
Supervised k-Means Clustering

Thomas Finley
Department of Computer Science

Cornell University
Ithaca, NY, USA

tomf@cs.cornell.edu

Thorsten Joachims
Department of Computer Science

Cornell University
Ithaca, NY, USA

tj@cs.cornell.edu

ABSTRACT
The k-means clustering algorithm is one of the most widely
used, effective, and best understood clustering methods. How-
ever, successful use of k-means requires a carefully chosen
distance measure that reflects the properties of the cluster-
ing task. Since designing this distance measure by hand is
often difficult, we provide methods for training k-means us-
ing supervised data. Given training data in the form of sets
of items with their desired partitioning, we provide a struc-
tural SVM method that learns a distance measure so that
k-means produces the desired clusterings. We propose two
variants of the methods – one based on a spectral relaxation
and one based on the traditional k-means algorithm – that
are both computationally efficient. For each variant, we pro-
vide a theoretical characterization of its accuracy in solving
the training problem. We also provide an empirical cluster-
ing quality and runtime analysis of these learning methods
on varied high-dimensional datasets.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—induction, pa-
rameter learning ; I.5.3 [Pattern Recognition]: Cluster-
ing—algorithms, similarity measures

Keywords
Support Vector Machines (SVM), Training Algorithms, Clus-
tering

1. INTRODUCTION
Clustering is an important data mining task employed in
dataset exploration and in other settings where one wishes
to partition sets into related groups. Among the algorithms
typically used for clustering, k-means is arguably one of the
most widely used and effective clustering methods. Suc-
cessful use of k-means, however, requires a carefully chosen
similarity measure that must be constructed to fit the task
at hand. For examples, in Noun-Phrase Co-Reference Reso-
lution (see e.g., [16]), one must select a similarity measure so

Under Submission ’08 Please Do Not Distribute

that for a given set of noun phrases occuring in a document,
those that refer to the same entity in the world are indeed
clustered into the same cluster. Unfortunately, hand-tuning
the similarity measure is difficult, since it is unclear how
changes in the similarity measure relate to the behavior of
the k-means algorithm.

In this paper we propose a supervised learning approach
to finding a similarity measure so that k-means provides
the desired clusterings for the task at hand. Given train-
ing examples of item sets with their correct clusterings, the
goal is to learn a similarity measure so that future sets of
items are clustered in a similar fashion. In particular, we
provide a structural support vector machine (SSVM) algo-
rithm for this supervised k-means learning problem, capa-
ble of directly optimizing a parameterized similarity mea-
sure to maximize cluster accuracy. We show theoretically
and empirically that the algorithm is efficient, and that
it provides improved clustering accuracy compared to non-
learning methods, as well as compared to more naive ap-
proaches to this supervised clustering problem.

2. RELATED WORK
Supervised clustering is the task of automatically adapting
a clustering algorithm with the aid of a training set con-
sisting of item sets and complete partitionings of these item
sets. Past applications of supervised clustering include im-
age segmentation [1], news article clustering, noun-phrase
co-reference [10], and streaming email batch clustering [11].
These examples are similar to this work insofar as they learn
a parameterized item-pair similarity from complete parti-
tions of item sets. However, there are important differences.
Methods of [10, 11] provide a structural SVM based super-
vised clustering, but the underlying method is correlation
clustering [2] rather than k-means. The [1] method learns
similarity measures for spectral clustering; differences in for-
mulations aside, this method requires a special optimization
procedure and is tightly coupled to a relaxed version of spec-
tral clustering, rather than being able to optimize to both
relaxed and discrete k-means clusterers.

A related field is semi-supervised clustering, where it is com-
mon to also learn a parameterized similarity measure [3, 4,
6, 15]. However, this learning problem is markedly different
from supervised clustering. In semi-supervised clustering,
the user has a single large dataset to cluster, with incom-
plete information about clustering, usually in the form of
pairwise constraints about cluster membership. This differ-

ence leads to very different algorithms in the two settings.

3. PARAMETERIZED K-MEANS
In this section we shall introduce the k-means clustering al-
gorithm, and then describe increasingly complex parameter-
izations of k-means that allows us to adjust the clusterings
k-means produces through supervised learning.

The k-means clustering algorithm is classically described as
taking an input set x of m items, x1, x2, . . . , xm, where each
item xi has some corresponding vector ψi ∈ RN .1 A clus-
tering algorithm computes some clustering y of x with k
clusters so as to minimize intracluster Euclidean distance
over these ψi, i.e.,

argmin
y

X
c∈y

X
xi∈c

‚‚‚‚ψi −
P

xj∈c ψj

|c|

‚‚‚‚
2

2

. (1)

Algebraic manipulation reveals this minimization is equiva-
lent to finding y to maximize

argmax
y

X
c∈y

1

|c|
X
i,j∈c
〈ψi, ψj〉 (2)

in a form often called kernel k-means [8].

How can we parameterize this (2) objective function to pro-
vide a family of similarity measures for learning? A sim-
ple but powerful parameterization is to provide some linear
weighting w ∈ RN to distort the ψi dimensions:

argmax
y

X
c∈y

1

|c|
X
i,j∈c

ψTi diag(w)ψj . (3)

We can alternately phrase (3) as

argmax
y

X
c∈y

1

|c|
X
i,j∈c
〈w, ψi ◦ ψj〉 . (4)

Here, ◦ is the componentwise vector product. By changing
weights in w, we affect what clustering y of x is optimal
under this parameterized k-means objective (4).

