Journal of Machine Learning Research 6 (2005) 273-306 Stdanin/02; Revised 11/04; Published 3/05

Tutorial on Practical Prediction Theory for Classification

John Langford JL@HUNCH.NET
Toyota Technological Institute at Chicago

1427 East 60th Street

Chicago, IL 60637, USA

Editor: Robert Schapire

Abstract

We discuss basic prediction theory and its impact on classifin success evaluation, implications
for learning algorithm design, and uses in learning algariexecution. This tutorial is meant to
be a comprehensive compilation of results which are botbrétially rigorous and quantitatively
useful.

There are two important implications of the results preseéittere. The first is that common
practices for reporting results in classification shouldrafe to use the test set bound. The second
is that train set bounds can sometimes be used to directliyat®tearning algorithms.
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1. Introduction

Classifiers are functions which partition a set into two classes (for exathgleset of rainy days
and the set of sunny days). Classifiers appear to be the most simpleviabmteicision making

element so their study often has implications for other learning systems. @esaife sufficiently

complex that many phenomena observed in machine learning (theoreticalyearireentally) can

be observed in the classification setting. Yet, classifiers are simple enongdikeotheir analysis
easy to understand. This combination of sufficient yet minimal complexityajptucing phenomena
makes the study of classifiers especially fruitful.

The goal of this paper is an introduction to the theory of prediction for ifileaion. Here
“prediction theory” means statements about the future error rate of katassifiers. A typical
statement has the form, “With probability-16 over an i.i.d. draw of some sample, the expected
future error rate of a classifier is bounded tp, error rate on samp)& These statements are con-
fidence intervals on the error rate of a learned classifier. Many of teeséis have been presented
elsewhere, although the style, tightness, and generality of the presemtaiofien new here (and
particularly oriented towards practical use). The focus of this tutoriahi$hose results which are
both theoretically sound and practically useful.

There are several important aspects of learning which the theory &stielight on. Perhaps the
most important of these is the problem of performance reporting for clxssifiMany people use
some form of empirical variance to estimate upper and lower bounds. Thigis@-prone practice,
and the test set bound in Section 3 implies a better method by nearly any metgefully this
will become common practice.

After discussing the test set bound we cover the Occam’s Razor bthedimplest train set
bound, which explains (and quantifies) the common phenomenon of ovegtfitia also prove that

(©2005 John Langford.



LANGFORD

the Occam’s Razor bound cannot be improved without incorporating mftranation and apply
the bound to decision trees.

Next, we discuss two train set bounds, the PAC-Bayes bound and thdesaampression
bound, which have proved to give practical results for more genéaasifiers, such as support
vector machines and neural networks. All of the results here shoulédily @epproachable and
understandable. The proofs are simple, and examples are given. rBdintelated work are also
given.

There are some caveats about the scope of this document.

1. All of the results presented here fall in the realm of classical statistigsarticular, all ran-
domizations are over draws of the data, and our results have the foronfadence intervals.

2. This tutorial inotcomprehensive for prediction theory in general (which would be exiseme
difficult due to the scope of the subject). We only focus on those resultingequantifiably
interesting performance.

3. In particular, other nonquantitative uses of bounds (such as jmguitdirect motivations for
learning algorithms via constant fitting) do exist. We do not focus on thasshese.

The layout of this document is as follows.

Section 2 presents the formal model.

Section 3 presents the test set bound.

Section 4 presents the Occam’s Razor bound.

Section 5 presents the PAC-Bayes bound.

e Section 6 presents the sample compression bound.

The formal model and test set bound must be understood in order tocagpreall later results.
There is no particular dependency between the various train set baerg®sent.

2. Formal Model

There are many somewhat arbitrary choices of learning model. The onusevean (at best) be
motivated by its simplicity. Other models such as the online learning model (KihanenWar-
muth, 1997), PAC learning (Valiant, 1984), and the uniform convergemadel (Vapnik and Cher-
vonenkis, 1971) differ in formulation, generality, and in the scope of egfd#ible questions. The
strongest motivation for studying the prediction theory model here is simplisitycarresponding
generality of results. The appendix discusses the connections betegamsvmodels.

2.1 Basic Quantities

We are concerned with a learning model in which examples of (input, outpir§ pome inde-
pendently from some unknown distribution (similar to Shawe-Taylor et al.8,188d many other
papers). The goal is to find a function capable of predicting the outpahghe input. There are
several mathematical objects we work with.
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| Object | Description \
X The (arbitrary) space of the input to a classifier
Y={-11} The output of a classification.
An (unknown) distribution oveX x Y
A sequence of examples drawn independently fiom
= |§| the number of examples
A function mappingX toY

o|3|n0

Table 1: Mathematical objects in the considered model.

There are several distinctions between this model and other (perhapdanvliar) models.
There is no mention of a classifier space, because the results do notdgpmn a classifier space.
Also, the notion of a distribution oK x Y is strictly more general than the “target concept” model
which assumes that there exists some funcfiolX — Y used to generate the label (Valiant, 1984).
In particular we can model noisy learning problems which do not havetearY value for each
X value. This generalization is essentially “free” in the sense that it doesdultio the complexity
of presenting the results.

It is worth noting that theonly unverifiable assumption we make is that examples are drawn
independently fronD. The strength of all the results which follow rests upon the correctneabssof
assumption.

Sometimes, we decorate these objects with labelsSikg, (a train set) or Sest (a test set).
These decorations should always be clear.

Example 1 Weather prediction: Will it rain today or not? In this case=Xbarometric pressure,
observations of cloud cover or other sensory input and ¥ if the prediction is “no rain” and1
otherwise. The distribution D is over sensory inputs and outcomes. Tiigesaget S, might consist
of m= 100(observation, outcome) pairs such as (pressure low, cloudy, rggreéssure high, cloudy,
not rain), etc. A classifier, c, is any function which predicts “rain” or “hoain” based upon the
observation.

Note that the independence assumption here is not perfectly satisfiedghitiiaaeems to be
a reasonable approximation for well-separated days. In any applicatidghis theory, it must be
carefully judged whether the independence assumption holds or not.

2.2 Derived Quantities

There are several derived quantities which the results are stated in terms o

Definition 2.1 (True Error) The true error g of a classifier ¢ is defined as the probability that the
classifier errs:

o= Pr(ex)#Y)

under draws from the distribution D.

1. Throughout this tutorial we use the word 'set’ when ’sequence’ iatvid actually meant. This usage pattern is
historical.
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The true error is sometimes called the “generalization error”. Unfortunaked\true error is not an
observable quantity in our model because the distribudiamunknown. However, there is a related
guantity which is observable.

Definition 2.2 (Empirical Error) Given a sample set S, thenpirical erroy€s is the observed num-
ber of errors:

(xy)~S

E=m Pr (c(x)#£y) = ZI Xi) £ Vi)

where [) is a function which maps “true” td. and “false” to 0. Also,Pry).s(...) is a probability
taken with respect to the uniform distribution over the set of examples, S.

