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Abstract

Predicting the direction of conditional branches with high accuracy
has become critical to the success of new deeper and wider processor
pipelines. However, choosing a branch predictor is hard because the best
choice is workload-dependent. Meta- (or Hybrid-) predictors provide a
rudimentary FSA-based heuristic for choosing between two predictors
on-line. Such approaches have little or no theoretical motivation, and
offer no performance guarantees. Recent developments in the Expert
Framework provide explicit mechanisms for combining a pool of predic-
tors and come with powerful theoretical results, bounding the loss the of
master (meta-) predictor in terms of the loss of predictors in its pool. This
paper shows how an arbitrary number branch predictors can be used as
experts, and how the Expert Framework can be used to construct amulti-
predictor. Our expert-based meta-predictors can achieve up to 62% fewer
misses than the best predictor chosen in hindsight.

1 Introduction

Accurate branch prediction is critically linked to processor performance in deeply pipelined
architectures. Branches can constitute a significant portion of instructions, and many other
instructions depend on their computed target. Thus, poor predictions result in many dis-
carded instructions. Any reduction in the rate of missed predictions translates into lower
processor Cycles Per Instruction (CPI) and alleviates the need for complicated and hard-
ware intensiveselective dual path executionschemes.

Given a handful of prediction algorithms, choosing the best one can be a daunting task. Pre-
dictors of different flavors exploit varying criteria, and can have many tunable parameters.
The current standard in dynamic branch prediction is to employ atwo-levelapproach which
trades-off global and per-address branch histories [YP92, PSR92, McF93]. Hierarchically
indexing a branch address table (BAT), and then a pattern history table (PHT) results in the
selection of a Finite State Automata (FSA). The FSA’s state, and thus prediction, depends
on direction of branches it predicted in the past. Despite the plethora of literature available
which compare and contrast branch prediction algorithms, these studies have only one con-
clusive and unifying result: The best predictor is heavily workload-dependent. Even with
perfect knowledge of the application, choosing from a pool of possible predictors off-line
can be extremely difficult, and usually requires simulation.

Luckily, recent research has helped simplify things somewhat. Yehet. al. [YP93], show
that, with the exception ofgshare[McF93], all two-level adaptive dynamic branch predic-
tors essentially fall into one of nine categories. They demonstrate experimentally that, of



these nine categories, the “PAs” schemes are top performers on all but the SPEC [spe]gcc
benchmark. However Gloyet. al.[GYCS96] argue that predictors likegshareand the nine
of Yeh et. al. [YP93] can have varying success depending on how many cycles a work-
load executes in kernel or user code. Thus, choosing among only a handful of predictors is
difficult.

Meta- (or Hybrid-) predictors [ERSM01, ECP96] have been proposed in order to take the
burden of choosing the best branch predictor off of the architect. These approaches com-
bine two or more predictors, by employing an extra (meta-set) of FSAs. Besides the ob-
vious intuition behind why a hybrid approach might be successful, the only theoretical
justification for it is a so-called reduction inaliasing. Apparently, aliasing reduction is
“paramount” to prediction accuracy [ERSM01]. Such justification seems speculative at
best. Moreover, this technique does not scale well beyond two predictors.

This paper proposes a hybrid-predictor with a strong theoretical motivation. The Expert
Framework from on-line learning [HW95, CBFH+97, LW94, BW01] gives a mechanism
for monitoring the success of a pool of experts (predictors) and of combining their predic-
tions. It comes with performance guarantees, bounding the accuracy of meta- (or master-)
predictors in terms of the best predictor(s) chosen in hindsight. The framework is only
marginally more complex than FSA-based schemes and gracefully scales to an arbitrary
number of predictors.

2 Review & Related Work

This section surveys two-level dynamic branch prediction algorithms, and the Expert
Framework from on-line learning. This is not the first application of Machine Learning
to branch prediction. Lohet. al [aDSH02] give an approach which is loosely based on
the WEIGHTED MAJORITY algorithm [LW94]. Jiḿenes and Lin [JC00] give an approach
which uses Perceptrons.