3.1 Kernel Learning Parameterizations
Though formulation of (4) is simple, it is a somewhat limited
parameterization insofar as it requires that points explicitly
exist in a vector space. To begin to generalize this, suppose
instead of ψi ◦ψj , that any pair xi, xj in x has a correspond-
ing pairwise vector ψij ∈ RN .

argmax
y

X
c∈y

1

|c|
X
i,j∈c
〈w, ψij〉 . (5)

If we then define a matrix K ∈ Rm×m with entries

Kij = 〈w, ψij〉 (6)

we can view (5) as

argmax
y

X
c∈y

1

|c|
X
i,j∈c

Kij . (7)

1To avoid confusion, note that by k-means we refer to the
general problem of trying to minimize (1), and emphati-
cally not to any one particular instantiation of search pro-
cedure that attempts to solve this problem, e.g., batch k-
means, point-iterative k-means, or the spectral clustering
algorithms.

In this work, we assume for any K that the associated x and
w are obvious in context.

Work in kernel k-means clustering often specifies that K is
symmetric positive semi-definite, i.e., K º 0 [8]. Why? The
items in the set x have representations in some (implicit)
vector space if and only if K º 0 [15]. This is relevant to
our setting, since the proof of convergence for batch k-means
clustering depends on the existence of this space, and may
not converge without it [15].

How can we ensure K º 0? Consider an alternate definition
of K. For a given x, let K(`) ∈ Rm×m be the matrix of the

`th pairwise feature in pairwise ψij , i.e., K
(`)
ij = 〈e`, ψij〉. We

may then define K as K =
PN
`=1 w`K

(`). Restricting w ≥ 0

and all K(`) º 0 will imply K º 0, since non-negative lin-
ear combinations of symmetric positive semi-definite (SPSD)
matrices are likewise SPSD. This style of parameterization
has strong connections to the field of kernel learning [15].

Enforcing w ≥ 0 is the responsibility of the training pro-
cedure, but the constraint on the features in the pairwise
ψij is the responsibility of the practitioner providing these
vectors. Fortunately, this is usually not difficult to satisfy.
For example, the very common case with pairwise vectors
ψij = ψi ◦ ψj seen in (5) satisfies the constraint. More gen-
erally, any features in ψij whose values comes from kernel
function evaluation over items xi, xj ∈ x satisfy the con-
straint.

3.2 Similarity Learning Parameterizations
The restrictions to enforce K º 0 pose practical disadvan-
tages. First, for the user providing ψij pairwise feature vec-
tors, ensuring that every single feature is a kernel may be
difficult in some settings. Second, enforcing positivity con-
straints on w is bothersome insofar as it may complicate the
parameter learning procedure, and it is even unhelpful: it
is plausible that some pairwise features are negatively corre-
lated with common cluster membership. To take a canonical
example, if one is clustering web pages, certain link relation-
ships among pages are often strong indicators that pages are
of different types [14]. With some effort, tricks may be em-
ployed to overcome some of these difficulties (for example,
doubling features with positive and negative versions of the
features to allow negative correlations, and diagonal offsets
large enough to ensure K º 0), but this is troublesome and
often confusing.

To avoid these problems, the alternative to Section 3.1’s re-
strictions is to simply lift them, i.e., accept any ψij pairwise
vectors and parameterization w. The cost of this greater
simplicity and flexibility is that the resulting K is often no
longer SPSD.2 This is not a major problem, but it does re-
strict us to clustering algorithms robust to K 6º 0.

3.3 Nonlinear Parameterizations
The preceding discussion has considered w to be a real vec-
tor w ∈ RN , but it may also be considered a non-linear pa-
rameterization vector. We may view w as a linear combina-

2Though “kernel k-means” becomes a bit of a misnomer in
this case, we retain its use, as the name for the representa-
tion is an established term.

tion of pairwise vectors seen in training, i.e., w =
P
î,ĵ αîĵψîĵ .

In this case, our parameterized pairwise similarity score be-
comes

Kij = 〈w, ψij〉 =
X

î,ĵ

αî,ĵ
˙
ψîĵ , ψij

¸
(8)

and we may replace the inner product
˙
ψîĵ , ψij

¸
with some

kernel function κ(ψîĵ , ψij). This allows parameterizations to
capture complex non-linear interrelationships among pair-
wise features.

4. SUPERVISED K-MEANS WITH SSVMS
With k-means parameterization defined as above, how do
we actually learn a parameterization? We provide a super-
vised approach based on structural support vector machines,
taking as input a training set

S = {(x1,y1), (x2,y2), . . . , (xn,yn)}.
Each xi ∈ X is a set of items and yi ∈ Y a complete
partitioning of that set. For example, S could have xi as
noun-phrases in a document and yi as the partitioning into
co-referent sets, or xi as images with yi as similar segments
within the image, etc. The output of the learning algorithm
is a w-parameterized hypothesis h : X → Y, where the clus-
tering algorithm in h uses the w parameterized similarity
measure when clustering inputs x. Intuitively, the goal is to
learn some w so that each h(xi) is close to yi on the train-
ing set, and so that h predicts the desired clustering also for
unseen sets of items x.

4.1 Structural SVMs
Structural SVMs are a general method for learning hypothe-
ses with complex structured output spaces [20]. From a
training set S = ((x1,y1), . . . , (xn,yn)), a structural SVM
learns a hypothesis h : X → Y mapping inputs x ∈ X to
outputs y ∈ Y, trading off model complexity and empirical
risk. A hypothesis takes the form

h(x) = argmax
y∈Y

f(x,y), (9)

maximizing a discriminant function f : X × Y → R with

f(x,y) = 〈w,Ψ(x,y)〉 . (10)

The Ψ combined feature vector function relates inputs and
outputs, and w is the model parameterization learned from
S. The quality of hypotheses is evaluated using a loss func-
tion ∆ : Y × Y → R describing the extent to which two
outputs differ. The Ψ and ∆ functions are task dependent.