The empirical error is sometimes called the “training error”, “test error*,obbserved error” de-
pending on whether it is the error on a training set, test set, or a moreafjeaer

Example 2 (continued) The classifier ¢ which always predicts “not rain” might haneempirical
error of 38 out of 100examples and an unknown true error rate (which might in fadd.bg

2.3 Addressable Questions

Given the true errocp of a classifierc we can precisely describe the distribution of success and
failure on future examples drawn accordindoThis quantity is derived from the unknown distri-
butionD, so our effort is directed toward upper and lower bounding the valwg &r a classifier
C.

The variations in all of the bounds that we present are related to the mettatbasing a
classifierc. We cover two types of bounds:

1. Test: Use examples in a test set which were not used in picking

2. Train: Use examples for both choosingnd evaluating.

These methods are addressed in the next two sections.

It is worth noting that one question thaannotbe addressed in this model is “Can learning
occur for my problem?” Extra assumptions (Valiant, 1984; Vapnik and \@menkis, 1971) are
inherently necessary.

3. The Test Set Method

The simplest bound arises for the classical technique of usifigsh examples to evaluate a clas-
sifier. In a statistical setting, this can be viewed as computing a confidenoeairftg the binomial
distribution as in (Clopper and Pearson, 1934). This section is orgaimizetivo subsections:

e Subsection 3.1 presents the basic upper bound on the true error radg,dpproximations,
and a lower bound.

e Subsection 3.2 discusses the implications of the test set bound on edimgpractice. A
better method for error reporting is applied to several datasets and this i@@® shown.
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Empirical Error distribution
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Figure 1: A depiction of the binomial distribution. The cumulative of the binomitdésarea under
the curve up to some point on the horizontal axis.
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3.1 The Bound

Before stating the bound, we note a few basic observations which makesthlésriess surprising.
The principal observable quantity is the empirical engofa classifier. What is the distribution of
the empirical error for a fixed classifier? For each example, our indigmee assumption implies
the probability that the classifier makes an error is given by the true epgof,his can be modeled
by a biased coin flip: heads if you are right and tails if you are wrong.

What is the probability of observinigerrors (heads) out afi examples (coin flips)? This is a
very familiar distribution in statistics called the binomial and so it should not barisinig that the
bounds presented here are fundamentally dependent upon the cuendistiilbbution of a binomial.
For the following definitionB(p) is the distribution of a Bernoulli coin flip.

Definition 3.1 (Binomial Tail Distribution)

Bin(m,k,cD)zZl sz@ - (Zﬁgk) Z)< i >CE(1—CD)m_j

equals the probability that m examples (coins) with error rate (bigspmduce k or fewer errors
(heads).
A depiction of the binomial distribution is given in Figure 1.

For the learning problem, we always choose a biagyodind X; =error or not on théth example.
With these definitions, we can interpret the binomial tail as the probability ofrguiresal error less
than or equal td.

Since we are interested in calculating a bound on the true error givenfidexaced, and an
empirical errorcg, it is handy to define the inversion of a binomial tail.

Definition 3.2 (Binomial Tail Inversion)

Bin(m,k,d) = mé:\x{p: Bin(m,k, p) > &}

equals the largest true error such that the probability of observing k arertheads” is at leas®.

For intuition’s sake, the quantit8in (m, k,8) obeys the following inequalities (some of which we
prove later).

1. Bin(mk,8) < X 4 'n5

2k In?3 2In5

2. Bin(mk,d) < +

e 27

3. Bin(m,0,9) <D
With these definitions finished, the results are all very simple statements.
Theorem 3.3 (Test Set Bound) For all D, for all classifiers c, for &l (0, 1]

< Bin(m,¢ >1-0.
s|~3|3rm (co <Bin(m,&s,3)) >1-93
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Figure 2: A graphical depiction of the test set bound. The first grapiicts several possible bino-
mials given their true error rates. The second depicts several binonaaltsweth a tail
cut. The third figure shows the binomials consistent with the tail cut and aixbéest
error. The worst case over all true error rates is the consistent bihaittiethe largest

bias.

Note thatmin this equation isntest= |Sest, the size of the test set.

Proof (pictorially in 2) The proof is just a simple identification with the binomial. For anyritis-
tion over(x,y) pairs and any classifie; there exists some probability, that the classifier predicts
incorrectly. We can regard this event as a coin flip with lmgs Since each example is picked
independently, the distribution of the empirical error is a binomial distribution.

Whatever our true errarp is, with probability 1— & the observatiorms will not fall into a tail
of sized. Assuming (correctly with probability 4 &) that the empirical error is not in the binomial
tail, we can constrain (and therefore bound) the value of the true @yror [ |

The test set bound is, essentially, perfectly tight. For any classifier witlfiaiently large true
error, the bound is violated exactlydgortion of the time.
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Two Functions
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Figure 3: A graph suggestirgg®™ > (1—¢)™.

3.1.1 APPROXIMATIONS

There are several immediate corollaries of the test set bound (3.3) wieichae convenient when
a computer is not handy. The first corollary applies to the limited “realizat@#ing where you
happen to observe 0 test errors.

Corollary 3.4 (Realizable Test Set Bound) For all D, For all classifiers c, fordadl (0, 1]
R In}
Pr |6s=0=cp<—2]>1-0.
S~Dm m

Proof Specializing the test set bound (Theorem 3.3) to the zero empirical @ser we get
Bin(m,0,e) = (1—¢)"<e®M

Setting this equal td and solving fore gives us the result. The last inequality can be most simply
motivated by comparing graphs as in figure 3.
|

Approximations which hold for arbitrary (nonzero) error rates relyruffee Chernoff bound which
we state next, for completeness. For this bound (and it's later applicatiengyevload the defini-
tion of KL-divergence so it applies to tma g € [0, 1] variables.

Definition 3.5 (KL-divergence overload) KL(q||p) = qlog% + (1—q)|ogi%g for p>qandO
otherwise.
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Lemma 3.6 (Relative Entropy Chernoff Bourfdfor % < p:

Bin(mk, p) < e MKL(llp)

Proof (Originally from (Chernoff, 1952). The proof here is based on (@8gy For allA > 0, we
have

m
Bin(mk, p) = VL (ZK < k) = Pr <e—rm%zim:m > e—m)\ﬁk]) .
1=

mepm
Using Markov’s inequalityX > 0, EX =, = Pr(X > 9) < ‘—6‘), this must be less than or equal to

EXmN pmei)\ z:’n:l X
e Ak

Using independence, this expression is equal to

m
& (pe?+(1-p)) .
and rewriting, we get
gnfd),
wheref(A) =A& +In(pe?+1-p).

A is a free parameter which can be optimized to find the tightest possible boorfihdTthe
optimal value, find\* so thatf’(A\*) = 0.

k pe
Ozf/ )\* =
() m peM+1-p
o A A
m _\* . o A
= IO(pe +1 p>_e
k Kk \
m_p=(1-2)e?
= p(l p) <l m)e
. 1-k
:>e2\ :Fll( m)7
m(1—p)

EInBJr l—E In 1-p = —KL EHp .
m k m 1—k m
m m

Using the Chernoff bound, we can loosen the test set bound to achimewesaanalytic form.

