume that there can be

multiple observations y corresponding to a single x but they are all sampled from the same multinomial

distribution. This model can be described through the following generative process:� for each x choose a unique label t(x) by sampling from �(t).
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� For k = 1 : N
– choose xk by sampling from 
(x).
– choose yk by sampling from �(yjt(xk)) and increase n(xk; yk) by one.

Note that in this model, observations (xk; yk) for a specific x 2 X are conditionally independent given t(x).
Let ~t = (t; :::; tjX j) denote the random vector that defines the (typically hidden) labels for all x 2 X . The

complete likelihood is given by:p(x; y;~t : �; �; 
) = �jX ji=1�(t(xi))�Nk=1
(xk)�(ykjt(xk)) (A.1)= �jX ji=1�(t(xi))�jX ji=1�jYjj=1[
(xi)�(yjjt(xi))]n(xi;yj) ; (A.2)

where n(xi; yj) is a count matrix.

The (true) likelihood is defined through summing over all the possible choices of ~t,L(n(x; y);�; �; 
) =X~t p(x; y;~t : �; �; 
) : (A.3)

Given n(x; y), the goal of ML estimation is to find an assignment for the parameters �(t); �(y j t) and 
(x)
such that this likelihood is (at least locally) maximized. Since it is easy to show that the ML estimate for
(x) is just the empirical counts n(x)=N , we further focus only on estimating �; �.

A standard algorithm for this purpose is the EM algorithm [24]. Informally, in the E-step we replace the

missing value of t(x) by its distribution p(t(x)jy(x)) which we denote here by px(t). In the M -step we

use that distribution to reestimate �; �. Using standard derivation it is easy to verify that in our context theE-step is defined throughpx(t) = k(x)�(t)ePy n(x;y) log �(yjt) (A.4)= k(x)�(t)en(x)Py n(yjx) log �(yjt) (A.5)= k2(x)�(t)en(x)[Py n(yjx) log �(yjt)�Py n(yjx) log n(yjx)] (A.6)= k2(x)�(t)e�n(x)DKL [n(yjx)jj�(yjt)] ; (A.7)

where k(x) and k2(x) are normalization factors. The M -step is simply given by8<: �(t) /Px px(t)�(y j t) /Px n(x; y)px(t) : (A.8)

Iterating over these EM steps is guaranteed to converge to a local fixed point of the likelihood. Moreover,

every fixed point of the likelihood defines a fixed point of this algorithm.

An alternative derivation [54] is to define the free energy functional:F (n(x; y) : q; �; �) = �Xt;x px(t)"log �(t) +Xy n(x; y) log �(y j t)# (A.9)+Xt;x px(t) log px(t) : (A.10)

TheE-step then involves minimizing F with respect to q while the M -step minimizes it with respect to �; �.

Since this functional is bounded (under mild conditions), the EM algorithm will converge to a local fixed

point of the free energy which corresponds to a fixed point of the likelihood. At these fixed points, the free

energy will become identical to � logL(n(x; y) : �; �).
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A.2 The ML$ IB mapping

As already mentioned, the IB problem and the ML problem stem from different motivations and involve

different settings. Therefore, it is not entirely clear what is the purpose of mapping between these problems.

For our needs this mapping is defined to achieve two goals. The first is theoretically motivated: using the

mapping we will show some mathematical equivalence between both problems. The second is practically

motivated, where we will show that algorithms designed for one problem are (in some cases) suitable for

solving the other.

A natural mapping would be to identify each distribution with its corresponding one. However, this direct

mapping is problematic. Assume that we are mapping from ML to IB. If we directly map px(t); �(t); �(y j t)
to p(t j x); p(t); p(y j t), respectively, obviously there is no guarantee that the IB Markovian relation

(Eq. (2.11)) will hold once we complete the mapping. Specifically, using this assumption to extract p(t)
through Eq. (2.12) will in general result in a different prior over T , then by simply defining p(t) = �(t).
However, once we define p(t j x) and p(x; y), the other distributions can be extracted through the ”IB-step”

defined in Eqs. (2.12). Moreover, as already shown in Section 3.1.1 performing this step can only improve

(decrease) the corresponding IB-functional.

A similar phenomenon is present once we map from IB to ML. Although in principle there are no “con-

sistency” problems by mapping directly, we know that once we define px(t) and n(x; y), we can extract �
and � by a simple M -step. This step, by definition, will only improve the likelihood, which is our goal in

this setting.

The only remaining issue is to define a corresponding component in the ML setting to the trade-off pa-

rameter � of the IB problem. As we will show in the next section, the natural choice for this purpose is the

sample size, N =Px;y n(x; y).
Therefore, to summarize, we define the ML$ IB mapping bypx(t)$ p(t j x); 1N n(x; y)$ p(x; y); N $ r� ; (A.11)

where r is a (scaling) constant and the mapping is completed by performing an IB-step or an M -step ac-

cording to the mapping direction. Given this mapping, every search in the solution space of the IB problem

induces a search in the solution space of the ML problem, and vice versa.

Observation A.2.1 : When X is uniformly distributed (i.e., n(x) or p(x) are constant), the ML $ IB
mapping is equivalent for a direct mapping of each distribution to its corresponding one.

This observation stems directly from the fact that if X is uniformly distributed, then the IB-step defined in

Eqs. (2.12) and the M -step defined in Eqs. (A.8) are mathematically equivalent.

Observation A.2.2 : When X is uniformly distributed, the EM algorithm is equivalent to the iterative IB

(iIB) algorithm under the ML$ IB mapping with r = jXj .
Again, this observation is a direct result of the equivalence of the IB-step and the M -step for uniform prior

over X . Additionally, in this case n(x) = NjX j = Nr = �, hence Eq. (A.7) and Eq. (2.16) are also equivalent.

It is important to emphasize, though, that this equivalence only holds for a specific choice of � = n(x).
While clearly the iIB algorithm (and the IB problem in general) are meaningful for any value of �, there is

no such freedom (for good or worse) in the ML setting, and the exponential factor in EM must be n(x).
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A.3 Comparing ML and IB

A.3.1 Comparison for uniform p(x)
Theorem A.3.1 : When X is uniformly distributed and r = jX j, all the fixed points of the likelihood L
are mapped to all the fixed points of the IB-functional L with � = n(x). Moreover, at the fixed points,� logL / L+ c, with c constant.

