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Abstract 

Component-based development (CBD) is a promising approach for developing high quality 

software in a cost effective and timely manner. CBD techniques can be applied to real-time, 

embedded systems. Traditionally, most CBD techniques mainly consider matching functional 

requirements. However, real-time, embedded systems generally have constraints on footprint, power 

consumption, real-time, output precisions, etc. Thus, CBD techniques for real-time, embedded systems 

must consider how to satisfy the QoS requirements. Additionally, QoS requirements often conflict with 

each other and system designers generally need to consider the trade-offs among them. As a result, it 

is desirable that components are reconfigurable to facilitate the system QoS trade-off considerations. 

Unfortunately, most components are not designed to be reconfigurable in terms of QoS trade-offs. 

Thus, making the components reconfigurable in terms of QoS trade-offs is an important step towards 

developing component-based real-time, embedded software. 

This paper presents a new component parameterization technique which can transform individual 

components to reconfigurable ones such that they can support various QoS trade-offs to achieve 

overall system QoS requirements. The technique has a defined process, is rule based, and is semi-

automated. The prototype tool set for the novel technique has been developed and applied to several 

example components.  

Index Terms—component parameterization technique, embedded system, QoS trade-offs, rule base 
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1. INTRODUCTION 

Intensive market competition has been driving software companies to explore fast and low cost 

software development methods. Component-based development (CBD) has been proposed as an 

effective approach to decrease the development time and cost by building applications from reusable, 

composable and exchangeable building blocks: the components [1][2]. CBD techniques can be 

applied to real-time, embedded systems. Traditionally, most CBD techniques mainly consider 

matching functional requirements. However, real-time, embedded systems generally have constraints 

such as footprint, power consumption, real-time, output precisions, etc. Thus, CBD techniques for 

real-time, embedded systems must consider how to achieve the QoS requirements. Additionally, QoS 

requirements often conflict with each other and system designers generally need to consider the trade-

offs among them. As a result, it is desirable that components are reconfigurable to facilitate the 

system QoS trade-off considerations. 

The advantages of having reconfigurable components in terms of QoS trade-offs are clear in two 

situations. At design time, system designers can first select reconfigurable components which satisfy 

the functional requirements and then configure them to satisfy the system’s overall QoS requirements. 

At execution time, adaptive systems composed from reconfigurable components can be conveniently 

customized to adapt to dynamically changing environments. 

Unfortunately, most components are not designed to be reconfigurable in terms of QoS trade-offs. 

Thus, making the components reconfigurable in terms of QoS trade-offs is an important step towards 

developing component-based real-time, embedded software. Currently, there are some techniques in 

the real-time system field which provide effective QoS trade-off support. Even though these 

techniques do not make use of reconfigurable components to achieve QoS trade-off reconfiguration, 

they are still deserved investigation since the reconfigurable component can also be used in these 

techniques to get better results. One approach is scheduling techniques, which are mainly used in 

operating systems (OS) [3] and multimedia systems [4]. Scheduling techniques permit OS or 

multimedia systems to schedule higher priority tasks to limited resources so that the QoS 

requirements of most tasks are guaranteed in a changing environment. However, scheduling 
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techniques mostly consider satisfying real-time constraints at the task level. The QoS constraints of 

higher priority task are guaranteed at the cost of sacrificing lower priority tasks. If a task does not 

have enough resource, then it may not proceed until other tasks release resources. The tasks are not 

able to adapt themselves to keep working in a changing environment. Middleware approaches, in 

contrast, can support QoS trade-off adaptation among applications or components [5][6][7][8]. Here, 

the QoS trade-off analysis is hidden within the middleware so that application developers do not need 

to worry about QoS concerns [9]. Recently, due to the success of aspect-oriented software 

development (AOSD) techniques in software design, development, and in particular the success of 

AOSD techniques in handling non-functional issues in a system, middleware designers have 

introduced AOSD techniques into middleware design and applied them to handle QoS related issues 

in middleware systems [10][11][12][13]. Their experiences show that AOSD techniques can further 

enhance the flexibility and extensibility of middleware in handling QoS trade-off concerns. 

Middleware approaches can effectively handle QoS trade-offs and support the design of systems that 

best satisfy the QoS requirements. However, they treat components as black boxes and do not 

consider reconfiguring them to achieve further QoS reconfigurability. 

Scheduling and middleware are effective techniques to support QoS trade-off considerations. 

However, these techniques do not sufficiently examine components to utilize their own QoS trade-off 

reconfiguration potential. Component customization techniques, in contrast, are designed to support 

component adaptation. For example, active interface technique [14] provides a mechanism for 

filtering method invocation by extending the responsibility of the interface. Binary component 

adaptation (BCA) technique [15][16] allows components to be adapted and evolved in binary form 

and during program loading. Superimposition technique [17] enables software engineer to impose 

predefined, but configurable, types of functionality on a component. Wrapper techniques [18] 

introduce new behavior that is executed before, after, or in place of an existing method. However, 

because these techniques are designed to adapt a component’s functional behavior, none of them 

provides a systematic way to change QoS aspects of the component. Although some techniques such 

as copy-paste [17][19] can be used to customize component’s QoS trade-offs manually, they are error 
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prone, time consuming, and require experts. Hence, a systematic and high impact alternative is 

desired to make individual component reconfigurable to support different QoS trade-offs. 

To complement and extend existing techniques, we investigate fundamental issues in transforming 

individual components to reconfigurable ones which can support various QoS trade-offs to achieve 

overall system QoS requirements. Some of the issues investigated include: 1) what features a 

parameter should have which can affect the component’s QoS trade-offs; 2) how to quickly identify 

parameters with such features in a component; 3) determine if a component can be configured for 

various QoS trade-offs by changing some parameters’ (variable or constant defined in the component) 

values. A new component customization technique is then proposed which can identify parameters in 

a component and modify them to adapt the component’s QoS trade-offs [20][21]. The features of 

these parameters are described as predicates in the technique and are organized in a rule base. The 

rule-based approach enhances the flexibility and extensibility of the proposed component 

customization technique since rules can be easily added, removed, and modified. A tool set is also 

developed to partially automate this component customization technique.  

The remainder of this paper is organized as follows. Section 2 introduces the basic concepts of the 

component parameterization technique and illustrates three examples. The complete component 

parameterization process is presented in Section 3. Section 4 gives a detailed discussion of 

configurable parameter identification and rule base. The design and implementation of the tool set is 

described in Section 5 followed by an introduction of the application of the technique in Section 6. 

Section 7 presents conclusions and future work. 

