
Predicate Abstraction for Reactive Synthesis
Adam Walker§ Leonid Ryzhyk§¶
§ NICTA and UNSW, Sydney, Australia

¶ University of Toronto

Abstract—We present a predicate-based abstraction refinement
algorithm for solving reactive games. We develop solutions to
the key problems involved in implementing efficient predicate
abstraction, which previously have not been addressed in game
settings: (1) keeping abstractions concise by identifying relevant
predicates only, (2) solving abstract games efficiently, and (3)
computing and solving abstractions symbolically. We imple-
mented the algorithm as part of an automatic device driver syn-
thesis toolkit and evaluated it by synthesising drivers for several
real-world I/O devices. This involved solving game instances that
could not be feasibly solved without using abstraction or using
simpler forms of abstraction.

I. INTRODUCTION

Two-player games are a useful formalism for synthesis of
reactive systems [17]. Many problems in electronic design
automation [3], industrial automation [5], device driver devel-
opment [19], etc., can be formalised as games. The resulting
games often have very large state spaces and can not be
efficiently solved using existing techniques.

Abstraction offers an effective approach to mitigating the
state explosion. For example, in the model checking domain
abstraction proved instrumental in enabling automatic verifi-
cation of complex hardware and software systems [6], [7],
[15]. The reactive synthesis community has also identified
the key role of abstraction in tackling real-world synthesis
problems; however most research in this area has so far been
of theoretical nature [10], [14].

In this paper we present the first practical abstraction-
refinement algorithm for solving games. Our algorithm is
based on predicate abstraction, which proved to be particularly
successful in model checking [13]. Predicate abstraction parti-
tions the state space of the game based on a set of predicates,
which capture essential properties of the system. States inside
a partition are indistinguishable to the abstraction, which limits
the maximal precision of solving the game achievable within
the given abstraction. The abstraction is iteratively refined by
introducing new predicates.

The key difficulty in applying predicate abstraction to games
is to efficiently solve the abstract game arising at every
iteration of the abstraction refinement loop. This requires com-
puting the abstract controllable predecessor operator, which
maps a set of abstract states, winning for one of the players,
into the set of states from which the player can force the game
into the winning set in one round of the game. This involves

NICTA is funded by the Australian Government through the Department of
Communications and the Australian Research Council through the ICT Centre
of Excellence Program.

This research is supported by a grant from Intel Corporation.

enumerating concrete moves available to both players in each
abstract state, which can be prohibitively expensive.

We address the problem by further approximating the ex-
pensive controllable predecessor computation and refining the
approximation when necessary. To this end, we introduce ad-
ditional predicates that partition the set of actions available to
the players into abstract actions. The controllable predecessor
computation then consists of two steps: (1) computing abstract
actions available in each abstract state, and (2) evaluating
controllable predecessor over abstract states and actions.

The first step involves potentially expensive analysis of
concrete transitions of the system and is therefore computed
approximately. More specifically, solving the abstract game
requires overapproximating moves available to one of the
players, while underapproximating moves available to the
other [14]. The former is achieved by allowing an abstract
action in an abstract state if it is available in at least one
corresponding concrete state, the latter allows an action only if
it is available in all corresponding concrete states. We compute
the overapproximation by initially allowing all actions in all
states and gradually refining the abstraction by eliminating
spurious actions. Conversely, we start with an empty underap-
proximation and add available actions as necessary.

We incorporated our predicate abstraction algorithm in
the three-valued abstraction refinement framework of de Al-
faro and Roy [10]. However, it can be readily adapted for
use with other abstraction refinement methods, such as the
counterexample-guided framework of Henzinger et al [14].

This paper makes three contributions:

1) We propose the first practical predicate-based abstraction
refinement algorithm for two-player games.

2) We introduce a new type of refinement, which increases
the precision of controllable predecessor computation
without refining the abstract state space of the game.
This approach avoids costly operations involved in solv-
ing the abstract game, approximating them with a se-
quence of light-weight operations performed on demand,
leading to dramatically improved scalability.

3) We evaluate the algorithm by implementing it as part of
the Termite driver synthesis toolkit [19] and using it to
synthesise drivers for complex real-world devices. Our
algorithm efficiently solves games with very large state
spaces, which is impossible without using abstraction or
using simpler forms of abstraction.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 219

II. RELATED WORK

Predicate abstraction has been extensively explored in au-
tomatic verification [13], including hardware [6] and soft-
ware [7], [15] verification. In verification, given a set of
abstract error states, we would like to overapproximate the set
of predecessor states, from which the system may transition
to one of the error states. To this end, one constructs an
overapproximation of the abstract transition relation of the
system, which relates a pair of abstract states if there exists
a matching concrete transition between these two states [1].
De Alfaro et al. [9] pointed out that similar approach is not
applicable to solving abstract games. In game settings, given
a set of abstract goal states, we would like to compute its
abstract controllable predecessor, i.e., the set of abstract states
from which one of the players can force the game into the
goal in one round. This fundamentally cannot be encoded
as a relation over pairs of abstract states as, although the
player may not be able to force the game into an individual
abstract state, it may be able to force it into a subset of
goal states. Therefore, instead of approximating the abstract
transition relation of the game, we approximate its abstract
controllable predecessor operator.

The three-valued abstraction refinement technique was first
proposed as a method for CTL model checking [20] and
was later adapted to games [9]. It was further developed by
de Alfaro and Roy [10] into a form amenable to fully symbolic
implementation. They present an instantiation of their method
for a particular type of abstraction—variable abstraction. In
the present paper, we combine their method with the more
flexible predicate abstraction.

