
Generating Embedded C Code
for

Digital Signal Processing

Master of Science Thesis in Computer Science - Algorithms, Languages and Logic

Mats Nyrenius
David Ramström

Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, May 2011

The Authors grant to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet. The Authors warrant that they are the
authors to the Work, and warrant that the Work does not contain text, pictures or
other material that violates copyright law.

The Authors shall, when transferring the rights of the Work to a third party (for ex-
ample a publisher or a company), acknowledge the third party about this agreement.
If the Authors have signed a copyright agreement with a third party regarding the
Work, the Authors warrant hereby that they have obtained any necessary permis-
sion from this third party to let Chalmers University of Technology and University
of Gothenburg store the Work electronically and make it accessible on the Internet.

Generating Embedded C Code for Digital Signal Processing

Mats Nyrenius
David Ramström

c© Mats Nyrenius, May 2011
c© David Ramström, May 2011

Examiner: Mary Sheeran
Supervisor at Chalmers: Emil Axelsson
Supervisors at Ericsson AB: Peter Brauer and Henrik Sahlin

Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden May 2011

Abstract

C code generation from high-level languages is an area of increasing interest. This is because
manual translation from specifications to C code is both time consuming and prone to errors.
In this thesis, the functional language Feldspar has been compared to MATLAB (together with
MATLAB Coder) in terms of productivity and performance of generated code.

Several test programs were implemented in both languages to reveal possible differences. The
set of test programs included both small programs, testing very specific properties, as well as
more realistic digital signal processing algorithms for mobile communications. The generated code
was run on two different platforms: an ordinary PC and a Texas Instruments C6670 simulator.
Execution time and memory consumption were evaluated. For the productivity evaluation, four
different areas important to software development were defined. This was followed by reasoning
about the languages in each area, using test programs as examples.

The results show that MATLAB generally performs better. The problems of Feldspar observed
in this thesis, however, are limited to a few details which should be possible to improve. Also,
in some cases Feldspar performed better because of an optimization technique called fusion. The
productivity evaluation showed some interesting differences between the languages, for instance
regarding readability and type safety.

Acknowledgements

We would like to thank the Baseband Research group at Ericsson AB for welcoming us to your
inspiring work environment. Special thanks go to our supervisors Peter Brauer and Henrik Sahlin.
Your help and technical expertise has been of great importance during this thesis.

The same goes for Emil Axelsson, who was our supervisor at Chalmers, and Anders Persson. When
programming in Feldspar, your help with reviewing code and explaining language details has been
invaluable.

We would also like to thank Fredrik Rodin at MathWorks for helping us a lot with MATLAB. You
have helped us by reviewing our code and report, as well as by giving us technical advice.

Finally, we would like to thank our examiner, Mary Sheeran, for all help with the report.

1

Contents
1 Introduction 1

1.1 Background . 1
1.2 Related Work . 2
1.3 Purpose . 3
1.4 Method . 3
1.5 Objectives . 3
1.6 Delimitations . 4

1.6.1 Soft Measures . 4
1.6.2 Fixed-Point Arithmetic and Multi-Core Support 4
1.6.3 Reference Code . 4
1.6.4 Correctness of Generated C Code . 4
1.6.5 Intrinsics . 4
1.6.6 Memory . 5
1.6.7 Survey . 5
1.6.8 Single Assignment C . 5

1.7 Report Structure . 5

2 Languages 6
2.1 Feldspar . 6

2.1.1 Introduction . 6
2.1.2 Working with Feldspar . 7
2.1.3 Libraries . 9
2.1.4 Fusion . 11
2.1.5 C Code Generation . 12
2.1.6 Fixed-Point Arithmetic . 14
2.1.7 Multi-Core Support . 15

2.2 MATLAB . 15
2.2.1 Introduction . 15
2.2.2 Working with MATLAB . 16
2.2.3 MATLAB Coder . 17
2.2.4 Fixed-Point Arithmetic . 19
2.2.5 Multi-Core Support . 19

3 Test Programs 20
3.1 Introduction . 20
3.2 Small Test Programs . 20

3.2.1 Motivation . 20
3.2.2 Test Programs . 21

3.3 DSP Test Programs . 23
3.3.1 Introduction . 23
3.3.2 Demodulation Reference Symbols (DRS) . 24
3.3.3 Channel Estimation (ChEst) . 25
3.3.4 Minimum Mean Square Error Equalization (MMSE EQ) 26

3.4 C Code Generation . 28
3.4.1 Feldspar . 28
3.4.2 MATLAB . 28

4 Hard Measures (Performance) 30
4.1 Method . 30
4.2 PC Benchmark . 31
4.3 TI C6670 Simulator Benchmark . 31
4.4 Input Data . 31
4.5 General Problems . 33

4.5.1 Complex Numbers . 33
4.5.2 Vector as State in the forLoop Function . 33
4.5.3 Memory . 34

2

4.6 Results: Execution Time . 35
4.6.1 BubbleSort . 35
4.6.2 DotRev . 36
4.6.3 SliceMatrix . 37
4.6.4 SqAvg . 38
4.6.5 TwoFir . 39
4.6.6 AddSub, TransTrans and RevRev . 40
4.6.7 Demodulation Reference Symbols (DRS) . 40
4.6.8 Channel Estimation . 42
4.6.9 Minimum Mean Square Error Equalization (MMSE EQ1) 43

4.7 Results: Memory Consumption . 45
4.8 Results: Lines of Generated Code . 46

5 Soft Measures (Productivity) 48
5.1 Method . 48
5.2 Definitions . 48

5.2.1 Maintainability . 48
5.2.2 Naive vs. Optimized . 50
5.2.3 Readability . 50
5.2.4 Verification . 52

5.3 Evaluation . 53
5.3.1 Maintainability . 53
5.3.2 Naive vs. Optimized . 55
5.3.3 Readability . 57
5.3.4 Verification . 61

5.4 Survey . 63
5.4.1 Method . 63
5.4.2 Results . 63

6 Discussion 65
6.1 Fundamental Differences . 65
6.2 Observations from the Hard Measures . 65
6.3 Observations from the Soft Measures . 66

7 Conclusions 68
7.1 The Status of Feldspar . 68
7.2 Feedback to Developers . 68

7.2.1 Feldspar . 69
7.2.2 MATLAB . 69

7.3 Future Work . 70

A Appendix: Code 71
A.1 Small Test Programs . 71

A.1.1 Feldspar . 71
A.1.2 MATLAB . 73

A.2 DRS . 78
A.2.1 Feldspar . 78
A.2.2 MATLAB . 82

A.3 ChEst . 87
A.3.1 Feldspar . 87
A.3.2 MATLAB . 88

A.4 MMSE . 89
A.4.1 Feldspar . 89
A.4.2 MATLAB . 92

A.5 MATLAB Coder Configuration . 94

B Appendix: Results - Execution Time 96
B.1 PC . 96
B.2 TI C6670 Simulator . 97

C Appendix: Survey 98
C.1 Questions . 98
C.2 Answers . 101

List of Abbreviations

3GPP 3rd Generation Partnership Project
ASIC Application-Specific Integrated Circuit
CD Compact Disc
ChEst Channel Estimation
DRS Demodulated Reference Symbols
DRY Don’t Repeat Yourself
DSP Digital Signal Processing
DSPs Digital Signal Processors
EML Embedded MATLAB
Feldspar Functional Embedded Language for DSP and Parallelism
FFT Fast Fourier Transform
FPGA Field-Programmable Gate Array
GHC The Glasgow Haskell Compiler
IDE Integrated Development Environment
IFFT Inverse Fast Fourier Transform
LTE Long Term Evolution
MATLAB Matrix Laboratory
MMSE EQ Minimum Mean Square Error Equalization
PC Personal Computer
SAC Single Assignment C
TI Texas Instruments
TIC64x TMS320C64x Chip Family
TIC6670 TMS320C6670

4

Chapter 1

Introduction

1.1 Background

Digital signal processing (DSP) is the analysis and manipulation of signals in digital form. Usually,
these signals are physical impressions from the real world, such as sound waves and images. Since
there is no way to fully represent the measured data from such a continuous analogue signal
in a computer, one has to sample it into discrete values of time and amplitude to get a digital
representation. This is done using an analogue to digital converter. Then the processing can take
place, which usually involves filtering, measuring or compression. The signal can then be converted
back to an analogue signal using a digital to analogue converter.

DSP has its origin in the 1960’s when digital computers became available. These were very expen-
sive at the time, which made the use of DSP limited to military and governmental applications
such as radar, sonar and seismic oil exploration. In the 1980’s and 1990’s when personal computers
became publicly available, the DSP area broadened significantly and suddenly it became used in
all kinds of commercial applications. Some examples from then until today are voice mail, CD
players, mobile phones, digital music equipment, image processing software and digital television.

DSP algorithms are run on various platforms, often on standard computers, but also frequently
on specialized microprocessors, digital signal processors (DSPs). When speed is a major concern,
field-programmable gate arrays (FPGA) and application-specific integrated circuits (ASIC) might
be used.

In digital signal processing software today, most code is written in low level C, highly optimized
for the specific target platform, due to performance demands. High performance is usually cru-
cial, since many applications, especially in communications, have real-time demands. Writing the
algorithms in C usually works well, but when an application is to be moved to a different target
platform, it might be necessary to rewrite the entire code because of all the optimizations. This
is time consuming and error prone, which makes it a very expensive task. Also, the C code is not
very intuitive to read because of its machine-oriented nature. Heavy use of intrinsic instructions
and other adaptions for specific hardware makes it hard to read and maintain.

The demands on DSP software will probably increase rapidly over the next few years. A reason
for this is the never ending pursuit of higher bit-rates in mobile communications. In order to keep
up with the demands, extensive use of parallel hardware and software is needed. It is hard and
error prone to write such code in C, since the programmer manually has to take care of all details

1

concerning parallelization.

Instead, an intuitive and maintainable high-level language would be preferred for writing the
DSP algorithms. This language could then be compiled into target code for different platforms,
preferably with multi-core support, and without sacrificing performance. However, most DSP
targets today only have C compilers, and it is standard to write the software in C. Efficient code
generation from a high-level language to C code is thus a subject which seems to be of increasing
interest. Below, a few examples of such products are briefly discussed.

Feldspar [1] is a high-level functional programming language targeting DSP applications. Since
it is a functional language, programs in Feldspar usually follow a data-flow programming style
[2], meaning that computations are described as networks of data structure transformations. The
language is a work in progress with objectives of increasing maintainability and portability without
sacrificing performance. Currently, there is an ISO C99 back-end available, as well as limited
support for the TIC64x family, but the intention is to provide back-ends for many DSPs in the
future.

MATLAB (MATrix LABoratory) [3] is a numerical computing environment and high-level pro-
gramming language focused around vector and matrix manipulations. It features a large amount
of built-in functions for many kinds of mathematical calculations, and also has built-in visualization
functionalities for easy data analysis.

MATLAB Coder [4] is a tool for generating C code from MATLAB code, which supports code
generation for many different target platforms. A subset of the MATLAB language is supported
for C code generation [5], including most functionalities needed for algorithm design. This subset
together with a compiler for C code generation was referred to as Embedded MATLAB (EML)
until MATLAB 2011a.

Single Assignment C (SAC) [6] is, like Feldspar, an ongoing project, with design goals that could
be attractive for DSP applications. For instance, high-level representations of multi-dimensional
arrays and array operations are stated objectives of the language. Another goal is compilation for
parallel program execution in multiprocessor environments. SAC, however, does not have specific
focus on code generation for embedded systems, like Feldspar and MATLAB Coder.

1.2 Related Work

One question is if these languages satisfy the desired properties of being portable and maintainable,
while still providing performance comparable to handwritten C code. There has been some work
made on evaluating the Embedded MATLAB C compiler, where the generated C code was analyzed
to evaluate readability and modularity in order to see if EML could contribute to faster and more
efficient development processes in a company [7]. The results showed that it would contribute
to the development process when generating floating-point reference C code. The reference code
could be used as reference when writing optimized code for certain hardware. However, generation
of fixed-point C code was considered to not contribute to the development process.

Also, a comparison between Embedded MATLAB and Catalytic MCS has been made in [8]. As one
might expect, the results shows some advantages and disadvantages of each product in different
areas. MCS proved to be better at reference code generation, covering a larger set of the MATLAB
language, while EML seemed more suitable for direct target implementation. It should be noted
that Catalytic is today owned by MathWorks.

2

1.3 Purpose

The results of this thesis are intended to give Ericsson and the developers of both Feldspar and
MATLAB insight in how the languages perform against each other, and to point out areas in need
of improvement. The results will be useful for Ericsson when considering using automatic C code
generation from high-level languages in the DSP algorithm design process.

The main focus has been on Feldspar, since Ericsson wanted to know how far it had come in its
development. However, MATLAB is widely used at Ericsson which makes its results important as
well.

1.4 Method

In order to fulfill the purpose, an extensive comparison between Feldspar and MATLAB was made.
The main aspects of the languages to evaluate were productivity and performance of generated C
code.

The performance, referred to as hard measures, was evaluated by measuring clock cycles and
memory usage for a set of test programs. The precise method of doing this is explained in detail
in section 4.1. The test programs include small programs designed to expose specific weaknesses
in the languages, to yield a good base for comparison. Larger test programs implementing DSP
algorithms were also used for evaluating the performance in realistic situations.

For evaluating the productivity, also referred to as soft measures, a number of areas were cho-
sen according to section 1.6. These areas were defined based on scientific research and personal
thoughts, and in the evaluation the languages were reasoned about with respect to the definitions.

A survey was also composed, with the purpose of getting opinions from people with varying expe-
rience.

1.5 Objectives

An objective of this thesis was to pinpoint eventual advantages and disadvantages of the languages
in various areas, in order to give relevant feedback to the language developers. Another objective
was to give Ericsson insight in Feldspar’s current status. Also, an objective was to produce platform
independent results.

The success of the project can be measured by how well differences in performance and productivity
are explained, assuming there are any.

3

1.6 Delimitations

1.6.1 Soft Measures

There are of course many interesting areas which could have been included in the soft measures, but
because of the limited time frame of the project, four areas were chosen as specified in section 5.1.

The soft measures mainly concerned the high-level code, except for readability, where the generated
C code was also taken into account. There, such things as variable naming and unnecessary code
were considered.

1.6.2 Fixed-Point Arithmetic and Multi-Core Support

The Feldspar version used in the beginning of this thesis had very limited support for fixed-point
arithmetic, only supporting simple arithmetic expressions. Even though MATLAB has support for
fixed-point arithmetic, it was not evaluated since no comparison could be made.

Neither of the languages currently support generation of parallel C code, which is why this was
not part of the evaluation. However, possibilities for multi-core support are briefly discussed in
sections 2.1.7 and 2.2.5.

1.6.3 Reference Code

The hard measures evaluation is only a comparison between Feldspar and MATLAB. There is no
handwritten reference code, so it is important to not draw the conclusion that the best result is
the same as a good result compared to the ideal case.

1.6.4 Correctness of Generated C Code

Correctness for the code generation will be assumed, and thus not tested very much in the hard
measures. In other words the generated C code is assumed to yield the same results as the high-level
code. It is expected that the language developers have made certain of this.

1.6.5 Intrinsics

The C code was generated to not include any platform specific intrinsics, because Feldspar has no
support for this for the TIC6670 which was used in this thesis. Feldspar currently only supports
generating code according to the ISO C99 standard, and the TIC64x family to some extent, which
has no floating-point support. Since no fixed-point arithmetic was used in the thesis, it was
necessary to use a platform supporting floating-point arithmetic.

4

1.6.6 Memory

Memory is usually allocated statically in embedded systems. MATLAB Coder is able to dynami-
cally allocate memory, but because of the reason mentioned, and since Feldspar currently cannot
generate code with dynamic memory allocation, only static allocation was used in this thesis.

1.6.7 Survey

Since there are few persons who have actually seen Feldspar, it would be hard to make the survey
very scientific. Because of this, the results from the survey were not used to draw any conclusions,
but rather to get some general opinions about Feldspar and MATLAB.

1.6.8 Single Assignment C

Single Assignment C seemed like an interesting language to include in the evaluation. However,
after some initial research it was observed that in order to compile the generated C code, a number
of libraries were required. These were only available as precompiled libraries for Linux x86, and
since other platforms were used in this thesis, SAC was not evaluated.

1.7 Report Structure

This section describes the structure of the report to give the reader an overview of the content.

Chapter 1 contains a background and purpose motivating the thesis. The objectives, method and
delimitations are also stated here.

Chapter 2 introduces the two languages Feldspar and MATLAB, and provides theory used in the
forthcoming chapters.

Chapter 3 describes and motivates all test programs used in the evaluation.

Chapter 4 contains the performance evaluation of the languages. The method used for this is
stated, together with encountered problems. Finally, the results are presented and explained.

Chapter 5 contains the productivity evaluation. Areas important to productivity are first defined,
and then both languages are evaluated in the defined areas.

Chapter 6 contains a discussion concerning the results of the hard and soft measures, as well as
differences observed when using the languages.

Chapter 7 contains a short description of Feldspar’s current status, and feedback to the developers
of Feldspar and MATLAB. A section describing possibilites of future work related to this thesis is
also put here.

Finally, there are appendices containing all high-level source code, tables of execution time results
and the survey together with answers.

5

Chapter 2

Languages

2.1 Feldspar

2.1.1 Introduction

Feldspar (Functional Embedded Language for DSP and PARallelism) is a domain specific language
embedded in the functional programming language Haskell which aims for being used for program-
ming DSP algorithms. It is a joint research project between Ericsson AB, Chalmers University of
Technology (Göteborg, Sweden) and Eötvös Loránd University (Budapest, Hungary).

Feldspar comes with an associated code generator, currently only supporting ISO C99 code gen-
eration, which have been used in this thesis. There is also limited support for the TMS320C64x
chip family, and a future goal is to support many different DSPs and FPGA platforms.

Programming in Feldspar is designed to be as much as programming in Haskell as possible. For
example, most of Haskell’s list library is implemented in Feldspar’s vector library described in
section 2.1.3. Feldspar is built around a core language, which is a purely functional language on
a level of abstraction similar to C. The idea is to build various libraries upon this core language,
and that these libraries should provide a higher level of abstraction for programming.

As mentioned, Feldspar is purely functional, meaning that it is guaranteed that no side effects can
occur. A function is said to have side effects, if it other than resulting in a value, also in some way
gives an effect outside the function. Examples of side effects are change of global variables and
printing output to the display or a file. Because there are no side effects, Feldspar is referentially
transparent, which means that a function always yield the same output on the same input. Features
such as higher order functions, anonymous functions and polymorphism are inherited from Haskell.
Feldspar also has the same static and strong type system as Haskell (see section 5.3.1).

In section 2.1.2 to 2.1.5, some Feldspar features used in this thesis are briefly described. In
section 2.1.6, the limited support for fixed-point arithmetic is described, and in section 2.1.7
possibilities for generating multi-core code are discussed.

6

2.1.2 Working with Feldspar

Feldspar is imported as an ordinary library in Haskell, which makes it very convenient for pro-
grammers familiar with Haskell. In this thesis, the Glasgow Haskell Compiler (GHC) version 6.12.3
[9] is used, together with the interpreter GHCi. This version was supplied with the Haskell Plat-
form, version 2010.2.0.0 [10]. The Feldspar version used in this thesis was 0.4.0.2, but since it was
not released when the project started, different development revisions were used at first. To use
Feldspar, import it by writing import Feldspar in the top of a Haskell source file.

A Feldspar program has the type Data a, where a is the type of the value computed by the
program. Consider the following example of a function add, which takes two arguments of type
Data Int32 and returns a value of type Data Int32:

import Feldspar

add :: Data Int32 -> Data Int32 -> Data Int32
add a b = a + b

To evaluate the function add, the eval function can be used:

*Main> eval (add 1 2)
3

Notice that since Feldspar is strongly typed, it is not possible to apply add to arguments of any
types other than Int32.

The eval function makes it possible to easily verify that functions are doing what they are expected
to do. However, the Feldspar developers have not yet put much effort in making it fast, so for
heavy computations eval is very slow.

Core Language

The programmer probably wants to use the libraries in order to program at a high level of ab-
straction similar to Haskell. However, it is also possible to program directly in the core language,
which gives more in-depth control over the generated C code.

The function value may be used to convert a Haskell value into a Feldspar value. It may also be
used to convert a Haskell list into a Feldspar core array:

*Main> eval (value [1..10 :: Int32])
[1,2,3,4,5,6,7,8,9,10]

The core language includes a function for computing the elements in a core array independently
from each other, called parallel.

parallel :: (Type a) => Data Length -> (Data Index -> Data a) -> Data [a]

7

The function parallel takes two arguments. The first one is the length of the array, and the
second is a function which computes the element at a given index. The parallel function is
interesting for multi-core applications, as briefly discussed in section 2.1.7.

Partial Function Application

When applying a function, it is not necessary to supply all its arguments. If applying add to just
one argument of type Data Int32, this will return a function which takes one argument of type
Data Int32 and returns a value of type Data Int32.

(add 2) :: Data Int32 -> Data Int32

(add 2) returns a function which takes one argument of type Data Int32 and adds 2 to it. This
lets us simplify the first add function as:

add :: Data Int32 -> Data Int32 -> Data Int32
add = (+)

Polymorphism

It is often the case that one wants to use the same function for different input and output types.
For example, it is likely that one wants an add function for floating-point numbers as well. This can
be accomplished using Haskell’s polymorphism, and below follows an example of an polymorphic
version of add:

add :: Num a => Data a -> Data a -> Data a
add = (+)

Num a means that a must be an instance of the class Num, which requires that each its members
must implement (+) amongst some other functions. See [11] for more information.

Anonymous Functions

In Feldspar, it is not necessary to bind a function to an identifier. An anonymous function may be
defined and used in the following way:

*Main> eval $ (\a b -> ((a+b)::Data Float)/2) 1 2
1.5

This defines a function which takes two arguments, a and b, and computes the average of them. The
$ operator is used for avoiding parantheses. Anything after it will take precedence over anything
that comes before.

Anonymous functions are very convenient when working with higher-order functions, which are
functions that take a function as argument and/or return a function.

8

Loops

One fundamental difference when programming in Feldspar, compared to Haskell, is that recursion
on Feldspar values is not allowed. In Haskell, recursion is the usual way to accomplish looping,
so this might be confusing for a programmer used to Haskell. Instead, there are special functions
such as forLoop:

forLoop
:: (Syntactic st) =>

Data Length -> st -> (Data Index -> st -> st) -> st

The first argument is the number of iterations. A limitation of the forLoop function is that there
is no way to break the iterations. forLoop will do exactly as many iterations as specified in the
first argument. The second argument is the starting state, which has to be a member of the class
Syntactic (explained below). The last argument is a function, which takes an index and the
current state, and computes the next state. The final state is the value which is returned by the
function.

If a type a is Syntactic, it basically means that there is a way to go from a to Data b (for
some b) and back, without changing the semantics. For example, a Haskell pair of Feldspar values
(Data a, Data a) can be converted to and from a Feldspar pair Data (a, a). This can be very
useful because it enables the programmer to use many of Haskell’s nice features, such as pattern
matching [12] See the BinarySearch test program for an example of this, where a Haskell pair is
used as the state of forLoop.

The following example shows a function which sums the elements of a vector:

sumVec :: DVector Int32 -> Data Int32
sumVec v = forLoop (length v) 0 (\i st -> st + v!i)

2.1.3 Libraries

Feldspar comes with a number of libraries to make it possible to program at a higher level of
abstraction than the core language. In this thesis, the vector and matrix libraries described below
are the libraries that have been used the most.

Vector Library

The majority of functions in Haskell’s list library are implemented for Feldspar vectors in the vector
library. Programmers familiar with Haskell will find programming with Feldspar’s vector library
very similiar to programming with Haskell lists.

The vector library is perhaps the most important library in Feldspar. A difference between vectors
and core arrays is that vectors does not allocate any memory in the generated C code unless the
programmer explicitly forces this. A vector is described by a size and an indexing function, which
computes the element at a given index. The example below shows a vector of length 10 and an
indexing function which multiplies the index with 2, or in other words, a vector containing the
elements 0, 2, 4, 6, 8, 10, 12, 14, 16, 18.

