
Beyond Reachability: Shape Abstraction in the
Presence of Pointer Arithmetic

Cristiano Calcagno1, Dino Distefano2, Peter W. O’Hearn2,3, and
Hongseok Yang4

1 Imperial College, London
2 Queen Mary, University of London

3 Microsoft Research, Cambridge
4 Seoul National University

Abstract. Previous shape analysis algorithms use a memory model
where the heap is composed of discrete nodes that can be accessed only
via access paths built from variables and field names, an assumption
that is violated by pointer arithmetic. In this paper we show how this
assumption can be removed, and pointer arithmetic embraced, by using
an analysis based on separation logic. We describe an abstract domain
whose elements are certain separation logic formulae, and an abstraction
mechanism that automatically transits between a low-level RAM view of
memory and a higher, fictional, view that abstracts from the representa-
tion of nodes and multiword linked-lists as certain configurations of the
RAM. A widening operator is used to accelerate the analysis. We report
experimental results obtained from running our analysis on a number of
classic algorithms for dynamic memory management.

1 Introduction

Shape analysis algorithms statically infer deep properties of the runtime heap,
such as whether a variable points to a cyclic or acyclic linked list. Previous shape
analyses (e.g., [7, 30, 31, 14, 21, 23, 24, 6, 1]) assume a high-level storage model
based on records and field access rather than a RAM with arithmetic. This
is a significant limitation. They can deliver reasonable results for the usage of
pointers or references in high-level languages such as Java or ML, or for programs
written in a low-level language that happen to satisfy assumptions not dissimilar
to those required by conservative garbage collectors. But, for many important
low-level programs they would deliver imprecise results5.

The crux of the problem is that the assumption of memory as composed of
discrete nodes with pointers to one another – essentially as a form of graph –
is a fiction that is exposed as such by pointer arithmetic. It is difficult to use
the notion of reachability to characterize how memory may be accessed, because
a memory cell can be accessed by an arithmetic calculation; in a sense, any
5 Correspondingly, even for high-level languages current analyses are limited in the

structures they infer within an array.

cell is reachable. And yet, most shape analyses rely strongly on reachability
or, more to the point, what can be inferred from non-reachability (from chosen
roots). Several analyses use explicit reachability predicates in their formulation
of abstract states [31, 24, 1], where others use graph models [30, 14, 21].

This paper has two main contributions. First, we show that it is possible to
define a shape analysis for programs that mutate linked data structures using
pointer arithmetic. Our abstract domain uses separation logic [27] formulae to
represent abstract states, following on from the work on Space Invader [15] and
Smallfoot [3, 4]. We use separation logic because it deals smoothly with pointer
arithmetic; crucially, it does not depend in any way on anything about reachabil-
ity for its soundness. We focus on a particular kind of linked structure that uses
arithmetic: linked lists with variable length entries – or more briefly, multiword
lists [8]. Multiword lists allow for arithmetic operations that split and coalesce
blocks, and are one of the kinds of data structure used in memory managers.

We provide experimental results on a series of programs for dynamic memory
management, essentially following the development in [20], the classic reference
on the subject. Our most involved example is the malloc from Section 8.7 of [19].

The second contribution concerns the use of logic in program analysis. We use
two techniques to accelerate our analysis: a widening operator and a differential
fixpoint algorithm. The way that they are used here makes it difficult to prove
soundness by standard means (to do with prefixpoints). However, soundness is
easy if we view the analysis algorithm as conducting a proof search in separation
logic. The suggestion is that program logic provides a flexible way of exploring
non-standard optimizations in program analysis, while maintaining soundness.

2 Basic Ideas

Although pointer arithmetic can potentially lead to an incredible mess, its dis-
ciplined use can be very regular. Programmers transit between a RAM-level or
even bit-level view and a structured one where, say, a graph structure is laid on
top of the sea of bits, even if the structured view is not enforced by the pro-
gramming language. In this section we describe some of the basic ideas in our
analysis in a semi-formal way, highlighting how it negotiates this kind of transit.

The formulae in our analysis take meaning in the standard RAM model
of separation logic. The notation [E] is used to dereference address E, where
E is an arithmetic expression. We will not repeat the formal definition of the
interpretation of formulae in this model, but instead will describe their meanings
intuitively as we go along. Familiarity with [27] would be helpful.

We work with linked lists where a node x is a multiword structure storing
a pointer y to the next node and an integer z which can be read out of the
structure to determine the length of a block of memory associated with it.

x

y z

x+1 x+2 x+z

blk(x+2,x+z)

In separation logic we can describe such nodes as follows. First, we consider a
basic predicate blk(E,F), which denotes a (possibly empty) consecutive sequence
of cells starting from E and ending in F−1. (This could be defined using the
iterated separating conjunction [27], but we take blk as primitive.) We also use
the usual points-to predicate E 7→F which denotes a singleton heap where address
E has contents F . Then, the predicate for multiword nodes has the definition

nd(x, y, z) def= (x7→y) ∗ (x+17→z) ∗ blk(x+2, x+z) (1)

which corresponds directly to the picture above.
With the node predicate we can define the notion of a multiword linked-list

segment from x to y

mls(x, y) def= (∃z′. nd(x, y, z′)) ∨ (∃y′, z′.nd(x, y′, z′) ∗mls(y′, y)). (2)

It is understood that this predicate is the least satisfying the recursive equation.
The blk, nd and mls predicates will form the basis for our abstract domain.

In several of the memory managers that we have verified (see Section 7) the
free list is a circular multiword linked list with header node free. Such a cir-
cular list, in the case that it is nonempty, can be represented with the formula
mls(free, free). In others the free list is acyclic, and we use mls(free, 0).

If one doesn’t look inside the definition of nd, then there is no pointer arith-
metic to be seen. The interesting part of the memory management algorithms,
though, is how “node-ness” is broken and then re-established at various places.

Dynamic memory management algorithms often coalesce adjacent blocks
when memory is freed. If we are given nd(x, y, z) ∗ nd(x+z, a, b) then an as-
signment statement [x+1]:= [x+1]+[x+z+1] effects the coalescence. To reason
about this assignment our analysis first breaks the two nodes apart into their
constituents by unrolling the definition (1), giving us

(x7→y) ∗ (x+17→z) ∗ blk(x+2, x+z)
∗ (x+z 7→a) ∗ (x+z+17→b) ∗ blk(x+z+2, x+z+b).

(3)

This exposes enough 7→ assertions for the basic forward-reasoning axioms of
separation logic to apply to the formula. Even just thinking operationally, it
should be clear that the assignment statement above applied to this state yields

(x7→y) ∗ (x+17→z+b) ∗ blk(x+2, x+z)
∗ (x+z 7→a) ∗ (x+z+17→b) ∗ blk(x+z+2, x+z+b)

(4)

where the x+1 ∗-conjunct has been updated. At this point, we have lost node-
ness of the portion of memory beginning at x and ending at x+z, because z+b
is stored at position x+1.

