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Abstract-This report presents a comprehensive description of the transformations between the major 
coordinate systems in use in Space Physics. The work of Russell (1971, Cosmic Electrodyn. 2, 184) is 
extended by giving an improved specification of the transformation matrices, which is clearer in both 
conceptual and mathematical terms. In addition, use is made of modern formulae for the various rotation 
angles. The emphasis throughout has been to specify the transformations in a way which facilitates their 
implementation in software. The report includes additional coordinate systems such as heliocentric and 
boundary normal coordinates. 

1. INTRODUCTION 

The genesis of this report was the task of specifying a 
set of Space Physics coordinate transformations for 
use in ESA’s European Space Information System 
(ESIS). The initial approach was to adopt the trans- 
formations specified in the paper by Russell (1971). 
However, as the work proceeded, it became clear that 
a number of improvements could be made : 

(i) Most transformations could be factorized into a 
series of rotations about principal axes. This reduces 
each 3-D transformation into a sequence of 2-D oper- 
ations. Thus the transformation can be specified more 
clearly in both conceptual and mathematical terms. 

(ii) Each rotation could be specified using just two 
parameters: the axis of rotation and the rotation 
angle. 

(iii) The rotation angles could be specified by ref- 
erence to more modern publications such as the Alma- 
nac for Computers, which was first produced in 1977. 

(iv) The orientation of the (centred) geomagnetic 
dipole axis could be specified in a time-dependent way 
using the International Geomagnetic Reference Field 
@RF). 

(v) The rotation angle in the transformation from 
GSE to GSM coordinates could be determined in a 
straightforward manner. 

In addition, the requirements for ESIS included 
coordinate systems not covered in Russell’s paper, 
namely heliocentric systems (for studies of the inter- 
planetary medium) and boundary normal systems. 
These are included in this report. 

The improvements listed above can facilitate the 
implementation of the coordinate transformations in 

software. For example, the factorization of the trans- 
formations allows complex transformations to be per- 
formed by repeated use of simple modules, e.g. for 
matrix multiplication, to evaluate simple matrices. 
Thus the complexity of software can be reduced, 
thereby aiding its production and maintenance. More- 
over, every attempt is made to minimize the number 
of trigonometric functions which are calculated. 

1.1. General background 
Coordinate transformations are required in Space 

Physics as many measured quantities are vectors, e.g. 
position, velocity, magnetic field, electric field, electric 
currents. They are usually represented numerically by 
three Cartesian components x, 4’ and z, which depend 
on the coordinate system used. Thus there is a require- 
ment for the transformation of vector quantities 
between different coordinate systems so that the scien- 
tist can put the data in the system which is appropriate 
for his or her current purpose. 

Transformations may conveniently be performed 
using matrix arithmetic as described by Russell 
(1971). For each transformation we define a trans- 
formation matrix T such that Qz = TQ ,, where Q, is 

the initial vector and Q2 is the new vector. This may 
be written in full as : 

Thus the problem is simply to specify the nine com- 
ponents of matrix T for each possible transformation. 
This approach has several advantages : 
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(1) Speed of computation. There are only nine multi- 
plications and six additions for each vector trans- 
formed. No trigonometric functions are evaluated 
repeatedly. 

(2) A transformation T may be reversed by applying 
the inverse matrix T- ’ which is simply the transpose 
ofT. 

(3) A transformation from system A to system C 
may be performed by transforming first to an inter- 
mediate system B and then to system C. Thus we may 
multiply matrices to obtain the transformation matrix 

TK = T,cT,,. 
Note that the terms in the transformation matrix 

are just the components of the new principal axes in 
the old system. Thus, in equation (1) above, the new 
X, Y and 2 axes can be expressed as unit vectors in 
the old coordinate system : 

x= (tllrtlZ,f13) 

Y= (t 21, t22,123) 

z = tt3,, l32r f33). 

1.2. Geocentric systems 
There are several geocentric coordinate systems in 

common use. They are listed in Table 1 below. 

1.3. Heliocentric systems 
There are several heliocentric coordinate systems. 

These are listed in Table 2 below. Note the existence 
of two heliocentric ecliptic systems (HAE and HEE) 
which differ only in their definition of the x axis. One 
system is an inertial frame fixed relative to the stars 
and the other is fixed relative to the Sun-Earth line. 

