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Abstract

In this paper, there are the applications of the main inequalities, and show how to use the analytic properties of the Zeta
function and the Laplace transform to prove the convergence of the desired integral. In addition, show how to use the
trigonometric sums and the mathematical induction with the method of infinite descent to prove the non-zero value of
another integral. In this way, we can obtain the important proofs concerning the Riemann Zeta function and the sum of
two primes.
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1. An Overview of the Key Idea

In this paper, the key elements of the innovation are as follows:

(1) In the first proof, using a kind of method concerning the Laplace transform and the analytic convergence of developing
the desired integrals can complete the improvement such as the coming Main Lemma A1, which can extend and enrich
the connotation of the D.J.Newman’s theorem that it was initiated and used forℜe(z) ≥ 0 by D.J.Newman in the 1980’s,
and now its proof of general situation for ℜe(z) ≥ α is improved by the author, where α is either zero or not zero of
some real numbers. The novel technique is expressed in terms of the Laplace transform with the analytic convergence,
and their related the integrals. I use my result of the improvement of the D.J.Newman’s theorem to prove the analytic
convergence about the desired Laplace transform. That is if the Laplace transform g(z) =

∫ ∞
0 f (t) e−zt dt of the function

f (t) extends to an analytic function for ℜe(z) ≥ 0, then
∫ ∞

0 f (t) dt exists and is equal to g(0), where f (t) is bounded,
piecewise continuous function on the real numbers ≥ 0. Furthermore, if the Laplace transform g(z) =

∫ ∞
0 f (t) e−zt dt of

the function f (t) extends to an analytic function forℜe(z) ≥ α with some real α, then
∫ ∞

0 f (t) e−αt dt exists and is equal to
g(α), where f (t) is piecewise continuous function on the real numbers ≥ 0 and f (t) ≤ Beαt for some positive constant B.
Thus, we can get the limit and the convergence between the integral

∫ ∞
0 f (t) dt and the integral

∫ ∞
0 f (t) e−αt dt for given

f (t) ≥ 0 with α > 0, which can guide to establish the convergence of the integral
∫ ∞

0 f3(t) e−εt dt, where f3(t) = B e(λ− 1
2 )t

with any λ− 1
2 ≥ 0, and given any ε > 0 with some positive constant B. The technique of the Laplace transform is applied

to the convergence of the desired two integrals

∫ ∞

1

ψ(x) − x

x
3
2+ε

dx and
∫ ∞

1

|ψ(x) − x|
x

3
2+ε

dx

for ∀ε > 0 which is one of the key links of new idea, where defined the Chebyshev’s function

ψ(x) =
∑
pm≤x

log p =
∑
n≤x

Λ(n),
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so that the integral ∫ ∞

1

ψ(x) − x
xs+1 dx

is convergent and analytic forℜe(s) > 1
2 .

(2) In the second proof , use the properties of trigonometric sums and mathematical inductive method to derive a causal
relationship. With the help of this technique, which is explained the result of the estimate that the desired integral∫ 1

0

( ∑
p≤2n

e2πipx
)2
· e−4πinx dx

is not zero where p is a prime number, n is a positive integer ≥ 2, and
∑

p≤2n is extended over all the primes p ≤ 2n, which
is another of the key links of new idea.

The proof of these results relies on the novel technique with the estimates for the desired integrals, which these phenomena
are indicative of the intricate nature of the problems of the integrals. These in turn contribute to further analysis and
correlation, so as to provide futher insight into the intrinsic and efficiently computable estimates.

2. The Proof Is Derived from Riemann’s Zeta Function and Laplace Transforms

2.1 Introduction

There is the application of the main inequality∫ ∞

0
f3(t) e−εt dt ≥

∫ ∞

0

∣∣∣ψ(et) − et
∣∣∣

e( 1
2+ε)t

dt ≥ 0,

where f3(t) = Be(λ− 1
2 )t for some fixed λ in the inequality λ − 1

2 ≥ 0 and given any ε > 0, with some constant B > 0, while
one satisfies the inequality

∣∣∣ψ(et) − et
∣∣∣ ≤ B eλt concerning the form ψ(x) = x+O(xλ), and where the fixed λ is independent

of any ε > 0. We can prove that the integral ∫ ∞

1

ψ(x) − x

x
3
2+ε

dx

converges absolutely for ∀ε > 0, where defined the Chebyshev’s function

ψ(x) =
∑
pm≤x

log p =
∑
n≤x

Λ(n),

and this Λ(n) is equal to log p if n = pm, or 0 otherwise. The sum
∑

pm≤x is taken over those integers of the form pm that
are less than or equal to x, here p is a prime number and m is a positive integer. We can then conclude the integral∫ ∞

1

ψ(x) − x
xs+1 dx

is analytic convergence forℜe(s) > 1
2 . Actually, this can conclude the proof of the form ψ (x) = x + O(x

1
2+ε) for ∀ε > 0.

2.2 Preliminaries

2.2.1 Some Significant Theorems

We make the precise theorems as follows.

For brevity, we know that a smooth curve γ given in C parametrized by γ : [a, b]→ C, and f a continuous function on an
open set U and suppose that γ is a curve in U, meaning that all values γ(t) lie in U for a ≤ t ≤ b, we define the integral of
f along γ by ∫

γ

f (z)dz =
∫ b

a
f (γ(t)) γ ′(t) dt.

By definition, we also know that the length of the smooth curve γ is

length (γ) =
∫ b

a

∣∣∣γ ′(t)∣∣∣ dt.

Arguing as we just know, it is clear that this definition is also independent of the parametrization. One has the inequality∣∣∣∣∣∣
∫
γ

f (z) dz

∣∣∣∣∣∣ ≤ sup
z∈γ
| f (z)| · length (γ).
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In addition, we know the well known theorems as follows.

Theorem 2.1. A set of complex numbers is compact if and only if it is closed and bounded.

Theorem 2.2. Let S be a compact set of complex numbers, and let f be a continuous function on S . Then f is uniformly
continuous, i.e., given ε there exists δ such that whenever z,w ∈ S and |z − w| < δ, then | f (z) − f (w)| < ε.

Theorem 2.3. Let S be a compact set of complex numbers, and let f be a continuous function on S . Then the image of f
is compact.

Theorem 2.4. Let { fn} be a sequence of analytic functions on an open set U. Assume that for each compact subset K of
U the sequence converges uniformly on K, and let the limit function be f , i.e., lim fn = f . Then f is analytic.

In general, we can record a useful approximation theorem. Recall that a function on the circle is the same as a 2π-periodic
function on R. In other words, functions on R that 2π-periodic, and functions on an interval of length 2π that take on the
same value at its end-points, are two equivalent descriptions of the same mathematical objects, namely, functions on the
circle.

Theorem 2.5. Let f be an integrable function on the circle and f is bounded by B. Then there exists a sequence { fk}∞k=1
of continuous functions on the circle so that

sup
x∈[0,2π]

| fk(x)| ≤ B for all k = 1, 2, · · · , and
∫ 2π

0
| f (x) − fk(x)| dx→ 0 as k → ∞.

As is known to all, some concepts involved are that of Fourier coefficient of a function, orthogonality in a vector space
equipped with an inner product, and its associated norm. We now review the definitions and summarize the results
concerning the aim of the proof of the following Riemann-Lebesgue lemma. Here, if f is an integrable function given on
an interval [a, b] of length L (that is, b − a = L), then the nth Fourier coefficient of f is defined by

f̂ (n) =
1
L

∫ b

a
f (x) e−2πinx/L dx, n ∈ Z.

The Fourier series of f is given formally by
∑∞

n=−∞ f̂ (n) e2πinx/L.We shall sometimes write an for the nth Fourier coefficient
of f , and use the notation

f (x) ∼
∞∑

n=−∞
an e2πinx/L

to indicate that the series on the right-hand side is the Fourier series of f . For instance, if f is an integrable function on
the interval [0, 2π] , then the nth Fourier coefficient of f is

f̂ (n) = an =
1

2π

∫ 2π

0
f (θ) e−inθ dθ, n ∈ Z,

and the Fourier series of f is f (θ) ∼ ∑∞
n=−∞ an einθ. Fourier series are part of a larger family called the trigonometric series

which, by definition, are expressions of the form
∑∞

n=−∞ cn e2πinx/L, where cn ∈ Z. If a trigonometric series involves only
finitely many non-zero terms, that is, cn = 0 for all large |n|, it is called a trigonometric polynomial; its degree is the largest
value of |n| for which cn , 0.

The N th partial sum of the Fourier series of f , for N a positive integer, is a particular example of a trigonometric polyno-
mial. It is given by

S N( f )(x) =
N∑

n=−N

f̂ (n) e2πinx/L.

Note that by definition, the above sum is symmetric since n ranges from −N to N, a choice that is natural because of the
resulting decomposition of the Fourier series as sine and cosine series. As a consequence, the convergence of Fourier
series will be understood as the “limit” as N tends to infinity of these symmetric sums.

We may state the following important result, even if we do not state the requirement.

Theorem 2.6. continuous functions on the circle can be uniformly approximated by trigonometric polynomials.
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This means that if f is continuous on [0, 2π] with f (0) = f (2π) and ϵ > 0, then there exists a trigonometric polynomial P
such that | f (x) − P(x)| < ϵ for all 0 ≤ x ≤ 2π.

Let R denote the set of complex-valued Riemann integrable functions on [0, 2π] (or equivalently, integrable functions on
the circle). This is a vector space over C. Actually, an inner product is defined on this vector space by

( f , g) =
1

2π

∫ 2π

0
f (θ) g(θ) dθ,

and norm ∥ f ∥ defined by

∥ f ∥2 = 1
2π

∫ 2π

0
| f (θ)|2 dθ.

Two elements X and Y are “orthogonal” if (X,Y) = 0, and we write X ⊥ Y. The important result can be derived from this
notion of orthogonality, which is the Pythagorean theorem: If X and Y are orthogonal, then ∥ X + Y ∥2=∥ X ∥2 + ∥ Y ∥2 .
Its proof of this fact is simple, it suffices to expand (X + Y, X + Y) and use the assumption that (X,Y) = (Y, X) = 0.

For each integer n, let en(θ) = einθ, and observe that the family {en}n∈Z is “orthonormal”; that is

(en, em) =

1 if n = m;
0 if n , m.

Let f be an integrable function on the circle, and let an denote its Fourier coefficients. An important observation is that
these Fourier coefficients are represented by inner products of f with the elements in the orthonormal set {en}n∈Z:

( f , en) =
1

2π

∫ 2π

0
f (θ) e−inθ dθ = an.

In particular, S N( f ) =
∑
|n|≤N anen. Then the orthonormal property of the family {en} and the fact that this Fourier coef-

ficient an = ( f , en) imply that the difference f − ∑
|n|≤N anen is orthogonal to en for all |n| ≤ N. Therefore, we must have(

f − ∑
|n|≤N anen

) ⊥ ∑
|n|≤N bnen for any complex numbers bn, where the orthogonal projection of the function f in the

plane spanned by {e−N , · · · , e0, · · · , e−N} is simply S N( f ). We can apply the Pythagorean theorem to the decomposition
f = f −∑

|n|≤N anen +
∑
|n|≤N anen, where we now choose bn = an, to obtain

∥ f ∥2 =∥ f −
∑
|n|≤N

anen ∥2 + ∥
∑
|n|≤N

anen ∥2 .

Since the orthonormal property of the family {en}n∈Z implies that ∥ ∑|n|≤N anen ∥2 =
∑
|n|≤N |an|2, we deduce that

∥ f ∥2 =∥ f − S N( f ) ∥2 +
∑
|n|≤N

|an|2.

