
 
 

 

ABSTRACT  

In this paper, we argue that the deployment of high performance 
wide area networks coupled with the availability of commodity 
middleware will produce a new paradigm of high performance 
computing that we call Post-Cluster computing. Further we 
argue that the computational science community is on the cusp 
of this change, and already we are seeing systems deployed that 
utilize this new style of computing. We discuss two systems that 
we are developing along these lines, a framework for deploying 
scientific applications as web services and a finite-element 
method (FEM) analysis system that uses commercial relational 
database systems (RDBMS’s) instead of flat files. We argue that 
both of these systems leverage commodity middleware in order 
to allow us to write applications that are more distributed, 
flexible, and easier to implement than, and yet perform 
competitively with, our previous systems. 

 
Keywords: Post-Cluster computing, middleware, distributed 
computing, finite-element analysis, relational database 
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1. INTRODUCTION/MOTIVATION 
Cluster computing has matured to the point where 

computational scientists can directly purchase turnkey, high-
performance clusters. While having clear price/performance, 
user interface, and maintenance advantages over traditional 
supercomputers, clusters remain primarily centralized machines, 
and the applications that are being written for them are also 
centralized and monolithic. In this paper, we argue that the 
computational science community is on the cusp of a new era in 
high-performance computing. In order to understand the trends 
that are bringing this about, we will review how cluster 
computing has already changed computational science and 
examine several emerging technologies that will effect how 
scientific applications are developed over the next five to ten 
years. 

Traditional High Performance Computing (HPC) - Up 
until only a few years ago, high performance computing was 
done primarily on a class of machines called “supercomputers.” 
Supercomputers were distinct from other, more general-purpose 
computers in that they attempted to deliver the highest level of 
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performance for scientific applications. Because these machines 
were so expensive and difficult to maintain, they were usually 
found in dedicated supercomputing centers at a small number of 
locations around the country and the world.  

There were a number of different classes of supercomputer, 
including vector, SIMD, and MIMD, and there were a number 
of different manufacturers, all of whom employed different 
instruction sets and operating systems. The dissimilarity 
between machines made it extremely difficult to port a piece of 
software from one machine to machine another, or to get 
different machines to work together on a single problem. It also 
meant that applications often had to be developed directly on 
these machines. 

Cluster-based HPC - In the nineties, the gap between super- 
and general-purpose computers grew increasingly smaller. 
Several groups started building clusters from commodity 
desktop computers and networks and found that these machines 
were able to achieve a level of performance that was 
competitive with supercomputers for a number of scientific 
applications. In the past few years, as PC’s and their 
interconnect networks became faster, the performance gap 
between commodity clusters and traditional supercomputers has 
continued to close. Today, the price/performance ratio is clearly 
in the favor of machines built around commodity hardware. 

Today, it is possible for scientists to order commodity cluster 
computers from the same manufacturer that they ordered their 
desktop computers. This means that they can develop and debug 
applications on their desktop machines using their favorite 
programming environment and then simply copy their 
applications onto a cluster for execution. Furthermore, in many 
cases, these computers share a common file system and 
authentication mechanism, so jobs can be submitted to a cluster 
directly from desktop machines. 

While having better price/performance ratios than their 
predecessors, cluster computers are still primary centralized 
computers. That is, applications that are designed for the current 
generation of high-performance computers execute, primarily, 
on a single machine in a single location. 

Post-Cluster HPC - We see several emerging trends that we 
believe will radically change scientific computing. They are as 
follows. 

• High performance WAN’s: Trans- and inter-continental 
networks are being deployed that will provide very high 
bandwidth between geographically distributed 
institutions [1],[2]. This will enable collaborating 
scientists at different institutions to move relatively 
large amounts of data over the Internet. In addition, 
devices for 3D “virtual reality” visualization are now 
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commercially available [23], and their price will 
continue to drop as they become increasing based on 
commodity hardware and software [22]. We believe that 
immersive visualization will be consumer of bandwidth 
on the new networks. 

