

ABSTRACT

In this paper, we argue that the deployment of high performance
wide area networks coupled with the availability of commodity
middleware will produce a new paradigm of high performance
computing that we call Post-Cluster computing. Further we
argue that the computational science community is on the cusp
of this change, and already we are seeing systems deployed that
utilize this new style of computing. We discuss two systems that
we are developing along these lines, a framework for deploying
scientific applications as web services and a finite-element
method (FEM) analysis system that uses commercial relational
database systems (RDBMS’s) instead of flat files. We argue that
both of these systems leverage commodity middleware in order
to allow us to write applications that are more distributed,
flexible, and easier to implement than, and yet perform
competitively with, our previous systems.

Keywords: Post-Cluster computing, middleware, distributed
computing, finite-element analysis, relational database
management systems, enterprise computing, grid computing,
componentware.

1. INTRODUCTION/MOTIVATION
Cluster computing has matured to the point where

computational scientists can directly purchase turnkey, high-
performance clusters. While having clear price/performance,
user interface, and maintenance advantages over traditional
supercomputers, clusters remain primarily centralized machines,
and the applications that are being written for them are also
centralized and monolithic. In this paper, we argue that the
computational science community is on the cusp of a new era in
high-performance computing. In order to understand the trends
that are bringing this about, we will review how cluster
computing has already changed computational science and
examine several emerging technologies that will effect how
scientific applications are developed over the next five to ten
years.

Traditional High Performance Computing (HPC) - Up
until only a few years ago, high performance computing was
done primarily on a class of machines called “supercomputers.”
Supercomputers were distinct from other, more general-purpose
computers in that they attempted to deliver the highest level of

 This research is partially supported by NSF grants EIA-9726388,

EIA-9972853, and ACIR-0085969.

performance for scientific applications. Because these machines
were so expensive and difficult to maintain, they were usually
found in dedicated supercomputing centers at a small number of
locations around the country and the world.

There were a number of different classes of supercomputer,
including vector, SIMD, and MIMD, and there were a number
of different manufacturers, all of whom employed different
instruction sets and operating systems. The dissimilarity
between machines made it extremely difficult to port a piece of
software from one machine to machine another, or to get
different machines to work together on a single problem. It also
meant that applications often had to be developed directly on
these machines.

Cluster-based HPC - In the nineties, the gap between super-
and general-purpose computers grew increasingly smaller.
Several groups started building clusters from commodity
desktop computers and networks and found that these machines
were able to achieve a level of performance that was
competitive with supercomputers for a number of scientific
applications. In the past few years, as PC’s and their
interconnect networks became faster, the performance gap
between commodity clusters and traditional supercomputers has
continued to close. Today, the price/performance ratio is clearly
in the favor of machines built around commodity hardware.

Today, it is possible for scientists to order commodity cluster
computers from the same manufacturer that they ordered their
desktop computers. This means that they can develop and debug
applications on their desktop machines using their favorite
programming environment and then simply copy their
applications onto a cluster for execution. Furthermore, in many
cases, these computers share a common file system and
authentication mechanism, so jobs can be submitted to a cluster
directly from desktop machines.

While having better price/performance ratios than their
predecessors, cluster computers are still primary centralized
computers. That is, applications that are designed for the current
generation of high-performance computers execute, primarily,
on a single machine in a single location.

Post-Cluster HPC - We see several emerging trends that we
believe will radically change scientific computing. They are as
follows.

• High performance WAN’s: Trans- and inter-continental
networks are being deployed that will provide very high
bandwidth between geographically distributed
institutions [1],[2]. This will enable collaborating
scientists at different institutions to move relatively
large amounts of data over the Internet. In addition,
devices for 3D “virtual reality” visualization are now

Post-Cluster Computing and the Next Generation of Scientific Applications

Gerd Heber and David Lifka
Cornell Theory Center, Cornell University

Ithaca, NY 14853, USA

Paul Stodghill
Department of Computer Science, Cornell University

Ithaca, NY 14853, USA

commercially available [23], and their price will
continue to drop as they become increasing based on
commodity hardware and software [22]. We believe that
immersive visualization will be consumer of bandwidth
on the new networks.