We may draw the theorem from the result (
f −

∑
|n|≤N

anen
) ⊥ ∑

|n|≤N

bnen

for any complex numbers bn, with S N( f ) =
∑
|n|≤N anen.

Theorem 2.7 (Best approximation lemma). If f is integrable on the circle with Fourier coefficients an, then

∥ f − S N( f ) ∥≤∥ f −
∑
|n|≤N

cnen ∥

for any complex numbers cn. Moreover, equality holds precisely when cn = an for all |n| ≤ N.

Note that the best approximation lemma and the relation ∥ f ∥2 =∥ f − S N( f ) ∥2 +∑
|n|≤N |an|2 imply that if an is the

nth Fourier coefficient of an integrable function f , then the series
∑∞

n=−∞ |an|2 converges, and in fact we have Parseval’s
identity

∑∞
n=−∞ |an|2 =∥ f ∥2 . This identity provides an important connection between the norms in the two vector spaces

ℓ2(Z) and R. The vector space ℓ2(Z) over C is the set of all (two-sided) infinite sequences of complex numbers

(· · · , a−n, · · · , a−1, a0, a1, · · · , an, · · · ) such that
∑
n∈Z
|an|2 < ∞.

We summarize the following important results.
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Theorem 2.8. Let f be an integrable function on the circle with the relation f ∼ ∑∞
n=−∞ aneinθ. Then we have

(i) Mean-square convergence of the Fourier series

1
2π

∫ 2π

0
| f (θ) − S N( f )(θ)|2 dθ → 0 as N → ∞.

(ii) Parseval’s identity
∞∑

n=−∞
|an|2 =

1
2π

∫ 2π

0
| f (θ)|2 dθ.

Proof. We can now give the proof that ∥ f − S N( f ) ∥→ 0 using the best approximation lemma, as well as the important
fact that trigonometric polynomials are dense in the space of continuous functions on the circle.

Suppose that f is continuous on the circle. Then, given ϵ > 0, there exists a trigonometric polynomial P, say of degree M,
such that | f (θ)− P(θ)| < ϵ for all θ. In particular, taking squares and integrating this inequality yields ∥ f − P ∥< ϵ, and by
the best approximation lemma we conclude that ∥ f − S N( f ) ∥≤∥ f − P ∥, and then ∥ f − S N( f ) ∥< ϵ whenever N ≥ M.
This proves the theorem when f is continuous.

If f is merely integrable, by definition, a Riemann integrable function is bounded, say | f (θ)| ≤ M for some positive con-
stant M, we can no longer approximate f uniformly by trigonometric polynomials. Instead, we apply the approximation
Theorem 2.5 and choose a continuous function g on the circle which satisfies

sup
θ∈[0,2π]

|g(θ)| ≤ sup
θ∈[0,2π]

| f (θ)| = B and
∫ 2π

0
| f (θ) − g(θ)| dθ < ϵ2.

Then we get

∥ f − g ∥2 = 1
2π

∫ 2π

0
| f (θ) − g(θ)|2 dθ =

1
2π

∫ 2π

0
| f (θ) − g(θ)| · | f (θ) − g(θ)| dθ ≤ 2B

2π

∫ 2π

0
| f (θ) − g(θ)| dθ ≤ Cϵ2.

Therefore, ∥ f − g ∥≤
√

Cϵ where C is a positive constant. Now we may approximate g by a trigonometric polynomial
P so that the relation ∥ g − P ∥< ϵ. Then ∥ f − P ∥≤∥ f − g ∥ + ∥ g − P ∥< C1ϵ for some positive constant C1, and we
may again conclude by applying the best the approximation lemma. This completes the proof that the partial sums of the
Fourier series of f converge to f in the mean square norm ∥ · ∥ . This proves the theorem. �

Since the terms an of the converging series
∑∞

n=−∞ |an|2 tend to 0 as |n| tends to∞, we deduce from Parseval’s identity the
following result.

Theorem 2.9 (Riemann-Lebesgue lemma). If f is integrable on the circle, then f̂ (n) → 0 as |n| → ∞. An equivalent
reformulation of this proposition is that if f is integrable on the interval [0, 2π] , for N a positive integer, then

lim
N→∞

∫ 2π

0
f (θ) sin(Nθ) dθ = lim

N→∞

∫ 2π

0
f (θ) cos(Nθ) dθ = 0,

and

lim
T→∞

∫ b

a
f (x) sin(T x) dx = lim

T→∞

∫ b

a
f (x) cos(T x) dx = 0

for f (x) on a finite interval [a, b] of real numbers, whenever the real number T , 0.

2.2.2 Abel’s Identity and Basic Properties of the Riemann Zeta Function

Sometimes, sums involving step functions of the type can be expressed as integrals by means of the following Abel’s
identity. For any arithmetical function a(n) let A(x) =

∑
n≤xa(n), where A(x) = 0 if x < 1. Assume f has a continuous

derivative on the interval [y, x], where 0 < y < x. Then we have∑
y<n≤x

a(n) f (n) = A(x) f (x) − A(y) f (y) −
∫ x

y
A(t) f ′(t) dt.
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Indeed, for an arbitrary function f ∈ C1([y, x]), the Abel’s identity∑
y<n≤x

a(n) f (n) = A(x) f (x) − A(y) f (y) −
∫ x

y
A(t) f ′(t) dt

can be verified directly by using integration by parts. Since A(x) is a step function with jump f (n) at each integer n, the
sum

∑
y<n≤xa(n) f (n) can be expressed as a Riemann-Stieltjes integral

∑
y<n≤xa(n) f (n) =

∫ x
y f (t) dA(t), using the definition

of the Riemann-Stieltjes integral, then integration by parts gives us the result.

Note. Since A(t) = 0 if t < 1, when y < 1 this Abel’s identity takes the form∑
1≤n≤x

a(n) f (n) = A(x) f (x) −
∫ x

1
A(t) f ′(t) dt,

where f has a continuous derivative on the interval [1, x]. We may then get∑
1≤n≤x

an f (n) =
∑

1≤n≤x

an

{
f (x) −

∫ x

n
f ′(t) dt

}
= f (x)

∑
1≤n≤x

an −
∫ x

1
f ′(t)

( ∑
1≤n≤t

an

)
dt

for an arbitrary function f ∈ C1([1, x]) and an ∈ C.
Forℜe(s) > 1, we know that the Zeta function defined by the series

∑∞
n=1

1
ns , and the Euler product

∏
p(1− p−s)−1, namely

ζ(s) =
∑∞

n=1
1
ns =

∏
p
(
1 − p−s)−1

, where the product is over all prime numbers p. The Euler product shows that ζ(s) , 0
forℜe(s) > 1. The series and the Euler product converge absolutely and uniformly forℜe(s) ≥ 1 + δ, with any δ > 0. It
was initiated and used by Euler to prove that

∑
p 1/p diverges, and the behavior of ζ(s) for real s > 1 with s tending to

1. While there is no difficulty in seeing that ζ(s) is well-defined when ℜe(s) > 1, it was Riemann who realized that the
further study of prime numbers was bound up with the analytic continuation of ζ into the rest of the complex plane. In
the half plane ℜe(s) = σ > 1, the ζ-function is given explicitly by the series ζ(s) =

∑∞
n=1

1
ns , writing s = σ + it where

σ and t are real, and it is therefore subject to the estimate |ζ(s)| ≤ ζ(σ). Riemann recognized that there is a rather simple
relationship between ζ(s) and ζ(1 − s). As a consequence, one has good control of the behavior of the ζ-function also in
the half σ < 0.

Moreover, the basic structural property of the Zeta function with respect to the Gamma function, which essentially char-
acterizes it: 1/Γ(s) is an entire function which has simple zeros at exactly s = 0,−1,−2,−3, · · · .
Indeed, the Gamma function Γ(s) can be defined for s ∈ C withℜe(s) > 0 by the integral

Γ(s) =
∫ ∞

0
e−t ts dt

t
.

The integral converges absolutely for ℜe(s) > 0. On replacing t by nt in the integral Γ(s) =
∫ ∞

0 e−t ts dt
t for ℜe(s) > 1,

which leaves the integral invariant, we obtain

n−s Γ(s) =
∫ ∞

0
e−nt ts−1 dt,

and summation with respect to n leads to
∞∑

n=1

n−s Γ(s) =
∫ ∞

0

∞∑
n=1

e−nt ts−1 dt.

Becauseℜe(s) > 1 the integral is absolutely convergent at both ends, and this justifies the interchange of integration and
summation, so that

ζ(s) Γ(s) =
∫ ∞

0

ts−1

et − 1
dt forℜe(s) > 1.

We shall present a more elementary approach to the properties of the Zeta function, which easily leads to its extension in
the half-planeℜe(s) > 0.

Proposition 2.10. There is a sequence of entire functions {δn(s)}∞n=1 that these functions satisfy the estimate |δn(s)| ≤
|s|/nσ+1, where s = σ + it, and such that ∑

1≤n<N

1
ns −

∫ N

1

1
xs dx =

∑
1≤n<N

δn(s),

whenever N is an integer > 1.
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Proof. We compare
∑

1≤n<N n−s with
∑

1≤n<N

∫ n+1
n x−s dx, and set

δn(s) =
∫ n+1

n

(
1
ns −

1
xs

)
dx.

The integral mean-value theorem applied to f (u) = u−s and f ′(u) = (−s)u−s−1 such that

1
ns −

1
xs =

∫ x

n

s
us+1 du

yields ∣∣∣∣∣ 1
ns −

1
xs

∣∣∣∣∣ ≤ |s|
nσ+1 whenever n ≤ x ≤ n + 1.

Therefore, |δn(s)| ≤ |s|/nσ+1, and since
∫ N

1
1
xs dx =

∑
1≤n<N

∫ n+1
n

1
xs dx, the proposition is proved. �

The proposition 2.10 has the following consequence.

Corollary 2.11. For ℜe(s) > 0 we have ζ(s) − 1
s−1 = H(s), where the function H(s) =

∑∞
n=1 δn(s) is analytic in the

half-planeℜe(s) > 0.

Proof. Following the proposition 2.10 and turning to this idea, we assume first that ℜe(s) > 1. We let N tend to infinity
in the formula ∑

1≤n<N

1
ns −

∫ N

1

1
xs dx =

∑
1≤n<N

δn(s), where
∫ ∞

1

1
xs dx =

1
s − 1

,

and observe that by the estimate |δn(s)| ≤ |s|/nσ+1, we have the uniform convergence of the series
∑
δn(s) which is in any

half-planeℜe(s) > σ with σ > 0. Sinceℜe(s) > 1, the series
∑

n−s converges to ζ(s), and this proves the assertion when
ℜe(s) > 1. By Theorem 2.4, the uniform convergence also shows that

∑
δn(s) is analytic whenℜe(s) > 0, and thus shows

that ζ(s) is extendable to the half-plane, and that the identity continues to hold there. �

Let us state the following Theorem 2.12 and Theorem 2.14.

Theorem 2.12. Forℜe(s) > 1,

ζ(s) = −Γ(1 − s)
2πi

∫
C

(−z)s−1

ez − 1
dz

where C beginning and ending near the positive real axis, and (−z)s−1 is defined on the complement of positive real axis
as e(s−1) log(−z) with −π ≤ ℑm log(−z) ≤ π.