9

import Feldspar.Vector

vec :: DVector DefaultWord
vec = indexed 10 (\i -> i*2)

It is possible to convert a Haskell list to a vector using the function vector.

vector :: (Type a) => [a] -> Vector (Data a)

An example where a vector is used without allocating any memory for it is presented below, as a
modified version of sumVec.

sumVec :: Data DefaultWord
sumVec = forLoop (length vec) 0 (\i st -> st + vec!i)

sumVec no longer takes a vector as input. Instead, it uses the vector from the previous example.
The example compiles to the following C code.

void sumVec(struct array mem, uint32_t * out0)
{

uint32_t temp1;

(* out0) = 0;
{

uint32_t i2;
for(i2 = 0; i2 < 10; i2 += 1)
{

temp1 = ((* out0) + (i2 << 1));
(* out0) = temp1;

}
}

}

As seen, no memory is allocated for vec. Its elements are instead added directly to the sum. The
first argument mem is decribed in section 2.1.5.

Operations on vectors can be built up in a very compositional style without sacrificing performance,
thanks to an optimization technique called fusion which is described in section 2.1.4.

Matrix Library

A Feldspar matrix is just short for a vector of vectors, so it is possible to use many functions
from the vector library on matrices as well. The matrix library currently only implements very
basic matrix operations, like matrix multiplication, transpose and functions for converting between
core matrices (core array of core arrays) and indexed matrices (vector of vectors). Functions for
computing matrix inverse and determinants are absent, which made the implementation for the
MMSE EQ test program in section 3.3.4 difficult.

To use the matrix library, the module Feldspar.Matrix has to be imported.

10

2.1.4 Fusion

One of the most important features of the vector library (section 2.1.3) is an optimization method
called fusion [1] [13]. Fusion for vectors guarantees that no intermediate vectors between computa-
tions in a program will be stored. This is perhaps best illustrated by an example, which is shown
below.

dotRev :: DVector Int32 -> Data Int32
dotRev v = scalarProd v $ reverse v

dotRev computes the scalar product of a vector and its reverse. This compiles to the following C
code:

void dotRev(struct array mem, struct array in0, int32_t * out1)
{

uint32_t v2;
uint32_t v3;
int32_t temp4;

v2 = length(in0);
v3 = (v2 - 1);
(* out1) = 0;
{

uint32_t i5;
for(i5 = 0; i5 < v2; i5 += 1)
{

temp4 = ((* out1) + (at(int32_t,in0,i5) * at(int32_t,in0,(v3 - i5)))
);

(* out1) = temp4;
}

}
}

This leads to two very important observations. Firstly, there is no need to store the result of the
first function (reverse) in an intermediate array, which would have resulted in higher memory
consumption. Secondly, without fusion, there would have been two for-loops, one for reversing
the vector, and one for the scalar product. Thus fusion is likely to improve execution time, even
though the improvement might differ depending on the platform.

However, fusion might not always be the desired behaviour. The programmer may choose to
explicitly force allocation of an intermediate vector by using the function force. Below follows an
example of dotRev without fusion, and the corresponding generated C code:

dotRev :: DVector Int32 -> Data Int32
dotRev v = scalarProd v $ force $ reverse v

C code:

void dotRev(struct array mem, struct array in0, int32_t * out1)

11

{
uint32_t v2;
uint32_t v4;
int32_t temp6;

v2 = length(in0);
v4 = (v2 - 1);
setLength(&at(struct array,mem,0), v2);
{

uint32_t i5;
for(i5 = 0; i5 < v2; i5 += 1)
{

at(int32_t,at(struct array,mem,0),i5) = at(int32_t,in0,(v4 - i5));
}

}
(* out1) = 0;
{

uint32_t i7;
for(i7 = 0; i7 < v2; i7 += 1)
{

temp6 = ((* out1) + (at(int32_t,in0,i7) * at(int32_t,at(struct array,mem,0),i7)));
(* out1) = temp6;

}
}

}

As seen, there are now two for-loops, and the result of the first computation is stored in an
intermediate array in mem. See section 2.1.5 for more information about memory handling.

The test program TwoFir (see section 3.2.2) gives an example where it might be good to trade off
memory consumption for avoiding repeated computations.

2.1.5 C Code Generation

Compiling

To compile a Feldspar function, the first step is to import the Feldspar.Compiler module. The
compile function can then be used to compile a Feldspar function:

Main*> compile sqAvg “sqAvg.c” “sqAvg” defaultOptions

The first argument is the Feldspar function to compile, the second is the name of the output file,
the third is the name of the C function and the last contains compiler options.

The function icompile can be used to return the generated code to the Haskell interpreter instead.

There are four different predefined compiler options:

• defaultOptions

12

Generate C code according to the ISO C99 standard. All compilation steps are performed
and no loop unrolling is made.

• tic64xPlatformOptions
Generate C code compatible with the Texas Instruments TMS320C64 chip family. All com-
pilation steps are performed and no loop unrolling is made.

• unrollOptions
All compilation steps are performed and innermost loops are unrolled at most 8 times.

• noPrimitiveInstructionHandling
Turn on the NoPrimitiveInstructionHandling debugging option [14]

See the user’s guide to the Feldspar compiler for more details [14].

For this thesis, a custom set of compiler options was made due to problems regarding complex
numbers, as explained in section 4.5.1.

Memory

Arrays in the C code are represented by an array structure, struct array, containing three fields.
The first field is the length of the array, the second is a pointer to a buffer containing the data,
and the third is the size of an element. For a nested array, the last field is set to -1.

The at macro is used to access the array structures, and takes three arguments. The first argument
is the type of the elements in the array, the second is the array structure, and the third is the
index.

All memory handling is up to the programmer to take care of. The special array structure mem,
which is always the first argument to the generated C function, is a nested array structure which
contains pointers to all memory that the function needs. Currently, the programmer has to manu-
ally analyze the C code to figure out the size and structure of mem, and then allocate the necessary
memory. This proved to be a very tedious task throughout the project (see section 4.5.3).

Input Vectors of Explicit Length

It is possible to explicitly set the length of an input vector, which can sometimes help the compiler
to generate better C code. This can be done using the built-in function wrap, as demonstrated by
the following example:

twoFir :: DVector Float -> DVector Float -> DVector Float -> DVector Float
twoFir b1 b2 = convolution b1 . convolution b2

twoFir_wrap
:: Data’ D10 [Float]
-> Data’ D10 [Float]
-> Data’ D100 [Float]
-> Data [Float]

twoFir_wrap = wrap twoFir

13

The example above shows the the test program TwoFir (see section 3.2.2) used with wrap. Data’
is an extension of Data for use with wrappers to explicitly set input vector lengths. The lengths
are denoted by a D followed by the desired length.

A problem with wrap is that it does not currently support multi-dimensional vectors of arbitrary
lengths. However, it is possible to set explicit input lengths in a more manual way by using the
function unfreezeVector’ which is the method used in this thesis referred to as wrap.

unfreezeVector’ :: Type a => Length -> Data [a] -> Vector (Data a)

unfreezeVector takes a length and a core array, and returns a vector. Note that the length is a
Haskell value, which means that the length will be fixed inside the Feldspar program. The pro-
grammer can define functions using vectors as usual, and then define a separate wrapper function
to be used for compilation. The following example shows a wrapper function for dotRev, which
takes a vector of size 1024 as input:

dotRev_wrap :: Data [Int32] -> Data Int32
dotRev_wrap v = dotRev (unfreezeVector’ 1024 v)

This generates the following code:

void test(struct array mem, struct array in0, int32_t * out1)
{

int32_t temp2;

(* out1) = 0;
{

uint32_t i3;
for(i3 = 0; i3 < 1024; i3 += 1)
{

temp2 = ((* out1) + (at(int32_t,in0,i3) * at(int32_t,in0,(1023 - i3)
)));

(* out1) = temp2;
}

}
}

As seen, the C code is now slightly more static. The number of iterations in the for-loop is now
fixed.

2.1.6 Fixed-Point Arithmetic

Fixed-point data types are used to describe fractional numbers using a fixed range and precision, in
contrast to floating-point data types, which can have varying range and precision [15]. Fixed-point
data types are useful in situations where floating-point arithmetic is not supported, which is the
case in many embedded systems.

The development version of Feldspar used in the beginning of this thesis had almost no support
for fixed-point arithmetic. Fixed-point numbers could not be used together with most language

14

features, like the forLoop function amongst others. The only thing available was basic arithmetic
like addition and multiplication. No interesting comparison could thus be made with MATLAB,
which has thorough support for fixed-point arithmetic (see section 2.2.4).

The current release of Feldspar has more support for fixed-point arithmetic, but it is still not fully
developed. See the Feldspar tutorial [2] for more information.

2.1.7 Multi-Core Support

Feldspar’s core language contains constructs for expressing arrays in which the elements can be
calculated independently of the others. One such construct is parallel, which in theory allows
the compiler to generate C code for calculating the elements of the array in parallel. The current
Feldspar compiler does not support generation of parallel C code, but this is a future goal.

Another thing that bodes well for generation of multi-core C code from Feldspar is that it does
not allow side effects, which means that the compiler is free to run parts of the program in any
order - or in parallel - as long as data dependencies are met.

2.2 MATLAB

2.2.1 Introduction

MATLAB is an integrated development environment (IDE) and a high-level programming language
focused around matrices and matrix operations. It is a product developed by MathWorks [16].

MATLAB originates from two Fortran libraries developed in the 1970’s, namely Eispack and Lin-
pack, which included features for calculating matrix eigenvalues and solving linear equations. The
first version of MATLAB was implemented in Fortran using portions of these libraries, and the
only data type available was “matrix” [17].

Cleve Moler, co-author of Linpack and Eispack and author of this first MATLAB version, taught
a numerical analysis course at Stanford University in the late 1970’s in which the students were
to use MATLAB for some of the homework assignments. The students came from many different
backgrounds, and it was the students from engineering which seemed to appreciate the emphasis
on matrices the most. Coding with matrices and matrix operations was useful for them because
they studied areas like control analysis and signal processing, where matrices play a central role.

Since the 70’s, MATLAB has evolved into the full-fledged IDE and high-level programming lan-
guage it is today. The early indications at Stanford University of MATLAB’s usefulness for engi-
neering proved to be accurate. Today MATLAB is used extensively in industry areas like signal
processing, image processing, mathematics, medical engineering and research etc [18].

In signal processing for instance, MATLAB is often used for designing and testing algorithms,
which are later going to be deployed onto embedded systems. The algorithms usually have to
be reimplemented by hand to the target language, which can be a long and tedious process for
large systems. It is however possible to compile MATLAB programs to C code, which is the main
functionality in MATLAB examined in this thesis.

MATLAB Coder [5] is the tool used for generating C code from MATLAB code. A subset of

15

the MATLAB language is supported for code generation, which includes functionalities typically
used by engineers for developing algorithms, with the exception of visualization functionalities. All
MATLAB attributes and functions supported for code generation can be found in the user’s guide
[4]. The subset of MATLAB supported for code generation was earlier referred to as Embedded
MATLAB.

One of the objectives of MATLAB Coder is to generate code with high readability, which is an
aspect that will be examined in chapter 5.

In the following sections, some general information about working in MATLAB is presented, then
code generation using MATLAB coder is described, and finally fixed point arithmetic support and
the possibilities of generating code for multi-core settings are briefly discussed.

2.2.2 Working with MATLAB

Environment

One of MATLAB’s key features is the command line, where the user can enter calculations line by
line and store values in variables. The variables are stored in the MATLAB workspace and can be
saved for use in other MATLAB sessions. The example below shows how a matrix multiplication
can be computed using the command line.

>> X = [1 2; 3 4];
>> Y = [4 3; 2 1];
>> X*Y

ans =

8 5
20 13

>>

In the first two lines, the 2x2 matrices X and Y are defined. Then they are multiplied in the third
line and the result is shown. The workspace now contains the variables X, Y and ans, where the
result is stored.

The user may write series of MATLAB commands in files called scripts. Scripts can be run from
the command line, executing the commands inside line by line. The user may also create functions
which can be used in the command line or in scripts. An example function is shown later in this
section.

It should be noted that MATLAB is an object-oriented language. See [19] for more information
on this.

Matrix Arithmetic for Performance

Programming in MATLAB is preferably done using vector and matrix arithmetic where possible,
because it often yields higher performance than writing C like code. This can involve reformulating

16

problems to use vectors and matrices instead of, for instance, for-loops [20].

Functions and Types

In MATLAB, there is no need to be explicit about the input and output types of a function. A
function works as long as its sub-routines do not produce any run-time errors for the used input
types. This is discussed in more detail in section 5.3.1.

The built-in functions of MATLAB are often overloaded to work with different scalar types as well
as vectors and matrices. For instance, if a function for operating on scalars has been implemented,
it will instantly work for vectors and matrices as long as the sub-routines used in the function work
accordingly. This is the case in the function shown below:

function x = loopadd(x,k)
for i=1:k

x = x*2 + i;
end

end

The function loopadd computes x = ((x*2 + 1)*2 + 2)*2 + 3 ... until the rightmost term
reaches k. The operators + and * are defined both for scalars and matrices. For scalars, the
operators work as intended. If x is a matrix, x*2 + i is element-wise multiplication of 2 and then
element-wise addition of i. Thus the function works both for scalars and matrices.

Constraints can be put on the input and output types using the function assert [21], and when
generating C code from a function, the input and output types should be specified to achieve
desired behaviour of the C code.

2.2.3 MATLAB Coder

C Code Generation

In this thesis, MATLAB 2011a was used, which includes MATLAB Coder. The following steps
describe how to generate C code from a MATLAB function using MATLAB Coder. The first step
is required since it enables the user to run compiled C code as MEX functions from the MATLAB
environment, which is part of the recommended workflow for using MATLAB Coder. See [4] for
more information on this.

• Select a C compiler for use with MATLAB by entering the command mex -setup.

• Add the directive %#codegen after the function declaration to enable code generation error
checking.

• Make sure that the function to generate C code from does not use any features not supported
by MATLAB Coder, such as visualization functions. If there are unsupported features in the
code when compiling it, an error will be produced.

• Create and modify a build configuration object as desired

17

>> cfg = coder.config(’exe’);
>> open cfg

• Enter the the following command and provide example input arguments of desired types to
the -args flag

>> codegen -config cfg -args {...} function_name

A new folder is created in the current folder in MATLAB, containing the generated C code, and a
report file is generated if the option is enabled in the build configuration file.

The following example illustrates how MATLAB Coder is used. The function loopadd described
in section 2.2.2 is compiled to C code using the codegen command:

>> codegen -c -config cfg -args {zeros(1,100000,’int32’),int32(100)} loopadd

The build configuration object cfg used for the test programs in this thesis is found in appendix A.5.
The first example argument provided to the -args flag is a vector of integers of length 100000,
and the second is the integer 100. Resulting C code:

void loopadd(int32_T x[100000], int32_T k)
{

int32_T i;
int32_T i0;

for (i = 1; i <= k; i++) {
for (i0 = 0; i0 < 100000; i0++) {

x[i0] = (x[i0] << 1) + i;
}

}
}

Note that MATLAB Coder does not allow C code generation of MATLAB functions containing
type errors (which is allowed for MATLAB functions as mentioned in section 2.2.2).

Memory

MATLAB Coder supports three methods of memory allocation:

• Static memory allocation with hard-coded sizes in the generated C code.

• Static memory allocation with size variables provided when calling the generated C function.
Code is generated for checking index bounds.

• Dynamic memory allocation.

18

MATLAB Coder uses static memory allocation by default, but the desired method can be selected
in the build setting configuration (see [4]). An upper limit for stack usage can also be set. If this
limit is reached, the program starts allocating memory on the heap.

2.2.4 Fixed-Point Arithmetic

An explanation of fixed-point arithmetic is found in section 2.1.6

The Fixed-Point Toolbox for MATLAB [15] enables the user to program using fixed-point data
types and arithmetic, and it is also possible to generate fixed-point MATLAB code to C code
using MATLAB Coder. However, fixed-point arithmetic was not evaluated in this thesis because
of limitations in Feldspar, as explained in section 1.6.2.

2.2.5 Multi-Core Support

The Parallel Computing Toolbox [22] for MATLAB lets the user divide the workload of algorithms
over available processor cores as desired. The toolbox includes for instance the parfor loop, which
works like a regular for-loop except that each iteration is done independently of the others, dividing
the workload over available processor cores. It should be noted that execution of parfor does not
guarantee deterministic results [23].

A webinar held by MathWorks about the Parallel Computing Toolbox was attended by the authors
of this thesis, who raised the question if there were any plans on supporting generation of parallel
C code using this toolbox and MATLAB Coder. The answer was that the need for code-generation
for parallel architectures had been identified, and the topic was currently under investigation. This
means that such use might be supported in the future. However because generation of parallel C
code is currently not supported, no further investigation on the topic is made in this thesis, as
stated in section 1.6.2.

19

Chapter 3

Test Programs

3.1 Introduction

This chapter describes all test programs which were used for the hard and soft measures. The
description contains a motivation of why each test is an interesting example, and also how it was
implemented in both languages.

For some programs, there are more than one version. In the first version, performance was not
taken into account during implementation, and no optimizations were made. The other versions
are implementations where details about how the languages and compiler works are taken into
account in order to generate better C code. These include Feldspar versions named wrap, which
denotes that the lengths of the input vectors have been explicitly set, as described in section 2.1.5.

To make the evaluation fair, all Feldspar test programs were sent to a Feldspar developer for review,
and all MATLAB test programs were sent to a developer at MathWorks for review. The feedback
was either used to make small fixes, or to make new optimized versions.

3.2 Small Test Programs

3.2.1 Motivation

The small test programs are supposed to expose certain strengths and weaknesses in Feldspar
and MATLAB and their compilers for C code generation. The test programs were not arbitrarily
chosen; the areas to test were found by reading about the languages and talking to the Feldspar
developers, in order to get ideas of interesting things to test. All examples might not be of interest
to everyone, because they test specific details in the languages. However, it should be useful to
have some clues about how the languages perform in various situations.

All implementations of the small test programs are found in appendix A.1.

20

3.2.2 Test Programs

AddSub

AddSub adds 1 to all elements of a vector, and then subtracts 1 from them. The hypothesis
was that the compilers might be able to figure out that nothing has to be done. The MATLAB
implementation uses the + and - operators which are overloaded for use with vectors/matrices and
Feldspar uses the map function together with + and -.

BinarySearch

BinarySearch performs binary search on the input vector and the element to search for. If found,
its index is returned, otherwise the vector’s length +1 is returned. The Feldspar implementation
uses the function forLoop, which does not allow breaking. The example is made to point this out
by comparing it to the MATLAB implementation which can break.

MathWorks had some comments which involved using a more efficient function for integer division
and rounding. The original function was changed according to the comments.

BitRev

For each element in the input vector, BitRev reverses the bits in the index resulting in a new index,
and swaps the elements at these indices. This test program is supposed to show how good the
languages handle bit arithmetic. This example was provided as an example in the Feldspar tutorial
[2].

BubbleSort

Bubblesort sorts the input vector using the bubble sort algorithm. In MATLAB, this can be written
as it would have been in C. In Feldspar however, the vector to sort has to be in the state of a
forLoop function, which is not what one wants to do in Feldspar (see section 4.5.2). Also, forLoop
cannot break in Feldspar, which means it has to run the maximum number of iterations, even if
the sorting is finished. This test program is supposed to show how well the languages perform
when it comes to vector updating.

MathWorks optimized the initial implementation of this example, and the new version uses a while
loop both for checking if elements have been swapped and to keep track of the counter variable.
Both the original implementation (BubbleSort1) and the updated (BubbleSort opt) were kept.

This was also a good test program for comparing element swapping between the vector library
and the core language (described in section 2.1.2) for the Feldspar implementation; thus two
implementations were made. BubbleSort1 uses the vector library, and BubbleSort2 uses core arrays.

21

DotRev

DotRev calculates the dot product between a vector and its reverse. The compilers might be able
to fuse the reversing into the dot product calculation, which makes it an interesting example. Both
Feldspar and MATLAB have built-in functions for dot product and reverse, but in MATLAB the
algorithm can also be optimized by writing C like code. The latter version was made by MathWorks
and there are thus two MATLAB versions and one Feldspar version of the example. DotRev uses
the built-in functions and DotRev opt is the optimizied MATLAB implementation.

Duplicate

Duplicate takes a vector as input and returns it appended to itself. There are two implementations
in Feldspar to compare if the built-in concatenation function is the best choice (Duplicate), or if
one could make it better by writing two elements at the same time using a for-loop and core arrays
(Duplicate2).

MathWorks had no comment on this test program, so there is only one MATLAB implementation.

IdMatrix

IdMatrix takes an integer input N and returns the identity matrix of dimension N×N . In Feldspar,
this is an indexed matrix which has 1 as element where the indices are equal. In MATLAB, the
built in function eye is used.

RevRev

RevRev computes the reverse of the reverse of the input vector. It is interesting to see if this is
optimized to do nothing by any of the compilers, which of course is the desired behaviour.

SliceMatrix

SliceMatrix takes two pairs of indices and a parameter N and returns the part of the identity
matrix of size N ×N which is in between the indices. The idea was to see if Feldspar could benefit
from the fact that fusion makes it possible to only compute the elements inside the desired slice,
instead of first computing the matrix and then slice it.

SqAvg

SqAvg computes the squared average of a vector. This is supposed to show if both Feldspar and
MATLAB can fuse the squaring with the summation. For MATLAB, there is an optimized version
SqAvg opt, which computes the sum of squares by a matrix multiplication of the input vector and
its transpose.

22

TwoFir

TwoFir applies two FIR filters in series onto a signal. It takes a vector representing the signal,
and two vectors representing the filter coefficients. In MATLAB, the function filter is used, and
in Feldspar, convolution which comes with Feldspar as an example. This example is supposed
to show how you can compose many filters, and whether Feldspar or MATLAB generates the best
code for this. For Feldspar, another version TwoFir wrap was implemented with input vectors of
explicit lengths (see section 2.1.5), and not using fusion in order to avoid repeated computations.

TransTrans

TransTrans computes the transpose of the transpose of a matrix A, namely A. This example is
supposed to test if the compilers can figure out that nothing has to be done. A function for matrix
transpose comes with both Feldspar and MATLAB.

3.3 DSP Test Programs

3.3.1 Introduction

Long Term Evolution (LTE) is the latest standard in mobile network technology, and is developed
by the 3rd Generation Partnership Project (3GPP), which is a collaboration between manufacturers
of mobile communications all over the world.

The LTE standard defines how the different parts of a mobile network should behave. Below are
some key problems of data transmissions in mobile networks described, along with their solutions
according to the LTE standard.

To enable base stations to communicate with multiple users, the frequency spectrum is divided
into sub-carriers, which are distributed among the users. The base station then transmits data to
each user in their assigned sub-carriers.

A problem affecting wireless data transmissions in mobile networks is that the signals get affected
by reflections on mountains and other surfaces. This is the channel of the transmissions. Also,
unwanted noise is added to the signal which needs to be minimized at the receiver to retrieve the
sent data correctly. The following model shows how a signal is altered during transmission and
methods for extracting it at the receiver are then described. This description is very brief and is
only supposed to give the basic picture.

S(m) is the transmitted reference signal, where m is the sub-carrier index.

Received signal model:

Y (m) = H(m)S(m) + V (m)

where H(m) is the channel and V (m) is noise.

The channel can be estimated using a reference signal, known both to the sender and the receiver.

23

The base station sends a reference signal, S(m) in the model above, which is known at the receiver
and can thus be removed by calculating a matched filter channel estimate Hest(m).

Hest(m) = S∗(m)Y (m)

where S∗(m) is the complex conjugate of S(m) and Hest(m) is the estimated channel. The noise
term V (m) can be reduced by transforming the channel estimate into time domain, windowing it
and transforming it back.

The channel estimation is used as input to a Minimum Mean Square Error Equalization (MMSE
EQ) algorithm, which is applied to received signal after the channel estimation. The purpose of
this equalization is to minimize the effects of the channel and noise.

The reference signal is generated by the algorithm described in section 3.3.2, the channel estimation
is done by the algorithm described in section 3.3.3 and the MMSE EQ algorithm is described in
section 3.3.4. All of these algorithms are implemented as test programs used for the hard measures.