After transforming an input symbolic state we perform abstraction by ap-
plying selected sound implications. First, there is an implication from the rhs
to the lhs of (1), which corresponds to rolling up the definition of nd. Applying
this to formula (4), with a law of separation logic that lets us use implications
within ∗-conjuncts (modus ponens plus identity plus ∗-introduction), results in

(x7→y) ∗ (x+17→z+b) ∗ blk(x+2, x+z) ∗ nd(x+z, a, b). (5)

Next, there is a true implication

(x7→y) ∗ (x+17→z+b) ∗ blk(x+2, x+z) ∗ nd(x+z, a, b) =⇒ nd(x, y, z+b). (6)

When we apply it to (5) we obtain the desired coalesced post-state nd(x, y, z+b).
The implication (6) performs abstraction, in the sense that it loses the informa-
tion that b is held at position x+z+1 and that x+z has a pointer to a.

This discussion is intended to illustrate two features of our analysis method.

1. Before a heap access is made, predicate definitions are unrolled enough to
reveal 7→ assertions for the cells being accessed.

2. After a statement is (symbolically) executed, sound implications are used to
lose information as well as to establish that “higher-level” predicates hold.

These features were present already in the original Space Invader. The point
here is that they give us a way to transit between the unstructured world where
memory does not consist of discrete nodes and a higher-level view where memory
has been correctly packaged together “as if” the node fiction were valid.

The real difficulty in defining the abstract domain is choosing the implications
like (6) that lose enough information to allow fixpoint calculations to converge,
without losing so much information that the results are unusably imprecise.

3 Programming Language and Abstract Domain

Programming Language. We consider a sequential programming language that
allows arithmetic operations on pointers.

e ::= n | x | e+e | e−e

B ::= e=e | e6=e | e≤e

S ::= x:= e | x:= [e] | [e]:= e | x:= sbrk(e)
C ::= S | C ;C | if(B) {C} else {C} | while(B){C} | local x ; C

We use the notation [e] for the contents of the memory cell allocated at address
e. Thus, y:= [e] and [e]:= e′ represent look-up and mutation of the heap respec-
tively. sbrk(e) corresponds to the UNIX system call which returns a pointer to e
contiguous cells of memory. The other commands have standard meaning.

The programs in this language are interpreted in the usual RAM model of
separation logic. Concrete states are defined by

States
def= Stacks× Heaps Stacks

def= Vars → Ints Heaps
def= Nats+ ⇀fin Ints

Table 1 Symbolic Heaps
E, F ::= n | x | x′ | E+E | E−E

P ::= E=E | E 6=E | E≤E | true

Π ::= P | Π ∧Π

H ::= E 7→E | blk(E, E) | nd(E, E, E)

| mls(E, E) | true | emp

Σ ::= H | Σ ∗Σ

Q ::= Π ∧Σ

where Ints is the set of integers, Nats+ is the set of positive integers, and Vars is a
finite set of variables. The concrete semantics of programs as state transformers
can be defined in the standard way (see [15, 27]).

Symbolic Heaps. A symbolic heap Q is a separation-logic formula of a special
form, consisting of a pure part Π and a spatial part Σ. Symbolic heaps are
defined in Table 1. Due to pointer arithmetic, we use a richer collection of pure
predicates than in [3]. As in [15] the primed variables are a syntactic convenience,
which indicates that they are existentially quantified. Note that E is an integer
expression, but unlike program expression e, it can contain primed variables.
Spatial predicates blk, nd and mls have the meanings alluded to in Section 2.

The concretization γ(Q) of Q is the set of the concrete states that satisfy
∃~y′. Q according to the usual semantics of separation logic formulae, where ~y′

consists of all the primed variables in Q. We will use the notations Q ∗ H and
P ∧H to express Π ∧ (Σ ∗H) and (P ∧Π)∧Σ, respectively. We treat symbolic
heaps as equivalent up to commutativity and associativity for ∗ and ∧, identity
laws H ∗ emp = H and P ∧ true = P , and idempotence law true ∗ true = true.

Let SH denote the set of all symbolic heaps Q. The abstract domainD consists
of finite sets of symbolic heaps and an extra element >:

S ∈ D def= Pfin(SH) ∪ {>}
γ(S) def= if (S 6= >) then (

⋃
Q∈S γ(Q)) else (States ∪ {fault}).

Intuitively, S means the disjunction of all symbolic heaps in S. The elements
S,S ′ of D are ordered by the subset relation extended with >:

S v S ′ ⇐⇒ (S ′ = > ∨ (S ∈ P(SH) ∧ S ′ ∈ P(SH) ∧ S ⊆ S ′)).

4 Abstraction Rules

The main part of our analysis is the abstraction function Abs:D → D, which
establishes a fictional view of memory as consisting of nodes and multiword lists
(forgetting information, if necessary, to do so). It is applied at the beginning of
a loop and after each iteration; in the bodies of loops the fiction can be broken
by operations on the RAM level.

The abstraction function has five steps, which successively: synthesize nodes
from RAM configurations; simplify arithmetic expressions to control the poten-
tial explosion of arithmetic constraints; abstract size fields; reason about multi-
word lists; and filter out inconsistent symbolic heaps. We will specify the first

Table 2 Node Synthesis Rules
Package Rule

Precondition: 2≤G≤H

Q ∗ (E 7→F, G) ∗ blk(E+2, E+H)

⇒ Q∗nd(E, F, G)∗blk(E+G, E+H)

Swallow Rule

Precondition: H+1≤G≤H+K

Q∗(E 7→F, G)∗blk(E+2, E+H)∗nd(E+H, I, K)

⇒ Q ∗ nd(E, F, G) ∗ blk(E+G, E+H+K)

Package2 Rule

Precondition: 2≤G≤H with x′ fresh

Q ∗ blk(E, E+1) ∗ (E+1 7→G) ∗ blk(E+2, E+H) ⇒ Q ∗ nd(E, x′, G) ∗ blk(E+G, E+H)

four steps in terms of rewriting rules on SH. The rules in each step will always be
normalizing. Thus, a particular strategy for applying the rules induces a function
from SH to SH, which will then be lifted to a function on D. For the last step,
we will define a partial identity function on SH and lift it to a function on D.

4.1 Node Synthesis

Node synthesis recognizes places where a portion of low-level memory can be
packaged into a node. The synthesis rules are in Table 2. The idea of the first,
Package, is just to package up a node using the definition of the nd predicate.6

When we do this, we sometimes have to split off part of the end of a block in
order to have the right information to form a node. Figure 1 gives a pictorial
view of the Package rule. A node is indicated by a shaded box with a sub-part,
G in the diagram, and an outgoing pointer, F there. The picture emphasizes the
way in which the abstraction function transfers from the RAM-level view to the
structured view where a group of cells becomes a unique entity (a node).

E

F

E+H

G

E+GE

F

E+H

G
G

F

E+G

Package

E

F

E+H

G

E+GE

F G
G

F

E+G

I

K

E+H+K

E+H+K

Swallow

Fig. 1. Package Rule (left) and Swallow Rule (right).