2. The closely related Hoeffding bound (Hoeffding, 1963) makesdheesstatement for sums|@ 1] random variables.
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Corollary 3.7 (Agnostic Test Set Bound) For all D, for all classifiers c, for&aé (0O, 1]

¢ In i
Pr (KL <—S|cD> < —5> >1-3.
S~Dm m m

Proof Loosening the test set bound (theorem 3.3) with the Chernoff approxinrfa)tié}] < Ccp we

get

Bin (m,k, cp) < e KL (wllo).

Setting this equal td, and solving for gives the result. |

The agnostic test set bound can be further loosened by boundingltiesofdlL(q||p).

Corollary 3.8 (Agnostic Test Set Bound II) For all classifiers c, fora#: (0, 1]
Pr lcp<=+4+4/=—]>1-6.

Proof Use the approximation
k k
KL (= > 2(cp — —)?
(lle0) =200 )
with the Chernoff bound and test set bounds to get the result. [ |

The differences between the agnostic and realizable case are furtdlymetated to the decrease in
the variance of a binomial as the bias (i.e. true error) approaches Otiothis implies using the
exact binomial tail calculation can resultfianctional(rather than merely constant) improvements
on the above corollary.

3.1.2 ATESTSET LOWER BOUND

The true error can be lower bounded using a symmetric application of theteahméques.

Theorem 3.9 (Test Set Lower Bound) For all classifiers, c, forak (0, 1]
> mi : 1-Bi ¢ > >1-0.
Sftgm (CD > mpln{p 1-Bin(m,€s, p) > 6}> >1-9

The proof is completely symmetric. Note that both bounds hold with probability2d since
Pr(AorB) < Pr(A) 4+ Pr(B). This is particularly convenient when the square-root version of the
Chernoff approximation is used in both directions to get

Cs

/In%
<\ =2|>1-0s.
m 2m

vc Pr Cp— —
S~Dm

Example 3 (continued) letd = 0.1. Using the square root Chernoff bound witg = 38 out of
100 examples, we get the confidence intengiec[0.26,0.50]. Using an exact calculation for the
binomial tail, we get g € [0.30,0.47]. In general, as the observed error moves tow@rthe exact
calculation provides a tighter confidence interval than the agnostic ajpition.
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3.1.3 THE STATE OF THEART

Although the test set bound is very well understood, the same cannaidoef ©ther testing meth-
ods. Only weak general results in this model are known for some varifintess validation (see
Blum et al., 1999). For specific learning algorithms (such as nearestlaily stronger results are
known (see Devroye et al., 1996). There are a wide range of edsentianalyzed methods and a
successful analysis seems particularly tricky although very worthwhilenideted.

3.2 Test Set Bound Implications

There are some common practices in machine learning which can be improapgimation of the
test set bound. When attempting to calculate a confidence interval on thertougate given the
test set, many people follow a standard statistical prescription:

1. Calculate the empirical meqm:“cstTGSt = %2{11' (h(x;) # Vi).
2. Calculate the empirical varian@ = =25 s, (1(c(x) = yi) — 1)2.

3. Pretend that the distribution is Gaussian with the above variance andumbrstronfidence
interval by cutting the tails of the Gaussian cumulative distribution at &h@2some other)
point.

This approach is motivated by the fact that for dixed true error rate, the distribution of the
observed accuracy behaves like a Gausasisymptotically. Here, asymptotically means “in the
limit as the number of test examples goes to infinity”.

The problem with this approach is that it leads to fundamentally misleading rasustsown in
Figure 4. To construct this figure, a collection of discrete (aka “nomiriafjure datasets from the
UCI machine learning database were split into training and test sets. A detiséoclassifier was
learned on each training set and then evaluated on the held-out test set.

This “misleading” is both pessimistic and (much worse) optimistic. The pessimistinecaaen
by intervals with boundaries less than O or greater than 1 and the optimismseyvoily what
happens when the test error is 0. When we observe perfect classificaur confidence interval
shouldnot have size 0 for any finiten.

The basic problem with this approach is that the binomial distribution is not simiéeGeussian
when the error rate is near 0. Since our goal is finding a classifier with 8 so®&error, it is
essential that the means we use to evaluate classifiers work in this regimeestThket bound can
satisfy this requirement (and, in fact, operates well for all true erginres).

1. The test set bound approacheveroptimistic.

2. The test set bound based confidence interval always returnppan and lower bound in
[0,1].

The 2 method is a relic of times when computational effort was expensive. It issiople and
easy to calculate a bound based upon the cumulative distribution of the bir{seedlangford).

The test set bound can be thought of as a game where a “Learner” steongonvince a
reasonable “Verifier” of the amount of learning which has occurradtoRally we can represent
this as in Figure 5.
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Holdout vs. 2 Sigma Bound

15 1117 17 17 17T 1T 17T 1T Igl’1 b d
— oun
T 125 | -
3
s 1r ]
5 075_ 'I u —
-
S
o 05 7]
<
= 025 F ii 7]
—
O 1 ii!:_,!‘ )
ZEoOsNQOD>»QuC
S50 COLXC gOE®O
OS5 o085 nnsSO=
Cogl ST~ =0c20
- G >Sa802>>
n o c 8

Learning Problem

Figure 4: This is a graph of the confidence intervals implied by the test sedtheorem 3.3) on
the left, and the approximate confidence intervals implied using the common two sigma
rule motivated by asymptotic normality on the right. The upper bounds of theséést
bound haved = 0.025 failure rate, so as to be comparable with the 2-sigma approach.
The test set bound is better behaved as the confidence interval isezbtdithe interval
[0,1] and is never over-optimistic.
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Test Set Bound

5
Verifier Learner

classifier ¢ Choose «

Evaluate Bound

Draw Examples

Figure 5: For this diagram “increasing time” is pointing downwards. The oatjuirement for
applying this bound is that the learner must commit to a classifier without kngevled
of the test examples. A similar diagram for train set bounds is presenteddattis
somewhat more complicated). We can think of the bound as a technique bly thikic
“Learner” can convince the “Verifier” that learning has occurraati(the degree to which
it has occurred). Each of the proofs can be thought of as a commumigattocol for
an interactive proof of learning by the Learner.
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4. The Occam’s Razor Bound

Given that the simple test set bound works well, why do we need to engageherfwork? There
is one serious drawback to the test set technique—it requiggs otherwise unused examples. An
extramiestexamples for the training set decreases the true error of the learnethbgis to O from
0.5 for some natural learning algorithm/learning problem pairs. This loss rébrpeance due to
holding out examples is very severe.

There is another reason why training set based bounds are important.lé4aning algorithms
implicitly assume that the train set accuracy “behaves like” the true errooiosihg the hypothesis.
With an inadequate number of training examples, there may be very little relapdretveen the
behavior of the train set accuracy and the true error. Training setl@sunds can be usé@dthe
training algorithm and can provide insight into the learning problem itself.

This section is organized into three subsections.