2.1 Two-Level Adaptive Dynamic Branch Prediction

Table 1, taken from Yehet. al. [YP93] outlines the dynamic branch prediction algorithms
used in this paper. The table gives a brief description of each predictor and a reference. Both
Gloy et. al [GYCS96] and Yehet. al. [YP93] provide nice pictorial descriptions of these
predictors, showing how the hierarchical tables are indexed (not duplicated here). Particular
table specifications facilitate a trade off between global and per-address branch history
(taken/not-taken) leading, finally, to a choice of FSA whose state is used for prediction.
The exact semantics of the algorithm(s) executed by a particular two-level scheme can be
complicated. The following discussion is included to give the underlying themes, aiming
to bring out some high level similarities and differences. Details are left to the references.

Two-level predictors juggle per-branch history and global/local branch history to index into
a first-level branch address table (BAT). Next, the branch address may or may not be used
again to index from the BAT into a second-level pattern history table (PHT) table containing
FSAs. One-level schemes (like2bc ) can be thought of as two-level predictors which have
an empty second level– where only the branch address is used. Global history schemes
(GAs) use a BAT with only one shift register; per-address history schemes (PAs) use the
branch address to select an entry in a larger BAT. Set-wise history schemes (SAs) behave
similarly, but partition branch addresses into sets which cover the BAT, PHT, or both. In
the limit, finely-granulated partitions lead toPAs and large partitions lead toGAs, etc.

The predictors in Table 1 can essentially be characterized by the number of bits used for the
shift registers in each entry of the BAT; the number of FSAs used at the second level (PHT);
the mapping of branch addresses into the BAT; and the branch histories and addresses
which jointly index the PHT, where the actual FSAs reside. Small tables correlate branches



Variation Reference Description
Two-Level Adaptive

GAg [YP92] Global Adaptive, with one global PHT.
GAs [PSR92] Global Adaptive, with per-set PHTs.
GAp [PSR92] Global Adaptive, with per-address PHTs.
PAg [YP91] Per-address Adaptive, with one global PHT.
PAs [YP93] Per-address Adaptive, with per-set PHTs.
PAp [YP92] Per-address Adaptive, with per-address PHTs.
SAg [YP93] Per-Set Adaptive, with one global PHT.
SAs [YP93] Per-Set Adaptive, with per-set PHTs.
SAp [YP93] Per-Set Adaptive, with per-address PHTs.

One-Level Adaptive
gshare [McF93] Global history xor-ed, with per-address BAT.

2bc Per-address BAT.

Table 1: Several branch prediction algorithms with brief descriptions and references. PHT = Pattern
History Table; BAT = Branch Address Table.

Variation # BAT Entries # PHT Entries BAT→PHT

GA{g,s,p} 1 {2W , 2Sa+W , 2W+A} direct

PA{g,s} {2W , 2W+A} 2A direct
PAp 2W+A 2A+W direct

SA{g,s,a} 2Sb {2W , 2Sa+W , 2A+W } direct
gshare 1 2W xor w/ BAddr

2bc 0 2A direct

Table 2: Branch prediction algorithms given in terms of table sizes.W is the width (number of bits)
of the shift registers in each entry of the BAT;A is the number of lower-order address bits used to
index a table entry for each branch;Sb is a the number of sets partitioning branches in the BAT;Sa

similarly for the PHT. BAT entries map directly into PHT entries through shift register indexed by
the branch address of the BAT; exceptgshare which xor’s the shift register with the lower order
branch address bits.

globally, and large tables tailor predictors to branches on a more individual basis. Table 2
shows how particular choices of table sizes at each level determine the predictor.

2.2 Expert Framework

While machine learning approaches seem scarce in the architecture realm, the Expert
Framework is finding its way into many systems-related on-line prediction and optimiza-
tion problems. Helmboldet. al. [HLSS00] use the Expert Framework to determine the
optimal disk-spindown time for a mobile computer. Blumet. al. [BBK99] applied the
framework to paging. Ariet. al.[AAG+02] used it to choose caching policies for nodes in
a distributed cache. Recently, Gramacyet. al. [GWBA03, Gra03] showed how the frame-
work can be used to design a meta-caching strategy which outperforms the best policy in
its pool.

