
Constrained Global Scheduling of Streaming Applications on MPSoCs

Jun Zhu, Ingo Sander, Axel Jantsch
Royal Institute of Technology, Stockholm, Sweden

{junz, ingo, axel}@kth.se

Abstract— We present a global scheduling framework for syn-
chronous data flow (SDF) streaming applications on MPSoCs,
based on optimized computation and contention-free routing.
The global scheduling of processors computing and communica-
tion transactions are formulated as constraint based problem, to
avoid the scheduling overhead in TDMA-like heuristic schemes.
A public domain constraint solver is exploited to solve the NP-
complete scheduling efficiently, together with problem specific
constraint modeling techniques. Experimental results show that
the proposed framework can achieve a high predictable applica-
tion throughput with minimized buffer cost. For instance, for ap-
plications in communication domain, higher throughput (up to
87%) has been observed with less buffer cost, compared to sce-
narios considering the heuristic scheduling overhead.

I. INTRODUCTION

Nowadays, multi-processor systems-on-chip (MPSoCs) are
very popular computing platforms for modern embedded sys-
tems [1]. While they enable distributed processing, it is ex-
tremely challenging to design embedded streaming applica-
tions in communication and multimedia domains on MPSoCs,
when there are non-functional constraints from both hardware
and software modules, such as processor speed, buffer size,
energy budget, and scheduling policy.

Synchronous data flow (SDF) model [2] has been widely
used to design and analyze streaming applications on multi-
processors [2, 3]. An illustrative SDF application is depicted
in Fig. 1(a). The nodes denote computation processes, and the
edges denote communication channels. Each time a process
executes, it consumes (produces) a fixed number of tokens from
input (into output) channels. These numbers are denoted as
symbols at the each side of channels. For instance, process pj
consumes mi,j tokens from channel chi,j and produces nj,k
tokens into channel chj,k on each invocation (firing).

Using one instance of the illustrative model with specified
token rates, as illustrated in Fig. 1(b), we then allocate it onto a
dual-processor architecture. Each process px has a worst case
execution time (WCET) tC,x, and each channel chx,y is im-
plemented as finite FIFO buffer with token storage γx,y . The
hard real-time inter-processor communication latency is cap-
tured by an identity process pδ with delay tC,δ . While pro-
cesses are enabled when they have enough input data tokens
and output buffer space, pi and pj can only be scheduled se-
quentially in one single processor µp1. The scheduling prob-
lem on such kind of multi-processors with resource constraints
has been known to be NP-complete [4]. Recently, heuristic
algorithms have been proposed to provide predictable perfor-

(a) (b)

(c-1)
periodic phase
 with (c-2)

periodic phase
 with

1 2 2 1 1 1

Fig. 1. Allocation and scheduling of an illustrative application. (a) an
illustrative application; (b) application instance allocated onto buffer
constrained dual-processor; (c-1) Scheduling with TDMA scheme on µp1;
(c-2) Throughput-optimized scheduling.

mance on MPSoCs [3, 5], yet as argued below, they may lead
to sub-optimal solutions.

Motivation. Let pi and pj to be scheduled with a heuristic
time-division multiple-access (TDMA) scheme [3], as marked
horizontally on the timeline in Fig. 1(c-1). Each process is not
allowed to fire only when it is enabled, but it should also be
the process which gets the allocated TDMA time slots. Ac-
cordingly, a schedule is built below. The running processes
on each processor and the FIFO usage are listed out vertically.
At time tag 0, pi starts the execution and requires space 1 for
one output token on FIFO i,j . At time tag 1, pi finishes the
previous firing, outputs 1 result token, and starts a new firing.
As the scheduling evolves, pδ and pk execute once they are
enabled, and pi and pj are scheduled in TDMA scheme. How-
ever, the TDMA assigned processes can be stalled, when they
violate resource constraints (bounded buffer capacities or no
enough input tokens). For instance, pj is stalled (γj,δ = 3) at
time tag 5, and so is pi (γi,j = 2) at time tag 6 and 7. From
time tag 2 to 7, the schedule enters a periodic phase with length
Lperiod = 6, in which the application throughput is guaranteed
by process firing patterns. On the other hand, in Fig. 1(c-2), an-
other optimized schedule exists without using TDMA scheme
in µp1. We observe a 50% throughput gain in this proposed
optimized cyclic static schedule, i.e., Lperiod = 4, on the same
platform.