6 In these rules E 7→F, G is the standard separation logic abbreviation for E 7→F ∗
E+1 7→G

The idea of the second rule, Swallow, is that when we already have a node
to the right of a block as well as link and size cells, we might be able to swallow
the preceding cells into a node. In doing this we again might have to chop off
the end of the node (see Figure 1 for a depiction of the rule). The special case
of this rule where G = H+K corresponds to the discussion in Section 2.

The Package2 rule comes from a situation where a block has been split off to
be returned to the user, and the size G of the node has been discovered by the
allocation routine.

The technical meaning of these rules is that we can apply a rewriting Q ⇒ Q′

when Q implies the stated precondition. So, for the Package rule to fire we must
establish an entailment

Q ∗ (E 7→F,G) ∗ blk(E+2, E+H) ` 2≤G≤H.

Our analysis does this by calling a theorem prover for entailments Q ` Q′.
The theorem prover we have implemented builds on the prover used in Small-

foot [3]. It is incomplete, but fast, and it always terminates. The description of
the analysis in this paper can be considered as parameterized by a sound prover.
The prover is used in the abstraction phase, described in this section, as well as
in the widening and rearrangement phases described in Sections 5 and 6.

Finally, there are inference rules which allow us to apply rewriting when the
specific quantities in these rules do not match syntactically. For instance, given
E+H=x′ ∧ ((E 7→F,H) ∗ blk(E+2, x′)) we would like to apply the Package rule
but we cannot do so literally, because we can only get the formula into the
right form after substituting E+H for x′ (as mandated by the equality in the
formula). For this, we apply the rule

Q[E] ⇒ Q′ Q[F] ` E=F

Q[F] ⇒ Q′ Match1

Here, Q[·] is a formula with a hole.

4.2 n-Simple Form

The analysis has a non-negative integer n as a parameter. It is used to limit
offset arithmetic with a constant. (In our memory manager programs the choice
n = 4 is sufficient).

When abstraction establishes the fictional view of the heap we must be care-
ful to keep around some arithmetic information in the pure part, for example
remembering that a found block packaged into a node was big enough to satisfy a
malloc request. Keeping such important arithmetic information but dropping all
the other information in the pure part is the purpose of the second abstraction
step.

The second abstraction step transforms symbolic heaps to n-simple form,
keeping information about only simple numerical relationships among variables
and parameters of spatial predicates. The transformation prevents one source of

divergence: the generation of increasingly complex arithmetic expressions. This
abstraction reflects our intuitive understanding of programs for dynamic memory
management: complex numerical relationships only express how heap cells form
nodes, but they become unimportant once the nodes are synthesized.

An expression is called n-simple, for n ≥ 0, if it is either a primed variable
or an instance of N in the following definition:

N,M ::= x1+ · · ·+xk−y1− · · ·−yl+m

where all xi, yj are mutually disjoint nonprimed variables and m is an integer
with |m| ≤ n. For instance, neither x+x−y nor x+y−z−5 is 3-simple, since x
appears twice in the first, and |−5| > 3 in the second. An atomic pure predicate
is n-simple if it is of the form x=N or 0≤N where N is n-simple and x 6∈ fv(N).

A symbolic heap Q ≡ Π ∧Σ is in n-simple form iff the following hold:

1. Q contains only n-simple expressions.
2. Π does not contain any primed variables.
3. Π ≡ x1=N1 ∧ . . . ∧ xk=Nk ∧ 0≤M1 ∧ . . . ∧ 0≤Ml where all xi’s are distinct

variables that occur in Q only in the left of equation xi=Ni.

The third condition ensures that disequalities are dropped from Q, that the
equalities define program variables x1, . . . , xk in terms of other program vari-
ables, and that these equalities have already been applied in Q. The transfor-
mation to n-simple form ensures that the analysis cannot diverge by repeatedly
generating symbolic heaps with new pure parts. There are only finitely many
pure parts of symbolic heaps in n-simple form, since the number of program
variables is finite.

Table 3 shows the rewriting rules for transforming to n-simple form. The
first two rules expand a primed or nonprimed variable into its definition. The
third rule Merge encodes the 6= relation using the ≤ relation. Note that none of
these three rules loses information, unlike the last two. The Simplify rule loses
some numerical relationships between parameters of spatial predicates in Q,
and the Drop rule drops pure conjuncts P which are not in n-simple form. For
instance 0≤x+x ∧ nd(x, x+x, x+x) gets transformed first to 0≤x′ ∧ nd(x, x′, x′)
by Simplify, then to nd(x, x′, x′) by Drop.

The Substitution and Merge rules require that an input symbolic heap should
have a specific syntactic form. We have another matching rule to apply them
more liberally:

P ∧Q ⇒ Q′ ` P⇔P ′

P ′ ∧Q ⇒ Q′ Match2

where P is an atomic pure predicate, such as E 6=E′. Our implementation uses
Match1 and Match2 in a demand-driven manner, building them into rules in
Tables 2 and 3; we omit description of the demand-drivel variants for simplicity.

The reader might be wondering why we didn’t use an existing abstract do-
main for numerical properties, such as [13], in the pure part. The short answer
is that it is not obvious how to do so, for example, because of the way that
symbolic heaps use existential quantification. An important direction for future

Table 3 Rules for Transforming Symbolic Heaps to n-Simple Form
Substitution1 Rule

x=E ∧ Q ⇒ x=E ∧ (Q[E/x])

(if x=E is n-simple and x∈fv(Q))

Substitution2 Rule

x′=E ∧ Q ⇒ Q[E/x′]

(if x′=E is n-simple and x′∈fv(Q))

Merge Rule

E 6=0 ∧ 0≤E ∧Q ⇒ 0≤E−1 ∧ Q

Simplify Rule

Q[E/y′] ⇒ Q[x′/y′]

(if E is not n-simple, y′∈fv(Q) and x′ 6∈fv(Q, E))
Drop Rule

P ∧Q ⇒ Q (if atomic predicate P is not n-simple, or it contains some primed x′)

work is to find ways to marry symbolic heaps with other abstractions, either
directly or, say, through a suitable reduced product construction [10].

4.3 Abstraction at the Structured Level

Abstraction of the Size Field of Nodes. The third step of abstraction renames
primed variables that are used to express the size fields of nodes, using the

Size Rule

Q ∗ nd(E,F, x′) ⇒ Q ∗ nd(E,F, y′) (if x′ ∈ fv(Q,E, F) but y′ 6∈ fv(Q,E, F))

This rule loses information about how the size x′ of the node E is related to
other values in Q. For instance, the rule abstracts nd(x, y, v′) ∗ nd(y, 0, v′) to
nd(x, y, v′)∗nd(y, 0, w′), thereby losing that the nodes x and y are the same size.

After this step, every primed variable with multiple occurrences in a symbolic
heap denotes the address, not the size, of a node. This implicit type information
of primed variables is used in the remaining steps of the abstraction.