• Standardized middleware:  We will discuss a number of 
these technologies: CORBA [3], COM/DCOM [4], 
ODBC [5], XML [6], HTTP [7], and SOAP [8]. As these 
API’s converge, middleware implementations are 
becoming cheaper and more widely available. As these 
technologies become more mature, vendors have started 
to deploy entire application frameworks that are built 
around them. Microsoft’s .NET framework [9] is, 
perhaps, the most well known instance of this. Globus 
[31] is framework targeted towards high performance 
computing. 

These trends will give rise to what we call “post-cluster 
computing”. In the near future, we expect to see scientists 
leverage these commodity technologies to write applications 
that are constructed in a decentralized and distributed manner 
from a set of loosely coupled components that allow for a 
greater degree of collaboration between scientists and that 
provide much simpler and intuitive interfaces.  In fact, we 
already see hints of this. For instance, there are a number of 
applications in computational genomics [10] and astronomy 
[11],[12] that use commodity databases to store and access tera- 
and petabytes of scientific data. Peer-to-peer computations, such 
as SETI@Home [12] and Distributed.Net [14], use simple 
standard Internet protocols in order to communicate between 
servers and clients. Our thesis is that the emerging commodity 
technologies will make it easier to develop such systems, and 
therefore they will become more prevalent. Furthermore, we 
believe that scientists will use these emerging commodity 
technologies in ways that we are only beginning to imagine. 

In the rest of this paper, we will discuss ongoing work in the 
Adaptive Software Project that leverages commodity in ways 
that are novel for scientific computing. Section 2 discusses the 
Adaptive Software Project’s Distributed Simulation 
Environment, a framework for deploying components for 
simulation in a distributed, and yet, easy to use manner. Section 
3 discusses a component for performing FEM analysis that will 
be deployed in this framework, and makes novel use of 
commercial RDBMS’s. In Section 4 we summarize our work. 

2. THE ASP DISTRIBUTED SIMULATION 
ENVIRONMENT 

What is ASP 
The Adaptive Software Project (ASP) is a research program 

to develop adaptive software and systems for scientific 
simulations. We are studying adaptivity at three different levels, 
the application level (e.g., switching between different physical 
models as the simulation evolves), the algorithmic level (e.g., 
switching between different linear solvers based upon the 
conditioning of a system of equations or changing the 
discretization method from Finite Elements to wavelets), and the 
system-level (e.g., providing fault-tolerance and dynamic 
resource management). 

Researchers from a number of institutions, including Cornell 
University, Mississippi State University (MSU), and the College 

of William and Mary (CWM), are participating in the project. 
The participants also come from a number of disciplines, 
including Computer Science, Civil Engineering, Physics and 
Applied Math. The physical phenomena that we are interested in 
simulating are multiple physics (e.g., chemically reacting flows, 
thermal stresses, structural mechanics and fracture mechanics) 
at multiple time and length scales (e.g., from angstroms to 
centimeters and meters). 

In order to pursue our research agenda, we need a “nimble” 
simulation environment in which novel adaptive components 
can be developed, tested, and used by members of this project. 
Consider this to be enabling technology for the sorts of adaptive 
software that we want to deploy. In the past, we might have 
chosen to develop a software testbed in which each of our codes 
would compile and run. However, in addition to being 
geographically distributed, our computing resources are based 
upon different computer architectures and operating systems 
(Cornell – Windows NT on x86 and Itanium, MSU – Solaris on 
SPARC, CWM – Linux on x86). Based upon our experience 
with past projects, we concluded that single framework that 
would run on any single machine and that would support all of 
our codes was simply too expensive and time consuming to 
develop.  

Requirements 
Instead of building a centralized framework for building 

monolithic simulation applications, we have chosen to develop a 
distributed web-based framework for building loosely coupled 
simulation applications that will leverage the bandwidth that 
will become available as ever better WAN’s are deployed. Our 
vision is to have each project member supply their individual 
components/software to the other project members in the form 
of Web services [27]. Then, a member can perform a simulation 
by choosing a set of Web services that are required to perform 
the computation and by specifying how the data must flow 
between them. 

There are several advantages to the Web services based 
approach over the traditional centralized approach. 

1.  From the end user’s point of view, a set of Web 
services can be more easily combined and 
recombined to form different simulation 
applications. 

2. From the developer’s point of view, providing a 
component in the form of a Web service means that 
the component does not have to be ported and 
maintained on more than one architecture and 
operating system. In the long run, we believe that 
this approach will dramatically reduce our 
implementation costs, while providing us with a 
much more flexible simulation toolkit. 