Although TDMA-like or list scheduling heuristics can be
used to design predictable distributed systems [3, 5], they have
drawbacks in the following :

• They can not avoid the overhead in time slots allocation,
which degrades application performance (Section VI);

• They are in lack of global optimization mechanisms on
MPSoCs, where numerous processors or communication
links are concurrently shared by different applications.

As the contribution in this paper, we propose a new
scheduling framework on MPSoCs to build global schedules
for both processors computing (process execution) and com-
munication transactions (real-time traffic-flow). While buffer
cost is minimized, a high predictable application throughput
is guaranteed based on optimized computation and contention-
free routing. The framework has been implemented on a public
domain constraint solver Gecode [6].

This paper is structured as follows: the related work is intro-
duced in Section II. Our MPSoC architecture platform is intro-
duced in Section III. We present our constraint based schedul-
ing framework in Section IV and the constraint programming
techniques used in Section V. Section VI shows our experi-
mental results. Finally, Section VII concludes the paper.

II. RELATED WORK

Many authors have explored the scheduling of SDF models
on multi-processors at compile-time. Lee and Messerschmitt
[2] first present general techniques to construct periodic admis-
sible parallel schedules (PAPS) on limited number of multi-
processors. Later, Govindarajan et al. [7] propose linear pro-
gramming (LP) formulation to obtain maximal throughput and
minimized buffer cost for SDF models without computation
(number of processors) constraints. However, the scheduling
problem turns to be more difficult on resource constrained plat-
forms, when processor quantity, interconnection bandwidth,
and buffer resources are bounded.

Eles et al. [5] first address the scheduling on distributed sys-
tems with communication protocols optimization. With op-
timized bus accessing, application throughput is maximized
based on list scheduling (heuristic order) for task graph mod-
els. While task graphs can be viewed as special cases of acyclic
SDF models with no overlap between different iterations of
execution, buffer cost has not been addressed as resource con-
straints. In [3], Stuijk et al. propose a mapping and TDMA/list
scheduling design flow for throughput constrained SDF appli-
cations on MPSoCs. Both paper are based on heuristic TDMA
or list scheduling. We argue about the scheduling overhead
and the lacking of global optimization on performance metrics,
e.g., application throughput in Fig. 1(c-1).

Inspired by the success of (model-checking, SAT and con-
straint programming) techniques in solving NP-complete prob-
lems, Geilen et al. [8] first use model-checker to determine
the minimal deadlock-free buffer cost to schedule SDF mod-
els (no computation constraints). Liu et al. [9] use SAT-
solver to explore the mapping and scheduling of homogeneous
SDF (HSDF) models1 on multi-processors to maximize appli-
cation throughput. However, a regular SDF model must be
transformed (expanded) to a HSDF model to apply their tech-

1HSDF models are special cases of SDF models, with all input/output to-
ken rates are 1.

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

s to East

m
em

o
ry

buffer

from Eastfr
om

 N
or

th

from West

fr
om

 S
ou

th

to West

to
 N

or
th

to
 S

ou
th

comm. linkstile

NI

Fig. 2. A 3× 3 regular mesh MPSoC architecture.

niques2, which dramatically increases the problem size [10].
Constraint programming tools are used as well in the schedul-
ing of task graphs on MPSoCs, without violating computation
capacity and communication bandwidth [11, 12]. In our pre-
vious work [13], constraint based paradigm has been proposed
for SDF models scheduling on hybrid CPU/FPGA platforms,
in which communicate happens via dedicated (not shared)
FIFO channels with ignored delay. Yet, all papers above do
not consider the global optimization of distributed computing
and communication transactions on MPSoCs. To the best of
our knowledge, our work is the first to address this problem
using combinatorial optimization techniques.

III. ARCHITECTURE PLATFORM

The cornerstone of streaming applications with predictable
performance is the architecture platform with deterministic
real-time properties. In this paper, we consider the regular 2-
D mesh tiled MPSoCs with communication happens via hard
real-time networks-on-chip (NoCs) infrastructure [14, 15], as
exemplified in Fig. 2. Nevertheless, our method is not limited
to this particular architectural template.