2. BACKGROUND AND EXAMPLES  

The development of a real-time, embedded system with multiple QoS requirements can be greatly 

facilitated if the QoS properties of software components are reconfigurable. Many real world cases 

demonstrate that different QoS trade-offs can be accomplished by adjusting certain parameters in the 

program. For example, consider the Newton’s algorithm which is a numerical method for finding the 

roots of a polynomial. Given a polynomial f(x), Newton’s algorithm starts with an initial guess x0 for 
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root x, then repeatedly refines the approximation by computing equation 1
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| xn+1 - xn | < ε. As can be seen, the ε value affects the Time-quality trade-off. With a larger ε value, the 

program generates a root with less accuracy but the computation takes less time. With a smaller ε 

value, the effect is reversed. This is a very common type of parameter that can be adjusted to balance 

the trade-off between time and output quality.  

The goal of our work is to develop an accurate, effective approach for identifying such parameters 

in software components and use the identification result to customize the components into 

reconfigurable ones in term of QoS properties. The details of the approach are discussed in 

subsequent sections. This section introduces some of the concepts and terminologies used throughout 

the paper and examples illustrating various QoS trade-offs. 

2.1. Basic Concepts 

The fundamental concepts of a component, QoS properties, configurable parameter, and QoS 

properties reconfigurable component used in this paper are presented here. 

Component. A component refers to a module that contains both code and data. It presents an 

interface that can be invoked by other components.  

QoS properties of a component. Major categories of QoS properties include time, resource 

requirements, output quality, battery consumption, etc [22]. Examples of time properties include CPU 

cycles, I/O time, communication latency, and execution time (in terms of real time). The 

measurements on these time properties may include average, worst case, or standard deviation values. 

Examples of resource requirements properties include memory requirements, disk requirements, 

power consumption, and communication channel capacity requirements. The memory requirement 

can be for program or data. Also, the memory required can be persistent (the data stays after 

completing the execution of the component), volatile (returned to the system after finishing execution), 

allocated statically (fixed amount of memory allocated at the beginning of the execution), or allocated 

dynamically (variant amount memory allocated at run time). Examples of output quality properties 

include precision and accuracy. Output quality properties can vary greatly depending on the nature of 
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the components. It is necessary to analyze the target component in order to identify all the desired 

output quality properties. 

Configurable parameter. A configurable parameter is a constant or a variable defined in a 

component which, when adjusted, can provide QoS trade-offs. The formal definition of the 

configurable parameters is as follows: 

Let M = {Mi | for all i} denote the set of QoS properties to be considered.  

Consider a component C. Let CP = {pj | for all j} denote the set of configurable parameters in C.  

Now: 

1. After changing the setting of pj, the functional requirement of C is still satisfied. The setting of pj 

can be the type and initial value of pj. If pj is an array variable, then the setting can be the size of 

the array. 

2. By changing the setting of pj, at least one property Mi, for some i, changes significantly. 

Trade-offs. Trade-offs can be achieved by adjusting configurable parameters. Common types 

include time-space, time-quality, and space-quality trade-offs. Time-space trade-offs may be found in 

function calls that use static values calculated in a previous, possibly different function call. If the 

amount of memory needs to be reduced, then the value could be recalculated, using additional CPU 

cycles, rather than stored. Space-quality trade-offs may be found in a statically allocated array (e.g., a 

buffer). If the amount of memory needs to be reduced, then the size of the array could be reduced at 

the cost of decreasing the quality of the output. Time-quality trade-offs may be found in loop control 

parameters. If the performance needs to be improved, then the termination condition may be changed 

such that the loop terminates earlier. 

QoS properties reconfigurable (QoS-R) component. A QoS-R component is a software 

component together with a delta file. The QoS-R component allows the software component to be 

reconfigured either statically or dynamically to provide desired QoS trade-offs. The delta file records 

a group of mappings between the modification of the software component and corresponding QoS 

property measurements of the component when applying the modification. The data measurements for 

original component are also records in the delta file. However, they are mapped to empty modification. 

Given the QoS requirements of a component at design time, the delta file of the component is checked 
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to determine the QoS property measurements which best approximate the QoS requirements. The 

reconfiguration is then accomplished by applying the modifications corresponding to the QoS 

property measurements.  

2.2. Examples 

This subsection presents three examples to illustrate three QoS trade-offs including time-quality, 

time-space, and space-quality trade-offs. These examples are also used in Section 6 to demonstrate the 

application of our technique. 

2.2.1 Example for Time-Quality Trade-off: Newton’s algorithm 

The program code for Newton’s algorithm, described at the beginning of this Section, is listed in 

TABLE I.  Note that f (in line 4) is the input function for which the root is computed and df (in line 4) 

is the differentiation of f.  

TABLE I.  NEWTON’S ALGORITHM BEFORE CUSTOMIZATION 

  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 

#include ... 
#define epsilon 0.001 
 
float Newton (float (*f)(float), float (*df)(float), float start) 
{      float xold, xnew;    
       int num; 
 
       xold = start; 
       xnew = xold;    
       num = 0;  
       do 
       {      xold = xnew;  
               if ( df(xold) == 0 )  
                    return (divide_by_zero); 
               xnew = xold – (f(xold)) / (df(xold)); 
               num++; 
        } 
        while ( fabs(xold–xnew) > epsilon );  
        return (xnew); 
} 

 

2.2.2 Example for Time-Space Trade-off: Random number generator 

The algorithm of random number generator is implemented in two steps. First, the user initializes 

the seed values. Second, every time the user needs a random number, the random number generator 

computes the new random number from current seed values. After the new random number is 

generated, the generator updates seed values from the current seed values. The program code of the 

generator is listed in TABLE II.  The example code generates random numbers uniformly distribute 

from 0 to 232–1. Initialization is done by calling the function sgenrand(seed) with an unsigned long 
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integer seed. The seed value should not be ZERO; different seeds give different sequences. 

TABLE II.  RANDOM NUMBER GENERATOR BEFORE CUSTOMIZATION 

1 
2 
3 
… 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
… 
46 
47 
48 
49 
50 
51 
52 
53 
54 

#include <stdio.h> 
/* Period parameters */ 
#define N 624 
… 
static unsigned long mt[N]; /* the array for the state vector  */ 
static int mti=N+1; /* mti==N+1 means mt[N] is not initialized */ 
 
/* initializing the array with a NONZERO seed */ 
void sgenrand(unsigned long seed) 
{    /* setting initial seeds to mt[N] */ 
mt[0] = seed & 0xffffffff; 
for (mti=1; mti<N; mti++) 
mt[mti] = (69069 * mt[mti–1]) & 0xffffffff; 
} 
 
unsigned long genrand() 
{    unsigned long y; 
static unsigned long mag01[2]={0x0, MATRIX_A}; 
/* mag01[x] = x * MATRIX_A  for x=0,1 */ 
 
if (mti >= N) { /* generate N words at one time */ 
int kk; 
if (mti == N+1)   /* if sgenrand() has not been called, */ 

sgenrand(4357); /* a default initial seed is used   */ 
generate new values of mt[0..N–1] 

} 
 
y = mt[mti++]; 
y ^= TEMPERING_SHIFT_U(y); 
y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B; 
y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C; 
y ^= TEMPERING_SHIFT_L(y); 
return y; 
} 

Current seed values are stored in a static array mt[N] (in line 15) in this program. Each time 

function genrand() is called, the random number is computed from the values store in array mt[N]. 