• Standardized middleware: We will discuss a number of
these technologies: CORBA [3], COM/DCOM [4],
ODBC [5], XML [6], HTTP [7], and SOAP [8]. As these
API’s converge, middleware implementations are
becoming cheaper and more widely available. As these
technologies become more mature, vendors have started
to deploy entire application frameworks that are built
around them. Microsoft’s .NET framework [9] is,
perhaps, the most well known instance of this. Globus
[31] is framework targeted towards high performance
computing.

These trends will give rise to what we call “post-cluster
computing”. In the near future, we expect to see scientists
leverage these commodity technologies to write applications
that are constructed in a decentralized and distributed manner
from a set of loosely coupled components that allow for a
greater degree of collaboration between scientists and that
provide much simpler and intuitive interfaces. In fact, we
already see hints of this. For instance, there are a number of
applications in computational genomics [10] and astronomy
[11],[12] that use commodity databases to store and access tera-
and petabytes of scientific data. Peer-to-peer computations, such
as SETI@Home [12] and Distributed.Net [14], use simple
standard Internet protocols in order to communicate between
servers and clients. Our thesis is that the emerging commodity
technologies will make it easier to develop such systems, and
therefore they will become more prevalent. Furthermore, we
believe that scientists will use these emerging commodity
technologies in ways that we are only beginning to imagine.

In the rest of this paper, we will discuss ongoing work in the
Adaptive Software Project that leverages commodity in ways
that are novel for scientific computing. Section 2 discusses the
Adaptive Software Project’s Distributed Simulation
Environment, a framework for deploying components for
simulation in a distributed, and yet, easy to use manner. Section
3 discusses a component for performing FEM analysis that will
be deployed in this framework, and makes novel use of
commercial RDBMS’s. In Section 4 we summarize our work.

2. THE ASP DISTRIBUTED SIMULATION
ENVIRONMENT

What is ASP
The Adaptive Software Project (ASP) is a research program

to develop adaptive software and systems for scientific
simulations. We are studying adaptivity at three different levels,
the application level (e.g., switching between different physical
models as the simulation evolves), the algorithmic level (e.g.,
switching between different linear solvers based upon the
conditioning of a system of equations or changing the
discretization method from Finite Elements to wavelets), and the
system-level (e.g., providing fault-tolerance and dynamic
resource management).

Researchers from a number of institutions, including Cornell
University, Mississippi State University (MSU), and the College

of William and Mary (CWM), are participating in the project.
The participants also come from a number of disciplines,
including Computer Science, Civil Engineering, Physics and
Applied Math. The physical phenomena that we are interested in
simulating are multiple physics (e.g., chemically reacting flows,
thermal stresses, structural mechanics and fracture mechanics)
at multiple time and length scales (e.g., from angstroms to
centimeters and meters).

In order to pursue our research agenda, we need a “nimble”
simulation environment in which novel adaptive components
can be developed, tested, and used by members of this project.
Consider this to be enabling technology for the sorts of adaptive
software that we want to deploy. In the past, we might have
chosen to develop a software testbed in which each of our codes
would compile and run. However, in addition to being
geographically distributed, our computing resources are based
upon different computer architectures and operating systems
(Cornell – Windows NT on x86 and Itanium, MSU – Solaris on
SPARC, CWM – Linux on x86). Based upon our experience
with past projects, we concluded that single framework that
would run on any single machine and that would support all of
our codes was simply too expensive and time consuming to
develop.

Requirements
Instead of building a centralized framework for building

monolithic simulation applications, we have chosen to develop a
distributed web-based framework for building loosely coupled
simulation applications that will leverage the bandwidth that
will become available as ever better WAN’s are deployed. Our
vision is to have each project member supply their individual
components/software to the other project members in the form
of Web services [27]. Then, a member can perform a simulation
by choosing a set of Web services that are required to perform
the computation and by specifying how the data must flow
between them.

There are several advantages to the Web services based
approach over the traditional centralized approach.