The importance of the formula ζ(s) = − Γ(1−s)
2πi

∫
C

(−z)s−1

ez−1 dz for ℜe(s) > 1, which lies in the fact that the right-hand side is
defined and meromorphic for all values of s, so the formula can be used to extend ζ(s) to a meromorphic function in the
whole plane. It is indeed quite obvious that the integral

∫
C

(−z)s−1

ez−1 dz is an entire function of s in the formula, while Γ(1− s)
is meromorphic with poles at s = 1, 2, 3, · · · . Because ζ(s) is already known to be analytic for ℜe(s) > 1, the poles of
Γ(1 − s) at the integers n ≥ 2 must cancel against zeros of the integral

∫
C

(−z)s−1

ez−1 dz. At s = 1, the function −Γ(1 − s) has

a simple pole with the residue 1, as seen for instance by the explicit representation Γ(s) = e−γs

s
∏∞

n=1

(
1 + s

n

)−1
e

s
n . On the

other hand, by residues we obtain 1
2πi

∫
C

1
ez−1 dz = 1. As a result, ζ(s) has the residue 1 at s = 1. We formulate the result as

a corollary.

Corollary 2.13. The ζ(s)-function can be extended to a meromorphic function in the whole plane whose only pole is a
simple pole at s = 1 with the residue 1.

We shall reproduce a standard of the Zeta functional equation, as it is commonly called.

Theorem 2.14. The ζ-function is given a rather simple relationship between ζ(s) and ζ(1 − s), i.e., for all s ∈ C we have

ζ(s) = 2sπs−1 sin
πs
2
Γ(1 − s) ζ(1 − s). (2.1)
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There are equivalent forms of the functional equation. For instance, it implies ζ(1 − s) = 21−sπ−s cos πs
2 Γ(s) ζ(s) for

all s ∈ C. In addition, the identity Γ(s)Γ(1 − s) = π
sin(πs) reveals the symmetry of Γ about the line ℜe(s) = 1/2, and

the functional equation (2.1) for ζ(s) such that the nontrivial zeros of ζ(s) has a certain symmetry about the critical line
ℜe(s) = 1/2. We know the functional equation (2.1) for ζ(s) shows that all the nontrivial zeros must lie in the strip
0 < ℜe(s) < 1, the so-called “critical strip”. Moreover, note that the nontrivial zeros of ζ(s) has a certain symmetry about
the real axis, namely ζ (s) = ζ(s), this relation is immediate from the Euler product and Corollary 2.13 as well as the series
expansion of the expression ζ(s) − 1

s−1 = H(s) in Corollary 2.11, which lead to its extension in the half-planeℜe(s) > 0,
with the idea described above can be developed step by step to yield the analytic continuation of ζ into the entire complex
plane. These are easy to show that the nontrivial zeros are symmetrically located about the two lines. It follows that if s0
is a complex number where ζ(s) has a zero of order m, then the complex conjugate s0 is a complex number where ζ(s)
has a zero of the same order m, then 1 − s0 is also a complex number where ζ(s) has a zero of the same order m, so is the
complex conjugate 1 − s0, and therefore these orders m are the same (which may be a pole, in which case m is negative,
but ζ(s) has no a pole in the critical strip 0 < ℜe(s) < 1).

In fact, by Abel’s identity, we often obtain the following identities, valid forℜe(s) > 1:

ζ(s) =
∞∑

n=1

n−s =

∞∑
n=1

s
∫ ∞

n

dx
xs+1 = s

∫ ∞

1

(∑
n≤x

1
) dx

xs+1 = s
∫ ∞

1

[x]
xs+1 dx =

s
s − 1

− s
∫ ∞

1

{x}
xs+1 dx.

The symbol [x] denotes the greatest integer ≤ x, it is called the integral part of x, the number {x} = x − [x] is called the
fractional part of x, it satisfies the inequalities 0 ≤ {x} < 1, with {x} = 0 if and only if x is an integer. Moreover, we know
the integral

∫ ∞
1
{x}
xs+1 dx converges absolutely, and uniformly forℜe(s) ≥ δ with any δ > 0.

Also, we define the so-called Chebyshev’s function

ψ(x) =
∑
pm≤x

log p =
∑

1≤n≤x

Λ(n),

where p is a prime number and m is a positive integer. The sum is taken over those integers of the form pm that are less
than or equal to x. This Λ(n) is equal to log p if n = pm, or 0 otherwise. Note that crude estimates give

ψ(x) =
∑
p≤x

[
log x
log p

]
log p ≤

∑
p≤x

log x
log p

log p = π(x) log x.

We say that a step function is a piecewise constant function having only finitely many pieces with each given as the finite
sum, and we observe that the formula ψ(x) =

∑N
n=1 Λ(n) fn(x), where fn(x) = 1 if n ≤ x and fn(x) = 0 otherwise. In

particular, it is obvious to see that ψ(x) is a step function which begins at 0 and has a jump of log(pm) · (1/m) = log p at
each prime power pm, whereas the positive integer m ≥ 1. In fact, ψ(x) is locally constant: there is no change in ψ between
prime numbers, which the function is locally constant at a point if there exists an open set containing this point such
that the function is constant on the open set. As a matter of fact, note that a piecewise function is continuous on a given
interval if the conditions are met: it is defined throughout that interval, its constituent functions are continuous on that
interval, there is no discontinuity at each endpoint of the subdomains within that interval. Moreover, a constant function
is a trivial example of a step function, and a piecewise constant function is piecewise continuous, whereas a function
is said to be piecewise constant if it is locally constant in connected regions separated by a possibly infinite number of
lower-dimensional boundaries.

We know that for ℜe(s) > 1 taking the logarithm of the Euler product formula ζ(s) =
∑∞

n=1
1
ns =

∏
p
(
1 − p−s)−1

, and
using the power series expansion for the logarithm log

( 1
1−x

)
=

∑∞
m=1

xm

m , which holds for 0 ≤ x < 1, while we have the
formulas 1

1−x =
∑∞

m=1 xm−1 and
∫

1
1−x dx = log

( 1
1−x

)
+C for 0 ≤ x < 1 with some constant C, and then we find that

log ζ(s) = log
∏

p

(
1 − p−s)−1

=
∑

p

log
(

1
1 − p−s

)
=

∑
m,p

p−ms

m
.

Differentiating this expression gives

ζ′(s)
ζ(s)

= −
∑
m,p

(log p) p−ms = −
∞∑

n=1

Λ(n)
ns .
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In view of the fact that ψ(x) is a monotonically increasing function on a finite interval, the sum
∑∞

n=1
Λ(n)

ns can be expressed
as a Riemann-Stieltjes integral, using the definition of the Riemann-Stieltjes integral, we have

∞∑
n=1

Λ(n)
ns =

∫ ∞

1
x−s dψ(x).

Forℜe(s) > 1, by Abel’s identity, we also know the identity (∗!):

−ζ
′(s)
ζ(s)

=

∞∑
n=1

Λ(n)
ns = s

∫ ∞

1

ψ(x)
xs+1 dx =

s
s − 1

+ s
∫ ∞

1

ψ(x) − x
xs+1 dx,

and by the Euler product we get − ζ
′(s)
ζ(s) =

∑
p

log p
ps−1 for ℜe(s) > 1, where the sum

∑
p

log p
ps−1 is extended over all primes.

Moreover, we have already seen that ζ(1 + it) , 0 for any real number t so that the Zeta functional equation gives
ζ(it) , 0, while the Euler product gives ζ(s) , 0 for ℜe(s) > 1. If the function ζ′/ζ(s) has no poles on the region
1 > ℜe(s) > 1

2 , then which implies that the function ζ(s) has no zeros on the region 1 > ℜe(s) > 1
2 .

In a way, we need go through the basic results. We recall the notation: f = O(g) or f ≪ g means that f , g are two
functions of a variable x, defined for all x sufficiently large, and g is positive, there exists a constant C > 0 such that
| f (x)| ≤ Cg(x) for all |x| sufficiently large. We also recall the results, let ρ be all nontrivial zeros of ζ(s), we know
ψ(x) = x + O(xsupℜe(ρ)+ε) for ∀ε > 0. Intimately, we can get λ ≥ supℜe(ρ) + ε by the result that if ζ(s) has no zero on
the regionℜe(s) > λ. It is a well-known fact that the Riemann Zeta function ζ(s) has infinitely many zeros in the critical
strip 0 < ℜe(s) < 1. One can combine ideas from the functional equation ζ(s) = 2sπs−1 sin πs

2 Γ(1− s) ζ(1− s) for ζ(s). As
a result, ζ(s) has infinitely many zeros in the regionℜe(s) ≥ 1

2 , from which the nontrivial zeros are symmetrically located
about the critical lineℜe(s) = 1

2 in the critical strip.

As a consequence, we may state the following proposition.

Proposition 2.15. If ψ(x) = x + O(xλ) for 0 < λ < 1, then the function − ζ
′(s)
ζ(s) is meromorphic on the region ℜe(s) > λ,

and has a pole at s = 1, but no other poles in this region. Furthermore, if one has the form ψ(x) = x + O(xλ), then one
has the consequence λ ≥ 1

2 , and the function − ζ
′(s)
ζ(s) − ζ(s) has no poles forℜe(s) > λ.

Proof. First note that − ζ
′(s)
ζ(s) − ζ(s) =

∑∞
n=1

(
Λ(n) − 1

)
n−s forℜe(s) > 1.

Forℜe(s) > 1, we have

−ζ
′(s)
ζ(s)

=

∞∑
n=1

Λ(n)
ns = s

∫ ∞

1

ψ(x)
xs+1 dx =

s
s − 1

+ s
∫ ∞

1

ψ(x) − x
xs+1 dx

and

−ζ
′(s)
ζ(s)

− ζ(s) =
∞∑

n=1

Λ(n)
ns −

∞∑
n=1

1
ns = s

∫ ∞

1

ψ(x) − [x]
xs+1 dx = s

∫ ∞

1

ψ(x) − x
xs+1 dx + s

∫ ∞

1

{x}
xs+1 dx.

By our assumption that ψ(x) = x + O(xλ) for 0 < λ < 1, we obtain the integral
∫ ∞

1
ψ(x)−x

xs+1 dx converges absolutely and
uniformly for ℜe(s) ≥ δ > λ with any δ > λ. Since the integral

∫ ∞
1
{x}
xs+1 dx converges absolutely and uniformly for

ℜe(s) ≥ δ > 0 with any δ > 0. By the differentiation lemma (see below), it suffices to prove that the integrals
∫ ∞

1
ψ(x)−x

xs+1 dx
and

∫ ∞
1
{x}
xs+1 dx are analytic for ℜe(s) > λ, so that the function − ζ

′(s)
ζ(s) − ζ(s) has an analytic continuation to the region

ℜe(s) > λ, and that − ζ
′(s)
ζ(s) is meromorphic on the region ℜe(s) > λ, and has a pole at s = 1, but no other poles in this

region. In particular, yet still note that the Zeta function ζ(s) has infinitely many zeros in the critical strip 0 < ℜe(s) < 1,
as a result that ζ(s) has infinitely many zeros in the regionℜe(s) ≥ 1

2 , with the symmetry of the nontrivial zeros about the
line ℜe(s) = 1

2 . Because if one has λ < 1
2 in the form ψ(x) = x + O(xλ) then one has no zeros in the region ℜe(s) ≥ 1

2 ,

which is a contradiction, and that as a consequence, one surely has λ ≥ 1
2 in the form ψ(x) = x + O(xλ). This proves the

proposition. �

In a nutshell, we have λ ≥ 1
2 for ψ(x) = x + O(xλ) and ψ(x) = O(x). By the way, the part of the proposition that if one has

the form ψ(x) = x+O(xλ) then one has the consequence λ ≥ 1
2 , which shall imply the proof of the form ψ(x) = x+O(x

1
2+ϵ)

for every ϵ > 0.
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2.3 Main Lemmas

Lemma 2.16 (The differentiation lemma). Let I be an interval of real numbers, possibly infinite. Let U be an open set of
complex numbers. Let f = f (t, z) be a continuous function on I × U. Assume:

(i) For each compact subset K of U, the integral
∫

I f (t, z) dt is uniformly convergent for z ∈ K.

