
Enabling Non-Linguists to Author
Advanced Conversational Interfaces Easily

Carolyn P. Rosé, Carol Pai, Jaime Arguello

Language Technologies Institute / Human-Computer Interaction Institute
Carnegie Mellon University

5000 Forbes Avenue Pittsburgh, PA 15213
cp3a,cpai,jarguell@andrew.cmu.edu

Abstract
The study presented in this paper evaluates current
progress in a long term effort to provide behavior oriented
authoring tools to user interface developers to facilitate
rapid development of advanced language understanding
interfaces. The results of our study show promise that
authors with very little training in computational
linguistics can perform nearly as well as graduate students
in a language technologies program at tasks that isolate the
individual skills required to use our authoring interface for
building language understanding interfaces. We discuss
implications of these results as well as current directions in
this long term project.

Introduction
In this paper we report on research towards the
development of an authoring technology for enabling
non-computational linguists to build robust language
understanding interfaces easily. This technology could
arguably have an impact on a wide range of application
areas, such as machine translation, question answering, or
data bases. In recent years, natural language interfaces
have become more prevalent especially in educational
applications. Specifically, in the past 7 years, research on
building tutorial dialogue systems has become a well
established research area in the intelligent tutoring
systems community, and work from this community is
making a presence in the computational linguistics
community as well (Rosé & Hall, 2004; Core & Moore,
2004; Forbes-Riley & Litman, 2004).

The greatest obstacle that currently makes it impractical
for tutorial dialogue systems and other education oriented
language technology applications to make use of
sophisticated approaches to natural language
understanding beyond trivial pattern matching approaches
is the tremendous expense involved in authoring and
maintaining domain specific knowledge sources. The
problem is twofold: first, authoring knowledge sources
for semantic interpretation for state-of-the-art core
understanding systems, such as CARMEL (Rosé & Hall,
2004; Rosé, 2000) or TRIPS (Allen, Byron, Dzikovska,
Ferguson, Galescu, & Stent, 2001) just to name a couple,

requires tremendous computational linguistics expertise
in order to do well. To date, the majority of research
groups developing educational technology do not have
ready access to this expertise, although they do have
access to general computer programming expertise. Next,
authoring and maintaining knowledge sources for
sophisticated approaches to language processing requires
a tremendous amount of time. Since authoring
knowledge sources for language processing is only one
concern in developing an effective application, the time
required to author these knowledge sources by hand is
prohibitive even for computational linguists. Our long
term goal is to enable interface programmers to develop
natural language understanding interfaces as easy and as
fast as it is to build a direct manipulation, graphical
interface.

The study presented in this paper evaluates current
progress in a long term effort to provide behavior
oriented authoring tools to user interface developers to
facilitate rapid development of advanced language
understanding interfaces. A behavior oriented approach
is one that provides a layer of abstraction between the
author and the necessary linguistic knowledge sources,
such as those described in (Rosé, 2000) or (Allen, Byron,
Dzikovska, Ferguson, Galescu, & Stent, 2001), freeing up
the author to focus on the desired behavior rather than the
linguistic details of the knowledge sources that would
make this behavior possible. Our interface is behavior
oriented because it infers knowledge sources from
example texts annotated with the behavior the author
desires from the run-time system. A current version of
these tools has been pilot tested by trained computational
linguists building natural language applications at three
different universities. The study reported here evaluates
the extent to which the current interface design is
accessible to programmers with limited linguistic training
and where the weaknesses remain, which must be
addressed in order to enable the target user population to
easily author advanced conversational interfaces.

What we mean by advanced conversational interfaces is
that they go beyond the capabilities that are possible
using state-of-the-art authoring tools. Current authoring

tools for building semantic knowledge sources, such as
are included with GATE (Cunningham et al., 2003),
Alembic (Jay et al., 1997), and SGStudio (Wang and
Arco, 2003), are tailored for information extraction and
similar tasks that emphasize the identification of named
entities such as people, locations, organizations, dates,
and addresses. While regular expression based
recognizers, such as JAPE (Cunningham et al., 2000)
used in such systems, are not strictly limited to these
standard entity types, it is doubtful that they would be
able to handle concepts that express complex
relationships between entities, where the complexity in
the conceptual representation can be encoded in natural
language with a much greater degree of variation.