Counterexample-guided abstraction refinement
(CEGAR) [8] is another method of constructing abstractions
automatically. Henzinger et al. [14] present an adaptation of
CEGAR to games. Similar to the three-valued abstraction
framework of de Alfaro and Roy, their technique can be
instantiated for different forms of abstraction. Dimitrova
and Finkbeiner present an instantiation based on predicate
abstraction [11], [12]. They focus on partial information and
timed games, as opposed to perfect-information games with
large state spaces, as we do in the present work. They report
solving games with up to 2000 abstract states, whereas our
case studies reported in Section VII required abstractions
with up to 233 abstract states.

III. PRELIMINARY DEFINITIONS

A two-player game structure G = 〈S,L, I, τ1, τ2, δ〉 con-
sists of a set of states S, a set of transition labels L, a set
I ⊆ 2S of initial states, a partitioning of S into player-1 states
τ1 and player-2 states τ2 (τ1∩τ2 = ∅, τ1∪τ2 = S), a transition
function δ : (S,L) → S associating with a state s ∈ S and a
label l ∈ L a successor state δ(s, l). We refer to the opponent
of player i as i (1 = 2, 2 = 1).

The game proceeds in an infinite sequence of rounds,
starting from an initial state. In each round, in state s ∈ τi,
player i chooses a label l and the game transitions to state
s′ = δ(s, l). We do not require the game to be strictly

alternating, i.e., s′ ∈ τi is not generally true. The infinite
sequence of states visited (s0, s1, . . .) ∈ Sω is called a path.

An objective Φ ⊆ Sω is a subset of state sequences of G.
In this paper we are concerned with ω-regular objectives, i.e.,
objectives characterised by ω-regular languages. Two special
cases of ω-regular objectives are reachability objectives that
consist of all paths s0, s1, . . . that visit a target set T at least
once: ∃i.si ∈ T and safety objectives that consist of paths that
stay in a safe set T forever: ∀i.si ∈ T .

A strategy for player i is a function πi : S∗ × τi → L that,
in any player i state, associates the history of the game with a
label to play. The set of initial states I and a player i strategy
πi determines a set Outcomesi(I, πi) of paths s0, s1, s2, ...
such that s0 ∈ I and sk+1 = δ(sk, πi(s0, ..., sk)) when sk ∈
τi and sk+1 = δ(sk, l) for some l when sk ∈ τi. Given an
objective Φ ∈ Sω we say that state s ∈ S is winning for player
i if there is a strategy πi such that Outcomesi(s, πi) ⊆ Φ.

A. Symbolic games
We deal with symbolic games defined over a finite set of

state variables X and a finite set of label variables Y in some
theory. Each state s ∈ S represents a valuation of variables
X , each label l ∈ L represents a valuation of variables Y .
For a set Z of variables, we denote by F(Z) the set of
propositional formulas in the underlying theory constructed
from the variables in Z. Sets of states and transition relations
of a symbolic game are represented by their characteristic
formulas. In particular I, τ1, τ2 are given as formulas in F(X).
The transition relation is specified as δ ∈ F(X ∪ Y ∪ X ′),
where X ′ = {x′ | x ∈ X} is the set of next-state variables. We
refer to sets and their characteristic formulas interchangeably.

Example. We introduce our running example, where we aim
to synthesise a software driver for an artificially trivial I/O
device. The device contains 32 bits of non-volatile memory,
which can be accessed from software via the data register.
The task of the driver is to transfer a data value from the
main memory to the device memory.

We set up a game between the driver (player 1) and the
device (player 2). Device and driver internal state is modelled
using state variables (Figure 1a). The player who makes the
next move is determined by the value of the bsy flag inside
the device. When the flag is set to 0, the device remains
idle and the driver performs a write to the data register. The
argument of the write is modelled by the val label variable.
The write operation flips the bsy flag to 1. This triggers a
device transition at the next round of the game, which copies
the value in the data register to memory. The objective of
the game on behalf of player 1 is to reach the target set
T = (req = mem), i.e., the device memory must store the
requested value req (Figure 1c). We require that the game
is winnable from any initial state, hence I = >. The winning
strategy for player 1 in this example is to write the value of req
in the first transition (by setting val = req), thus forcing the
device to copy this value to memory at the second transition.

Figure 1b specifies the transition relation δ of the game in
the form of variable update functions x′ = tx(X, Y), one for

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 220

var type description
state vars (X)

mem int32 device memory
dat int32 data register
bsy bool device busy bit
req int32 value to write to mem

label vars (Y)
val int32 value to write to dat

(a) Game variables

τ1 = (bsy = false) τ2 = (bsy = true) I = > T = (req = mem)

(b) Turn functions, initial and target sets

dat
′

=

{
val, if ¬bsy
dat, otherwise

bsy
′

=

{
true, if ¬bsy
false, if bsy

mem
′

=

{
dat, if bsy
mem, otherwise

req
′

= req

(c) Variable update functions

a.var predicate
state predicates

σ1 req = dat
σ2 req = mem

untracked predicates
ω1 bsy = false
ω2 req = 5

label predicates
λ1 val = req
λ2 val = 5

(d) Abstract variables and cor-
responding predicates

Fig. 1: A driver synthesis problem encoded as a game

each variable x ∈ X. Consider the update function for bsy as
an example. The variable switches between values true and
false on each transition, thus enabling player 1 and player 2
in a round robin fashion.

B. Controllable predecessor

Omega-regular games are often solved using the control-
lable predecessor operator. Player i controllable predecessor
of set φ ⊆ S consists of all states from which i can force the
game into φ in one transition. It is a union of player i states
where there exists a winning transition to φ and player i states
where all outgoing transitions terminate in φ.