For every N calls, the values stored in array mt[N] are updated once to reflect the current seed values. 

Differently, a local array mt[N] can be used to store current seed values so that the time-space trade-

off can be adjusted. This strategy requires the program to store the initial seed and compute the values 

of the array mt[N] first before computing the random number from these values. The array mt[N] in 

this example is another kind of parameter which can impact time-space trade-off. Static array is 

allocated at compile time and exists throughout program execution in C language. When using a static 

array to store the current seed values, the program avoids recomputing the current seed values from 

the initial seed values every time before a new random number needs to be generated and hence can 

generate the random number with less time. When using a local array to store the current seed values, 

the program avoids occupying the memory allocated for the array during the entire execution time of 

the program and hence can save the memory space. However, since the program needs to recompute 
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the current seed values from the initial seed values every time before a new random number needs to 

be generated, the code after customization uses more time to generates the random number. 

2.2.3 Example for Space-Quality Trade-off: Solving the heat equation 

Consider the simple iteration algorithm to compute the approximate solution of the heat equation 

2
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where  is a heat value at the point x and in time t, ),( xtu
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dimension respectively. The condition that
2
1 ≤r  is called the stability condition and, if not satisfied 

can cause the solution to diverge. Finding every subsequent time is simply a case of iterating through 

the equation finding each value from the three corresponding values in the previous time. The code 

for the program demonstrating the simple iteration scheme is in the TABLE III.  The code 

demonstrates the heat equation calculated using the simple iteration method for  and 

. 

10 ≤≤ x

3.00 ≤≤ t

TABLE III.  SIMPLE ITERATION SOLUTION OF HEAT EQUATION BEFORE CUSTOMIZATION 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

#include <stdio.h> 
#include <math.h> 
 
#define r      0.5 
#define dx   0.05 
#define dt    dx*dx*r 
 
#define X0  1 
#define XN   (X0 / dx) 
#define T0  0.3 
#define TN   (T0 / dt) 
 
void simpleiteration(void)           /* Numerical solution of heat equation */ 
{ 

int x,t;                            /* Counters in array for solution */ 
double u[TN+1][XN+1]; 
 
for (t=1;t<=TN;t++)       /* Boundary values:  u(t,0)=u(t,1)=0 */ 
u[t][0]=u[t][XN]=0; 
 
for (x=0;x<=XN/2;x++)        /* Initial values */ 
u[0][x]=2*x/XN; 
for (;x<=XN;x++)       /* Initial values */ 
u[0][x]=2-2*x/XN; 
 
for (t=0;t<=TN-1;t++)       /* Explicit difference equation approximation */ 
for (x=1;x<=XN-1;x++) 
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28 
29 

u[t+1][x]=r*u[t][x-1]+(1-2*r)*u[t][x]+r*u[t][x+1]; 
} 
 

The values of “r” (in line 4) and “dx” (in line 5) can both affect the space-quality trade-off. With a 

larger “r” or “dx”, the algorithm generates an approximate solution of the heat equation with less 

accuracy but the solution use less memory space. With a smaller “r” or “dx”, the effect is reversed. 

3. COMPONENT PARAMETERIZATION PROCESS 

First, consider how to manually customize a component to satisfy different QoS requirements. The 

designer first needs to go through the source code of the component and identify all of the statements 

that can impact the QoS trade-offs. Then the designer needs to modify these statements to adapt the 

component’s QoS trade-offs. These modifications should not change the component’s functional 

capabilities. The impacts of these modifications on the components’ QoS trade-offs are measured and 

recorded. Finally, when the designer actually uses the components to develop a system, he can 

determine a specific modification to customize the components according to the recorded 

measurement data and the QoS requirements the component should satisfy. There are three major 

weaknesses inherent in this manual approach. First, it is time consuming to manually go through any 

reasonable size components, especially for designers who are not familiar with the components. 

Second, designers may miss statements that can impact QoS trade-offs. Third, designers need 

substantial training before they are experienced in identifying the numerous kinds of potential 

statements that can impact QoS trade-offs. These weaknesses motivate us to develop a semi-

automated approach that can aid in the systematic identification and modification of statements to 

achieve QoS trade-offs.  

When transforming the manual process to an automated approach, a rule base is a flexible and 

extensible way to implement the process. Since there may be many potential rules for configurable 

parameter identification, it is not easy to identify a complete set of rules a-priori. New rules can be 

introduced conveniently with a rule base. Furthermore, different rules may be applicable for different 

application domains. As a result, the users may have different QoS tradeoff goals and may wish to 

apply specific sets of rules for individualized identification processes. The use of the rule base can 
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provide flexibility in rule set selection, as well as help to organize and manage the rules. 
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Figure 1. Overview of component parameterization technique. 

 The rule-based component parameterization process presented here is divided into three steps 

(refer to Figure 1). The first step is to identify configurable parameters in a non-QoS-R component 

that can be parameterized to achieve QoS tradeoffs. The second step is modifying the non-QoS-R 

component using the delta files according to each configurable parameter identified so that the 

component becomes a QoS-R component. These QoS-R components can also be reconfigured later to 

satisfy different QoS requirements of the system under development. Finally, QoS data of each QoS-

R component under different configurations are collected and stored in the repository. These QoS data 

record the impact of configurable parameters to QoS properties and provide necessary information for 

component retrieval and composition analysis in future system development.  