Corollary A.3.2: When X is uniformly distributed, every algorithm which finds a fixed point of L, induces

a fixed point of L with � = n(x), and vice versa. When the algorithm finds several different fixed points, the

solution that maximizes L is mapped to the solution that minimizes L.

Proof: We prove the direction from ML to IB. The opposite direction is similar. We assume that we are

given observations n(x; y) where n(x) is constant, and �; � that define a fixed point of the likelihood L. As

a result, this is also a fixed point of the EM algorithm (where px(t) is defined through an E-step). Using

Observation A.2.2 it follows that this fixed-point is mapped to a fixed-point of Lwith � = n(x), as required.

Since at the fixed point, � logL = F , it is enough to show the relationship between F and L. RewritingF from Eq. (A.9) we getF (n(x; y) : q; �; �) =Xt;x px(t) log px(t)�(t) �Xt;y log �(y j t)Xx n(x; y)px(t) : (A.12)

Using the ML! IB mapping and Observation A.2.1 we getF =Xt;x p(t j x) log p(t j x)p(t) � r�Xt;y log p(y j t)Xx p(x; y)p(t j x) : (A.13)

Multiplying both sides by p(x) = 1jX j = r�1 and using the IB Markovian independence relation, we find

that r�1F = Xt;x p(x)p(t j x) log p(t j x)p(t) � �Xt;y p(t)p(y j t) log p(y j t) : (A.14)

Reducing a (constant) �H(Y ) = ��Pt;y p(t)p(y j t) log p(y) to both sides gives:r�1F � �H(Y ) = I(T ;X) � �I(T ;Y ) = L ; (A.15)

as required. We emphasize again that this equivalence is for a specific value of � = n(x).
Corollary A.3.3: When X is uniformly distributed and r = jX j, every algorithm decreases F , if and only

if it decreases L with � = n(x).
This corollary is a direct result of the above proof that showed the equivalence of the free energy of the

model and the IB functional (up to linear transformations).

A.3.2 Comparison for large sample size

The previous section dealt with the special case of uniform prior overX . In the following we provide similar

results for the general case, when N (or �) are large enough.
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Theorem A.3.4 : For N ! 1 (or � ! 1), all the fixed points of L are mapped to all the fixed points ofL, and vice versa. Moreover, at the fixed points, � logL / L+ c, with c constant.

Corollary A.3.5 : When N ! 1 every algorithm which finds a fixed point of L induces a fixed point ofL with � ! 1, and vice versa. When the algorithm finds several different fixed points, the solution that

maximizes L is mapped to the solution that minimize L.

Proof: Again, we only prove the direction from ML to IB as the opposite direction is similar. We are

given n(x; y) where N = Px;y n(x; y) ! 1 and �; � that define a fixed point of L. Using the E-step

in Eq.(A.7) we extract px(t), ending up with a fixed point of the EM algorithm. From N ! 1 followsn(x)!1 8x 2 X . Therefore, the mapping px(t) becomes deterministic:px(t) = � 1 t = argmint0DKL[n(yjx)jj�(yjt0)]0 otherwise.
(A.16)

Performing the ML ! IB mapping (including the IB-step), it is easy to verify that we get p(y j t) =�(y j t) (but p(t) 6= �(t) if the prior over X is not uniform). After completing the mapping we try to

update p(t j x) through Eq.(2.16). Since now � ! 1 it follows that p(t j x) will remain deterministic.

Specifically, pnew(t j x) = � 1 t = argmint0DKL[p(y j x)jjp(yjt0)]0 otherwise,
(A.17)

which is equal to its previous value. Therefore, we are at a fixed point of the iIB algorithm, and by that at a

fixed point of the IB functional L, as required.

To show that � logL / L+ c we note again that at the fixed point F = � logL. From Eq.(A.12) we see

that limN!1F = �Xt;y log �(y j t)Xx n(x; y)px(t) : (A.18)

Using the ML! IB mapping and similar algebra as above, we find thatlimN!1F = �r�I(T ;Y ) + r�H(Y ) = lim�!1 r(L+ �H(Y )) : (A.19)

Corollary A.3.6: When N !1 every algorithm decreases F , if and only if it decreases L with � !1.

How large must N (or �) be? We address this question through numeric simulations in the next section.

However, roughly speaking, the value of N for which the above results (approximately) hold is related to

the “amount of uniformity” in n(x). Specifically, a crucial step in the above proof assumed that each n(x)
is large enough such that px(t) becomes deterministic. Clearly, when n(x) is less uniform, achieving this

situation requires larger N values.

A.4 Simulations

We performed several different simulations using different IB and ML algorithms. Due to lack of space,

only one example is reported below. In this example we used the Multi101 subset of the 20NG corpus [47],

consisting of 500 documents randomly chosen from ten different discussion groups (see Section 4.5.1).

Denoting the documents by X and the words by Y , after the pre-processing described in Section 4.5.1 we

have jX j = 500; jYj = 2000; N = 43; 433; jT j = 10.
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Figure A.1: Progress of L and F for different � and N values, while running iIB and EM.

Since our main goal was to test for differences between IB and ML for different values of N (or �), we

further produced another dataset. In these data we randomly choose only about 5% of the word occurrences

for every document x 2 X , ending up with N = 2; 171.

For both datasets we clustered the documents into ten clusters, using both EM and the iIB algorithm (where

we took p(x; y) = 1N n(x; y); � = Nr ; r = jX j). For each algorithm we used the ML $ IB mapping to

calculate F and L during the process (e.g., for iIB, after each iteration we mapped from IB to ML, including

the M -step, and calculated F ). We repeated this procedure for 100 different initializations, for each dataset.

In these 200 restarts, we found that usually both algorithms improved both functionals monotonically.

Comparing the functionals during the process, we see that for the smaller sample size the differences are

indeed more evident (Figure A.1). Comparing the final values of the functionals (after 50 iterations, which

typically was enough for convergence), we see that in 58 out of 200 runs, iIB converged to a smaller value ofF than EM, and in 46 runs, EM converged to a smaller value of L. Hence, in some cases, iIB finds a better

ML solution or EM finds a better IB solution. We note that this phenomenon was much more common for

the large sample size case.