Cprei(φ) =τi ∧ ∃Y,X ′. δ ∧ φ′ ∨
τi ∧ ∀Y,X ′. δ → φ′

(1)

where φ′ denotes the formula obtained from φ by replacing
every x ∈ X with x′.

We can compute the winning set of a reachability game
by iterating the controllable predecessor operator starting
from the target set T of the game. Using fix-point notation:
REACH(T,Cpre) = µX.Cpre(X) ∨ T , We pass the con-
trollable predecessor operator as an argument to the REACH
function, so that it can be used with multiple different versions
of Cpre introduced below.

C. Abstraction

An abstraction of a game structure G is a tuple 〈V, ↓〉,
where V is a finite set of abstract states and ↓ : V → 2S

is the concretisation function, which takes an abstract state
and returns the possibly empty set of concrete states that the
abstract state corresponds to. We require that

⋃
v∈V v↓ = S

and v1↓ ∩ v2↓ = ∅ for any v1 and v2, v1 6= v2. In the case
when v↓ = ∅ the abstract state v is said to be inconsistent. We
extend the ↓ operator to sets of abstract states. For U ⊆ V :
U↓ =

⋃
u∈U u↓.

Algorithm 1 Three-valued abstraction refinement for games.

Input: A game structure G = 〈S,L, I, τ1, τ2, δ〉, a set of target states T ⊆ S,
and an initial abstraction α = 〈V, ↓, Cprem+

1 , CpreM−
1 〉 that is precise for

T , I , and τi.
Output: Yes if I ⊆ REACH(T,Cpre1), and No otherwise.

1: loop
2: WM ← REACH(T↑M , CpreM−

1)
3: Wm ← REACH(T↑m, Cprem+

1)
4: if I↑M ⊆ WM return Yes
5: else if I↑M * Wm return No
6: else
7: refined← REFINECPRE(WM)
8: if (¬refined) REFINEABSTRACTION(WM) endif
9: end if

10: end loop

IV. THREE-VALUED ABSTRACTION REFINEMENT

In this section we present a modified version of the three-
valued abstraction refinement technique of de Alfaro and
Roy [10]. To simplify the presentation, we focus on solving
reachability games. De Alfaro and Roy present an extension
of their method to arbitrary ω-regular games. This extension
is directly applicable to the version of the algorithm presented
here.

We start with defining two versions of the abstraction opera-
tor: the may-abstraction ↑m and the must-abstraction ↑M . For
a set of concrete states T ⊆ S: T↑m = {v ∈ V | v↓∩T 6= ∅},
T↑M = {v ∈ V | v↓ ⊆ T}. We say that abstraction is precise
for a set T ⊆ S if (T↑m)↓ = (T↑M)↓.

Next, we define may and must versions of the abstract
controllable predecessor operator:

Cprem
i (U) = Cprei(U↓)↑m, CpreM

i (U) = Cprei(U↓)↑M (2)

These operators have the property: CpreMi (U)↓ ⊆
Cprei(U↓) ⊆ Cpremi (U)↓, and hence
REACH(T↑M , CpreMi)↓ ⊆ REACH(T,Cprei) ⊆
REACH(T↑m, Cpremi)↓.

The abstract Cpremi and CpreMi operators are defined
in terms of the concrete controllable predecessor Cpre. As
these may not be possible to compute efficiently in practice,
we introduce approximate versions, Cprem+

i and CpreM−i ,
such that for all U ⊆ V : Cpremi (U)↓ ⊆ Cprem+

i (U)↓ and
CpreM−i (U)↓ ⊆ CpreMi (U)↓. The definition of Cprem+

i and
CpreM−i is determined by each particular instantiation of the
abstraction refinement scheme. We present our version of these
operators in Section V-A.

Figure 2 illustrates the main idea of our approach, which
is presented in algorithm 1. At every iteration, the algorithm
computes the must-winning set WM that underapproximates,
and the may-winning set Wm that overapproximates the true
winning set (lines 2–3). The algorithm terminates if the must-
winning set contains the entire initial set or the may-winning
set has shrunk beyond the initial set (lines 4–5). Otherwise,
the algorithm refines the abstraction in a way that expands the
must-winning set.

The key observation behind the refinement procedure is that
candidate winning states can be found at the may-must bound-
ary of the game, i.e., the set Cprem+

1 (WM)\WM , of all may-
predecessors of the must-winning set. The boundary consists

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 221

WM=Cpre1
M-(WM) ∪ T

Cpre1
M(WM)

Cpre1
m(WM)Cpre1

m+(WM)

REFINECPRE REFINEABSTRACTION REFINECPRE
T

Cpre1
M-(WM)

Fig. 2: Refining the may-must boundary. Arrows indicate how the
two refinement functions change the boundary region.

of three regions shown in Figure 2: (1) CpreM1 (WM) \WM ,
(2) Cprem1 (WM) \ CpreM1 (WM), and (3) Cprem+

1 (WM) \
Cprem1 (WM). The first and the third regions can be shrunk
by increasing the precision of the CpreM− and Cprem+

operators respectively. The second region can only be shrunk
by refining the abstraction itself, i.e., partitioning abstract
states into smaller regions.

These two types of refinement are performed in lines 7
and 8 of the algorithm. The REFINECPRE function computes
a more precise version of the controllable predecessor op-
erators. It returns false iff no such refinement is possible,
i.e., CpreM (WM) = CpreM−(WM) and Cprem+(WM) =
Cprem(WM). The REFINEABSTRACTION function refines
the abstract state space in a way that expands the set
CpreM (WM) with at least one new abstract state.