Each tile tilen (n ∈ N0) consists of a processor (µpn), an
application memory, a token buffer buffern , and a network in-
terface (NI). tilen is labeled as (xn, yn) in the mesh topology,
where xn and yn correspond to the row and column indexing
numbers respectively. Our work starts with a fixed allocation
from processes to tiles. Hence, all application memory mod-
ules are pre-determined on the mesh. Instead, we focus on the
analysis of routing, scheduling, and buffer properties on the
dashed modules in Fig. 2, i.e., NoC switches, processors, and
token buffers.

Tiles are connected to the communication network through
switches (s), and communicate with each other via unidirec-
tional communication links.

IV. CONSTRAINT BASED SCHEDULING

The binding of streaming applications onto the target
MPSoC architectures is a refinement process with resource
limitations and real-time requirement. Here, we use con-
straint based formulation to model the application to architec-
ture mapping, communication routing, flow control, and com-
putation scheduling in this design flow.

2In [9], models contain up to 30 HSDF processes have been considered, but
the equivalent HSDF H263 model in our experiments (Section VI) has 4754
processes.

Fig. 3. A template of refined producer-consumer pair, in which ωi,j denotes
whether channel chi,j is implemented as intra-processor communication.

We formalize our problem based on a general producer-
consumer processes pair as illustrated in the upper part of
Fig. 3. Each (acyclic or cyclic) SDF model can be analyzed as
a composition of a set of concurrent producer-consumer pairs.

A. Mapping

A global computation and communication scheduling
framework on MPSoCs needs to be aware of the mapping de-
cisions from designers first. Such mapping decisions are mod-
eled by two sets of decision variables: α and ω. A boolean
variable αi,µpn denotes the presence of pi on a processor µpn.
We assume that different instances of a process can only exe-
cute on one dedicated processor, which can be formalized in
the following constraint.

Constraint 1 (Single residence) Each process pi needs one
(and only one) specified processor for computation.∑

µpn∈U

αi,µpn ≡ 1, ∀pi ∈ P (1)

in which P is the set of processes in application models, and U
is the set of processors in the architecture platform.

Redundantly, a boolean variable ωi,j denotes how a channel
chi,j is implemented, as illustrated in Fig. 3. When ωi,j = 0,
pi and pj are mapped onto different processors (µpn and
µpm), chi,j is implemented as inter-processor communica-
tion with buffers FIFO i,δ and FIFOδ,j , and the hard real-time
communication is captured by process pδ with bounded latency
tC,δ and no packet loss (mi,δ = nδ,j). Otherwise, ωi,j = 1, pi
and pj are mapped onto the same tile, and the intra-tile commu-
nication chi,j is implemented as FIFO i,j with ignored latency.
Processors in the architecture platform are homogeneous in the
sense that they are the same type and each pj has the same
WCET tC,j being mapped onto any processors. ωi,j can be
defined as the following.

Constraint 2 (Correlated mapping decision) To be corre-
lated with αi,µpn and αj,µpm , ωi,j denotes whether pi and pj
are mapped onto the same processor.

ωi,j = (xn==xm) ∧ (yn == ym), αi,µpn = 1, αj,µpm = 1. (2)

In our previous work [13], event models based on cumula-
tive functions were used to capture process working load and
pressing capabilities. For instance, in the producer-consumer
pair in the upper part of Fig. 3, an arrival function Ri,j(t) is

defined as the accumulated data tokens arrived in chi,j until
time tag t, a service function Ci,j(t) is defined as the accu-
mulated data tokens consumed by pj until time tag t, and a
demand functionDi,j(t) captures the extra output buffer space
requirement when pi is executing as defined in the following.

Di,j(t) =
{
Ri,j(t) + ni,j , if pi is executing;
Ri,j(t), if pi is stalling. (3)

Accordingly, the execution semantics of SDF applications can
be formalized (refer to [13]).

In this paper, to be aware of the mapping decisions (the rout-
ing and flow control information later in Section IV. C as well),
the process scheduling status derived from event models needs
to be refined.