3.1. Configurable Parameter Identification 

The first step of configurable parameter identification process is to analyze the source code of a 

component. The analysis is based on the grammar of the programming language. After the first step, 

the source code of the component is converted to a parse tree. This step is quite similar to what the 

front end of a traditional compiler does. It can be divided into three passes, which communicate with 

one another. The process model is shown in Figure 2. The first pass is the preprocessor which does 

macro substitutions, strip comments from the source code, etc. The preprocessor in the configurable 
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parameter identification process is slightly different from the preprocessor of a C compiler. The 

difference exists in the handling of the macro definition. Definitions are indicated by keyword 

“define” in C language. They consist of a name for the macro being defined and a body, forming its 

definition. If the body of the definition is a single number, then the preprocessor of configurable 

parameter identification treats the macro as a special case of constant variable declaration and does 

not do macro substitutions. This approach is necessary for identifying loop control variable in 

Newton’s example. Using the preprocessor of the compiler, after preprocessing, the “epsilon” in 

Newton’s example is substituted by the value “0.001”. It is not known whether “0.001” is from macro 

definition or is only a constant in later phase. Hence, “epsilon” cannot be identified as a loop control 

variable. The second pass in the process consists of lexical analysis and syntactic analysis. It translates 

the C source code into an abstract syntactic tree (AST). The last pass extracts group of facts from AST 

based on fact analysis rules. These facts are then analyzed based on configurable parameter 

identification rules and the potential configurable parameters are identified. 

The configurable parameter identification process is not finished after the third pass. The results 

from the third pass needs to be checked by software designers who are domain experts. Some 

identified configurable parameters which are not real configurable parameters in the specific 

component’s context or not useful for the user are discarded. 

(Pass 1) 
Preprocessor 

Lexical 
analysis 

Syntax 
analysis 

Fact generation Fact analysis

Source code 

(Pass 2)

(Pass 3)

 

Figure 2. Process of configurable parameter identification. 

3.2. Delta file 

A QoS-R component, as defined in Section 3, is the combination of the original component and a 

delta file. The delta file stores a set of adaptation specifications. Each adaptation specification 

includes a configurable parameter’s name, measured QoS data, and an edit script.  
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The edit script specifies how to parameterize a configurable parameter in the form of deltas, i.e., as 

differences between files. The edit script consists of edit commands which have the form  “n1 n2 

command text”. Here, “n1” and “n2” represent lines in the file. Identical pairs, where n1=n2 are 

abbreviated as a single number n1. The “command” can be one of three command types: append, 

delete, and replace. The append command accepts zero or more lines of text and appends it after the 

addressed line. The delete command deletes addressed lines. The replace command deletes the 

addressed lines and accepts zero or more lines of text that replaces these lines. The “text” is zero or 

more lines of text used in the append and change commands.  

The configurable parameters are classified into two categories according to the ways they are 

customized. The first category includes configurable parameters whose customizations only require 

change of their initial values. Such category includes the loop control variable and the array size 

parameter. The second category includes configurable parameters whose customizations require 

changes to some code segments, such as random number generator example given in Section 2. For 

the first category, the QoS data records the relationship between the initial value of the configurable 

parameter and the QoS attributes it impacts. This relationship is generally expressed by functions 

which are acquired at QoS data collection step. For example, the delta file of Newton’s root 

computation program may have two functions. One function describes the relationship between 

running time of the component and the ‘epsilon’ value. Another function describes the relationship 

between precision level of the root value and the ‘epsilon’ value. For the second category, the QoS 

data records the QoS attribute values corresponding to all possible customizations on the component. 

These data are also acquired at QoS data collection step. The QoS data defined in a delta file is used at 

the time of component customization. The actual value of a configurable parameter or the 

customization scheme is determined after analyzing QoS data and QoS requirements. For example, 

given the expected running time and precision level of the Newton’s root computation program, two 

‘epsilon’ values can be calculated from two functions defined in QoS data. Then the average of these 

two values is a good choice to customize the component.  

The delta file can be generated semi-automatically from identified configurable parameters. 

Generating the delta file for a component which only has loop control variable configurable parameter 
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is straightforward. The delta file generator can simply use the line information stored together with 

the variable in the symbol table to write delta file. However, how to automatically generate delta file 

for a component which has configurable parameters like random number generator example is a more 

challenging task. It requires that the delta file generator can analyze the program structure and logic of 

the component and modify its structure and logic without changing the functional capability of the 

component. Future research is going to address this problem. 

3.3. QoS Data Collection 

The impact of the configurable parameters to QoS attributes should be measured and stored in the 

repository in order to allow the proper setting of the configurable parameters for a given execution 

environment and system requirement. The set of QoS attributes measured for each configurable 

parameter is application dependent. The units of these QoS attribute measurements also depend on the 

application. There are three kinds of QoS attribute measurements which are corresponding to three 

kinds of trade-offs: 1) Running time, measured in microseconds, milliseconds, CPU cycles, etc. 2) 

Memory usage, measured in bytes, kilobytes, etc. 3) Output quality, measured in accuracy or 

precision level, etc. For each component with configurable parameters, two elements need to be 

determined before QoS data collection activity starts. One element is the parameter space which 

defines the set of values which is reasonable for a configurable parameter. Another element is the 

input domain which defines the complete set of potential inputs of the component. Typically, it is not 

practical - or even possible - to test the component with all potential inputs. Hence, the idea of the 

equivalence class test is used here to solve the difficulty. The whole input domain is partitioned into a 

number of equivalence classes. A single input is selected from each equivalence class with 

assumption that all inputs in the same equivalence class generate roughly same relationship between 

configurable parameter and QoS attributes. The situation for parameter space is similar. The 

parameter space is partitioned into a number of equivalence classes for a given input. A single value is 

selected from each equivalence class and the resulted group of values is used as the test values for the 

input. The test results of the group of values are used to construct an approximate function which 

describes the impact of the configurable parameter to QoS attribute for the given input. Some QoS 
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data collection activities require the execution of component (e.g., running time measurement). 

However, most components cannot execute standalone. Therefore, a simple driver needs to be 

constructed manually to trigger the component. The driver is also stored in repository with the 

component. 

4. RULE-BASED CONFIGURABLE PARAMETER IDENTIFICATION PROCESS 

Configurable parameter identification is an important and challenging part of the parameterization 

process. The rule-base plays an important role during the identification process. Two sets of rules are 

defined to assist the identification process, one set for fact analysis and one set for configurable 

parameter identification. The fact analysis rules are used during analysis of the source code of a 

component. These rules extract syntactic and semantic facts of grammar construct from the program. 

After the entire program is scanned and associated facts are extracted, then the configurable parameter 

identification rules are used to evaluate every variable and constant identifier declared in the program 

to check if a variable or constant is a specific kind of configurable parameter. The configurable 

parameter identification rules are stored in the rule base to facilitate future updates and extensions. 

The rule base provides a flexible and extensible approach to update and manage the rules. Decoupling 

the fact analysis rules and configurable parameter identification rules also allows the configurable 

parameter identification rules to be independent of the programming languages in use, thus, can be 

easily adapted to support multiple languages. The fact analysis rules do not need to be stored in the 

rule base since they rarely need to be updated after they are defined, unless the target programming 

language gets updated. These rules are embedded into the fact generation module in the tool support. 