1. Subsection 4.1 states and proves the Occam’s Razor bound.
2. Subsection 4.2 proves that the Occam’s Razor bound cannot be edprogeneral.

3. Subsection 4.3 discusses implications of the Occam’s Razor bound @md s#sults for its
application.

4.1 The Occam’s Razor Bound

This Occam’s Razor bound (Blumer et al., 1987; McAllester, 1999) in mppecximate forms has
appeared elsewhere. We use “prior” (with quotes) here becausenitiddrary probability distri-
bution over classifiers and not necessarily a Bayesian prior. The distiris important, because
the theory holds regardless of whether or not a Bayesian prior is used.

Theorem 4.1 (Occam’s Razor Bound) For all D, for all “priors” Rc) over the classifiers c, for all
o€ (0,1
: ¢p < Bin(m, & >1—
P (Vc: cp < Bin(m,és,dP(c))) >1-0

The application of the Occam’s Razor bound is somewhat more complicatethihapplication
of the test set bound. Pictorially, the protocol for bound application isrgim Figure 6. It is very
important to notice that the “prio?(c) must be selectebleforeseeing the training examples.
Proof (pictorially in Figure 7) First, note that P(c) = 0, thenBin (m,s,0) = 1 and the bound is
always valid. The remainder of this proof applies to the countable sesatisfyingP(c) > 0.

The proof starts with the test set bound:

< Bin(m,é >1-—
ve Pr (co < Bin(m,&s,8P(c))) > 1—3P(c)
Negating this statement, we get

Ve SE’Drm (co > Bin(m,€s,8P(c))) < dP(c)
then, we apply the union bound in a nonuniform manner. The union baygdtkat PfA or B) <
Pr(A) + Pr(B). Applying the union bound to every classifier with a positive measure givesal
probability of failure of

oP(c)=8 3 P(c)=3
c:P(c)>0 c:P(c)>0
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Occam’s Razor Bound

o)
Verifier Learner
w

Draw Training
Examples m examples

Classifier, ¢
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Figure 6: In order to apply the Occam’s Razor bound it is necessaryhthathoice of “prior” be
made before seeing any training examples. Then, the bound is calculatsiu@on the
chosen classifier. Note thatigt “legal” to chose the classifier based upon the pR¢x)
as well as the empirical errag.”
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Occam Bound Calculation
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Figure 7: The sequence of pictures is the pictorial representation ofdbégf the Occam’s Razor
Bound. The first figure shows a set of classifiers, each with a tail fcsbme varying
depth. The second picture shows an observed training error and skilgobinomial
distributions for a chosen classifier. The third picture shows the truesenbich are
consistent with the observation and the tail cuts. The fourth picture shevtsuin error
bound.

which implies Bin
Pr (o1 oo > Bin(més 3P(©))) <&

Negating this again completes the proof. |

4.1.1 GccAM’S RAZOR COROLLARIES

Just as with the test set bound, we can relax the Occam’s Razor bohadrém 4.1) with the
Chernoff approximations to get a somewhat more tractable expression.

Corollary 4.2 (Chernoff Occam’s Razor Bound) For all D, for all “priors” f) over classifiers,
forall & € (0,1]:

~ 1 1
Cs InW‘i‘lnS

P : < = > 1— 6
svDrm veico s m + 2m -
Proof Approximate the binomial tail with the Chernoff Bound (lemma 3.6). [ |
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Many people are more familiar with a degenerate form of this bound wik@re= \W1| andH is
some set of classifiers. In that case, simply replagggrwith In|H|. The form presented here is

both more general and necessary if the bound is to be used in practice.
Other corollaries as in Section 3.1.1 exist for the Occam’s Razor boumgknieral, just substi-
tuted — dP(c).
4.1.2 CccaM’S RAZOR LOWER BOUND
Just as for the test set bound, a lower bound of the same form applies.

Theorem 4.3 (Occam’s Razor Lower Bound) For all D, for all “priors” i¢) over the classifiers,
c, foralld < (0,1

SVPDrm (Vc: Cp > mF!n{p: 1-Bin(m,¢s, p) > 6P(c)}> >1-20.

Example 4 (continued) Suppose that instead of havii@p test examples, we halD0 train ex-
amples. Also suppose that before seeing the train examples, we commPi@)l t00.1 for ¢ the
constant classifier which predicts “no rain”. Then, the Chernoff apgmations of the upper and
lower bound give the intervalpce [0.22,0.54]. With an exact calculation, we gef & [0.26,0.51].

4.1.3 THE STATE OF THEART
A very large amount of work has been done on train set bounds. iti@dtb those included here,

there are:

1. Reinterpretations of uniform convergence (Vapnik and Chenldseh971) results for con-
tinuously parameterized classifiers.

2. Reinterpretations of PAC convergence (Valiant, 1984) results.

3. Shell bounds (Langford and McAllester, 2000) which take advantdighe distribution of
true error rates on classifiers.

4. Train and test bounds (Langford, 2002) which combine train setemtdet bounds.

5. (Local) Rademacher complexity (Bartlett et al., 2004) results which tdiaerdage of the
error geometry of nearby classifiers.

... and many other results.

Of this large amount of work only a small fraction has been shown to belusefreal-world
learning algorithm/learning problem pairs. The looseness of train sed baseds often precludes
analytical use.

4.2 The Occam’s Razor Bound is Sometimes Tight

The question of tightness for train set bounds is important to address,rgsailhem have been
extremely loose. The simplest method to address this tightness is constrestiibit a learning
problem/algorithm pair for which the bound is almost achieved. For the telsbaad, this is trivial
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as any classifier with a large enough true error will achieve the bourrdh&drain set bound, this
is not so trivial.

How tight is the Occam’s Razor bound (4.1)? The answepigetimesight. In particular, we
can exhibit a set of learning problems where the Occam’s Razor boarmibtae made significantly
tighter as a function of the observables,5, P(c), andcs. After fixing the value of these quantities
we construct a learning problem exhibiting this near equivalence to then®s®azor bound.

Theorem 4.4 (Occam’s Razor tightness) For all®), m, k,d there exists a learning problem D and
algorithm such that:

P (3c: és<k and @ > Bin(m,&s,3P(c))) > 5 &%

Furthermore, if ¢ is the classifier with minimal training error, then:

* Bin Ax =2
P (cp > Bin(m,&5,0P(c))) > 86— &°.

Intuitively, this theorem implies that we can not improve significantly on the é&cRazor bound
(Theorem 4.1) without using extra information about our learning problem.

Proof The proof is constructive: we create a learning problem on which lsegations are likely.
We start with a priolP(c), probability of errord, m, and a targeted empirical error numbler,For
succinctness we assume tR4t) has support on a finite set of sine

To define the learning problem, leX:= {0,1}" andY = {0,1}.

The distributionD can be drawn by first selectingwith a single unbiased coin flip, and then
choosing théth component of the vectot independently, R(Xy,...,X,)[|Y) =M, Pr(X|Y) . The
individual components are chosen s@Re=Y|Y) = Bin (m,k, 3P(c)).