Constraint 3 (Mapping & scheduling association) All the
processes assigned to each processor can only execute (be
scheduled) sequentially at any time. This mapping and
scheduling association is formalized as:∑

pi∈P

αi,µpnWj(t) ∈ {0, 1}, ∀µpn ∈ U, t ∈ N0 (4)

in which Wj(t) denotes the 1-0 (computing or stalling) status
of each process pj and is defined as:

Wj(t) = max (Lj(t), Lj(t+ ∆t)), ∀∆t ∈ [1, tC,j] (5)

Lj(t+ 1) =
Cj(t+ 1)− Cj(t)

mi,j
∈ {0, 1}

with Lj(t) as a helper function.

B. Template based Buffering Analysis

Here, based the refined producer-consumer template in
Fig. 3, some buffer properties and constraints can be formu-
lated from our event models and the mapping-aware decisions.

Property 1 (Buffer usage) The buffer usages of FIFO i,δ ,
FIFOδ,j , and FIFO i,j in the template (Fig. 3) at time tag t
are denoted asBi,δ(t),Bδ,j(t), andBi,j(t) respectively, which
are defined as:

Bi,δ(t)=Di,δ(t)−¬ωi,j(Ci,δ(t)−B0
i,δ)−ωi,j(Ci,j(t)−B

0
i,j) (6)

Bδ,j(t)=¬ωi,jB′
δ,j(t)=Dδ,j(t)−¬ωi,j(Cδ,j(t)−B

0
δ,j) (7)

Bi,j(t)=ωi,jBi,δ(t) (8)

in which B0
i,δ(t), B0

δ,j(t), and B0
i,j(t) are the initial data to-

kens (at time tag 0) in each buffer.

Furthermore, the asynchronous behaviors of the buffers,
caused by data buffering or processing latency (computation
and communication), are captured as the following.

Constraint 4 (Asynchronous buffer) The incoming data to-
kens in buffers take at least the WCET of the consumer process
to be consumed. For buffers FIFO i,δ , FIFOδ,j , and FIFO i,j

in the template (Fig. 3), the asynchronous behaviors can be

formalized as:

Ri,δ(t) > ¬ωi,jCi,δ(t+ tC,δ) + ωi,jCδ,j(t+ tC,j)−B0
i,δ (9)

Rδ,j(t) = ¬ωi,jRδ,j(t) > ¬ωi,jCδ,j(t+ tC,j)−B0
δ,j (10)

Ri,j(t) = ωi,jRi,δ(t) (11)

Depending on the buffer organization, there are two mea-
sures of buffer requirement when different FIFOs are assigned
to the same tile (buffer) [8], i.e., the FIFO implementations
of different communication channels are either partitioned dis-
jointly or sharing a single space on a buffer. Accordingly, the
buffer requirement of these two mechanism can be formalized
in the following.

Property 2 (Buffer cost – disjoint partition) When FIFOs
are organized on each tile as disjoint buffer partitions, the
buffer cost γSum′ in the platform is simply the sum of indi-
vidual FIFO sizes.

γSum′ =
∑
i,j,δ

(ωi,jγi,j + ¬ωi,j(γi,δ + γδ,j)), ∀pi, pj ∈ P (12)

where γi,j>Bi,j(t),γi,δ>Bi,δ(t),γδ,j>Bδ,j(t), ∀t ∈ N0

in which γi,j , γi,δ , and γδ,j denote the sizes of the disjoint
FIFOs in the template (Fig. 3).

Property 3 (Buffer cost – shared partition) When FIFOs are
sharing space on each tile, the buffer cost γSum′′ in the plat-
form is the sum of the shared buffer space on individual tiles.

γSum′′ =
∑
n

γtilen (13)

where γtile,n >
∑
i,j

(ai,µpn
Bi,δ(t) + aj ,µpn

Bδ,j(t)+

ai,µpnωi,jBi,j(t)), ∀pi, pj ∈ P,∀t ∈ N0

in which γtilen
denotes the size of the buffer as one shared par-

tition on tile tilen .