3.3.2 Demodulation Reference Symbols (DRS)

General

This example is mainly intended to test how well the languages can handle bit arithmetic, as well
as basic complex number arithmetic.

Input:
NSc Number of sub-carriers
v Base sequence number
NDrs Demodulated reference signal number
Cs Cyclic shift field number
Cellid Cell id number
Deltass Parameter configured by higher layers

The only parameter that really makes a difference in the test run, is the number of sub-carriers, since
it decides the size of the output vector. For details, see 3GPP 36.211 [24], section 5.5.2.1.1.

Output:
Drs Vector of demodulation reference symbols in frequency domain, for 20 slots.

A slot is a way to refer to a time interval in a transmitted signal.

The reference symbols are generated according to the 3GPP 36.211 technical specification [24]. A
significant part of the algorithm is the generation of a pseudo-random sequence of bits, and this
is also a place where the two languages’ implementations differ. The pseudo-random sequence is
used to calculate a cyclic shift which is then used to calculate the demodulation reference symbols.
See 3GPP 36.211 section 7.2 for more details.

24

Feldspar Implementation

Ericsson provided a Feldspar version of the algorithm implemented in an older version of Feldspar
than used in this thesis. This Feldspar implementation had been used to generate C code to be run
on a platform without floating point arithmetic, and made use of some integer tricks specifically
adapted for the platform. In this thesis, the algorithm was modified to be compliant with the
current Feldspar version, and to use floating-point arithmetic since that is supported by the target
platforms used for testing.

The generation of the pseudo-random sequence, mentioned above, uses the forLoop function for
computing the bit-sequence. Because it is bad for the performance to use a vector in the state of
the forLoop function in Feldspar (see section 4.5.2), the provided implementation avoided this by
representing the bit vector as a single integer instead. Bit operations were then used to calculate
the sequence. This implementation is named DRS opt.

A more naive version, DRS, was also implemented, where the bit-sequence is represented by a
vector of integers. This vector is then used in the state of forLoop as discussed above.

MATLAB Implementation

An implementation of DRS in MATLAB was supplied by Ericsson. The original implementation
calculated the reference symbols for the first slot, this was modified to be made for all 20 slots
instead. The implementation was sent to the MathWorks to get feedback on the code, and they
pointed out that a for-loop could replace a vector operation in one place, which resulted in slightly
better C code. This version is referred to as DRS.

The part of the algorithm calculating the pseudo-random sequence relies heavily on looping over
vectors containing the bits of the sequence. In the original implementation, the bit sequence was
represented by a vector of 0s and 1s. In the optimzied Feldspar version, a different approach was
taken as described above. This approach was taken in the optimized MATLAB implementation,
DRS opt, as well.

The original implementation of the pseudo-random sequenced relied on a function which given
an integer, converted it to a vector of 0s and 1s, representing the integer in binary format. This
function was not compliant with MATLAB coder, and had to be reimplemented resulting in the
function int2binlist.

3.3.3 Channel Estimation (ChEst)

General

This test program aims to test how the languages perform against each other when it comes
to transforming back and forth between time and frequency domain using FFT and IFFT. It
should be noted that MATLAB’s functions probably are very well tested and optimized because
of its commercial value and widely use for a long period of time, while the functions used for the
Feldspar test program are just provided as examples in the language.

It should also be noted that in reality, FFTs and IFFTs are often calculated efficiently using
hardware accelerators, but this is still an interesting test program to evaluate because transforms

25

play a central role in DSP applications.

Input:
H Matched filter channel estimate constructed by Y (m) ∗ S∗(m)
NSc Number of sub-carriers

Output:
Ht Estimated channel H in time domain
Hf Estimated channel in frequency domain.

ChEst takes two arguments, namely a matched filter channel estimate in frequency domain and the
number of sub-carriers. It transforms H to time domain using the inverse fast fourier transform
(IFFT). Now, the desired part will be in the beginning of the signal, and the remaining part is
only noise which should be removed. A short window containing the channel without noise is cut
out and is then transformed back to frequency domain using the fast fourier transform (FFT).

Feldspar Implementation

The implementation in Feldspar was straight forward. Even though this test program does not
contain any matrices, element-wise operations from the matrix library were used to make the code
simpler (instead of using map). Most necessary functions could be found in the libraries, except
from nextpow2, which computes the closest above power of two of a given integer. This was
needed since the fft function requires the input vector to be of a length that is a power of two.
An optimized version with input vectors of explicit lengths, as described in section 2.1.5, was also
made.

MATLAB Implementation

Two MATLAB implementations were supplied by Ericsson, and only minor modifications had to
be made in order to make them compliant with MATLAB Coder. It had to be made explicit that
the window should contain complex numbers. Also, when using MATLAB Coder, the length of
the vector used as argument to fft and ifft has to be a power of two, which was achieved using
the built in function nextpow2.

MathWorks had no comments for this implementation.

3.3.4 Minimum Mean Square Error Equalization (MMSE EQ)

General

This test program aims to test how the languages perform when making a large number of matrix
calculations.

Input:
H Channel matrix. NRx ×NT x ×NSc where NRx is the number of receiving

26

antennas, NT x the number of MIMO streams and NSc the number of sub-carriers.
C Noise covariance matrix NRx ×NRx

Output:
W Equalization matrix NRx ×NT x ×NSc

Hpost Equalized channel matrix NT x ×NT x ×NSc

The MMSE EQ function computes the equalization matrix and equalized channel matrix for all
sub-carriers according to:

W = H ′ ∗ (H ∗H ′ + C)−1 (MMSE EQ1)

Hpost = W ∗H

where H ′ is the complex conjugate transpose of H.

W = (H ′ ∗ C−1 ∗H + INT x)−1 ∗H ′ ∗ C−1 (MMSE EQ2)

Hpost = W ∗H

where INT x is the identity matrix of size NT x ×NT x.

MMSE EQ2 might look strange, since there are three matrix inversions. However, the inverse of C
only has to be computed once, since C is the same for all sub-carriers. Also, since NT x is smaller
than NRx, the outer matrix to invert is also small. This is why this method is preferred when NT x

is smaller than NRx.

Feldspar Implementation

The main problem with the Feldspar implementation was that Feldspar does not come with any
functions for computing the inverse of a matrix, thus this had to be implemented. The chosen
method was to augment the matrix A to invert with the identity matrix I, then apply Gauss-
Jordan elimination [25] using elementary row operations on the matrix until it reached reduced
row echelon form. Reduced row echelon form means that every leading coefficient is 1 and is the
only nonzero entry in its column [26].

In MATLAB, the functions mrdivide (/) and mldivide (\) can be used for computing matrix
inverse. B/A is basically B ∗ A−1 if A is a square matrix. According the MATLAB user guide,
the functions mrdivide and mldivide [27] (which are used in the MATLAB implementations) use
Gaussian elimination to solve the equation AX = B, if A is a square matrix. It seemed reasonable
to take this general approach also in Feldspar.

Unfortunately, this required using the forLoop function with a matrix in its state, which is not
what you want to do in Feldspar (see section 4.5.2). It was necessary because Gaussian elimination
iterates over the matrix, updating it in each iteration and the calculations depend on the calcula-
tions made in a previous state. Perhaps it would have been possible to take another approach, but
it was decided to try this anyway and not dig deeper into other algorithms for matrix inversion,
mainly because of time concerns.

27

Besides matrix inversion, MMSE EQ1 and MMSE EQ2 were easily implemented using Feldspar’s
vector and matrix libraries. The only other function which was missing, was a function for complex
conjugate transpose, but since both complex conjugate and transpose were supplied, this was easy.

For both versions, additional implementations were made using core arrays (MMSE EQ1 core and
MMSE EQ2 core) and matrices rather than the vector and matrix libraries (see section 2.1.3).
This was done because it was suspected that core arrays and matrices might yield slightly better
performance, but also less readable code. Optimized versions using input vectors of explicit lengths,
as described in section 2.1.5, were also made for MMSE EQ1 and its core version (MMSE EQ1
wrap and MMSE EQ1 core wrap).

MATLAB Implementation

Implementations of both MMSE EQ1 and MMSE EQ2 were supplied by Ericsson. Both imple-
mentations only needed minor adaptions in order to be compatible with MATLAB Coder; it was
sufficient to explicitly tell MATLAB that the input matrices should be complex.

Both implementations were sent to MathWorks for feedback, and they had some minor comments.
For MMSE EQ1, the code was a bit rearranged, resulting in better readability and possibly slightly
better C code. For MMSE EQ2, the same thing was done and the calculation of the identity matrix
was removed. Instead of first forming the full identity matrix (using eye) and then add it, a 1 was
added to only those elements which would be affected by an addition with the identity matrix.
The original versions (MMSE EQ1 and MMSE EQ2) as well as the optimized versions (MMSE
EQ1 opt and MMSE EQ2 opt) were kept.

3.4 C Code Generation

3.4.1 Feldspar

To compile the Feldspar test programs into C code, the compile function was used as described
in section 2.1.5 A custom made set of compiler options, ansiOpts, was used as described in
section 4.5.1. Every function was compiled into a separate C file, containing only one C function
with everything inlined.

It was decided to not explicitly set the lengths of the input vectors using the method wrap desccribed
in section 2.1.5 as default. The reason is that the method was not very well documented, and its
importance was not very clear. Versions of some test programs were still made to evaluate the
method slightly. These versions are named wrap.

3.4.2 MATLAB

The MATLAB test programs were compiled using the codegen command (described in section 2.2.3
and using the compiler options described in appendix A.5. Function inlining was always used so
that every function compiled into one C function in one file.

As described in section 2.2.3, there are three settings for memory allocation. The method used for
all test programs in this thesis is static allocation with hard-coded sizes in the generated C code.

28

The reason for this is that the other method for static allocation generated some overhead code
for checking index bounds etc. Because of this, three files (one for each size) had to be generated.

As discussed in section 5.3.1, MATLAB’s weak type system lets the programmer supply arguments
of any type to a function. In C however, the types need to be specified, which makes it necessary to
state the input and output types when compiling MATLAB functions. This is done by supplying
an input example when compiling (this is described in section 2.2.3).

When compiling the MATLAB test programs, it was noted that floating-point variables in MAT-
LAB became variables of type double in the C code. In the C code generated by Feldspar, the
type float was used. This would make the evaluation unfair. MATLAB uses the type real_T for
floating-point variables, which is defined as double in the generated file rtwtypes.h. The file was
changed to instead define real_T as float to solve the problem.

29

Chapter 4

Hard Measures (Performance)

4.1 Method

The method used for the hard measures was to run the compiled C code, generated from the test
programs in chapter 3, on two different platforms. The reason for running the code on two platforms
was to make the performance evaluation more platform independent, which was an objective of
this thesis (see section 1.5). Execution time, memory consumption and number of lines in the
generated code was taken into account. The test programs were run with three different input
sizes in order see how execution time varied with input size. The number of lines in the generated
code might not be relevant at all to the performance, but if the difference is huge between the two
languages, it might still be an interesting observation.

To measure execution times, a program was written in C, which reads the input data and then
calls all the generated functions in sequence.

The first platform used was a HP EliteBook 8440p, with an Intel Core i5 CPU at 2.4 GHz and 2
GB RAM running 32-bit Windows Vista Enterprise Service Pack 1. This computer was supplied
by Ericsson, and it seemed easiest to use this for the benchmarks. Microsoft Visual Studio 2010
Ultimate was used to compile the C code and also to profile the speed.

The second platform was a C6670 simulator from Texas Instruments. “The TMS320C6670 Multi-
core Fixed and Floating Point System on Chip is a member of the C66xx SoC family based on TI’s
new KeyStone Multicore SoC Architecture designed specifically for high performance applications
such as software defined radio, emerging broadband and other communications segments” [28].
This was recommended by Ericsson, since it is a new and interesting architecture. Also, it has
floating point support, which was needed in this thesis. Texas Instruments Code Composer Studio
4 was used to compile the C code, run the simulator and for profiling.

The memory consumption was calculated by hand. Since no code used any dynamic memory
allocation, this seemed easiest. Only arrays were considered for the memory consumption, since
the large size of the input vectors made memory for variables negligible.

30

4.2 PC Benchmark

The project settings used in Visual Studio were default, except for:

• The code was set to be compiled as C code.

• The optimization level was set to “Full Optimization”.

• For the small test programs, “Inline Function Expansion” was disabled because some of them
would otherwise not be seen in the profiling results.

The profiling method used for the PC benchmarks was sampling of CPU clock cycles, which was
the recommended method in Visual Studio because of high accuracy. The sampling frequency was
set to 1 sample per 150000 clock cycles, which was the highest frequency available. High sampling
frequency was desired since it would yield high accuracy, and since small functions otherwise would
not be sampled at all, as discussed in the section below. Inclusive samples were counted, meaning
that samples in functions called by the test functions were included.

Because of the relatively large sample intervals in the PC profiling, small functions are sometimes
not sampled at all, meaning that they do not appear in the results. The solution to this was
to simply loop the function calls to such small functions. Then a new possible problem arose.
Sampling could for instance always occur at the for-loop conditional and not inside the function.
However since most test programs loop at least to the length of a rather long input vector, the
vast majority of clock cycles in a looped function call will actually belong to the function’s body,
making such sampling misses negligible. To be able to compare test programs between Feldspar
and MATLAB, small functions were of course looped the same number of times for both languages.

4.3 TI C6670 Simulator Benchmark

The projects settings used in Code Composer Studio were default, except for:

• The optimization level was set to 3.

• “Optimize for speed” was set to 5.

The profiler in Code Composer Studio counts all clock cycles of the simulations, as opposed to the
sampling used in the PC benchmarks.

4.4 Input Data

For all test programs, three different runs with different size of input data was made. The idea
was to see how the execution time varied with input size. The input sizes for the TI simulator
test runs had to be much smaller than those for the PC test runs, because the simulator ran much
slower.

The input data for the small test programs (see section 3.2) was generated in MATLAB and then
written to files, which were read by the main test program. For all functions except TwoFir and

31

BinarySearch, the input data was random numbers. For BinarySearch a random but sorted list
was generated, and for TwoFir a nice sound of a train honk was used. The train honk sound was
obtained in MATLAB by the command load train. The fir1 function in MATLAB was finally
used to generate the filter coefficients for TwoFir.

For the DSP test programs ChEst (section 3.3.3) and MMSE EQ (section 3.3.4), the input data
was obtained from simulation files which were provided by Ericsson together with the MATLAB
implementations of the test programs. The input data of one simulation run was written to files,
which could later be read by the main test program.

For ChEst, the parameter changing between the test runs was the number of sub-carriers. This
decided the output size, which seemed important for the performance.

For MMSE EQ, the variable between the test runs was the size of the input matrices. Since the
matrices are calculated independently of each other (independent of which sub-carrier), the number
of sub-carriers was not changed between the three runs.

For DRS (section 3.3.2), no input data was necessary to generate. The only parameter that really
affected the performance was the number of sub-carriers, since it decides the size of the output
vector. The number of sub-carriers was thus the only parameter changed between the test runs.

The input data used when running the test programs is found in the tables below:

Test Program PC Run 1 PC Run 2 PC Run 3 TI Run 1 TI Run 2 TI Run 3
BinarySearch 25000 50000 100000 100 200 400

BitRev 16384 32768 65536 16 32 64
Bubblesort1 250 500 1000 10 20 40
Bubblesort2 250 500 1000 10 20 40

Bubblesort opt 250 500 1000 10 20 40
DotRev 25000 50000 100000 100 200 400

DotRev opt 250 500 1000 10 20 40
Duplicate 25000 50000 100000 100 200 400
Duplicate2 25000 50000 100000 100 200 400
RevRev 25000 50000 100000 100 200 400
SqAvg 25000 50000 100000 100 200 400

SqAvg opt 25000 50000 100000 100 200 400
TwoFir 3220 6440 12880 128 256 512

TwoFir wrap 3220 6440 12880 128 256 512
ChEst 2048 2048 2048 64 64 64

ChEst wrap 2048 2048 2048 64 64 64
MMSE EQ1 1200 ∗ 2 ∗ 2 1200 ∗ 4 ∗ 4 1200 ∗ 8 ∗ 8 12 ∗ 2 ∗ 2 12 ∗ 4 ∗ 4 12 ∗ 8 ∗ 8

MMSE EQ1 core 1200 ∗ 2 ∗ 2 1200 ∗ 4 ∗ 4 1200 ∗ 8 ∗ 8 12 ∗ 2 ∗ 2 12 ∗ 4 ∗ 4 12 ∗ 8 ∗ 8
MMSE EQ1 wrap 1200 ∗ 2 ∗ 2 1200 ∗ 4 ∗ 4 1200 ∗ 8 ∗ 8 12 ∗ 2 ∗ 2 12 ∗ 4 ∗ 4 12 ∗ 8 ∗ 8

MMSE EQ1 core wrap 1200 ∗ 2 ∗ 2 1200 ∗ 4 ∗ 4 1200 ∗ 8 ∗ 8 12 ∗ 2 ∗ 2 12 ∗ 4 ∗ 4 12 ∗ 8 ∗ 8
MMSE EQ1 opt 1200 ∗ 2 ∗ 2 1200 ∗ 4 ∗ 4 1200 ∗ 8 ∗ 8 12 ∗ 2 ∗ 2 12 ∗ 4 ∗ 4 12 ∗ 8 ∗ 8
MMSE EQ2 1200 ∗ 2 ∗ 1 1200 ∗ 4 ∗ 2 1200 ∗ 8 ∗ 2 12 ∗ 2 ∗ 2 12 ∗ 4 ∗ 2 12 ∗ 8 ∗ 2

MMSE EQ2 core 1200 ∗ 2 ∗ 1 1200 ∗ 4 ∗ 2 1200 ∗ 8 ∗ 2 12 ∗ 2 ∗ 2 12 ∗ 4 ∗ 2 12 ∗ 8 ∗ 2
MMSE EQ2 opt 1200 ∗ 2 ∗ 1 1200 ∗ 4 ∗ 2 1200 ∗ 8 ∗ 2 12 ∗ 2 ∗ 2 12 ∗ 4 ∗ 2 12 ∗ 8 ∗ 2

Table 4.1: Number of input elements for each test program. Test programs which don’t take any
input data are not shown.

32

Test Program PC Run 1 PC Run 2 PC Run 3 TI Run 1 TI Run 2 TI Run 3
IdMatrix 250 ∗ 250 500 ∗ 500 1000 ∗ 1000 10 ∗ 10 20 ∗ 20 40 ∗ 40

SliceMatrix 125 ∗ 175 250 ∗ 350 500 ∗ 700 5 ∗ 7 10 ∗ 14 20 ∗ 28
ChEst NSc : 600 NSc : 900 NSc : 1200 NSc : 12 NSc : 24 NSc : 36

ChEst wrap NSc : 600 NSc : 900 NSc : 1200 NSc : 12 NSc : 24 NSc : 36
DRS NSc : 600 NSc : 900 NSc : 12000 NSc : 36 NSc : 48 NSc : 60

DRS opt NSc : 600 NSc : 900 NSc : 12000 NSc : 36 NSc : 48 NSc : 60

Table 4.2: Varying input arguments for test programs with parameters. For IdMatrix and
SliceMatrix, the number of elements in the output matrix is shown. For SliceMatrix, the matrix
to slice was an identity matrix of 40× 40 elements for TI, and 1000× 1000 for PC.

4.5 General Problems

4.5.1 Complex Numbers

The Feldspar compiler generates C code according to the ISO C99 standard. Since neither of the
C compilers used in this thesis supported ISO C99 to its full extent, this became a problem. The
generated C99 code was compliant with the compilers for all test programs except for those where
complex numbers were used. The ISO C99 standard uses a type qualifier complex and some basic
functions for complex arithmetic which was not supported by the compilers.

The Feldspar compiler offers in-depth control of how code is generated by letting the user provide
compiler options (described in section 2.1.5). There are predefined sets of compiler options and they
may be modified to suit the user’s needs. Modifying the compiler options was the key to solving
the problem with complex numbers. The compiler option defaultOptions was modified to not use
the float complex type and instead use complexOfFloat, which is used in the compiler options
tic64xPlatformOptions. The new compiler options module was named ansiOpts to denote that
it was compliant with the older ANSI C standard (at least for the test programs used in this thesis).

Arithmetic functions in Feldspar generate different function calls in the C code, depending on
the platform options described above. The corresponding C functions are supplied in separate
C files which come with Feldspar. The files are feldspar_c99.h and feldspar_tic64.h, and
they contain the C functions for arithmetic for the respective platform. Because the custom made
compiler options ansiOpts is a mix of the C99 and tic64x options, a mix of the C files had to be
created as well. This is called feldspar_ansi.h and is the same as feldspar_c99.h except that
all functions concerning complex arithmetic on floats have been replaced by their corresponding
functions from tic64.h.

The reason for not using tic64xPlatformOptions directly is that it perhaps would generate code
with platform specific intrinsics, which would not match the platforms used in this thesis.

4.5.2 Vector as State in the forLoop Function

One big problem, which proved to be the most severe problem with Feldspar in this thesis, arises
when one needs to have a vector as state in the forLoop function. This is a fundamental problem
which derives from Feldspar’s property of being referentially transparent. If a function takes a
vector and returns a vector, ie. has the type Vector a -> Vector a, the input vector must
remain unchanged after an application of the function (if the input is used later). This is because
the function must always yield the same result on the same input in order to be referentially

33

transparent. If the function updates the input vector in-place, it would mean that a second
application of the function might not at all yield the same result.

The result of this, is that a copy of the input vector must be made, and has to be copied in each
iteration of the for-loop. Consider the following function taking a core array of length 10, which
for each iteration, adds 1 to the element at the current index:

add1 :: Data [Int32] -> Data [Int32]
add1 v = forLoop 10 v (\i st -> setIx st i (st!i + 1))

This compiles to the following C code:

void test(struct array mem, struct array in0, struct array * out1)
{

copyArray(out1, in0);
{

uint32_t i3;

for(i3 = 0; i3 < 10; i3 += 1)

{

copyArray(&at(struct array,mem,0), (* out1));

at(int32_t,at(struct array,mem,0),i3) = (at(int32_t,(* out1),i3) + 1

);

copyArray(out1, at(struct array,mem,0));

}
}

}

As we can see, the input array is never changed. The problem with this is of course the copies made
by copyArray, which results in both higher memory consumption as well as slower execution. See
section 2.1.5 for more details about memory and a description of struct array and at.

In many cases, this way of programming can be avoided by, for example, using the vector library
as described in section 2.1.3. However, there are some cases where it cannot be avoided. This is
usually when a computation of an element in a vector is dependent on a previous computation
made inside a conditional. See the BubbleSort test program in section 3.2 for an example of this.

4.5.3 Memory

In Feldspar, it is up to the programmer to allocate memory for all arrays used in the C code.
This memory is provided as an argument to the function as a special nested struct array called
mem (see section 2.1.5). To construct mem, it is currently necessary to manually look through the
generated C code and figure out the structure of mem. For larger examples, this is not a trivial task.

34

For example, the MMSE EQ test program (see section 3.3.4) needed almost 40 array structures in
mem, and it was a mixture of both one dimensional and two dimensional arrays of different lengths,
which made it very tedious to write the C code for setting up mem prior to call the actual function.
This actually resulted in that one of the test programs (MMSE EQ2 using the vector library) did
not work correctly, probably because of mem being erroneously set up. This implementation of
MMSE EQ2 in Feldspar was therefore not included in the test runs.

In MATLAB, all memory needed by the functions was allocated on the stack. Since MATLAB
does not suffer from the problem with unnecessary array copies (see section 4.5.2), the number of
arrays are low, meaning that the stack memory used will not grow out of control.

4.6 Results: Execution Time

In this section, a selection of the results are presented and explained. All results are presented in
appendix B. Many results were very similar, especially between PC and TI, which is why not all
results are presented here. The result graphs in the sections below show the number of clock cycles
acquired from the profiling versus the number of input elements.

In the result graphs of the test programs TwoFir, ChEst, and MMSE EQ below, single points can
be found labeled feldspar wrap. These are the execution times of versions of the test programs
where the lengths of the input vectors were explicitly set, as discussed in section 2.1.5. The reason
for only testing these versions with one input size is that it was considered enough to compare
one point to see how the performance was affected. The results are however interesting since the
execution times are sometimes much lower than for the regular Feldspar implementations.