3. From a philosophical point of view, it remains 
doubtful that a system capable to adapt can exist in 
form of a monolithic framework. [31] 

In order to realize our vision, we need an infrastructure for 
deploying and using these Web services. We call this 
infrastructure the ASP Distributed Simulation Environment 
(DSE). This infrastructure must provide a simple interface to 
both the end-user and the component developer. It must allow 
clients and servers running on different architecture and within 
different security domains to communicate and interact. 



 
 
Commodity Middleware 

We have discovered that much of the functionality that we 
need in order to implement the ASP DSE is already present in 
systems that support commerce on the web today. Here are a 
number of examples, 

• SSL [29] for communication authentication and privacy, 
• XML [28] for application-neutral data exchange, 
• SOAP [30],[27] for remote procedure and service 

invocation,    
• UDDI [26] for description, discovery and integration of 

web-services and 
• ODBC [5] for accessing databases. 
Not only are these technologies standardized (or at least 

documented), they are widely available for a number of 
different platforms and from a number of different vendors. In 
effect, what we are starting to see with the wide deployment of 
these technologies is the commodization of middleware systems 
[33],[32]. Computational scientists, like us, will greatly benefit 
from this development. 

Status and Related work 
At present, we are in the midst of laying the foundations for 

our ASP DSE. In the process of studying what has been done in 
this area, we have found two bodies of work that are of 
immediate relevance. 

Gridware – Systems like Globus [31] attempt to provide 
middleware for distributed scientific computing. [37] describes 
how a system like Globus can be used to deploy scientific 
applications as Web services. Globus is composed of a number 
of different services, including the Grid Security Infrastructure 
(GSI) [38]. The GSI is built on top of SSL and provides end-to-
end authentication and encryption. Unfortunately, we know of 
no gridware system that runs on all of the platforms that we 
need to support (e.g., Windows). 

Componentware – Systems like COM/DCOM [4] and 
CORBA [3] are designed to wrap traditional standalone 
applications into interoperable components and to combine them 
to form new applications running on a single machine or within 
the limits of an intranet. These systems were not designed for 
loosely coupled distributed components exchanging messages in 
a form independent of the middleware over the Internet. They 
also do not support the notion of inheritance for building new 
components on top of existing, possibly distributed, 
components. 

What we have found is that, while many useful pieces are 
readily available, a complete solution for the ASP DSE does not 
exist at the present time. However, over the next 5 years, or so, 
we expect to seem dramatic improvements in this area. In the 
meantime, we plan to use the existing technologies like XML, 
SOAP, WSDL, and UDDI to build a “light-weight” 
infrastructure to meet our projects needs. We plan to incorporate 
additional gridware and componentware technologies as they 
mature and are able to meet our project requirements of ease of 
use, interoperability and performance. The technologies 
mentioned above, on the other hand, give us the necessary 
flexibility for rapid development and deployment of the 
components dealing specifically with adaptivity.  

3. A CASE STUDY: FEM ANALYSIS AND SQL 
SERVER 

In this section, we examine one component that will execute 
within the ASP DSE in more detail. In order to illustrate further 
how software commodization adds mature, standardized and 
easy-to-use tools to the scientific toolset and how they enable us 
to re-think traditional approaches and write better software, we 
outline in this section a new design for a Finite Element Method 
(FEM) analysis system. 

FEM analysis is something that we thought we knew how to 
do “right” all along. Of course, the definition of “right” depends 
on how the software is used and this mode of use itself evolves. 
One of the lessons the increasing involvement in 
interdisciplinary research collaborations across different schools 
and research institutions has taught us is that the “you port our 
code to your platform and we do the same with yours” approach 
is no longer an option and that therefore interoperability, not 
portability, is the most important criterion. 

Relational database management systems (RDBMS) are a 
mature enterprise technology: Entire industries depend on their 
robustness, interoperability and performance. Apart from huge 
datasets, e.g. in genomics, particle physics or astronomy, they 
are easily overlooked by the scientific community. RDBMS are 
something to store customer information and product orders, 
and subsequently mine those data to increase sales, - right? – 
That is precisely the impression one gets from reading standard 
texts on RDBMS and SQL and it is no surprise that many 
people finally believe that that’s the ONLY thing RDBMS are 
useful for.1 How can I and why should I flatten my unstructured 
grid data into simple-minded tables? 