1. From the end user’s point of view, a set of Web
services can be more easily combined and
recombined to form different simulation
applications.

2. From the developer’s point of view, providing a
component in the form of a Web service means that
the component does not have to be ported and
maintained on more than one architecture and
operating system. In the long run, we believe that
this approach will dramatically reduce our
implementation costs, while providing us with a
much more flexible simulation toolkit.

3. From a philosophical point of view, it remains
doubtful that a system capable to adapt can exist in
form of a monolithic framework. [31]

In order to realize our vision, we need an infrastructure for
deploying and using these Web services. We call this
infrastructure the ASP Distributed Simulation Environment
(DSE). This infrastructure must provide a simple interface to
both the end-user and the component developer. It must allow
clients and servers running on different architecture and within
different security domains to communicate and interact.

Commodity Middleware

We have discovered that much of the functionality that we
need in order to implement the ASP DSE is already present in
systems that support commerce on the web today. Here are a
number of examples,

• SSL [29] for communication authentication and privacy,
• XML [28] for application-neutral data exchange,
• SOAP [30],[27] for remote procedure and service

invocation,
• UDDI [26] for description, discovery and integration of

web-services and
• ODBC [5] for accessing databases.
Not only are these technologies standardized (or at least

documented), they are widely available for a number of
different platforms and from a number of different vendors. In
effect, what we are starting to see with the wide deployment of
these technologies is the commodization of middleware systems
[33],[32]. Computational scientists, like us, will greatly benefit
from this development.

Status and Related work
At present, we are in the midst of laying the foundations for

our ASP DSE. In the process of studying what has been done in
this area, we have found two bodies of work that are of
immediate relevance.

Gridware – Systems like Globus [31] attempt to provide
middleware for distributed scientific computing. [37] describes
how a system like Globus can be used to deploy scientific
applications as Web services. Globus is composed of a number
of different services, including the Grid Security Infrastructure
(GSI) [38]. The GSI is built on top of SSL and provides end-to-
end authentication and encryption. Unfortunately, we know of
no gridware system that runs on all of the platforms that we
need to support (e.g., Windows).

Componentware – Systems like COM/DCOM [4] and
CORBA [3] are designed to wrap traditional standalone
applications into interoperable components and to combine them
to form new applications running on a single machine or within
the limits of an intranet. These systems were not designed for
loosely coupled distributed components exchanging messages in
a form independent of the middleware over the Internet. They
also do not support the notion of inheritance for building new
components on top of existing, possibly distributed,
components.

What we have found is that, while many useful pieces are
readily available, a complete solution for the ASP DSE does not
exist at the present time. However, over the next 5 years, or so,
we expect to seem dramatic improvements in this area. In the
meantime, we plan to use the existing technologies like XML,
SOAP, WSDL, and UDDI to build a “light-weight”
infrastructure to meet our projects needs. We plan to incorporate
additional gridware and componentware technologies as they
mature and are able to meet our project requirements of ease of
use, interoperability and performance. The technologies
mentioned above, on the other hand, give us the necessary
flexibility for rapid development and deployment of the
components dealing specifically with adaptivity.

3. A CASE STUDY: FEM ANALYSIS AND SQL
SERVER

In this section, we examine one component that will execute
within the ASP DSE in more detail. In order to illustrate further
how software commodization adds mature, standardized and
easy-to-use tools to the scientific toolset and how they enable us
to re-think traditional approaches and write better software, we
outline in this section a new design for a Finite Element Method
(FEM) analysis system.

FEM analysis is something that we thought we knew how to
do “right” all along. Of course, the definition of “right” depends
on how the software is used and this mode of use itself evolves.
One of the lessons the increasing involvement in
interdisciplinary research collaborations across different schools
and research institutions has taught us is that the “you port our
code to your platform and we do the same with yours” approach
is no longer an option and that therefore interoperability, not
portability, is the most important criterion.