4.6.1 BubbleSort

Figure 4.1: BubbleSort run on TI simulator with input vector sizes 10, 20 and 40.

The Feldspar implementations of BubbleSort generate C code containing a lot of array copying
because they both use the a vector as state in the forLoop function (see section 4.5.2). The

35

generated C code from the MATLAB implementations updates in-place which is why they run so
much faster.

Figure 4.2: Figure 4.1 zoomed in on the MATLAB implementation.

Figure 4.2 shows that the MATLAB implementation grows in the same way as the Feldspar im-
plementation, but with a much smaller constant factor.

4.6.2 DotRev

Figure 4.3: DotRev run on PC with input vector size of 25000, 50000 and 100000 elements.

Fusion seems to give Feldspar an advantage compared to the non-optimized version in MATLAB.
However, the optimized version in MATLAB performs better than the Feldspar version. The reason
for this is the slightly more static code of MATLAB (hard-coded sizes).

36

4.6.3 SliceMatrix

Figure 4.4: SliceMatrix run on TI computing a slice of size 5× 7, 10× 14 and 20× 28 of a 40× 40
identity matrix.

The Feldspar implementation only computes the elements inside the slice, while the MATLAB
implementation first computes the full matrix and then the slice. This is due to fusion, and is why
Feldspar performs better in this case.

Figure 4.5: SliceMatrix run on PC computing a slice of size 125 ∗ 175, 250 ∗ 350 and 500 ∗ 700 of a
1000× 1000 identity matrix.

In the PC run, MATLAB performs better than Feldspar. The reason is probably that the generated
code from MATLAB uses hard-coded sizes, or that the computation of the identity matrix is faster
on the PC.

37

4.6.4 SqAvg

Figure 4.6: SqAvg run on PC with input vector size of 25000, 50000 and 100000 elements.

Figure 4.7: SqAvg run on TI simulator with input vector sizes 100, 200 and 400.

The difference between the results in figure 4.6 and in figure 4.7 is that the optimized and non-
optimized MATLAB implementations in figure 4.7 yielded the same results. This is probably
because of the unnecessary counters introduced in the optimized MATLAB implementation (de-
scribed in section 5.3.3) and differences between the compilers/platforms.

38

4.6.5 TwoFir

Figure 4.8: TwoFir run on PC with input vector size of 3220, 6440 and 12880 elements, and filter
coefficients of 5, 10 and 20 elements.

Figure 4.9: Figure 4.8 zoomed in showing only MATLAB.

In figure 4.8, the MATLAB implementation is clearly much faster than the Feldspar implemen-
tation. However, the Feldspar implementation using input vectors of explicit lengths (wrap) and
no fusion shows a big difference in performance. This implementation stores the result of the first
filter and does not have to make repeated computations (see section 2.1.4). Also, wrap avoids some
unnecessary copies, which otherwise affects the performance negatively.

The scaling makes the MATLAB implementation look linear in the first figure, which is why a
zoomed version is added as the second figure (4.9). This shows that the growth is similar to the
Feldspar implementation.

39

4.6.6 AddSub, TransTrans and RevRev

For AddSub and TransTrans, MATLAB generated only an empty function, which should be the
desired behaviour. For RevRev, two for-loops were generated reversing the input vector twice. The
difference between AddSub and Transtrans and RevRev is that for the first two, matrix operations
are used. As mentioned in section 5.3.2, this usually generates better code than anything else in
MATLAB, which is probably why AddSub and TransTrans generated better code than RevRev,
which used the function fliplr.

In Feldspar, these test programs generated code where the multiple applications were fused into
one for-loop. The compiler was not able to completely remove the computations, as in MATLAB.

void addSub(struct array mem, struct array in0, struct array * out1)
{

setLength(out1, length(in0));
{

uint32_t i2;
for(i2 = 0; i2 < length(in0); i2 += 1)
{

at(int32_t,(* out1),i2) = ((at(int32_t,in0,i2) + 1) - 1);
}

}
}

C code generated from AddSub in Feldspar. The addition and subtraction is fused into one for-
loop, but not removed completely as in MATLAB. For TransTrans, a for-loop where each row in
the input is copied to the output is generated:

void transTrans(struct array mem, struct array in0, struct array * out1)
{

uint32_t v2;

v2 = length(at(struct array,in0,0));
setLength(out1, length(in0));
{

uint32_t i3;
for(i3 = 0; i3 < length(in0); i3 += 1)
{

copyArray(&at(struct array,(* out1),i3), at(struct array,in0,i3));
setLength(&at(struct array,(* out1),i3), v2);

}
}

}

4.6.7 Demodulation Reference Symbols (DRS)

There is a clear gap in performance between Feldspar and MATLAB for the DRS test program. The
different implementations are described in section 3.3. There are only results from the optimized
Feldspar implementation, since the non-optimized resulted in too long execution times.

40

Figure 4.10: DRS run on PC with 600, 900 and 1200 sub-carriers.

The DRS algorithm uses a vector containing the first prime number below each multiple of 12. The
C code generated by the Feldspar implementation constructs this vector every time it is used (even
inside loops), and not just once which had been preferred. If it had been defined just once, chances
are that the Feldspar implementation had been on par with the MATLAB implementations or even
better, since the Feldspar code would have been significantly shorter than any of the MATLAB
implementations generated into C code (see section 4.8).

Figure 4.11: DRS run on TI simulator with 36, 48 and 60 sub-carriers.

The non-optimized MATLAB implementation is much closer to the optimized when run on PC
as shown in figure 4.10, than in the TI simulator run shown in figure 4.11. Possible reasons are
the different input values and the fact that the C compilers might have optimized the C code
differently.

41

4.6.8 Channel Estimation

Figure 4.12: ChEst run on PC with 600, 900 and 1200 sub-carriers.

The MATLAB implementation is clearly much faster than the Feldspar implementation. MAT-
LAB’s FFT and IFFT are probably better, as discussed in section 3.3.3. Also, the unnecessary
copies generated from the Feldspar code have bad impact on the performance. The Feldspar ver-
sion using input vectors of explicit lenghts (wrap) slightly improved the performance, probably
because of fewer lines of code (see section 4.8).

Since the output size of this function is the nearest above power of two, 600 and 900 was not a
very good choice for the first two input sizes. The output size for the two first runs are both 1024,
which is why they did almost not differ in sampled clock cycles.

Figure 4.13: Figure 4.12 zoomed in showing only MATLAB.

42

Figure 4.14: ChEst run on TI simulator with 12, 24 and 36 sub-carriers.

When run on the TI C6670 simulator, the output sizes to the respective inputs were 32, 64 and
128, which explains why the Feldspar curve grows smoother than in figure 4.12.

4.6.9 Minimum Mean Square Error Equalization (MMSE EQ1)

Figure 4.15: MMSE EQ1 run on PC with matrix size 2× 2, 4× 4 and 8× 8 and 1200 sub-carriers.
Input Size thus denotes the total number of elements.

The MATLAB implementations shows about 30 times better performance than Feldspar and
Feldspar core. The big difference is explained by the matrix inverse used in the Feldspar im-
plementations. MATLAB’s computation of the matrix inverse is of course much better than the
implementation made for this thesis, which is very simple. The large amount of unnecessary copies
of matrices and vectors also contributes to the bad results. However, the Feldspar version using

43

wrap shows a huge improvement. The number of unnecessary intermediate arrays were cut down
from about 40 to 10, and the number of lines of C code from about 1800 to 400.

Figure 4.16: Figure 4.15 zoomed in, showing only MATLAB and MATLAB opt.

Figure 4.16 is added to show that the MATLAB implementations grow similar as the Feldspar
implementations, and the difference is a constant factor. This factor is rather big, about 30 for
Feldspar and Feldspar core, and 10 for Feldspar wrap.

44

4.7 Results: Memory Consumption

The memory consumption was calculated by hand. Because of the large input data sizes, only
arrays were considered and scalar variables were considered negligible. The memory for the input
and output was not included, because this is of course the same for both languages. In the tables
below, the memory usage is expressed in terms of the size of input and output data and does not
consider that different types have different size.

Test Program Feldspar MATLAB
AddSub 0 0

BinarySearch 0 0
BitRev Vin 2Vin

Bubblesort1 2Vin 0
Bubblesort2 2Vin -

Bubblesort opt - 0
DotRev 0 Vin

DotRev opt - 0
Duplicate 0 0
Duplicate2 Vin -
IdMatrix 0 0

SliceMatrix 0 M
RevRev 0 0
SqAvg 0 Vin

SqAvg opt - 0
TransTrans 0 0
TwoFir 10K Vin

TwoFir wrap Vin -

Table 4.3: Memory consumption for the small test programs. Vin is the number of input vector
elements, M is the number of matrix elements and K is the number of elements in the coefficient
vector. When there is a -, it means that the test program was not implemented in this language.

As seen in table 4.7, DotRev, BitRev, SliceMatrix, and SqAvg use more memory in MATLAB
than in Feldspar. Because of fusion, there are no intermediate vectors in the C code generated by
Feldspar in these programs. Since no intermediate result has to be stored, the final result can be
written directly to the output array in the Feldspar test programs.

For BubbleSort, the code generated by Feldspar uses more memory because it contains a for-loop
with a vector in its state. This results in unnecessary array copying, as explained in section 4.5.2.
In MATLAB, the vector updating occurs in-place and does not introduce any copies of the array
in the C code.

For TwoFir, the non-wrapped Feldspar case has the smallest memory consumption, because of
fusion, no copy of the input signal vector is made. However it uses 10 copies of the coefficient
vectors which should not be necessary. The wrapped version is implemented to not use fusion
because it resulted in faster execution time in this case. Because of the lack of fusion, intermediate
arrays are used resulting in higher memory consumption.

As seen in table 4.7, the MATLAB implementation of ChEst uses less memory, probably because no
unnecessary copies have to be made. However, the MATLAB implementation uses lookup tables for
the FFT computations, which introduce a constant factor of memory consumption. These tables
are however small compared to the input size, and are thus negligible. The function computing the
FFT in Feldspar introduces some unnecessary copies, which is the reason for the higher memory
consumption.

45

Test Program Feldspar MATLAB
ChEst 8Vin + 3Vout Vin + Vout + 68

ChEst wrap 4Vin + 3Vout -
DRS 8500 13547

DRS opt 316 5522
MMSE EQ1 16NRxNT x + 16NRx 3NRxNT x + NRx

MMSE EQ1 core 32NRxNT x + 8NRx -
MMSE EQ1 wrap 7NRxNT x + 2NRx -

MMSE EQ1 core wrap 8NRxNT x + 2NRx -
MMSE EQ1 opt - 2NRxNT x + NRx

MMSE EQ2 16NRxNT x + 16NRx T 2
Rx + NRxNT x + NRx + N2

T x

MMSE EQ2 core 32NRxNT x + 8NRx -
MMSE EQ2 opt - T 2

Rx + 3NRxNT x + TRx + N2
T x

Table 4.4: Memory consumption for the DSP test programs. Vin is the number of input vector
elements, Vout is the number of output vector elements, NRx is number of receiving antennas
and NT x number of MIMO streams. When there is a -, it means that the test program was not
implemented in this language.

DRS uses more memory for both MATLAB implementations. In the optimized Feldspar version,
fusion results in no intermediate vectors which means that the computations from the input to
the output can be done in one step. However, three copies of the same prime table is stored in
different arrays, which should not be necessary. These copies only introduce a constant factor of
memory consumption, which is relatively small compared to the total amount of memory. In the
naive Feldspar implementation, unnecessary copies of the vector containing the bit sequence were
introduced, resulting in higher memory consumption.

In the MMSE EQ test programs, the Feldspar implementations not using wrap introduced a large
amount of unnecessary copies of matrices and vectors. This resulted in very high memory con-
sumption compared to the MATLAB implementations, which use in-place matrix/vector updating.
However, the Feldspar implementations using wrap resulted in significantly less unnecessary copies.

4.8 Results: Lines of Generated Code

The generated C code of the DRS implementations in MATLAB had a little more lines of code
than the C code from the Feldspar implementations, which can be explained by Feldspar’s fusion.
However, the Feldspar implementations resulted in three occurrences of a large table of prime
numbers when only one would have been necessary. If this prime table had only occurred once,
there would have been much fewer lines.

The MMSE EQ implementations in Feldspar not using wrap, contains many unnecessary copies
of arrays and also a lot of strange if-clauses. The implementations using wrap helped the com-
piler a bit, resulting in much less code, almost equal to the number of lines of the MATLAB
implementation.

46

Test Program Feldspar MATLAB
AddSub 11 0

BinarySearch 50 33
BitRev 42 35

Bubblesort1 38 28
Bubblesort2 59 -

Bubblesort opt - 23
DotRev 18 23

DotRev opt - 12
Duplicate 22 5
Duplicate2 24 -
IdMatrix 18 9

SliceMatrix 64 43
RevRev 16 20
SqAvg 18 17

SqAvg opt - 18
TransTrans 15 0
TwoFir 109 42

TwoFir wrap 79 -
ChEst 302 236

ChEst wrap 159 -
DRS 333 357

DRS opt 411 222
MMSE EQ1 1833 290

MMSE EQ1 core 1259 -
MMSE EQ1 wrap 375 -

MMSE EQ1 core wrap 309 -
MMSE EQ1 opt - 282
MMSE EQ2 1715 513

MMSE EQ2 core 1259 -
MMSE EQ2 opt - 499

Table 4.5: Number of lines in the generated C code for each test program. When there is a −, it
means that the test program was not implemented in this language.

47

Chapter 5

Soft Measures (Productivity)

5.1 Method

This section describes the method used for evaluating the productivity of Feldspar and MATLAB.
Since productivity is something highly subjective, the method of an evaluation like this is not
trivial.

Interesting areas where scientific studies have been done were selected. The areas are defined in
section 5.2, sometimes together with criteria describing what needs to be fulfilled by a language in
order to be considered good in the area. The areas were chosen as described in section 1.6. The
criteria were chosen based on scientific studies and the personal opinions of the authors of this
thesis.

The languages were evaluated by reasoning about them in each area, sometimes using examples
from the test programs in chapter 3. The evaluation can be found in section 5.3, which follows the
same structure as the definitions for easy reading.

Also, a small survey was put together to get a wider perspective. It contained questions about
reading code and making small changes to it in both languages. The survey is found in appendix C
together with the answers. As mentioned in section 1.6, the results of the survey were not used
to draw any conclusions, but rather to discuss some interesting indications. The reasons for this
are the low number of participants and the non-scientific nature of the survey. See section 5.4 for
more information about the survey and a discussion of the results.

5.2 Definitions

5.2.1 Maintainability

Every software system needs to be changed in order to meet requirements from its users. This is
called maintenance. The effort spent on maintaining a software system is reported to be around
70% of the total development and support efforts [29]. Maintainability places high demands on
both the source code and the documentation. It can be almost impossible to understand code
written by someone else if it has poor readability (see section 5.2.3) or documentation. When

48

changing the functionality, it is also important not to break existing functionality which might
rely on code that is changed. Consider a function which is called from two different locations in
a program, where the first call never passes a negative parameter while the second one does. It
might be the case that the function has to be changed and the developer then forgets to implement
the negative case, which may cause devastating errors.

Type Safety

A type system of a programming language associates expressions in the language according to the
types of values they compute [30]. The type system tries to prove that no type errors can occur
in a program. What is meant by a type error is determined by the type system, but generally it
means that an operation was performed on values which are not appropriate for that operation,
for example dividing a string with an integer.

A type system can be static, which means that the types are checked at compile-time. A type
system can also be dynamic, where most types are checked at run-time. It can also be strongly or
weakly typed, which decides to what extent conversions are allowed. A type system with strong
typing will prevent an operation with arguments that have the wrong type. For example, adding
a string with an integer would be illegal in a strongly typed language, while in a weakly typed
language the result of this operation would be unclear. One language might convert the string to
a number, while another might convert the integer to a string, a shown in section 5.3.1.

Debugging

When a piece of software does not behave as intended, one probably wants to trace the execution
in order to find out what is going wrong. There are several possibilities for this; the simplest is
perhaps to manually print out the values which are of interest, but the by far most useful method is
to use a debugger. A source-level debugger typically lets you step through the original source code
line by line, examining variable content during execution. This should be the preferred method
considered in this thesis.

Documentation

When documenting source code, it is important that it is relevant and concise. It is stated that
useless comments are worse than missing ones, because they can confuse or sidetrack the devel-
oper [31]. Also, the DRY (Don’t Repeat Yourself) principle [32] states "Every piece of knowledge
must have a single, unambiguous, authoritative representation within a system." This really gives
motivation for having the documentation inside the source code rather than in a separate docu-
ment. In this way it is less likely that some parts of the code are updated but the corresponding
documentation is not. The documentation for a function should at least contain:

• A brief description of what the function does.

• A description of the functions arguments and return value.

Another advantage of having the documentation and source code in the same document, is that
there are various tools for different languages which automatically extract information from the
source files. Special comments are often used to add information to the documentation.

49

5.2.2 Naive vs. Optimized

When programming, it might be the case that the programmer first chooses to solve the problem
in the way he finds more intuitive. This will obviously not always be the solution that yields best
performance, and the programmer will be required to make optimizations to the code in order to
improve it. The final solution might be very different from the original idea; it will probably have
better performance, but in many cases the code will also be harder to read. Here it is important
to consider if optimizations are wanted. Non-optimized code could actually be preferred over
optimized code if performance is not essential but readability is.

for (int i = 0; i < n; i++)
{

a[i] = a[i] * 2;
}

for (int i = 0; i < n; i+=4)
{

a[i] <<= 1;
a[i+1] <<= 1;
a[i+2] <<= 1;
a[i+3] <<= 1;

}

Table 5.1: Both examples contain for-loops which multiplies each element in an array by 2. How-
ever, the right example uses loop unrolling as well as left shift for multiplication, which might
improve performance but make it slightly harder to read.

It would be good if the compiler figured out the clever things instead, relieving the programmer
from both the consideration of whether optimizations are necessary and the actual implementation
of these optimizations. The programmer then does not need to know specific language/compiler
implementation details in order to write code that in turn generates good C code. This means that
the gap in performance of the C code generated from optimized and non-optimized implementations
should be as small as possible.

5.2.3 Readability

In this thesis, readability will be considered both for the high level code and the generated code.
The reason for this, is that even if it would be optimal to just have to concentrate on the high level
code and fully rely on the compiler for the generated code, it is probably necessary to sometimes
look in the C code for debugging purposes, or to use it as reference code. It is then very important
that the generated code is possible for a human to understand.

Most programmers have their own opinions of what readability is and what affects it, making it
a very subjective matter. In this thesis, guidelines from a book concerning readability [33] were
taken into account.

The results from a research paper with the purpose of finding aspects which are important for
readability were also taken into account when evaluating readability [34]. In this paper, machine
learning algorithms were used on data from the results of a study about readability.

50

Identifier Naming

According to [33] , the naming of identifiers is very important to make a software system under-
standable. The name of variables gives the reader a lot of information about the functionality.

One conclusion by [34] was that the average length of identifier names in a code snippet had nearly
no importance at all for the readability. However, the maximum identifier length showed to have
negative impact. This means that one should be able to use one-character variable names without
sacrificing readability, while being careful not to use too long ones.

Line Length

Another conclusion discussed in [34] is that the number of identifiers and characters per line of code
greatly affects the readability. Long lines of code also proved to be much less readable than short
ones. [33] agrees on this in the sense that one line should not contain more than one statement or
declaration.

Uneccessary Code

Code that is unnecessary, for example unnecessary variables or a conditional which always evaluates
to true, will only confuse the reader and make the code harder to understand. Unnecessary code
can also mean code which is unnecessarily complicated. This will be considered for the generated
code.

Levels of Abstraction

Programming languages are said to be on different levels of abstraction, meaning that they hide
different amounts of implementation details from the user. The lower level, the more machine-near
the code tends to be, and the higher level, the more abstract. High level code aims to be more
user friendly since the programmer does not need to be as much concerned about the machine the
program is run on as in the low level case.

Different versions of a program can often be coded at different abstraction levels in the same
programming language, meaning that the used language features hide a certain amount of details
from the programmer. A good reference to see if a version of a program is at a high or low
abstraction level is to compare it to a mathematical specification of the program.

A mathematical specification is defined as a specification using mathematics to express an algo-
rithm. An example of a mathematical specification is found in section 5.3.3.

The level of abstraction of a program might affect its readability. Higher abstraction levels mean
that more details are hidden, which could result in shorter lines. Shorter lines are stated to affect
readability positively earlier in this section.

If the available abstraction levels in two programming languages differ, chances are that the overall
readability also differs.

51

5.2.4 Verification

Methods for Software Verification

Software verification is an activity for checking that software works as desired [35]. In [36], software
verification is divided into two areas, namely static and dynamic software verification.

Static software verification is the area of software verification methods which automatically verifies
correctness of software without executing any code. In [37], a number of tools for static software
verification are discussed. Many of them are mentioned to find problems like buffer overflows,
memory leaks and redundant branch and loop conditions.

To find problems in the functionality, methods in the area of dynamic software verification are more
likely to help. Dynamic software verification methods execute the code to verify that the program
behaves as intended. Such methods are referred to as testing, or as stated in [38]: “Software testing
consists of the dynamic verification of the behavior of a program on a finite set of test cases, suitably
selected from the usually infinite executions domain, against the expected behavior.”

Testing

There are many aspects to test and verify correctness for in a program. An obvious aspect is the
functionality, which should be tested to verify that the program returns the correct output for
the provided input. Another aspect is the structure, which should be tested to verify that the
program is implemented correctly. It is also interesting to test if the performance (execution time
and memory consumption) of a program is satisfactory, which can be done using profiling software
(as used in chapter 4 of this thesis).

The internal structure of a program can be tested using white-box testing [38], which denotes the
set of testing techniques using information on how software is designed or coded.

Finite state machine based testing is a type of white-box testing described in [38]. It is performed
by expressing the program to be tested as a finite state machine, and then verifying that the desired
states and transitions are covered, for instance by adding code to produce output revealing which
paths have been covered.

While white-box testing is good for finding design flaws, it does not find errors in the logic, which
is the case for black-box testing.

Black-box testing [38] denotes techniques where a functionality of a program is verified by executing
it with some input values and then checking that the results are correct. Unlike white-box testing
techniques, coding and design details of the tested software are not considered.

Equivalence partitioning is a black-box testing technique described in [38] which is performed by
dividing the set of possible input values into equivalence classes, which are subsets of the input
set in which the elements have some desired properties in common. For instance if the possible
input set is the set of all integers, a relevant equivalence class can be the set of negative numbers.
The equivalence classes are chosen depending on what properties in the input one wants to test.
The program is then tested with one or many elements from each equivalence class, to reveal if the
program has problems with any equivalence classes.

Random testing is another black-box testing technique. It is performed by executing a program

52

with random input data and verifying the produced output data. This might seem too naive, for
instance compared to equivalence partitioning described above, but because it might generally be
simpler to use random testing, it might still be worth it.

Research has been done in [39] comparing the efficiency between equivalence partitioning (referred
to as partition testing) and random testing. It was concluded that even though partition testing is
slightly better at exposing faults, random testing still is the best choice when considering efficiency.
To quote [39]: “By taking 20% more points in a random test, any advantage a partition test might
have had is wiped out.”

5.3 Evaluation

5.3.1 Maintainability

Type Safety

Since Feldspar does not allow any implicit type conversions due to the strong type system of Haskell,
it is impossible to generate C code with such conversions. Since this is part of the language itself,
not only the compiler, these restrictions always hold during the development process. The strong
typing can be useful since it is very easy to see the types of a function’s arguments and return value.
Also, if a type error occurs, it will happen in the function that is causing it and not propagate
through the functions and cause another error later on instead. However, a programmer might
find it annoying that he has to be explicit about every conversion.