2. SPECIFICATION OF THE TRANSFORMATION 
MATRICES 

The transformations described in the following sec- 
tions are presented as matrices, which are either a 
simple rotation matrix (a rotation of angle [ about 
one of the principal axes) or are the products of simple 
rotation matrices. These simple matrices have only 
two degrees of freedom and so only two parameters 
are needed to specify the nine terms in the matrix. 
These two terms can be the rotation angle and the 
name of the rotation axis: X, Y or Z. Thus we can 
specify a simple rotation matrix as 

E = ([, axis) 

and specify a product matrix as 

T = E,E2 = ([,,axis,)*((2,axis2). 

Inversion is straightforward : 

E-’ = (-<,axis) 

T-’ = E;‘E;’ = (-[2,axis2)*(-<,,axis,). 

This specification allows the transformation matrix to 
be calculated in a very straightforward way as follows. 
(I) Identify the component rotations. (2) For each 
component calculate the rotation matrix : (a) calculate 
the rotation angle c ; (b) calculate sin [ and cos 6 ; (c) 
determine the diagonal terms of the matrix : put 1 in 
the Nth term, where N = 1 if the rotation axis is X, 
N = 2 if Y and N = 3 if Z; put cos[ in the other 
terms ; (d) determine the two off-diagonal terms in the 
same columns and rows as the cos [ values. Put sin c 
in the term above the diagonal and -sin [ in the 

TABLE 1. “SIMPLE” COORDINATE SYSTEMS WITH A GEOCENTRIC ORIGINt 

System Definition of axes 

Geocentric equatorial inertial 

Geographic 

Geocentric solar ecliptic 

GE1 X = First Point of Aries 
Z = Geographic North Pole 

GE0 X = Intersection of Greenwich meridian and geo- 
graphic equator 
Z = Geographic North Pole 

GSE X = Earth-Sun line 
Z = Ecliptic North Pole 

Geocentric solar magnetospheric 

Solar magnetic 

Geomagnetic 

GSM 

SM 

MAG 

X = Earth-Sun line 
Z = Proiection of dipole axis on GSE YZ plane 
Y = Perpendicular to plane containing Earth-Sun 
line and dipole axis. Positive sense is opposite to 
Earth’s orbital motion. 
Z = Dipole axis 
Y = Intersection between geographic equator and the 
geographic meridian 90” East of the meridian con- 
taining the dipole axis. 
Z = Dipole axis 

t Only two axes have to be defined ; the third axis completes a right-handed Cartesian triad. 
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TABLET. “SIMPLE"COORDINATESYSTEMS WITH A HELlOCENTRlCORIGlNt 

System Definition of axes 

Heliocentric Aries ecliptic 

Heliocentric Earth ecliptic 

Heliocentric Earth equatorial 

HAE X = First Point of Aries 
Z = Ecliptic North Pole 

HEE X = Sun-Earth line 
Z = Ecliptic North Pole 

HEEQ X = Intersection between solar equator and solar 
central meridian as seen from Earth 
Z = North Pole of solar rotation axis 

t Only two axes have to be defined; the third axis completes a right-handed Cartesian triad. The 
HAE and HEE systems are both sometimes known as heliocentric solar ecliptic or HSE. The HEEQ 
system is sometimes known as heliocentric solar or HS. 

term below; this sign convention defines the sense 
of positive rotation used in this paper; (e) set the 
remaining off-diagonal terms to zero. (3) Multiply 
the component matrices to obtain the transformation 
matrix. 

Thus for a rotation about the Z axis we obtain the 
matrix shown below : 

3. NOTES 

3.1. Time scales 

All of the fundamental transformations defined in 
the following sections are time dependent. To main- 
tain a uniform style, time is there specified by modified 
Julian date (MJD), which is the time measured in 
days from 0O:OO UT on 17 November 1858 (Julian 
date 2400000.5). In this paper we use only the integer 
part of MJD, i.e. the value at 0O:OO UT on the day 
of interest. For some applications it is also necessary 
to give the time within the day as Universal Time in 
hours (UT). 