Structural SVMs find a w that balances model complexity
and empirical risk R∆

S (h) = 1
n

Pn
i=1 ∆(yi, h(xi)) by solving

this quadratic program (QP) [20]:

Optimization Problem 1. (Structural SVM)

min
w,ξ≥0

1

2
‖w‖2 +

C

n

nX
i=1

ξi (11)

∀i, ∀y∈Y\yi: 〈w,Ψ(xi,yi)〉 ≥ 〈w,Ψ(xi,y)〉+∆(yi,y)−ξi. (12)

Introducing constraints for all possible outputs is typically
intractable. However, it has been shown that the cutting

Algorithm 1 Cutting plane algorithm to solve OP 1.

1: Input: (x1,y1), . . . , (xn,yn), C, ε
2: Si ← ∅ for all i = 1, . . . , n
3: repeat
4: for i = 1, . . . , n do
5: H(y) ≡ ∆(yi,y) + 〈w,Ψ(xi,y)〉 − 〈w,Ψ(xi,yi)〉
6: compute ŷ = argmaxy∈Y H(y)
7: compute ξi = max{0,maxy∈Si H(y)}
8: if H(ŷ) > ξi + ε then
9: Si ← Si ∪ {ŷ}

10: w← optimize primal over
S
i Si

11: end if
12: end for
13: until no Si has changed during iteration

plane technique in Algorithm 1 can be used to efficiently to
solve OP 1 to arbitrary precision ε. This algorithm itera-
tively finds the most violated constraint with a separation
oracle (line 6), adds it to a working set

S
i Si if violated by

more than desired precision ε (line 9), and resolves the QP
to find a new parameterization w (line 10). Algorithm 1 ter-
minates when no new constraint is found, that is, when all
constraints in OP 1 are satisfied within ε. We will discuss the
computational complexity and accuracy of this algorithm for
supervised k-means learning in Section 5.

To use structural SVMs to learn parameterizations for k-
means clustering, we must (1) state our clustering procedure
h(x) in terms of h(x) = argmaxy 〈w,Ψ(x,y)〉, (2) provide a
loss function ∆(y, ŷ), and (3) provide the separation oracle
argmaxy∈Y 〈w,Ψ(xi,y)〉+∆(yi,y). These are explained in
the following three sections.

4.2 Combined Feature Function Ψ
We must express h(x) as h(x) = argmaxy 〈w,Ψ(x,y)〉. Work-
ing from (7) and (6),

h(x) = argmax
y∈Y

X
c∈y

1

|c|
X
i,j∈c

Kij

≡ argmax
y∈Y

X
c∈y

1

|c|
X
i,j∈c
〈w, ψij〉

≡ argmax
y∈Y

*
w,
X
c∈y

1

|c|
X
i,j∈c

ψij

+
.

So, Ψ(x,y) is

Ψ(x,y) =
X
c∈y

1

|c|
X
i,j∈c

ψij (13)

for the most general parameterization of k-means.

In this work, we also want to represent and learn from “re-
laxed” clusterings, such as those that appear in methods
like spectral clustering. More specifically, we shall provide
a matrix representation of clusterings. Consider this alter-
nate representation of clusterings y: for each partitioning y
of m items into k clusters, let Y ∈ Rm×k be an equivalent
alternate matrix representation of the clustering. Each col-
umn in Y corresponds to some cluster c ∈ y, where each
element i in the column is |c|−0.5 if i ∈ c, and is 0 otherwise.
For example, the following two clustering representations are

equivalent:

y = {{1, 3}, {2, 4, 5}} Y =

2
666664

1√
2

0

0 1√
3

1√
2

0

0 1√
3

0 1√
3

3
777775
.

More formally, any matrix Y corresponding to a discrete
clustering y will obey two basic constraints. First is col-
umn orthonormality: for any columns Y:,i or Y:,i from Y,
‖Y:,i‖2 = 1, YT

:,iY:,j = 0, i.e., YTY = I. Second is the
requirement that a columns nonzero entries are equal: for
any pair of column Y:,i’s entries Yj,i 6= 0 and Y`,i 6= 0,
Yj,i = Y`,i. Third is that there are no negative entries: any
entry Yj,i ≥ 0.

With this new representation Y, we may rephrase (7) as:

argmax
Y

trace(YTKY). (14)

We can phrase the objective in terms of (10) to get Ψ(x,Y):

h(x) = argmax
Y

trace(YTKY)

≡ argmax
Y

*
w,

mX
i=1

mX
j=1

“
YT
i,:Yj,:

”
ψij

+
.

So, Ψ(x,Y) is

Ψ(x,Y) =

mX
i=1

i−1X
j=1

“
YT
i,:Yj,:

”
ψij . (15)

Note that (15) generalizes (13) insofar as the two are equal
for any Y corresponding to y, and (15) is defined for any
spectral output Y.