The classifiers we consider just use one feature to make their classifiGation= x. The true
error of these classifiers is given bgs = Bin (m,k, 8P(c)).

This particular choice of true errors implies that if any classifier has anwadt$rain error, then
the classifier with minimal train error must have a too-small train error.

Using this learning problem, we know that:

Ve, vo € (0,1] P (co > Bin(m,€s,8P(c))) = dP(c)

(negation)
= Vc,vo e (0,1): P (co < Bin(m,&s,8P(c))) = 1—3P(c)

(independence)

=Vde (0,1 : (VC o < Bin(m,&s,8P(c))) < [1(1-3P(c))

(negation)

=Vvde (0,1 : (Hch > Bin (m, €s, dP(c) 1-T](@-3P(c

C

n

= 5 8P(c) [1(1-3P(e) > iamco(l—a) ~5-&
i= 1<l i=
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Figure 8: Thisis a plot comparing confidence intervals built based updashset bound (Theorem
3.3) with an 80%/20% train/test split on the left and the Occam’s Razor bdumabfem
4.1) with all data in the training set on the right. The Occam’s razor boundigtsmes
superior on the smaller data sets and always nonvacuous (in contrastythar train
set bounds).

where the last inequality follows froifl —a)(1—b) > 1—a—bfora,b € [0,1]. [ |

The lower bound theorem implies that we can not improve an Occam’s Ragatéitement. How-
ever, it is important to note that large improvements are possible if we usesatheres of infor-
mation. To see this, just note the case where every single classifier Isajgpba the same. In
this case the “right” bound would the be ttestset bound, rather than the Occam’s Razor bound.
The PAC-Bayes bound and the sample compression bound presentech@xtisections use other
sources of information. Another common source of information is specializttialassifiers of
some specific sort.

4.3 Occam’s Razor Bound Implications

The Occam’s Razor bound is strongly related to compression. In partiftadany self-terminating
description languagé,(c), we can associate a “prioP(c) = 2~14() with the property thay . P(c) <
1. Consequently, short description length classifiers tend to have a tigieergence and the
penalty term, IQJ(l—C) is the number of “nats” (bits base e). For any language fixed befonegste
training sequence, classifiers with shorter description lengths have tightads on the true error
rate.
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One particularly useful description language to consider is the executoa of a learning
algorithm. If we carefully note the sequence of data-dependent cheltehk a learning algorithm
makes, then the output classifier can be specified by a sequence $setaasl choice, third choice,
first choice, etc....” This is the idea behind microchoice bounds (LangiwddBlum, 1999). Results
for this approach are reported in Figure 8 and are strong enough &s @t empirical existence
proof that Occam’s Razor bounds can be made tight enough for wggdlitation.

5. PAC-Bayes Bound

The PAC-Bayes bound (McAllester, 1999) is particularly exciting beedusan provide quantita-
tively useful results for classifiers witleal valuedparameters. This includes such commonly used
classifiers as support vector machines and neural netwWdFkss section is divided into three parts:

1. Subsection 5.1 states and proves the PAC-Bayes Bound.

2. Subsection 5.2 shows that the PAC-Bayes Bound is nearly as tightsiblpagiven the ob-
servations.

3. Subsection 5.3 discusses results from the application of the PAC-Bayesl to support
vector machines.

5.1 The PAC-Bayes Bound

The PAC-Bayes bound has been improved by tightening (Langford aede®, 2001) and then
with a much simpler proof (Seeger, 2002) since it was originally stated. fBiensent and proof
presented here incorporate these improvements and improve on them slightly.

The PAC-Bayes bound is dependent upon two derived quantities gaaggvtrue error:

Qo = Ec-qCp
and an average train error rate:
~ és
=E..0—.
QS c~Q m

These quantities can be interpreted as the train error rate and truefdtremoeta-classifier which
chooses a classifier according@oevery time a classification is made. If we refer to this meta-
classifier ag), the notation for error rates is consistent with our earlier notation.

The “interactive proof of learning” viewpoint of the PAC-Bayes boisshown in Figure 9. Itis
essentially the same as for the Occam’s Razor bound except for the comntitrtientnetaclassifier
Q rather than the classifier

Theorem 5.1 (PAC-Bayes Bound) For all D, for all “priors” Fc) over the classifiers c, for all
o< (0,1):

KL(Q||P) + In 1+l
(QHr)n+ 5>21_5

Fin (vcz(c) KL, (Gsl|Qo) <

where KLQ||P) = Ec.gIn % is the KL-divergence between Q and P.

3. There is a caveat here—the bound only applies to stochastic ver$ithesatassifiers. However, the probability that
the stochastic classifier differs from the classifier can be made veiy. sma
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PAC-Bayes Bound
o)

Verifier Learner

Draw Training

Examples W

"Posterior", Q(c)

Choose Q(c)

Evaluate Bound

Figure 9: The “interactive proof of learning” associated with the PAGe3abound. The figure is
the same as for the Occam’s razor bound, except that instead of committirgirnglex
classifier, the PAC-Bayes bound applies to any distribution over classifier

Note that the PAC-Bayes bound applies to distributionover classifiers. Whe@ is concentrated
on one classifier, we have KQ||P) = In 5, just as in the Occam’s razor boufiahith the only

distinction being the additiv@% term. It is somewhat surprising that the bound holdssfcary
distributionQ with only the slight worsening bﬁln(’;—*l).

Since the KL-divergence applies to distributions over continuous valaeghgeters, the PAC-
Bayes bound can be nontrivially tight in this setting as well. This fact is uselderapplication
section.

We first state a couple simple lemmas that are handy in the proof. The intuitidmdbibiis
lemma is that the expected probability of an event is not too small.

Lemma 5.2 For all D, for all P(c), for all 4 € (0,1]:

1 m—+1
Pr ( Ece — < >1-9
stm( “PPrg pn(Cs=Cg) ~ & > =
Proof Note that:
Ve E (Es=k) ! =m+1
SD PI’gNDm ZSMD”1 - PI’gNDm (ég = k) N '

Taking the expectation over classifiers according tand switching the order of expectation, we
get

4. As weakened with the relative entropy Chernoff bound (Lemmadhéhe binomial.
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1
Es pmEc. — —=m+1
S~bme PPrSNDm (CS = Cg)

and using the Markov inequalitX(> 0, EX =y, = Pr(X > %‘) < 0), we get

1 m+1
VP Pr - ~ — > < 0.
S~Dm (EC P Prg..pm (CS = Cg) 0 >

The next lemma shows that a certain expectation is bounded by the Kullledloleiddistance be-
tween two coin flips, just as for the relative entropy Chernoff boundnfipa 3.6).