Note that Universal Time is different from coor- 
dinated Universal Time (UTC) which is the time 
scale usually used for data recording. UTC is atomic 
time adjusted by an integral number of seconds to 
keep it within 0.6 s of UT. For our purposes the 
difference between UT and UTC may be neglected. 
The apparent position of the Sun is calculated using 
yet another time scale: terrestrial dynamical time 
or TDT. The difference between UT and TDT 
(u 57 s in 1991) may also be neglected for our pur- 
poses. Note that TDT superseded a time scale called 
ephemeris time at the beginning of 1984. 

3.2. Style 
To maintain uniform style in the specification of 

times and angles, it was necessary to modify some of 
the formulae used in the next section compared with 
their specifications in the reference documents. 

All angles are specified in the simplest way which 
maintains an accuracy of 0.001” up to the year 2100. 
This has allowed the simplification of some formulae, 
e.g. by the deletion of small terms and a reduction in 
the number of significant digits. 

3.3. Latitude and longitude 
In some coordinate systems, especially GE0 and 

HEEQ, position is often specified in terms of latitude 
4, longitude 1 and radial distance R. These are related 
to Cartesian components using : 

and 

x = Rcosqbcos1 

y = Rcos+sinL 

z = R sin I#I 

R = (x*+~*+z~)“~ 

4 = arctan 

arccos 
(x’ +;2) 112 

ify > 0 

i= 

360” -arccos (xz +t2) ,i2 otherwise. 

3.4. Units 
The transformations are independent of the units 

used for x, y, z and R provided that the same units 
are used throughout any set of transformations. All 
rotation angles are specified in degrees. 
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From 
-. 

To GE1 GE0 GSE 

GE1 1 T;’ T,’ 
GE0 T, 1 T,T;’ 
GSE T2 T,T;’ 1 
GSM TsTz T,T;T; ’ TX 
SM TdT,T, T.,T;T,T; ’ T,T, 
MAG T,T, T5 T5T,Ti’ 

GSM SM MAG 

GE1 TI ‘T; ’ T; ‘T; ‘T; ’ T;‘T;’ 
GE0 T,T;‘T;’ T ,T; ‘T; ‘T; ’ 
GSE T;’ T; ‘T; ’ T,T; 1;;: 

GSM 1 T;’ T,T,T; ‘T; ’ 

T&T? IT;’ T,T,T;iTy’T,t 
T,T3T,T; ‘T; ’ 

1 

4. G~~ENTRIC SYSTEMS 

Transformations between six geocentric systems 
defined in Table 1 can be broken down into five fun- 
damental transformations which are described in the 
following section. The remaining 25 transformations 
can then be calculated by matrix operations as shown 
in Table 3 above. 

4.1. GEI to CEO 

T, = (8,Z). (-2 

This matrix corresponds to a rotation in the plane of 
the Earth’s geographic equator from the First Point 
of Aries to the Greenwich meridian. The rotation 
angle 0 is the Greenwich mean sidereal time. This can 
be calculated using the following formula (U.S. Naval 
Observatory, 1989) : 

6 = 100.461 -t-36000.770 z-,,+ 15.04107 UT, 

where 

T 
D 

= MJD-51544.5 
36525.0 . (3) 

Note that To is the time in Julian centuries (36525 
days) from 12:00 UT on 1 January 2000 (known as 
epoch 2000.0) to the previous midnight. 

4.2. GEI to GSE 

T, = (&,,Z>*<E,X). 

These two matrices correspond to : 

(4) 

f M is the Sun’s mean anomaly and A its mean longitude. 

(1) rotation from the Earth’s equator to the plane 
of the ecliptic ; 

(2) rotation in the plane of the ecliptic from the 
First Point of Aries to the Earth-Sun direction. 