4.1. Fact Analysis Rules 

The basic facts in the program can be classified into identifiers, statements, and expressions. 

Identifiers are the basic data objects of a program. Some of them may be configurable parameters. For 

example, a static or global array can affect memory requirement. The space allocated to a static or 

global array is not released until the execution of the program is finished. If the static or global array 

is replaced with a local array declared in a function, then the memory space is reclaimed after the 
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execution of the function is finished. However, since a local array cannot save the array’s values 

across function’s execution, the array's values are reconstructed every time at the beginning of a 

function’s execution. This increases the program’s execution time. An array is defined by identifier in 

a programming language. An identifier can also affect the execution time of a program. For example, 

in most cases, how many times the loop body of a loop statement is executed is controlled by the loop 

guard condition (break, goto statement, etc. can affect it). A loop’s guard condition is generally a 

comparison expression. The variables and/or constants appear in the comparison expression decides 

the comparison result and hence decides the execution of loop body. A fact is used to express that an 

identifier is of a certain type. More specifically, constant(d) and variable(d) indicate that the identifier 

d is a constant or variable. array(d, e) indicates that identifier d is an array of size e. Note here e may 

be a number or expression. static(d) indicates that the storage type of identifier d is static. global(d) 

indicates that the identifier d is declared outside of all functions. A detailed list of facts for identifiers 

can be found in [23]. 

 A statement is the basic execution unit of a program. A variety of different kinds of statements 

need to be identified in a program. For example, a variable’s value is generally changed in assignment 

statement. Hence, assignment statements need to be identified in a program in order to know where a 

variable’s value is changed. Another example is a loop statement. Loop statements dominate the 

execution time of a program. They are potential statements that can affect the program’s execution 

time versus quality or space and also need to be identified. A fact is used to express that a statement is 

of a certain type. More specifically, assignment-statement(s, lhs, rhs) indicates that statement s is an 

assignment statement where lhs and rhs are the left hand side expression and the right hand side 

expression of s respectively. A loop-statement (s, c, b) indicates that statement s is a loop statement 

(i.e., s is one of for, while, do while statement) where expression c is the loop condition of s and 

compound statement b is the loop body of s. 

An expression consists of identifiers and operators and is the constituent element of the statement. 

During configurable parameter identification, it is necessary to know where an expression appears and 

what type of an expression it is. For example, a variable’s value can also be changed in unary 

increment or unary decrement expression (i.e., an expression such as “i++”) in addition to assignment 
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statement. Here the unary operator “++” and “– –“ can appear before or behind the variable. Hence, 

the information about which variable’s value is changed can be got from the unary increment or unary 

decrement expression. Another example is comparison expression. How many times the loop body of 

a loop statement is executed is controlled by the loop guard condition. This loop guard condition is 

generally a comparison expression. A fact is used to express that an expression is of a certain type. 

More specifically, expression(e) indicates that e is a general expression. unary-inc-expression(e) and 

unary-dec-expression(e) indicate that the expression e is a unary increment or unary decrement 

expression. Note the case which unary operator appears before or after the variable is not 

distinguished. A comparison-expression(e, lhs, rhs) indicates that the expression e is a comparison 

expression (i.e., e is one of less than, greater than, less than or equal, greater than or equal, equal, not 

equal expression). Here lhs and rhs are the left hand side expression and the right hand side 

expression of e respectively.  

A fact is also defined to express the relationship between identifiers, expressions and statements. 

We use inside(d, e) to express that grammar construct d appears in grammar construct e. Note here d 

may be a constant, variable or statement, and e may be an expression, statement or a compound 

statement. 

It is unnecessary here to show the complete facts defined in the technique. A detailed list of facts 

can be found in [23]. The defined facts cover all the terminal and non-terminal symbols in the 

grammar definition of ANSI C. Currently not all of these facts are used in configurable parameter 

identification rules. However, these facts may be used in the future when the set of configurable 

parameter identification rules are extended. 

4.2. Configurable Parameter Identification Rules 

A set of configurable parameter identification rules is defined to identify different kinds of 

configurable parameters in a program. The configurable parameter identification rules use the basic 

facts extracted from the program by fact analysis rules as premises to generate conclusions. These 

conclusions express if a constant or variable in the program is a configurable parameter.  

Here three examples of configurable parameters are presented: loop control variable, static-or-

 17



global array and array size parameter. Loop control variables generally impact the program’s time-

quality trade-off. This conclusion comes from the observation of numerical analysis examples studied 

so far. A larger loop control variable can improve the result’s quality at the cost of increasing program 

execution time. A smaller loop control variable reverses the effect. The rule for identifying a loop 

control variable is as follows: for each loop statement, if the guard condition of loop statement is a 

comparison expression with a constant value on left hand side of inequality and some variables on 

right hand side of inequality (or vice versa) and if in body of loop there exists the same variables on 

left hand side of assignment statement, then the constant value on one side of inequality is a loop 

control variable. This can be defined as a predicate loop-control-variable(d): 

(∀d ∃d1 ∃s ∃c ∃b ∃lhs1 ∃rhs1 ∃s1 ∃lhs2 ∃rhs2) 
 ( loop-control-variable(d) ⇒ 

constant(d) ∧  
variable(d1) ∧  
loop-statement(s, c, b) ∧  
comparison-expression(c, lhs1, rhs1) ∧  
(inside(d, lhs1) ∧  
inside(d1, rhs1) ∨  
inside(d1, lhs1) ∧  
inside(d, rhs1)) ∧  
assignment-statement(s1, lhs2, rhs2) ∧  
inside(s1, b) ∧  
inside(d1, lhs2) ) 

A rule is also defined to identify static or global array which may impact time-space trade-off. The 

rule for identifying a static or global array is as follows: if an identifier d is an array of size n which is 

larger than k and the storage type of the array is static or the array is declared outside of all functions 

and if there exists the same array d on both sides of an assignment statement, then the identifier d is a 

static or global array. Note here k is a threshold to control how large of an array’s size can have 

significant impact on the program’s memory requirement property. The rule can be defined as a 

predicate static-global-array(d): 

(∀d ∃n) ( static-global-array(d) ⇒ 
variable(d)∧ 
array(d, n)∧ 
(n>k)∧ 
(static(d)∨ 
global(d))∧ 
assignment-statement(s, lhs, rhs)∧ 
inside(d, lhs)∧ 
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inside(d, rhs) )  

A rule is also defined to identify array size parameter which may impact Space-quality trade-off. 