C. Routing and contention-free flow control

When processes in a producer-consumer pair are assigned
to different processors, routing is needed for the inter-tile data
communication. Here, we assume deterministic X-Y routing
on NoC infrastructure. The bidirectional routing decisions are
capture by two sets of triple-value (±1 and 0) variables βr and
βc on the direction of rows and columns of physical links re-
spectively, i.e., +1 (-1) represents routing a packet flow on the
positive (negative) direction of a link on X or Y axis, and 0 rep-
resents no packet flow. βr and βc can be associated with the
mapping variables α in the following.

Constraint 5 (X-Y routing) Let βrchi,j ,lk
represent the routing

decision on a row link lk between tiles (xk, yk) and (xk +
1, yk), i.e., how channel chi,j is assigned to lk. The routing on

comm.

networksn sm

packet injection

packet ejection

on-th-path transmission

Fig. 4. Three phases to route a packet in inter-tile channel chi,j .

the primary X axis is formalized as:

βrchi,j ,lk
=

 +1, xm>xn,yk = yn,∀xk ∈ [xn, xm);
−1, xn>xm,yk = yn,∀xk ∈ [xm, xn);
0, otherwise.

(14)

∀pi, pj ∈ P, αi,µpn ≡ 1, αj,µpm ≡ 1,m 6= n.

Similarly, the subsequent routing decisions βcchi,j ,lk
on column

links (Y axis) can be defined.

When a channel chi,j is assigned to NoC , the communica-
tion time needed depends not only on the number of transferred
data tokens but also the dynamic link bandwidth during the
transaction. In hard real-time NoCs, contention-free routing
at the traffic flow level is usually adopted, in which a packet
(data token) reserves a circuit switching before the transmis-
sion finishes, e.g., in Æthereal [15]. For one application flow
(channel), the routing of a packet from source tile to destina-
tion tile via NoC switches and links consists of three phases:
packet injection, on-the-path transmission, and packet ejec-
tion, as illustrated in Fig. 4. While NoC resources (switches
and links) can be shared by different application flows, packet
injection (ejection) congests spatially when multiple producer
(consumer) processes are mapped onto the same tile, so do
on-the-path transmissions when different application flows are
sharing the same links. However, different application flows
can be contention-free by avoiding the competition on the same
links at the same time (scheduled temporally), which is formal-
ized as the following.

Constraint 6 (Contention-free traffic flow scheduling) When
communication channels are assigned to inter-tile physical
links, the packet injection, ejection, and inter-tile traffic flow
on rows of communication links are scheduled to avoid con-
tention, as formalized in Eq. 15, 16, and 17 respectively.∑

i

αi,µpnWδ(t) ∈ {0, 1}, (15)∑
j

αj,µpnWδ(t) ∈ {0, 1}, (16)

X
i,j

βrchi,j ,lk
Wδ(t) ∈ {0,±1},

X
i,j

|βrchi,j ,lk |Wδ(t) ∈ {0, 1, 2}, (17)

∀pi, pj ∈ P, µpn ∈ U, t ∈ N0

with Wδ(t) (see Eq. 5) to denote the data transmission 1-0
(working or idle) status on NoC modeled by pδ . Similarly, the
scheduling of traffic flow on columns of communication links
can be formalized as in Eq. 17, which is omitted for clarity.

D. Real-time constraints

Embedded streaming applications are usually required to
run indefinitely with bounded buffers. Accordingly, such a
balance equation holds for all the producer-consumer pairs in
bounded SDF models [2]:

ri · ni,j = rj ·mi,j (18)

in which ri and rj denote how many times pi and pj fire re-
spectively. A vector of the non-trivial minimal firing times for
all processes defined by the set of balance equations is called
repetition vector.

For streaming applications with real-time constraints, the ef-
ficient execution means the streaming services are delivered
on-demand to the end-user, neither too fast nor too slow. Thus,
a predetermined application throughput needs to be guaran-
teed, as formalized in the following.

Constraint 7 (Application output throughput) After a tran-
sient phase τ0 (τ0 > 0) with no stable output tokens, a specified
output throughput ρout should be sustained at the application
sink process pj , which is guaranteed by a periodic phase (see
fig 1) with length Lperiod .