These two angles are calculated as follows (U.S. Naval 
Observatory, 1989). First E, the obliquity of the 
ecliptic : 

E = 23.439-0.013 T,, 

and then Ao, the Sun’s ecliptic longitude :t 

M = 357.528+35999.050 ~~+0.~107 UT 

A = 280.460f36000.772 T,+O.O4107UT 

1, = A+(1.915-0.0048 T,,) sin M 

+0.020 sin 2M, (5) 

where TO is defined in equation (3) above. Note that, 
strictIy speaking, TDT should be used here in place 
of UT, but the difference of about a minute gives a 
difference of N 0.0007” in 1. 0’ 

4.3. GSE to GSA4 

T, = <--v+,W, (6) 

where $ is the angle between the GSE 2 axis and 
projection of the magnetic dipole axis on the GSE YZ 
plane (i.e. the GSM Z axis) measured positive for 
rotations towards the GSE Y axis. It can be calculated 
thus : 

+ = arctan (Y,/z,), 

where J/ lies between +90 and -90” and the vaIues 
of y, and z, are obtained from : 
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4.5. GEU to MAG 
XC 

Qe = yc [I (7) 

2, 

which is a unit vector describing the dipole axis direc- 
tion in the GSE coordinate system. Unfortunately, 
this direction is usually defined in the GE0 coordinate 
system as : 

T, = (4-90”, Y)*(n,Z). (I11 

The two rotations are : (i) rotation in the plane of the 
Earth’s equator from the Greenwich meridian to the 
meridian containing the dipole pole; (ii) rotation in 
that meridian from the geographic pole to the dipole 
pole. 

cos 4 cos i? 
Qg= cos+sinA , 

I 1 sin # 

where 4 and I are the geocentric latitude and longi- 
tude of the dipole North geomagnetic pole. These may 
be derived from the first order (i.e. dipole) coefficients 
of the IGRF, gy, gf and hi, adjusted to the time of 
interest. Longitude is given by : 

1 = arctan $, (8) 

where, in practice, L must lie in the fourth quadrant. 
The latitude is given by : 

The angles 4 and 1 are given by equations (8) and 

(9). 

5. HELIOCENTRIC SYSTEMS 

5.1. HAE to HEE 

S, = (I,+ 18O”,Z). (12) 

This matrix corresponds to a rotation in the ecliptic 
plane from the First Point of Aries to the Sun-Earth 
line. The angle 1, is the Sun’s ecliptic longitude deter- 
mined by equation (5). 

5.2. HAE to HEEQ 

f# = 90.0 - arcsin 
91 cos/Z+hf sin1 

s: . 
(9) 

Using values given in the current IGRF for 1985 we 
can derive the following approximations : 

s, = (&2)*(1,X)*(R,Z). (13) 

These three matrices correspond to : 

(I) rotation in the plane of the ecliptic From the 
First Point of Aries to the ascending node of the solar 
equator ; 

(2) rotation from the plane of the ecliptic to the 
solar equator ; 

(6 = 78.8+4.283x lO-2 MJy6;;y2 

MJD -46066 
~=289.1-1.413x10-2--------- 

365.25 
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To obtain Q, we simply apply matrix arithmetic thus : 

Qe = T,‘K ‘Q, 

(3) rotation in the plane of the solar equator from 
the ascending node to the central meridian. 

The three rotation angles are taken from pp. 307 
and 308 of the Explanatory Supplement (Nautical 
Almanac Office, 196 1) : 

using the matrices defined in equations (2) and (4) 
and so $ and T, can be determined. 

ft = 73.6667 t0.013958 
MJD + 3242 

365.25 

r = 7.25 

4.4. GSA!f to SM 

T, = C-P, Y>, 00) 

where p is the dipole tilt angle, i.e. the angle between 
the GSM .Z axis and the dipole axis. It is positive 
for the North dipole pole sunward of GSM 2. It is 
calculated using : 

B = arctan (cos 2 tan (;lo -a)}, 

where 1, is taken from equation (5). The quadrant 
of 0 is opposite that of 1, -!.2. 

6. CONVERSION BETWEEN GEOCENTRIC AND 

HELIOCENTRIC SYSTEMS 

p = arctan xc, 
X./z-z 

where x,, y, and z, are defined in equation (7) and p 
must he between +90 and -990”. 

In some specialized cases it may be necessary to 
convert between these two systems, e.g. during Earth 
encounters by interplaneta~ missions such as Giotfo, 
Galileo, etc. This transfo~ation is best defined 
between the GSE and the I-IEE systems as these are 
very simply related as shown in equation (14) below. 
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If transformation between other systems is required, it 
should first be reduced to a GSE-HEE transformation 
using the equations presented in previous sections. 