Relational database management systems (RDBMS) are a
mature enterprise technology: Entire industries depend on their
robustness, interoperability and performance. Apart from huge
datasets, e.g. in genomics, particle physics or astronomy, they
are easily overlooked by the scientific community. RDBMS are
something to store customer information and product orders,
and subsequently mine those data to increase sales, - right? –
That is precisely the impression one gets from reading standard
texts on RDBMS and SQL and it is no surprise that many
people finally believe that that’s the ONLY thing RDBMS are
useful for.1 How can I and why should I flatten my unstructured
grid data into simple-minded tables?

In this section, we will highlight some of the gains in
interoperability, productivity, robustness and performance
obtained from making an RDBMS an integral part of a
simulation environment for computational fracture mechanics.

Traditional FEM Analysis
A simulation typically consists of several phases with

different data-access patterns like pre-processing, equation
solving and post-processing. Geometric and material modeling,
and mesh generation are examples of pre-processing operations.
The formulation and setup of the (non-)linear equations, error
estimation and finally running an appropriate equation solver
make up the solution phase. Error analysis, visualization or
model adaptation, are typical post-processing tasks.

The individual phases usually “communicate” via files or
data structures in memory. This approach has some serious
disadvantages.

1. Every package supports a limited number of more
or less standardized data structures/file formats.
Besides the conversion effort, it requires an API
(and more) to extract useful information. Usually,
such APIs are provided in the form of libraries,
which too often limit potential uses and users
because of ties to a particular language.

1 There are notable exceptions as for example [15] where the

implementation of complex arithmetic using stored procedures is shown.
Reference [16] has some examples of matrix arithmetic in SQL, which to
traditional users of RDBMS may appear as useless academic exercises.
From an HPC point of view, they in fact are, but to HPC users, on the
other hand, a matrix is a more familiar object than a customer database.

2. The costs of providing and maintaining an API can
be overwhelming in the light of evolving demands.
In addition, users must write everything that is not
(yet) part of the API and replication of superfluous,
non-problem-oriented code is a consequence.

3. Files as the primary persistent storage are of poor
interoperability in a distributed computing
environment where different views and subset of
the same underlying data frequently are created
and/or adapted.

4. Files may contain invalid data in terms of data
and/or referential integrity and it is difficult to
detect this once large datasets are in place.
Transactions and fault-tolerance mechanisms can
be layered on top of file or in-core data structures,
but our goal is to quickly deploy tools for doing
material not computer science.

5. Parallel and distributed computing adds another
layer of complexity. Usually, it destroys the natural
global view of the model and replaces it by local
patches that need a synchronization mechanism for
consistency. Parallelization of full-fledged FEM
codes is non-trivial. (Otherwise, it would be
difficult to understand why commercial codes like
ANSYS [20] or ABAQUS [21] exist as sequential
codes only.)

An Alternative Approach Using RDBMS
We have implemented a coupled thermo-mechanical

simulation that allows us to study crack growth taking the
thermal state of the material into account. On the figure below,
the results of a coupled and an uncoupled thermo- mechanical
simulation for a combustion pipe are shown. (The picture shows
only parts of the 3D model’s surface with the color contour
indicating the temperature distribution and the wireframes
indicating the deformed shape.)

In the following we describe the main algorithmic steps and

how the simulation interacts with the RDBMS. The parallel
code (MPI) is written in C++ and uses the ODBC [5] API to
communicate with the SQL Server. One of the code’s
characteristics is its brevity (compared to the traditional

version): the library functions consist mostly of SQL statements
(strings!) and result set parsing. SQL is a universal API!

Algorithmic Steps
1. Partitioning: To run the simulation on a cluster of

distributed memory machines, data must be
partitioned. A simple and cheap partitioner is
sufficient to get started. We implemented recursive
coordinate bisection (RCB) [19] and a space-filling
curve (Peano curve) [34],[35] based partitioner as
stored procedures, which partition the sets of vertices,
edges and tetrahedra. This partitioning information is
also used to create certain clustered indices. For
complex geometries, the quality of the partitions
provided by RCB may not be satisfactory in terms of
load balancing. In this case, a Kernighan-Lin method
[19] or a high-quality partitioner like ParMeTis [18]
can be used to post-process the partitions in memory.