Our authoring system, built using CARMEL (Rosé, 2000)
as a back end, achieves a high level of generalization by
inducing patterns that match against a more sophisticated
underlying linguistic analysis rather than a stream of
words, in order to normalize as much of the variation as
possible, and thus reduce the number of patterns that the
authored rules must account for. Furthermore, our
authoring environment offers greater flexibility in output
representation than the context-free rewrite rules
produced by previous semantic authoring tools, allowing
authors to design their own predicate language
representations that are not constrained to follow the
surface structure of the input text. This flexibility allows
a wider range of linguistic expressions that express the
same idea to be represented the same way, which then
simplifies the task of the modules that must make
decisions based on the representations returned by the
language interface. An evaluation of the linguistic
capabilities of the tools is presented separately (Rosé &
Hall, 2004). In this paper we focus on the authoring
interface issues.

F
a

F
i
d
a
s
v

corpus of essays written by students in response to 5
simple qualitative physics questions such as “If a man is
standing in an elevator holding his keys in front of his
face, and if the cable holding the elevator snaps and the
man then lets go of the keys, what will be the relationship
between the position of the keys and that of the man as
the elevator falls to the ground? Explain why.” A
predicate language definition was designed consisting of
40 predicates, 31 predicate types, 160 tokens, 37 token
types, and 15 abstract types. The language was meant to
be able to represent physical objects mentioned in our set
of physics problems, body states (e.g., freefall, contact,
non-contact), quantities that can be measured (e.g., force,
velocity, acceleration, speed, etc.), features of these
quantities (e.g., direction, magnitude, etc.), comparisons
between quantities (equivalence, non-equivalence,
relative size, relative time, relative location), physics
laws, and dependency relations.

While the authoring technology presented in this paper
could be used in the development of any application
where natural language input is desired, this work is
particularly motivated by a need within a growing
community of researchers working on educational
applications of Natural Language Processing to extract
detailed information from student language input. The
extracted information is then used for formulating
specific feedback for students directed at the details of
what they have uttered. Such applications include tutorial
dialogue systems (Zinn et al., 2002; Popescue et al.,
2003) and writing coaches that perform detailed
assessments of writing content (Rosé et al., 2003; Carlson
and Tanimoto, 2003).

The Authoring Process
The authoring process involves designing a predicate
language definition (that specifies constraints on the
output representation) and annotating example texts with
their corresponding representation in that defined
language. From this authored knowledge, CARMEL’s
semantic knowledge sources are then generated and
compiled automatically for use in the run time system that
processes novel texts. After the author tests the compiled
knowledge sources, the authoring process may continue
by updating or expanding the predicate language
definition, annotating additional example texts, or
Sentence: The man is moving horizontally at a
constant velocity with the pumpkin.

Predicate Language Representation:
((velocity id1 man horizontal constant non-zero)
(velocity id2 pumpkin ?dir ?mag-change ?mag-zero)
(rel-value id3 id1 id2 equal))

Gloss: The constant, nonzero, horizontal velocity of
the man is equal to the velocity of the pumpkin.
igure 1 Example of a meaning representation that abstracts
way from the surface form of an expression.

or example, Figure 1 presents an example from the
nitial evaluation of our authoring technology that
emonstrates the capability of the representation to
bstract away from the details of the surface form of the
entence, and thus generalize over a wide range of surface
ariation that can occur. We used for our evaluation a

modifying already annotated examples. We have
identified six high level basic skills required to use the
authoring interface, which we systematically test in our
study. Our target user population (people with general
programming knowledge but not formal linguistics
training) will only be capable of using the designed
interface to the extent that they possess these skills. Thus,
in order to begin to validate our experimental design, we
describe the steps involved in the authoring process and
how they relate to the six skills tested in our study.

Figure 2 Predicate Language Definition Page
e
Figure 3 Main Text Annotation Pag

 The author begins the authoring process by designing the
propositional language that will be the output
representation from CARMEL using the authored
knowledge sources. This is done on a Predicate Language
Definition page (displayed in Figure 2) of the GUI
interface. The author is completely free to develop a
representation language that is as simple or complex as is
required by the type of reasoning, if any, that will be
applied to the output representations by the back end
system. Performing this task requires two of the basic
skills we address in our study. First, it requires authors to
identify relevant basic units of meaning by identifying
alternative phrasings of the same idea as meaning the same
thing. Second, it requires authors to formalize the
definition of these units of meaning into a predicate logic
like language definition.