A.5 Discussion

While we have shown that the ML and IB approaches are equivalent under certain conditions, it is important

to keep in mind the different assumptions both approaches make regarding the joint distribution over x; y; t.
The mixture model (1) assumes that Y is independent of X given T (X) and (2) assumes that p(y j x) is

one of a small number (jT j) of possible conditional distributions. For this reason, the marginal probability

over x; y (i.e., p(x; y) : �; �)) is usually different from p̂(x; y) = 1N n(x; y). Indeed, an alternative view of

ML estimation is as minimizing DKL[p̂(x; y)jjL(n(x; y) : �; �)].
On the other hand, in the IB framework, T is defined through the IB Markovian independence relation:T $ X $ Y . Therefore, the solution space is the family of distributions for which this relation holds
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and the marginal distribution over x; y is consistent with the input. Interestingly, it is possible to give an

alternative formulation for the IB problem which also involves KL minimization (see Section 8.2). In this

formulation the IB problem is related to minimizing DKL[p(x; y; t)jjQ(x; y; t)], where Q(x; y; t) denotes

the family of distributions for which the mixture model assumption holds, X $ T $ Y . 1

In this sense, we may say that while solving the IB problem, we are trying to minimize the KL with

respect to the “ideal” world, in which T separates X from Y (and, thus, preserving all the information aboutY ). On the other hand, while solving the ML problem, we assume an “ideal” world, and try to minimize theKL with respect to the given marginal distribution p̂(x; y). Our theoretical analysis shows that under theML$ IB mapping, these two procedures are in some cases equivalent.

Once we are able to map between ML and IB, it should be interesting to try to adopt additional concepts

from one approach to the other. In the following we provide two such examples. In the IB framework, for

large enough �, the quality of a given solution is measured through
I(T ;Y )I(X;Y ) � 1. This measure provides a

theoretical upper bound, which can be used for purposes of model selection and more. Using theML$ IB
mapping, we can now adopt this measure for the ML estimation problem (for large enough N ); In EM, the

exponential factor n(x) in general depends on x. However, its analogous component in the IB framework,�, obviously does not. Nonetheless, in principle it is possible to reformulate the IB problem while defining� = �(x) (without changing the form of the optimal solution). We leave this issue for future research.

We have shown that for the multinomial mixture model, ML and IB are equivalent in some cases. It is

worth noting that in principle, by choosing a different generative model, one may find further equivalences.

Additionally, in Part III we described (and solved) a new family of IB-like variational problems. A natural

question is to look for further generative models that can be mapped to these multivariate IB problems, and

we are working in this direction.

1Recall that the KL with respect to the family Q is defined as the minimum over all the members in Q. Therefore, here, both
arguments of the KL change during the process, and the distributions involved in the minimization are over all the three random

variables.
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Appendix B

Cluster accuracy and mutual information

In Section 4.5 we provided empirical evidence suggesting that IB algorithms (and in particular sIB) can

extract highly “accurate” document clusters, in an entirely unsupervised manner. More precisely, the clusters

extracted by sIB were typically well correlated with the existing topics in the corpus.

Nonetheless, these results call for further investigation. On the one hand, the sIB algorithm tries to max-

imize the mutual information between the document clusters and the words (i.e., the features) appearing in

these documents, I(Td;W ). On the other hand, the extracted clusters are found to be correlated with the

topics of the documents, which implies high I(Td;C) values, where C is a random variable corresponding

to these (hidden) topics (see [26] for a detailed discussion). Although C is not explicitly present in our

setting, clearly maximizing the information about W also improves (at least approximately) the information

about C . In the following we provide some theoretical analysis to motivate these findings.

B.1 Relating maximizing information to maximizing precision

We assume the following setting. We are given a set of objects x 2 X which are represented as conditional

distributions p(y j x). The true (unknown) classification of these objects induces a partition of X intoK disjoint classes where each class is characterized through a distribution p(y j c); c 2 C . Note that this

setting is consistent with the generative model discussed in Appendix A. Denoting the class of some specificx 2 X by c(x) we assume the following (strong) asymptotic assumption: p(y j x) = p(y j c(x)) 8x 2 X .

In the context of document classification p(y j x) is typically estimated as the relative frequencies of the

words y 2 Y in some document x while p(y j c(x)) represents the relative frequencies of the words over all

the documents that belong to the class c(x). Therefore, the violation of this assumption becomes less severe

as the sample size for p(y j x) (i.e., the length of the document x) is increased.

Using the labeling scheme described in Section 4.5.2, for any given partition T , the micro-averaged preci-

sion, Prec(T ), is well defined. In particular, if we denote by T � the partition which is perfectly correlated

with the true classes, then clearly Prec(T �) = 1.

Note that every partition T defines a set of “hard” membership probabilities p(t j x). These probabilities

in turn, defines through Eqs. (2.12) (using the IB Markovian independence relation) the set of centroid

distributions p(y j t) and prior distribution p(t). Therefore, for any partition T , the mutual informationI(T ;Y ) is well defined. Under the above assumption we get:

Proposition B.1.1: I(T �;Y ) > I(T ;Y ) for any partition T 6= T � such that jT j = K .

Thus, the “true” partition T �, maximizes the relevant information, and by definition the precision.
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Proof: Let T be some (“hard”) partition of X . The conditional entropy about Y can be written as:H(Y j T ) = �Xt;y p(y; t) log p(y j t)= �Xx;t;y p(x; y; t) log p(y j t)= �Xx;t;y p(x; y)p(t j x) log p(y j t)= �Xx;y p(x; y) log p(y j t(x)) ;
where in the third step we used the IB Markovian relation and in the last step we used the fact that T induces

a “hard” partition.