Lemma 5.3 Fix all example sequences S. For al{«):

ECNQmPr% ~
3~.om(€s=Cy)
> KL .
m > KL(Qs||Qp)
Proof L
EevolN 5y ety e n 1
= — CNQ
m m M\ Bs1_ ou)m-¢
(& )eba-—eome
1 1 Cs
> —_E;..oln > Eq..oKL [ —||c
,mEcQ 2 EcQ <m|D>

5o ( o) eb(a-corm

where the last inequality follows from the relative entropy Chernoff lublBincea‘?—l.gq KL(q||p) =

—% — 115 < 0 the function is concave in both arguments. Jensen's inequdlityy) concave

= Ef(x,y) > f(EX Ey)) gives us

> KL (Ec~qCs||Ec~qCp),
which completes the proof. |

With these two lemmas, the PAC-Bayes theorem is easy to prove.
Proof (Of the PAC-Bayes theorem) Fix a training SetLet

! T P(c).

Ps(c) = PRSP
Praon (Cs = Cs) Bavp i {aiay)

Ps(c) is a normalized distribution because it has the f@gP(c) whereP(c) is a distribution.

Q(c) A4 1
= 0<KL(Q||Ps) =Ecqgln | == Pr (€g= ~ —
< KL(QIIPe) = Eexoln | 5o o P, (G5 = 6 B " Prg—on (ds — d)
=KL (QI|P) — Ec.glIn ! +InE 1
T Prgon(Eg =) " Prg_pn (ds=dg)
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= Ecwgln

— — <KL P)+InEyg. ~ -
Prg.pm(€g =Cs) ~ (QIIP)+InEq "pr.

Applying lemma 5.3 on the left hand term we get

3 1
MKL (Qs||Qp) < KL(Q||P) +InE4-p S
PrSfNDm (ds = dg)
This holds for allS. Applying Lemma 5.2 which randomizes ov&rwe get the theorem. [ |

5.2 The PAC-Bayes Bound is Sometimes Tight

Since the PAC-Bayes bound is (almost) a generalization of the Occam’s BRarad, the tightness
result for Occam’s Razor also applies to PAC-Bayes bounds.

5.3 Application of the PAC-Bayes Bound

Applying the PAC-Bayes bound requires specialization (Langford dnaav8-Taylor, 2002). Here,
we specialize to classifiers of the form

c(X) = sign(W-X) .

Note that via the kernel trick, support vector machines also have this form.
The specialization is naturally expressed in terms of a few derived quantities

1. The cumulative distribution of a Gaussian. Egx) = [’ \/%[efxz/z_ Here we usé rather
thanF to denote the fact that we integrate frorto co rather than—oo to x.

2. A “posterior” distributionQ(W, i) which isN(p, 1) for somep > 0 in the direction of# and
N(0,1) in all perpendicular directions.

3. The normalized margin of the examples

yW-X
I 111

Y(Ry) =

4. A stochastic error rat€(W, b)s = Exy-sF (Wy(XY)) -

This last quantity in particular is very important to understand. Considera$e a1 approaches
infinity. When the margin is negative (indicating an incorrect classificato)y(X,y)) approaches
1. When the margin is positive (py(X,y)) approaches 0. Thu(W, l)s is a softened form of the
empirical errorcs which takes into account the margin.

Corollary 5.4 (PAC-Bayes Margin Bound) For all distributions D, for dllc (0, 1], we have

W m1
Pr| wi,p: KL (Q(W, W)s||Q(W: ))<7+'j >1-5
SuDm 7”' 7“3 auD >~ m et .
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Proof The proofis very simple. We just chose the pifor N(0, 1)" and work out the implications.
Since the Gaussian distribution is the same in every direction, we can reitrgeobordinate
system of the prior to have one dimension parallett&ince the draws in the parallel and perpen-

dicular directions are independent, we have

KL(QI|P) = KL(QLI[P1) +KL(N(K 1)[[N(0, 1))

12
2

as required.

All that remains is calculating the stochastic error @(W, Ws. Fix a particular examplé&, y).
This example has a natural decompositioa X + X, into a componeng parallel to the weight
vectorw and a componert, perpendicular to the weight vector.

To classify, we draw weight vectat’ from Q(W, ). ThisW consists of three components,
W= VT/H W, W Herev*\/|| ~ N(l,1) is parallel to the original weight vectow/, ~ N(0,1)

which is parallel toX, andw | is perpendicular to boti and%. We have
Q.S — Exy- st quup! (37 Sian(w )

- EZyNS,WNpr (yW X< O)

If we letw) = [|W)||, w, = ||, ||, x; = [[%|, andx, = [|X.||, and assume (without loss of gener-
ality) thaty = 1 we get

= Baysw ~niunw ~nog)! (y(WIIXH FW X)) < 0)
= ExayNSEW‘,‘NN(u,l) EWlNN(O,l)I (y(WHXH —|—WJ_XL) < O)

X
= Exy~sE/ no) E\leN(O,l)I (yu< —yZ YW, - X ) '

Using the symmetry of the Gaussian, this is:

/ ’ XJ_
= Exy~sB7 o) B ~nio)! <yu§ yz JryWLX_|>

Using the fact that the sum of two Gaussians is a Gaussian:

v~N| O 1+T

= Exy~sE (
"

> L (yu<yv)
= Exy~sE
NGy

= Egy~sF (Wy(X))
finishing the proof. [ |

)I (YH< yv)
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Using the corollary, the true error bouiw, i)p satisfies the equation:

2
w2 m+1
> +InT%

KL (Q(W, Ws{|Q(W. Wp) = *—

This is an implicit equation fo@ which can be easily solved numerically.

The bound is stated in terms of dot products here, so naturally it is possikézrielize the
result using methods from (Herbrich and Graepel, 2001). In kermefaen, the bound applies to
classifiers (as output by SVM learning algorithms) of the form:

c(x) = sign <iaik(xi,x)> . (1)

Since, by assumptiork is a kernel, we know thak(x;,x) = ®(x) - ®(x) where ®(x) is some
projection into another space. In kernelized form, we ek = ", aik(x;,X), X- X = K(x,X),

— =

W-W=y; ;aia;K(x;,x;), defining all of the necessary quantities to calculate the normalized margin,

y(x,y) = Zﬂ;zik(xi,x)
\/k(x, X) ¥i.j=1,1 00t jK(X;, Xj)

One element remains, which is the valueuofUnfortunately the bound can be nonmonotonic
in the value ofyy, but it turns out that for classifiers learned by support vector mashingeason-
able datasets, there is only one valuguafhich is (locally, and thus globally) minimal. A binary
search over some reasonable rangp (fay from 1 to 100) can find the minima quickly, given the
precomputation of the margins. It is worth noting again here that we areheating”—the bound
holds for all values oft simultaneously.

The computational time of the bound calculation is dominated by the calculation wigtiggns
which is O (m?) wherem is the number of support vectors with a nonzero associated his
computational time is typically dominated by the time of the SVM learning algorithm.

5.3.1 RESULTS

Application of this bound to support vector machines is of significant impoetdrecause SVMs
are reasonably effective and adaptable classifiers in common and véddsgse. An SVM learns
a kernelized classifier as per equationY1).