Multiword-List Abstraction. Next, the analysis applies abstraction rules for
multiword-list segments. We use variants of the rewriting rules in [15], which
are shown in Table 47.

The Append rule merges two smaller list segments, which are expressed by
mls or nd. The side condition is for precision, not soundness. The first conjunct
in the condition prevents abstraction when x′ denotes a shared address: i.e. that
two spatial predicates contain x′ in their link fields. This case is excluded by the
condition x′ 6∈ fv(Q,G), for the second predicate witnessing the sharing could be
in Q or it could be L1. The second conjunct prevents abstraction when L0(E, x′)
is a node predicate which indirectly expresses relationships between variables.
For instance, L0(E, x′) ≡ nd(y, x′, z) expresses that z is stored in cell y+1.

The three forgetting rules drop atomic predicates. Forget1 removes empty
blocks, and Forget2 drops list segments and nodes that cannot be accessed in a
7 The rules are slight modifications of the ones in [15], different because of the possible

cyclicity of list segments in this paper.

Table 4 Rules for Multiword-List Abstraction

Notation: L(E, F) ::= mls(E, F) | nd(E, F, H) U(E, F) ::= blk(E, F) | E 7→F

Append Rule

Q ∗ L0(E, x′) ∗ L1(x
′, G) ⇒ Q ∗mls(E, G)

(if x′ 6∈ fv(Q, G) and (L0 ≡ nd(E, x′, F) ⇒ E or F is a primed variable))

Forget1 Rule

Q ∗ blk(E, E) ⇒ Q ∗ emp

Forget2 Rule

Q ∗ L(x′, E) ⇒ Q ∗ true

(if x′ 6∈ fv(Q))

Forget3 Rule

Q ∗ U(E, F) ⇒ Q ∗ true

“known” way. In the presence of pointer arithmetic we can never conclude that
a cell is absolutely inaccessible. Rather, if we cannot be sure of how to safely
access it then our analysis decides to forget about it. Forget3 forces abstraction
to establish the fictional view of memory: when we have a cell or a block that
has not been made into a node in the synthesis phase, we forget it.

Filtering Inconsistent Symbolic Heaps. Finally, the analysis filters out symbolic
heaps that are proved to be inconsistent by our theorem prover8. Concretely,
given the result S ∈ D of the previous four abstraction steps, the last step
returns S ′ defined by:

S ′ def= if (S = >) then > else {Q ∈ S | Q 6` false}.

4.4 n-Canonical Symbolic Heaps

The results of Abs form a subdomain Cn of D, whose elements we call n-canonical
symbolic heaps. In this section, we define Cn, and we prove the result that relates
canonical symbolic heaps to the termination of the analysis.

Let n be a nonnegative integer. Intuitively, a symbolic heap Q is n-canonical
if it is n-simple and uses primed variables in the first position of spatial pred-
icates only for two purposes: to represent shared addresses, or to represent the
destination of the link field of a node that is pointed to by a program variable.
For instance, the following symbolic heaps are n-canonical:

mls(x, x′) ∗mls(y, x′) ∗mls(x′, z), nd(x, x′, y) ∗mls(x′, z).

They are both n-simple, and they use the primed variable x′ for one of the two
allowed purposes. In the first case, x′ expresses the first shared address of the
two lists x and y, and in the second case, x′ means the link field of a node that
is pointed to by the program variable x.
8 For Proposition 4 below the prover must at least detect inconsistency when a sym-

bolic heap explicitly defines the same location twice: Q contains A1(E)∗A2(E) where
Ai ranges over mls(E, F), E 7→F and nd(E, F, G).

To give the formal definition of n-canonical symbolic heap, we introduce some
preliminary notions. An expression E occurs left (resp. right) in a symbolic heap
Q iff there exists a spatial predicate in Q where E occurs as the first (resp.
second) parameter. E is shared in Q iff it has at least two right occurrences. E
is directly pointed to in Q iff Q contains nd(E1, E, E2) where both E1 and E2

are expressions without primed variables.

Definition 1 (n-Canonical Form). A symbolic heap Q is n-canonical iff

1. it is n-simple and Q 6` false,
2. it contains neither blk nor 7→,
3. if x′ occurs left in Q, it is either shared or directly pointed to, and
4. if x′ occurs as size of a node predicate in Q, it occurs only once in Q.

We define CSHn to be the set of n-canonical symbolic heaps, and write Cn

for the restriction of D by CSHn, that is Cn = P(CSHn) ∪ {>}.

Proposition 2 (Canonical Characterization). Let Q ∈ SH be n-simple and
such that Q 6` false. Q is n-canonical iff Q ; for rules in Section 4.3.

Corollary 3. The range of the abstraction function Abs is precisely Cn.

The main property of n-canonical symbolic heaps is that there are only finitely
many of them. This fact is used in Section 6 for the termination of our analysis.

Proposition 4. The domain Cn is finite.

5 Widening Operator

In this section, we define a widening operator ∇: Cn×Cn → Cn, which is used to
accelerate the fixpoint computation of the analysis.

Intuitively, the widening operator ∇ is an optimization of the (>-extended)
set union. When ∇ is given two sets S,S ′ of symbolic heaps, it adds to S only
those elements of S ′ that add new information. So, γ(S∇S ′) and γ(S∪S ′) should
be equal. For instance, when ∇ is given

S = {mls(x, 0)} and S ′ = {x=0 ∧ emp, nd(x, 0, y), nd(x, y′, y) ∗ nd(y′, 0, z)},

it finds out that only the symbolic heap x=0 ∧ emp of S ′ adds new information
to S. Then, ∇ combines that symbolic heap with S, and returns

{mls(x, 0), x=0 ∧ emp}.

The formal definition of∇ is parameterized by the theorem prover ` for show-
ing some (not necessarily all) semantic implications between symbolic heaps. Let
rep be a procedure that takes a finite set S of symbolic heaps and returns a subset
of S such that

(∀Q,Q′ ∈ rep(S). Q ` Q′ ⇒ Q = Q′) ∧ (∀Q ∈ S.∃Q′ ∈ rep(S). Q ` Q′)

The first conjunct forces rep to get rid of some redundancies while the second,
in conjunction with the assumption rep(S) ⊆ S, ensures that γ(rep(S)) = γ(S).
(Our implementation of rep selects `-maximal elements of S; in case two elements
are `-equivalent a fixed ordering on symbolic heaps is used to select one.)

Using ` and rep, we define ∇ as follows:

S∇S ′ =

{
S ∪ {Q′ ∈ rep(S ′) | ¬(∃Q ∈ S. Q′ ` Q)} if S6=> and S ′ 6=>
> otherwise

This definition requires heaps added to S to, first, not imply any elements in S
(that would be redundant) and, second, to be “maximal” in the sense of rep.

Our operator ∇ satisfies nonstandard axioms [11], which have also been used
in the work on the ASTRÉE analyzer [28, 12].