Now, let T be some partition which is different from T � (that is the difference between the two partitions

is more than just trivial permutations). Then,I(T �;Y )� I(T ;Y ) = H(Y j T )�H(Y j T �)= Xx;y p(x; y) log p(y j t�(x))�Xx;y p(x; y) log p(y j t(x))= Xx;y p(x; y) log p(y j t�(x))p(y j t(x)) : (B.1)

However, since T � is the true (“hard”) partition, then for tk 2 T �, using the IB Markovian relation we

have p(y; tk) = Xx p(x; y; tk)= Xx p(x)p(y j x)p(tk j x)= Xx2tk p(x)p(y j x)= Xx2tk p(x)p(y j ck)= p(y j ck)Xx2tk p(x)= p(y j ck)p(tk) :
That is, for any tk 2 T �, p(y j tk) = p(y j ck), where ck is the corresponding class in C. Setting this in

Eq. (B.1) we obtain I(T �;Y )� I(T ;Y ) =Xx;y p(x; y) log p(y j c(x))p(y j t(x)) :
However, using again our asymptotic assumption we know that p(y j c(x)) = p(y j x); 8x 2 X , thus we

obtain I(T �;Y )� I(T ;Y ) = Xx;y p(x)p(y j x) log p(y j x)p(y j t(x))= Xx p(x)DKL[p(y j x)jjp(y j t(x))] � 0 : (B.2)

131



Note that equality holds if and only if p(y j t(x)) = p(y j x); 8x 2 X , which implies T � T �. Thus, for T
which is different from T � we have I(T �;Y ) > I(T ;Y ), as required.

Nonetheless, this proposition refers only to the perfect (true) partition and does not provides insight about

the information preserved by other partitions. In the following, we show that a partition is (on the average)

more “similar” to the true partition if and only if it is also more informative about Y . We define the distortion

of some partition T with respect to the true classification by D(T ) � Ep(x)[DKL[p(y j c(x))jjp(y j t(x))]].
Based on our asymptotic assumption, we then get:

Proposition B.1.2: D(T (1)) � D(T (2))() I(T (1);Y ) � I(T (2);Y )
Hence, roughly speaking, seeking partitions which are more similar to the true classification is equivalent to

seeking partitions that are more informative about the feature space Y .

Proof: Using Eq. (B.2) and our asymptotic assumption we haveI(T �;Y )� I(T ;Y ) = Xx p(x)DKL[p(y j c(x))jjp(y j t(x))]= D(T ) :
Therefore, for any two “hard” partitions, T (1) and T (2) we obtainI(T (1);Y )� I(T (2);Y ) = I(T �;Y )� I(T (2);Y )� (I(T �;Y )� I(T (1);Y ))= D(T (2))�D(T (1)) ;
as required.

A natural question is whether we can relax our asymptotic assumption while still proving the above state-

ments, which we leave for future research.
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Appendix C

Proofs for Part II

In this appendix we sketch the proofs of the theorems and propositions mentioned throughout Part II. The

order of the proofs follows the order of appearance in the text.

C.1 Proofs for Section 2.1.1

Proof of Theorem 2.1.1:

We consider the functional ~F(p(t j x)) = I(T ;X) + � h d(x; t) ip(x)p(tjx)+ Xx �(x)Xt p(t j x) ;
where the last term corresponds to the normalization constraints. Recall thatI(T ;X) =Xx;t p(x)p(t j x) log p(t j x)p(t) ; (C.1)

where p(t) is the marginal distribution of p(x)p(t j x), that isp(t) =Xx p(x)p(t j x) : (C.2)

Additionally, recall that h d(x; t) ip(x)p(tjx) =Xx;t p(x)p(t j x)d(x; t) : (C.3)

Therefore, we can express ~F in terms of p(x) (which is the constant source statistics) and p(t j x) (which

are the free parameters). Assuming that d(x; t) is independent of p(t j x) (which is true for rate distortion,

but not true for the IB problem), we can differentiate with respect to p(t j x), and getÆ ~FÆp(t j x) = p(x) log p(t j x)p(t) + p(x)� Xx0 p(x0)p(t j x0) 1p(t)p(x)+ � � p(x)d(x; t) + �(x) = 0 :
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Using Eq. (C.2) and simple algebra, we obtainp(t j x) = p(t)Z(�; x)e��d(x;t) ; (C.4)

where Z(�; x) does not depend on t. Since the normalization constraints must hold it follows that Z(�; x)
is the normalization (partition) functionZ(�; x) =Xt p(t)e��d(x;t) ; (C.5)

as required.

To verify Eq. (2.6) note that when varying the (normalized) distributions p(t j x) the variations ÆI(T ;X)
and Æhd(x; t)ip(x)p(tjx) are linked throughÆF = ÆI(T ;X) + � � Æhd(x; t)ip(x)p(tjx) = 0 ; (C.6)

from which Eq. (2.6) follows.

Proof of Proposition 2.1.2:

We repeat the proof from [20], page 365.DKL[p(x)p(t j x)jjp(x)p(t)] � DKL[p(x)p(t j x)jjp(x)p�(t)]= Xx;t p(x)p(t j x) log p(x)p(t j x)p(x)p(t)� Xx;t p(x)p(t j x) log p(x)p(t j x)p(x)p�(t)= Xx;t p(x)p(t j x) log p�(t)p(t)= Xt p�(t) log p�(t)p(t)= DKL[p�(t)jjp(t)] � 0 :
C.2 Proofs for Section 2.3

Proof of Proposition 2.3.2:

Consider Definition 2.3.1 of the relevance-compression function, R̂(D̂). As D̂ increases, the set of con-

ditional distributions p(t j x) for which I(T ;Y ) � D̂ can only decrease. Hence, as D̂ increases, R̂(D̂)
becomes the minimum of I(T ;X) over decreasingly smaller sets. As a result, R̂(D̂) can only increase withD̂, i.e., it is a monotonic non-decreasing function of D̂.

As in Eq. (C.6) we note that when varying the (normalized) distributions p(t j x) the variations ÆI(T ;X)
and ÆI(T ;Y ) are linked through ÆL = ÆI(T ;X) � �ÆI(T ;Y ) = 0 ; (C.7)

from which Eq. (2.15) follows.