Consider the DRS test program (see section 3.3.2) which consists of many small functions. If one
were to change the inner function x_q (see code in appendix A.2.1) to instead unsigned integers
as arguments, this change has to be made at several different locations throughout the application
chain.

x_q :: Data DefaultInt ->
Data DefaultInt ->
Data DefaultInt ->
Data DefaultInt -> Data (Complex Float)

x_q is used in r_bar

r_bar :: Data DefaultInt ->
Data DefaultInt ->
Data DefaultInt ->
Data DefaultInt ->
Data DefaultInt -> Data (Complex Float)

r_bar is used in drs

drs :: Data DefaultInt ->
Data DefaultInt ->

53

Data DefaultInt ->
Data DefaultInt ->
Data DefaultInt ->
Data DefaultInt ->
Data DefaultWord -> DVector (Complex Float)

This might not be of any risk at all, but the type system still forces you to be very explicit. In
most cases, however, one can make the functions polymorphic (see section 2.1.2), and then make
a specific wrapper function for the compilation. The polymorphic function will still be well-typed,
since the polymorphic types will have constraints on them in order to preserve the strong typing.

In MATLAB, the situation is different. There is no need to be explicit about types, even though
it is possible using the assert function [21]. Types are implicitly converted when needed, for
example the expression 1 + ’m’ gives the result 110 (the meaning of ’m’ is its ASCII value). It is
not obvious that this should be the case, one might instead expect that 1 should be converted to
a character, and result in the concatenated string ’1m’.

>> 1 + ’m’

ans =

110

Example of an addition of 1 and the character m in MATLAB.

When generating code from a MATLAB function however, the C code becomes a strongly typed
version of the function where no implicit conversions are made. This might be convenient because
the functions can be very general during the development process, making them easy to change,
and only in the end decide what types to use. It might also be dangerous, since it is possible to
make mistakes in the compilation stage which may cause errors later. As an example, consider the
test program SqAvg (see section 3.2.2), which takes a vector as input. If a vector with elements
of different types are defined, MATLAB automatically converts the whole vector to the type with
the highest class precedence (see [40]):

>> sqAvg([1,’m’])

ans =

5941

Example of executing SqAvg with an input vector containing values of different types in MATLAB.

When compiling the function, the same thing happens. In this case it becomes a vector of type
char, which may not be the expected result.

real_T sqAvg(const char_T in[2])
{
real_T d0;
int32_T i0;

54

d0 = 0.0;
for (i0 = 0; i0 < 2; i0++) {

d0 += (real_T)in[i0] * (real_T)in[i0];
}
return d0 / 2.0;
}

The test program SqAvg compiled with: codegen -config cfg -args {[1,’m’]} sqAvq

Debugging

MATLAB provides a capable source-level debugger [41] which lets you place breakpoints anywhere
in the code, step through the code line-by-line and examine variable content. The debugger was
used during the project, especially in the implementation of the DRS test program (section 3.3.2),
and was very straight forward to use.

Feldspar currently has more limited possibilities for debugging. The simplest option is to use the
trace function, which basically lets you output a string somewhere in a function.

There is also the GHCi debugger project, which aims to bring dynamic break points and inspection
of intermediate values to GHCi [42]. However, no methods for debugging were actually used in the
project, they are just mentioned to give some insight in the possibilities.

Documentation

Since Feldspar is embedded in Haskell, it is possible to use Haddock [43] for generating documen-
tation from source files. Although it was not used during the project, the Feldspar API reference
is generated using Haddock, and this reference was used extensively.

For MATLAB, one can use Doxygen [44]. It automatically extracts comments from the m-files in
order to generate the documentation. No methods for generating documentation from MATLAB
source files were used in the project.

5.3.2 Naive vs. Optimized

There are cases in both MATLAB and Feldspar where optimizations in the high-level code result
in much better generated C code. In MATLAB, multiple function calls on vectors are not fused
together as they are in Feldspar. See for instance the test program SqAvg (section 3.2.2), which first
squares each element of the input vector and then computes the average of the squared vector. The
test program generates two for-loops where the first squares each element and the second computes
the sum:

real_T sqAvg(const real_T in[100000])
{
int32_T k;
static real_T x[100000];
real_T y;

55

for (k = 0; k < 100000; k++) {
x[k] = in[k] * in[k];

}

y = x[0];
for (k = 0; k < 99999; k++) {

y += x[k + 1];
}

return y / 100000.0;
}

The two for-loops in the generated code above can be reduced to one by exploiting the fact that
the sum of squares of a vector can be expressed as a matrix multiplication of the vector and its
transpose. Test program SqAvg opt generates a single for-loop where both the squares and sum
are computed:

real_T sqAvg_opt(const real_T in[100000])
{
real_T y;
int32_T ix;
int32_T iy;
int32_T k;

y = 0.0;
ix = 0;
iy = 0;
for (k = 0; k < 100000; k++) {

y += in[ix] * in[iy];
ix++;
iy++;

}

return y / 100000.0;
}

This is a clear case where it is important to know that using matrix operations in MATLAB
is always better when it comes to performance. The programmer might very well find it more
intuitive to implement it as in the first case, which generates very different code. DotRev is an
example of the same problem, which also generates two for-loops, one for reversing the list and
one for computing the scalar product. This is avoided in DotRev opt by manually computing the
reverse and the scalar product at the same time inside a for-loop. However, this uses no benefits
from MATLAB as a high-level language and is probably not the code the programmer wants to
write.

In Feldspar, fusion is very useful when it comes to multiple function applications on vectors, since
it guarantees that no intermediate vectors are created.

Another case is the DRS test program (see section 3.3.2) in the calculation of the pseudo-random
sequence. Many programmers would probably find it intuitive to follow the specification, as in the
initial DRS test program in MATLAB (see section 3.3.2). It uses a bit vector represented by a
vector of integers in a for-loop.

56

intvector = [1, 1, 0, 1, 1, 0, 1, 0];
for i = 1...n

intvector[i] = some calculation including other elements of intvector;
end

Pseudo code showing a for-loop with a vector containing integers as state.

As said in section 4.5.2, it is very bad practice to have a vector in the state of a for-loop like this
in Feldspar, since it results in unnecessary copies of the vector in each loop iteration. This can be
avoided by instead just having an integer in the for-loop state to represent the bit vector, which is
the optimized version.

singleint = 2934857;
for i = 1...n

singleint = some bit operations using singleint and i.
end

Pseudo code showing a for-loop with an integer as state.

This code looks very different compared to the naive version, and it is not trivial at all to understand
that they even do the same thing (see the code for the test program DRS in appendix A.2). As
seen in the results of the hard measures, the difference in performance is huge, the Feldspar version
looping over a vector is so slow that its run on the C6670 simulator was canceled.

Both methods were implemented in MATLAB as well (see section 3.3.2), but the difference be-
tween these implementations was not nearly as big as for Feldspar, although significant. The
non-optimized version still performs rather well compared to the optimized version.

5.3.3 Readability

Identifier Naming

When Feldspar code is compiled into C code, names for function arguments are not kept and all
variables (including the ones corresponding to a Feldspar functions arguments) in the C code get
default names depending on what they are used for.

MATLAB Coder on the other hand uses the variable names from the high-level code if possible.
Sometimes new variables are needed and then default names are used like in Feldspar.

Since it obviously is more readable to get C code with variable names corresponding to the variables
used in the high level code, MATLAB has a clear advantage over Feldspar in the matter of variable
naming in the generated code. Also, comments in the MATLAB code are present in the generated
C code as well, at the corresponding line. This is very useful since it enables the programmer to
relate the MATLAB code to the C code. There is no such help for this in Feldspar, which can
make it very hard to understand where the different parts of the generated C code comes from.

57

Line Length

For the high-level code, one might assume that it is obviously up to the programmer to decide how
long the lines are. In both Feldspar and MATLAB, it is easy to break down large expressions into
smaller and more readable ones. In MATLAB you have, for instance, the possibility of assigning
sub-expressions to variables and using them in a larger expression, and in Feldspar you can either
define new top level functions or use where and let clauses (see for instance the test program
BinarySearch in section 3.2.2).

The interesting fact is that while the mentioned methods for Feldspar will result in the same gener-
ated code, this is not guaranteed for MATLAB. Below follows a simple example where a MATLAB
expression first is assigned to a variable which is used later, and then where the expression is used
directly.

MATLAB Code Generated Code

1

b = a * 10;
out = 1;
for i = 1:10

out = out*b;
end

b = 10.0 * a;
out = 1.0;
for (i = 0; i < 10; i++) {

out *= b;
}
return out;

2

out = 1;
for i = 1:10

out = out*a*10;
end

out = 1.0;
for (i = 0; i < 10; i++) {

out = out * 10.0 * a;
}
return out;

Even though this particular example is not very interesting, since the first case (1) where the larger
expression is broken down to sub-expressions generates better code, it is still an important fact
that the structure of a program might affect the resulting generated code.

The fact above comes down to that a MATLAB programmer might need to consider performance
when breaking down large expressions into sub-expressions, and since the number of identifiers per
line is considered important for readability (see section 5.2.3), one might have to choose between
performance and readability.

For the generated code, the most noticeable difference, considering line length, between Feldspar
and MATLAB is array indexing. Because of the C code representation of Feldspar vectors (see
section 2.1.5), array indexing tends to yield rather long lines compared to MATLAB, where the
usual array[index] notation is used in the generated code. For expressions with multidimensional
vectors, this means that Feldspar will suffer from very long lines, resulting in less readability
(according to section 5.2.3).

Uneccessary Code

In Feldspar, the problem with vector updating (like swapping two elements) using the vector library
also results in problems with readability in the generated code. Consider a function which swaps

58

to elements in a vector using the vector library.

swap :: DVector DefaultInt -> Data Index -> Data Index -> DVector DefaultInt
swap v i1 i2 = permute (\l i -> (i == i1) ? (i2, (i == i2) ? (i1, i))) v

This generates the following code:

for(i4 = 0; i4 < length(in0); i4 += 1)
{

uint32_t w5;

if((i4 == in1))
{
w5 = in2;
}
else
{
if((i4 == in2))
{

w5 = in1;
}
else
{

w5 = i4;
}
}
at(int32_t,(* out3),i4) = at(int32_t,in0,w5);

}

To swap the elements, the whole vector has to be looped through, looking for the indices to be
swapped. This could of course have been written much simpler. See the code below.

copyArray(out3, in0);
at(int32_t,(* out3),in2) = at(int32_t,in0,in1);
at(int32_t,(* out3),in1) = at(int32_t,in0,in2);

Feldspar can generate the code above if the core language is used (see section 2.1.2 for a brief
description and the function mmse_eq1_core in appendix A.4.1). This however results in a lower
level of abstraction as well as unnecessary array copying.

In MATLAB, strange and unecessary things were sometimes generated in the C code. In the
test program SqAvg opt (see section 5.3.2), two completely unnecessary counters were defined and
incremented in each iteration of the for-loop.

Levels of Abstraction

Most problems can be expressed at many levels of abstraction in Feldspar and MATLAB, which
makes the area hard to evaluate. Though one interesting difference between the languages has been

59

noticed when coding at high levels of abstraction. Below follows an example of a mathematical
specification to the test program SqAvg (see section 3.2.2), together with implementations in both
languages. The specification is needed as a reference to motivate the levels of abstraction of the
implementations.

Mathematical specification of the SqAvg test program:

sqAvg(v) =
∑|v|

i=0 v2
i

|v|

As seen in the specification above, all elements of the vector v are squared and summed before the
result is finally divided by the length of v.

Feldspar implementation:

sqAvg :: DVector Float -> Data Float
sqAvg v = fold f 0 v / (length v)

where f s n = s + n**2

This is an alternative implementation of the SqAvg test program to show how the higher-order
function fold can be used. fold takes a function, a start value and a vector as arguments. It
applies the function to the start value and the first element of the vector, then it feeds the function
with the result and the second element of the vector, and so on throughout the vector. The final
result of the function is returned.

MATLAB implementation:

function out = sqAvg_opt(in)

out = (in*in.’)/length(in);

end

In the MATLAB implementation above, the input vector in is seen as a matrix. in is multiplied
with its transpose using matrix multiplication to yield the squaring and summation.

Both the Feldspar and the MATLAB implementation are on higher abstraction levels than the
mathematical specification, in the sense that details are hidden away from the programmer. The
counter variable i in the specification is implicit in Feldspar because of fold and in MATLAB
because of implicit indexing in the matrix multiplication.

Programming on high abstraction levels like above can make an implementation differ much from
a mathematical specification, which is considered to affect the readability negatively in this the-
sis. On the other hand, hiding details by programming at higher levels of abstraction usually
means shorter lines which is considered good for the readability (as stated in section 5.2.3). High
abstraction levels can thus affect readability both negatively and positively.

This example shows that Feldspar probably has more possibilities of coding at high abstraction
levels than MATLAB, because Feldspar’s higher order functions can probably be used to solve a
larger set of problems than matrix arithmetic.

60

5.3.4 Verification

Plotting

A program’s functionality can be tested and verified using plotting functionalities. Plotting involves
printing a discrete series of values on the screen, preferably with a line connecting the values, and
preferably with possibilities of zooming, tracing, calculating derivatives of the curves etc.

Visualizing the output of a program by plotting it can be of great help to assert that the program
behaves as it should. One can easily plot ranges of output values from relevant ranges of input
values and literally get a picture of the correctness of the tested function. Plotting is supposedly
more useful for black-box than white-box testing techniques, because it can express input-output
relations of a program. For white-box testing, methods like manual analysis or adding code for
structure checking are used, and plotting the results is probably not relevant.

Plotting can be done in MATLAB using the plot function, which makes it is possible to plot
elements of vectors and matrices and provide values for scaling the axes. The plot function in
MATLAB can only handle 2D plotting, but there are also functions for plotting 3D lines and
surfaces, for example plot3 and surf.

Example of using plot in MATLAB:

>> y = sin((1:100000)*2*pi*440/100000);
>> plot((1:500),y(1:500))

Figure 5.1: A sinus signal plotted in MATLAB.

It is also possible to plot data from Feldspar programs by evaluating the Feldspar program into
Haskell values (using the eval function), and then use any desired Haskell graphics library to print
the values on the screen. In this thesis, Gnuplot was used as an example [45].

The following example shows how to use Gnuplot with Feldspar:

import Feldspar
import Feldspar.Vector
import Feldspar.Compiler
import Graphics.Gnuplot.Simple

a :: DVector Float
a = indexed 100000 (\i -> sin(440*(2*pi)*(i2f i)/100000))

61

Then call plotList in the interpreter:

*Main> plotList [] (eval (take 500 v))

Figure 5.2: A sinus signal from Feldspar plotted with Gnuplot.

Since plotting is included in the MATLAB environment, it was easier to use than in Feldspar.

Random Testing using QuickCheck

QuickCheck is a lightweight random testing tool for Haskell [46]. It requires the user to formally
express the properties to be tested, and gives the user great freedom in deciding how to generate
random input data for the tested program.

Since Feldspar is embedded in Haskell, properties can be expressed using any Feldspar functions, as
long as eval is called to bring Feldspar values out to Haskell. In a similar way, random generators
constructing Feldspar values for input to the tested function can be defined by bringing Haskell
values into Feldspar (using vector in the example below).

A simple example where QuickCheck has been used to test the BubbleSort test program (sec-
tion 3.2.2) is presented below. Details of this example are out of the scope of this thesis, see the
QuickCheck manual for more information [47].

import qualified Feldspar as FS
import qualified Feldspar.Vector as FSV
import qualified Test.QuickCheck as QC
import Control.Monad
import BubbleSort

instance Show (FSV.DVector FS.Int32) where
show v = show $ FS.eval v

instance QC.Arbitrary (FSV.DVector FS.Int32) where
arbitrary = liftM FSV.vector (QC.listOf QC.arbitrarySizedBoundedIntegral)

prop_BSort xs = isSorted bubbled && length xs’ == length bubbled
where isSorted :: [FS.Int32] -> Bool

isSorted [] = True
isSorted (x:rest) = x <= head rest && isSorted rest

62

bubbled = FS.eval $ bubbleSort xs
xs’ = FS.eval xs
types = xs :: FSV.DVector FS.Int32

*Main> QC.quickCheck prop_BSort
+++ OK, passed 100 tests.

In the example above, prop_BSort defines a property which must hold for bubbleSort and sorting
algorithms in general. The property says that the output list of bubbleSort should be sorted
and of the same length as the input list. In this example, the bubbleSort function from the test
programs is located in the module BubbleSort.

MATLAB has no such general tool for random testing; thus one has to implement test functions
manually if visual verification is not enough (as explained in the plotting section).

Plotting and random testing are useful for different tasks and one of the methods cannot replace
the other. In some cases, when the exact desired behaviour of a function is not known, it can be
difficult to write QuickCheck properties to test. Then plotting can be used to analyze the results
to see if they are reasonable.

5.4 Survey

5.4.1 Method

A brief survey was composed and handed out as part of the productivity evaluation, with the
purpose of getting personal opinions about Feldspar and MATLAB from people with varying
experience. The survey consisted of 5 problems with code examples from one or both languages.
Each problem is followed by a set of questions. Some questions were answered by selecting the
number corresponding to the opinion about the question, and some were answered by writing the
opinion in free text. One question was also answered by writing Feldspar and MATLAB code. The
survey can be found in appendix C together with the results.

The problems and questions were chosen to evaluate readability (question 1), preferred abstraction
level (question 2) and maintainability (question 3). Language references to Feldspar and MATLAB
were added at the end of the survey to let the participants look up the functions used in the
questions.

5.4.2 Results

There were only 10 participants, but since the survey was not a significant part of the productivity
evaluation, this was not a problem. Because of the few participants, one should be careful not to
draw any general conclusions from the results.

One observation is that the opinions are affected by their experiences with MATLAB and functional
programming. Almost everyone who answered most questions in favour to one language also had
higher experience in that language. This is mainly seen in the sub-questions to questions 1, 2 and
3, where the participants were asked how hard it was to understand a function, how intuitive a

63

function was or how easy it was to change a function. The answers were observed to almost always
reflect the experience of the participants.

In question 2 b, the participants were asked if they preferred explicit or implicit counter vari-
ables in loops. All participants with more experience in functional programming than MATLAB
preferred implicit counters, and the participants with more MATLAB experience had evenly dis-
tributed varying opinions. This might indicate that some MATLAB users would actually prefer
using Feldspar because of its possibilities for programming on high abstraction levels (discussed in
section 5.3.3).

Question 3 was meant to examine the opinions about maintainability, and more specific the dif-
ferences in type safety in Feldspar and MATLAB. 5 of the 10 participants pointed out that they
preferred Feldspars strong type system, because of reasons like having a language with strong type
signatures makes software design more secure. 3 out of these 5 had more experience in MATLAB
than in Feldspar, and 1 had equally high experience in both languages. This indicates that a strong
type system like the one of Feldspar might actually be preferred, even by experienced MATLAB
users. Though it should be noted that it is possible but optional to enforce what types a function
uses in MATLAB, as discussed in section 2.2.2.

64

Chapter 6

Discussion

6.1 Fundamental Differences

There are many fundamental differences between Feldspar and MATLAB. Perhaps the most sig-
nificant difference is the purpose of the languages. MATLAB focuses on efficient vector and matrix
calculations in many different academic and industrial areas. It includes many built-in mathemat-
ical functions and useful visualization tools which makes it a good language and environment for
modelling and verifying algorithms. Code generation is thus not the main purpose of MATLAB,
but rather an extension. Feldspar on the other hand has a more narrow aim towards being efficient
for DSP and real-time algorithm design for embedded systems. The focus around embedded sys-
tems has made C code generation one of the main aspects of the language. By just considering the
languages purposes, the broader purpose of MATLAB can be an advantage if generality is desired,
and Feldspar could possibly prove to have an advantage for DSP algorithm design in the future
when the language is more mature.

Another important difference is that MATLAB features a complete IDE for coding, debugging,
executing, visualizing programs etc. Feldspar lacks this, but can on the other hand use many
existing Haskell tools, for instance for visualization or debugging (see chapter 5), with slightly
more effort required to set up.

Finally it should be noted that Feldspar is open source, which gives its users insight in the imple-
mentation details and even the possibility of modifying the language. Being open source, Feldspar
is free, compared to MATLAB which costs money to use.

6.2 Observations from the Hard Measures

It is very important not to forget that this thesis has only compared Feldspar and MATLAB.
There is no reference for how the desired results of the performance measures should be. Even if
the implementation in one language shows much better performance than the implementation in
the other language, it does not mean that the best result is good compared to an ideal case.

The generated C code from MATLAB and Feldspar was run on two different platforms (see sec-
tion 4.1) in order for the results to be more platform independent. This showed to be a good
choice, since some results differed between the platforms (see for instance section 4.6.4).

65

MATLAB showed much lower execution times in many cases, including all DSP test programs,
which perhaps are of most interest since they are more realistic. However, the reason for Feldspar’s
poor performance seems to reduce into three specific problems. First, there is the problem of having
a vector as state in the forLoop function (described in section 4.5.2), which introduces a lot of
unnecessary copying which both takes time and space. Secondly, the results showed that explicitly
setting the lengths of input vectors was very important for performance (see results for MMSE
EQ1, TwoFir and ChEst in section 4.6). Finally, in the DRS test program (section 3.3.2), the
creation of three identical prime tables in the generated C code (see section 4.6.7) resulted in slower
execution times and higher memory consumption.

Feldspar performed better than MATLAB in some of the small test programs because of fusion
(see section 2.1.4). This contributes to lower memory consumption (see section 4.7) because no
intermediate vectors have to be stored. It can also contribute to reduced execution time, since
several for-loops performing different computations can be merged to one.

Fusion in Feldspar relies heavily on the guarantee that no side effects occur. To implement fusion in
MATLAB would probably be much more complicated, since side effects are allowed. If two function
applications on a vector were to be fused in MATLAB, and the functions have side effects, the
ordering of the effects in a fused version might not be the same as in a non-fused version. This
might change the result, which probably is the reason why fusion does not exist in MATLAB.
However, in test programs such as SqAvg, it was observed that reformulating problems in terms of
vector and matrix operations can be used to obtain a fusion-like behaviour (see section 3.2.2).

An interesting observation was made when using wrappers to explicitly set the lengths of input
vectors. This resulted in greatly increased performance for some examples, especially MMSE EQ1
(see section 4.6.9). In this case it is probably mainly because of the large amount of C code that
disappeared in the wrapped version (see 4.8). In the test program DotRev, however, it was observed
that the optimized MATLAB implementation performed better than the Feldspar version. The C
code generated from Feldspar was manually edited to have fixed-size input vectors, which resulted
in execution time equal to the optimized MATLAB version. This means that the fixed-size input
vectors is of major importance when it comes to performance. It might have been more fair to use
the second memory allocation method described in section 2.2.3 for MATLAB, but this would on
the other hand have generated checks for index-bounds etc, which Feldspar would not. It is not
obvious which method would have been best for the comparison, but at least one should know how
big the differences are.

For actually using the generated C code in this project, MATLAB proved to induce much less effort
than Feldspar. MATLAB did not generate any code that was not compatible with the compilers
used, as Feldspar did with complex arithmetic (see section 4.5.1). Also, since the necessary memory
was allocated on the stack inside the functions (with dynamic memory allocation turned off), there
was no need for allocating this manually, as was the case in Feldspar (see sections 2.1.5 and
section 4.5.3).

It was observed that MATLAB Coder was able to simplify expressions in some cases which resulted
in better C code (see AddSub and TransTrans in section 3.2. In these cases, no code was generated
at all, which of course is the desired result. Feldspar did not manage to completely remove these
expressions, as seen in section 4.6.6.

6.3 Observations from the Soft Measures

For the naive vs optimized part, there were two major situations in MATLAB and three in Feldspar
where interesting observations were made. In MATLAB, it was sometimes possible to achieve a

66

fusion-like behaviour, i e. no unnecessary introduction of an intermediate vector. It was possible
by either reformulating the problem using vector or matrix operations (see SqAvg in section 3.2.2),
or by doing it manually by writing C-like code (see DotRev opt in section 3.2.2). While the latter
of course works, it takes the programming to a lower level of abstraction, which should not be
preferred. Reformulating the problems to use vector and matrix operations might not be trivial,
if possible at all, so it would be very convenient if the same code was generated when using both
methods.

In the naive vs optimized section (5.3.2), interesting things concerning Feldspar were observed
in cases where vectors were used in the state of forLoop functions and vector elements were to
be updated. When using the vector library, the only way to update the elements was to change
the indexing function of the vector, which generates code with a lot of conditionals (as shown in
section 5.3.3). Slightly better C code could be generated by instead using core arrays, but this also
forces the programmer to program at a lower level of abstraction than that of the vector library.