In this section, we will highlight some of the gains in 
interoperability, productivity, robustness and performance 
obtained from making an RDBMS an integral part of a 
simulation environment for computational fracture mechanics. 

Traditional FEM Analysis 
A simulation typically consists of several phases with 

different data-access patterns like pre-processing, equation 
solving and post-processing. Geometric and material modeling, 
and mesh generation are examples of pre-processing operations. 
The formulation and setup of the (non-)linear equations, error 
estimation and finally running an appropriate equation solver 
make up the solution phase. Error analysis, visualization or 
model adaptation, are typical post-processing tasks. 

The individual phases usually “communicate” via files or 
data structures in memory. This approach has some serious 
disadvantages.  

1. Every package supports a limited number of more 
or less standardized data structures/file formats. 
Besides the conversion effort, it requires an API 
(and more) to extract useful information. Usually, 
such APIs are provided in the form of libraries, 
which too often limit potential uses and users 
because of ties to a particular language. 

 
1 There are notable exceptions as for example [15] where the 

implementation of complex arithmetic using stored procedures is shown. 
Reference [16] has some examples of matrix arithmetic in SQL, which to 
traditional users of RDBMS may appear as useless academic exercises. 
From an HPC point of view, they in fact are, but to HPC users, on the 
other hand, a matrix is a more familiar object than a customer database. 



 
 

2. The costs of providing and maintaining an API can 
be overwhelming in the light of evolving demands. 
In addition, users must write everything that is not 
(yet) part of the API and replication of superfluous, 
non-problem-oriented code is a consequence.  

3. Files as the primary persistent storage are of poor 
interoperability in a distributed computing 
environment where different views and subset of 
the same underlying data frequently are created 
and/or adapted. 

4. Files may contain invalid data in terms of data 
and/or referential integrity and it is difficult to 
detect this once large datasets are in place. 
Transactions and fault-tolerance mechanisms can 
be layered on top of file or in-core data structures, 
but our goal is to quickly deploy tools for doing 
material not computer science. 

5. Parallel and distributed computing adds another 
layer of complexity. Usually, it destroys the natural 
global view of the model and replaces it by local 
patches that need a synchronization mechanism for 
consistency. Parallelization of full-fledged FEM 
codes is non-trivial. (Otherwise, it would be 
difficult to understand why commercial codes like 
ANSYS [20] or ABAQUS [21] exist as sequential 
codes only.) 

An Alternative Approach Using RDBMS 
We have implemented a coupled thermo-mechanical 

simulation that allows us to study crack growth taking the 
thermal state of the material into account. On the figure below, 
the results of a coupled and an uncoupled thermo- mechanical 
simulation for a combustion pipe are shown. (The picture shows 
only parts of the 3D model’s surface with the color contour 
indicating the temperature distribution and the wireframes 
indicating the deformed shape.) 

 

 
 
In the following we describe the main algorithmic steps and 

how the simulation interacts with the RDBMS. The parallel 
code (MPI) is written in C++ and uses the ODBC [5] API to 
communicate with the SQL Server. One of the code’s 
characteristics is its brevity (compared to the traditional 

version): the library functions consist mostly of SQL statements 
(strings!) and result set parsing. SQL is a universal API! 

Algorithmic Steps 
1. Partitioning: To run the simulation on a cluster of 

distributed memory machines, data must be 
partitioned. A simple and cheap partitioner is 
sufficient to get started. We implemented recursive 
coordinate bisection (RCB) [19] and a space-filling 
curve (Peano curve) [34],[35] based partitioner as 
stored procedures, which partition the sets of vertices, 
edges and tetrahedra. This partitioning information is 
also used to create certain clustered indices. For 
complex geometries, the quality of the partitions 
provided by RCB may not be satisfactory in terms of 
load balancing. In this case, a Kernighan-Lin method 
[19] or a high-quality partitioner like ParMeTis [18] 
can be used to post-process the partitions in memory. 