As a result we see that R̂(D̂) is a monotonic non-decreasing function with a monotonically decreasing

slope, and as such it is a concave function of D̂.
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C.3 Proofs for Section 2.4

Proof of Theorem 2.4.1:

We need to consider the functional ~L = L +Px �(x)Pt p(t j x), where the last term corresponds to the

normalization constraints. Writing ~L explicitly we have~L = Xx;t p(x)p(t j x) log p(t j x)p(t)� �Xt;y p(t; y) log p(t; y)p(t)p(y)+ Xx �(x)Xt p(t j x) ;
where p(t); p(t; y) are defined through the IB Markovian relation T $ X $ Y (see Eqs. (2.12)). That is,8<: p(t) =Px p(x)p(t j x)p(t; y) =Px p(x; y)p(t j x) : (C.8)

Therefore, differentiating with respect to some p(t j x) we obtain8><>: Æp(t)Æp(tjx) = p(x)Æp(t;y)Æp(tjx) = p(x; y) : (C.9)

Using these partial derivatives we can now differentiate ~L.Æ ~LÆp(t j x) = p(x)(log p(t j x) + 1) � p(x) log p(t)� p(x)� �Xy p(x; y) log p(y j t) + �Xy p(x; y) log p(t)+ ~�(�; x) = 0 ;
where we absorb in ~�(�; x) terms that does not depend on t. Dividing by p(x) and rearranging we havelog p(t j x) = log p(t)� �Xy p(y j x) log 1p(y j t) � ~�(�; x) : (C.10)

To get the KL form, we add and subtract �Py p(y j x) log p(y j x) (which does not depend on t, hence

can be further absorbed by ~�), to obtainlog p(t j x) = log p(t)� �DKL[p(y j x)jjp(y j t)]� ~�(�; x) : (C.11)

Taking the exponent and using again the normalization constraints, we havep(t j x) = p(t)Z(�; x)e��DKL[p(yjx)jjp(yjt)] ; (C.12)

where Z(�; x) guarantees the normalization, as required.
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C.4 Proofs for Section 3.3

Proof of Proposition 3.3.1: p(�t) = Xx p(x)p(�t j x)= Xx p(x)(p(ti j x) + p(tj j x))= Xx p(x)p(ti j x) +Xx p(x)p(tj j x)= p(ti) + p(tj) :p(y; �t) = Xx p(x; y)p(�t j x)= Xx p(x; y)(p(ti j x) + p(tj j x))= Xx p(x; y)p(ti j x) +Xx p(x; y)p(tj j x)= p(y; ti) + p(y; tj) :
Therefore, p(y j �t) = p(ti)p(�t) p(y j ti) + p(tj)p(�t) p(y j tj) : (C.13)

C.5 Proofs for Section 3.3.1

Proof of Proposition 3.3.2:

Let T bef and T aft denote the random variables that correspond to T , before and after the merger, respec-

tively. Thus, the corresponding values of Lmax are calculated based on T bef and T aft . The merger cost is

then given by,�Lmax(ti; tj) = Lbefmax �Laftmax= I(T bef ;Y )� I(T aft ;Y )� ��1(I(T bef ;X) � I(T aft ;X))� �I2 � ��1�I1 :
We first handle the first term.�I2 = p(ti)Xy p(y j ti) log p(y j ti)p(y) + p(tj)Xy p(y j tj) log p(y j tj)p(y)� p(�t)Xy p(y j �t) log p(y j �t)p(y) :
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Using Proposition 3.3.1 we obtain�I2 = p(ti)Xy p(y j ti) log p(y j ti)p(y) + p(tj)Xy p(y j tj) log p(y j tj)p(y)� p(ti)Xy [�ip(y j ti) + �jp(y j tj)] log p(y j �t)p(y)� p(tj)Xy [�ip(y j ti) + �jp(y j tj)] log p(y j �t)p(y)= p(ti)Xy p(y j ti) log p(y j ti)p(y) + p(tj)Xy p(y j tj) log p(y j tj)p(y)� �ip(ti)Xy p(y j ti) log p(y j �t)p(y) � �ip(tj)Xy p(y j ti) log p(y j �t)p(y)� �jp(ti)Xy p(y j tj) log p(y j �t)p(y) � �jp(tj)Xy p(y j tj) log p(y j �t)p(y) :
Using �ip(ti) + �ip(tj) = p(ti) and similarly for �j we have�I2 = p(ti)Xy p(y j ti) log p(y j ti)p(y) + p(tj)Xy p(y j tj) log p(y j tj)p(y)� p(ti)Xy p(y j ti) log p(y j �t)p(y) � p(tj)Xy p(y j tj) log p(y j �t)p(y)= p(ti)Xy p(y j ti) log p(y j ti)p(y j �t) + p(tj)Xy p(y j tj) log p(y j tj)p(y j �t)= p(ti)DKL[p(y j ti)jjp(y j �t)] + p(tj)DKL[p(y j tj)jjp(y j �t)]= p(�t) � [�iDKL[p(y j ti)jjp(y j �t)] + �jDKL[p(y j tj)jjp(y j �t)]= p(�t) � JS�[p(y j ti); p(y j tj)] :
Similar analysis yields �I1 = p(�t) � JS�[p(x j ti); p(x j tj)], as required.
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Appendix D

Proofs for Part III

In this appendix we sketch the proofs of the theorems and propositions mentioned throughout Part III. The

order of the proofs follows the order of appearance in the text.

D.1 Proofs for Section 7.1

Proof of Proposition 7.1.1:

Using the multi-information definition in 1.2.13 and the fact that p(x) j= G we getI(X) = Ep[log p(x)p(x1) : : : p(xn) ]= Ep[log �ni=1 p(xi j paGXi)p(xi) ]= nXi=1 Ep[log p(xi j paGXi)p(xi) ]= nXi=1 I(Xi;PaGXi) :
Proof of Proposition 7.1.3:DKL[pjjG] = minqj=GEp[log p(x1; : : : ; xn)q(x1; : : : ; xn) ]= minqj=G[Ep[log p(x1; : : : ; xn)�ni=1p(xi j paGXi) ] +Ep[log �ni=1p(xi j paGXi)�ni=1q(xi j paGXi) ]]= Ep[log p(x1; : : : ; xn)�ni=1p(xi j paGXi) ] + minqj=G[ nXi=1 Xxi;paGXi p(paGXi)p(xi j paGXi) log p(xi j paGXi)q(xi j paGXi) ]= Ep[log p(x1; : : : ; xn)�ni=1p(xi j paGXi) ] + minqj=G[ nXi=1 XpaGXi p(paGXi)DKL[p(xi j paGXi)jjq(xi j paGXi)]] ;

and since the right term is non-negative and equals zero if and only if we choose q(xi j paGXi) = p(xi jpaGXi) we get the desired result.
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Proof of Proposition 7.1.4:

We use Proposition 7.1.3.DKL[pjjG] = minqj=GEp[log p(x1; : : : ; xn)q(x1; : : : ; xn) ]= Ep[log p(x1; : : : ; xn)�ni=1p(xi j paGXi) ]= Ep[log �ni=1p(xi j x1; : : : ; xi�1)�ni=1p(xi j paGXi) ]= nXi=1 Ep[log p(xi j x1; : : : ; xn)p(xi j paGXi) ]= nXi=1 I(Xi; fX1; : : : ;Xng nPaGXi j PaGXi) ;
where we used the consistency of the order X1; : : : ;Xn with the order of the DAG G . To prove the second

part of the proposition we note thatDKL[pjjG] = Ep[log p(x1; : : : ; xn)�ni=1p(xi j paGXi) ]= Ep[log p(x1; : : : ; xn)�ni=1p(xi) ]�Ep[log �ni=1p(xi j paGXi)�ni=1p(xi) ]= I(X)� nXi=1 Ep[log p(xi j paGXi)p(xi) ]= I(X)� nXi=1 I(Xi;PaGXi) :
D.2 Proofs for Section 8.2

Proof of Proposition 8.2.1:

Assume that X $ T $ Y , then from Data Processing Inequality ([20], page 32) we get I(T ;Y ) �I(X;Y ). However, since T $ X $ Y then for the same reason we get I(T ;Y ) � I(X;Y ), i.e.,I(T ;Y ) = I(X;Y ).
Assume now that I(T ;Y ) = I(X;Y ). From the chain rule for mutual information ([20], page 22) we

have I(T;X ;Y ) = I(T ;Y ) + I(X;Y j T ) = I(X;Y ) + I(T ;Y j X) ; (D.1)

hence, I(X;Y j T ) = I(T ;Y j X). Using this result and the definition of conditional mutual information

we get H(Y j T ) = H(Y j X). However, since T $ X $ Y clearly H(Y j X) = H(Y j X;T ),
therefore we obtain H(Y j T ) = H(Y j X;T ), meaning I(X;Y j T ) = 0:
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D.3 Proofs of Section 9.1

Proof of Theorem 9.1.1:

The basic idea is to find stationary points of L(1) subject to the normalization constraints. Thus, we add

Lagrange multipliers and use Definition 1.2.13 to get the Lagrangian~L[p(x; t)] = kX̀=1 I(T`;U`)� �[ nXi=1 I(Xi;VXi) + kX̀=1 I(T`;VT`)] +Xu` �(u`)Xt` p(t` j u`) ; (D.2)

where we drop terms that depend only on the observed variables X. To differentiate ~L with respect to a

specific parameter p(tj j uj) we use the following two lemmas. In the proofs of these two lemmas we

assume that p(x; t) j= Gin and that the T variables are all leafs in Gin .

Lemma D.3.1: Under the above normalization constraints, for every event a over X[T (that is, a is some

assignment to some subset of X [T), we haveÆp(a)Æp(tj j uj) = p(uj)p(a j tj ;uj) : (D.3)

Proof: Let Z denote all the random variables in X [T such that their values are not set by the event a. In

the following, the notation
Pz;a p(z; t) means that the sum is only over the variables in Z (where the others

are set through a). Æp(a)Æp(tj j uj) = ÆÆp(tj j uj)Xz;a p(x; t)= ÆÆp(tj j uj)Xz;a �k̀=1p(t` j u`)= Xz;a ÆÆp(tj j uj)�k̀=1p(t` j u`) :
Clearly the derivatives are nonzero only for terms in which Tj = tj and Uj = uj . For each such term the

derivative is simply �k̀=1; 6̀=jp(t` j u`) . Dividing and multiplying every such term by p(tj j uj) we obtainÆp(a)Æp(tj j uj) = 1p(tj j uj) Xznftj ;ujg;a;tj ;uj �k̀=1p(t` j u`)= p(a; tj ;uj)p(tj j uj)= p(uj)p(a j tj ;uj) :
Using this lemma we get:

Lemma D.3.2: For every Y;Z � X [TÆI(Y ;Z)Æp(tj j uj) = p(uj)Xy;z [p(y; z j tj;uj) log p(y j z)p(y) � 1] : (D.4)
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Proof: ÆI(Y ;Z)Æp(tj j uj) = Xy;z log p(y j z)p(y) ÆÆp(tj j uj)p(y; z)+ Xy;z ÆÆp(tj j uj)p(y; z)� Xy;z p(z j y) ÆÆp(tj j uj)p(y)� Xy;z p(y j z) ÆÆp(tj j uj)p(z) :
Applying Lemma D.3.1 for each of these derivatives we get the desired result.

We now can differentiate each mutual information term that appears in ~L of Eq. (D.2). Note that we can

ignore terms that do not depend on the value of Tj since these are constants with respect to p(tj j uj).
Therefore, by taking the derivative and equating to zero we get:log p(tj j uj) = log p(tj)��[ Xi:Tj2VXi Xv�jXi ;xi p(v�jXi j uj)p(xi j v�jXi ;uj) log p(xi)p(xi j v�jXi ; tj)� X`:Tj2VT` Xv�jT` ;t` p(v�jT` j uj)p(t` j v�jT` ;uj) log p(t`)p(t` j v�jT` ; tj)�XvTj p(vTj j uj) log p(vTj )p(vTj j tj) ] + c(uj) ; (D.5)

where c(uj) is a term that depends only on uj . To get the desired KL form we add and subtractXv�jXi ;Xi p(v�jXi j uj)p(xi j v�jXi ;uj) log p(xi j v�jXi ;uj)p(xi) ; (D.6)

for every term in the first outside summation. Note again that this is possible since we can absorb in c(uj)
every expression that depends only on uj . A Similar transformation applies to the other two summations in

the right hand side of Eq. (D.5). Hence, we end up withlog p(tj j uj) = log p(tj)�� � [ Xi:Tj2VXi Ep(�juj)[DKL[p(xi j v�jXi ;uj)jjp(xi j v�jXi ; tj)]]� X`:Tj2VT` Ep(�juj)[DKL[p(t` j v�jT` ;uj)jjp(t` j v�jT` ; tj)]]�DKL[p(vTj j uj)jjp(vTj j tj)] ] + c(uj) : (D.7)