2. Read: Given the initial partitioning, vertices and
tetrahedra are read into core where each MPI process
SELECTs only objects tagged with its process id.

3. Formulation: The read is followed by the formulation
of the FEM elemental matrices. (The underlying finite
elements are 10-noded tetrahedral elements. The
elemental matrices are 10x10 and 30x30 matrices for
the thermal and the mechanical analysis, respectively.)
Contributions to the right hand sides of the equations
from internal heat sources or sinks and volume forces
are computed during the formulation as well. The
formulation is embarrassingly parallel and floating
point intensive (numerical integration). There is no
interaction with the database during formulation.

4. Equation numbering: The equation numbering is
simple enough that it can be handled by a stored
procedure. It is independent of the formulation and
can be performed on the SQL Server while the
elemental matrices are formulated on the cluster. As in
the case of the partitioning, a post-processing of the
equation numbering in core is optional and depends
on the problem. Having SQL Server perform the
equation numbering is particularly simple, because no
synchronization (communication) between partitions
is necessary.

5. Assembly: Once equation numbers are assigned, all
elemental matrices are assembled into a global matrix.
There is no interaction with the database during
assembly.

6. Boundary Conditions: The assembly can be
overlapped with the incorporation of boundary
conditions like surface temperatures, heat fluxes, fixed
displacements or tractions on the surface. For a
database’s global view of topology, geometry,
boundary conditions and mesh there is no need for
synchronization among partitions about boundary
conditions. Below, we show an example of a query
that returns the ids of all tetrahedra in a given
partition, which have a facet on a surface where
certain Neumann-type boundary conditions are
imposed.

coupled

uncouple

7. Solution: The equations for temperature and
displacement are solved in this step using one of the
iterative solvers from PETSc’s [17] suite. There is no
interaction with the database during solution.

8. Write: The results are stored in the database for post-
processing. (Distributed) Pre- and post-processing
tools can query data from SQL Server via HTTP,
XML, ODBC, ADO or OLE DB.

Evaluation
We ran a series of tests on the Cornell Theory Center’s AC3

clusters and the RDBMS of our choice was Microsoft’s SQL
Server 2000 Enterprise Edition, which was installed on a dual
processor DELL PowerEdge 2450 Dual Pentium III processor
running Windows 2000 Advanced Server (SP2). 100 MBit
Ethernet connects the cluster and the database server. For a
fixed problem size, we were interested in how many clients
(MPI processes) a single server would be able to serve without
significant performance degradation. The underlying problem
was mesh of about 60,000 tetrahedra resulting in about 300,000
degrees of freedom for the Finite Element problem. In the table
below, we show the time for those phases of the simulation
when all clients access the database. The solution time is shown
for comparison.

4 procs 8 procs 16 procs 32 procs

Fetch Vertices and Tets 1.04 1.07 1.22 2.48
Number equations 2.63 4.36 7.1 14.58
Essential BCs elasticity 5.01 8.61 14.68 30.31
Natural BCs elasticity 1.65 4.73 9.67 19.66
Solve 278.89 153.67 84.17 56.84
Write displacements 26.37 26.47 26.73 26.39

There is a noticeable performance degradation going from 16

to 32 MPI processes, where the total of the database access
times actually exceeds the solve time. Except for the writing of
the results, all other accesses are read-only. The writing of the
results is done by MPI process 0 only, which gathers the result
vector and updates the result table. The performance is
competitive with traditional file-based simulations, although we
did not perform a direct comparison. To make a “fair
comparison” is not as simple as it might appear. For example,
large clusters, such as the AC3 clusters, are not served by a
single file server and the ability of the database-assisted

simulation to overlap certain steps of the simulation may be
viewed an unfair advantage.