Cj(τ0 + k · Lperiod)− Cj(τ0) = k · J · rj ·mi,j , (19)

Lperiod = dJ · rk ·mi,j

ρout
e, J ∈ N\{∞}, k ∈ N0

in which k specifies the iteration number of periodic phases,
and J (called unroll factor) denotes how many cycles pro-
cesses fire as stated in the repetition vector in one periodic
phase.

Redundantly, any process pi has the following redundant
constraint (derived from Eq. 18 and Eq. 19):

Ci(τ0 + k · Lperiod)− Ci(τ0) = k · J · ri · ni,j (20)

Here, we omit the formulation of constraints on periodic
phase checking (refer to [13]).

V. CONSTRAINT PROGRAMMING TECHNIQUES

To apply the constraint programming approach, we encode
both the SDF execution semantics [13] and the scheduling
problem on MPSoCs with constraint solver Gecode [6], which
is a library written in C++. Some modeling techniques have
been conducted to improve the computation efficiency in solu-
tions finding:

• Redundant constraints. See Eq. 7, 10, and 20.

• Domain and constraints reduction. A lower bound for
any FIFO [8] can be computed as

ni,j+mi,j−gcd(ni,j ,mi,j)+B
0
i,j mod gcd(ni,j ,mi,j) (21)

to prune infeasible (dead-lock) variable value domains.
Furthermore, although t ∈ N0 holds for all timing related
constraints, we only implement and evaluate them in time
period [0, τ0 + Lperiod] once periodic phase can happen.

TABLE I
COMPARISON OF SCENARIOS WITH VARYING OH. (3× 3 PLATFORM).

specification SCP-OHa SCP

app. #b thru. req. J γSum′ (γSum′′) timec γSum′ (γSum′′) timec

Modem
2 3.125e-2 1 -d 352 98(45) 3.0e3
2 1.667e-2 1 98(46) 5.0e3 92(41) 1.4e3

Wireless
2 2.5e-2 1 - 422 121(53) 4.7e4
2 1.7e-2 1 123(49) 6.4e5 120(48) 1.2e3

a 50% OH in computation latency, plus 100% OH in communication latency.
b The number of application instances mapped onto platform.
c The solutions finding time (ms), branched and explored with γSum′ and γ.
d The problem is infeasible.

• Branching and exploration. To construct the search
tree, the branching variables are prioritized as follows:
γSum′ (γSum′′), γtilen

, and C. Empirically, the explo-
ration starts with minimal values for all variables, which
also guarantees that the first solution found has minimized
buffer cost γSum′ (γSum′′).

VI. EXPERIMENTAL RESULTS

We have performed some experiments on a few benchmarks
to demonstrate how our Scheduling approach based on Con-
straint Programming (SCP) works with Gecode solver in prac-
tice. We first evaluate the effects of scheduling overhead (OH)
which exists in TDMA-like scheduling, and then compare SCP
with the heuristic PAPS [2] in buffer cost. All experiments are
carried out on a HP xw4600 Linux workstation with a Quad-
Core3 2.40GHZ processor and 4GB of RAM.

A. Evaluation of scheduling overhead

Usually, the predictable time slots allocation in TDMA or
list scheduling is modeled by increasing the computation or
communication latency with the postponed time. We slightly
(compared with [3]) specify the OH to be 50% in computation
and 100% in communication, i.e., the OH caused by TDMA
time wheel allocation before the computation or communica-
tion can happen. Our SCP approach is then used to estimate
the best scheduling quality of heuristics, denoted as SCP-OH.
We have used two benchmarks from communication domains,
i.e., a Modem application from [16], and a Wireless applica-
tion from [17]. The architecture platform is a 3×3 mesh-based
MPSoC.

Table I shows the experimental results. Each time two in-
stances of the same applications are allocated onto the MPSoC
empirically with specified throughput requirement, and the un-
roll factor J (Constraint 7) is fixed to 1. The search tree is
branched and explored with buffer storage γSum′ and γtilen ,
then γSum′′ (Property 3) is calculated. We see our SCP can
meet much higher (up to 87%) throughput requirement than
SCP-OH, without much increase in buffer cost. Therefore,
we argue about the performance degradation caused by the
OH in heuristic scheduling on MPSoCs. Furthermore, buffer
costs measured in γSum′′ show a great reduction (55∼65%)

3One core is actually utilized, since we do not explore multi-thread search-
ing in this paper (see Section VII).