(ii) For each t the function z 7→ f (t, z) is analytic.

Let F(z) =
∫

I f (t, z) dt, then F is analytic on U, D2 f (t, z) satisfies the same assumptions as f , and

F′(z) =
∫

I
D2 f (t, z) dt.

In addition, let f be a piecewise continuous function on the real numbers ≥ 0 and assume that there is constants A, B
such that | f (t)| ≤ Aeβt for t ≥ 0. However, just assume for simplicity that if f is bounded, piecewise continuous, then we
take the form | f (t)| ≤ M for some finite number M > 0. What we prove will hold under much less restrictive conditions:
instead of piecewise continuous, it would suffice to assume that either the integral

∫ b
a | f (t)| dt exists for every pair of

numbers a, b ≥ 0 or the integral
∫ ∞

0

∣∣∣ f (t) e−zt
∣∣∣ dt exists forℜe(z) ≥ β, where β is some real constant. We shall associate to

f the Laplace transform defined by

g(z) =
∫ ∞

0
f (t) e−zt dt forℜe(z) > 0.

We can then apply the differentiation lemma, whose proof applies to a function f (t) satisfying our conditions (bounded
and piecewise continuous), and then we easily conclude that g is analytic forℜe(z) > 0. Furthermore, we can prove that
the function

g(z) =
∫ ∞

0
f (t) e−zt dt forℜe(z) > β

converges absolutely, and the function is analytic on the regionℜe(z) > β for some real number β.

We shall now state special cases of the following lemmas concerning differentiation under the integral sign which are
sufficient for our applications.

Lemma 2.17. Let f (t) be piecewise continuous function on the real numbers ≥ 0, and assume that there exist some real
number constants B, β such that | f (t)| ≤ B eβt for all t sufficiently large. Let f the Laplace transform g defined by

g(z) =
∫ ∞

0
f (t) e−zt dt forℜe(z) > β.

Then g(z) converges absolutely for ℜe(z) > β, and it converges uniformly in the region ℜe(z) ≥ α > β, and then g(z) is
analytic forℜe(z) > β.

Proof. Sinceℜe(z) > β, there necessarily exists a positive number δ > 0 such thatℜe(z) > β + δ. Moreover, we have the
condition | f (t)| ≤ B eβt for all t sufficiently large with some constants B, β.
Hence ∫ ∞

0

∣∣∣ f (t) e−zt
∣∣∣ dt ≤

∫ ∞

0
B e(β+δ)t · e−ℜe(z) t dt =

B
ℜe(z) − (β + δ)

forℜe(z) > β + δ. Similarly, we can also obtainℜe(z) ≥ α > β + δ whenℜe(z) ≥ α > β with some constants B, β, δ, α.
Thus ∫ ∞

0

∣∣∣ f (t) e−zt
∣∣∣ dt ≤

∫ ∞

0
B e(β+δ)t · e−ℜe(z) t dt ≤ B

α − (β + δ)
,

which gives that the Laplace transform g(z) converges absolutely forℜe(z) > β and g(z) converges uniformly forℜe(z) ≥
α > β, and then g(z) is analytic for ℜe(z) > β as follows at once by the differentiation lemma. Therefore this proves the
lemma. �

Lemma 2.18 (the so-called “D. J. Newman Theorem”). Let f (t) be bounded, piecewise continuous function on the real
numbers ≥ 0. Let f (t) the Laplace transform g(z) defined by g(z) =

∫ ∞
0 f (t) e−zt dt for ℜe(z) > 0, then g is analytic in

the region ℜe(z) > 0. In fact, the integral converges absolutely for ℜe(z) > 0. If g extends to an analytic function for
ℜe(z) ≥ 0, then

∫ ∞
0 f (t) dt exists and is equal to g(0). (Indeed, its proof can be contained in the proof of the next Lemma

2.19 when we let the following real number α be equal to 0.)
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Lemma 2.19 (Main Lemma A1, it contains the “D. J. Newman Theorem”, which has been improved). Let f (t) be piece-
wise continuous function on the real numbers ≥ 0, and assume that there exist some finite real numbers B, α such that
| f (t)| ≤ B eαt for all t in the interval 0 ≤ t ≤ ∞, for any T > 0 the interval 0 ≤ t ≤ T can be divided into finite segments,
and the function f (t) is certainly continuous in each finite segment. Let f (t) the Laplace transform g(z) defined by

g(z) =
∫ ∞

0
f (t) e−zt dt forℜe(z) > α,

then g is analytic in the region ℜe(z) > α. In fact, the integral converges absolutely for ℜe(z) > α. If g extends to an
analytic function forℜe(z) ≥ α, then ∫ ∞

0
f (t) e−αt dt exists and is equal to g(α).

In particular, if the integral ∫ ∞

0
f (t) e−αt dt converges for f (t) ≥ 0 with α > 0,

then

lim
α→ 0

∫ ∞

0
f (t) e−αt dt =

∫ ∞

0
f (t) dt,

and then this
∫ ∞

0 f (t) dt also converges from which limα→ 0
∫ ∞

0 f (t) e−αt dt exists as well as this limit is equal to
∫ ∞

0 f (t) dt.

Proof. Since | f (t)| ≤ B eαt for all t ≥ 0 with some real constants B and α, then we can apply Lemma 2.17 and the
differentiation lemma to conclude that g is analytic in the regionℜe(z) > α.

For T > 0 define

gT (z) =
∫ T

0
f (t)e−zt dt.

Then gT is an entire function, as follows at once by the differentiation lemma.

We have to show that
lim

T→∞
gT (α) = g(α).

Let δ > 0 and let C be the path consisting of the line segment ℜe(z) = α − δ and the arc of circle |z − α| = R with
ℜe(z) ≥ α, andℜe(z) ≥ α − δ, where α is some real number.

By our assumption that g extends to an analytic function forℜe(z) ≥ α, where α is some real number, we can take δ small
enough so that g is analytic on the region bounded by C, and on its boundary. Then by Cauchy’s integral formula, we have

g(α) − gT (α) =
1

2πi

∫
C

(
g(z) − gT (z)

)
eT (z−α)

(
1 +

(z − α)2

R2

) dz
z − α =

1
2πi

∫
C

HT (z) dz,

where HT (z) abbreviates the expression under the integral sign with some real number α, | f (t)| ≤ B eαt for all t ≥ 0 and
some real constants B with α.

Let C+ be the semicircle |z − α| = R, andℜe(z) ≥ α, where α is some real numbers. Then we claim that∣∣∣∣∣ 1
2πi

∫
C+

HT (z) dz
∣∣∣∣∣ ≤ 2B

R
. (2.2)

First note that forℜe(z) > α, we have

|g(z) − gT (z)| =
∣∣∣∣∣∫ ∞

T
f (t)e−zt dt

∣∣∣∣∣ ≤ B
∫ ∞

T

∣∣∣e(α−z)t
∣∣∣ dt =

B∣∣∣α −ℜe(z)
∣∣∣ e(α−ℜe(z))T ;

and for |z − α| = R, we obtain∣∣∣∣∣∣eT (z−α)
(
1 +

(z − α)2

R2

) 1
z − α

∣∣∣∣∣∣ = e(ℜe(z)−α)T
∣∣∣∣∣ R
z − α +

z − α
R

∣∣∣∣∣ 1
R
= e(ℜe(z)−α)T ·

2
∣∣∣ℜe(z) − α

∣∣∣
R2 ,

84



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 8, No. 4; 2016

where α is some real number, and (z − α) · z − α = |z − α|2 = R2 leads to R
z−α =

z−α
R , withℜe(z − α) = ℜe(z) − α. Taking

the product of the last two estimates and multiplying by the length of the semicircle gives a bound for the integral over
the semicircle, and this proves the claim (2.2).

Let C− be the part of the path C withℜe(z) < α, where α is some real number. We wish to estimate

1
2πi

∫
C−

(
g(z) − gT (z)

)
eT (z−α)

(
1 +

(z − α)2

R2

)
dz

z − α.

Now we estimate separately the expression under the integral with g and gT . We have∣∣∣∣∣∣ 1
2πi

∫
C−

gT (z) eT (z−α)
(
1 +

(z − α)2

R2

)
dz

z − α

∣∣∣∣∣∣ ≤ B
R
. (2.3)

Let S − be the semicircle with the circle |z − α| = R and ℜe(z) < α, where α is some real number. Since gT is entire, we
can replace C− by S − in the integral without changing the value of the integral, because the integrand has no poles to the
left of the lineℜe(z) = α. Now we estimate the expression under the integral sign on S −. We have

|gT (z)| =
∣∣∣∣∣∣
∫ T

0
f (t)e−zt dt

∣∣∣∣∣∣ ≤ B
∫ T

−∞

∣∣∣e(α−z)t
∣∣∣ dt =

B e(α−ℜe(z))T∣∣∣α −ℜe(z)
∣∣∣ .

For the other factor we use the same estimate as previously, we take the product of the two estimates, and multiply by the
length of the semicircle to give the desired bound in (2.3).

Third, we claim that ∫
C−

g(z) eT (z−α)
(
1 +

(z − α)2

R2

) dz
z − α → 0 as T → ∞. (2.4)

We can write the expression under the integral sign as

g(z) eT (z−α)
(
1 +

(z − α)2

R2

)
1

z − α = h(z) eT (z−α),

where h(z) is independent of T, and α is some real number with |z − α| = R.

Given any compact subset K of the region defined byℜe(z) < α, we note that

eT (z−α) → 0 rapidly uniformly for z ∈ K, as T → ∞, where T > 0.

The word “rapidly” means that the expression divided by any power T N also tends to 0 uniformly for z in K, as T → ∞,
where T > 0. Recall that we can take δ > 0 small enough so that g is analytic on the region bounded by the path C and on
its boundary, including on the path part C− consisting of the line segmentℜe(z) = α − δ and the arc of circle |z − α| = R
withℜe(z) < α. The path part C− is certainly a piecewise smooth curve and its any finite piecewise smooth part curve γ
is compact in K. According to Theorem 2.3, the image of every finite piecewise smooth part curve γ of C− in K is also
compact. Let’s write

∫
C− =

∑
γ

∫
γ
, we have∫

C−
h(z) eT (z−α) dz =

∑
γ

∫
γ

h(z) eT (z−α) dz

and ∫
γ

h(z) eT (z−α) dz =
∫ b

a
h
(
γ(t)

)
γ ′(t) eT (γ(t)−α) dt =

∫ b

a

(
u(t) + iv(t)

)
eT(ℜe(z)−α+ℑm(z)) dt,

where h(z) is compact for z in K. In general, a smooth curve γ given in C parametrized by γ(t) : [a, b] → K, and write
h(z) = h

(
γ(t)

)
γ ′(t) = u(t) + iv(t), where u and v are real-valued functions on the finite interval [a, b] , we can apply the

argument according to Theorem 2.1 to the real and imaginary parts separately so that u and v are bounded, from which
h(z) is compact for z in K. By Theorem 2.9 (Riemann-Lebesgue lemma), we obtain

lim
T→∞

∫ b

a
u(t) eTℑm(z) dt = lim

T→∞

∫ b

a
v(t) eTℑm(z) dt = 0.
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Since

ex = 1 + x + · · · + xn

n!
+

xn+1

(n + 1)!
+ · · · ,

this shows that
x−n ex >

x
(n + 1)!

for positive x and for all n = 0, 1, 2, 3, · · · .