Algorithm 1 differs from [10] in that it uses an additional
type of refinement which refines the controllable predecessor
operators without changing the abstract state space.

V. PREDICATE ABSTRACTION

We instantiate the three-valued abstraction refinement
scheme for predicate abstraction. Consider a symbolic game
G = 〈S,L, I, τ1, τ2, δ〉 defined over state variables X and
label variables Y . Let Σ ⊆ F(X) be a finite set of boolean
predicates over state variables. We refer to Σ as state pred-
icates. We introduce boolean variables ~σ = (σ1 . . . σn) to
represent values of predicates Σ. Given a boolean variable
σ, ‖σ‖ denotes its corresponding state or label predicate. ‖~σ‖
denotes the vector of all state predicates in Σ.

The state space V of the abstract game is defined as V =
Bn, where each abstract boolean state vector v ∈ V represents
a truth assignment of variables ~σ. The concretisation function ↓
from Section III-C can be expressed as: v↓ = (

∧
i=1..n ‖σi‖ =

vi), which maps an abstract state v into the set of concrete
states such that each predicate in Σ evaluates to true or false
depending on the value of the corresponding element of v.

Example. Consider an abstraction of the running example
game induced by abstract variables σ1, σ2 and corresponding
predicates: ‖σ1‖ = (req = dat), ‖σ2‖ = (req = mem).
Consider an abstract state v = (true, false). We compute
v↓ = ((req = dat) = true ∧ (req = mem) = false)
or equivalently v↓ = (req = dat ∧ req 6= mem). Hence
v represents the set of all concrete states where conditions
(req = dat) and (req 6= mem) hold for concrete state
variables mem, req, and dat.

We obtain the initial abstraction by extracting atomic predi-
cates from expressions T , I , and τi, which guarantees that the

} concrete state

Fig. 3: Concrete state space partitioned into abstract states (solid
lines) and untracked sub-states (dashed lines).

abstraction is precise for T , I , and τi. While this property is
not essential for our approach, we will rely on it to simplify
the presentation of the algorithm.

A. Abstract controllable predecessors

Following the three-valued algorithm presented in Sec-
tion IV, we would like to find an efficient way to compute
over- and under-approximations Cprem+ and CpreM− of
the abstract controllable predecessor operators. Recall that
computing Cprem and CpreM precisely is expensive, as
it requires applying the controllable predecessor operator to
the concrete transition relation δ. We approximate this costly
computation by computing the controllable predecessor over
the abstract transition relation instead. The abstract transition
relation of the game is defined over boolean predicate variables
and therefore can be manipulated much more efficiently than
the concrete one.

We construct the abstract transition relation via efficient
syntactic analysis of the concrete transition relation δ. We
present the construction assuming that δ is given in the variable
update form, as in Figure 1c. A similar construction is possible
for specifications written in real-world hardware and software
description languages.

For each state predicate in Σ, we compute the update
function by replacing concrete variables in the predicate with
their corresponding update functions. We then transform the
resulting formula into a boolean combination of atomic pred-
icates over concrete state and label variables.

Example. Let us compute the update function for abstract
variable σ1 (Figure 1d). Using update functions for req and
dat variables (Figure 1c), we obtain: σ′1 = (req′ = dat′) =(¬(bsy = false)∧ (req = dat)∨ (bsy = false)∧ (val =
req)

)
. This equation contains three atomic predicates: in addi-

tion to the existing predicate σ1 ↔ (req = dat), it introduces
new predicates (bsy = false) and (val = req).

In the general case, the syntactically computed update func-
tion for a predicate may depend on existing state predicates
in Σ as well as new predicates that are not yet part of
the abstraction. The new predicates are partitioned into un-
tracked predicates defined over concrete state variables (e.g.,
bsy = false in the above example) and label predicates that
involve at least one concrete label variable (e.g., val = req).
The term “untracked predicate” indicates that these predicates
are not part of the abstract state space of the game. Untracked
predicates can be seen as partitioning abstract states in V into
smaller untracked sub-states, as illustrated in Figure 3.

By substituting untracked and label predicates with fresh

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 222

boolean variables, ~ω and ~λ respectively, we obtain the abstract
transition relation ∆ in the form:

~σ′ = ∆(~σ, ~ω,~λ)

This syntactically computed transition relation contains two
sources of imprecision. First, untracked variables ~ω are not
part of the abstract state space Σ and are therefore treated as
external inputs. Second, not all abstract labels are available in
all abstract states and hence not all transitions in ∆ correspond
to a feasible concrete transition. For example, given the set
of predicates shown in Figure 1d, the abstract label λ1 =
true, λ2 = true is only available in concrete states that satisfy
the condition req = 5. In general, given a state-untracked-label
tuple 〈v, u, l〉, the abstract label l may be available in all, some,
or none of the concrete states consistent with v and u.

We formalise this by introducing consistency relations Cm

and CM that over- and under-approximate available abstract
labels. A state-untracked-label tuple 〈v, u, l〉 is may-consistent
if the abstract label l is available in at least one concrete state
consistent with v and u:

Cm(v, u, l) = ∃X,Y.‖~σ‖ = v ∧ ‖~ω‖ = u ∧ ‖~λ‖ = l. (3)

The tuple 〈v, u, l〉 is must-consistent if l is available in any
concrete state consistent with v and u:

CM (v, u, l) = ∀X.((‖~σ‖ = v ∧ ‖~ω‖ = u)→ ∃Y.‖~λ‖ = l) (4)

Computing Cm and CM can be prohibitively expensive.
Therefore we use approximations Cm+ and CM− such that
Cm ⊆ Cm+ and CM− ⊆ CM . Initially we assign Cm+ = >
and CM− = ⊥. Approximations are refined lazily as part of
the abstraction refinement process, as explained below.