As an aside, that Ψ(x,Y) is quadratic in the entries of Y
brings up a subtle but important distinction about the gen-
erality of structural SVMs versus alternative formulations of
OP 1, like max-margin Markov nets (M3N) [19] and associa-
tive Markov nets and their variants [18]. These alternatives
require that “inference” (in this case, k-means clustering)
be phrased as either a Markov random field or linear pro-
gram, respectively. One could begin to express the quadratic
nature of Y as pairwise cliques in an MRF for M3N, or lin-
earize clustering by optimizing Z = YYT for associative
networks. However, these methods would be incapable of
feasibly capturing that Y must have orthonormal columns,
or the rank(Z) = k constraint on Z. In contrast, the re-
striction of the structure and number of columns of Y, the
nonlinearity of Y in Ψ, and the nonlinearity of the clus-
tering procedure are all incidental and naturally expressed
in structural SVMs since the structure of Ψ(x,y) is unre-
stricted.

4.3 Loss Function ∆

The ∆ loss function for the dissimilarity between two clus-
terings we use in this work is

∆(Y, Ŷ) = 100 ·
„

1− 1

k
trace(YT ŶŶTY)

«
(16)

= 100 ·
„

1− 1

k
‖YT Ŷ‖2F

«
. (17)

For Y corresponding to a discrete partitioning y, (16) equals

∆(y, ŷ) = 100 ·
0
@1− 1

k

X
c∈y

X

ĉ∈y

|c∩ĉ|2
|c|·|ĉ|

1
A . (18)

This loss ∆ has attractive qualities. It is symmetric and
invariant to column rearrangements. Also, as seen in (18), ∆
essentially counts agreement among pairs of items in clusters
which is normalized by the size of the clusters in question.
This is favorable relative to alternate loss functions based on
the Rand index [17] used in previous supervised clustering
work [10]: where this normalization is absent, loss becomes
heavily biased against mistakes in larger clusters. Finally,
though any judgment about the appropriateness of a loss
function must necessarily be subjective, this ∆ appears to
give qualitatively sensible judgments about the similarity of
two clusterings.

4.4 Separation Oracle and Prediction
For the separation oracle argmaxy∈Y 〈w,Ψ(xi,y)〉+∆(yi,y),
the form of ∆ is well suited to constructing the separation
oracle: one can employ a clustering algorithm as the sepa-
ration oracle and cluster over the matrix (K − 1

k
YYT) in

place of K in the (7) objective.

However, finding the actual clustering y that globally max-
imizes (7) either for prediction or computing the most vio-
lated constraint is an NP-hard problem. This has led to the
adoption of many varied approximate algorithms to maxi-
mize this objective function. The survey in [8] characterizes
many of the popular clustering algorithms that approximate
the maximization of the discriminant function (7). We use
three methods from that paper that are all robust to K 6º 0.
We denote these differing methods as Iterative, Spectral,
and Discrete. In prediction, one could use other clustering
methods if one conformed to SPSD restrictions on K as de-
fined in Section 3.1, including batch k-means, normalized
cut algorithms, etc. In the separation oracle, however, we
must use these robust methods: even with K º 0, it is quite
possible that (K − 1

k
YYT) 6º 0.

4.4.1 Iterative Point-Incremental Clustering
Iterative is point-incremental k-means [7]. We use point-
incremental (i.e., recomputing cluster centers with each point
reassignment) and not standard batch (i.e., recomputing
cluster centers after a pass over all points) k-means since
K easily becomes non-SPSD without positivity constraints
on w’s elements, breaking batch k-means’ convergence guar-
antees.

The algorithm works by randomly assigning all m items to
k clusters, and then iterating over all points, reassigning
them to the cluster with the “closest” cluster center. Unlike
typical batch k-means clustering which waits until a pass
is completed before updating cluster centers, point-iterative

k-means updates the centers upon each point reassignment.
Compared to batch k-means, point-iterative k-means does
not depend upon K º 0 and tends to produce clusterings
with lower intracluster distance [7].

4.4.2 Spectral Clustering
Spectral is a straightforward eigenanalysis of K to pro-
duce a “relaxed” clustering in the matrix representation Y
described in Section 4.2. If we relax of Section 4.2’s con-
straints on Y except for having orthonormal columns, then
this optimization problem

argmax
Y

trace(YTKY)

over this multi-vector Rayleigh quotient may be maximized
by assigning Y’s columns as the eigenvectors corresponding
to the k-largest eigenvalues of K. This eigenvector matrix
is a relaxed “clustering” in that we have relaxed the require-
ments for the special structure of Y listed in Section 4.2 that
ensured it corresponded to some discrete clustering y.

4.4.3 Discretized Spectral Clustering
Discrete is a discretized spectral method via Bach and Jor-
dan post-processing [1], and is a combination of the previous
methods: once we have our eigenvector matrix Ȳ, we clus-
ter K̄ = ȲȲT with point-incremental k-means to find a
discrete y.

5. THEORETICAL ANALYSIS
Structural SVMs have three major important theoretical
characteristics, including polynomial time termination in the
number of iterations of Algorithm 1, correctness insofar as
Algorithm 1 solves OP 1, and that 1

n

Pn
i=1 ξi upper bounds

empirical risk [20]. We will now discuss how far they hold
for supervised k-means algorithms.

There is one subtle but important point that arises from
using approximations in the separation oracle: the known
performance guarantees for Algorithm 1 are known to apply
only to the case where the separation oracle argmaxy∈Y H(y)
is calculated exactly [20]. In Section 4.4 we constructed our
separation oracle from a clustering algorithm, but because
clustering algorithms are approximations, this may not find
the globally optimal y. What can we still guarantee about
our supervised k-means algorithms?