Informally, e = {e1, . . . , eN} expertsare decision making or prediction automata. Learn-
ing in the Expert Framework[CBFH+97] proceeds in trialst = 1, . . . , T , where each
expert receives an instancext ∈ X, predictsen(xt) ∈ Y , receives as feedback the true
labelyt ∈ Y , and incurs alossLt,n = Lt(en(xt), yt) ∈ [0, 1]. Branch predictors can be
viewed as experts where the instancesX are branch addresses and the labelsY are the ac-
tual, resolved, direction:{0, 1} = {Taken, Not-Taken}. A master algorithmcombines the



prediction of experts by maintaining a probabilistic weightw = {w1, . . . , wN} for each
expert, thus encoding its belief in each as a predictor. Weights are updated after each trial
t by a sequence ofupdates:

1. Loss Update: 2. Share Update:

wt, n
m =

wt,ne−ηLt,n

norm.
wt+1 =

t∑
q=0

γt+1,qwm
q

whereη > 0 and
∑t

q=0 γt+1,q = 1. Poor experts are punished by the loss update. The fa-
mous WEIGHTED MAJORITY algorithm [LW94], and STATIC EXPERT algorithm [HW95]
are specimens which employ a loss update like that of above, but do not employ share up-
dates. Theorems in the literature bound the loss of these master algorithms(A) by the loss
of the best expert:

L1,...T,A ≤ min
n
{L1,...T,n + c logn}, for constantc.

The share update keeps currently poor expert’s weights from becoming too small. Several
flavors of share updates are examined in the literature [HW95, BW01], of varying com-
plexity and effect. The loss of these master algorithms are bounded by the best partition
(P ) of trials into segment/expert pairs:

L1,...T,A ≤ min
P
{L1,...,T,P }+ O(# of bits to encodeP )

whereL1,...,T,P is the loss of partitionP .

3 Multi-predictor & Setup

The SimpleScalar [BA97] tool set is used to simulate each dynamic branch prediction
scheme in Table 1 on SPEC [spe] benchmarks. SimpleScalar provides a very flexible
branch predictor module allowing the hierarchical specification of table sizes and map-
pings. A representative spectrum of possible two-level branch predictors can be instanti-
ated without much effort. SimpleScalar also provides a primitive meta-predictor, which
makes a nice template for implementing our own expert-basedmulti-predictor. The pre-
fix multi distinguishes the Expert Framework-based hybrid predictor from the FSA-based
meta-predictor, highlighting its ability to employ more than two baseline predictors.

Our analysis verifies that the best predictor is workload-dependent and shows that Expert
Framework can adjust accordingly. To update expert weights we use FIXED-SHARE TO
UNIFORM PAST [BW01] (FSUP). This update is flexible and responsive, resource efficient,
and exploits our prior belief that only a small sub-pool of the predictors will be helpful.
Multi-predictors will be compared against one-level, two-level, and meta-predictors which
use an equivalent or larger numbers of bits.

By default, SimpleScalar’s meta-predictor (Comb) uses a table of 1024 2-bit saturating
counters (simple FSAs), indexed by branch address. Each 2-bit saturating counter selects
either a one-level (BiMod ) predictor, or a two-level predictor (2lev )– GAg by default.
The Expert-based multi-predictor is represented by 1024 sets of weights, indexed in exactly
the same way.1 Accordingly, the overhead required for meta and multi predictors differs by
O(E) for E expert weights. Each set of 1024 expert weights is updated by FSUP. Only after
the correct branch direction is realized are experts weights and predictors updated. When
predicting a branch, the single expert with the maximum weight is used for prediction.
This is contrary to the what the theory behind the Expert Framework says to do (namely:
thatall experts contribute by a weighted sum or inner product). The max is taken here for
simplicity– again allowing re-use of infrastructure in SimpleScalar for choosing predictors.

1This allows us to reuse the code provided by SimpleScalar for selecting meta-predictors.