We compute over- and under-approximations of the con-
trollable predecessor operator by resolving the two sources of
imprecision in favour of one of the players. In particular, we
compute Cprem+

i by (1) allowing player i to pick assignments
to untracked predicates, (2) over-approximating consistent
labels available to i, and (3) under-approximating consistent
labels available to the opponent player i:

Cprem+
i (φ) = ∃~ω. τi↑M ∧ ∃~λ, ~σ′.((Cm+ ∧∆) ∧ φ′) ∨

τi↑M ∧ ∀~λ, ~σ′.((CM− ∧∆)→ φ′)
(5)

This formula has a similar structure to the definition of the
concrete controllable predecessor operator (1). It replaces the
concrete transition relation δ with the abstract transition rela-
tion ∆ restricted with consistency relations (Cm+ and CM−).
In addition, it existentially quantifies untracked variables ~ω,
i.e., an abstract state v is a may-predecessor of φ if at least
one of its untracked sub-states is a may-predecessor of φ.

Dually, we compute CpreM−i by (1) allowing the opponent
player i to pick values of untracked predicates, (2) under-
approximating labels available to i and (3) over-approximating
labels available to i:

CpreM−
i (φ) = ∀~ω. τi↑M ∧ ∃~λ, ~σ′.((CM− ∧∆) ∧ φ′) ∨

τi↑M ∧ ∀~λ, ~σ′.((Cm+ ∧∆)→ φ′)
(6)

Equations (5) and (6) suggest two possible abstraction
refinement tactics, which correspond to the two types of
refinement used in Algorithm 1. First, we can refine Cm+ and
CM− by removing spurious transitions from Cm+ or adding
new consistent transitions to CM−. Such a refinement in-
creases the precision of controllable predecessor computation
without introducing new state predicates, which corresponds
to the REFINECPRE operation in the algorithm. Second, we
can add some of the untracked predicates to the set of state
predicates Σ, thus reducing the imprecision introduced by
treating them as external inputs. This refinement increases
the precision of the abstraction, which corresponds to the
REFINEABSTRACTION function in the algorithm.

In summary, we solve the abstract game by decomposing
potentially expensive computations into three types of light-
weight operations performed on demand, as required to im-
prove the precision of the abstraction:

• Computing the abstract transition relation ∆ via light-
weight syntactic analysis of the concrete game

• Computing consistency relations Cm+ and CM− by
iteratively identifying spurious and consistent transitions

• Solving the abstract game using abstract controllable
predecessor operators (5) and (6)

The computational bottleneck in this method can arise either
from having to perform an excessive number of refinements
or if abstractions generated by the algorithm are too complex.
Our refinement procedures, described below, are designed to
avoid such situations by heuristically picking refinements that
are likely to speed up the convergence of the algorithm.

B. REFINECPRE

Figure 4 illustrates the main idea of the consistency refine-
ment algorithm. It shows an abstract state v (Figure 4a) at the
may-must boundary whose untracked substates u1, u2, and
u3 have Cm+-consistent transitions to the must-winning set
WM , but none of these transitions is consistent with CM−.
The REFINECPRE algorithm attempts to precisely categorise
these substates as must-winning or must-losing. In Figure 4b,
the algorithm identifies the abstract transition 〈v, u1, l1〉 as
spurious and eliminates it from Cm+, thus making the u1

sub-state must-losing. Alternatively, it may detect that abstract
transition 〈v, u2, l2〉 is available in all concrete states in u2 and
thus add this transition to CM−, making the u2 sub-state must-
winning (Figure 4c). Finally, it may determine that abstract
transition 〈v, u3, l3〉 is available in some, but not all, concrete
states in u3, i.e., 〈v, u3, l3〉 ∈ Cm \CM . It then partitions u3

into two or more subsets, exactly one of which has a CM−-
consistent transition to WM , by introducing new untracked
predicates (Figure 4d).

Algorithm 2 shows the pseudocode of REFINECPRE.
Lines 3–6 compute the set of candidate tuples 〈v, u, l〉 ∈
Cm \ CM . Note that for player i states we consider may-
consistent transition to WM , whereas for player i states we
consider spoiling transitions to V \WM . Line 9 picks a single
refinement candidate 〈v, u, l〉 from the set. By construction we

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 223

WM WM WM WM

(a) before refinement (b) eliminating spurious
 transition <v,u1,l1>

(c) adding transition
 <v,u2,l2> to CM-

(d) sub-partitioning u3

}

Fig. 4: Different types of consistency refinements. White, grey, and
black background is used to mark respectively must-losing, may-
winning, and must-winning untracked substates. Dashed and solid
arrows show Cm+ and CM−-consistent abstract transitions.