On replacing x by Bx with the constant B > 0 in the inequality x−n ex > x
(n+1)! , we get

(Bx)−n eBx >
Bx

(n + 1)!
, where the constant B > 0.

For any fixed n, as x → ∞, it follows that ex grows faster than any fixed power of x. We can write xn = o(ex) to mean
limx→∞

xn

ex = 0 for all n, namely log x = o(xδ) for δ > 0 with x > 0. Furthermore, we obtain

lim
x→∞

(Bx)n

eBx = lim
x→∞

xn

eBx = lim
x→∞

Bn

eBx = lim
x→∞

1
eBx = 0 for any fixed n,

where B is a positive constant, it is also independent of the positive number x. Of course, for any constant M with a
positive constant B, and x is a positive number, we obtain

lim
x→∞

Me−Bx = 0. (2.5)

We compare |b − a|M1 e−T inf |ℜe(z)−α| with ∫ b

a
|u(t)| e−T |ℜe(z)−α| dt,

and compare |b − a|M2 e−T inf |ℜe(z)−α| with ∫ b

a
|v(t)| e−T |ℜe(z)−α| dt,

where u(t) is bounded by some positive constant M1, and v(t) is bounded by some positive constant M2, the positive
number |ℜe(z) − α| is independent of T, with T > 0. The integral mean-value theorem applied to yield

0 ≤
∫ b

a
|u(t)| e−T |ℜe(z)−α| dt ≤ |b − a|M1 e−T inf |ℜe(z)−α| for T > 0

and

0 ≤
∫ b

a
|v(t)| e−T |ℜe(z)−α| dt ≤ |b − a|M2 e−T inf |ℜe(z)−α| for T > 0.

As a consequence of the formula (2.5) and the criteria of the limit existence, we have

lim
T→∞

∫ b

a

∣∣∣∣∣u(t) eT(ℜe(z)−α)
∣∣∣∣∣ dt = lim

T→∞

∫ b

a
|u(t)| e−T |ℜe(z)−α| dt = 0

and

lim
T→∞

∫ b

a

∣∣∣∣∣v(t) eT(ℜe(z)−α)
∣∣∣∣∣ dt = lim

T→∞

∫ b

a
|v(t)| e−T |ℜe(z)−α| dt = 0

for T > 0 with ℜe(z) < α, where u(t) is bounded by some positive constant M1, and v(t) is bounded by some positive
constant M2, the positive number |ℜe(z) − α| for z in K is independent of T. Moreover, by the triangle inequality we have

0 ≤
∣∣∣∣∣∣
∫
γ

h(z) eT (z−α) dz

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ b

a
u(t) eTℑm(z) dt

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∫ b

a
v(t) eTℑm(z) dt

∣∣∣∣∣∣
+

∫ b

a
|u(t)| e−T |ℜe(z)−α| dt +

∫ b

a
|v(t)| e−T |ℜe(z)−α| dt.
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Therefore,

lim
T→∞

∣∣∣∣∣∣
∫
γ

h(z) eT (z−α) dz

∣∣∣∣∣∣ = 0 for T > 0, and
∑
γ

lim
T→∞

∣∣∣∣∣∣
∫
γ

h(z) eT (z−α) dz

∣∣∣∣∣∣ = 0 for T > 0.

These conclude that
lim

T→∞

∣∣∣∣∣ ∫
C−

h(z) eT (z−α) dz
∣∣∣∣∣ = 0 for T > 0.

Then our claim (2.4) follows.

We may now prove this lemma. We have∫ ∞

0
f (t) e−αt dt = lim

T→∞
gT (α), if this limit exists.

But given ε, pick R so large that 2B/R < ε. Then by (2.4), pick T so large that∣∣∣∣∣∣
∫

C−
g(z) eT (z−α)

(
1 +

(z − α)2

R2

)
dz

z − α

∣∣∣∣∣∣ < ε.
Then by these (2.2), (2.3) and (2.4), we get |g(α) − gT (α)| < 3ε. This shows that limT→∞ gT (α) exists, which can be argued
as the property of Cauchy sequence and the Cauchy convergence test. Since we choose

0 ≤ T0 < T = T1 < T2 < · · · < Tm < · · · < Tn < +∞

and have the relation |g(α) − gT (α)| < 3ε for selecting T = T1 so large with given ε > 0. Under the same condition on Tm

and Tn, we also obtain the relations
∣∣∣g(α) − gTm (α)

∣∣∣ < 3ε and
∣∣∣g(α) − gTn (α)

∣∣∣ < 3ε. Then applying the triangle inequality
we have

∣∣∣gTm (α) − gTn (α)
∣∣∣ < 6ε for every pair of infinite natural numbers m, n with every pair of infinite numbers Tm, Tn.

We can see the sequence
{
gTn (α)

}
, i.e., gT1 (α), gT2 (α), gT3 (α), · · · , gTm (α), · · · , gTn (α) · · · of real numbers is a Cauchy

sequence, which converges uniformly. Because every positive real number ϵ, there is a positive integer N such that for
all natural numbers m, n > N existing

∣∣∣gTm (α) − gTn (α)
∣∣∣ < ϵ. Cauchy sequence formulated such a condition by requiring

gTm (α)− gTn (α) to be infinitesimal for every pair of infinite m, n with every pair of infinite numbers Tm, Tn. Thus, the limit

lim
T→∞

gT (α) exists.

Therefore, ∫ ∞

0
f (t) e−αt dt exists and is equal to g(α),

where α is some real number.

In particular, if the integral
∫ ∞

0 f (t) e−αt dt converges for f (t) ≥ 0 with α > 0, then
∫ T

0 f (t) dt increases with the increase
of T. Because of this

∫ ∞
0 f (t) dt is either a finite number or ∞. However, if this

∫ ∞
0 f (t) dt is just equal to a limit value,

then it is only a finite number.
Also, ∫ ∞

0
f (t) e−αt dt ≤

∫ ∞

0
f (t) dt for f (t) ≥ 0 with α > 0.

So, we have

lim
α→0

∫ ∞

0
f (t) e−αt dt ≤

∫ ∞

0
f (t) dt.

In addition, ∫ ∞

0
f (t) e−αt dt ≥

∫ T

0
f (t) e−αt dt ≥ e−αT

∫ T

0
f (t) dt for f (t) ≥ 0 with α > 0.

Hence

lim
α→0

∫ ∞

0
f (t) e−αt dt ≥

∫ T

0
f (t) dt.

Making T → ∞ in the inequalities∫ T

0
f (t) e−αt dt ≥ e−αT

∫ T

0
f (t) dt and lim

α→0

∫ ∞

0
f (t) e−αt dt ≥

∫ T

0
f (t) dt
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for f (t) ≥ 0 with α > 0, we can immediately obtain

lim
α→0

∫ ∞

0
f (t) e−αt dt ≥

∫ ∞

0
f (t) dt.

Therefore,

lim
α→ 0

∫ ∞

0
f (t) e−αt dt =

∫ ∞

0
f (t) dt for f (t) ≥ 0 with α > 0,

and then this
∫ ∞

0 f (t) dt also converges from which limα→ 0
∫ ∞

0 f (t) e−αt dt exists as well as this limit is equal to
∫ ∞

0 f (t) dt.
This proves Main Lemma A1. �

We claim that Main Lemma A1 can also conclude that∫ ∞

1

ψ(x) − x

x
3
2+ε

dx

converges absolutely for ∀ε > 0, where defined the Chebyshev’s function

ψ(x) =
∑
pm≤x

log p =
∑
n≤x

Λ(n),

and this Λ(n) is equal to log p if n = pm, or 0 otherwise. The sum
∑

pm≤x is taken over those integers of the form pm that
are less than or equal to x, here p is a prime number and m is a positive integer. Observe that the function ψ is piecewise
continuous. In fact, it is locally constant: there is no change in ψ between prime numbers. The application of Main
Lemma A1 is to prove:

Lemma 2.20 (Main Lemma A2). The pair of integrals∫ ∞

1

ψ(x) − x

x
3
2+ε

dx and
∫ ∞

1

|ψ(x) − x|
x

3
2+ε

dx

converge for ∀ε > 0, where defined the Chebyshev’s function

ψ(x) =
∑
pm≤x

log p =
∑
n≤x

Λ(n),

and this Λ(n) is equal to log p if n = pm, or 0 otherwise.

Proof. We have the fact that if ψ(x) = x + O(xλ) then λ ≥ 1
2 .

Let

f1(t) =
ψ(et) − et

e
1
2 t

and f2(t) =

∣∣∣ψ(et) − et
∣∣∣

e
1
2 t

≤ B e(λ− 1
2 )t = f3(t).

Let B be a bound for ψ(et)−et

eλt that it is bounded by the form ψ(x) = x+O(xλ), which one has the consequence λ ≥ 1
2 , where

t ≥ 0 with some real number β = λ − 1
2 . Then f1(t), f2(t), and f3(t) are certainly piecewise continuous, and one has the

result | f1(t)| = f2(t) ≤ f3(t).

We first estimate the Laplace transform

g3(z) =
∫ ∞

0
f3(t) e−zt dt

of the function f3(t) = B eβt, where B and β are some constant. By using Lemma 2.17, we can obtain the Laplace
transform g3(z) =

∫ ∞
0 f3(t) e−zt dt converges absolutely and uniformly forℜe(z) ≥ α > β ≥ 0. By Lemma 2.17 and using

the differentiation lemma, it suffices to prove that the Laplace transform g3(z) of f3(t) is analytic forℜe(z) > β.

So, we have to compute the Laplace transform

g4(z) =
∫ ∞

0
f4(t) e−zt dt =

∫ ∞

0
f3(t) e−εt e−zt dt

of the function f4(t) = f3(t) e−εt for given any ε > 0 with α > β ≥ 0. Note that t ≥ 0, B > 0, and 0 < f4(t) ≤ f3(t) = B eβt

for some constant B, β. By Lemma 2.17, we can obtain the Laplace transform g4(z) =
∫ ∞

0 f4(t) e−zt dt converges absolutely

88



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 8, No. 4; 2016

and uniformly for ℜe(z) ≥ α > β ≥ 0, where the function f4(t) = f3(t) e−εt for given any ε > 0 with α > β ≥ 0, which
α and β are independent of ε. By Lemma 2.17 and using the differentiation lemma, it suffices to prove that the Laplace
transform g4(z) of f4(t) is analytic forℜe(z) ≥ α > β. Moreover, by Main Lemma A1, we can obtain∫ ∞

0
f4(t) e−αt dt =

∫ ∞

0
f3(t) e−εt e−αt dt exists and is equal to g4(α),

where α > β = λ − 1
2 with any λ − 1

2 ≥ 0, and then∫ ∞

0
f4(t) e−αt dt =

∫ ∞

0
f3(t) e−εt e−αt dt

converges for given α > 0 and ε > 0, whereas some real number α is independent of any ε > 0. From this and by Main
Lemma A1, we obtain

lim
α→ 0

∫ ∞

0
f3(t) e−εt e−αt dt =

∫ ∞

0
f3(t) e−εt dt, (2.6)

which the value of the right-hand side of (2.6) converges for given α > 0 and ε > 0. In other words, we actually obtain
the integral

∫ ∞
0 f3(t) e−εt dt converges for any β = λ − 1

2 with any λ − 1
2 ≥ 0 in the equational expression f3(t) = Be(λ− 1

2 )t,
meanwhile given α > 0 and ε > 0 with some positive constant B.