We apply the support vector machine to 8 UCI database problems chosetiéodiiiteria “two
classes” and “real valued input features”. The problems vary in siee an order of magnitude
from 145 to 1428 examples. In Figure 10 we use a 70/30 train/test split dbtiae

In all experiments, we use SVMlight (Joachims) with a Gaussian kernefrendefault band-
width. Results for other reasonable choices of the “C”, bandvfidthd kernel appear to be quali-
tatively similar (although of course they differ quantitatively).

It is important to note that the PAC-Bayes margin bounaiprecisely a bound (or confidence
interval) on the true error rate of the learned classifier. Instead, it is a&troerate bound on an

5. Some SVM learning algorithms actually learn a classifier of the fafx). = sign(b+ zi”;laik(xi,x)). We do not
handle this form here.

6. Note that the bandwidth of a Gaussian kernel used by an SVM is natlgirelated to the optimized value pfwe
find.
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Figure 10: This figure shows the results of applying SVMlight to 8 dataséisanaussian kernel
and a 70/30 train/test split. The observed test error rate is graphedas@m the
test set, we calculate a binomial confidence interval (probability of boaihdé equals
0.01) which upper bounds the true error rate. On the training set we cat¢h&aPAC-
Bayes margin bound for an optimized choicquof
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Figure 11: In addition to comparing with everything in Figure 10, we graphntlaegin bound
whenall of the data is used for the train set. Note that it improves somewhat on the
margin bound calculated using the 70% train set (7/10 margin bound), benhoagh
to compete with the test set bound.

associated stochastic classifier chosen so as to have a similar test &rrdrhrase bounds can be
regarded as bounds for the original classifier only under an additamsaimption: that picking a

classifier according to the majority vote of this stochastic distribution doesarsen the true error

rate. This is not true in general, but may be true in practice.

It is of course unfair to compare the train set bound with the test set bmuad/0/30 train/test
split because a very tight train set bound would imply that it is unnecessamwen have a test set.
In Figure 11 we compare the true error bounds on all of the data to the tarebeunds generated
from the 70/30 train/test split.

The results show that the PAC-Bayes margin bound is tight enough to ggfal unformation,
but still not competitive with the test set bounds. This is in strong contrast witadition of
guantitatively impractical margin bounds. There are several uses dedidabounds which provide
some information but which are not fully tight.

1. They might be combined with a train/test bound (Langford, 2002).

2. The train set bound might easily become tighter for smaller sample sizesvdhisbserved
in (Langford, 2002).

3. The train set bound might still have the right “shape” for choosing @timal parameter
setting, such as “C” in a support vector machine.
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6. Sample Compression Bound

The sample compression bound (Littlestone and Warmuth), (Floyd and Warbh9®®h) is like the
PAC-Bayes bound in that it applies to arbitrary precision continuous #atiessifiers. Unlike
the PAC-Bayes bound, it applies meaningfully to nonstochastic classifidgasmstream learning
algorithms do not optimize the sample compression metric, so the bound applicatmmesvhat
rarer. Nonetheless, there do exist some reasonably competitive leatgorghms for which the
sample compression bound produces significant results.

The section is organized as follows:

1. Subsection 6.1 states and proves the sample compression bound.

2. Subsection 6.2 shows that the sample compression bound is nearly @s fagigsible given
the observations.

3. Subsection 6.3 discusses results from the application of the sample ssiaprbound to
support vector machines.

6.1 The Sample Compression Bound

The sample compression bound (Littlestone and Warmuth) (Floyd and Warh@®b) stated here
differs from older results by generalization and simplification but the bdehdvior is qualitatively
identical.

Suppose we have a learning algoritt¢S) whose training is “sparsé’in the sense that the
output classifier is dependent upon only a subset of the &&= A(S) for S C S The sample
compression bound is dependent on the ermysy On the subses— S. The motivation here is that
the examples which the learning algorithm doesdepend upon are “almost” independent and so
we can “almost” get a test set bound. In general, the bound becomes tghte dependent subset
S becomes smaller and as the error number on the nondependentSul&dtecomes smaller.

Viewed as an interactive proof of learning (in Figure 12), the sample cessjmm bound is
unique amongst training set bounds because it does not reguyimgitial commitment to a measure
over the classifier?.

Theorem 6.1 (Sample Compression Bound) For alE (0,1], D, A:

S o)
Pr (VS C S withc=A(S): cp <Bin <m,és_g,>> >1-20.
S“Dm< m(\sTsO

Proof Suppose we knew in advance that the learning algorithm will not depem sgime subset
of the examples. Then, the “undependent” subset acts like a test sgivandis a test set bound:

s3] s-3|

7. This is satisfied, for example, by the support vector machine algovithich only depends upon the set of support
vectors.

8. However, we can regard the commitment to a learning algorithm as ditilmgemmitment to a measure over
classifiers which is dependent on the learning algorithm and the distribigiverating the data. Viewed from this
perspective, the sample compression bound is the Occam’s Razud,xcept for the minor detail that the set of
evaluating examples varies.
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Sample Compression Bound
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Evaluate Boun

For c=A(S)

Figure 12: The interactive proof of learning for the sample compressiond Note that the learn-
ing algorithm is arbitrary here, similar to the test set bound.

(Note that, technically, it is possible to refer & unambiguously before randomizing ov@by
specifying the indexes @& contained irS.) Negating this, we get

VS CS c:A(S):ngm <CD>W<m,é&g,m( 6m )>> < m( 0

m
5= \&S|)
and using the union bound (ror B) < Pr(A) 4 Pr(B)) over each possible subs&t, we get
Pr <HSCSWithc AS): ¢ >W<mé 0 >><6
= = - Cp ,Cs-8, ——m .
S-bT m(s")

Negating this again gives us the proof. [ |

6.2 The Sample Compression Bound is Sometimes Tight

We can construct a learning algorithm/learning problem pair such that thplsaompression
bound is provably near optimal, as a function of its observables.

Theorem 6.2 (Sample Compression Tightness) For&#t (0, 1], m, k, there exists a distribution D
and learning algorithm A s.t.

Pr <HSgSwith c=A(S): cD>W<m,é&g,ﬁ>> > 35— &

m
S~D S-S
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furthermore, if 3 minimizeBin (é&g, = o )), then
59|

Pr (c*:A(S*): cg>ﬁ<m,égg,ﬁ)> >898

m
Sb =

Proof The proof is constructive and similar to the Occam’s Razor tightness resuttarticular,
we show how to construct a learning algorithm which outputs classifiersethahdependently
depending on the subs8tused.

Consider an input spacé= {0, 1}2m. Each variable in the input spagg can be thought of as
indexing a unigue subs& C Sof the examples. In the rest of the proof, we index variables by the
subset they correspond to.

Draws from the distributiorD can be made by first flipping an unbiased coin to get 1
with probability 05 andy = —1 with probability 05. The distribution orX consists of a set of
independent values after conditioningyrChoose

= o)
Pr(xg #Yy) = Bin (m, K, @> .