The fetching of vertices and tetrahedra scales so well because
the two underlying tables have clustered indices [24]. The same
can be done for the tables of bounding entities to make the
formulation of the boundary conditions scalable, which we have
not done for this experiment. However, the scalability problem
at large cannot be solved by clustered indices alone. A single
server is a potential bottleneck and it will serve well only a
limited number of clients, whose number also depends on the
size of the database. State-of-the-art RDBMS can be run on
clusters of servers where the underlying databases are either
replicated or distributed across several linked servers. The
former is applicable for small and medium sized models. The
latter is definitely the more scalable approach for large solid
models and Finite Element or Finite Volume meshes, which we
currently explore using distributed partitioned views [15],[24] in
SQL Server 2000.

With respect to databases, there are at least two major
challenges on the software side:

1. Although, thanks to the use of databases, we have
been able to dramatically reduce the fraction of
non problem-oriented code in our simulation, the
newly introduced code that targets the ODBC
interface hardly lives up to contemporary software
standards. Greater type safety and a more
“organic” integration of dynamic SQL queries
with libraries like the ANSI/ISO C++ Standard
Library would be helpful. Embedded SQL is a
nice, though outdated, example for the integration
of static SQL queries and the C programming
language. Microsoft’s ADO.NET [36] offers a
much cleaner interface.

2. Given that clustered RDBMS will serve
simulations running on large HPC clusters, an
intermediate software layer is necessary to
facilitate the mapping between the two and to
isolate the application from organizational details
of the database cluster. Parallel libraries that offer
explicit support for (distributed) domains,
relations, and associations, like the JANUS library
[25], can be used to build such a layer.

In this section, we focused on how RDBMS can be used to

accelerate and simplify the solution phase of a typical FEM
simulation. Let us point out that standard pre- and post-
processing can be greatly simplified and made more powerful
by the use standard RDBMS as well. The conversion of this
environment into a Web service [8] and a visualization tool that
interacts directly with the RDBMS are in progress.

4. SUMMARY
In this paper, we have argued that the computational science

community is on the cusp of a new era in high-performance
computing. We have identified two emerging trends that we
believe will radically change the way that scientific applications
are written: the availability of very high bandwidth wide area
networks and the commodization of application middleware.
These trends will give rise to what we call “post-cluster
computing”. In the near future, we expect to see scientists

SELECT A.m_tet_id FROM
 (SELECT m_tet_id FROM MVerticesOfTetrahedron

 WHERE m_vertex_id IN
 (SELECT C.m_vertex_id FROM
 MVerticesOfMTrianglesOnTSurface AS C
 JOIN
 Wall_conditions AS D
 ON C.m_triangle_id = D.m_triangle_id)
 GROUP BY m_tet_id
 HAVING COUNT(m_vertex_id) = ‘3’) AS A

 JOIN
 TPartitioning AS B
 ON A.m_tet_id = B.m_tet_id
 WHERE partition = ‘my_MPI_rank’

leverage these commodity technologies to write applications
that are constructed in a decentralized and distributed manner
from a set of loosely coupled components that allow for a
greater degree of collaboration between scientists and that
provide much simpler and intuitive interfaces.

To illustrate our point, we have presented two pieces of work
being done within the Adaptive Software Project. The first was
the Distributed Simulation Environment, a framework that we
are developing in order to deploy the adaptive scientific
components that we are developing as web services. We are
planning on making extensive use of the commodity
middleware systems that are becoming widely available.

The second piece of work is a novel system for coupled
thermal-mechanical simulations based on the Finite-Element
Method (FEM). What differentiates our system from previous
systems is that it uses a commercial relational database system
(RDBMS), in form of Microsoft SQL Server 2000, instead of
the usual file-based approach for storing and retrieving data.
Our new system is implemented using fewer lines of code but is
able to interface with other systems in more general ways. For
instance, because it interacts with data through standard
database mechanisms, our new FEM solver can easily be set up
as a service on the WWW or combined with other packages
(e.g., CAD modeling tools, visualization systems) to produce
extremely rich and flexible engineering tools. On the technical
side, our system exhibits a higher degree of concurrency
because considerable workload is pushed to the RDBMS.
Furthermore, because our system manipulates data using
transactions, it never leaves data in an inconsistent state if a
failure occurs.