2. Read: Given the initial partitioning, vertices and 
tetrahedra are read into core where each MPI process 
SELECTs only objects tagged with its process id. 

3. Formulation: The read is followed by the formulation 
of the FEM elemental matrices. (The underlying finite 
elements are 10-noded tetrahedral elements. The 
elemental matrices are 10x10 and 30x30 matrices for 
the thermal and the mechanical analysis, respectively.) 
Contributions to the right hand sides of the equations 
from internal heat sources or sinks and volume forces 
are computed during the formulation as well. The 
formulation is embarrassingly parallel and floating 
point intensive (numerical integration). There is no 
interaction with the database during formulation. 

4. Equation numbering: The equation numbering is 
simple enough that it can be handled by a stored 
procedure. It is independent of the formulation and 
can be performed on the SQL Server while the 
elemental matrices are formulated on the cluster. As in 
the case of the partitioning, a post-processing of the 
equation numbering in core is optional and depends 
on the problem. Having SQL Server perform the 
equation numbering is particularly simple, because no 
synchronization (communication) between partitions 
is necessary. 

5. Assembly: Once equation numbers are assigned, all 
elemental matrices are assembled into a global matrix. 
There is no interaction with the database during 
assembly. 

6. Boundary Conditions: The assembly can be 
overlapped with the incorporation of boundary 
conditions like surface temperatures, heat fluxes, fixed 
displacements or tractions on the surface. For a 
database’s global view of topology, geometry, 
boundary conditions and mesh there is no need for 
synchronization among partitions about boundary 
conditions. Below, we show an example of a query 
that returns the ids of all tetrahedra in a given 
partition, which have a facet on a surface where 
certain Neumann-type boundary conditions are 
imposed. 

coupled

uncouple



 
 

7. Solution: The equations for temperature and 
displacement are solved in this step using one of the 
iterative solvers from PETSc’s [17] suite. There is no 
interaction with the database during solution. 

8. Write: The results are stored in the database for post-
processing. (Distributed) Pre- and post-processing 
tools can query data from SQL Server via HTTP, 
XML, ODBC, ADO or OLE DB. 

 

Evaluation 
We ran a series of tests on the Cornell Theory Center’s AC3 

clusters and the RDBMS of our choice was Microsoft’s SQL 
Server 2000 Enterprise Edition, which was installed on a dual 
processor DELL PowerEdge 2450 Dual Pentium III processor 
running Windows 2000 Advanced Server (SP2). 100 MBit 
Ethernet connects the cluster and the database server. For a 
fixed problem size, we were interested in how many clients 
(MPI processes) a single server would be able to serve without 
significant performance degradation. The underlying problem 
was mesh of about 60,000 tetrahedra resulting in about 300,000 
degrees of freedom for the Finite Element problem. In the table 
below, we show the time for those phases of the simulation 
when all clients access the database. The solution time is shown 
for comparison. 

 
4 procs 8 procs 16 procs 32 procs

Fetch Vertices and Tets 1.04 1.07 1.22 2.48
Number equations 2.63 4.36 7.1 14.58
Essential BCs elasticity 5.01 8.61 14.68 30.31
Natural BCs elasticity 1.65 4.73 9.67 19.66
Solve 278.89 153.67 84.17 56.84
Write displacements 26.37 26.47 26.73 26.39

 
There is a noticeable performance degradation going from 16 

to 32 MPI processes, where the total of the database access 
times actually exceeds the solve time. Except for the writing of 
the results, all other accesses are read-only. The writing of the 
results is done by MPI process 0 only, which gathers the result 
vector and updates the result table. The performance is 
competitive with traditional file-based simulations, although we 
did not perform a direct comparison. To make a “fair 
comparison” is not as simple as it might appear. For example, 
large clusters, such as the AC3 clusters, are not served by a 
single file server and the ability of the database-assisted 

simulation to overlap certain steps of the simulation may be 
viewed an unfair advantage. 

