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Abstract
We present an unsupervised approach for learning a layered representation of a scene
from a video for motion segmentation. Our method is applicable to any video contain-
ing piecewise parametric motion. The learnt model is a composition of layers, which
consist of one or more segments. The shape of each segment is represented using a
binary matte and its appearance is given by the RGB value for each point belonging to
the matte. Included in the model are the effects of image projection, lighting, and mo-
tion blur. Furthermore, spatial continuity is explicitly modelled resulting in contiguous
segments. Unlike previous approaches, our method does not use reference frame(s) for
initialization. The two main contributions of our method are: (i) A novel algorithm
for obtaining the initial estimate of the model by dividing the scene into rigidly mov-
ing components using efficient loopy belief propagation; and (ii) Refining the initial
estimate using αβ-swap and α-expansion algorithms, which guarantee a strong local
minima. Results are presented on several classes of objects with different types of cam-
era motion, e.g. videos of a human walking shot with static or translating cameras. We
compare our method with the state of the art and demonstrate significant improvements.

1 Introduction
We present an approach for learning a layered representation from a video for motion
segmentation. Our method is applicable to any video containing piecewise parametric
motion, e.g. piecewise homography, without any restrictions on camera motion. It also
accounts for the effects of occlusion, lighting and motion blur. For example, Fig. 1
shows one such sequence where a layered representation can be learnt and used to
segment the walking person from the static background.

Many different approaches for motion segmentation have been reported in the lit-
erature. Important issues are: (i) whether the methods are feature-based or dense; (ii)
whether they model occlusion; (iii) whether they model spatial continuity; (iv) whether
they apply to multiple frames (i.e. a video sequence); and (v) whether they are inde-
pendent of which frames are used for initialization.
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Figure 1: Four intermediate frames of a 31 frame video sequence of a person walking
sideways where the camera is static. Given the sequence, the model which best de-
scribes the person and the background is learnt in an unsupervised manner. Note that
the arm always partially occludes the torso.

A comprehensive survey of feature-based methods can be found in [19]. Most of
these method rely on computing a homography corresponding to the motion of a planar
object. This limits their application to a restricted set of scenes and motions. Dense
methods [2, 6, 18, 22] overcome this deficiency by computing pixel-wise motion. How-
ever, many dense approaches do not model occlusion which can lead to overcounting
of data when obtaining the segmentation, e.g. see [2, 6].

Chief amongst the methods which do model occlusion are those that use a layered
representation [21]. One such approach, described in [22] divides a scene into (almost)
planar regions for occlusion reasoning. Torr et al. [18] extend this representation by
allowing for parallax disparity. However, these methods rely on a keyframe for the
initial estimation. Other approaches [8, 23] overcome this problem by using layered
flexible sprites. A flexible sprite is a 2D appearance map and matte (mask) of an object
which is allowed to deform from frame to frame according to pure translation. Winn
et al. [25] extend the model to handle affine deformations. However, these methods
do not enforce spatial continuity i.e. they assume each pixel is labelled independent
of its neighbours. This leads to non-contiguous segmentation when the foreground
and background are similar in appearance (see Fig. 19(b)). Most of these approaches,
namely those described in [6, 8, 18, 21, 22], use either EM or variational methods for
learning the parameters of the model which makes them prone to local minima.

Wills et al. [24] noted the importance of spatial continuity when learning the re-
gions in a layered representation. Given an initial estimate, they learn the shape of
the regions using the powerful α-expansion algorithm [5] which guarantees a strong
local minima. However, their method does not deal with more than 2 views. In our
earlier work [10], we described a similar motion segmentation approach to [24] for a
video sequence. Like [16] this automatically learns a model of an object. However,
the method depends on a keyframe to obtain an initial estimate of the model. This has
the disadvantage that points not visible in the keyframe are not included in the model,
which leads to incomplete segmentation.

In this paper, we present a model which does not suffer from the problems men-
tioned above, i.e. (i) it models occlusion; (ii) it models spatial continuity; (iii) it handles
multiple frames; and (iv) it is learnt independent of keyframes. An initial estimate of
the model is obtained based on a method to estimate image motion with discontinuities
using a new efficient loopy belief propagation algorithm. Despite the use of piecewise
parametric motion (similar to feature-based approaches), this allows us to learn the
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Figure 2: The top row shows the various layers of a human model (the latent image in
this case). Each layer consists of one of more segments whose appearance is shown.
The shape of each segment is represented by a binary matte (not shown in the image).
Any frame j can be generated using this representation by assigning appropriate values
to its parameters and latent variables. The background is not shown.

model for a wide variety of scenes. Given the initial estimate, the shape of the seg-
ments, along with the layering, are learnt by minimizing an objective function using
αβ-swap and α-expansion algorithms [5]. Results are demonstrated on several classes
of objects with different types of camera motion.