Proposition 5. The ∇ operator satisfies the following two axioms:

1. For all S,S ′ ∈ Cn, we have that γ(S) ∪ γ(S ′) ⊆ γ(S∇S ′).
2. For every infinite sequence {S ′i}i≥0 in Cn, the widened sequence S0 =
S ′0 and Si+1 = Si∇S ′i+1 converges.

The first axiom means that ∇ overapproximates the concrete union operator,
and it ensures that the analysis can use ∇ without losing soundness. The next
axiom means that ∇ always turns a sequence into a converging one, and it
guarantees that ∇ does not disturb the termination of the analysis.

The first axiom above is not standard. Usually [9], one uses a stronger axiom
where ∇ is required to be extensive for both arguments, i.e.,

∀S,S ′ ∈ Cn. S v (S∇S ′) ∧ S ′ v (S∇S ′).

However, we cannot use this usual stronger axiom here, because our widening
operator is not extensive for the second argument. For a counterexample, con-
sider S = {mls(x, y)} and S ′ = {nd(x, y, z)}. We do not have S ′ v (S∇S ′)
because the rhs is {mls(x, y)}, which does not include S ′. Note that although
S ′ 6v (S∇S ′), we still have that

γ(S ′) = γ(nd(x, y, z)) ⊆ γ(mls(x, y)) = γ(S∇S ′),

as demanded by our first axiom for the ∇ operator.
Note that S∇S′ is usually smaller than the join of S and S′ in Cn. Thus,

unlike other typical widening operators, our ∇ does not cause the analysis to
lose precision, while making fixpoint computations converge in fewer iterations.

The widening operator is reminiscent of the ideas behind the Hoare power-
domain, and one might wonder why we do not use those ideas more directly
by changing the abstract domain. For instance, one might propose to use the
domain C′ that consists of > and sets S of symbolic heaps where no (provably)
redundant elements appear (i.e., for all Q,Q′ ∈ S, if Q ` Q′, then Q = Q′). The
Hoare order of C′ would be

S vH S ′ ⇐⇒ S ′ = > ∨ (S,S ′ ∈ P(CSHn) ∧ ∀Q ∈ S.∃Q′ ∈ S ′. Q ` Q′).

Table 5 Abstract Semantics

Let A[e] and A be syntactic subclasses of atomic commands defined by:

A[e] ::= [e]:= e | x:= [e] A ::= x:= e | x:= sbrk(e).

The abstract semantics [[C]]:D → D is defined as follows:

[[C0 ; C1]]S = ([[C1]] ◦ [[C0]])S

[[if(B) {C0} else {C1}]]S = ([[C0]] ◦ filter(B))S t ([[C1]] ◦ filter(¬B))S

[[local x ; C]]S = if ([[C]](S[y′/x])=>) then > else ([[C]](S[y′/x]))[x′/x]

[[while(B){C}]]S = (filter(¬B) ◦ wfix)(S0, F)

(where S0 = Abs(S) and F = Abs ◦ [[C]] ◦ filter(B))

[[A[e]]]S = if (S => ∨ ∃Q ∈ S. Q ;∗
e fault) then>

else {Q1 | Q∈S ∧ Q ;∗
e Q0 ∧ (Q0, A[e] =⇒Q1)}

[[A]]S = if (S =>) then > else {Q0 | Q∈S ∧ (Q, A =⇒Q0)}

where primed variables are assumed fresh, and filter:D → D and −: Cn ×Cn → Cn and
wfix : Cn × [Cn → Cn] → Cn are functions defined below:

filter(B)(S) = if (S=>) then > else {B ∧Q | Q ∈ S and (B ∧Q 0 false)}.

S0 − S1 = if (S0 6=> ∧ S1 6=>) then (S0 − S1) else
“
if (S1=>) then ∅ else >

”
wfix (S, F) is the first stabilizing element Sk of the below sequence {Si}i≥0:

S0 = S S1 = S0∇F (S) Si+2 = Si+1∇(F (Si+1−Si)).

Unfortunately, the proposal relies on the transitivity of the provable order `,
which is nontrivial for a theorem prover to achieve in practice. If ` is not transi-
tive, then vH is not transitive. Hence, the fixpoint computation of the analysis
might fail to detect that it has already reached a fixpoint, which can cause the
analysis to diverge.

On the other hand, our approach based on widening does not require any
additional properties of a theorem prover other than its soundness. And neither
does it require that the transfer functions be monotone wrt `; it only requires
that they be sound overapproximations. So, our approach is easier to apply.

6 Abstract Semantics

The abstract semantics of our language follows the standard denotational-style
abstract interpretation. It interprets commands as >-preserving functions on D
in a compositional manner. The semantic clauses for commands are given in Ta-
ble 5. In the table, we use the macro ¬ that maps E=F , E 6=F , E≤F to E 6=F ,
E=F , F≤E−1, respectively. The semantics of compound commands other than
while loops is standard. The interpretation of while loops, however, employs non-

standard techniques. First, when the interpretation of the loop does the fixpoint
computation, it switches the abstract domain from D to the finite subdomain Cn,
thereby ensuring the termination of the fixpoint computation. Concretely, given
a loop while(B){C} and an initial abstract element S, the semantics constructs
F and S0 with types Cn → Cn and Cn, respectively. Then, the semantics uses
F and S0, and does the fixpoint computation in the finite domain Cn. Note the
major role of the abstraction function Abs here; Abs abstracts the initial abstract
element S, and it is used in F to abstract the analysis results of the loop body,
so that the fixpoint computation lives in Cn.

Intuitively, the analysis works at the “RAM level” inside loops and the higher,
structured, view of lists and nodes is re-established at every iteration. For the
purpose of the analysis described in this paper, this is a necessary choice since
very often the precision of the RAM level is needed to meaningfully execute
atomic commands; abstracting at every step usually produces imprecise results.

Second, the abstract semantics of while loops uses an optimized fixpoint algo-
rithm called widened differential fixpoint algorithm. The main idea of this algo-
rithm is to use two known optimization techniques. The first is to use a widening
operator to help the analysis reach a fixpoint in fewer iterations [9].9 The second
is to use the technique of subtraction to prevent the analysis from repeating the
same computation in two different iteration steps [17]. Given an abstract element
S ∈ Cn and an abstract transfer function F : Cn → Cn, the widened differential
fixpoint algorithm generates a sequence whose i+2-th element has the form:

Si+2 = Si+1∇(F (Si+1−Si)),

and returns the first stabilizing element of this sequence.10 The key to the algo-
rithm is to use the widening operator, instead of the join operator, to add newly
generated analysis results to Si+1, and to apply F to the subtracted previous
step Si+1−Si, rather than to the whole previous step Si+1.

Usually, these two techniques have been used separately in the denotational-
style abstract interpretation. The problem is that the common soundness argu-
ment for the subtraction technique does not hold in the presence of widening.
The argument relies on at least one of monotonicity, extensiveness or distribu-
tivity of F 11 but if the widening operator is used (to define F itself), F does not
necessarily have any of these properties. In Section 6.2, we use an alternative
approach for showing the soundness of the analysis and prove the correctness of
the widened differential fixpoint algorithm.