Next comes the question of how many, and which, branch predictors should be experts.
More base predictors means more bits, and adding more predictors only makes sense if the
individual predictor’s decision criteria remain diverse. We seek a simple spanning of the
breath of two-level predictors for use as experts. The selection criteria should depend the
number of desired experts,E.

3.1 Base Predictors

Initial experiments show that a modestly-sized single-level predictor (BiMod ) often outper-
forms naively parameterized two-level predictors of the same size. As the total size of the
predictor increases, the accuracy ofBiMod saturates2. Correlated (two-level) branch pre-
dictors (2lev ) surpassBiMod in prediction accuracy as the total size of the predictors is
allowed to grow large. However, two-level schemes can saturate as well. With this in mind,
our choices of expert predictors and size of the resulting multi-predictor will be completely
determined by the number of experts,E. BiMod is always our first expert, and its table
size is2E−1. All other experts are two-level predictors containing a BAT with2e−1 shift
registers, each withE−e bits, and a PHT with2E−1 2-bit predictors, fore = 1, . . . E−1.3

The mapping between BAT and PHT is the default mapping implemented in SimpleScalar
(xor = 0). Our aim here is one of demonstrating the flexibility and potential advantages of
the Expert Framework by making the fewest assumptions possible. Otherwise, this choice
of experts is arbitrary. In a real system experts would be developed with more care.

Summarizing: We have 1024 sets of expert weights indexed by branch address forE ex-
perts (expt[e], e = 1, . . . E − 1), constructed as follows:

expt[0] = BiMod(2E−1)
for e = 1, . . . , E do

expt[e] = TwoLev(BAT.dim =2e−1 × (E − e), PHT.dim =2E−1).
end for

This leads to a multi-predictor with total size

Bits(multi[E]) = 2 · 2E−1 +
E−1∑
e=1

(E − e)2e−1 + 2E · 2E−1 = 2E + E2E − E − 1.

Each of 1024 multi-predictors maintain their own weights (w) over theseE experts.Bi-
Mod and2lev experts are implemented using the machinery provided in SimpleScalar’s
bpred module.

4 Comparators, Results, & Discussion

SPEC [spe] Instructional Benchmarks (anagram , compress , gcc , andgo) are used
to compare multi-predictors of ranging numbers of experts,E = 4, . . . , 24, each requir-
ing bits as few as 75 and as many as 419,430,375.4 The success of each multi-predictor
was measured by pitting it against comparator predictors of similar size. Only predictors
implemented natively in SimpleScalar are used as comparators. The main challenge in de-
veloping competitive (two-level) predictors as comparators is deciding how to allocate bits
to tables at each level. After all, our goal is twofold: a fair comparison, and demonstration
of the power of the multi-predictor. A multi-predictor which uses a total ofB bits is pitted
against three comparator predictors, each allowed to use at leastB bits. These comparators
are more arbitrary than optimal.

2This happens when the table size is larger than what can be indexed by a full branch address.
3We assume thatE ≥ 2. Things are not very interesting otherwise.
4This is not counting the hardware required to implement the table of1024× E expert weights.



• BiMod : One table of 2-bit saturating counters indexed by (binary) branch address.
size(BiMod(B)) = 2 · 2dlg Be−1 = 2dlg Be ≥ B.

• 2lev : B bits are naively partitioned into two groups, one for each table: roughly
1/4 (i.e. 2dB/4e−3) for the BAT’s (default) 8-bit shift registers indexed by branch
address, and 3/4 (i.e.2d3B/4e−1) for the PHT 2-bit predictors, jointly indexed
by the the selected BAT shift register and branch address. size(2lev(B)) =
8 · 2dlg B/4e−3 + 2 · 2d3B/4e−1 = 2dlg B/4e + 2dlg 3B/4e ≥ B.