Finally, taking the exponent and applying the normalization constraints for each distribution p(tj j uj)
completes the proof.
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D.4 Proofs of Section 10.1

Proof of Theorem 10.1.1:

We start by introducing the following auxiliary functional:F � kXj=1 Fj � � kXj=1Xtj Xuj p(uj)p(tj j uj) logZTj (uj ; �) ; (D.8)

where, as before, ZTj (uj ; �) is the normalization (partition) function of p(tj j uj) : In other words, F is

(minus) the averaged log of all the partition functions. The general idea of the proof is similar to the proof of

Theorem 3.1.1. Specifically, we show that for every j, the updates defined by the multivariate iIB algorithm

can only reduce F (or more precisely, reduce Fj). Since F is shown to be lower-bounded, we are guaranteed

to converge to a self-consistent solution.

Lemma D.4.1: F is non-negative and strictly convex with respect to each of its arguments.

Proof: Using Eq. (9.1) we find thatF = kXj=1 Fj (D.9)= kXj=1Xtj Xuj p(uj)p(tj j uj) log p(tj j uj)p(ti) (D.10)+ � kXj=1Xtj Xuj p(uj)p(tj j uj)d(tj ;uj) : (D.11)

Therefore, F is a sum of KL divergences, and in particular non negative. Moreover, since the KL is strictly

convex with respect to each of its arguments (which results from Log sum inequality [20]), F is convex

independently in each argument (as a sum of convex functions). .

Note that after updating p(tj) by the multivariate iIB algorithm, p(tj) becomes exactly the marginal of the

joint distribution p(uj)p(tj j uj) : Therefore, after completing the updates for all j = 1 : k, the first term

in F corresponds to IGin : Moreover, at any stage, even if p(tj) is not set to be the appropriate marginal

distribution, this (“compression”) term is always lower bounded by IGin (see, e.g., [20], page 365).

Lemma D.4.2 : If the multivariate iIB update steps for some Tj changes any of the involved distributions,F is reduced.

Proof: First, let us write explicitly all the iIB update steps for some Tj . The updates of p(tj j uj) and p(tj)
are already described in Figure 10.1. The additional updates are as follows. For every i such that Tj 2 VXi
we update: p(m+1)(xi j v�jXi ; tj) 1�(v�jXi ; tj)Xuj p(m+1)(tj j uj)p(m)(uj ;v�jXi ; xi) ; (D.12)

where �(v�jXi ; tj) guarantees the proper normalization. Second, for every ` such that Tj 2 VT` we update:p(m+1)(t` j v�jT` ; tj) 1�(v�jT` ; tj)Xuj p(m+1)(tj j uj)p(m)(uj ;v�jT` ; t`) ; (D.13)
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where �(v�jT` ; tj) guarantees the proper normalization. Lastly, if vTj 6= ;, we update:p(m+1)(vTj j tj) 1�(tj)Xuj p(m+1)(tj j uj)p(m)(uj ;vTj ) ; (D.14)

where �(tj) guarantees the proper normalization. We now note that the derivatives of F with respect to each

of its arguments (under proper normalization constraints), provide exactly the above multivariate iIB update

steps. For example, consider ~F � F +Ptj �(tj)[PvTj p(vTj ) � 1] ; where the second term corresponds

to the normalization constraints. Taking the derivative of ~F with respect to p(vTj j tj) and equating to zero

will give exactly Eq. (D.14). A similar procedure for the other arguments of F will yield exactly all the

other multivariate iIB steps.

Therefore, updating by equating some derivative of F to zero (while all the other arguments of F remain

constant), can only reduce F . This is simply due to the fact that F is strictly convex (independently in each

argument) and all its arguments correspond to convex sets. Hence, equating some derivative of F to zero is

equivalent to finding the projection of F in the corresponding convex set. This can only reduce F , or leave

it unchanged, where in this case the update step has no effect.

Combining the above two lemmas we see that through these updates F converges to a (local) minimum.

At this point all the update steps (including Eq. (9.1)) reach a self-consistent solution. Therefore, from

Theorem 9.1.1 we are at a fixed-point of L(1), as required.

D.5 Proofs for Section 10.3

Proof of Proposition 10.3.2:

We use the following notations: W = Z \Uj ; Z�W = Z n fWg; Uj�W = Uj n fWg. Note that in

principle it might be that W = ;.p(z; �tj) = p(z)p(�tj j z)= p(z) Xuj�w p(uj�w j z)p(�tj j z�w;w;uj�w)= p(z) Xuj�w p(uj�w j z)p(�tj j uj) ;
where in the last step we used the structure of Gin and the fact that Z�W \Uj = ; . Using Eq. (10.3) we

find that p(z; �tj) = p(z) Xuj�w p(uj�w j z)(p(tj̀ j uj) + p(trj j uj))= p(z) Xuj�w p(uj�w j z)(p(tj̀ j z�w;w;uj�w) + p(trj j z�w;w;uj�w)) ;
where again we used the structure of Gin . Since Z = Z�W [ fWg we getp(z; �tj) = p(z) Xuj�w(p(uj�w; tj̀ j z) + p(uj�w; trj j z))= p(z; tj̀) + p(z; trj) ;
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as required.

To prove the second part we first note that if p(z; �tj) = 0 then both sides of Eq. (10.6) are trivially equal,

thus we assume that this is not the case.p(y j z; �tj) = p(y; z; �tj)p(z; �tj)= p(y; z; tj̀) + p(y; z; trj )p(z; �tj)= p(tj̀ j z)p(�tj j z)p(y j z; tj̀) + p(trj j z)p(�tj j z)p(y j z; trj) ;
hence from Definition 10.3.1 we get the desired form.