Also, in the DRS test program (see section 3.3.2) it was possible to avoid having a vector in the
state of a forLoop function, by instead using an integer in the state together with bit operations.
The version with a vector in the state performed so badly that the test runs were canceled for that
particular case.

Both MATLAB Coder and the Feldspar compiler generated well structured C code, as discussed in
section 5.3.3. However, MATLAB have an advantage in readability by the fact that variable names
are the same in the generated code as those in the MATLAB code. Also, comments in the MATLAB
code are present in the generated code, which makes it easier to relate the generated code to the
high-level code. In Feldspar however, especially for larger programs, it can be almost impossible to
figure out where the code actually came from. There were also cases where MATLAB introduced
unnecessary variables in the generated code (see the optimized version of the test program SqAvg
in section 5.3.3).

Feldspar’s possibilities of arbitrarily restructuring a program using where and let clauses (see sec-
tion 5.3.3) in order to improve readability, but without changing the generated code was considered
good. In MATLAB, the structure proved to be important for the resulting C code. This might
be the intuitive way for programmers used to imperative languages, but regarding readability it
might not be the best way.

As discussed in section 5.3.3, the higher-order functions of Feldspar give the programmer possibil-
ities of writing a program at higher abstraction level than a corresponding mathematical specifi-
cation. This can be both good and bad for readability, and usually results in less Feldspar code.
In MATLAB, a higher abstraction level could be reached if the problem was reformulated to use
matrix operations. Even though this can be done in many cases, the method is much less general
than the higher-order functions of Feldspar.

Regarding type systems (discussed in section 5.3.1), it is not easy to say which method is best.
In both languages it is possible to design functions with generalized types, and then either define
the types in a separate wrapper function for compiling (Feldspar), or when invoking the compiler
(MATLAB). This can be seen as a quite similar method, and was considered to require equal
amount of effort. However, functions can be made even more general in MATLAB, where functions
can be applied to both vectors/matrices and scalars. An observation was that MATLAB allows
defining vectors with elements of different types where MATLAB automatically converts the vector
to the type with highest class precedence (as discussed in section 5.3.1). This might be confusing
for the programmer if he is not aware of how MATLAB handles these conversions. In Feldspar, no
implicit type conversions can occur, which provides more safety but might be less user friendly.

67

Chapter 7

Conclusions

7.1 The Status of Feldspar

One objective of this thesis was to evaluate the current status of Feldspar and inform Ericsson
about it. This section contains a summary of observed properties.

Programming in Feldspar is much like programming in Haskell, and many features of Haskell may
be used. There are currently some problems which have to be solved (see section 6.2) in order to
reach an overall performance comparable to MATLAB. However, results have shown that in test
programs where these problems do not apply, fusion contributes to performance equal to or higher
than MATLAB. According to the Feldspar developers, there are ideas about how to solve these
problems, which makes Feldspar a promising language in future DSP software development.

To compile and run the generated C code is sometimes not trivial. The compiler currently has no
option for generating ANSI C code, which means that many compilers will not be able to compile
the code. However, it should be very easy for the developers to add support for ANSI C, which does
not make this a very big problem. Another problem is the memory handling. The programmer
manually has to figure out how much memory the program needs and allocate it. It should be
noted that Feldspar is not intended to be like this, and that functionality for giving information
about the memory allocation has recently been added (although not documented).

Many libraries that would be useful for DSP programming, such as matrix operations and fixed-
point arithmetic have currently rather limited functionality. The developers are currently working
on improving the libraries, and it has been observed that the support for fixed-point arithmetic
has improved during this thesis project.

7.2 Feedback to Developers

One objective of this thesis was to provide feedback to the developers of Feldspar and MATLAB.
The following sections contain feedback based on observations from the performance and produc-
tivity evaluations in chapters 4 and 5. Also, the experiences from the authors of this thesis has
been taken into account.

68

7.2.1 Feldspar

• The performance of Feldspar would greatly increase in many situations if the forLoop func-
tion with vectors in the state generated code without unnecessary array copying. As discussed
in section 4.5.2, this proved to be a big problem. It would also be great if a function similar
to a while-loop was included, since the forLoop function needs to run all of its iterations.

• Explicitly setting the lengths of input vectors (as discussed in section 2.1.5) proved to be
of huge importance in some cases (see the results of TwoFir, ChEst and MMSE EQ in
section 4.6). It both helps the Feldspar compiler to generate less code, as well as the C
compiler to generate faster code. This should be more documented and its importance could
be more clearly stated. Also, it might be good to make wrap able to wrap multi-dimensional
vectors of arbitrary lengths.

• It was very time consuming to manually analyze the generated C code to figure out the
structure of the array mem (the problem is explained in detail in section 4.5.3). Consider
automatic generation of this information.

• Even though Feldspar aims to support many different platforms in the future, it might be
good to have a predefined option for generating ANSI C code. ISO C99 was not fully
supported by any of the compilers used in this thesis, which made generated C code from
Feldspar hard to use (as stated in section 4.5.1).

• In the generated C code for the DRS test program (see section 3.3.2), a large table of
prime numbers was defined more times than necessary. This increased the execution time
significantly.

• It would be very useful to somehow generate information about the relation between Feldspar
code and its generated C code. The generated code from MATLAB uses the same variable
names as the high-level code (discussed in section 5.3.3). It was impossible to figure out
the origin of the C code generated from larger Feldspar programs. Variable names revealing
variables’ origins would be preferred.

• The current method of indexing in arrays in the generated C code leads to long lines. This
is bad for the readability of the generated code as discussed in section 5.3.3. The method of
indexing could perhaps be improved to raise the readability.

• It would be nice if expressions could be further simplified by the compiler. As seen in the
test programs AddSub, RevRev and TransTrans (see section 4.6.6), C code doing unnecessary
things was generated.

7.2.2 MATLAB

• There were many occasions where MATLAB suffered from introducing intermediate arrays
in the C code, where all calculations instead could have been done in one array (see the
example in section 5.3.2). The possibilities of introducing something similiar to fusion should
be investigated to improve performance.

• Problems can often be reformulated to use matrix arithmetic, which can result in better
generated C code (see the test program SqAvg in section 3.2.2). For such cases it would be
preferred to get the same good generated C code.

• For many languages, not only Haskell, there is an implementation of QuickCheck. That
might be a useful tool also for MATLAB. The possibilities for this should be investigated.
Random testing and QuickCheck are discussed in sections 5.2.4 and 5.3.4.

69

• It was noted that MATLAB allows vectors containing different types to be defined. Such
vectors are converted to the type with the highest class precedence. This may be confusing
for the programmer, and a warning would be preferred if such a vector is used with MATLAB
Coder (see section 5.3.1).

• In some test programs, MATLAB generated unnecessary code. See for instance the optimized
version of the test program SqAvg, described in section 5.3.3 together with its generated C
code. This could perhaps be investigated and improved.

7.3 Future Work

This thesis did not investigate how well the languages performed against handwritten C code,
because the objectives only stated that a relative comparison between the languages should be
made. It would be interesting to evaluate how the languages perform relative to an ideal solution.

Fixed-point arithmetic was not evaluated in this thesis because of the limited support for it in
Feldspar. When Feldspar supports fixed-point arithmetic at a level closer to MATLAB, the area
would be very interesting to evaluate. The same goes for generation of multi-core code which was
currently not supported by any of the languages.

In this thesis, the C code was generated without any hardware adaptions such as intrinsics. This in
order to not be platform specific, because Feldspar currently only supports one embedded platform
with no floating-point support. When Feldspar supports more interesting platforms, performance
can be measured on other platforms than in this thesis to compare the languages in terms of
portability.

The survey only made up a small part of the soft measures evaluation, because it would have been
hard to do it in a scientific manner when so few people knew about Feldspar. A more scientific
survey would be an interesting future project.

When the grave problems observed in this thesis are solved, new problems at a finer level might
arise. A new evaluation would be preferred at that time.

70

Appendix A

Appendix: Code

A.1 Small Test Programs

A.1.1 Feldspar

import qualified Prelude
import Feldspar
import Feldspar.Compiler
import Feldspar.Vector
import Feldspar.Matrix
import PlatformAnsiC

-- Two fir filters in series
twoFir :: DVector Float -> DVector Float -> DVector Float -> DVector Float
twoFir b1 b2 = convolution b1 . convolution b2

-- twoFir without fusion to avoid repeated computations.
twoFir2 :: DVector Float -> DVector Float -> DVector Float -> DVector Float
twoFir2 b1 b2 = convolution b1 . force . convolution b2

-- Compile version with static input vector sizes.
twoFir2_compile

:: Data [Float]
-> Data [Float]
-> Data [Float]
-> DVector Float

twoFir2_compile b1 b2 v =
twoFir2 (unfreezeVector’ 20 b1) (unfreezeVector’ 20 b2) (unfreezeVector’ 12880 v)

-- Squared average of vector
sqAvg :: DVector Float -> Data Float
sqAvg v = sum (v .* v)/i2f (length v)

-- Scalar product of vector and reverse of vector
dotRev :: DVector Int32 -> Data Int32

71

dotRev v = scalarProd v $ reverse v

-- Reverse of reverse
revrev :: DVector Int32 -> DVector Int32
revrev = reverse . reverse

-- Transpose of transpose
transtrans :: Matrix Int32 -> Matrix Int32
transtrans = transpose . transpose

-- Adding and subtracting by one
addsub :: DVector Int32 -> DVector Int32
addsub = map (\x -> x-1) . map (+1)

-- Binary search
binarySearch :: Data DefaultWord -> DVector DefaultWord -> Data Index
binarySearch key v = fst $ forLoop iters (0,len-1) f
where len = length v

iters = ceiling $ logBase 2 $ i2f len
f _ (low,high) =

(v!d == key) ? ((d, d), ((key < v!d) ? ((low, d-1), (d+1, high))))
where d = (low + high) ‘div‘ 2

-- Identity matrix
idMatrix :: Data DefaultWord -> Matrix DefaultWord
idMatrix n = indexedMat n n (\i j -> b2i (i == j))

-- Slice of matrix
sliceMatrix :: (Data Index, Data Index) ->

(Data Index, Data Index) ->
Matrix DefaultWord -> Matrix DefaultWord

sliceMatrix x y = colgate y . map (colgate x)
where
colgate (x1, x2) = drop (x1-1) . take x2

-- Slice of identity matrix
idmSlice :: (Data Index, Data Index) ->

(Data Index, Data Index) ->
Data DefaultWord -> Matrix DefaultWord

idmSlice x y n = sliceMatrix x y $ idMatrix n

-- Duplicate list
duplicate :: DVector Int32 -> DVector Int32
duplicate v = v ++ v

-- ... with a forLoop and 2 writes per iteration
duplicate2:: DVector Int32 -> DVector Int32
duplicate2 v = unfreezeVector $

forLoop l
start
(\i s -> setIx (setIx s (i + l) (getIx a i)) i (getIx a i))

where l = length v
a = freezeVector v
start = freezeVector $ replicate (l*2) 0

72

-- Bubble sort (setIx)
bubbleSort :: DVector Int32 -> DVector Int32
bubbleSort v = forLoop len v inner

where len = length v
inner i nv = forLoop (len-1) nv bubble
bubble j nv’ =

(nv’!j > nv’!(j+1)) ?
((unfreezeVector $ swap1 (freezeVector nv’) j (j+1)), nv’)

swap1 a i1 i2 = setIx (setIx a i1 (getIx a i2)) i2 (getIx a i1)

-- Bubble sort (permute)
bubbleSort2 :: DVector Int32 -> DVector Int32
bubbleSort2 v = forLoop len v inner

where len = length v
inner i nv = forLoop (len-1) nv bubble
bubble j nv’ = (nv’!j > nv’!(j+1)) ? (swap nv’ j (j+1), nv’)
swap v i1 i2 = permute (\l i -> (i == i1) ? (i2, (i == i2) ? (i1, i))) v

-- Convolution (from Examples/Math/Convolution.hs)
convolution :: DVector Float -> DVector Float -> DVector Float
convolution kernel input = map ((scalarProd kernel) . reverse) $ inits input

-- Bit reversal (from Example/Math/Fft.hs)
bitRev :: Type a => Data Index -> Vector (Data a) -> Vector (Data a)
bitRev n = pipe riffle (1...n)

pipe :: (Syntactic a) => (Data Index -> a -> a) -> Vector (Data Index) -> a -> a
pipe = flip.fold.flip

rotBit :: Data Index -> Data Index -> Data Index
rotBit 0 _ = error "k should be at least 1"
rotBit k i = lefts .|. rights
where
ir = i >> 1
rights = ir .&. (oneBits k)
lefts = (((ir >> k) << 1) .|. (i .&. 1)) << k

riffle k (Indexed l ixf Empty) = indexed l (ixf.rotBit k)

oneBits n = complement (allOnes << n)
allOnes = complement 0

A.1.2 MATLAB

%%%% SMALL TEST PROGRAMS

73

% AddSub
% codegen -c -config cfg -args {zeros(1,100000,’int32’)} addsub

function in = addsub(in) %#codegen

in = (in + 1) - 1;

end

% BinarySearch
% codegen -c -config cfg -args {zeros(1,100000,’int32’), int32(0)} binarysearch

function o = binarysearch(x,key) %#codegen

a = int32(1);
b = int32(length(x));

o = int32(b+1);

while a <= b
mid = ceil((a+b)/2);
if(key < x(mid))

b = mid-1;
elseif(key > x(mid))

a = mid+1;
else

o = mid;
break;

end
end

end

% BinarySearch_opt
% codegen -c -config cfg -args {zeros(1,100000,’int32’), int32(0)} binarysearch_opt

function o = binarysearch_opt(x,key) %#codegen

a = int32(1);
b = int32(length(x));

o = int32(b+1);

while a <= b
mid = idivide(a+b,int32(2),’ceil’);
if(key < x(mid))

b = mid-1;
elseif(key > x(mid))

a = mid+1;
else

o = mid;
break;

end
end

74

end

% BitRev
% codegen -c -config cfg -args {(1:16)} bitrev

function in = bitrev(in) %#codegen

in = bitrevorder(in);

end

% BubbleSort
% codegen -c -config cfg -args {zeros(1,1000,’int32’)} bubblesort

function x = bubblesort(x) %#codegen

len = length(x);

for i = 1:len
swapped = false;
for j = 1:len-1

if x(j) > x(j+1)
swapped = true;
temp = x(j);
x(j) = x(j+1);
x(j+1) = temp;

end
end
if ~swapped

break;
end

end

% BubbleSort_opt
% codegen -c -config cfg -args {zeros(1,1000,’int32’)} bubblesort_opt

function x = bubblesort_opt(x) %#codegen

len = length(x);

swapped = true;
i = 0;
while swapped && i < len

swapped = false;
for j = 1:len-1

if x(j) > x(j+1)
swapped = true;
temp = x(j);
x(j) = x(j+1);
x(j+1) = temp;

end
end

75

i = i + 1;
end

% DotRev
% codegen -c -config cfg -args {zeros(1,100000,’int32’)} dotrev

function out = dotrev(in) %#codegen

out = dot(fliplr(in),in);

end

% DotRev_opt
% codegen -c -config cfg -args {zeros(1,100000,’int32’)} dotrev_opt

function out = dotrev_opt(in) %#codegen

out = zeros(class(in));
n = numel(in);
nd2 = floor(numel(in)/2);
for k = 1:nd2

out = out + in(k)*in(n-k+1);
end
if 2*nd2 ~= n

out = out + in(nd2+1)*in(nd2+1);
end

end

% Duplicate
% codegen -c -config cfg -args {zeros(1,100000,’int32’)} duplicate

function o = duplicate(x) %#codegen

o = [x x];

end

% IdMatrix
% codegen -c -config cfg idmatrix

function o = idmatrix() %#codegen

o = eye(1000,’int32’);

end

% IdMatrix_opt
% codegen -c -config cfg idmatrix_opt

function o = idmatrix_opt() %#codegen

76

o = zeros(1000,’int32’);

for k=1:1000
o(k,k) = 1;

end

end

% RevRev
% codegen -c -config cfg -args {zeros(1,100000,’int32’)} revrev

function in = revrev(in) %#codegen

in = fliplr(fliplr(in));

end

% SliceMat
% codegen -c -config cfg -args {int32(0), int32(0), int32(0), int32(0)} slicemat

function o = slicemat(x1,x2,y1,y2) %#codegen

coder.varsize(’o’, [1000 1000], [1 1]);

m = eye(1000,’int32’);
o = m(x1:x2,y1:y2);

end

% SqAvg
% codegen -c -config cfg -args {zeros(1,100000,’double’)} sqavg

function out = sqavg(in) %#codegen

out = sum(in .* in)/length(in);

end

% SqAvg_opt
% codegen -c -config cfg -args {zeros(1,100000,’double’)} sqavg_opt

function out = sqavg_opt(in) %#codegen

out = (in*in.’)/length(in);

end

% TransTrans
function m = transtrans(m) %#codegen

77

m=m’’;

end

% TwoFir
% codegen -c -config cfg

-args {zeros(1,100000,’double’),
zeros(1,10,’double’),
zeros(1,10,’double’)} twofir

function in = twofir(in,k1,k2) %#codegen

in = filter(k2,1,filter(k1,1,in));

end

A.2 DRS

A.2.1 Feldspar

import qualified Prelude as P
import Feldspar
import Feldspar.Vector
import Feldspar.Compiler
import PlatformAnsiC
import Control.Arrow ((***)) -- To generate c_n, the preudo random sequence numbers.

-- Computes the demodulation reference signal sequence.
-- n_cs - Number of subcarriers
-- v - Base sequence number
-- cs - Cyclic shift
-- csf - Cyclic shift field number
-- n_cid - Cell ID number
-- delta_ss - Parameter configured by higher layers
drs :: Data DefaultInt ->

Data DefaultInt ->
Data DefaultInt ->
Data DefaultInt ->
Data DefaultInt ->
Data DefaultInt ->
Data DefaultWord -> DVector (Complex Float)

drs n_cs v cs csf n_cid delta_ss slot = zipWith (*)
(indexed (i2n n_cs)

(\i -> cis ((i2n i) * a)))
(indexed (i2n n_cs)

(\i -> r_bar (i2n i) n_cs v n_cid delta_ss))
where a = alpha slot cs csf n_cid

drs_all_slots :: Data DefaultInt ->

78

Data DefaultInt ->
Data DefaultInt ->
Data DefaultInt ->
Data DefaultInt ->
Data DefaultInt -> Vector (DVector (Complex Float))

drs_all_slots n_cs v cs csf n_cid delta_ss =
indexed 20 $ \slot -> drs n_cs v cs csf n_cid delta_ss slot

--Element n of reference signal sequence (r_uv_alpha) - 3GPP 5.5.1
r_n_r_bar :: Data Float ->

Data Float ->
Data (Complex Float) -> Data (Complex Float)

r_n_r_bar n alpha_in r_bar_in = r_bar_in * cis (alpha_in*n)

--Base sequences of length 3Nsc or larger - 3GPP 5.5.1.1

r_bar :: Data DefaultInt ->
Data DefaultInt ->
Data DefaultInt ->
Data DefaultInt ->
Data DefaultInt -> Data (Complex Float)

r_bar n m_sc v n_cellid delta_ss = x_q (n ‘rem‘ nzc) nzc v (u n_cellid delta_ss)
where nzc = n_rs_zc m_sc

-- Function: Calculates the parameter f_ss_pucch from the Cell ID according to
-- 3GPP 36.211 section 5.5.1.3
-- Application example: eval (f_ss_pucch 2232131::Data Int)
f_ss_pucch :: Data DefaultInt -> Data DefaultInt
f_ss_pucch _N_cell_ID = _N_cell_ID ‘rem‘ 30

-- Function: Calculates the parameter f_ss_pusch from the Cell ID according to
-- 3GPP 36.211 section 5.5.1.4
-- Application example: eval (f_ss_pucch 2232131::Data Int)
f_ss_pusch :: Data DefaultInt -> Data DefaultInt-> Data DefaultInt
f_ss_pusch _N_cell_ID delta_ss = (f_ss_pucch _N_cell_ID + delta_ss)‘rem‘ 30

-- Function: Calculates the parameter f_gh according to 3GPP 36.211 section 5.5.1.3
-- Application example: eval f_gh
f_gh :: Data DefaultInt
f_gh = 0 -- Group hoppnig is dissabled in this implementation.

-- Function: Calculates the Group hoppnig parameter u from the Cell ID according
-- to 3GPP 36.211 section 5.5.1.3
-- Application example: eval (u 12 0)
u :: Data DefaultInt -> Data DefaultInt -> Data DefaultInt
u _N_cell_ID delta_ss = (f_gh + f_ss_pusch _N_cell_ID delta_ss)‘rem‘ 30

x_q2 :: Data DefaultInt ->
Data DefaultInt ->
Data DefaultInt ->
Data DefaultInt -> Data (Complex Float)

x_q2 m nzc v u = cis a
where

q_mod=rem (q*m*(m+1)) (2 *nzc)

79

nsc_scaling=div 32767 nzc
a = i2f (65536 - q_mod * nsc_scaling)
q = ((q_barx 1) + 1)+v*(1-(2*(q_barx 2)) ‘rem‘ 2)
q_barx x = x*((nzc*(u+1)) ‘div‘ 31)

x_q :: Data DefaultInt ->
Data DefaultInt ->
Data DefaultInt ->
Data DefaultInt -> Data (Complex Float)

x_q m nzc v u = cis $ (-1)*pi*(i2f q)*(i2f m)*((i2f m)+1) / (i2f nzc)
where q = (f2i ((q_barx 1) + 0.5))-v*(1-(2*(f2i (q_barx 2))) ‘rem‘ 2)

q_barx x = x*((i2f (nzc*(u+1))) / 31)

-- The length n_rs_zc of the Zadoff-Chu sequence is given by the largest
-- prime number such that _N_RS_ZC < _M_RS_SC.
-- Finds the largest prime number:
-- Function: Finds the largest prime number less than input arg m_rs_sc,
-- Application example: eval $ n_rs_zc 216
n_rs_zc :: Data DefaultInt -> Data DefaultInt
--n_rs_zc m_rs_sc = forLoop (length tolvtable)

0
(\i s ->

((tolvtable)!i == m_rs_sc) ? ((primetable)!i, s))
n_rs_zc m_rs_sc = primetable!(i2n ((m_rs_sc ‘div‘ 12) - 1))

primetable :: DVector DefaultInt
primetable = vector [11, 23, 31, 47, 59, 71, 83, 89, 107, 113, 131, 139, 151,

167, 179, 191, 199, 211, 227, 239, 251, 263, 271, 283, 293, 311, 317, 331,
347, 359, 367, 383, 389, 401, 419, 431, 443, 449, 467, 479, 491, 503, 509,
523, 523, 547, 563, 571, 587, 599, 607, 619, 631, 647, 659, 661, 683, 691,
701, 719, 727, 743, 751, 761, 773, 787, 797, 811, 827, 839, 839, 863, 863,
887, 887, 911, 919, 929, 947, 953, 971, 983, 991, 997, 1019, 1031, 1039,
1051, 1063, 1069, 1091, 1103, 1109, 1123, 1129, 1151, 1163, 1171, 1187, 1193]

--Calculates the cyclic shift in slot n
alpha :: Data DefaultWord ->

Data DefaultInt ->
Data DefaultInt ->
Data DefaultInt -> Data Float

alpha n cs csf cid = 2*pi*(i2f n_cs)/12
where n_cs = (n_dmrs1 + n_dmrs2 + (n_prs n)) ‘rem‘ 12

n_dmrs1 = cs_dmrs1!(i2n cs)
n_dmrs2 = csf_dmrs2!(i2n csf)
csf_dmrs2 = vector [0,6,3,4,2,8,10,9]
cs_dmrs1 = vector [0,2,3,4,6,8,9,10]
n_prs x = n_prs_all_ns cid x

-- Function: Calculates the parameter n_prs for all 20.
-- according to 3GPP 36.211 section 5.5.2.1.1
-- Application example: eval $ n_prs 16
-- Author: Emil Axelsson
n_prs_all_ns:: Data DefaultInt -> Data DefaultWord -> Data DefaultInt
n_prs_all_ns nCellId = c

80

where
delta_ss=0
nc = 100
n_ul_symb = 7

c_init:: Data DefaultWord
c_init = (i2n ((div nCellId 30)* 32 + f_ss_pusch))

where
f_ss_pusch=(f_ss_pucch + delta_ss)‘rem‘ 30
f_ss_pucch= nCellId ‘rem‘ 30

x1_init = 1
x2_init = c_init

c slot = i2n (((x1’ ‘xor‘ x2’) >> 21) .&. 0xFF)
where
(x1’,x2’) = forLoop (nc-21+8*n_ul_symb*slot)

(x1_init,x2_init)
(_ -> x1_step *** x2_step)

x1_step :: Data DefaultWord -> Data DefaultWord
x1_step = (>>1) . combineBits xor [3,0] 31
x2_step :: Data DefaultWord -> Data DefaultWord
x2_step = (>>1) . combineBits xor [3,2,1,0] 31

combineBits ::
(Data DefaultWord -> Data DefaultWord -> Data DefaultWord) ->
[Data DefaultInt] ->
Data DefaultInt ->
Data DefaultWord -> Data DefaultWord

combineBits op is i reg = reg .|. (resultBit << (i2n i))
where
resultBit = (P.foldr1 op $ P.map (reg >>) (P.map i2n is)) .&. bit 0

Naive implementation of n_prs_all_ns:

n_prs_all_ns :: Data DefaultInt -> Data DefaultWord -> Data DefaultInt
n_prs_all_ns n_cellid = n_prs

where
m_pn = 8
nc = 1600 --Change to 100 for faster execution time
delta_ss = 0
n_ul_symb = 7

c_init :: Data DefaultInt
c_init = (n_cellid ‘div‘ 30)*(2^5)+f_ss_pusch

where f_ss_pucch = n_cellid ‘mod‘ 30
f_ss_pusch = (f_ss_pucch + delta_ss) ‘mod‘ 30

x1_i :: Data Index -> Data DefaultInt
x1_i = \i -> i > 0 ? (0,1)

x2_i :: Data Index -> Data DefaultInt
x2_i = \i -> shiftR ((bit i) .&. c_init) (i2n i)

81

n_prs slot =
i2n $ sum $ indexed m_pn (\i -> (2^i)*i2n (c (8*n_ul_symb*slot+i)))
where
c n = ((x1!(n+nc))+(x2!(n+nc))) ‘mod‘ 2

x1 :: DVector DefaultInt
x1 = forLoop (nc+m_pn+8*n_ul_symb*slot)

(indexed (nc+m_pn+8*n_ul_symb*slot) x1_i)
(\n s ->

indexed
(length s)
(\k -> (k == (n+31)) ?