Finally, the semantic clauses for atomic commands are given following the
rules of symbolic execution in [3]. The semantics classifies atomic commands
into two groups depending on whether they access existing heap cells. When an
atomic command accesses an existing heap cell e, such as [e]:= e0 and x:= [e], the

9 Theoretically, since the analyzer works on the set of canonical heaps which is finite,
the use of widening is not necessary for termination. However, widening significantly
speeds up the convergence of the fixpoint computation.

10 Sk is a stabilizing element iff Sk = Sk+1.
11 F is distributive iff for all S,S ′, F (S t S ′) = F (S) t F (S ′).

Table 6 Rules of Symbolic Execution
Q, x:= e =⇒ x=e[x′/x] ∧Q[x′/x]

Q ∗ e7→F , x:= [e] =⇒ x=F [x′/x] ∧ (Q ∗ e7→F)[x′/x]

Q ∗ e0 7→F , [e0]:= e1 =⇒ Q ∗ e0 7→e1

Q, x:= sbrk(e) =⇒ Q[x′/x] ∗ blk(x, x+(e[x′/x])) (when Q ` e>0)

Q, x:= sbrk(e) =⇒ x=−1 ∧Q[x′/x]

where primed variables are assumed fresh.

Table 7 Rearrangement Rules for Built-in Predicates.
Switch Rule

Precondition: F=e

Q ∗ F 7→G ;e Q ∗ e7→G

Blk Rule

Precondition: F≤e<G with x′ fresh

Q ∗ blk(F, G) ;e Q ∗ blk(F, e) ∗ e7→x′ ∗ blk(e+1, G)

semantics first checks whether the input S always guarantees that e is allocated.
If not, the semantics returns >, indicating the possibility of memory errors.
Otherwise, it transforms each symbolic heap in S using the rearrangement rules
;∗ (see Section 6.1) in order to expose cell e. Then, the semantics symbolically
runs the command using =⇒ in Table 6. For the atomic commands that do not
access heap cells, the semantics skips the rearrangement step.

6.1 Rearrangement Rules

When symbolic execution attempts to access a memory cell e which is not ex-
plicitly indicated in the symbolic heap, it appeals to a set of rules (called re-
arrangement rules) whose purpose is to rewrite the symbolic heap in order to
reveal e. In this paper, we have three sets of rearrangement rules. The first set,
in Table 7, handles built-in predicates. The rules in the second set follow the
general pattern

Allocated: e

Consistency: Q ∗Q′[~F/~x]

Q ∗H(~F) ;e Q ∗Q′[~F/~x]

Here H(~F) is either nd or mls, and Q′ is one of the disjuncts in the definition of
H with all the primed variables in Q′ renamed fresh. Instead of the precondition
requirement as in the abstraction rules in Section 4, the rules generated by
this pattern have an allocatedness requirement and a consistency requirement.
Allocatedness guarantees that the heap contains the cell e that we are interested
in. This correspond to the check:

ΠQ ∧ (H(~F) ∗ e7→x′) ` false

where ΠQ is the pure part of Q and x′ is a fresh primed variable. The consistency
requirement of the rule enforces its post-state to be meaningful. This means that

Table 8 Rearrangement Rules for Multiword Lists.
Mls1 Rule

Allocated: e

Consistency: Q ∗ nd(F, G, z′)

Q ∗mls(F, G) ;e Q ∗ nd(F, G, z′)

Mls2 Rule

Allocated: e

Consistency: Q ∗ nd(F, y′, z′) ∗mls(y′, G)

Q ∗mls(F, G) ;e Q ∗ nd(F, y′, z′) ∗mls(y′, G)

Node Rule

Allocated: e

Consistency: −
Q ∗ nd(F, G0, G1) ;e Q ∗ F 7→G0, G1 ∗ blk(F+2, F+G1)

in order for the rule to fire the following extra consistency condition should hold:

Q ∗Q′[~F/~x] 0 false.

The rearrangement rules for nd and mls are reported in Table 8. The third set
consists of a single rule that detects the possibility of memory faults and it is
described below:

Fault Rule Q ;e fault (if Q does not contain e7→F , but Q ;/e).

6.2 Soundness

Common soundness arguments in program analysis proceed by showing that the
results of an analysis are prefix points of some abstract transfer functions. Then
one derives that the analysis results overapproximate program invariants. Unfor-
tunately, we cannot use this strategy, because the fixpoint algorithm described
here does not necessarily compute prefix points of abstract transfer functions.

We use an alternative approach that proves soundness by compiling the anal-
ysis results into proofs in separation logic. More specifically, we prove:

Proposition 6. Suppose that [[C]]S = S ′. If both S and S ′ are non-> abstract
values, then there is a proof of a Hoare triple {S}C{S ′} in separation logic.

Note that since the proof rules of separation logic are sound, this proposition
implies that the results of our analysis overapproximate program invariants.

The proposition can be proved by induction on the structure of C. Most of
the cases follow immediately, because the abstract semantics uses sound implica-
tions between assertions or proof rules in separation logic. Cases like these have
been done in previous work [21, 15, 18], and we will not repeat them here. The
treatment of while loops, however, requires a different argument.

Suppose that [[while(B){C}]]S = S ′ for some non-> elements S and S ′. Let
S ′′ and F be the two parameters, Abs(S) and Abs ◦ [[C]] ◦ filter(B), of wfix in the

interpretation of this loop. Then, by the definition of wfix , the abstract element
wfix (S ′′, F) is the first stabilizing element Sk of the sequence {Si}i≥0:

S0 = S ′′ S1 = S0∇F (S) Si+2 = Si+1∇F (Si+1−Si).

Moreover, we have that S ′ = filter(¬B)(Sk). The following lemma summarizes
the relationship among S, S0, . . ., Sk−1 and Sk, which we use to construct the
separation-logic proof for the loop.

Lemma 7. For all i ∈ {1, . . . , k}, let Ti be Si − Si−1.

1. None of S0, T1, . . ., Tk and Sk is >.
2. S ⇒ Sk.
3. Sk ⇒ S0 ∨ T1 ∨ . . . ∨ Tk.
4. F (S0) ⇒ Sk and F (Ti) ⇒ Sk for all i ∈ {1, . . . , k}.

We now construct the required proof. Because of the fourth property in Lemma 7
and the induction hypothesis, we can derive the following proof trees:

Ind. Hypo.
{filter(B)(U)}C{([[C]] ◦ filter(B))(U)}
{B ∧ U}C{([[C]] ◦ filter(B))(U)}

(B ∧ U ⇔ filter(B)(U))

{B ∧ U}C{F (U)}
Soundness of Abs, F = Abs ◦ [[C]] ◦ filter(B)

{B ∧ U}C{Sk}
Prop.4 of Lem.7

where U is S0 or Ti. We combine those proof trees, and build the required tree
for the loop:

{B ∧ S0}C{Sk} {B ∧ T1}C{Sk} . . . {B ∧ Tk}C{Sk}
{(B ∧ S0) ∨ (B ∧ T1) ∨ . . . (B ∧ Tk)}C{Sk}

Disjunction

{B ∧ Sk}C{Sk}
Prop.3 of Lem.7

{Sk}while(B){C}{¬B ∧ Sk}
While

{S}while(B){C}{S ′}
Prop.2 of Lem.7, S ′ = filter(¬B)Sk

Note that the proof tree indicates that the subtraction technique of our fixpoint
algorithm corresponds to the disjunction rule

{P1}C {Q1} {P2}C {Q2}
{P1 ∨ P2}C {Q1 ∨Q2}

of Hoare logic.