Consider the space of possible clusterings Y for training
example (xi,yi). During training, the ideal clusterer sep-
aration oracle would find the true maximizing clustering
y∗ = argmaxy∈Y 〈w,Ψ(xi,y)〉+∆(yi,y). (To reiterate, un-
der this ideal case, Algorithm 1 is guaranteed to solve OP 1.)
However, this ideal is unrealizable. So what happens when
we use one of our approximations?

Let us first consider polynomial time termination. The poly-
nomial time termination guarantee still holds, since the proof
does not depend on the quality of the solution, but rather on
the idea that any constraint violated by more than ε must
increase the objective by some minimum amount [20].

Correctness and empirical risk are less easy to deal with.
The separation oracles can be divided into two broad cate-
gories according to what they do solve, depending on whether

they use the discrete clusterers Iterative/Discrete, or relaxed
Spectral.

The methods Iterative and Discrete may return some sub-
optimal clustering, i.e., some clustering ŷ such that

〈w,Ψ(xi, ŷ)〉+ ∆(yi, ŷ) < 〈w,Ψ(xi,y
∗)〉+ ∆(yi,y

∗).

In such a suboptimal case, constraints violated by more than
ε in OP 1 may go undetected by Algorithm 1, leading to
termination with a solution infeasible in OP 1. In other
words, the problem becomes underconstrained.

The method Spectral is a very different animal. Rather than
searching Y for local maxima, it instead searches some re-
laxed Y space which it can efficiently search for a global
maximum. In this case, Y is the space of all indicator ma-
trices Y where the special structure of entries described
in Section 4.4.2 is abandoned, save for the requirement of
orthonormal columns. More to the point, Y ⊂ Y, and
because the separation oracle searches over Y, at the end
of Algorithm 1 we not only shall have all constraints in
OP 1 respected, but additional constraints from outputs
Y ∈ (Y − Y). The solution is feasible but probably sub-
optimal in OP 1. The problem becomes overconstrained.

Either underconstrained or overconstrained learning has its
unique costs. With underconstrained learning, since con-
straints in OP 1 may be violated, slack no longer bounds
empirical risk, thus eroding one of the basic principles of
SVM learning. On the other hand, with overconstrained
learning, Algorithm 1 solves a problem which accounts for
outputs that would never arise from a discrete clustering al-
gorithm, thus unnecessarily ruling out parameterizations w
which may yield superior performance. It is unclear theoret-
ically whether either way is better, so our experiments shall
provide an empirical evaluation of both underconstrained
and overconstrained learning.

6. EMPIRICAL ANALYSIS
We implemented supervised k-means clustering with the
SVMpython structural SVM package [9]. The module’s code,
instructions and examples of use, as well as the datasets that
we used in our experiments, are accessible from:
http://www.cs.cornell.edu/~tomf/projects/supervisedkmeans/.

To empirically analyze our methods, we compare it to naively
trained and untrained clusterers, and also provide compar-
isons of our methods using underconstrained and overcon-
strained learning on real and synthetic datasets. Parame-
terizations w and pairwise vectors ψij are unconstrained as
outlined in Section 3.2, i.e., not requiring K º 0.

In all experiments, pairwise feature vectors ψij are composed
from “node” features vectors ψ̄i, ψ̄j ∈ RNn and an explicitly
provided pairwise feature vector ψ̄ij ∈ RNp such that

ψij =

»
ψ̄i ◦ ψ̄j
ψ̄ij

–
.

Pairwise feature vectors ψij are in RN where N = Nn +
Np, and correspondingly we have w ∈ RN . Some datasets
evaluated have no node or explicit pairwise features, i.e.,
sometimes Nn = 0 or Np = 0.

Table 1: Dataset statistics, including number of ex-
ample clusterings n, number of clusters k in each
example clustering, average number of points m in
the clusterings, node features Nn, and pairwise fea-
tures Np. (The SSVM learns N = Nn+Np weights in
w.)

Dataset n k Avg. m Nn Np

WebKB-L 4 6 1041 50397 100796
WebKB-N 4 6 1041 41131 0
News 8-1 7 10 150 0 30
News 8-2 7 10 150 0 30
News 8-4 7 10 150 0 30

Synth 5 5 100 0 750

6.1 Datasets
We used three general “families” of datasets in our empirical
analysis, from which we drew one or more specific evaluation
datasets. The datasets are listed in Table 1.

6.1.1 WebKB Dataset
WebKB consists of web pages retrieved from the computer
science departments of four universities, labeled as being
a course web page, faculty page, student page, etc [5]. It
is often used in classification and multiclass classification
tasks that seek to exploit the link structure among the web
documents. In our experiment, we effectively turned this
into two closely related datasets.

One of these datasets contains only node features (WebKB-
N) as TFIDF-scaled unigram word count vectors. There are
no pairwise features.

The other dataset (WebKB-L) contains these word count
features and additional features relating to the relationships
among these documents, and also critically a pairwise fea-
ture vector with two regions, corresponding to documents
where one document links to another, and another where
both are linked from the same document (co-citation). If
documents are linked or co-cited, the respective region in
the pairwise feature vector will contain the componentwise
product of the node features, plus a single 1 indicator fea-
ture. If they are not linked or co-cited, the corresponding
region is zeroed.