Figure 3 displays the main page of the interface where
individual texts are annotated. The Analysis box displays
the propositional representation of the text. This analysis
is constructed using the Add Token, Delete, Add Predicate,
and Modify Predicate buttons, as well as their
subwindows, which are not shown. Once the analysis is
entered, the author may indicate the compositional
breakdown of the example text by associating spans of text
with parts of the analysis by means of the two matching
buttons, labeled Optional Match and Mandatory Match.
For example, in the very simple example displayed in
Figure 3, the phrase “the man” found in the Input Text
corresponds to the man token, which is bound in two
places in the analysis. The author must highlight the span
of text and corresponding span of meaning representation
and then click on one of the match buttons. By
decomposing example texts in this way, the authoring
environment constructs templates that are general and can
be reused in multiple annotated examples. These templates
contain information from the syntactic analysis of the text
that can be used for generating the knowledge sources for
the run time system.

The list of templates that form the hierarchical breakdown
of this example text are displayed in the Templates list on
the right hand side of Figure 3. The templates are
displayed in such a way as to hide the details of the
linguistic knowledge stored with each template since these
are not pertinent to the authoring process. Note that while
the author matches spans of text to portions of the meaning
representation, the tool stores mappings between detailed
linguistic representations and portions of meaning
representation, which is a more general mapping that
allows the compiled run time system to achieve greater
coverage of alternative phrasings of the same idea.

Annotating example texts requires three specific skills.
First, it requires authors to recognize how spans of text in
example sentences are related to one another, and how the
form of the analysis is related to the meaning of the text.
Secondly, it requires the author to assign a predicate

language representation to the text that expresses its
meaning. Finally, authors must be able to match spans of
text with portions of the predicate language representation
in order to indicate the hierarchical break down of the text.

Other screens not displayed support the maintenance and
development process by allowing the author to quickly
find already annotated examples in various ways. The
GUI interface guides authors in such a way as to prevent
them from introducing inconsistencies between knowledge
sources. For example, a menu-based interface for entering
propositional representations for example texts ensures that
the entered representation is well-formed and consistent
with the author’s predicate language definition. Compiled
knowledge sources contain pointers back to the annotated
examples that are responsible for their creation. This
allows the authoring environment to provide
troubleshooting facilities to help authors track down
potential sources for incorrect analyses generated from
compiled knowledge sources so they can quickly address
these problems. A final skill required for effective
maintenance and troubleshooting is to be able to predict
gaps in the run time system’s coverage based on the set of
examples that have been annotated. Having this skill
would allow authors to be strategic about which new
examples they annotate in order to achieve the greatest
impact on the overall coverage of the run time system.

Experimental Design

In the previous section we identified six basic skills
relevant to the authoring process:

• Skill 1: Identify basic units of meaning.
• Skill 2: Formalize basic units of meaning into predicates,

tokens, types, etc.
• Skill 3: Identify how spans of text relate to one another.
• Skill 4: Encode the meaning of a sentence in predicate

language.
• Skill 5: Decompose text, matching spans of text with

corresponding portions of predicate representation.
• Skill 6: Predict coverage of the compiled run time

system from set of annotated examples.
The purpose of our study is to measure how level of formal
linguistics instruction is related to ability level on the six
identified basic skills. We plan to use this information in
several ways. First, it allows us to measure the extent to
which we have been successful at insulating authors from
linguistic issues that require specialized training to deal
with effectively. Second, it allows us to identify which
skills are most in need of scaffolding to make the interface
easier for non-linguists to use. By observing the types of
mistakes non-linguists make we can design scaffolding

with clear vision, knowing which pitfalls to help authors
avoid.

11 university students participated in the study with
various levels of linguistics training. All 11 subjects had a
technical background in computer science or engineering,
which is appropriate since our target user population is
people with programming expertise but not linguistics or
natural language processing training. 4 subjects had never
taken any linguistics courses whatsoever. 2 subjects had
taken one undergraduate language oriented class in the
past (i.e., nature of language or philosophy of language).
The remaining 5 subjects were graduate students in a
language technologies program. The language
technologies students provided an upper bound on
expected performance. They represent the current
population of users. At the other extreme, the students
with no prior linguistics training represent the population
of target users. The remaining two students represent a
middle ground. We wanted to observe whether their
performance would look more like that of the totally
inexperienced students or the expert students.