The rule for identifying an array size parameter is as follows: if an identifier is an array and the size of 

the array is an expression which includes a constant identifier, then the constant identifier is array size 

parameter. The rule can be defined as a predicate array-size-parameter(d): 

(∀d ∃d1 ∃e) ( array-size-parameter(d) ⇒ 
constant(d)∧ 
variable(d1)∧ 
array(d1,e)∧ 
expression(e)∧  
inside(d, e) ) 

4.3. Example 

Newton’s algorithm is used to illustrate how the fact analysis rules and configurable parameter 

identification rules are used. The fact analysis rules are applied first during the top down scan of the 

program (refer to Figure 3). The grammar construct facts extracted are summarized as follows. 

• The fact that identifier epsilon is a constant is obtained from line 2 “#define epsilon 0.001”. This is 

expressed by constant(epsilon).  

• The fact that identifier xnew is a variable is obtained from line 6 “float xold, xnew;”. This is 

expressed by variable(xnew).  

• The fact assignment-statement(s1, l2, r2) is obtained from line 16, “xnew = xold–

(f(xold))/(df(xold));” which is a assignment statement. Here s1 refers to the statement. l2 is the left 

hand side expression “xnew” of s1 and r2 is the right hand side expression “xold– 

(f(xold))/(df(xold))”.  

• The fact loop-statement(s, e, b) is derived from the code “do {…} while (fabs(xold–

xnew)>epsilon)” between line 12 and line 18, which as a whole is a do-while statement. Here s 

refers to this do-while statement, e is the loop guard condition “fabs(xold–xnew)>epsilon” and b 

corresponds to the compound statement between keywords “do” and “while”.  

• The fact comparison-expression(e, l1, r1) is derived from line 18, the loop guard condition 

“fabs(xold–xnew)>epsilon”. Here e refers to the condition. l1 refers to the left hand side expression 

“fabs(xold–xnew)” of e and r1 corresponds to the right hand side expression ”epsilon” of e.  

 19



Additionally, some relationship facts are also extracted and shown as follows.  

• The assignment statement s1 is a statement within compound statement b, hence the fact inside(s1, 

b).  

• The identifier xnew appears in the left hand side expression l2 of the assignment statement s1. The 

fact inside(xnew, l2) is obtained from it.  

• The identifier epsilon appears in the right hand side expression r1 of the loop guard condition e. 

The identifier xnew appears in the left hand side expression l1 of e. Thus, the facts inside(epsilon, 

r1) and inside(xnew, l1) are obtained. 

 

#include ... 
#define epsilon 0.001 
typedef pfunc* float(float);  
float Newton (pfunc f, pfunc df, float start) 
{   float xold, xnew;    
int num; 
 
xold = start; 
xnew = xold;    
num = 0;  
do 
{      xold = xnew;  
if ( df(xold) == 0 )  
      return (divide_by_zero); 
xnew = xold – (f(xold)) / (df(xold)); 
num++; 
} 
while ( fabsf(xold–xnew) > epsilon );  
return (xnew); 
} 

LoopOp

StmtOp GtOp 

StmtOp UnaryIncOp

… AssignOp ID 
‘num’

RoutineCallOp ID 
‘epsilon’

ID 
‘fabs’ 

SubOp 

ID 
‘xold’ 

ID 
‘xnew’ 

…
…

constant(epsilon) 
variable(xnew) 
inside(epsilon, r1) 
comparison-expression(e, l1, r1) 
loop-statement(s, e, b) 
assignment-statement(s1, l2, r2) 
inside(xnew, l1) 
inside(s1, b) 
inside(xnew, l2) 

                            loop-control-variable(d) iff 
constant(d) ∧ variable(d1) ∧ loop-statement(s, c, b) ∧   
comparison-expression(c, lhs1, rhs1) ∧  (inside(d, lhs1) ∧  
inside(d1, rhs1) ∨ inside(d1, lhs1) ∧ inside(d, rhs1)) ∧  
assignment-statement(s1, lhs2, rhs2) ∧    inside(s1, b) ∧  
inside(d1, lhs2). 

‘epsilon’ is 
configurable 

parameter 

Source Code Parse Tree 

Identification Rule 

Identification 
Result 

 

Lexical 
analysis 

Facts 

(Pass 1) 
Preprocess 

Syntax 
analysis 

(Pass 3) 
Fact generation 

(Pass 3) 
Fact analysis 

(PASS 2) 

 
Figure 3. Facts from the Newton’s example. 

Note that facts described above do not represent the complete set of facts that can be obtained from 

Newton’s example. For example, the fact variable(num) from line 7 “int num;” can also be obtained. 

However, the above facts are enough to derive a conclusion from the configurable parameter 

identification rules in this example.  

When the fact extraction finishes, the configurable parameter identification rules are used to 
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analyze extracted facts and generate conclusions. The first rule used is the loop-control-variable rule. 

When the rule is applied to on the identifier epsilon, the rule finds that all the premises for the rule are 

true and it gives the conclusion that epsilon is a loop control variable. The second rule applied is the 

static-global-array rule. However, since no array variables exist in the example, the evaluation fails 

on all identifiers. 

5. TOOL SUPPORT 

A complete tool set to cover the whole process of component parameterization is being developed. 

The tool set consists of three modules which correspond to three step approach of component 

parameterization technique respectively. The parameter identifier is the major tool for the parameter 

identification process. The component customization module consists of two tools, the delta file 

generator and the component adaptor. Since the delta file generator needs to access the parse tree and 

symbol table, it is integrated into the parameter identifier. The configurable parameters selected by the 

parameter identifier are passed to the delta file generator and the delta file generator then generate the 

specific delta file format; the delta file is stored in the repository where it is associated with its 

original component. The function of component adaptor is to generate a new version of the 

component based on a specific set of values for the configurable parameters in a component. The set 

of values can be generated by an analyzer or provided by the user. 

When a component is used to compose a system, the settings of the configurable parameters are 

going to depend on the execution environment (static as well as dynamic), the QoS requirements of 

the application system, and the parameter settings of other components. The Composition Analyzer in 

ORES is used to perform the analysis and determine the parameter settings. Tools supporting test and 

QoS Data collection for each component are highly desired to facilitate the composition analysis. The 

tools in the QoS Data Collection module include the parameter analyzer and input data generator. 

Component specification and the QoS analysis objectives should be provided as inputs to the QoS 

data collection process. Each set of parameter settings generated by the parameter analyzer is sent to 

the component adaptor to generate a new version of the component. The new version is then invoked 

using the input data generated by input data generator and its QoS data are collected. The collected 
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QoS data are also stored in the repository for future use. 

Currently, the parameter identifier which supports the partial automation of configurable parameter 

identification is being developed. The tool consists of three parts, the GUI, engine, and fact analyzer. 