7 Experimental Results

We implemented our analysis in OCaml, and conducted experiments on an Intel
Pentium 3.2GHz with 4GB RAM; our results are in Figure 2. Our implemen-
tation contains a postprocessor that simplifies computed post abstract values

Program LOC Max Heap (KB) States (Loop Inv) States (Post) Time (sec)

malloc firstfit acyclic 42 240 18 3 0.05

free acyclic 55 240 6 2 0.09

malloc besttfit acyclic 46 480 90 3 1.19

malloc roving 61 240 33 5 0.13

free roving 68 720 16 2 0.84

malloc K&R 179 26880 384 66 502.23

free K&R 58 3840 89 5 9.69

Fig. 2. Experimental Results

using the abstraction Abs and rep in Section 5. malloc K&R is the only one of
the programs with a nested loop; the size of the invariant for it in Figure 2 refers
to the outer loop. (The test-programs can be found on the authors’ web pages.)

The malloc firstfit acyclic and free acyclic programs are Algorithms
A and B from Section 2.5 of [20]. They both manage an acyclic free list main-
tained in address-sorted order. malloc firstfit acyclic walks the free list
until a big enough block is found to satisfy a malloc request. That block is re-
turned to the caller if the size is exactly right, and otherwise part of the block is
chopped off and returned to the caller, with the leftover resized and kept in the
free list. If a correctly-sized block is not found then the algorithm returns 0. The
free algorithm inserts a block in the appropriate place in this list, maintain-
ing sorted order and coalescing nodes when possible. malloc bestfit acyclic
traverses the entire free list to find the best fit for a request, and returns it.

In simplistic first-fit allocators small blocks tend to pile up at the front of the
free list. A way to combat this problem is to use a cyclic rather than acyclic free
list, with a “roving pointer” that moves around the list [20]. The roving pointer
points to where the last allocation was done, and the next allocation starts from
it. malloc roving and free roving implement this strategy.

The first five programs assume that a fixed amount of memory has been given
to the memory manager at the beginning. A common strategy is to extend this
by calling a system routine to request additional memory when a request cannot
be met. This is the strategy used in the memory manager from Section 8.7 of
[19]. When a request cannot be met, sbrk is called for additional memory. In
case sbrk succeeds the memory it returns is inserted into the free list by calling
free, and then allocation continues. The memory manager there uses the roving
pointer strategy. To model this program in the programming language used for
our analysis we had to inline the call to free, as what we have described is not
an interprocedural analysis. Also, we had to model multiple-dereferences like
p�s.ptr�s.size using several statements, as the form in our language has at
most one dereference per statement; this is akin to what a compiler front end
might do. These points, inline free and basic dereferences, account for the 179
LOC in our program for malloc compared to 66 LOC in the original.

The manager in [19] uses a nonempty circular list with a fixed head node
that is never returned to the caller. Its correctness relies on the (unstated) as-

Prog : malloc firstfit acyclic and malloc bestfit acyclic

Pre : n−2≥0 ∧mls(free, 0)

Post : (ans=0 ∧ n−2≥0 ∧mls(free, 0)) ∨ (n−2≥0 ∧ nd(ans, p′, n) ∗mls(free, 0))

∨ (n−2≥0 ∧ nd(ans, p′, n) ∗mls(free, p′) ∗mls(p′, 0))

Prog : free acyclic

Pre : mls(free, 0) ∗ nd(ap−2, p′, n′)

Post : mls(free, ap−2) ∗mls(ap−2, 0) ∨ mls(free, 0)

Fig. 3. Sample Computed Post Abstract Values

sumption that sbrk will return a block whose address is larger than the head
node; otherwise, there are cases in which the header will be coalesced with a
block gotten from sbrk, and this can lead to a situation where the same block
is allocated twice in a row. Our model of sbrk in Section 6 does not make this
assumption explicit, and as a result running the analysis on the original malloc
reveals this “problem”. By changing our model of sbrk to reflect the assumption
we were able to verify the original; the model, though, is not as simple as the one
in Section 6. We then altered malloc so that it did not rely on this assumption,
and this is the program malloc K&R reported in Figure 2, for which we used the
simple sbrk.

The speedup obtained from the widening operator can be observed in the
analysis of malloc K&R; with widening turned off the analysis took over 20 hours
to terminate. For the other programs the analysis times were similar, except for
free K&R where widening resulted in a speedup of a factor of 2.

Memory safety and memory leaks are general properties, in the sense that
they can be specified once and for all for all programs. For our analysis if a
postcondition is not > then it follows that the program does not dereference a
dangling pointer starting from any concrete state satisfying the precondition. If
true does not appear in the post then the program does not have a memory leak.
For all seven programs, our analysis was able to prove memory safety and the
absence of memory leaks.

But in fact we can infer much more: the postconditions give what might be
regarded as full functional specifications.12 Figure 3 shows sample post abstract
values computed by the analysis (with widening enabled). Take the postcondi-
tion for malloc firstfit acyclic and malloc bestfit acyclic. The first dis-
junct, when ans=0, is the case when the algorithm could not satisfy the malloc
request. The second and third correspond to cases when the request has been
met. These two cases are different because the analysis distinguishes when the
link field of a node happens to point back into the free list. The third disjunct
implies the second, so if the user were to write the first two disjuncts as the
12 The specifications are for partial correctness, but using the techniques of [5] we could

likely establish termination as well if we were to track lengths of multiword lists.

desired postcondition, which would be intuitive, then a theorem prover could
tell us that the computed post in fact established a reasonable specification
of partial correctness13. Similar remarks apply to the other postcondition for
free acyclic.

Finally, it is easy to trick the analysis into reporting a false bug. Our algo-
rithm abstracts to the “fictional level” after each loop iteration. If a program
fails to package a portion of RAM into a node before leaving a loop, then the
unpackaged RAM will be abstracted to true. If then subsequently, after the loop,
the program attempts to package up the node with a heap mutation, then the
analysis will return >.

8 Conclusions and Related Work

We believe that the results in this paper may pave the way for improved auto-
matic verification techniques for low-level, “dirty” programs.