Now, the learning algorithnA\(S) is very simple—it just outputs the classifigix) = xg. On the
setS— S, we have

k
VSI Pr (é&g > —> =1-— .
S-bm m m(|s£13\)

Using independence, we get

k 0
Pr (VS s g > —> = 1- ——~ |-
S“Dm( S m D ( m(&sq))

Negating, we get

k 0
Pr (VS és g < —> —1-M(1- —
S”Dm< > m I;l ( m(&s))

and doing some algebra, we get the result. |

6.3 Application of the Sample Compression Bound

One obvious application of the sample compression bound is to support weatbines, since the
learned classifier is only dependent on the set of support vectdgsislthe set of support vectors
thenS— S is the set of nonsupport vectors. Unfortunately, it turns out that thés dot work so
well, as observed in Figure 13.

There are other less common learning algorithms for which the sample coipréssind
works well. The set covering machine (Marchand and Shawe-Tayl04,)has an associated bound
which is a variant of the sample compression bound.
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Figure 13: The sample compression bound applied to the output of a $wpptar machine with
a Gaussian kernel. Here we use- 0.01

7. Discussion

Here, we discuss several aspects and implications of the presentatkboun

7.1 Learning Algorithm Design

Everytrain set bound implies a learning algorithm: choose the classifier which minimigéguth
error bound. This sounds like a rich source of learning algorithms, bug ire some severe caveats
to that statement.

1. Itis important to note that the form of a train set bound dum$mply that this minimization
is a good idea. Choosing between two classifiers based upon their boudeund implies a
better worst-case bound on the true error. It does not imply an improwecktror. In many
situations, there is some other metric of comparison (such as train errol) inHact creates
better behavior.

. Another strong caveat is that, historically, train set bounds have siroplyeen tight enough
on real datasets for a nonvacuous application. This is changing withesats, but more
progress is necessary.

. Often the optimization problem is simply not very tractable. In addition to saropi@lexity,
learning algorithms must be concerned with run time and space usage.
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7.2 Philosophy

Train set bounds teach us about ways in which verifiable learning ishp@sa subject which
borders on philosophy. The train set bound presented here essestiallys that a reasonable
person will be convinced of learning success when a short-descrigtesifier does well on train
set data. The results here dotimply that this is the only way to convincingly learn. In fact, the
(sometimes large) looseness of the Occam’s Razor bound suggestséhatetiods for convincing
learning processes exist. This observation is partially shown by the agiiresat bounds which are
presented.

7.3 Conclusion

This introduction to prediction theory covered two styles of bound: the &¢$t®ind and the train
set bound. There are two important lessons here:

1. Test set bounds provide a better way to report error rates atfideoce intervals on future
error rates than some current methods.

2. Train set bounds can provide useful information.

It is important to note that the train set bound and test set bound techragrie®t mutually ex-
clusive. Itis possible to use both simultaneously (Langford, 2002)daimdy so is often desirable.
Test set bounds are improved by the “free” information about the tragmirgg and train set bounds
become applicable, even when not always tight.
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Appendix A.

For those interested in comparing models, uniform convergence (VapdilkChervonenkis, 1971)
additionally requires the axiom of choice (to achieve empirical risk minimizatind)sahypothesis
space of bounded complexity. Typical theorems are of the form “aftexamples, all training
errors are near to true errors”.

The PAC learning model (Valiant, 1984) requires a polynomial time complexityileg algo-
rithm and the assumption that the learning problem comes from some clasmeifiseare of the
form “after m examples learning will be achieved”.

Both of these models can support stronger statements than the basic pnettietboy model
presented here. Results from both of these models can apply herepgfteprdate massaging.

The online learning model (Kivinen and Warmuth, 1997) makeassumptions. Typical the-
orems have the form “This learning algorithm’s performance will be nealgaod as anyone of
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a set of classifiers.” The online learning model has very generaltsesud nd ability to answer
guestions about future performance as we address here.

The prediction theory model can most simply be understood as a slightmnefinef the infor-
mation theory model.
References

P. L. Bartlett, O. Bousquet, and S. Mendelson. Local Rademacher cadtigdeAnnals of Statistics
2004.

A. Blum, A. Kalai, and J. Langford. Beating the holdout: Bounds for kiH&nd progressive cross-
validation. InComputational Learning Theory (COLT)999.

A. Blumer, A. Ehrenfueucht, D. Haussler, and M. Warmuth. Occamisrréizformation Processing
Letters 24:377-380, 1987.

H. Chernoff. A measure of asymptotic efficiency of tests of a hypothesiebupon the sum of the
observationsAnnals of Mathematical Statistic84:493-507, 1952.

C. J. Clopper and E. S. Pearson. The use of confidence intervdidifoial limits illustrated in the
case of the binomiaBiometrikg 26:404-413, 1934.

L. Devroye, L. Gyorfi, and G. LugosiA Probabilistic Theory of Pattern RecognitiorSpringer-
Verlag, New York, 1996.

S. Floyd and M. Warmuth. Sample compression, learnability, and the vapaikamenkis dimen-
sion. Machine Learning21:269-304, 1995.

R. Herbrich and T. Graepel. Large scale bayes point machingsdvances in Neural Information
System Processing 13 (NIR$ages 528-534, 2001.

W. Hoeffding. Probability inequalities for sums of bounded random viggbJournal of the
American Statistical AssociatipB8:13—-30, 1963.

T. Joachims. program SVMlight.

J. Kivinen and M. Warmuth. Additive versus exponentiated gradienaigsdfor linear prediction.
Information and Computatiqri32(1):1-64, 1997.

J. Langford. Prograrbound.

J. Langford. Combining train set and test set boundsintarnational Conference on Machine
Learning 2002.

J. Langford and A. Blum. Microchoice bounds and self bounding legralgorithms. Machine
Learning 1999.

9. Note that there do exist online to batch conversions, but these saavealways occur under an assumption of i.i.d.
samples, essentially changing the setting to the one described here.

305



LANGFORD

J. Langford and D. McAllester. Computable shell decomposition boundSomputational Learn-
ing Theory (COLT,)2000.

J. Langford and M. Seeger. Bounds for averaging classifiershnlea report, Carnegie Mellon,
Department of Computer Science, 2001.

J. Langford and J. Shawe-Taylor. PAC-Bayes & margin®Néaral Information Processing Systems
(NIPS) 2002.

N. Littlestone and M. Warmuth. Relating data compression and learnability.

M. Marchand and J. Shawe-Taylor. The set covering machinelntérnational Conference on
Machine Learning (ICML)2001.

D. McAllester. PAC-Bayesian model averaging.Gomputational Learning Theory (COLT)999.

M. Seeger. PAC-Bayesian generalization error bounds for gaussianss classificationlournal
of Machine Learning ResearcB:233-269, 2002.

S. Seung. Unpublished notes.

J. Shawe-Taylor, P. Bartlett, R. Williamson, and M. Anthony. Structur& ménimization over
data-dependent hierarchidEEE Transactions on Information Theod4(5):1926—-1940, 1998.

L.G. Valiant. A theory of the learnablé€ommunications of the ACN7(11):1134-1142, 1984.

V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergenceetstive frequencies of events
to their probabilities.Theory of Probability and its Application46(2):264—-280, 1971.

306