6.1.2 News Dataset
News is a dataset related to the news article clustering
dataset of [10]. The sets of items and partitioning was col-
lected through trawling Google News for one day and ex-
tracting the text of news articles from the linked news sites.
Google News has seven major areas (Business, Entertain-
ment, Health, Nation, Sports, Technology, World). Each
area serves as a clustering, with each individual news story
comprising the individual clusters within the area, and the
individual articles within each story being the items within
the cluster. The data for all points is expressed as a pairwise
feature vector, where each feature is the cosine similarity of
TFIDF weighted token vectors, where these token vectors
are unigrams, bigrams, and trigrams of text in the title, ar-
ticle text, and quoted sections of the article text, in both
original and Porter stemmed versions of the features, for 30
features in all. We sampled from three days (August 1, 2,

Table 2: Range of C values tested during the LOO
search for training hyperparameters. All powers of
ten between and including these endpoints were con-
sidered.

Dataset Low C High C Dataset Low C High C

WebKB-L 1·10−1 1·104 News 1·100 1·105

WebKB-N 1·100 1·105 Synth 1·10−2 1·103

and 4 of 2004) to get three datasets (News 8-1, News 8-2,
and News 8-4).

6.1.3 Synth Dataset
Synth is a synthetic dataset meant to emphasize the im-
portance of some features being harmful and others helpful,
in the face of significant noise. It was generated in this way:
there are 5 clusters, each with 20 points. Between every
pair of the 100 points is a pairwise feature vector. This
pairwise feature vector is comprised of 15 “regions” (one for
each possible cluster pair), each region with 50 features (so
750 pairwise features total). For a pair of points in clusters
i and j, the feature “region” corresponding to i, j will have 5
of the 50 features active. Also, noise is introduced for each
pairwise feature vector3: instead of consistently indexing the
region (i, j), it will 20% of the time replace i with a random
cluster (so 16% of the time it will differ from i), and the
same for j. So, only about 70.5% of pairwise vectors have
the “correct” index. Only one dataset was generated.

6.2 Experimental Setup
To evaluate performance, we trained k-means parameteri-
zations on our dataset. For each dataset of n clustering
examples, we ran n experiments, where each clustering was
taken in turn as the single example “test set” with the n− 1
remaining clusterings as the training set. For each exper-
iment, LOO cross validation was used on the n − 1 size
training set to choose the two training hyperparameters: C
(values drawn from a sample of powers of 10 seen in Table 2),
and which classifier to use as the final predictor (Iterative,
Spectral, or Discrete).

The parameterizations were trained with Iterative and Spec-
tral separation oracle supervised k-means trainers. In ad-
dition to these supervised k-means clustering methods, we
have two baselines.

Pair is a model training method based on binary classifiers
by taking all pairwise feature vectors, considering whether
the associated pair is in the same cluster, and treating it as
a binary classification problem trained for accuracy. During
classification, entries in the similarity matrix K are outputs
of the learned binary classifier. This style of supervised clus-
tering using binary classifiers has been successfully used in
work on noun-phrase coreference resolution [16]. The result-
ing training method differs from supervised k-means cluster-
ing insofar as the clustering procedure and desired ∆ are not
considered in training, but it will still try to increase or de-
crease the similarity of pairs in or out of the same cluster, re-

3Without noise, learned clusterers produced perfect cluster-
ings. While useful as a sanity check, it makes for uninter-
esting comparisons.

spectively. Hyperparameters (C and clusterer in prediction)
were selected in an identical fashion to supervised k-means
clustering.

None is a second baseline, which consists of Iterative clas-
sification with all equal weights, that is, no training at all.

6.3 Clustering Accuracy
Table 3 details the loss figures resulting from training the
clusterer with the Iterative and Spectral separation oracle
(columns Iterative and Spect), training the clusterer with
the pairwise binary classifier (column Pair), and with no
training (column None). While loss ∆ values can reach 100,
a more reasonable upper bound is k−1

k
·100, the loss resulting

from putting all points together in 1 cluster.

6.3.1 Supervised Clustering vs. Pairwise/Untrained
How do efforts to do any supervised k-means clustering com-
pare against the more naive pairwise binary training? On
the WebKB-L, WebKB-N and News datasets, the perfor-
mance gains from structural SVM training in ∆ figures are
quite dramatic, and both Iterative and Spectral trained su-
pervised k-means clustering methods outperform these base-
lines on these datasets every time.

The relationship on Synth is somewhat different: while there
are differences, the pairwise trained model even “wins” once
(testing on cluster 3), and the extent to which each ei-
ther class of supervised k-means clustering models wins is
not conclusively better statistically speaking. Why does
this happen? One important power of supervised cluster-
ing methods is their ability to exploit cluster structure: two
items i, j ∈ x with low similarity Kij can still be in the
same cluster owing to the effect of other items in x. In
contrast, the baseline pairwise classifier treats all judgments
on pairwise φij independently. However, since all φij are
generated independently in the synthetic dataset and there
is no long range dependency structure to exploit, pairwise
classification for training w works fine.

The untrained model does quite poorly in Synth, but this is
expected since the dataset was generated specifically to con-
tain large numbers of pairwise features correlated negatively
with co-cluster membership.

6.3.2 Discrete Iterative vs. Relaxed Spectral
How does discrete Iterative compare against the relaxed
Spectral when used as a separation oracle during training?

We use non-parametric tests like Fisher sign or Wilcoxon
signed-rank tests. Whie the loss figures are not independent
since they result from shared training sets, we accept these
non-parametric tests as an imperfect measure that never-
theless gives some indication of difference.

Results of the comparison are seen in Table 4. These results
reflect the feeling one might get glancing at Table 3: there
is no clear winner in WebKB or News. The exception is the
Synth synthetic data set, where the Iterative trained model
appears to yield superior performance.

6.3.3 WebKB-N versus WebKB-L

Table 3: Loss ∆ on various datasets (lower is bet-
ter). The left columns identify the dataset and the
particular clustering used as the test dataset in the
corresponding row.