Algorithm 2 Pseudocode of the REFINECPRE function

1: function REFINECPRE(WM)
2: . player i may-winning transitions
3: Ti ← τi↑M ∧ Cm+ ∧ CM− ∧ ∀~σ′.(∆→ (WM)′)
4: . player i may-spoiling transitions
5: Ti ← τi↑M ∧ Cm+ ∧ CM− ∧ ∃~σ′.(∆ ∧ (WM)′)
6: T ← Ti ∨ Ti
7: if T = ⊥ then return false . no refinement is possible
8: else
9: choose 〈v, u, l〉 ∈ T

10: F ← (‖~σ‖ = v ∧ ‖~ω‖ = u ∧ ‖~λ‖ = l)
11: if SATISFIABLE(F) then
12: A← ELIMINATEQUANTIFIERS(∃Y.‖~λ‖ = l)
13: Â← replace atomic predicates in A with boolean

vars, introducing fresh vars when necessary
14: CM− ← CM− ∨ (Â ∧ ~λ = l)
15: else
16: Cm+ ← Cm+ ∧ UNSATCORE(F)
17: end if
18: return true
19: end if
20: end function

know that 〈v, u, l〉 ∈ Cm+. Since Cm+ is an overapproxima-
tion of Cm, we check whether 〈v, u, l〉 ∈ Cm, i.e., whether v,
u, and l satisfy equation (3). To this end, in line 11 we invoke
a decision procedure for the underlying theory to check satis-
fiability of the formula: (‖~σ‖ = v∧‖~ω‖ = u∧‖~λ‖ = l). If the
formula is unsatisfiable, then 〈v, u, l〉 is a spurious transition
that must be eliminated from Cm+. Furthermore, by extracting
an unsatisfiable core of the formula, we obtain an inconsistent
subset of its conjuncts (

∧ ‖αi‖ = ci), αi ∈ ~σ ∪ ~ω ∪ ~λ, which
represents a potentially large set of similar spurious transitions.
We eliminate all of these transitions from Cm+ in line 16.

If, on the other hand, the formula is satisfiable, then there
exists a concrete state-label pair consistent with 〈v, u, l〉. In
this case we want to precisely characterise the set of states
where label l is available, so that we can either add 〈v, u, l〉 to
CM− (as in Figure 4c) or refine it with additional untracked
predicates (as in Figure 4d).

Line 12 computes the set of concrete states where abstract
label l is available by performing quantifier elimination from
formula (∃Y.‖~λ‖ = l), resulting in a quantifier-free formula A
over concrete state variables X . We assume that the underlying
theory supports quantifier elimination, which is the case for
many practically relevant theories, including the theory of
fixed-size bit vectors supported by our tool. In line 13, the
resulting formula A is decomposed into atomic predicates
possibly introducing new untracked and label predicates.
By replacing all atomic predicates in A with corresponding
boolean variables, we obtain a formula Â that describes the set

Algorithm 3 Pseudocode of REFINEABSTRACTION

1: function REFINEABSTRACTION(WM)
2: UM ← CpreUM−

1 (WM) ∧WM

3: toPromote← ~ω ∩ SUPPORT(SHORTPRIME(UM))
4: PROMOTE(toPromote)
5: end function

of all state-untracked pairs must-consistent with the abstract
label l. Line 14 refines CM− with the set of newly discovered
must-consistent transitions.

Example. Assume that in line 9 the algorithm picks a tuple
〈v, u, l〉 where l = (true, true). Line 12 performs quantifier
elimination from the formula ∃val.(‖λ1‖ = true ∧ ‖λ2‖ =
true) = ∃val.(val = req ∧ val = 5) = (req = 5). We
have discovered a new predicate req = 5 that must hold in
states where abstract label l is available. We introduce a new
untracked variable ω2, ‖ω2‖ = (req = 5) and refine CM− with
a new consistent transition: CM− ← CM− ∨ (ω2 ∧ λ1 ∧ λ2).

The accompanying technical report presents an important
optimisation of the REFINECPRE function [22, Appendix].

C. REFINEABSTRACTION

The REFINEABSTRACTION function is invoked by the ab-
straction refinement algorithm when no further consistency
refinements are possible. At this point, every untracked sub-
state of the boundary region is either must-winning or must-
losing, i.e., can be coloured white or black using notation
of Figure 4. REFINEABSTRACTION promotes a subset of
untracked predicates making sure that the winning region WM

expands after re-solving the game in line 2 of Algorithm 1.
Algorithm 3 shows the pseudocode of REFINEABSTRAC-

TION. Line 2 computes all untracked boundary substates that
are must-predecessors of WM . Here, CpreUM− is the same
as CpreM− (Equation (6)), but without untracked variable
quantification:

CpreUM−
i (φ) =τi↑M ∧ ∃~λ, ~σ′.((CM− ∧∆) ∧ φ′) ∨

τi↑M ∧ ∀~λ, ~σ′.((Cm+ ∧∆)→ φ′)

We aim to grow WM by promoting as few untracked
predicates as possible. To this end, we extract a short prime
implicant from UM and promote the untracked variables in
the support of the prime implicant (line 3). This has the effect
of adding a large cube over state and untracked predicates to
WM . The PROMOTE function invoked in line 4 moves the
selected untracked predicates to the set of state predicates Σ
and recomputes the abstraction transition relation ∆ for the
new state predicates. This can lead to the introduction of new
untracked and label predicates, which can serve as refinement
candidates in the future.

D. Correctness

The correctness and termination theorems of [10] hold for
Algorithm 1 with REFINECPRE and REFINEABSTRACTION
functions defined above.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 224

Theorem 1. If Algorithm 1 terminates, it returns the correct
answer.

Proof. By construction, Cprem+
i and CpreM−i over-

and under-approximate abstract controllable predecessor
operators, i.e., Cpremi (φ)↓ ⊆ Cprem+

i (φ)↓ and
CpreM−i (φ)↓ ⊆ CpreMi (φ)↓, for any set φ. Hence,
winning sets Wm = REACH(T↑m, Cprem+

1) and
WM = REACH(T↑M , CpreM−1) computed using these
operators over- and under-approximate the winning set W of
the concrete game: WM↓ ⊆W ⊆Wm↓.

If the algorithm returns Yes then the initial set of the game
is a subset of the must-winning region (I ⊆WM↓) and hence
I ⊆W . Likewise, if the algorithm returns No then I 6⊆Wm↓
and hence I 6⊆W . In both cases the answer produced by the
algorithm is correct.