References
[1] “Internet2 Website.” http://www.internet2.edu/
[2] “GEANT - The pan-European Gigabit Research and Education

Network.” http://www.dante.net/geant/
[3] “Welcome to the OMG’s CORBA Website.”

http://www.corba.org/
[4] “Microsoft COM Technologies.” http://www.microsoft.com/com/
[5] “Microsoft ODBC.”

http://www.microsoft.com/data/odbc/default.htm
[6] “Extensible Markup Language (XML).” http://www.w3.org/XML/
[7] “HTTP – Hypertext Transfer Protocol Overview.”

http://www.w3.org/protocols
[8] Kenn Scribner and Mark C. Stiver, Applied SOAP: Implementing

.NET XML Web services, Sams Publishing 2002.
[9] “Microsoft .NET.” http://www.microsoft.com/net/
[10] “AC3 Case Study: Genomics Data Warehouse.”

http://www.tc.cornell.edu/ac3/News/CaseStudies/2001/casestudy.c
artinhour.html

[11] Jim Gray, “The World Wide Telescope: Mining the Sky.”
Supercomputing ’01. Denver, Colorodo, November 10-16, 2001.

[12] “Sloan Digital Sky Survey SkyServer”. http://skyserver.sdss.org/
[13] “SETI@Home: Search for Extraterrestrial Intelligence at Home.”

http://setiathome.berkeley.edu/
[14] “distributed.net: Node Zero.” http://distributed.net/
[15] Itzik Ben-Gan and Tom Moreau, Advanced Transact-SQL for SQL

Server 2000, Apress 2000.
[16] Joe Celko, SQL for Smarties, 2nd Edition, Morgan Kaufmann

Publishers 2000.
[17] “PETSc: The Portable, Extensible Toolkit for Scientific

Computation.” http://www.mcs.anl.gov/petsc/
[18] “METIS: Family of Multilevel Partitioning Algorithms.”

http://www-users.cs.umn.edu/~karypis/metis/
[19] Ullrich Elsner, Graph partitioning – a survey, Technische

Universität Chemnitz, SFB 393. SFB393-Preprint 97-27, 1997

[20] “Welcome to ANSYS.COM.” http://www.ansys.com/
[21] “ABAQUS Home Page.” http://www.abaqus.com/
[22] “Cornell Theory Center funded by NASA and New York State to

provide ‘Educluster’ and Windows CAVE-like environment for
education”. Cornell Theory Center Press Release. April 23, 2001.
http://www.tc.cornell.edu/news/releases/2001/educluster.asp

[23] Fakespace Systems, Inc. http://www.fakespacesystems.com/
[24] Kalen Delaney, Inside Microsoft SQL Server 2000, Microsoft

Press 2001.
[25] “JANUS Home Page.” http://www.first.gmd.de/janus/
[26] “The Universal Description, Discovery and Integration project.”

http://www.uddi.org/
[27] “LernXmlWS XML and Web services Resources”.

http://www.learnxmlws.com/
[28] “Extensible Markup Language (XML)”. http://www.w3.org/XML/
[29] “SSL 3.0 Specification”. http://www.netscape.com/eng/ssl3/
[30] “Web Services”. http://www.w3.org/2002/ws/
[31] John H. Holland, Hidden Order: How Adaptation Builds

Complexity, Perseus Print, 1996.
[32] “WS-I Web Services Interoperability Organization”.

http://www.ws-i.org/
[33] “The World Wide Web Consortium”. http://www.w3.org/
[34] Jim Gray, private communication.
[35] Hans Sagan, Space-Filling Curves. Springer Verlag, 1994.
[36] “MSDN Home”. http://msdn.microsoft.com/“The Globus Project”.

http://www.globus.org/
[37] “The Physiology of the Grid: An Open Grid Services Architecture

for Distributed Systems Integration.” I. Foster, C. Kesselman, J.
Nick, S. Tuecke; January, 2002.

[38] A National-Scale Authentication Infrastructure. R. Butler, D.
Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, V. Welch.
IEEE Computer, 33(12):60-66, 2000.