TABLE II
COMPARISON OF SCHEDULING METHODS (2× 2 PLATFORM).

specification PAPS SCP

app. # thru. req. J γSum′ (γSum′′) time J γSum′ (γSum′′) time’(time”)a

Bipartite
1 1.101e-1 3 510(510) 120 3 36(31) 2.6e3(2.3e5)
1 1.096e-1 2 352(352) 50 1 36(31) 1.8e3(1.4e5)
1 1.082e-1 1 194(194) 20 1 36(28) 1.9e3(2.1e5)

Cd2dat
2 2.462e-1 - - - 1 68(34) 1.9e3(4.7e4)
2 1.553e-1 2 2926(1504) 430 1 66(34) 1.8e3(3.3e5)
2 1.550e-1 1 1472(762) 120 1 66(34) 1.9e3(3.3e5)

H263
2 2.103e-4 - - - 1 9512(9506) 9.7e3(2.3e5)
2 2.102e-4 2 19016(19012) 2.0e5 1 9512(9506) 9.5e3(2.3e5)
2 2.101e-4 1 9512(9508) 2.4e4 1 9512(9506) 9.2e3(2.1e5)

a The solutions finding time (ms) branched and explored with two buffer measurements.

on γSum′′ . Although, to branch and explore with γSum′′ and
γtilen

has the potency to further reduce γSum′′ , it dramatically
increase the problem complexity. For instance, using the sec-
ond specification of Wireless, we find γSum′′ to be 30 (instead
of 49 in Table I) in 3hrs8mins. But all other experiments fail to
find a solution in 4 hrs. The memory usages for solutions find-
ing are in 47∼163Mb. Interestingly, the infeasible cases on
both applications take the least memory usage and time, which
is opposed to the model-checking method in [8].

B. Comparison with PAPS

Here, we intend to evaluate another performance metrics
(i.e., buffer cost), which has not been well constrained in
heuristics for MPSoCs. Since SCP-OH employs our SCP
method in solutions finding and other heuristic methods [3, 5]
have different problem definitions and assumptions as we have,
a PAPS implemented in C++ is used as the reference method,
which has no buffer constraints. A fixed ideal delay (no-
contention aware) in inter-tile communication is used in the
reference PAPS, as communication protocols was not con-
sidered. We have used three benchmarks, i.e., a Bipartite
model [16], a Cd2dat rate converter [16], and a H263 de-
coder [3]. The architecture platform is a 2 × 2 mesh-based
MPSoC.

Table II shows the experimental results. In SCP, the search
tree is branched and explored with two types of buffer mea-
surements. The solutions finding time is reasonable for such a
medium problem size. Although a NoC communication pro-
tocol is modeled, SCP shows a significant buffer saving (6%
of PAPS in the best case), and can provide higher (up to 64%)
throughput. Here, the highest memory usage for SCP in solu-
tions finding is up to 219Mb, caused by a high peak depth 440
in its search tree.

VII. CONCLUSION

In this paper, we have presented a constraint based schedul-
ing framework for SDF streaming application on MPSoCs.
Based on constraint programming techniques, the global
scheduling for both processors computing and communication
transactions has been achieved. Compared with traditional
heuristics scheduling, our method has higher predictable ap-
plication throughput and less buffer cost.

We know that the complexity of scheduling on MPSoCs
with resource constraints is exponential to the problem size. To

deal with this complexity, we plan to combine heuristics with
our constraint based techniques, such as using heuristics to ex-
plore the search tree. Recently, the latest Gecode 3.1.0 starts
to support parallel search in multiple threads, but the searching
speed-up depends heavily on whether the search tree can be
distributed to each thread efficiently [6]. Our experiments on
multiple threads (2∼4) have not got significant speed-up yet.
It might be necessary to reshape the search tree for parallel
search, which remains to be our future work as well.

ACKNOWLEDGEMENTS

We thank Dr. Johnny Öberg for useful discussions to im-
prove the techniques in this paper. This research has been
partially supported by the SYSMODEL project, which is an
European ARTEMIS supported Initiative.