When directly observing users interacting with the tool, it
is difficult to separate out the six individual skills because
they are not independent. For example, if an author is not
able to correctly represent the meaning of a text it could be
because of inadequacies in the designed predicate language
or in a lack of ability to apply the representation. Thus, in
order to test each skill independently, we conducted our
study as a pen and paper exercise. For each of the six
basis skills we designed a task to assess the ability level of
the associated skill independently from the other skills. A
description of each task along with an analysis of the
results are presented in the next section.

Analysis of Results

Skill 1. For task 1, students were asked to look at a list of
14 sentences and identify spans of text at the sentence level
and at the phrase level that are equivalent in meaning.
Students were assigned a correct generalization score and
an incorrect generalization score to indicate how many
equivalences they identified that were either correct or
incorrect. Students with no background in linguistics
achieved an average of 4.25 for correct generalizations and
3.75 for incorrect generalizations. Students with limited
linguistics background achieved an average of 5.5 for
correct generalizations and .5 for incorrect generalizations.
Graduate students in language technologies achieved an
average of 5 for correct generalizations and 0 for incorrect
generalizations. Thus, the scores were much more similar
between the students with a strong linguistic background
and the students with some linguistics background than
between those with no linguistics background and those
with some, although none of the differences were
significant.

Skill 2. For task 2, students were given a meaning
representation specification and some examples sentences
coded with this representation. They were then given
some novel sentences and asked to encode the meaning.
Students earned a score between 0 and 1 for each of 5
sentences indicating how close their representation was to
an ideal representation. Students with no linguistics
background achieved an average score of 3.85, whereas
students with some linguistics background achieved a
perfect score of 5. The graduate language technologies
students achieved an almost perfect score of 4.95. The
difference between students with no linguistic background
and the other students is significant (t(9)=3.22; p<.05).

Skill 3. For skill 3, students were asked to select one of
two structural analyses for 6 different sentences. Students
with no linguistics background achieved an average score
of 3.25. Students with some linguistics background
achieved an average score of 5. Graduate language
technologies students achieved an average score of 5.8.
The differences between no background and some
background and between some background and expert
background were marginal. But the difference between
students with no linguistics background and the other
students was highly significant. (t(9)=5.29, p<.001).

Skill 4. For task 4, students were required to design a
meaning representation for a new set of sentences on a
different topic from the one they were given previously.
Students of all backgrounds did surprisingly well at this
task. All students designed a representation that was in the
correct form and contained most of the required
information. The only differences between students were
on subtle details pertaining to handling complex
comparatives and certain type restrictions on arguments.
Surprisingly, the representations designed by the students
with limited linguistics background were fully acceptable.
However, not all of the graduate language technologies
students achieved that level of performance.

Skill 5. For task 5, students were asked to segment texts
and match portions of meaning representations to portions
of text. There were three sections. In one section students
were asked to give a hierarchical bracketing of a sentence.
In the second section, students were given a text and its
meaning representation. A portion of the meaning
representation was highlighted, and the student was
required to underline the corresponding piece of text. The
third section was the opposite. In other words, part of the
text was underlined and students were asked to circle the
corresponding portion of the meaning representation. For
each section students were assigned a score of 1 to 3
indicating the level of correctness overall. Students whose
work was perfect in a section achieved a 3 in that section.
If they made no more than 3 mistakes they received a score
of 2. Otherwise they received a score of 1. Overall
students achieved perfect or nearly perfect in most
sections. Students varied as to which of these tasks they

performed better at, although they tended to perform better
at the second two tasks, presumably because they are more
constrained. Out of 9 possible points, students with no
linguistics background achieved a score of 4.5. Students
with some linguistics background achieved an average
score of 5.5. Graduate language technologies students
achieved a score of 6.4. The only significant difference
was between students with no linguistics background and
the others (t(9)=2.28, p<.05).

Skill 6. For the final task, students were asked to predict
which portions of novel sentences would be covered by a
run time system compiled from a given set of annotated
examples. Students were universally poor at this task. Out
of 7 possible points, students with no linguistic
background achieved 2.75, students with some linguistics
background achieved 2.5, and graduate language
technologies students achieved 3.8. None of the
differences were significant.