Dataset Test Clustering Iterative Spect Pair None
WebKB-L Cornell 45.3 53.3 79.7 74.7

Texas 59.8 56.7 78.9 72.8
Washington 53.1 46.6 60.6 76.2
Wisconsin 47.3 60.2 81.1 77.5

WebKB-N Cornell 63.0 61.4 74.8 78.6
Texas 69.9 56.8 75.5 78.7
Washington 68.8 58.2 74.9 78.3
Wisconsin 72.6 66.2 77.0 78.6

News 8-1 Business 23.7 20.6 45.2 49.5
Entertainment 12.7 22.2 53.0 25.9
Health 28.1 28.7 57.4 38.8
Nation 3.8 3.8 40.2 14.6
Sports 15.2 14.3 47.6 59.9
Technology 35.9 30.4 51.7 37.3
World 3.7 2.4 41.7 62.1

News 8-2 Business 3.6 4.6 34.1 63.8
Entertainment 22.7 9.5 40.1 22.8
Health 20.4 20.4 48.4 43.9
Nation 24.6 23.7 47.4 60.6
Sports 20.2 15.8 59.3 57.0
Technology 16.1 13.8 48.3 41.3
World 12.2 11.9 50.5 70.4

News 8-4 Business 19.7 14.9 42.7 33.5
Entertainment 4.6 6.3 46.8 32.4
Health 15.0 16.2 51.7 32.1
Nation 19.4 20.3 41.2 30.0
Sports 19.0 19.0 55.6 54.7
Technology 5.8 11.6 46.4 37.6
World 4.8 5.8 39.6 39.3

Synth 1 43.3 55.6 48.1 74.7
2 53.4 58.7 54.7 74.7
3 56.0 56.7 55.2 74.7
4 39.3 59.5 43.9 74.7
5 40.3 63.4 49.1 74.7

The WebKB-L dataset differs from WebKB-N in that it con-
tains pairwise features relevant to the hyperlink structure
in the corpus, whereas WebKB-N are straightforward docu-
ment vectors. Each of the 8 supervised k-means clustering
WebKB-L trained models outperform their corresponding
WebKB-N trained model. While 8 wins to 0 losses is statis-
tically significant under a sign test, these loss ∆ figures are
not independent; nevertheless, the magnitude of the differ-
ences, always over 10 in the case of Iterative trained models,
suggests a substantial gain. As the usefulness of exploiting
hyperlink structure in WebKB is a feature of most papers
featuring this dataset, it is important that our methods are
able to handle definitions of these general pairwise features.

6.4 Computation Time
Clustering performance aside, how does training time de-
pend on characteristics of the dataset? To answer this ques-
tion empirically, we took the basic Synth dataset described
in Section 6.1. The basic dataset has 5 clustering exam-
ples, 5 clusters, 750 features, and 100 points. To test the
algorithms in a controlled way, we varied each of these char-
acteristics (examples, clusters, features, points), and trained
over 20 training sets to test the time it took to train a model.
Results are reported for both Iterative and Spectral cluster-
ing. The regularization parameter C = 104 was constant in
all training methods.

Table 4: Counts of the times within Table 3 the
Iterative trained model won, tied, or lost versus the
Spectral trained model respectively.

Dataset Win Tie Lose W ns/r P1-tail
WebKB-L 2 0 2 4 4 >0.05
WebKB-N 0 0 4 4 4 >0.05

News 8 3 10 30 18 0.2611
Synth 5 0 0 15 5 0.05

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16 18 20

se
co

nd
s

clusterings

Iterative
Spectral

Figure 1: Training time versus number of example
clusterings in the training set.

As we increase the number of training example clusterings
in our training set, Figure 1 reveals a relationship linear
for Spectral and approximately linear for Iterative. That
training time is linear in the number of training examples is
expected [12, 13].

Figure 2 shows that increasing the number of clusters while
holding other statistics constant leads to a steady decrease
in training time for Spectral trained methods. This appears
to be a symptom of the difficulty of learning this dataset:
the number of points and dimensions is constant, but spread
over an increasing number of clusters in each example. Con-
sequently the best hypothesis that can be reasonably ex-
tracted from the provided data becomes weaker, and fewer
iterations are required to converge. The Iterative method,
on the other hand, often takes longer. Logs reveal this is due
to one or two iterations where Iterative as separation oracle
took a very long time to converge, explaining the unstable
nature of the curve.

Figure 3 shows a linear relationship of number of features
versus training time. This linear time relationship is unsur-
prising given that computing similarities and Ψ is linear in
the number of features.

Figure 4 shows Spectral time complexity as a straightfor-
ward polynomially increasing curve (due to the LAPACK
DSYEVR eigenpair procedure working on steadily larger ma-
trices). The Iterative trained classifier also tends to increase
with number of points, with a hump on lower numbers of
points arising from Iterative clustering often requiring more
time for the clusterer to converge on smaller datasets, a ten-

 0

 50

 100

 150

 200

 250

 300

 2 4 6 8 10 12 14 16 18 20

se
co

nd
s

clusters

Iterative
Spectral

Figure 2: Training time versus number of clusters
in each example.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10000 20000 30000 40000

se
co

nd
s

dimensions

Iterative
Spectral

Figure 3: Training time versus number of features.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 20 40 60 80 100 120 140 160 180 200

se
co

nd
s

points

Iterative
Spectral

Figure 4: Training time versus number of points.

dency reversed as more points presumably smooth the search
space.