(((s!(n+3)+s!n) ‘mod‘ 2),s!k)))

x2 :: DVector DefaultInt
x2 = forLoop (nc+m_pn+8*n_ul_symb*slot)

(indexed (nc+m_pn+8*n_ul_symb*slot) x2_i)
(\n s ->

indexed (length s) (\k -> (k == (n+31)) ?
(((s!(n+3)+s!(n+2)+s!(n+1)+s!n) ‘mod‘ 2),s!k)))

A.2.2 MATLAB

% DRS
% codegen -c -config cfg -args {72,10,5,5,16,0} Dem_RS_PUSCH

function out = Dem_RS_PUSCH(Nc, v, CS, CSF, N_cellID, Delta_ss) %#codegen
% function [DRS, alfa] = Dem_RS_PUSCH(Nc, v, CS, CSF, N_cellID, Delta_ss, slot) %#codegen
% function DRS = Dem_RS_PUSCH(Nc, u, v, n_DMRS1, CSF, n_PRS);
%
% Inputs
% Nc Number of sub-carriers
% v Base sequence number
% n_DMRS1 Broadcased demodulation refernce signal number1
% CSF Cyclic shift Field number (0 to 7)
% n_cellID Cell id number
% Delta_ss % Parameter configured by higher layers,
% % see 36.211 section 5.5.1.3
% % Value range 0,...,29
%
% Output
% DRS Demdulation reference symbols in frequency domain
%
%
% Henrik Sahlin November 3, 2008

if ((v>0)&&(Nc<6*12))
error(’Only one base sequence if number of resource blocks less than 6’)

end
if (CSF>7)

error(’Cyclic Shift Field must be less than or equal to 7’)

82

end

%% Calculate pseudo random value to be used for "cyclic shift value"

f_ssPUCCH = mod(N_cellID, 30);
f_ssPUSCH = mod(f_ssPUCCH+Delta_ss, 30);
c_init_integer = floor(N_cellID/30)*2^5+f_ssPUSCH;

%% Group number
% See 3GPP TS 36.211 section 5.5.1.3
f_gh = 0; % No support for group hoppning
u = mod(f_gh + f_ssPUSCH, 30);

%%
CSF_DMRS2_table = [0,6,3,4,2,8,10,9];
CS_DMRS1_table = [0,2,3,4,6,8,9,10];

twelves = 12*(1:100);
primelist = [11, 23, 31, 47, 59, 71, 83, 89, 107, 113, 131, 139, 151, 167, ...

179, 191, 199, 211, 227, 239, 251, 263, 271, 283, 293, 311, 317, 331, ...
347, 359, 367, 383, 389, 401, 419, 431, 443, 449, 467, 479, 491, 503, ...
509, 523, 523, 547, 563, 571, 587, 599, 607, 619, 631, 647, 659, 661, ...
683, 691, 701, 719, 727, 743, 751, 761, 773, 787, 797, 811, 827, 839, ...
839, 863, 863, 887, 887, 911, 919, 929, 947, 953, 971, 983, 991, 997, ...
1019, 1031, 1039, 1051, 1063, 1069, 1091, 1103, 1109, 1123, 1129, 1151, ...
1163, 1171, 1187, 1193];

%%

assert(Nc < 1297);
coder.varsize(’n’, [1 1296]);
n = 0:Nc-1;

[~,idx] = min(abs(twelves-Nc));
N_ZC = primelist(idx);

q_bar = N_ZC*(u+1)/31;
q = floor(q_bar+0.5)+v*(-1)^floor(2*q_bar);

x_q = coder.nullcopy(complex(zeros(1,N_ZC)));
for m = 0:N_ZC-1

x_q(m+1) = exp(-1j*pi*q*m*(m+1)/N_ZC);
end
ChuSequence = x_q(mod(n, N_ZC)+1);

n_DMRS1 = CS_DMRS1_table(CS+1); % See 36.211 table 5.5.2.1.1-2
n_DMRS2 = CSF_DMRS2_table(CSF+1); % See 36.211 table 5.5.2.1.1-1

out = coder.nullcopy(complex(zeros(20,Nc)));

83

for slot = 0:19
c = PseudoRandomSequenceEML(c_init_integer, slot);
n_PRS = sum(c((8*7*slot+1):(8*7*slot+8)).’ .* (2.^(0:7)));

n_cs = mod(n_DMRS1 +n_DMRS2 +n_PRS, 12); % See 36.211 section 5.5.2.1.1
alfa = 2*pi*n_cs/12; % See 36.211 section 5.5.2.1.1

DRS = exp(1j*alfa*n).*ChuSequence;
out(slot+1,:) = DRS;

end
end

% DRS_bits
% codegen -c -config cfg -args {72,10,5,5,16,0} Dem_RS_PUSCHbits

function out = Dem_RS_PUSCHbits(Nc, v, CS, CSF, N_cellID, Delta_ss) %#codegen
% function DRS = Dem_RS_PUSCH(Nc, u, v, n_DMRS1, CSF, n_PRS);
%
% Inputs
% Nc Number of sub-carriers
% v Base sequence number
% n_DMRS1 Broadcased demodulation refernce signal number1
% CSF Cyclic shift Field number (0 to 7)
% n_cellID Cell id number
% Delta_ss % Parameter configured by higher layers,
% % see 36.211 section 5.5.1.3
% % Value range 0,...,29
%
% Output
% DRS Demdulation reference symbols in frequency domain
%
%
% Henrik Sahlin November 3, 2008

if ((v>0)&&(Nc<6*12))
error(’Only one base sequence if number of resource blocks less than 6’)

end
if (CSF>7)

error(’Cyclic Shift Field must be less than or equal to 7’)
end

%% Calculate pseudo random value to be used for "cyclic shift value"

f_ssPUCCH = mod(N_cellID, 30);
f_ssPUSCH = mod(f_ssPUCCH+Delta_ss, 30);

%% Group number
% See 3GPP TS 36.211 section 5.5.1.3
f_gh = 0; % No support for group hoppning
u = mod(f_gh + f_ssPUSCH, 30);

%%
CSF_DMRS2_table = [0,6,3,4,2,8,10,9];

84

CS_DMRS1_table = [0,2,3,4,6,8,9,10];

twelves = 12*(1:100);
primelist = [11, 23, 31, 47, 59, 71, 83, 89, 107, 113, 131, 139, 151, ...

167, 179, 191, 199, 211, 227, 239, 251, 263, 271, 283, 293, 311, ...
317, 331, 347, 359, 367, 383, 389, 401, 419, 431, 443, 449, 467, ...
479, 491, 503, 509, 523, 523, 547, 563, 571, 587, 599, 607, 619, ...
631, 647, 659, 661, 683, 691, 701, 719, 727, 743, 751, 761, 773, ...
787, 797, 811, 827, 839, 839, 863, 863, 887, 887, 911, 919, 929, ...
947, 953, 971, 983, 991, 997, 1019, 1031, 1039, 1051, 1063, 1069, ...
1091, 1103, 1109, 1123, 1129, 1151, 1163, 1171, 1187, 1193];

%%
assert(Nc < 1297);
coder.varsize(’n’, [1 1296]);
n = 0:Nc-1;

[~,idx] = min(abs(twelves-Nc));
N_ZC = primelist(idx);

q_bar = N_ZC*(u+1)/31;
q = floor(q_bar+0.5)+v*(-1)^floor(2*q_bar);

x_q = coder.nullcopy(complex(zeros(1,N_ZC)));
for m = 0:N_ZC-1

x_q(m+1) = exp(-1j*pi*q*m*(m+1)/N_ZC);
end
ChuSequence = x_q(mod(n, N_ZC)+1);

n_DMRS1 = CS_DMRS1_table(CS+1); % See 36.211 table 5.5.2.1.1-2
n_DMRS2 = CSF_DMRS2_table(CSF+1); % See 36.211 table 5.5.2.1.1-1

out = coder.nullcopy(complex(zeros(20,Nc)));

for slot = 0:19
n_PRS = double(n_prs_all_ns(N_cellID,slot));

n_cs = mod(n_DMRS1 +n_DMRS2 +n_PRS, 12); % See 36.211 section 5.5.2.1.1
alfa = 2*pi*n_cs/12; % See 36.211 section 5.5.2.1.1

DRS = exp(1j*alfa*n).*ChuSequence;

out(slot+1,:) = DRS;
end

% Helper Function to DRS - calculating a pseudo-random bit sequence
function c = PseudoRandomSequenceEML(c_init_integer,slot) %#codegen

% Pseudo random sequence according to 3GPP TS 36.211, section 7.2

%c_init_bin = dec2bin(c_init_integer); % Convert to binary ’char’
%c_init = str2num(c_init_bin(:)); %#ok<ST2NM> % Convert to vector with integers

85

% dec2bin and str2num are not supported by EML for code generation, let’s
% make something which is (bottom).

N_c = 100;
M_PN = 8;

c_init = int2binlist(c_init_integer);
x1 = zeros(N_c+M_PN+8*7*slot+31,1);
x1(1) = 1;
x2 = zeros(N_c+M_PN+8*7*slot+31,1);
x2(1:length(c_init)) = flipud(c_init(:));
% Such that c_init_integer = Sum(x2(k) * 2^k)

for n = 0:(N_c+M_PN-1+8*7*slot)
x1(n+31+1) = mod(x1(n+3+1) + x1(n+1), 2);
x2(n+31+1) = mod(x2(n+3+1) + x2(n+2+1) + x2(n+1+1) + x2(n+1), 2);

end
n = 0:(M_PN-1+8*7*slot);
c = mod(x1(n+N_c+1) + x2(n+N_c+1),2);

end

function out = int2binlist(input)
np = nextpow2(input);
input = uint32(input);
assert(np < 8);
out = zeros(np+1, 1);
for i = 1:np+1

out(np+2-i) = bitshift(bitand(input, 2^(i-1)), -np);
end

end

% Helper Function to DRS_bits - calculating a pseudo-random bit sequence
function out = n_prs_all_ns(nCellId,slot) %#codegen

delta_ss = 0;
f_ss_pucch = mod(nCellId, 30);
f_ss_pusch = mod((f_ss_pucch + delta_ss), 30);
c_init = idivide(int32(nCellId), int32(30)) * 32 + f_ss_pusch;
x1_init = 1;
x2_init = uint32(c_init);

x1_ = uint32(0);
x2_ = uint32(0);

x1 = uint32(x1_init);
x2 = uint32(x2_init);
for k = 1:(79+8*7*slot) %1579

list = bitshift(x1, -[0,3]);
resultBit = list(1);

for i = list(2:end)
resultBit = bitxor(i, resultBit);

end

86

resultBit = bitand(resultBit, 1);
x1 = bitor(x1, bitshift(resultBit, 31));
x1_ = bitshift(x1, -1);
x1 = x1_;

list = bitshift(x2, -[0,1,2,3]);
resultBit = list(1);

for i = list(2:end)
resultBit = bitxor(i, resultBit);

end

resultBit = bitand(resultBit, 1);
x2 = bitor(x2, bitshift(resultBit, 31));
x2_ = bitshift(x2, -1);
x2 = x2_;

end

out = bitand(bitshift(bitxor(x1_, x2_),-21),255);

end

A.3 ChEst

A.3.1 Feldspar

import qualified Prelude
import Feldspar
import Feldspar.Compiler
import Feldspar.Vector
import Fft
import PlatformAnsiC
import Feldspar.Matrix

_D :: Data DefaultWord
_D = 2

_L :: Data DefaultWord -> Data DefaultWord
_L n = ceiling $ i2f n / 10

nextpow2 :: Data DefaultWord -> Data DefaultWord
nextpow2 x = ceiling $ logBase 2 $ i2f x

xt :: DVector (Complex Float) ->
Data DefaultWord -> DVector (Complex Float)

xt x n = complex root 0 *** ifft x
where
root = sqrt $ i2f $ _D * n

xt_window :: DVector (Complex Float) ->

87

Data DefaultWord -> DVector (Complex Float)
xt_window x n = take winlen x ++ replicate (2^(nextpow2 (_D * n)) - winlen) 0
where
winlen = _L n * _D + 1

xf :: DVector (Complex Float) -> Data DefaultWord -> DVector (Complex Float)
xf x n = (1/complex root 0) *** fft (xt_window (xt x n) n)
where
root = sqrt $ i2f $ _D * n

chest_DFT :: DVector (Complex Float) ->
Data DefaultWord ->
(DVector (Complex Float), DVector (Complex Float))

chest_DFT x n = (xt x n, xf x n)

chest_DFT_wrap :: Data [Complex Float] ->
(DVector (Complex Float), DVector (Complex Float))

chest_DFT_wrap x =
(xt (unfreezeVector’ 1200 x) 2048, xf (unfreezeVector’ 1200 x) 2048)

A.3.2 MATLAB

% ChEst - compiled for 1200 sub-carriers
% codegen -c -config cfg -args {complex(zeros(1,64))} chest_DFT600

function [Xf, xt] = chest_DFT1200(X) %#codegen

N = 1200;
D = 2;
L = ceil(N/10);

%% Time domain
xt = sqrt(D*N)*ifft(X);

%% Window

xt_window = complex(zeros(1,2^nextpow2(D*N)));
xt_window(1:(L*D+1)) = xt(1:(L*D+1));

%% Frequency domain again
Xf = 1/sqrt(D*N)*fft(xt_window);

88

A.4 MMSE

A.4.1 Feldspar

Feldspar

import qualified Prelude
import Feldspar
import Feldspar.Compiler
import Feldspar.Matrix
import Feldspar.Vector
import PlatformAnsiC
import Feldspar.Compiler.Backend.C.Options

{-
MMSE based equalization including some poor functions for matrix inverse

-}

--
-- inverseMatrix using vector library
--

inverseMatrix :: Matrix (Complex Float) -> Matrix (Complex Float)
inverseMatrix m = augmentedPart $ rrowEchelon $ augmentMatrix m $ idMatrix $ length m

-- Take right part of augmented matrix
augmentedPart :: Matrix (Complex Float) -> Matrix (Complex Float)
augmentedPart m = map (drop (length m)) m

-- Put matrix m2 to the right of matrix m1
augmentMatrix :: Matrix (Complex Float) ->

Matrix (Complex Float) -> Matrix (Complex Float)
augmentMatrix = zipWith (++)

-- nxn identity matrix
idMatrix :: Data DefaultWord -> Matrix (Complex Float)
idMatrix n = indexedMat n n (\i j -> complex (i2f ((b2i (i == j))::Data DefaultInt)) 0)

-- Apply Gauss-Jordan elimination to obtain reduced row echelon form
rrowEchelon :: Matrix (Complex Float) -> Matrix (Complex Float)
rrowEchelon m = forLoop (length m) m fun
where
fun i state = ((state!piv)!i /= 0) ? (subaru, state)
where

piv = pivot i state
swapped = swap state i piv
divided = divRowInMatrix swapped i (swapped!i!i)
subaru = indexed (length m) allButI
allButI n = (n /= i) ? (subRow (divided!n) (divided!i) i, divided!n)

-- Find pivot in column i, starting in row i
pivot :: Data DefaultWord -> Matrix (Complex Float) -> Data DefaultWord

89

pivot i m = forLoop (length m - 1) i piv
where
piv k s = (magnitude (m!(k+1)!i) > magnitude (m!s!i)) ? (k+1, s)

-- Swap rows i and j
swap :: Matrix (Complex Float) ->

Data DefaultWord ->
Data DefaultWord -> Matrix (Complex Float)

swap m i j = permute (_ k -> (k == i) ? (j,((k == j) ? (i,k)))) m

-- Divide all elements in row k with x
divRowInMatrix :: Matrix (Complex Float) ->

Data DefaultWord ->
Data (Complex Float)-> Matrix (Complex Float)

divRowInMatrix m k x =
indexed (length m) $ \i -> (i == k) ? (map (/x) (m!i), m!i)

-- Subtract x .* is from v
subRow :: DVector (Complex Float) ->

DVector (Complex Float) ->
Data DefaultWord -> DVector (Complex Float)

subRow v is j = v .- (is *** (v!j))

--
-- inverseMatrix using core matrices
--

inverseMatrix2 :: Matrix (Complex Float) -> Matrix (Complex Float)
inverseMatrix2 m = augmentedPart $ rrowEchelon_core $

augmentMatrix m $ idMatrix $ length m

-- Gauss-Jordan elimination with core matrix in forLoop state
rrowEchelon_core :: Matrix (Complex Float) -> Matrix (Complex Float)
rrowEchelon_core m = unfreezeMatrix $ forLoop rows (freezeMatrix m) fun
where
rows = length m
cols = length $ head m
fun i state = ((state!piv)!i /= 0) ? (subaru, state)
where
subaru = parallel rows allButI
swapped = swap_core state i piv
divided = divRowInMatrix_core swapped i ((swapped!i)!i) cols
piv = pivot_core i state rows
allButI n = (n /= i) ? (subRow_core (divided!n) (divided!i) i cols, divided!n)

pivot_core :: Data DefaultWord ->
Data [[Complex Float]] ->
Data DefaultWord -> Data DefaultWord

pivot_core i m len = forLoop (len-1) i piv
where piv k s = (magnitude (m!(k+1)!i) > magnitude (m!s!i)) ? (k+1, s)

-- Swap rows in core matrix
swap_core :: Data [[Complex Float]] ->

Data DefaultWord ->
Data DefaultWord -> Data [[Complex Float]]

swap_core m i j = setIx (setIx m i (m!j)) j (m!i)

90

divRowInMatrix_core :: Data [[Complex Float]] ->
Data DefaultWord ->
Data (Complex Float) ->
Data DefaultWord -> Data [[Complex Float]]

divRowInMatrix_core m k x len = setIx m k newRow
where

newRow = parallel len (\i -> (m!k)!i / x)

subRow_core :: Data [Complex Float] ->
Data [Complex Float] ->
Data DefaultWord ->
Data DefaultWord -> Data [Complex Float]

subRow_core v is j len = parallel len (\i -> v!i - multiplied!i)
where multiplied = parallel len (\i -> is!i * v!j)

-- MMSE based equalization and antenna combining
-- Equal amount of Rx and Tx antennas
-- w = h’ * (h*h’+c)^-1 where ’ is the complex conjugate transpose
mmse_eq1 :: Vector (Matrix (Complex Float)) ->

Matrix (Complex Float) ->
(Vector (Matrix (Complex Float)), Vector (Matrix (Complex Float)))

mmse_eq1 h c = (indexed n w, indexed n hp)
where
w k = fnutt (h!k) *** inverseMatrix ((h!k) *** fnutt (h!k) .+ c)
hp k = w k *** (h!k)
n = length h

un3 :: Type a => Data [[[a]]] -> Vector (Matrix a)
un3 = map (map (unfreezeVector’ 8)) . map (unfreezeVector’ 8) . unfreezeVector’ 1200

un2 :: Type a => Data [[a]] -> Matrix a
un2 = map (unfreezeVector’ 8) . unfreezeVector’ 8

mmse_eq1_wrap :: Data [[[Complex Float]]] ->
Data [[Complex Float]] ->

(Vector (Matrix (Complex Float)), Vector (Matrix (Complex Float)))
mmse_eq1_wrap h c = mmse_eq1 (un3 h) (un2 c)

-- MMSE based equalization and antenna combining
-- Equal amount of Rx and Tx antennas
-- w = h’ * (h*h’+c)^-1 where ’ is the complex conjugate transpose
mmse_eq1_core :: Vector (Matrix (Complex Float)) ->

Matrix (Complex Float) ->
(Vector (Matrix (Complex Float)), Vector (Matrix (Complex Float)))

mmse_eq1_core h c = (indexed n w, indexed n hp)
where
w k = fnutt (h!k) *** inverseMatrix2 ((h!k) *** fnutt (h!k) .+ c)
hp k = w k *** (h!k)
n = length h

mmse_eq1_core_wrap :: Data [[[Complex Float]]] ->
Data [[Complex Float]] ->
(Vector (Matrix (Complex Float)), Vector (Matrix (Complex Float)))

mmse_eq1_core_wrap h c = mmse_eq1_core (un3 h) (un2 c)

91

-- Less Tx antennas than Rx antennas
-- w = (inv(h’ * inv(c)*h+(id n_tx))*h’)*inv(C)
mmse_eq2 :: Vector (Matrix (Complex Float)) ->

Matrix (Complex Float) ->
(Vector (Matrix (Complex Float)), Vector (Matrix (Complex Float)))

mmse_eq2 h c = (indexed n w, indexed n hp)
where
w k = (inverseMatrix (fnutt (h!k)

*** inverseMatrix c
*** (h!k) .+ (idMatrix n_tx))
*** fnutt (h!k))
*** inverseMatrix c

hp k = w k *** (h!k)
n_tx = length $ head $ head h
n = length h

-- MMSE EQ 2 with core matrix inversion
mmse_eq2_core :: Vector (Matrix (Complex Float)) ->

Matrix (Complex Float) ->
(Vector (Matrix (Complex Float)), Vector (Matrix (Complex Float)))

mmse_eq2_core h c = (indexed n w, indexed n hp)
where
w k = (inverseMatrix2 (fnutt (h!k)

*** inverseMatrix2 c
*** (h!k) .+ (idMatrix n_tx))
*** fnutt (h!k))
*** inverseMatrix2 c

hp k = w k *** (h!k)
n_tx = length $ head $ head h
n = length h

-- Complex conjugate transpose
fnutt :: Matrix (Complex Float) -> Matrix (Complex Float)
fnutt = map (map conjugate) . transpose

A.4.2 MATLAB

% MMSE1
% codegen -c -config cfg -args {complex(zeros(8,8,1200)), zeros(8,8)} MMSE_EQ1

function [W, H_post] = MMSE_EQ1(H, C) %#codegen

% MMSE based equalization and atenna combining
%
% This formulation if preferred if
% equal amount of Rx and Tx antennas
% H’ * inv(H*H’+C)
[N_Rx, N_Tx, N] = size(H);

W = coder.nullcopy(complex(zeros(N_Tx, N_Rx, N)));
H_post = coder.nullcopy(complex(zeros(N_Tx, N_Tx, N)));
for k=1:N

W(:,:,k) = H(:,:,k)’/(H(:,:,k)*H(:,:,k)’+C);

92

H_post(:,:,k) = W(:,:,k) * H(:,:,k);
end

% MMSE1_opt
% codegen -c -config cfg -args {complex(zeros(8,8,1200)), zeros(8,8)} MMSE_EQ1_opt

function [W, H_post] = MMSE_EQ1_opt(H, C) %#codegen

% MMSE based equalization and atenna combining
%
% This formulation if preferred if
% equal amount of Rx and Tx antennas
% H’ * inv(H*H’+C)
[N_Rx, N_Tx, N] = size(H);

W = coder.nullcopy(complex(zeros(N_Tx, N_Rx, N)));
H_post = coder.nullcopy(complex(zeros(N_Tx, N_Tx, N)));
for k=1:N

Hk = H(:,:,k);
Wk = Hk’/(Hk*Hk’+C);
H_post(:,:,k) = Wk * Hk;
W(:,:,k) = Wk;

end

% MMSE2
% codegen -c -config cfg -args {complex(zeros(8,2,1200)), zeros(8,8)} MMSE_EQ2

function [W, H_post] = MMSE_EQ2(H, C) %#codegen

% MMSE based equalization and atenna combining
%
% This formulation if preferred if
% less Tx antennas than Rx antennas
%inv(H(:,:,k)’*inv(C)*H(:,:,k)+eye(N_Tx))*H(:,:,k)’*inv(C);

[N_Rx, N_Tx, N] = size(H);

W = coder.nullcopy(complex(zeros(N_Tx, N_Rx, N)));
H_post = coder.nullcopy(complex(zeros(N_Tx, N_Tx, N)));
for k=1:N

W(:,:,k) = (H(:,:,k)’/C*H(:,:,k)+eye(N_Tx))\H(:,:,k)’/C;
H_post(:,:,k) = W(:,:,k) * H(:,:,k);

end

% MMSE2_opt
% codegen -c -config cfg -args {complex(zeros(8,2,1200)), zeros(8,8)} MMSE_EQ2_opt

function [W, H_post] = MMSE_EQ2_opt(H, C) %#codegen

% MMSE based equalization and atenna combining
%
% This formulation if preferred if
% less Tx antennas than Rx antennas

93

%inv(H(:,:,k)’*inv(C)*H(:,:,k)+eye(N_Tx))*H(:,:,k)’*inv(C);

[N_Rx, N_Tx, N] = size(H);

W = coder.nullcopy(complex(zeros(N_Tx, N_Rx, N)));
H_post = coder.nullcopy(complex(zeros(N_Tx, N_Tx, N)));
for k=1:N

Hk = H(:,:,k);
tmp = (Hk’/C)*Hk;
% Add eye(N_Tx) without forming the identity matrix.
for j = 1:N_Tx

tmp(j,j) = tmp(j,j) + 1;
end
Wk = (tmp \ Hk’) / C;
W(:,:,k) = Wk;
H_post(:,:,k) = Wk * Hk;

end

A.5 MATLAB Coder Configuration

Description: ’class EmbeddedCodeConfig:
C code generation Embedded Coder configuration objects.’