According to the condition f2(t) = |ψ(et)−et|
e

1
2 t
≤ B e(λ− 1

2 )t = f3(t) using the form ψ(x) = x + O(xλ) that one surely has the

consequenceλ ≥ 1
2 , we see that there exists an integral

∫ ∞
0 f3(t) e−εt dt such that

∫ ∞

0
f3(t) e−εt dt ≥

∫ ∞

0

∣∣∣ψ(et) − et
∣∣∣

e( 1
2+ε)t

dt ≥ 0,

where f4(t) = f3(t) e−εt for given any ε > 0, and f3(t) = Be(λ− 1
2 )t for some fixed λ in the inequality λ − 1

2 ≥ 0, with some
constant B > 0, while one satisfies the inequality

∣∣∣ψ(et) − et
∣∣∣ ≤ B eλt concerning the form ψ(x) = x+O(xλ), and where the

fixed λ is independent of any ε > 0.

Since the integral
∫ ∞

0 f3(t) e−εt dt converges for f3(t) = B e(λ− 1
2 )t with any λ − 1

2 ≥ 0, where given any ε > 0 with some
positive constant B.

Making the substitution x = et in the desired integrals, dx = etdt, where et is not less than 1, we can obtain∫ ∞

1

|ψ(x) − x|
x

3
2+ε

dx =
∫ ∞

0

∣∣∣ψ(et) − et
∣∣∣

e( 1
2+ε)t

dt

converges for every positive real number ε > 0.

Hence ∫ ∞

1

ψ(x) − x

x
3
2+ε

dx and
∫ ∞

1

|ψ(x) − x|
x

3
2+ε

dx

converge for ∀ε > 0. This proves the lemma. This proves the lemma. �

2.4 Conclusions

Using Main Lemma A2 concludes that the integral ∫ ∞

1

ψ(x) − x
xs+1 dx

converges absolutely and uniformly for ℜe(s) ≥ 1
2 + δ >

1
2 with any δ > 0, and by the differentiation lemma concludes

the integral ∫ ∞

1

ψ(x) − x
xs+1 dx

is analytic forℜe(s) > 1
2 .Actually, this concludes the proof of the form ψ (x) = x+O

(
x

1
2+ε

)
for ∀ε > 0,which immediately

follows that the function ζ′/ζ(s) has no poles on the region 1 > ℜe(s) > 1
2 from the formula (∗!), and it implies that the

Riemann Zeta function ζ(s) has no zeros on the region 1 > ℜe(s) > 1
2 .
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3. The Proof Is Derived from Trigonometric Sums and Mathematical Induction

3.1 Introduction

We show how to get the main inequality ∫ 1

0

( ∑
p≤2n

e2πipx
)2
· e−4πinx dx , 0,

i.e., the integral expression
∫ 1

0

(∑
p≤2n e2πipx)2 · e−4πinx dx is a positive integer not zero, where p is a prime number, n is a

positive integer ≥ 2, and
∑

p≤2n is extended over all the primes p ≤ 2n, which the expression is not zero that it can prove
the binary linear Diophantine equation px+ py−2n = 0 having the solutions of a couple of prime numbers

(
px, py

)
, where

all of the couple of prime numbers satisfying px ≤ 2n, py ≤ 2n, and the trigonometric sums
∑

p≤2n e2πipx is extended over
all the primes p ≤ 2n. Actually, this can conclude that every even number not less than four can be expressed as the sum
of two primes.

3.2 Preliminaries

We make the precise theorems which the proofs given as follows.

Theorem 3.1. Let α be an integer. Then

∫ 1

0
e2πiαx dx =


∫ 1

0 cos(2παx) dx = 1, if α = 0 ;

∫ 1
0 cos(2παx) dx = 0, if α , 0 .

Proof. If α = 0, then e2πiαx = cos(2παx) = 1, we obtain∫ 1

0
e2πiαx dx =

∫ 1

0
cos(2παx) dx = 1;

If α , 0, then we have ∫ 1

0
e2πiαx dx =

∫ 1

0
cos(2παx) dx + i

∫ 1

0
sin(2παx) dx

=

[
sin 2παx

2πα

]1

0
+ i

[
− cos 2παx

2πα

]1

0
= 0 + 0 i = 0.

This proves the theorem. �

Theorem 3.2. Let f (x1, · · · , xn) = N be a linear Diophantine equation with av ≤ xv ≤ bv, v = 1, 2, · · · , n. Then the
number of the integer solutions (x1, · · · , xn) are counted k as the expression

k =
∑

a1≤x1≤b1

· · ·
∑

an≤xn≤bn

∫ 1

0
e2πi( f (x1,··· , xn)−N)y dy =

∑
a1≤x1≤b1

· · ·
∑

an≤xn≤bn

∫ 1

0
cos 2π

(
f (x1, · · · , xn) − N

)
y dy,

where N is an integer and the sum
∑

av≤xv≤bv
is extended over all the integers xv in the interval [av, bv] , v = 1, 2, · · · , n.

Proof. Apply Theorem 3.1, we have

∫ 1

0
e2πi( f (x1,··· , xn)−N)y dy =


1, if f (x1, · · · , xn) − N = 0 ;

0, if f (x1, · · · , xn) − N , 0 .

Thus, the linear Diophantine equation f (x1, · · · , xn) = N with the number of the integer solutions (x1, · · · , xn) are counted
k as the expression

k =
∑

a1≤x1≤b1

· · ·
∑

an≤xn≤bn

∫ 1

0
e2πi( f (x1,··· , xn)−N)y dy =

∑
a1≤x1≤b1

· · ·
∑

an≤xn≤bn

∫ 1

0
cos 2π

(
f (x1, · · · , xn) − N

)
y dy.

This proves the theorem. �
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Remark 3.3. Actually, using Theorem 3.2 can conclude that the number of the prime solutions (px, py) of the equation
px + py − 2n = 0 are counted kn as the expression

∫ 1
0

(∑
p≤2n e2πipx)2 · e−4πinx dx. Because we have

kn =
∑

px≤2n

∑
py≤2n

∫ 1

0
e2πi(px+py−2n)x dx =

∫ 1

0

∑
px≤2n

∑
py≤2n

e2πi(px+py−2n)x dx

=

∫ 1

0

∑
px, py≤2n

e2πi(px+py−2n)x dx =
∫ 1

0

( ∑
p≤2n

e2πipx
)2
· e−4πinx dx,

where the sums
∑

px≤2n,
∑

py≤2n and
∑

p≤2n are extended over all the primes p ≤ 2n.

Theorem 3.4. Let {n} be a sequence of all the positive integers greater than 1, i.e., a set of all natural numbers greater
than 1 denoted by

{n} = {2, 3, 4, 5, · · · ,N − 1,N,N + 1, · · · , } .

If ∫ 1

0

( ∑
p≤2n

e2πipx
)2
· e−4πinx dx , 0

for integers n = 2, 3, 4, 5, · · · ,N − 1,N, where p is a prime number and
∑

p≤2n is extended over all the primes p ≤ 2n,
which select N so sufficiently large.
Then, we have the main conclusion ∫ 1

0

( ∑
p≤2(N+1)

e2πipx
)2
· e−4πi(N+1)x dx , 0,

and then ∫ 1

0

( ∑
p≤2m

e2πipx
)2
· e−4πinx dx , 0

for integers n = 2, 3, 4, 5, · · · , N − 1, N, N + 1, where m is an integer in the interval [2,N + 1] satisfying m ≥ n.

Proof. We assume the main conclusion false and it would lead to a contradiction. Suppose there exists the minimal
element n = N + 1 in the set {n} = S such that whenever the natural numbers n = 2, 3, 4, 5, · · · , N − 1, N, N + 1 ∈ S meet
the form ∫ 1

0

( ∑
p≤2n

e2πipx
)2
· e−4πinx dx = 0 when n = N + 1 ∈ S ,

or rather its consequence
∫ 1

0

(∑
p≤2n e2πipx)2 · e−4πi(N+1)x dx = 0 for integers n = 2, 3, 4, 5, · · · , N − 1, N, N + 1, where p

is a prime number and
∑

p≤2n is extended over all the primes p ≤ 2n, and which the value zero of the form should be the

assumption except for the conditions
∫ 1

0

(∑
p≤2n e2πipx)2 · e−4πinx dx , 0 for n = 2, 3, 4, 5, · · · , N − 1, N ∈ S . In accordance

with the conditions, we can obtain the same situation for the natural numbers n = N, N − 1, N − 2, N − 3,N − 4, · · · , 5, 4,
3, 2 except for the natural number N + 1, which can respectively go with setting the same form as follows:∫ 1

0

( ∑
p≤2n

e2πipx
)2
· e−4πinx dx =

∫ 1

0

( ∑
p≤2n

e2πi(p−n)x
)2

dx = kn , 0 (3.1)

for integers n = N, N − 1, N − 2, N − 3,N − 4, · · · , 5, 4, 3, 2.

In particular, we can obtain the following compatible formulas for the sum
∑

p≤2n . Whether the integer N is an even or
odd number does not affect the compatibility, which can hold under the conditions, then we obtain∫ 1

0

( ∑
p≤2n

e2πi[p−(N−v)]x
)2

dx =
∫ 1

0

( ∑
p≤2n

e2πipx
)2
· e−4(N−v)πix dx = kx0 , 0, (3.2)

and ∫ 1

0

( ∑
p≤2n

e2πi(p−N+v)x
)2
· e4(v+1)πix dx =

∫ 1

0

( ∑
p≤2n

e2πipx
)2
· e−4(N−2v−1)πix dx = kx , 0, (3.3)
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where n = 2, 3, 4, 5, · · · ,N−1,N,N+1; and v is an integer ≥ 0 satisfying 2 ≤ N−v ≤ n with 2 ≤ N−2v−1 ≤ n regarding
the sum

∑
p ≤ 2n.

For assumed the form
∫ 1

0

(∑
p≤2(N+1) e2πipx)2 ·e−4πi(N+1)x dx = 0, by the assumption and the method of infinite descent with

Theorem 3.2, we could obtain∫ 1

0

( ∑
p≤2(N+1)

e2πipx
)2
· e−4πi(N+1)x dx =

∫ 1

0

( ∑
p≤2(N+1)

e2πi(p−N−1)x
)2

dx

=

∫ 1

0

( ∑
p≤2n

e2πipx
)2
· e−4πi(N+1)x dx =

∫ 1

0

( ∑
p≤2n

e2πi(p−N+v)x
)2
· e−4(v+1)πix dx

=

∫ 1

0

( ∑
p≤2n

e2πi(p−N−1)x
)2

dx = 0,

(3.4)

where n = 2, 3, 4, 5, · · · ,N − 1,N,N + 1; and v is an integer ≥ 0 satisfying 2 ≤ N − v ≤ n with 2 ≤ N − 2v − 1 ≤ n; where
p, p1, p2, · · · , pi, p j all are prime numbers with p1 , p2, · · · , pi , p j, which the sums

∑
p≤2n and

∑
pi,p j≤2n are extended

over the primes ≤ 2n.