One theme seen throughout these experiments is that the
timing behavior of relaxed spectral training is very pre-
dictable relative to the discrete k-means training. Consider-
ing the somewhat unpredictable nature of local search versus
largely deterministic matrix computations, it is unsurpris-
ing to see the latters relative stability carry over into model
training time.

7. CONCLUSIONS
We provided a means to parameterize the popular canonical
k-means clustering algorithm based on learning a similarity
measure between item pairs, and then provided a supervised
k-means clustering method to learn these parameterizations
using a structural SVM. The supervised k-means clustering
method learns this similarity measure based on a training
set of item sets and complete partitionings over those sets,
choosing parameterizations optimized for good performance
over the training set.

We then theoretically characterized the learning algorithm,
drawing a distinction between the iterative local search k-
means clustering method and the relaxed spectral relax-
ation, as leading to underconstrained and overconstrained
supervised k-means clustering learners, respectively. Empir-
ically, the supervised k-means clustering algorithms exhib-
ited superior performance compared to naive pairwise learn-
ing or unsupervised k-means. The underconstrained and
overconstrained supervised k-means clustering learners com-
pared to each other exhibited different performance, though
neither was clearly consistently superior to the other. We
also characterized the runtime behavior of both the super-
vised k-means clustering learners through an empirical anal-
ysis on datasets with varying numbers of examples, clusters,
features, and items to cluster. We find training time which
is linear or better in the number of example clusterings, clus-
ters per example, and number of features.

8. ACKNOWLEDGMENTS
This work was supported under NSF Award IIS-0713483
“Learning Structure to Structure Mapping,” and through a
gift from Yahoo! Inc.

9. REFERENCES
[1] F. R. Bach and M. I. Jordan. Learning spectral

clustering. In S. Thrun, L. K. Saul, and B. Schölkopf,
editors, NIPS. MIT Press, 2003.

[2] N. Bansal, A. Blum, and S. Chawla. Correlation
clustering. Machine Learning, 56(1-3):89–113, 2002.

[3] S. Basu, M. Bilenko, and R. J. Mooney. A
probabilistic framework for semi-supervised clustering.
In ACM SIGKDD-2004, pages 59–68, August 2004.

[4] M. Bilenko, S. Basu, and R. J. Mooney. Integrating
constraints and metric learning in semi-supervised
clustering. In ICML, New York, NY, USA, 2004. ACM
Press.

[5] M. Craven, D. DiPasquo, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam, and S. Slattery. Learning to
extract symbolic knowledge from the world wide web.
In AAAI ’98/IAAI ’98: Proceedings of the fifteenth

national/tenth conference on Artificial
intelligence/Innovative applications of artificial
intelligence, pages 509–516, Menlo Park, CA, USA,
1998. American Association for Artificial Intelligence.

[6] T. De Bie, M. Momma, and N. Cristianini. Efficiently
learning the metric using side-information. In
ALT2003, volume 2842, pages 175–189. Springer, 2003.

[7] I. S. Dhillon, Y. Guan, and J. Kogan. Iterative
clustering of high dimensional text data augmented by
local search. In ICDM ’02: Proceedings of the 2002
IEEE International Conference on Data Mining
(ICDM’02), page 131, Washington, DC, USA, 2002.
IEEE Computer Society.

[8] I. S. Dhillon, Y. Guan, and B. Kulis. A unified view of
kernel k-means, spectral clustering and graph cuts.
Technical Report TR-04-25, University of Texas Dept.
of Computer Science, 2005.

[9] T. Finley. SVMpython, 2007. Software at
http://www.cs.cornell.edu/~tomf/svmpython2/.

[10] T. Finley and T. Joachims. Supervised clustering with
support vector machines. In ICML, 2005.

[11] P. Haider, U. Brefeld, and T. Scheffer. Supervised
clustering of streaming data for email batch detection.
In ICML, pages 345–352, New York, NY, USA, 2007.
ACM.

[12] T. Joachims. Training linear svms in linear time. In
KDD, pages 217–226, New York, NY, USA, 2006.
ACM.

[13] T. Joachims, T. Finley, and C.-N. J. Yu.
Cutting-plane training of structural SVMs. In Under
Submission, 2007. Temporarily at
www.cs.cornell.edu/~tomf/publications/linearstruct07.pdf.

[14] J. M. Kleinberg. Hubs, authorities, and communities.
ACM Comput. Surv., page 5.

[15] G. R. G. Lanckriet, N. Christianini, P. L. Bartlett,
L. E. Ghaoui, and M. I. Jordan. Learning the kernel
matrix with semi-definite programming. In ICML ’02:
Proceedings of the Nineteenth International Conference
on Machine Learning, pages 323–330, San Francisco,
CA, USA, 2002. Morgan Kaufmann Publishers Inc.

[16] V. Ng and C. Cardie. Improving machine learning
approaches to coreference resolution. In ACL-02,
pages 104–111, 2002.

[17] W. M. Rand. Objective criteria for the evaluation of
clustering methods. Journal of the American
Statistical Association, 66(366):846–850, 1971.

[18] B. Taskar, V. Chatalbashev, and D. Koller. Learning
associative Markov networks. In ICML, page 102, New
York, NY, USA, 2004. ACM.

[19] B. Taskar, C. Guestrin, and D. Koller. Max-margin
Markov networks. In NIPS 16. 2003.

[20] I. Tsochantaridis, T. Hofmann, T. Joachims, and
Y. Altun. Support vector machine learning for
interdependent and structured output spaces. In
ICML, 2004.