As we mentioned earlier, the approach in this paper is a development of
the Space Invader shape analysis [15] (also, [22]). Compared to the original, the
differences here are the following. First, we use different basic predicates, which
are oriented to multiword lists, and different abstraction rules appropriate to the
reasoning about multiword lists; this results in a much more complex abstract
domain. Some of the abstraction rules, in particular, are perhaps not the first that
come to mind, and we settled on them only after some experimentation. Second,
in order to accelerate the analysis, we used a particular widening operator. Also,
we used much more intricate test-programs in our experiments. These, and the
complexity of our abstract domain, are such that the widening had a significant
impact on performance.

There have been two previous works on doing mechanical proofs of memory
managers in separation logic [33, 25], which both work by embedding separation
logic into Coq. They do not consider the exact same algorithms that we do. The
most significant difference, though, is degree of automation. They require loop
invariants to be provided, and even then the proofs in Coq are not automatic,
whereas our proof construction is completely automatic. Or course, working with
a proof assistant allows one to say more than is typically done in the lightweight
assertions that are used in program analysis. For example, one could say that
the free list increases in size on deallocation, where we do not say that here.

Shallow pointer analyses track points-to relationships between fixed-length
access paths. They are fast compared to shape analyses, but give imprecise
answers on deep heap updates, which occur when linked structures are altered
after traversing some distance. There have been a number of shallow pointer
analyses that deal with pointer arithmetic before (e.g., [32, 16, 29, 26]), but as
far as we are aware not any deep ones.
13 This specification would not rule out the manager doing things like returning some

nodes of the free list to the system, but would be a reasonable spec of the interface
to malloc nonetheless.

Between the fast, shallow analyses and the comparatively expensive, deep
shape analyses is the recency-abstraction [2]. It is one of the most relevant pieces
of related work. The recency-abstraction allows for pointer arithmetic and also
connects low-level and high-level, fictional, views of memory. It can distinguish
mutations of pointers coming from the same allocation site, but is imprecise
on deep heap update. A way to handle deep updates was pioneered in [30],
using the method of materialization of summary nodes14; recency-abstraction
(purposely) avoids materialization, in order to gain efficiency, and experimental
results justify the lower precision for its targeted applications. In contrast, here
we must handle deep update precisely if we are to obtain reasonable results for
the memory management algorithms that we used in our experiments.

An interesting question is whether some other previous shape abstraction
might be modified to obtain an effective analysis of multiword lists or similar
structures. In any case the problem paper addresses is existence, not uniqueness,
of shape abstraction beyond reachability.

Acknowledgments. We are grateful to Josh Berdine, Tom Reps and Mooly Sagiv
for comments on pointer analysis and pointer arithmetic, and to Xavier Rival
and Kwangkeun Yi for advice on widening and non-standard fixpoint opera-
tors. Byron Cook’s emphasis on the relevance of analyzing memory managers
gave us an initial push. We had helpful discussions on memory models and the
K&R malloc with Richard Bornat. We acknowledge support from the EPSRC.
Yang was partially supported by R08-2003-000-10370-0 from the Basic Research
Program of Korea Science & Engineering Foundation.

References

1. I. Balaban, A. Pnueli, and L. Zuck. Shape analysis by predicate abstraction. 6th
VMCAI, pp164–180, 2005.

2. G. Balakrishnan and T. Reps. Recency-abstraction for heap-allocated storage.
13th SAS (this volume), 2006.

3. J. Berdine, C. Calcagno, and P.W. O’Hearn. Symbolic execution with separation
logic. In K. Yi, editor, APLAS 2005, volume 3780 of LNCS, 2005.

4. J. Berdine, C. Calcagno, and P.W. O’Hearn. Automatic modular assertion checking
with separation logic. Proceedings of FMCO’05, to appear, 2006.

5. J. Berdine, B. Cook, D. Distefano, and P. O’Hearn. Automatic termination proofs
for programs with shape-shifting heaps. 18th CAV, to appear, 2006.

6. A. Bouajjani, P. Habermehl, P. Moro, and T. Vojnar. Verifying programs with dy-
namic 1-selector-linked structures in regular model checking. 11th TACAS, pp13–
29, 2005.

7. D. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. PLDI,
pp296–310, 1990.

8. W.T. Comfort. Multiword list items. CACM 7(6), pp357-362, 1964.
9. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. 4th POPL,
pp238-252, 1977.

14 The rearrangement rules here and in [3, 15] are cousins of materialization.

10. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. 6th
POPL, pp269-282, 1979.

11. P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Log. Comput.
2(4), pp511-547, 1992.

12. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
The ASTRÉE analyzer. 14th ESOP, pp21-30, 2005.

13. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. 5th POPL, pp84-96, 1978.

14. D. Distefano, J.-P. Katoen, and A. Rensink. Who is pointing when to whom?
On the automated verification of linked list structures. 24th FSTTCS, pp250-262,
2004.

15. D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis based on separation
logic. 16th TACAS, pp287–302, 2006.

16. N. Dor, M. Rodeh, and M. Sagiv. Towards a realistic tool for statically detecting
all buffer overflows in C. PLDI, pp155-167, 2003.

17. H. Eo, K. Yi, and H. Eom. Differential fixpoint iteration with subtraction for
non-distributive program analysis. Sumitted, 2006.

18. A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with sepa-
rated heap abstractions. 13th SAS, to appear, 2006.

19. B.W. Kernighan and D.M. Ritchie. The C Programming Language. Prentice Hall,
New Jersey, 1988. 2nd Edition.

20. D.E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algo-
rithms. Addison-Wesley, 1973. 2nd Edition.

21. O. Lee, H. Yang, and K. Yi. Automatic verification of pointer programs using
grammar-based shape analysis. 14th ESOP, pp124-140, 2005.

22. S. Magill, A. Nanevski, E. Clarke, and P. Lee. Inferring invariants in Separation
Logic for imperative list-processing programs. 3rd SPACE Workshop, 2006.

23. R. Manevich, M. Sagiv, G. Ramalingam, and J. Field. Partially disjunctive heap
abstraction. 11th SAS, pp265-279., 2004.

24. R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate abstraction and
canonical abstraction for singly-linked lists. 6th VMCAI, pp181-198, 2005.

25. N. Marti, R. Affeldt, and A. Yonezawa. Verification of the heap manager of an
operating system using separation logic. 3rd SPACE Workshop, 2006.

26. T. Reps, G. Balakrishnan, and J. Lim. Intermediate-representation recovery from
low-level code. PEPM’06, pp100-111, 2006.

27. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
17th LICS, pp 55-74, 2002.

28. Xavier Rival. Personal communication. 2005.
29. R. Rugina and M. Rinard. Symbolic bounds analysis of pointers, array indices,

and accessed memory regions. ACM TOPLAS, 27(2):185–235, 2005.
30. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages

with destructive updating. ACM TOPLAS, 20(1):1–50, 1998.
31. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3valued logic.

ACM TOPLAS, 24(3):217–298, 2002.
32. D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step towards automated

detection of buffer overrun vulnerabilities. Proceedings of NDSS, 2000.
33. D. Yu, N. A. Hamid, and Z. Shao. Building certified libraries for PCC: Dynamic

storage allocation. 12th ESOP, pp363–379, 2003.