Theorem 2. If there exists a finite region algebra A such that
all abstractions 〈V, ↓〉 produced by Algorithm 1 are contained
in A then the algorithm terminates.

Proof outline. Let WM and ŴM be must-winning sets com-
puted at two subsequent iterations of Algorithm 1.

We first show that refinement procedures REFINECPRE and
REFINEABSTRACTION guarantee that the must-winning set
computed at every iteration of the refinement loop grows
monotonically, i.e., WM↓ ⊆ ŴM↓. This follows from the
soundness of the refinement procedures, which improve the
precision of CpreM−i at every iteration.

Next we show that the algorithm is guaranteed to make
forward progress, i.e., after a finite number of refinements
it either terminates or discovers new must-winning states
(WM↓ ⊂ ŴM↓). Consider the consistency refinement pro-
cedure REFINECPRE first. Every invocation of this procedure
classifies some of the untracked substates at the may/must
boundary as either must-winning or must-losing (see Figure 4).
Eventually, it will either classify all boundary states as must-
losing, in which case Wm↓ = W = WM↓, and the algorithm
terminates, or find at least one must-winning sub-state (as in
Figures 4c and 4d). In the latter case, a subsequent invocation
of the abstraction refinement procedure REFINEABSTRACTION
is guaranteed to partition one of the boundary states so that
one of the resulting abstract states is must-winning. This state
will be discovered at the next run of the reachability algorithm,
thus expanding the must-winning set.

Since, by the assumption of the theorem, all must-winning
sets WM generated by the algorithm belong to a finite region
algebra, the algorithm is guaranteed to terminate after a finite
number of iterations.

The theory of fixed-size bit vectors supported by our current
implementation satisfies the premise of Theorem 2, which
guarantees the termination of the algorithm.

VI. IMPLEMENTATION

We implemented our abstraction refinement algorithm in the
Termite [19] driver synthesis toolkit. Termite takes a model of
an I/O device and a specification of the service that the driver

must provide to the operating system, and synthesises a driver
implementation in C. Termite provides powerful debugging
facilities such as tools for analysis of synthesis failures based
on counterexample strategies, interactive exploration of syn-
thesised strategies and user-guided interactive code generation.

Our current implementation handles games with Gener-
alised Reactivity-1 (GR(1)) [16] objectives. GR(1) games are
sufficiently expressive to formalise many real-world problems,
including the driver synthesis problem. They strike a balance
between expressiveness and computational difficulty. We ex-
tended our abstraction refinement algorithm to handle GR(1)
games as outlined by de Alfaro and Roy [10].

Termite currently supports input specifications over the con-
crete domain of fixed-size bit vectors and arrays. We use the
Z3 SMT solver to check satisfiability and retrieve unsatisfiable
cores of formulas over concrete variables (lines 11 and 16 of
Algorithm 2). Quantifier elimination (line 12) over bit vector
formulas is performed using our custom implementation of
the decision procedure for bit vectors by Barrett et al. [2].
Termite interacts with the theory solver through a well-defined
interface and hence can be readily extended with additional
theories. All computations over the abstract domain are per-
formed symbolically using the CUDD BDD package.

In addition to the techniques described in the paper we
implemented a number of performance optimisations. First, we
relax the requirement of Algorithm 1 that the initial abstraction
must be precise for initial set I and instead overapproximate
it and refine the approximation lazily whenever the algorithm
discovers a spurious losing initial state. Second, we take ad-
vantage of the natural conjunctive partitioning of the transition
relation and perform early quantification [4] when computing
the controllable predecessor. Third, we avoid re-solving the
game from scratch by reusing results of previous computa-
tions. For example, when computing the must-winning set
WM in Algorithm 1, we use the must-winning set WM from
the previous abstraction-refinement iteration as the starting
value of the fixed point computation. Finally, we use BDD-
specific optimisations supported by CUDD, including dynamic
variable reordering [18] and variable grouping.

In addition to the predicate-based abstraction refinement
algorithm, we implemented the original algorithm by de Alfaro
and Roy, based on variable abstraction, which enables direct
comparison of the two techniques.

Termite consists of 30,000 lines of Haskell code, with the
core abstraction refinement algorithm accounting for 1,800
lines, and took approximately 10 person-years to develop.

VII. EVALUATION

We evaluate Termite by synthesising drivers for several real-
world I/O devices, including an IDE hard disk, a real-time
clock, two versions of UART serial controller, two versions
of I2C bus controller, an SPI bus controller, and a UVC
webcam. We developed corresponding device and OS models
using the Termite Specification Language (TSL) by following
the common methodology used by hardware developers in
building high-level device models. We refer the reader to

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 225

Statistic Case study
IDE RTC UART-1 UART-2 I2C-1 I2C-2 SPI UVC simple SPI simple I2C

1 concrete state vars (bits) 83 (952) 64 (624) 61 (335) 65(896) 64 (458) 50(222) 66(644) 95 (75908) 7 (46) 11 (64)
2 concrete label vars (bits) 27 (389) 24 (199) 20 (86) 15(289) 25 (199) 15(81) 24(384) 33 (49657) 9 (58) 14 (42)
3 consistency refinements 11 9 42 4 12 4 6 22 0 23
4 state refinements 18 16 18 50 15 17 26 25 11 9
5 state predicates 31 25 33 58 24 24 31 30 14 17
6 label predicates 57 41 40 53 36 32 28 130 19 36
7 untracked predicates 7 4 35 2 5 1 6 32 0 0
8 run time (s) 71 74 309 603 39 43 14 190 1 10
9 peak BDD size 864612 515088 907536 1142596 440482 688828 324996 785918 87892 242214

Performance of the de Alfaro and Roy algorithm [10]
10 run time (s) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 865 1151
11 peak BDD size - - - - - - - - 400624 4088000

TABLE I: Summary of experimental case studies.

an accompanying paper for a more detailed description of
the TSL language and the modelling methodology [19]. The
source code of the case studies is available as part of the
Termite distribution [21].