The GUI interacts with the user directly, accepts the user’s input and displays the output. The engine 

parses the source code of a component and extracts facts from its grammar constructs. The fact 

analyzer analyzes these facts and identifies potential configurable parameters of the component. The 

system design in UML is shown in Figure 4. 

GUI

Engine

Preprocessor Lexical
Analyzer

Fact GeneratorSyntactic
Analyzer

Fact Analyzer

 

Figure 4. System design of the parameter identifier. 

The tool is programmed using a combination of Java, C and Prolog. The GUI is implemented in 

Java. The Engine is implemented in C. The Fact Analyzer is implemented in Prolog. Furthermore, 

Lex and Yacc are also used to develop the engine. This design decision comes from two 

considerations: (1) GUI development. Using Java to develop GUI is a convenient, fast approach; (2) 

The portability. The tool set needs to be ported easily to other platforms such as Windows and 

Macintosh. Java is more portable in comparison to other languages. Furthermore, the C code and 

Prolog code are also convenient to port when they only use ANSI features.  

The main functions of the Parameter Identifier are similar to a front end of a conventional compiler: 

first performs preprocess on the component, then performs lexical and syntactic analysis and builds 

the parse tree for the component. These functions are partly implemented by using Lex, Yacc and 

standard C grammar. 
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5.1. Preprocessor, Lexical Analyzer and Syntactic Analyzer 

The preprocessor uses a modified preprocessor for the C compiler. The modification exists in 

macro definition. For macro definitions which have the form of ‘#define NAME number” where 

NAME is the macro name and number is a constant value, the preprocessor of parameter identifier do 

not process them and leave them to lexical analyzer and syntactic analyzer. The lexical analyzer is 

generated from Lex. The syntactic analyzer is generated from Yacc.  

5.2. Fact Generator 

The result from syntactic analyzer is an abstract syntax tree (AST). A binary tree data structure is 

used to express the AST. Each node in the AST corresponds to a grammar construct (e.g., identifier, 

expression, and statements) in the program and is assigned a unique number as reference. The facts 

are then generated from these nodes by recursively traversing the AST. The facts are expressed as 

terms of the Prolog language. For example, the term loopOp(x1, x2, x3) expresses the fact that node 

x1 is a node corresponds to a loop statement and node x2, x3 are node x1’s left child node and right 

child node respectively. The left child node of the loop statement node corresponds to the loop 

statement’s loop guard condition in AST. The right child node corresponds to the loop body. Note x1, 

x2, and x3 are the unique numbers assigned to each of these three nodes (this convention is used in 

other terms). The term loopOp(x1, x2, x3) corresponds to loop-statement(s, c, b) defined in fact 

analysis rules. The term idnode(x1, id, type) is used to express that node x1 is a node denotes an 

identifier where id is the string literal of the identifier and type is  either “const” or “var”. The term 

idnode(x1, id, type) corresponds to constant(d) or variable(d) defined in fact analysis rules depends 

on type. A node corresponds to comparison expression is expressed by one of several terms depending 

on the type of comparison operator. Such terms include gtOp(x1, x2, x3), ltOp(x1, x2, x3),  geOp(x1, 

x2, x3), and leOp(x1, x2, x3). Note here node x1 is the node corresponds to a comparison expression 

and x2, x3 are node x1’s left child node and right child node. The left child node of the comparison 

expression node corresponds to the left hand side expression of the comparison expression in AST. 

The right child node corresponds to the right hand side expression of the comparison expression. 

These four terms together correspond to comparison-statement(e, lhs, rhs) defined in fact analysis 
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rules. A node corresponds to assignment statement is expressed by term assignOp(x1, x2, x3). Here 

node x1 is the node corresponds to an assignment statement and x2, x3 are node x1’s left child node 

and right child node respectively. The left child node of the assignment statement node corresponds to 

the left hand side expression of the assignment operator in AST. The right child node corresponds to 

the right hand side expression. The term assignOp(x1, x2, x3) corresponds to assignment-statement(s, 

lhs, rhs) defined in fact analysis rules.  Moreover, a term childNode(x1, x2) is defined to express the 

parent-child relationship between nodes in AST. This term means node x1 is either left child node or 

right child node of node x2. The term childNode(x1, x2) together with the predicate ancestor(x1, x2) 

defined in fact analyzer corresponds to inside(d, e) defined in fact analysis rules. 

Note here only part of the terms defined in the tool is shown. The complete set of terms covers the 

entire set of facts defined in fact analysis rules. However, show the complete set of terms occupies 

much space and gives no more help to understand the rule-base. Hence, this paper only uses the subset 

to give the reader a sense of the terms and to illustrate how fact analyzer is implemented. 

5.3. Fact Analyzer 

The configurable parameter identification rules are implemented as Prolog predicates. These 

predicates are based on the terms defined in fact generator. For example, the identification rule 

corresponding to predicate loop-control-variable is defined as the following Prolog predicate: 

loop_control_variable(ConstId):- 
 loopOp(_, TestNode, LoopBodyNode), 
 idnode(ConstCode1, ConstId, const), 
 idnode(VarCode1, VarId, var), 
 (gtOp(Node, LeftNode, RightNode); 
 ltOp(Node, LeftNode, RightNode); 
 geOp(Node, LeftNode, RightNode); 
 leOp(Node, LeftNode, RightNode)), 
 ancestor(Node, TestNode), 
 (ancestor(VarCode1, LeftNode), 
 ancestor(ConstCode1, LeftNode)); 
 (ancestor(VarCode1, RightNode), 
 ancestor(ConstCode1, RightNode)), 
 assignOp(AssignNode, Left, _), 
 idnode(VarCode2, VarId, var), 
 ancestor(VarCode2, Left), 
    ancestor(AssignNode, LoopBodyNode). 

Here ancestor is an ancillary predicate to express the recursive inside rule.  
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ancestor(X, Y):- inside(X, Y). 
ancestor(X, Y):- inside(Z, Y), ancestor(X, Z). 

The identification rules in Prolog predicates are stored in a separate file and implemented as an 

independent Prolog program. This prolog program constitutes the fact analyzer as well as the rule 

base. The addition and update of the rule base is accomplished by simply adding new predicates or 

modify existing predicates in this file. The modification of this file does not affect other modules (i.e., 

GUI, engine) in the parameter identifier. This provides great flexibility and extensibility to the tool. 

During the execution of the parameter identifier, this prolog program is loaded dynamically and 

analyzes the extracted facts from AST. The analysis results are returned to the GUI part.  