In the next section, we describe the layered representation. In section 3, we present
a five stage approach to learn the parameters of the layered representation from a video.
Such a model is particularly suited for applications like motion segmentation. Results
are presented in section 4. Preliminary versions of this article have appeared in [10, 11].
The input videos used in this work together with the description and output of our
approach are available at http://www.robots.ox.ac.uk/ vgg/research/moseg/.

2 Layered Representation
We introduce the model for a layered representation which describes the scene as a
composition of layers. Any frame of a video can be generated from our model by as-
signing appropriate values to its parameters and latent variables as illustrated in Fig. 2.
While the parameters of the model define the latent image, the latent variables describe
how to generate the frames using the latent image (see table 1). Together, they also
define the probability of the frame being generated.

The latent image is defined as follows. It consists of a set of nP segments, which
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Input
D Data (RGB values of all pixels in every frame of a video).
nF Number of frames.

Parameters
nP Number of segments pi including the background.

ΘMi Matte for segment pi.
ΘM Set of all mattes, i.e. {ΘMi, i = 1, · · · , nP }.
ΘAi Appearance parameter for segment pi.
ΘA Set of all appearance parameters, i.e. {ΘAi, i = 1, · · · , nP }.
Hi Histogram specifying the distribution of the RGB values for pi.
li Layer number of segment pi.

Latent Variables
Θ

j
T i Transformation {tx, ty, sx, sy, φ} of segment pi to frame j.

Θ
j
Li Lighting variables {aj

i ,b
j
i} of segment pi to frame j.

Θ {nP ,ΘM ,ΘA,Hi, li;ΘT ,ΘL}.

Table 1: Parameters and latent variables of the layered representation.

are 2D patterns (specified by their shape and appearance) along with their layering.
The layering determines the occlusion ordering. Thus, each layer contains a number of
non-overlapping segments. We denote the ith segment of the latent image as pi. The
shape of a segment pi is modelled as a binary matte ΘMi of size equal to the frame
of the video such that ΘMi(x) = 1 for a point x belonging to segment pi (denoted by
x ∈ pi) and ΘMi(x) = 0 otherwise.

The appearance ΘAi(x) is the RGB value of points x ∈ pi. We denote the set
of mattes and appearance parameters for all segments as ΘM and ΘA respectively.
The distribution of the RGB values ΘAi(x) for all points x ∈ pi is specified using
a histogram Hi for each segment pi. In order to model the layers, we assign a (not
necessarily unique) layer number li to each segment pi such that segments belonging
to the same layer share a common layer number. Each segment pi can partially or
completely occlude segment pk, if and only if li > lk. In summary, the latent image
is defined by the mattes ΘM , the appearance ΘA, the histograms Hi and the layer
numbers li of the nP segments.

When generating frame j, we start from a latent image and map each point x ∈ pi

to x′ using the transformation Θ
j
T i. This implies that points belonging to the same

segment move according to a common transformation. The generated frame is then
obtained by compositing the transformed segments in descending order of their layer
numbers. For this paper, each transformation has five degrees of freedom: rotation,
translations and anisotropic scale factors. The model accounts for the effects of lighting
conditions on the appearance of a segment pi using latent variable Θ

j
Li = {aj

i ,b
j
i},

where a
j
i and b

j
i are 3-dimensional vectors. The change in appearance of the segment

pi in frame j due to lighting conditions is modelled as

d(x′) = diag(aj
i ) ·ΘAi(x) + b

j
i . (1)
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The motion of segment pi from frame j − 1 to frame j, denoted by m
j
i , can be deter-

mined using the transformations Θ
j−1
Ti and Θ

j
T i. This allows us to take into account

the change in appearance due to motion blur as

c(x′) =

∫ T

0

d(x′ −m
j
i (t))dt, (2)

where T is the total exposure time when capturing the frame.

Posterior of the model: We represent the set of all parameters and latent variables
of the layered representation as Θ = {nP ,ΘM ,ΘA,Hi, li;ΘT ,ΘL} (summarized in
table 1). Given data D, i.e. the nF frames of a video, the posterior probability of the
model is given by

Pr(Θ|D) =
1

Z
exp(−Ψ(Θ|D)), (3)

where Z is the partition function. The energy Ψ(Θ|D) has the form

Ψ(Θ|D) =

nP
∑

i=1

∑

x∈ΘM



Ai(x;Θ,D) + λ1

∑

y∈N (x)

(Bi(x,y;Θ,D) + λ2Pi(x,y;Θ))



 ,

(4)
where N (x) is the neighbourhood of x. For this paper, we define N (x) as the 8-
neighbourhood of x across all mattes ΘMi of the layered representation (see Fig 3).
As will be seen in § 3.3, this allows us to learn the model efficiently by minimizing the
energy Ψ(Θ|D) using multi-way graph cuts. However, a larger neighbourhood can be
used for each point at the cost of more computation time. Note that minimizing the
energy Ψ(Θ|D) is equivalent to maximizing the posterior Pr(Θ|D) since the partition
function Z is independent of Θ.