Name: ’EmbeddedCodeConfig’

-------------------------------- Report -------------------------------

GenerateReport: true
LaunchReport: false

---------------------------- Code Generation --------------------------

FilePartitionMethod: ’MapMFileToCFile’
GenCodeOnly: true

GenerateMakefile: true
MakeCommand: ’make_rtw’

MultiInstanceCode: false
OutputType: ’EXE’

PostCodeGenCommand: ’’
TargetLang: ’C’

TemplateMakefile: ’default_tmf’

------------------------ Language And Semantics -----------------------

ConstantFoldingTimeout: 10000
DynamicMemoryAllocation: ’Off’

EnableVariableSizing: true
InitFltsAndDblsToZero: true

PurelyIntegerCode: false
SaturateOnIntegerOverflow: false

SupportNonFinite: false

94

TargetFunctionLibrary: ’C99 (ISO)’

---------------- Function Inlining and Stack Allocation ---------------

InlineStackLimit: 4000000
InlineThreshold: 700

InlineThresholdMax: 800
StackUsageMax: 200000

----------------------------- Optimizations ---------------------------

CCompilerCustomOptimizations: ’’
CCompilerOptimization: ’Off’

ConvertIfToSwitch: false
EnableMemcpy: true

MemcpyThreshold: 64

------------------------------- Comments ------------------------------

GenerateComments: true
MATLABFcnDesc: false

MATLABSourceComments: false
Verbose: false

------------------------------ Custom Code ----------------------------

CustomHeaderCode: ’’
CustomInclude: ’’

CustomInitializer: ’’
CustomLibrary: ’’
CustomSource: ’’

CustomSourceCode: ’’
CustomTerminator: ’’
ReservedNameArray: ’’

------------------------------ Code Style -----------------------------

CustomSymbolStrEMXArray: ’emxArray_MN’
CustomSymbolStrFcn: ’MN’

CustomSymbolStrField: ’MN’
CustomSymbolStrGlobalVar: ’MN’

CustomSymbolStrMacro: ’MN’
CustomSymbolStrTmpVar: ’MN’
CustomSymbolStrType: ’MN’
IncludeTerminateFcn: true

MaxIdLength: 31
ParenthesesLevel: ’Nominal’

PreserveExternInFcnDecls: true

------------------------------- Hardware ------------------------------

HardwareImplementation: [1x1 coder.HardwareImplementation]

95

Appendix B

Appendix: Results - Execution
Time

B.1 PC

Test Program F #1 F #2 F #3 M #1 M #2 M #3
BinarySearch 12 10 15 1 4 4

BitRev 1380 2832 6141 540 1340 2521
Bubblesort1 102 1162 8715 180 1082 3373
Bubblesort2 582 3703 29287 - - -

Bubblesort opt - - - 200 1078 3510
DotRev 101 213 426 222 453 865

DotRev opt - - - 70 109 220
Duplicate 130 251 423 0 67 197
Duplicate2 15500 73227 293103 - - -
IdMatrix 119 436 1924 25 102 1062

SliceMatrix 536 2090 8250 395 1520 7009
RevRev 566 1096 2275 570 1171 2236
SqAvg 1759 3491 6879 2106 4264 8537

SqAvg opt - - - 1729 3401 6941
TwoFir 155 344 1031 6 16 49

TwoFir wrap - - 368 - - -
DRS - - - 2566 3468 4434

DRS opt 6455 9128 11942 1801 2693 3873
ChEst 5192 5017 86964 422 485 703

ChEst wrap - - 71842 - - -
MMSE EQ1 223 1876 7849 1 45 264

MMSE EQ1 core 217 1896 7514 - - -
MMSE EQ1 wrap - - 2888 - - -

MMSE EQ1 core wrap - - 2853 - - -
MMSE EQ1 opt - - - 1 38 232
MMSE EQ2 - - - 1 0 0

MMSE EQ2 core 28 253 716 - - -
MMSE EQ2 opt - - - 0 0 1

Table B.1: Number of sampled CPU cycles for each run. F is Feldspar and M is MATLAB. -
means that the test program was not implemented or run.

96

B.2 TI C6670 Simulator

Test Program F #1 F #2 F #3 M #1 M #2 M #3
BinarySearch 1390 9175 9865 769 876 981

BitRev 1120 27500 66222 1081 2341 4749
Bubblesort1 21563 1330177 10424269 9279 37420 216248
Bubblesort2 42280 1389005 11036332 - - -

Bubblesort opt - - - 3860 14103 75383
DotRev 9112 16735 32936 24265 48521 96957

DotRev opt - - - 3493 6841 13292
Duplicate 19744 37579 71831 15827 31199 63440
Duplicate2 22959 3232447 3219960 - - -
IdMatrix 8374 33997 136394 1438 6461 26148

SliceMatrix 4073 14036 51745 5202 17253 60622
RevRev 9971 17656 37592 17895 36719 73315
SqAvg 6711 13867 27133 25530 47736 93311

SqAvg opt - - - 25764 48291 94436
TwoFir 272170 3220941 11163382 196633 809926 1636110
DRS - - - 3678565 3877449 4102941

DRS opt 3834717 4993185 6144403 1189953 1393188 1590246
ChEst 1601114 1960925 2778733 25485 31708 45730

MMSE EQ1 5848081 40402456 308317922 124868 787355 5185359
MMSE EQ1 core 5383219 33892362 250526324 - - -
MMSE EQ1 opt - - - 128536 848423 4135210
MMSE EQ2 - - - 104087 515888 1115753

MMSE EQ2 core 1275381 8058645 27297640 - - -
MMSE EQ2 opt - - - 103626 531380 1039320

Table B.2: Number of CPU cycles for each run. F is Feldspar and M is MATLAB. - means that
the test program was not implemented or run.

97

Appendix C

Appendix: Survey

C.1 Questions

(0a) MATLAB experience.
No Experience (1-10) Expert

(0b) Functional programming experience.
No Experience (1-10) Expert

(0c) Seen Feldspar?
(Yes/No)

1a

Consider the following MATLAB function f

function out = f(v)

out = (v*v.’)/length(v);

end

How easy is it to understand what f does?
Easy (1-10) Hard

1b

Now consider the Feldspar function f

f :: DVector Float -> DVector Float

98

f vec = zipWith g vec (tail vec)
where g x y = 0.5*x + 0.5*y

How easy is it to understand what f does?
Easy (1-10) Hard

2a

Consider the following Feldspar functions implementing two FIR filters in series (think of k1 and
k2 as arbitrary coefficient vectors).

filter1 :: DVector Float -> DVector Float
filter1 = convolution k1

filter2 :: DVector Float -> DVector Float
filter2 = convolution k2

filter_chain :: DVector Float -> DVector Float
filter_chain = filter2 . filter1

Now look at the MATLAB implementation of the same filter (think of k1 and k2 as arbitrary
coefficient vectors).

function v = filter_chain(v, k1, k2)

v = conv(conv(v,k1),k2);

end

Which implementation do you find more intuitive?
Feldspar (1-10) MATLAB

2b

The function cumxor takes a start value s and a vector v of unsigned integers. It does bitwise
XOR between s and the first element of v, and then does a new XOR between the result and the
second element of v, and so on until the end of v. The final result is then returned.

Feldspar implementation:

cumxor :: Data DefaultWord -> DVector DefaultWord -> Data DefaultWord
cumxor = fold xor

MATLAB implementation:

99

function s = cumxor(s, v)
for i = 1:length(v)

s = bitxor(v(i), s);
end

end

Which implementation do you find more intuitive?
Feldspar (1-10) MATLAB

3

The following function computes the square root of the i:th element of the vector v.

Feldspar implementation:

fun :: DVector Float -> Data Index-> Data Float
fun v i = sqrt (v!i)

MATLAB implementation:

function out = fun(v, i)
out = sqrt(v(i));

end

Change the functions so that they do square root on all elements in v.

(3a) How easy was it for the Feldspar implementation?
Easy (1-10) Hard

(3b) How easy was it for the MATLAB implementation?
Easy (1-10) Hard

100

C.2 Answers

Participant 0a 0b 0c 1a 1b 2a 2b 3a 3b
1 7 2 No 2 8 10 9 8 1
2 9 2 No 1 9 8 8 4 1
3 9 2 No 1 8 8 8 5 2
4 8 2 Yes 2 8 7 9 8 2
5 3 10 Yes 7 2 2 4 1 3
6 3 2 Yes 3 7 3 8 1 1
7 2 10 No 10 2 1 1 2 10
8 8 1 No 1 9 9 9 10 1
9 5 2 Yes 1 6 5 3 2 2

Table C.1: Answers to the survey.

101

Bibliography

[1] Axelsson E, Claessen K, Dévai G, Horváth Z, Keijzer K, Lyckegård B, Persson A, Sheeran
M, Svenningsson J and Vajda A. Feldspar: A Domain Specific Language for Digital Signal
Processing Algorithms. Eighth ACM/IEEE International Conference on Formal Methods and
Models for Codesign, 2010.

[2] Axelsson E, Persson A, Sheeran M, Svenningsson J and Dévai G. A Tutorial on Programming
in Feldspar. http://feldspar.inf.elte.hu/feldspar/documents/FeldsparTutorial.
pdf, 2011.

[3] MathWorks. http: // www. mathworks. com/ products/ matlab/ , May 2011.

[4] MATLAB User’s Guide (MATLAB Coder). http://www.mathworks.com/help/toolbox/
coder/index.html. Version: 2011a.

[5] MathWorks. MATLAB Language Subset for Code Generation - MATLAB Coder. http:
//www.mathworks.com/products/matlab-coder/description2.html, May 2011.

[6] Single Assignment C – Functional Array Programming for High-Performance Computing.
http://www.sac-home.org/, January 2011.

[7] Vikström A. A Study of Automatic Translation of MATLAB Code to C Code using Software
from the MathWorks. Master’s thesis, Luleå University of Technology, 2009.

[8] Müllegger M. Evaluation of Compilers for MATLAB- to C-Code Translation. Master’s thesis,
Halmstad University, 2008.

[9] The Glasgow Haskell Compiler. http://www.haskell.org/ghc/, May 2011.

[10] The Haskell Platform. http://hackage.haskell.org/platform/, May 2011.

[11] Hutton G. Programming in Haskell. Cambridge University Press, 2007.

[12] Thompson S. Haskell: The Craft of Functional Programming. Icss Series. Pearson Education,
Limited, 2006.

[13] Coutts D, Leshchinskiy R and Stewart D. Stream Fusion From Lists to Streams to Nothing at
All. ICFP’07 Proceedings of the 2007 ACM SIGPLAN International Conference on Functional
Programming, 2007.

[14] User’s Guide to the Feldspar Compiler. http://feldspar.inf.elte.hu/feldspar/
documents/FeldsparCompilerDocumentation.html, 2011.

[15] MATLAB User’s Guide (Fixed-Point Toolbox). http://www.mathworks.com/help/toolbox/
fixedpoint/. Version: 2011a.

[16] MathWorks. MathWorks - MATLAB and Simulink for Technical Computing. http://www.
mathworks.com/, May 2011.

[17] Moler C. The Origins of MATLAB. http://www.mathworks.com/company/newsletters/
news\discretionary{-}{}{}notes/clevescorner/dec04.html, May 2011.

102

http://feldspar.inf.elte.hu/feldspar/documents/FeldsparTutorial.pdf
http://feldspar.inf.elte.hu/feldspar/documents/FeldsparTutorial.pdf
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/help/toolbox/coder/index.html
http://www.mathworks.com/help/toolbox/coder/index.html
http://www.mathworks.com/products/matlab-coder/description2.html
http://www.mathworks.com/products/matlab-coder/description2.html
http://www.sac-home.org/
http://www.haskell.org/ghc/
http://hackage.haskell.org/platform/
http://feldspar.inf.elte.hu/feldspar/documents/FeldsparCompilerDocumentation.html
http://feldspar.inf.elte.hu/feldspar/documents/FeldsparCompilerDocumentation.html
http://www.mathworks.com/help/toolbox/fixedpoint/
http://www.mathworks.com/help/toolbox/fixedpoint/
http://www.mathworks.com/
http://www.mathworks.com/
http://www.mathworks.com/company/newsletters/news\discretionary {-}{}{}notes/clevescorner/dec04.html
http://www.mathworks.com/company/newsletters/news\discretionary {-}{}{}notes/clevescorner/dec04.html

[18] MathWorks. Mathtools.net : MATLAB. http://www.mathtools.net/MATLAB/index.html,
May 2011.

[19] MATLAB User’s Guide (Object-Oriented Programming). http://www.mathworks.com/help/
techdoc/matlab_oop/ug_intropage.html. Version: 2011a.

[20] MATLAB User’s Guide (Techniques for Improving Performance). http://www.mathworks.
com/help/techdoc/matlab_prog/f8-784135.html#br8fs0d-1. Version: 2011a.

[21] MATLAB User’s Guide (Assert). http://www.mathworks.com/help/techdoc/ref/assert.
html. Version: 2011a.

[22] MATLAB User’s Guide (Parallel Computing Toolbox). http://www.mathworks.com/help/
toolbox/distcomp/. Version: 2011a.

[23] MATLAB User’s Guide (Parallel Computing Toolbox - parfor). http://www.mathworks.com/
help/toolbox/distcomp/parfor.html. Version: 2011a.

[24] 3GPP 36.211 Technical Specification. www.quintillion.co.jp/3GPP/Specs/36211-910.
pdf, 2010.

[25] Press W. Numerical recipes: the art of scientific computing. Cambridge University Press,
2007.

[26] Cheney W and Kincaid D. Linear Algebra: Theory and Applications. Jones & Bartlett
Publishers, Incorporated, 2011.

[27] MATLAB User’s Guide (mldivide, mrdivide). http://www.mathworks.com/help/techdoc/
ref/mldivide.html. Version: 2011a.

[28] Texas Instruments. C6000 High Performance Multicore DSP - TMS320C66x DSP -
TMS320C6670 - TI.com. http://focus.ti.com/docs/prod/folders/print/tms320c6670.
html, May 2011.

[29] Aggarwal K, Singh Y and Chhabra J. An Integrated Measure of Software Maintainability.
Reliability and Maintainability Symposium, 2002. 235–241.

[30] Pierce B. Types and programming languages. MIT Press, 2002.

[31] Spinellis D. Code documentation. IEEE Software, 2010. 27(4):18–19.

[32] Venners B and Thomas D. Orthogonality and the DRY Principle. http://www.artima.com/
intv/dry.html, May 2011.

[33] Goodliffe P. Code craft: the practice of writing excellent code. No Starch Press Series. No
Starch Press, 2007.

[34] Buse R and Weimer W. Learning a Metric for Code Readability. IEEE Transactions on
Software Engineering, 2010. 36(4):546–558.

[35] Wallace D, Ippolito L and Cuthill B. Reference Information for the Software Verification &
Validation Process. Diane Pub Co, 1996.

[36] Zoffmann G, Gingerl M, Reumann C and Sonneck G. A Classification Scheme for Software
Verification Tools with Regard to RTCA/DO-178B. SAFECOMP 2001, 2001. Chapter 6.

[37] D’Silva V, Kroening D and Weissenbacher G. A Survey of Automated Techniques for Formal
Software Verification. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2008. 27(7). Section II - E.

[38] Abran A, Moore J, Bourque P and Dupuis R. Guide to the Software Engineering Body of
Knowledge. IEEE Computer Society, 2004. Chapter 5.

103

http://www.mathtools.net/MATLAB/index.html
http://www.mathworks.com/help/techdoc/matlab_oop/ug_intropage.html
http://www.mathworks.com/help/techdoc/matlab_oop/ug_intropage.html
http://www.mathworks.com/help/techdoc/matlab_prog/f8-784135.html#br8fs0d-1
http://www.mathworks.com/help/techdoc/matlab_prog/f8-784135.html#br8fs0d-1
http://www.mathworks.com/help/techdoc/ref/assert.html
http://www.mathworks.com/help/techdoc/ref/assert.html
http://www.mathworks.com/help/toolbox/distcomp/
http://www.mathworks.com/help/toolbox/distcomp/
http://www.mathworks.com/help/toolbox/distcomp/parfor.html
http://www.mathworks.com/help/toolbox/distcomp/parfor.html
www.quintillion.co.jp/3GPP/Specs/36211-910.pdf
www.quintillion.co.jp/3GPP/Specs/36211-910.pdf
http://www.mathworks.com/help/techdoc/ref/mldivide.html
http://www.mathworks.com/help/techdoc/ref/mldivide.html
http://focus.ti.com/docs/prod/folders/print/tms320c6670.html
http://focus.ti.com/docs/prod/folders/print/tms320c6670.html
http://www.artima.com/intv/dry.html
http://www.artima.com/intv/dry.html

[39] Marciniak J. Encyclopedia of software engineering, 970–978. J. Wiley, 1994. D. Hamlet,
Random Testing.

[40] MATLAB User’s Guide (Concatenating Objects of Different Classes). http://www.
mathworks.com/help/techdoc/matlab_oop/bsfenzt.html. Version: 2011a.

[41] MATLAB User’s Guide (Debugging Process and Features). http://www.mathworks.com/
help/techdoc/matlab_env/brqxeeu-175.html. Version: 2011a.

[42] The GHCi Debugger. http://www.haskell.org/ghc/docs/latest/html/users_guide/
ghci-debugger.html, May 2011.

[43] Marlow S. Haddock: A Haskell Documentation Tool. http://www.haskell.org/haddock,
May 2011.

[44] van Heesch D. Doxygen. http://www.doxygen.org, May 2011.

[45] Gnuplot - HaskellWiki. http://www.haskell.org/haskellwiki/Gnuplot, May 2011.

[46] Claessen K and Hughes J. QuickCheck: A Lightweight Tool for Random Testing of Haskell
Programs. ACM SIGPLAN Notices, 2000. 35(9).

[47] QuickCheck Manual. http://www.cse.chalmers.se/~rjmh/QuickCheck/manual.html.

104

http://www.mathworks.com/help/techdoc/matlab_oop/bsfenzt.html
http://www.mathworks.com/help/techdoc/matlab_oop/bsfenzt.html
http://www.mathworks.com/help/techdoc/matlab_env/brqxeeu-175.html
http://www.mathworks.com/help/techdoc/matlab_env/brqxeeu-175.html
http://www.haskell.org/ghc/docs/latest/html/users_guide/ghci-debugger.html
http://www.haskell.org/ghc/docs/latest/html/users_guide/ghci-debugger.html
http://www.haskell.org/haddock
http://www.doxygen.org
http://www.haskell.org/haskellwiki/Gnuplot
http://www.cse.chalmers.se/~rjmh/QuickCheck/manual.html

	Introduction
	Background
	Related Work
	Purpose
	Method
	Objectives
	Delimitations
	Soft Measures
	Fixed-Point Arithmetic and Multi-Core Support
	Reference Code
	Correctness of Generated C Code
	Intrinsics
	Memory
	Survey
	Single Assignment C

	Report Structure

	Languages
	Feldspar
	Introduction
	Working with Feldspar
	Libraries
	Fusion
	C Code Generation
	Fixed-Point Arithmetic
	Multi-Core Support

	MATLAB
	Introduction
	Working with MATLAB
	MATLAB Coder
	Fixed-Point Arithmetic
	Multi-Core Support

	Test Programs
	Introduction
	Small Test Programs
	Motivation
	Test Programs

	DSP Test Programs
	Introduction
	Demodulation Reference Symbols (DRS)
	Channel Estimation (ChEst)
	Minimum Mean Square Error Equalization (MMSE EQ)

	C Code Generation
	Feldspar
	MATLAB

	Hard Measures (Performance)
	Method
	PC Benchmark
	TI C6670 Simulator Benchmark
	Input Data
	General Problems
	Complex Numbers
	Vector as State in the forLoop Function
	Memory

	Results: Execution Time
	BubbleSort
	DotRev
	SliceMatrix
	SqAvg
	TwoFir
	AddSub, TransTrans and RevRev
	Demodulation Reference Symbols (DRS)
	Channel Estimation
	Minimum Mean Square Error Equalization (MMSE EQ1)

	Results: Memory Consumption
	Results: Lines of Generated Code

	Soft Measures (Productivity)
	Method
	Definitions
	Maintainability
	Naive vs. Optimized
	Readability
	Verification

	Evaluation
	Maintainability
	Naive vs. Optimized
	Readability
	Verification

	Survey
	Method
	Results

	Discussion
	Fundamental Differences
	Observations from the Hard Measures
	Observations from the Soft Measures

	Conclusions
	The Status of Feldspar
	Feedback to Developers
	Feldspar
	MATLAB

	Future Work

	Appendix: Code
	Small Test Programs
	Feldspar
	MATLAB

	DRS
	Feldspar
	MATLAB

	ChEst
	Feldspar
	MATLAB

	MMSE
	Feldspar
	MATLAB

	MATLAB Coder Configuration

	Appendix: Results - Execution Time
	PC
	TI C6670 Simulator

	Appendix: Survey
	Questions
	Answers