6. APPLICATION OF THE COMPONENT PARAMETERIZATION TECHNIQUE 

An example scenario using the parameter identifier tool is described here. During the execution, the 

user first needs to configure the path of the executable program and then opens the C source file of a 

component. Before executing the request to identify configurable parameters, the user can configure 

which configurable parameter identification rules they want to use. This significantly reduces the 

execution time in comparison to selecting all the rules to use. If the user wants to handle time, space 

and quality trade-offs at the same time, then he/she can choose to use all of the rules. At last, the user 

executes “identifying configurable parameters” menu item and gets the identification results. The 

identification result is shown in the output window. Furthermore, the line number where the 

configurable parameter declared is also shown to enable user locate the configurable parameter 

quickly. For each identified configurable parameter, the tool also provides a recommendation for the 

user on how to utilize the identification result to customize the component. 

Three examples given in Section 3 are used here to validate the component parameterization 

technique and the tool support (currently the parameter identifier). The component parameterization 

result on Newton’s algorithm is shown in Figure 5. The parameter identifier identifies loop control 

variable “epsilon” in Newton’s algorithm and highlights the corresponding line in the code window.  

Moreover, the parameter identifier provides a suggestion on how the configurable parameter affects 

the time-quality trade-off.  
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Figure 5. Parameter identification result of Newton’s example. 

A manual customization result of the Newton’s algorithm based on this suggestion is shown in 

TABLE IV.  The modification is on line 2 where the initial value of “epsilon” is changed to 0.000001 

in order to favor precision over running time. Note here the initial value is chosen arbitrarily to show a 

possible customization. The chosen initial value is decided by the QoS requirement of target system 

and QoS data collection result on this component during actual system development. The other two 

examples also use the same way to demonstrate the customization. 

TABLE IV.  NEWTON’S ALGORITHM AFTER CUSTOMIZATION 
  1 
  2 
  … 

#include ... 
#define epsilon 0.000001 
… /* same as original code */ 

The component parameterization result on random number generator is shown in Figure 6. The 

parameter identifier determines that the array variable “mt” is a configurable parameter of type static-

global-array. Moreover, the parameter identifier shows a suggestion on how the configurable 

parameter affects the time-space trade-off.  

A customization result based on this suggestion is shown in TABLE V.  Current seed values are 

stored in a local array mt[N] declared in function genrand() at line 31. The initial seed is store in a 
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static variable mt_seed in function sgenrand() at line 25. The modified genrand() computes the values 

of the array mt[N] first (line 39-41) before computing the random number from mt[N]. For every N 

calls, the initial seed stored in static variable mt_seed is updated (line 42-55). 

  

Figure 6. Parameter identification result of random number generator example. 

TABLE V.  RANDOM NUMBER GENERATOR AFTER CUSTOMIZATION 
1 
… 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
… 
54 

#include <stdio.h> 
…. 
static unsigned long mt_seed; /* the initial seed  */ 
static int mti=N+1; /* mti==N+1 means mt[N] is not initialized */ 
 
/* initializing the array with a NONZERO seed */ 
void sgenrand(unsigned long seed) 
{ 
    /* setting initial seeds to mt[N] */ 

mt_seed = seed & 0xffffffff; 
mti = N; 

} 
 
unsigned long genrand() 
{ 
    unsigned long mt[N]; 
    unsigned long y; 
    static unsigned long mag01[2]={0x0, MATRIX_A}; 
    /* mag01[x] = x * MATRIX_A  for x=0,1 */ 
 
    if (mti == N+1)   /* if sgenrand() has not been called, */ 
        sgenrand(4357); /* a default initial seed is used   */ 
    int kk; 
    mt[0]= mt_seed; 
    for (kk=1; kk<N; kk++) 
        mt[kk] = (69069 * mt[kk–1]) & 0xffffffff; 
    if (mti == N) { /* generate N words at one time */ 
        generate new values of mt[0..N–1] 
        mt_seed = mt[0]; 
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55 
56 
57 

    } 
    …  
} 

The parameterization result on solving heat equation example is shown in Figure 7. The parameter 

identifier identifies “r” and “dx” as configurable parameters. Moreover, the parameter identifier 

shows a suggestion on how the configurable parameter affects the Space-quality trade-off. 

  

Figure 7. Parameter identification result of solving heat equation example. 

A customization result based on this suggestion is shown in TABLE VI.  The modification is on 

line 4 where the initial value of “r” is changed to 0.2 in order to favor precision over memory.  

TABLE VI.  SIMPLE ITERATION SOLUTION OF HEAT EQUATION AFTER CUSTOMIZATION 
1 
2 
3 
4 
5 
6 

#include <stdio.h> 
#include <math.h> 
 
#define r      0.2 
#define dx   0.05 
… /* same as original code */ 

The above customization solutions show only one of the possible solutions to accomplish their 

trade-offs. There may exist other customization solutions for these examples. 
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7. CONCLUSION 

This paper presents a component parameterization technique which aims at customizing non-QoS-R 

components into QoS-R components. These QoS-R components can be used to build embedded 

systems with different QoS requirements. They can also be used to develop adaptive embedded 

systems which are working in dynamically changing environment.  

The tool support developed for the component parameterization technique enables software 

engineers to carry out the component parameterization process semi-automatically. The rule based 

approach introduced in configurable parameter identification provides flexibility and extensibility. 

Software engineers can conveniently add, delete and modify rules to achieve the desired identification 

goals. Moreover, the rule based approach supports module separation and improves the 

maintainability of the Parameter Identifier tool support. 

Automated configurable parameter identification may have some limitations. Generally, it is 

difficult for the configurable parameter identification tool to identify all the desirable configurable 

parameters of a component. For example, the tool may identify configurable parameters that are not 

useful or not desired but miss some important configurable parameters. The tool may also identify 

some configurable parameters that are desired in term of the trade-offs but not useful in the current 

application. Such problems can be partly improved by introducing more rules and adding more 

specific conditions in each rule. Furthermore, the component parameterization technique requires that 

the source code of a component is available. For a component in binary code (e.g., a dynamically-

linked shared library), the technique cannot be applied.  

There are several research directions following this work. First, a large number of embedded 

software source code examples are going to be collected. The examples are going to be investigated 

and analyzed to identify additional configurable parameter identification rules and construct a 

comprehensive rule base. Furthermore, these examples are going to be used as test cases for validation 

of the rule base and tool support to validate the effectiveness of the approach. Second, the problem of 

collecting and effectively using QoS data to improve the component parameterization process needs 

to be investigated. The research problem here involves defining what QoS data is collected, how to 
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store the QoS data together with associated component, how to make use of these QoS data during 

composition analysis, and how to match the composition analysis result with each configuration of the 

QoS-R component. As this work progresses, the tool support is also going to be extended. 
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