• Comb: An FSA-based meta-predictor comprised of aBiMod predictor and a
2lev predictor, with selection based on a 2-bit saturating counter. Ameta-table
(MT) of 1024 entries is used, and does not factor into the total size of the com-
parator.B bits are divided up roughly equally between the baseline predictors B1
(Bimod ) and B2 (2lev ). B1 and B2 are constructed as above (forB/2 bits).

size(Comb(B)) = size(BiMod(B/2)) + size(2lev(B/2))

= 2 · 2dlg B/2e−1 + 8 · 2dlg B/8e−3 + 2 · 2d3B/8e−1

= 2dlg B/2e + 2dlg B/8e + 2d3B/8e ≥ B

In code, the above three comparators are constructed as follows:

cmp[0] = BiMod(2dlg Be − 1)
cmp[1] = TwoLev(BAT.dim =2dlg B/4e−3 × 8, PHT.dim =2dlg 3B/4e−1)
cmp[2] = Meta(MT.dim = 1024, BP.1 = BiMod(2dlg B/2e − 1),

BP.2 = TwoLev(BAT.dim =2dlg B/8e−3 × 8, PHT.dim =2dlg 3B/8e−1)).

Figure 1 shows how our Expert Framework-based multi-predictors, of varying size, mea-
sure up against the comparators outlined in the previous section. These plots show a number
of interesting things. For all four benchmarks the multi-predictor out-performs its com-
parators when they are constricted to use only a small number of bits. Similar results are
realized when the multi-predictor is allowed to use a modestly large to extremely large
number of bits.

With the exception of theanagram benchmark (ana )– for which all but theBiMod
comparator seems to saturate when given large number of bits– only the multi-predictor
improves persistently as more bits are added. Predictors likeBiMod and2lev cannot
take advantage of large BATs and PHTs.Combbetter exploits a large allotment of bits.
However, even as its allotment gets large,Comb’s baseline predictors can themselves can
become saturated. Our expert-based multi-predictor completely frees itself from this lim-
itation by incrementally adding predictors and reorganizing parameters when given more
bits.

For predictors of small to medium numbers of bits (512-2048), the difference in prediction
accuracy between the multi-predictor and its comparators is small. Sometimes theBiMod
andCombcomparators even beat the multi-predictor. This may be an artifact of how the
experts are constructed for smallE (e.g. E = 5, · · · , 12). Deeper investigation showed
that theBiMod baseline predictor is chosen by the multi-predictor 80% of the time in such
cases. Perhaps allocating more bits toBiMod when bits are in limited supply might help.

WhenE is large (� 10), the multi-predictor’s leverage is maximized. Our results show that
E = 24 can provide up to a 70% decrease in miss-predictions over thebestcomparators.
For thecomp benchmark, Figure 1 indicates that largerE may lead to an even further
increase in accuracy. Likewise thegcc andgo benchmarks have a 50% and 62% decrease
in miss rate, respectively, forE = 24. Thus the multi-predictor is a clever mechanism for
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Figure 1: Multi-predictor results on the four instructional benchmarks from Spec, together with re-
sults for comparators outlined in Section 4. The x-axes range logarithmically over the total size (bits
B) used by the predictors; the y-axes denotes the fraction of correctly predicted branches.

exploiting a surplus of prediction bits.5 Results for smallerE are impressive as well, as can
be also be seen from the figure.

5 Conclusions & Future Work

This paper outlines an automated framework for choosing dynamic branch predictors for
any workload. The idea is not to choose a single predictor, but to choose a spectrum of
baseline predictors, and let the Expert Framework from Machine Learning– and the wealth
of theoretical results behind it– take it from there. We have provided the initial work in
developing an analyzing such a framework, and have highlighted many of its benefits.

In many ways this work is still very preliminary. Evidence from many sources suggests that
combing expert’s branch predictions [aDSH02, Gra03] is far more effective than predicting
with the max. Also, the spectra of appropriate baseline predictors needs more careful
study. Comparators such as off-line optimal partitions of branches into segments should
also be included. These partitions can usually be computed using dynamic programming
[Gra03]. Finally, experiments should be done with different (e.g. smaller) numbers of
multi-predictors (≤ 1024).

5Analyzing branch predictors in the limit, as the total size of the predictor(s) becomes large, is
quite common in the literature. Our results show that the multi-predictor clearly holds its own in this
comparison.
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