REFERENCES

[1] W. Wolf, “The future of multiprocessor systems-on-chips,” in Proceed-
ings of the 41st annual Conference on Design Automation (DAC ’04).
New York, NY, USA: ACM, 2004, pp. 681–685.

[2] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Transactions on
Computers, vol. C-36, no. 1, pp. 24–35, January 1987.

[3] S. Stuijk, T. Basten, M. C. W. Geilen, and H. Corporaal, “Multiproces-
sor resource allocation for throughput-constrained synchronous dataflow
graphs,” in Proceedings of the 44th annual Conference on Design Au-
tomation (DAC ’07). New York, NY, USA: ACM, 2007, pp. 777–782.

[4] M. R. Garey and D. S. Johnson, Computers and intractability : a guide
to the theory of NP-completeness. W. H. Freeman, January 1979.

[5] P. Eles, Z. Peng, P. Pop, and A. Doboli, “Scheduling with bus access
optimization for distributed embedded systems,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 8, no. 5, pp. 472–491, 2000.

[6] Gecode, “Generic Constraint Development Environment,” 2009, http:
//www.gecode.org/.

[7] R. Govindarajan, G. R. Gao, and P. Desai, “Minimizing buffer require-
ments under rate-optimal schedule in regular dataflow networks,” Jour-
nal of VLSI Signal Processing, vol. 31, no. 3, pp. 207–229, July 2002.

[8] M. Geilen, T. Basten, and S. Stuijk, “Minimising buffer requirements of
synchronous dataflow graphs with model checking,” in DAC ’05: Pro-
ceedings of the 42nd annual conference on Design automation. New
York, NY, USA: ACM, 2005, pp. 819–824.

[9] W. Liu, M. Yuan, X. He, Z. Gu, and X. Liu, “Efficient SAT-based map-
ping and scheduling of homogeneous synchronous dataflow graphs for
throughput optimization,” in Proceedings of the 28th IEEE international
real-time systems symposium (RTSS ’08). Barcelona, Spain: IEEE
Computer Society, November 2008.

[10] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: Schedul-
ing and Synchronization. New York, NY, USA: Marcel Dekker, Inc.,
2000.

[11] L. Benini, M. Lombardi, M. Milano, and M. Ruggiero, “A constraint pro-
gramming approach for allocation and scheduling on the cell broadband
engine,” in CP ’08: Proceedings of the 14th international conference on
Principles and Practice of Constraint Programming. Berlin, Heidel-
berg: Springer-Verlag, 2008, pp. 21–35.

[12] P.-E. Hladik, H. Cambazard, A.-M. Déplanche, and N. Jussien, “Solving
a real-time allocation problem with constraint programming,” J. Syst.
Softw., vol. 81, no. 1, pp. 132–149, 2008.

[13] J. Zhu, I. Sander, and A. Jantsch, “Buffer minimization of real-time
streaming applications scheduling on hybrid CPU/FPGA architectures,”
in Proceedings of Design Automation and Test in Europe (DATE ’09),
Nice, France, April 2009, pp. 1506–1511.

[14] M. Bekooij, O. Moreira, P. Poplavko, B. Mesman, M. Pastrnak, and J. V.
Meerbergen, “Predictable embedded multiprocessor system design,” in
Proceedings of Workshop on Software and Compilers for Embedded Sys-
tems (SCOPES), LNCS 3199. Springer, 2004.

[15] K. Goossens, J. Dielissen, and A. Radulescu, “Æthereal network on chip:
Concepts, architectures, and implementations,” IEEE Des. Test, vol. 22,
no. 5, pp. 414–421, 2005.

[16] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Synthesis of embed-
ded software from synchronous dataflow specifications,” Journal of VLSI
Signal Processing Systems, vol. 21, no. 2, pp. 151–166, June 1999.

[17] O. Moreira, F. Valente, and M. Bekooij, “Scheduling multiple indepen-
dent hard-real-time jobs on a heterogeneous multiprocessor,” in Proceed-
ings of the 7th ACM & IEEE International conference on Embedded Soft-
ware (EMSOFT ’07). New York, NY, USA: ACM, 2007, pp. 57–66.