Q HEE = R+<~SO”,Z)QGSE, (14) 

where QHEE and QCsE are the vectors in HEE and 
GSE coordinates, respectively, and R is a constant 
vector. The inverse transformation is defined simply 

by interchanging QHEE and Qosr. 

6.1. Position vectors 
For transformations of position vectors there is a 

shift of origin and so : 

where R, is the distance between the Earth and the 
Sun, which is given by the formula (Duffett-Smith, 
1979) : 

R, = 
r,(l -e’) 

1 +ecosv’ 

where r,, is the mean distance of the Sun from the 
Earth, e is the eccentricity of the Sun’s apparent orbit 
around the Earth, cij is the longitude of perigee of that 
orbit and v is the true anomaly. r,, and v are taken 
from Duffett-Smith (1979) while e and 0 are taken 
from p. 98 of the Explanatory Supplement (Nautical 
Almanac Office, 1961). 

r,, = 1.495985 x lo8 km 

e = 0.016709-0.0000418 T, 

8 = 282.94+ 1.72 T, 

v=l,-w. 

T,, and I, are defined in equations (3) and (5). 

6.2. Other vectors 
To transform other types of vector data, e.g. mag- 

netic fields, there is no shift of origin and so R is a 
zero vector. 

7. BOUNDARY NORMAL COORDINATES (LMN) 

Boundary normal coordinates, as their name 
implies, are defined relative to some natural boundary 
such as the magnetopause or the bow shock. They 
allow the data to be ordered in a way which is related 
to that boundary. The L and M axes, equivalent to x 
and y, lie in a plane tangential to the boundary and 
the N axis, equivalent to z, is normal to the boundary. 
There is no universal convention to resolve the L and 

M axes. The relationship between LMN and other 
systems such as GSE is dependent on position. 

Boundary normal coordinates are best defined 
through the analysis of data as presented below. Alter- 
natively, they may be derived through use of a model. 

The transformation to boundary normal coor- 
dinates may be defined through a minimum variance 
analysis of magnetometer data (Sonnerup and Cahill, 
1967; Sonnerup, 1976). First, select a set of mag- 
netometer data spanning a boundary crossing of 
interest. Then using these data in the initial coor- 
dinate system (e.g. GSE), construct a “covariant” 
matrix M where : 

- _- 
m,j = B,B, - B,B,, (15) 

where i and j can each represent the x, y and z com- 
ponents. Thus we obtain the total of nine terms mij 
required in M. 

The overbars in equation (15) indicate the taking 
of a mean over all N records in the dataset, i.e. 

~ i BiBj 
BiBi = oL=l. 

N 

We now determine the eigenvalues li and eigenvectors 
Vi of the matrix M, i.e. we find values satisfying the 
equation : 

MV, = iiVi. 

There should be three solutions. We select the eigen- 
value with the lowest absolute value (A,) ; its associ- 
ated eigenvector defines the boundary normal direc- 
tion N. However, it is necessary to check that N points 
outward, i.e. away from the object (planet, comet) 
which supports the boundary. If not, the signs of all 
components in N are reversed to achieve this. 

The L direction must lie within the plane defined 
by the other two eigenvectors but otherwise the choice 
of direction is arbitrary. One choice is to select the 
projection of solar magnetospheric Z direction onto 
this plane (Russell and Elphic, 1978). Another choice 
is to select the eigenvalue with the largest absolute 
value (A,) and let its associated eigenvector define the 
L direction. If the sign of N has been reversed it will 
be necessary to reverse the sign of L. In both cases the 
M direction is defined so as to complete a right- 
handed Cartesian system, e.g. as a vector product 
M=NAL. 

This method only works well if the minimum eigen- 
value can clearly be distinguished, e.g. the ratio 
/2,/L, > 1.5 (Sonnerup and Cahill, 1967). If this con- 
dition is not satisfied, the data are unsuitable and the 
analysis should not be carried further. 
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If the analysis is successful, the transformation 
matrix can be defined as 

Lx L,. L: 

T = M,y M n/r, > I 1 N., N; N: 

where L, is the x component, in the initial coordinate 
system, of the vector describing the L direction in the 
boundary normal coordinate system. L,., . , N= are 
defined in a similar way. 
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