The fetching of vertices and tetrahedra scales so well because 
the two underlying tables have clustered indices [24]. The same 
can be done for the tables of bounding entities to make the 
formulation of the boundary conditions scalable, which we have 
not done for this experiment. However, the scalability problem 
at large cannot be solved by clustered indices alone. A single 
server is a potential bottleneck and it will serve well only a 
limited number of clients, whose number also depends on the 
size of the database. State-of-the-art RDBMS can be run on 
clusters of servers where the underlying databases are either 
replicated or distributed across several linked servers. The 
former is applicable for small and medium sized models. The 
latter is definitely the more scalable approach for large solid 
models and Finite Element or Finite Volume meshes, which we 
currently explore using distributed partitioned views [15],[24] in 
SQL Server 2000. 

With respect to databases, there are at least two major 
challenges on the software side: 

1. Although, thanks to the use of databases, we have 
been able to dramatically reduce the fraction of 
non problem-oriented code in our simulation, the 
newly introduced code that targets the ODBC 
interface hardly lives up to contemporary software 
standards. Greater type safety and a more 
“organic” integration of dynamic SQL queries 
with libraries like the ANSI/ISO C++ Standard 
Library would be helpful. Embedded SQL is a 
nice, though outdated, example for the integration 
of static SQL queries and the C programming 
language. Microsoft’s ADO.NET [36] offers a 
much cleaner interface. 

2. Given that clustered RDBMS will serve 
simulations running on large HPC clusters, an 
intermediate software layer is necessary to 
facilitate the mapping between the two and to 
isolate the application from organizational details 
of the database cluster. Parallel libraries that offer 
explicit support for (distributed) domains, 
relations, and associations, like the JANUS library 
[25], can be used to build such a layer. 

 
In this section, we focused on how RDBMS can be used to 

accelerate and simplify the solution phase of a typical FEM 
simulation. Let us point out that standard pre- and post-
processing can be greatly simplified and made more powerful 
by the use standard RDBMS as well. The conversion of this 
environment into a Web service [8] and a visualization tool that 
interacts directly with the RDBMS are in progress. 

4. SUMMARY 
In this paper, we have argued that the computational science 

community is on the cusp of a new era in high-performance 
computing. We have identified two emerging trends that we 
believe will radically change the way that scientific applications 
are written: the availability of very high bandwidth wide area 
networks and the commodization of application middleware. 
These trends will give rise to what we call “post-cluster 
computing”. In the near future, we expect to see scientists 

SELECT A.m_tet_id FROM 
 (SELECT m_tet_id FROM MVerticesOfTetrahedron 

  WHERE m_vertex_id IN 
   (SELECT C.m_vertex_id FROM 
       MVerticesOfMTrianglesOnTSurface AS C 
      JOIN 
        Wall_conditions AS D 
      ON C.m_triangle_id = D.m_triangle_id) 
  GROUP BY m_tet_id 
  HAVING COUNT(m_vertex_id) = ‘3’) AS A 

  JOIN 
    TPartitioning AS B 
  ON A.m_tet_id = B.m_tet_id 
  WHERE partition = ‘my_MPI_rank’ 



 
 
leverage these commodity technologies to write applications 
that are constructed in a decentralized and distributed manner 
from a set of loosely coupled components that allow for a 
greater degree of collaboration between scientists and that 
provide much simpler and intuitive interfaces. 

To illustrate our point, we have presented two pieces of work 
being done within the Adaptive Software Project. The first was 
the Distributed Simulation Environment, a framework that we 
are developing in order to deploy the adaptive scientific 
components that we are developing as web services. We are 
planning on making extensive use of the commodity 
middleware systems that are becoming widely available. 

The second piece of work is a novel system for coupled 
thermal-mechanical simulations based on the Finite-Element 
Method (FEM). What differentiates our system from previous 
systems is that it uses a commercial relational database system 
(RDBMS), in form of Microsoft SQL Server 2000, instead of 
the usual file-based approach for storing and retrieving data. 
Our new system is implemented using fewer lines of code but is 
able to interface with other systems in more general ways. For 
instance, because it interacts with data through standard 
database mechanisms, our new FEM solver can easily be set up 
as a service on the WWW or combined with other packages 
(e.g., CAD modeling tools, visualization systems) to produce 
extremely rich and flexible engineering tools. On the technical 
side, our system exhibits a higher degree of concurrency 
because considerable workload is pushed to the RDBMS. 
Furthermore, because our system manipulates data using 
transactions, it never leaves data in an inconsistent state if a 
failure occurs. 
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