D.6 Proofs for Section 10.3.1

Proof of Theorem 10.3.3:

We first prove a simple Lemma. Recall that we denote by T befj ; T aftj the random variables that correspond

to Tj before and after the merger, respectively. LetV = V�j [Tj be a set of random variables that includesTj and letVbef = V�j[T befj and similarly forVaft. LetY be a set of random variables such that Tj =2 Y.

Using these notations we have:

Lemma D.6.1: The reduction of the mutual information I(Y;V) due to the merger ftj̀ ; trjg ) �tj is given

by �I(Y;V) � I(Y;Vbef )� I(Y;VafT )= p(�tj) � Ep(�j�tj)[ JS�v�j [p(y j tj̀;v�j); p(y j trj ;v�j)] ] :
Proof: Using the chain rule for mutual information ([20], page 22) we get�I(Y;V) = I(V�j ;Y) + I(T befj ;Y j V�j)� I(V�j ;Y)� I(T aftj ;Y j V�j)= I(T befj ;Y j V�j)� I(T aftj ;Y j V�j) :
From Eq. (10.3), we find that �I(Y;V) =Xv�j p(v�j)�I(v�j) ;
where we used the notation�I(v�j) =Xy p(tj̀ ;y j v�j) log p(y j tj̀;v�j)p(y j v�j)+Xy p(trj ;y j v�j) log p(y j trj ;v�i)p(y j v�j)�Xy p(�tj;y j v�j) log p(y j �tj ;v�i)p(y j v�j) :
Using Proposition 10.3.2 (with Z = Y [V�j) we obtainp(�tj ;y j v�j) = p(tj̀ ;y j v�j) + p(trj ;y j v�j) :
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Setting this in the previous equation we get,�I(v�j) = Xy p(tj̀ ;y j v�j) log p(y j tj̀ ;v�j)p(y j �tj ;v�j) +Xy p(trj ;y j v�j) log p(y j trj ;v�j)p(y j �tj;v�j)= p(�tj j v�j) � �`;v�jXy p(y j tj̀ ;v�j) log p(y j tj̀;v�j)p(y j �tj;v�j)+ p(�tj j v�j) � �r;v�jXy p(y j trj ;v�j) log p(y j trj ;v�j)p(y j �tj;v�j) :
However, using again Proposition 10.3.2 we see thatp(y j �tj;v�j) = �`;v�j � p(y j tj̀;v�j) + �r;v�j � p(y j trj ;v�j) :
Therefore, using the JS definition in 1.2.17 we get,�I(v�j) = p(�tj j v�j) � JS�v�j [p(y j tj̀;v�j); p(y j trj ;v�j)] :
Setting this back in the expression for �I(Y;V) we get,�I(Y;V) = Xv�j p(v�j)p(�tj j v�j) � JS�v�j [p(y j tj̀;v�j); p(y j trj ;v�j)]= p(�tj) �Ep(�j�tj)[ JS�v�j [p(y j tj̀ ;v�j); p(y j trj ;v�j)] ] :

Using this Lemma we now prove the theorem. Note that the only information terms in L = IGout ���1IGin that change due to a merger in Tj are those that involve Tj . Therefore�L(tj̀; trj) = Xi:Tj2VXi �I(Xi;VXi) + X`:Tj2VT` �I(T`;VT`) +�I(Tj ;VTj )� ��1�I(Tj ;Uj) : (D.15)

Applying Lemma D.6.1 for each of these information terms we get the desired form.

Proof of Proposition 10.3.4:

We ask whether performing the merger ftj̀; trjg ) �tj changes the cost of some other possible merger,fts̀; trsg ) �ts . Let �L(ts̀; trs) = p(�ts) � [ �d1 + �d2 + �d3 � �d4] ; (D.16)

where using Theorem 10.3.3 we have8>>>><>>>>: �d1 =Pi:Ts2VXi Ep(�j�ts)[JS�v�sXi [p(xi j ts̀;v�sXi ); p(xi j trs;v�sXi )]]�d2 =P`:Ts2VT` Ep(�j�tj)[JS�v�sT` [p(t` j ts̀;v�sT` ); p(t` j trs;v�sT` )]]�d3 = JS�[p(vTs j ts̀); p(vTs j trs)]�d4 = ��1 � JS�[p(us j ts̀); p(us j trs)] : (D.17)

First, assume that s 6= j, then clearly p(�ts) is not affected by a merger in Tj . Now assume that Ts and Tj
do not co-appear in any information term in IGout . In this case, it is easy to verify that �d1; : : : ; �d4 does

not change due to a merger in Tj . Consider for example the expression for �d1. Due to our assumption ifTs 2 VXi then necessarily Tj =2 VXi , hence a merger in Tj cannot affect �d1.
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Therefore, we now assume that Ts and Tj co-appear in some information term in IGout , but p(�ts; �tj) = 0 .

From this assumption and Proposition 10.3.2 it followsp(ts̀; tj̀) + p(ts̀; trj) + p(trs; tj̀) + p(trs; trj) = 0 : (D.18)

As a result, again we see that �d1; : : : ; �d4 does not change due to a merger in Tj . Consider again, for example

the expression for �d1. Assume that there exists some i such that Ts; Tj 2 VXi . For this i, the corresponding

term in �d1 is Xv�sXi p(v�sXi j �ts)JS�v�sXi [p(xi j v�sXi ; ts̀); p(xi j v�sXi ; trs)] : (D.19)

However, from Eq. (D.18) we see that the terms in this sum that correspond to the assignments of V�sXi in

which Tj = tj̀; trj ; �tj are always zero (since the corresponding p(v�sXi j �ts) is zero). Therefore, a merger inTj cannot change �d1, as required.

Lastly, we should take care of the case s = j. In this case, p(�ts; �tj) = 0 means that the mergerfts̀; trsg ) �ts refers to merging different values of Tj then tj̀; trj . As a result, while calculating �L(ts̀; trs)
the assignments of Tj are always different from tj̀; trj (or �tj). Thus, again, the merger ftj̀ ; trjg ) �tj does not

affect �L(ts̀; trs) .

146