Then by (3.4) we could get∫ 1

0

( ∑
p≤2(N−1)

e2πi(p−N)x
)2
· cos 4πx dx = i ·

∫ 1

0

( ∑
p≤2(N−1)

e2πi(p−N)x
)2
· sin 4πx dx, (3.5)

and ∫ 1

0

( ∑
p≤2n

e2πi(p−N+v)x
)2
· cos 4(v + 1)πx dx = i ·

∫ 1

0

( ∑
p≤2n

e2πi(p−N+v)x
)2
· sin 4(v + 1)πx dx, (3.6)

where p, p1, p2, · · · , pi, p j all are prime numbers with p1 , p2, · · · , pi , p j, and v is an integer ≥ 0 satisfying
2 ≤ N − v ≤ n with 2 ≤ N − 2v − 1 ≤ n for n = N + 1,N, N − 1, N − 2, N − 3, · · · , 5, 4, 3, 2; which the sums

∑
p≤2n and∑

pi,p j≤2n are extended over the primes ≤ 2n.

Since the decomposition

i ·
∫ 1

0

( ∑
p≤2n

e2πi(p−N+v)x
)2
· sin 4(v + 1)πx dx

=

(
i
∫ 1

0
e4πi(p1−N+v)x · sin 4(v + 1)πx dx

+ 2 i
∫ 1

0
e2πi(p1+p2−2N+2v)x · sin 4(v + 1)πx dx

+ i
∫ 1

0
e4πi(p2−N+v)x · sin 4(v + 1)πx dx

)
+ · · ·+

· · ·+
(
i
∫ 1

0
e4πi(pi−N+v)x · sin 4(v + 1)πx dx

+ 2 i
∫ 1

0
e2πi(pi+p j−2N+2v)x · sin 4(v + 1)πx dx

+ i
∫ 1

0
e4πi(p j−N+v)x · sin 4(v + 1)πx dx

)
+ · · ·

= i ·
∑
p≤2n

∫ 1

0
e4πi(p−N+v)x · sin 4(v + 1)πx dx

+ 2 i ·
∑

pi,p j≤2n

∫ 1

0
e2πi(pi+p j−2N+2v)x · sin 4(v + 1)πx dx,

(3.7)

where p, p1, p2, · · · , pi, p j all are prime numbers with p1 , p2, · · · , pi , p j, and v is an integer ≥ 0 satisfying
2 ≤ N − v ≤ n with 2 ≤ N − 2v − 1 ≤ n for integers n = N + 1, N, N − 1, N − 2, N − 3, · · · , 5, 4, 3, 2; which the sums∑

p≤2n and
∑

pi,p j≤2n are extended over the primes ≤ 2n.
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Also, applying trigonometric identities we have∫ 1

0
e4πi(p−N+v)x · sin 4(v + 1)πx dx

=

∫ 1

0
cos 4π(p − N + v)x · sin 4(v + 1)πx dx

+ i
∫ 1

0
sin 4π(p − N + v)x · sin 4(v + 1)πx dx

=

∫ 1

0

1
2

[
sin 4π(J)x − sin 4π(p − N − 1)x

]
dx

+ i
∫ 1

0

( − 1
2
) [

cos 4π(J)x − cos 4π(p − N − 1)x
]

dx

with setting p − N + 2v + 1 = J, where p, p1, p2, · · · , pi, p j all are prime numbers with p1 , p2, · · · , pi , p j, and v is an
integer ≥ 0 satisfying 2 ≤ N − v ≤ n with the inequality 2 ≤ N − 2v− 1 ≤ n for integers n = N + 1, N, N − 1, N − 2, N − 3,
· · · , 5, 4, 3, 2; which the sums

∑
p≤2n and

∑
pi,p j≤2n are extended over the primes ≤ 2n.

By the assumption, we have 2p− 2(N + 1) , 0 for which the sum
∑

p≤2(N+1) is extended over the primes ≤ 2(N + 1) except
that N + 1 is a prime number, in which the case of the sum

∑
p≤2n yet still has the result 2p − 2(N + 1) , 0 that the sum is

extended over the primes ≤ 2n for integers n = N + 1,N, N − 1, N − 2, N − 3, · · · , 5, 4, 3, 2, and applying trigonometric
identities we get ∫ 1

0
e2πi(pi+p j−2N+2v)x · sin 4(v + 1)πx dx

=

∫ 1

0
cos 2π(pi + p j − 2N + 2v)x · sin 4(v + 1)πx dx

+ i
∫ 1

0
sin 2π(pi + p j − 2N + 2v)x · sin 4(v + 1)πx dx

=

∫ 1

0

1
2

[
sin 2π(K)x − sin 2π(pi + p j − 2N − 2)x

]
dx

+ i
∫ 1

0

( − 1
2
) [

cos 2π(K)x − cos 2π(pi + p j − 2N − 2)x
]

dx

with setting pi + p j − 2N + 4v + 2 = K, where p, p1, p2, · · · , pi, p j all are prime numbers with p1 , p2, · · · , pi , p j, and
v is an integer ≥ 0 satisfying 2 ≤ N − v ≤ n with the inequality 2 ≤ N − 2v− 1 ≤ n for integers n = N + 1,N, N − 1, N − 2,
N − 3, · · · , 5, 4, 3, 2; which the sums

∑
p≤2n and

∑
pi,p j≤2n are extended over the primes ≤ 2n.

By the assumption, we have pi + p j − 2(N + 1) , 0 with a couple of prime numbers (pi, p j) satisfying pi , p j for which
the sum

∑
pi,p j≤2(N+1) is extended over the primes p ≤ 2(N + 1), in which the case of the sum

∑
pi,p j≤2n yet still has the

result pi + p j − 2(N + 1) , 0 that the sum is extended over the primes ≤ 2n for integers n = N + 1,N, N − 1, N − 2, N − 3,
· · · , 5, 4, 3, 2.

Using the formulas (3.3), (3.4), (3.6) and (3.7) or rather their consequence as above, we can enumerate the limited cases
of the formula (3.7). Now to compute this formula (3.7) as follows:

(1) If an integer N − 2v − 1 is a composite number and which satisfies pi + p j − 2(N − 2v − 1) = 0, also assuming for
the moment that the inequation pi + p j − 2(N + 1) , 0 and N + 1 is not a prime number, then we can obtain the first
case of the formula (3.7), which is the value:

i ·
∑
p≤2n

∫ 1

0

( − 1
2
) [

cos 2π(2p − 2N + 4v + 2)x
]

dx

+ 2 i ·
∑

pi,p j≤2n

∫ 1

0

( − 1
2
)

[cos 2π(K)x] dx

= i · ku ·
∫ 1

0

( − 1
2
)

cos 0 dx + 2 i · kv ·
∫ 1

0

( − 1
2
)

cos 0 dx

= −
(

ku

2
+ kv

)
i
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with setting pi + p j − 2N + 4v + 2 = K, where

ku =
∑
p≤2n

∫ 1

0

[
cos 2π(2p − 2N + 4v + 2)x

]
dx,

kv =
∑

pi,p j≤2n

∫ 1

0

[
cos 2π(pi + p j − 2N + 4v + 2)x

]
dx,

and where p, p1, p2, · · · , pi, p j all are prime numbers with p1 , p2, · · · , pi , p j, and v is an integer ≥ 0 satisfying
the inequality 2 ≤ N − v ≤ n with 2 ≤ N − 2v − 1 ≤ n for integers n = N + 1,N, N − 1, N − 2, N − 3, · · · , 5, 4, 3, 2,
which the sums

∑
p≤2n and

∑
pi,p j≤2n are extended over the primes ≤ 2n, with being observed that ku ≥ 0, kv ≥ 1.

Then, in this case, by the formulas (3.3) and (3.6), we could obtain∫ 1

0

( ∑
p≤2n

e2πipx
)2
· e−4πi(N−2v−1)x dx =

∫ 1

0

( ∑
p≤2n

e2πi(p−N+v)x
)2
· e4(v+1)πix dx = kx = 2

(
ku

2
+ kv

)
.

But, indeed, by Theorem 3.2, we see that kx = ku + kv. Therefore,

2
(

ku

2
+ kv

)
= ku + kv, which is a contradiction.

Hence, we can smooth away this case (1) in the discussion.

(2) If N−2v−1 is a prime number and pi+ p j−2N+4v+2 , 0, also assuming for the moment that pi+ p j−2(N+1) , 0
and N + 1 is not a prime number, then we can obtain the second case of the formula (3.7), which is the value:

i ·
∑
p≤2n

∫ 1

0

( − 1
2
) [

cos 2π(2p − 2N + 4v + 2)x
]

dx = i · ku ·
∫ 1

0

( − 1
2
)

cos 0 dx = − i
2
,

where

ku =
∑
p≤2n

∫ 1

0

[
cos 2π(2p − 2N + 4v + 2)x

]
dx,

and where p, p1, p2, · · · , pi, p j all are prime numbers with p1 , p2, · · · , pi , p j, and v is an integer ≥ 0 satisfying
the inequality 2 ≤ N − v ≤ n with 2 ≤ N − 2v − 1 ≤ n for integers n = N + 1,N, N − 1, N − 2, N − 3, · · · , 5, 4, 3, 2;
which the sums

∑
p≤2n and

∑
pi,p j≤2n are extended over the primes ≤ 2n, with being observed that ku = 1, kv = 0.

(3) If N−2v−1 is a prime number and pi+ p j−2N+4v+2 = 0, also assuming for the moment that pi+ p j−2(N+1) , 0
and N + 1 is not a prime number, then we can obtain the third case of the formula (3.7), which is the value:

i ·
∑
p≤2n

∫ 1

0

( − 1
2
) [

cos 2π(2p − 2N + 4v + 2)x
]

dx

+ 2 i ·
∑

pi,p j≤2n

∫ 1

0

( − 1
2
)

[cos 2π(K)x] dx

= i · ku ·
∫ 1

0

( − 1
2
)

cos 0 dx + 2 i · kv ·
∫ 1

0

( − 1
2
)

cos 0 dx

= −
(

ku

2
+ kv

)
i

with setting pi + p j − 2N + 4v + 2 = K, where

ku =
∑
p≤2n

∫ 1

0

[
cos 2π(2p − 2N + 4v + 2)x

]
dx,

kv =
∑

pi,p j≤2n

∫ 1

0

[
cos 2π(pi + p j − 2N + 4v + 2)x

]
dx,
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and where p, p1, p2, · · · , pi, p j all are prime numbers with p1 , p2, · · · , pi , p j, and v is an integer ≥ 0 satisfying
the inequality 2 ≤ N − v ≤ n with 2 ≤ N − 2v − 1 ≤ n for integers n = N + 1, N, N − 1, N − 2, N − 3, · · · , 5, 4, 3, 2;
which the sums

∑
p≤2n and

∑
pi,p j≤2n are extended over the primes ≤ 2n, with being observed that ku = 1, kv ≥ 1.

Then, in this case, by the formulas (3.3) and (3.6) we can obtain∫ 1

0

( ∑
p≤2n

e2πipx
)2
· e−4πi(N−2v−1)x dx =

∫ 1

0

( ∑
p≤2n

e2πi(p−N+v)x
)2
· e4(v+1)πix dx = kx = 2

(
ku

2
+ kv

)
.

But, indeed, by Theorem 3.2, we see that kx = ku + kv. Therefore,

2
(

ku

2
+ kv

)
= ku + kv, which is a contradiction.

Hence, we can smooth away this case (3) in the discussion.