Table I summarises our experiments. The first two rows
characterise the complexity of the input models in terms of
the number of variables and the total number of bits used in
the concrete specification of the game. Concrete state variables
model internal device state, as well as the state of the driver-
OS interface; label variables model commands and responses
exchanged by the driver, the device, and the OS.

Rows 3 and 4 show the number of iterations of the ab-
straction refinement loop required to solve the game. Rows 5
through 7 show the size of the abstract game at the final
iteration, when a winning strategy for the driver was obtained,
in terms of the number of state, label, and untracked pred-
icates. These results demonstrate the dramatic reduction of
the problem dimension achieved by our abstraction refinement
method. The resulting abstract games are still too complex
to solve using explicit state enumeration, hence the use of
symbolic techniques is essential. In all case studies, Termite
was able to find the winning strategy within 11 minutes
running on a 2.9GHz Intel Core i7 laptop (row 8), with peak
BDD size under one million nodes (row 9).

The two final rows show the performance of the original
three-valued abstraction refinement algorithm of de Alfaro and
Roy on our benchmarks. As expected, the algorithm does
not terminate on any of the real-world driver benchmarks
within a two-hour time limit. We therefore developed sim-
plified versions of two of the benchmarks (SPI and I2C-2)
with significantly reduced state spaces. As shown in the last
two columns of the table, the de Alfaro and Roy algorithm
terminates on these benchmarks; however it takes several
orders of magnitude longer than our new algorithm, which
uses predicate abstraction. These results show that predicate
abstraction is essential to solving complex real-world games.

VIII. CONCLUSION

We presented and evaluated a practical predicate-based
abstraction refinement algorithm for solving games. To the best
of our knowledge, this is the first such algorithm described
in the literature. We addressed key performance bottlenecks
involved in applying predicate abstraction in game settings and
demonstrated that our algorithm performs well on real-world

reactive synthesis benchmarks.
REFERENCES

[1] T. Ball, B. Cook, S. Das, and S. K. Rajamani. Refining approximations
in software predicate abstraction. In TACAS, pages 388–403, Barcelona,
Spain, Mar. 2004.

[2] C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision procedure for bit-
vector arithmetic. In DAC, pages 522–527, San Francisco, California,
USA, June 1998.

[3] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and
M. Weiglhofer. Specify, compile, run: Hardware from PSL. ENTCS,
190(4):3–16, Nov. 2007.

[4] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking
with partitioned transition relations. pages 49–58. North-Holland, 1991.

[5] F. Cassez, J. J. Jessen, K. G. Larsen, J.-F. Raskin, and P.-A. Reynier.
Automatic synthesis of robust and optimal controllers - an industrial
case study. In HSCC, pages 90–104, San Francisco, CA, USA, Apr.
2009.

[6] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In CAV, pages 154–169, Chicago, IL,
USA, July 2000.

[7] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate
abstraction of ANSI-C programs using SAT. Formal Methods in System
Design, 25(2-3):105–127, 2004.

[8] S. Das and D. Dill. Successive approximation of abstract transition
relations. In LICS, pages 51–58, Boston, MA, USA, June 2001.

[9] L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued abstractions
of games: uncertainty, but with precision. In LICS, pages 170–179,
Turku, Finland, July 2004.

[10] L. de Alfaro and P. Roy. Solving games via three-valued abstraction
refinement. In CONCUR, pages 74–89, Lisboa, Portugal, Sept. 2007.

[11] R. Dimitrova and B. Finkbeiner. Abstraction refinement for games with
incomplete information. In FSTTCS, Bangalore, India, Dec. 2008.

[12] R. Dimitrova and B. Finkbeiner. Counterexample-guided synthesis of
observation predicates. In FORMATS, pages 107–122, London, UK,
Sept. 2012.

[13] S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS.
In CAV, pages 72–83, Haifa, Israel, June 1997.

[14] T. A. Henzinger, R. Jhala, and R. Majumdar. Counterexample-guided
control. In ICALP, pages 886–902, Eindhoven, The Netherlands, July
2003.

[15] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction.
In POPL, pages 58–70, Portland, Oregon, Jan. 2002.

[16] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of Reactive(1) designs.
pages 364–380, Charleston, SC, USA, Jan. 2006.

[17] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In
POPL, pages 179–190, Austin, Texas, USA, Jan. 1989.

[18] R. Rudell. Dynamic variable ordering for ordered binary decision
diagrams. In ICCAD, pages 42–47, Santa Clara, CA, USA, 1993.

[19] L. Ryzhyk, A. Walker, J. Keys, A. Legg, A. Raghunath, M. Stumm, and
M. Vij. User-guided device driver synthesis. In OSDI, Broomfield, CO,
USA, Oct. 2014.

[20] S. Shoham and O. Grumberg. A game-based framework for CTL
counterexamples and 3-valued abstraction-refinement. In CAV, pages
275–287, Boulder, Colorado, USA, July 2003.

[21] Termite 2 driver synthesis tool. http://www.termite2.org.
[22] A. Walker and L. Ryzhyk. Predicate abstraction for reactive synthesis.

Technical Report NRL-8281, NICTA, Aug. 2014.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 226