Conclusions and Current Directions
The results of our study demonstrate that authors with very
little training in computational linguistics perform almost
identically to the graduate students in a language
technologies program at tasks that isolate the individual
skills required to use our authoring environment for
language interface authoring. Nevertheless, informal user
studies involving actual use of the tool had much more
disappointing results. The consequence of the general lack
of ability to predict how much coverage the knowledge
sources inferred from annotated examples left authors
without a clear direction or strategy for moving through
their corpus. As a result, valuable time was lost from
annotating examples that did not yield the maximum
amount of new knowledge in the generated knowledge
sources. Furthermore, since authors tended not to test the
generated knowledge sources as they were annotating
examples, errors were difficult for them to track later,
despite facilities designed to help them with that task.
Finally, although the interface prevented authors from
violating the constraints they designed into their predicate
language representation, it did not keep authors from
annotating similar texts with very different representations,
thus introducing a great deal of spurious ambiguity. An
additional problem was that authors sometimes
decomposed examples in ways that lead to overly general
rules, which then lead to incorrect analyses when the
overly general rules matched inappropriate examples.

In our current work, we are building upon the insights
gained from our formal study and informal observations.
We are now working on a new interface design that draws
upon the skills that we have learned that our target user
population does posses while compensating for the
problems we observed in practice.

Acknowledgements
This work was supported in part by Office of Naval
Research, Cognitive and Neural Sciences Division Grant
N00014-05-1-0043 and NSF ITR EIA-0325054.

References
Allen, J., Byron, D., Dzikovska, M., Ferguson, G., Galescu, L., &
Stent, A. 2000. An Architecture for a Generic Dialogue Shell.
NLENG: Natural Language Engineering, Cambridge University
Press, 6 (3), 1-16.
Burstein, J., Kukich, K., Wolff, S., Lu, C., Chodorow, M.,
Braden-Harder, L., and Harris, M. D. 1998. Automated scoring
using a hybrid feature identification technique. In Proceedings of
COLING-ACL’98, pages 206–210.
Carlson, A., and Tanimoto, S. 2003. Learning to identify student
preconceptions from text. In Proceedings of the HLT-NAACL
2003 Workshop: Building Educational Applications Using
Natural Language Processing.
Core, M. & Moore, J. 2004. Robustness and Fidelity in Natural
Language Understanding, Proceedings of SCaNaLu.
Cunningham, H., Maynard, D., and Tablan, V. 2000. Jape: a java
annotations patterns engine. Institute for Language, Speech, and
Hearing, University of Sheffield, Tech Report CS-00-10.
Cunningham, H., Maynard, D., Bontcheva, K., and Tablan, V.
2003. Gate: an architecture for development of robust hlt
applications. In Recent Advanced in Language Processing.
Forbes-Riley, K. & Litman, D. 2004. Predicting Emotion in
Spoken Dialogue From Multiple Knowledge Sources, In the
Proceedings of HLT/NAACL ’04.
Jay, D., Aberdeen, J., Hirschman, L., Kozierok, R., Robinson, P.,
and Vilain, M. 1997. Mixed-initiative development of language
processing systems. In Proceedings of the Fifth Conference on
Applied Natural Language Processing.
Popescue, O., Aleven, V., and Koedinger, K. 2003. A knowledge
based approach to understanding students’ explanations. In
Proceedings of the AI in Education Workshop on Tutorial
Dialogue Systems: With a View Towards the Classroom.
 Rosé, C. P. 2000. A framework for robust semantic
interpretation. In Proceedings of the First Meeting of the North
American Chapter of the Association for Computational
Linguistics, pages 311–318.
 Rosé, C. P., Roque, A., Bhembe, D., and VanLehn, K. 2003. A
hybrid text classification approach for analysis of student essays.
In Proceedings of the HLT-NAACL 2003 Workshop: Building
Educational Applications Using Natural Language Processing.
 Rosé, C. P. and Hall, B. 2004. A Little Goes a Long Way: Quick
Authoring of Semantic Knowledge Sources for Interpretation,
Proceedings of SCaNaLu ‘04.
 Wang, Y. and Acero, A. 2003. Concept acquisition in example-
based grammar authoring. In Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing.
Zinn, C., Moore, J. D., and Core, M. G. 2002. A 3-tier planning
architecture for managing tutorial dialogue. In Proceedings of
the Intelligent Tutoring Systems Conference, pages 574–584.