(4) If an integer N − 2v − 1 is a composite number and which it satisfies the inequation pi + p j − 2N + 4v + 2 , 0, also
assuming for the moment that pi + p j − 2(N + 1) , 0 and N + 1 is not a prime number, then we can obtain the last
case of the formula (3.7), which is the value:

i ·
∑
p≤2n

∫ 1

0

( − 1
2
) [

cos 2π(2p − 2N + 4v + 2)x
]

dx = i · ku ·
∫ 1

0

( − 1
2
)

cos 0 dx = − i
2
,

where

ku =
∑
p≤2n

∫ 1

0

[
cos 2π(2p − 2N + 4v + 2)x

]
dx,

and where p, p1, p2, · · · , pi, p j all are prime numbers with p1 , p2, · · · , pi , p j, and this v is an integer ≥ 0
satisfying the inequality 2 ≤ N − v ≤ n with 2 ≤ N − 2v− 1 ≤ n for integers n = N + 1, N, N − 1, N − 2, N − 3, · · · ,
5, 4, 3, 2; which the sums

∑
p≤2n and

∑
pi,p j≤2n are extended over the primes ≤ 2n, being observed that ku = 1 by the

formula (3.3) = kx with kx , 0, and this case including pi + p j − 2N + 4v + 2 , 0 such that kv = 0.

In other words, our assertion is that if
∫ 1

0

(∑
p≤2n e2πipx)2 · e−4πinx dx , 0 for n = 2, 3, 4, 5, · · · , N − 1, N ∈ S , then∫ 1

0

( ∑
p≤2n

e2πipx
)2
· e−4πinx dx , 0 for n = N + 1 ∈ S ,

where p is a prime number and the sum
∑

p≤2n is extended over all the primes ≤ 2n. If this assertion were not true, we
could obtain the assumption ∫ 1

0

( ∑
p≤2(N+1)

e2πipx
)2
· e−4πi(N+1)x dx = 0,

and then we could find the cases (1) and (3) are uninteresting. Furthermore, in the cases (2) and (4) we could find the
formula

i ·
∫ 1

0

( ∑
p≤2n

e2πi(p−N+v)x
)2
· sin 4(v + 1)πx dx =

1
2
,

i.e., ∫ 1

0

( ∑
p≤2n

e2πi(p−N+v)x
)2
· cos 4(v + 1)πx dx =

1
2

from the formula (3.6), where p, p1, p2, · · · , pi, p j all are prime numbers with p1 , p2, · · · , pi , p j, and v is an integer
≥ 0 satisfying 2 ≤ N − v ≤ n with 2 ≤ N − 2v − 1 ≤ n for integers n = N + 1,N, N − 1, N − 2, N − 3, · · · , · · · , 5, 4, 3, 2;
which the sums

∑
p≤2n and

∑
pi,p j≤2n are extended over the primes ≤ 2n.

By (3.1), (3.3) and (3.6) with the detailed discussion of all above cases, we have kx = 1, and they take the form

∫ 1
0

(∑
p≤2n e2πi(p−N+v)x

)2 · e4(v+1)πix dx = kx = 1 , 0,

∫ 1
0

(∑
p≤2n e2πi(p−N+v)x

)2 · e−4(v+1)πix dx

=
∫ 1

0

(∑
p≤2n e2πi(p−N−1)x

)2
dx = 0,

(3.8)
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where p, p1, p2, · · · , pi, p j all are prime numbers with p1 , p2, · · · , pi , p j, and v is an integer ≥ 0 satisfying
2 ≤ N − v ≤ n with the inequality 2 ≤ N − 2v− 1 ≤ n for integers n = N + 1,N, N − 1, N − 2, N − 3, · · · , 5, 4, 3, 2; which
the sums

∑
p≤2n and

∑
pi,p j≤2n are extended over the primes ≤ 2n.

For a more detailed discussion of all above cases, we may consider how to use the consequence and their compatibility
between the formula (3.2) and the formula (3.3). Indeed, we merely apply the formula (3.3) or rather its consequence
under the conditions ∫ 1

0

( ∑
p≤2n

e2πipx
)2
· e−4πinx dx , 0

for n = 2, 3, 4, 5, · · · , N − 1,N ∈ S and the assumption∫ 1

0

( ∑
p≤2n

e2πipx
)2
· e−4πinx dx = 0 for n = N + 1 ∈ S ,

where p is a prime number and the sum
∑

p≤2n is extended over the primes ≤ 2n.

By repeated applications of the same way, or rather its consequence the form (3.8) of all the above processing, it is clear
that the form (3.8) has the following consequence with a suggestive compatibility:

(a) If start with a positive integer N is an odd number, then we can choose an integer n = N − 2v − 1 = 8 and we could
write 

∫ 1
0

(∑
p≤2n e2πipx

)2 · e−4(N−2v−1)πix dx = kx = 1 , 0,

∫ 1
0

(∑
p≤2n e2πi(p−N+v)x

)2 · e−4(v+1)πix dx = 0;

where p, p1, p2, · · · , pi, p j are prime numbers with the case p1 , p2, · · · , pi , p j, and this v is an integer ≥ 0
satisfying the inequality 2 ≤ N − v ≤ n with 2 ≤ N − 2v − 1 ≤ n for integers n = N + 1,N, N − 1, N − 2, N − 3,
· · · , 5, 4, 3, 2; which the sums

∑
p≤2n and

∑
pi,p j≤2n are extended over the primes ≤ 2n.

(b) If start with a positive integer N is an even number, then we can choose an integer n = N − 2v− 1 = 7 and we could
write 

∫ 1
0

(∑
p≤2n e2πipx

)2 · e−4(N−2v−1)πix dx = kx = 1 , 0,

∫ 1
0

(∑
p≤2n e2πi(p−N+v)x

)2 · e−4(v+1)πix dx = 0;

where p, p1, p2, · · · , pi, p j are prime numbers with the case p1 , p2, · · · , pi , p j, and this v is an integer ≥ 0
satisfying the inequality 2 ≤ N − v ≤ n with 2 ≤ N − 2v − 1 ≤ n for integers n = N + 1,N, N − 1, N − 2, N − 3,
· · · , 5, 4, 3, 2; which the sums

∑
p≤2n and

∑
pi,p j≤2n are extended over the primes ≤ 2n.

We could conclude that kx = 1 by the conditions and the assumption, or rather its consequence the form (3.8).

We can choose and formulate the result as the following consequence, which the recursive scheme and the same way as
previously are defined can be written in the cases (a) and (b), whether the integer N is an even or odd number does not
affect the compatibility they can hold. There exists an infinite descent for the cases. However, there cannot be an infinity
of ever-smaller natural numbers, and therefore by mathematical induction or rather its consequence kx = 1.

But, in fact we have the identity 16 = 2 × 8 = 3 + 13 = 5 + 11 and the identity 14 = 2 × 7 = 3 + 11 = 7 + 7, we know that∫ 1

0

( ∑
p≤2×8

e2πipx
)2
· e−4πi·8x dx =

∫ 1

0

( ∑
p≤2×8

e2πi(p−8)x
)2

dx = 2,

where p is a prime number, and
∑

p≤2×8 is extended over all the primes ≤ 2 × 8; and∫ 1

0

( ∑
p≤2×7

e2πipx
)2
· e−4πi·7x dx =

∫ 1

0

( ∑
p≤2×7

e2πi(p−7)x
)2

dx = 2,

where p is a prime number, and
∑

p≤2×7 is extended over all the primes ≤ 2 × 7.
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Finally, it is pointed out that kx = 1 there exists the recursive scheme with an infinite descent in the presence of the form
(3.8) starting with the integer N its intrinsic nature either an even or odd number, which are concluded by the conditions
and the assumption, or rather its consequence more counting the value kx = 1, such as the last can lead to∫ 1

0

( ∑
p≤2×8

e2πipx
)2
· e−4πi·8x dx = 1 or

∫ 1

0

( ∑
p≤2×7

e2πipx
)2
· e−4πi·7x dx = 1,

which is a contradiction. Therefore, this proves the theorem. �

3.3 Using Mathematical Induction for the Assertion

Indeed, the assertion of Theorem 3.4 expresses a fine path by taking some appropriate elements, which we can use the
mathematical induction to prove that

∫ 1
0

(∑
p≤2n e2πipx)2 · e−4πinx dx , 0, where p is a prime number, n is any positive

integer ≥ 2, and
∑

p≤2n is extended over all the primes ≤ 2n.

Let’s recall. Mathematical induction: It is a form of direct proof, and it is done in two steps. The first step, known as
the base case, is to prove the given statement for the first natural number. The second step, known as the inductive step,
is to prove that the given statement for any one natural number implies the given statement for the next natural number.
From these two steps, mathematical induction is the rule from which we infer that the given statement is established for
all natural numbers. Mathematical induction is an inference rule used in proofs. If we want to prove a statement not for all
natural numbers but only for all numbers greater than or equal to a certain number b then the proof by induction consists
of two steps:

(i) The basis step: Showing that the statement holds when n = b.

(ii) The inductive step: Showing that if the statement holds for n = m ≥ b then the same statement also holds for
n = m + 1.

Infinite descent: It might begin by showing that if a statement is true for a natural number n it must also be true for some
smaller natural number m (m < n). Using mathematical induction (implicitly) with the inductive hypothesis being that the
statement is false for all natural numbers less than or equal to m, we can conclude that the statement cannot be true for
any natural number n. Although this particular form of infinite-descent proof is clearly a mathematical induction, whether
one holds all proofs “by infinite descent” to be mathematical inductions depends on how one defines the term “proof by
infinite descent.” In mathematics, a proof by infinite descent is a particular kind of proof by contradiction which relies on
the facts that the natural numbers are well ordered and that there are only a finite number of them that are smaller than any
given one. However, there cannot be an infinity of ever-smaller natural numbers, and therefore by mathematical induction
(repeating the same step) the original premise that any solution exists must be incorrect. It is disproven because its logical
outcome would require a contradiction. An alternative way to express this is to assume one or more solutions or examples
exists. Then there must be a smallest solution or example a minimal counterexample. We then prove that if a smallest
solution exists, it must imply the existence of a smaller solution (in some sense) which again proves that the existence of
any solution would lead to a contradiction. The method of infinite descent was developed by Fermat, who often used it
for Diophantine equations.

Indeed, the proof of Theorem 3.4 in the sense is closely related to recursion and the method of infinite descent. Being
Theorem 3.4 holds, we can return applications of the proof by induction consists of two steps:

(i) Showing that the statement holds when n = b = 2, 3, 4, 5, 6, 7, 8, which the formula
∫ 1

0

(∑
p≤2n e2πipx)2 · e−4πinx dx

is not zero in fact;

(ii) Showing that if the statement holds for all n = 2, 3, 4, 5, 6, 7, 8, · · · , N with N may be so sufficiently large then the
same statement also holds for n = N + 1, which the formula

∫ 1
0

(∑
p≤2n e2πipx)2 · e−4πinx dx is not zero by Theorem

3.4,

which it is the typical mathematical induction, or rather its consequence a variant as like infinite descent.

So far, the assertion is shown to be true that the proof of Theorem 3.4 and the proof of the non-zero integral∫ 1

0

( ∑
p≤2n

e2πipx
)2
· e−4πinx dx,

which are concluded by the typical mathematical induction, or rather its consequence a variant as like the method of
infinite descent.
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3.4 Conclusions

Using Theorem 3.4 and the mathematical induction conclude that∫ 1

0

( ∑
p≤2n

e2πipx
)2
· e−4πinx dx , 0

for any positive integer n ≥ 2, where
∑

p≤2n is extended over all the primes p ≤ 2n.

4. The Overall Conclusion

Actually, the arguments can prove that the Riemann Zeta function ζ(s) has no zeros on the region 1 > ℜe(s) > 1
2 and

every even number not less than four can be expressed as the sum of two primes.
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