The energy of the layered representation has two components: (i) the data log like-
lihood term which consists of the appearance term Ai(x;Θ,D) and the contrast term
Bi(x,y;Θ,D), and (ii) the prior Pi(x,y;Θ). The appearance term measures the con-
sistency of motion and colour distribution of a point x. The contrast and the prior terms
encourage spatially continuous segments whose boundaries lie on edges in the frames.
Their relative weight to the appearance term is given by λ1. The weight λ2 specifies
the relative importance of the prior to the contrast term. An extension of Markov ran-
dom fields (MRF) described in [12], which we call Contrast-dependent random fields
(CDRF), allows a probabilistic interpretation of the energy Ψ(Θ|D) as shown in Fig. 4.
We note, however, that unlike MRF it is not straightforward to generate the frames from
CDRF since it is a discriminative model (due to the presence of contrast term Bi(x,y)).
We return to this when we provide a Conditional random field formulation of the energy
Ψ(Θ|D). We begin by describing the three terms of the energy in detail.

Appearance: We denote the observed RGB values at point x′ = Θ
j
T i(x) (i.e. the

image of the point x in frame j) by Ij
i (x). The generated RGB values of the point x′
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Figure 3: The top row shows two segments of the human model. The unfilled circles
represent two of the neighbouring points of the filled circle. The neighbourhood is
defined across all mattes. We show one neighbour which lies on the same matte (i.e.
the torso) and another neighbour which lies on a different matte (i.e. the upper arm).
The bottom row shows two frames of the video along with the projections of the points
on the segments. Note that the neighbouring point on the torso is occluded by the
neighbouring point on the upper arm in the second frame.

Figure 4: Contrast-dependent random field (CDRF) formulation of the energy of the
layered representation containing two segments pi and pk. The appearance term
Ai(x;Θ,D), shown in red, connects the data D (specifically the set of RGB values
Ij

i (x)) with the matte ΘMi(x). The prior Pi(x, z;Θ) between two neighbouring
points x and z, which encourages spatial continuity, connects ΘMi(x) and ΘMi(z).
The data dependent contrast term Bi(x,y;Θ,D), which cannot be included in the
prior, is shown as the blue diagonal connections. Extending the formulation to more
than two segments is trivial. Note that some of these diagonal connections are not
shown, i.e. those connecting the other neighbouring points of x and y to ΘMk(y) and
ΘMi(x) respectively, for the sake of clarity of the figure.
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are described in equation (2). The appearance term for a point x is given by

Ai(x;Θ,D) =

j=nF
∑

j=1

− log(Pr(Ij
i (x)|Θ). (5)

For a point x ∈ pi, i.e. ΘMi(x) = 1, the likelihood of Ij
i (x) consists of two factors:

(i) consistency with the colour distribution of the segment, which is the conditional
probability of Ij

i (x) given x ∈ pi and is computed using histogram Hi, and (ii) con-
sistency of motion which measures how well the generated RGB values c

j
i (x

′) match
the observed values Ij

i (x) (i.e. how well does the latent image project into the frames).
Thus,

Pr(Ij
i (x)|Θ) ∝ Pr(Ij

i (x)|Hi) exp(−µ(cj
i (x

′) − Ij
i (x))2), (6)

where µ is some scaling factor. We use µ = 1 in our experiments.
Note that in the above equation we assume that the point x is visible in frame j.

When x is occluded by some other segment, we assign

Pr(Ij
i (x)|Θ) = κ1. (7)

There is also a constant penalty for all points x which do not belong to a segment pi to
avoid trivial solutions, i.e.

Ai(x;Θ,D) = κ2,x /∈ pi. (8)

One might argue that motion consistency alone would provide sufficient discrimina-
tion between different segments. However, consider a video sequence with homoge-
neous background (e.g. brown horse walking on green grass). In such cases, motion
consistency would not be able to distinguish between assigning some blocks of the
background (i.e. the green grass) to either the horse segment or the grass segment.
Fig. 5 shows such a scenario where a block of the green background is assigned to
different segments. However, the colour distribution of each segment would provide
better discrimination. For example, the likelihood of a green point belonging to the
first (mostly brown) segment would be low according to the colour distribution of that
segment. Empirically, we found that using both motion and colour consistency provide
much better results than using either of them alone.

Contrast and Prior: As noted above, the contrast and prior terms encourage spa-
tially continuous segments whose boundaries lie on image edges. For clarity, we first
describe the two terms separately while noting that their effect should be understood
together. We subsequently describe their joint behaviour (see table 2).

Contrast: The contrast term encourages the projection of the boundary between seg-
ments to lie on image edges and has the form

Bi(x,y;Θ,D) =

{

−γik(x,y) if x ∈ pi,y ∈ pk, i 6= k
0 if x ∈ pi,y ∈ pk, i = k.

(9)
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(a) (b)

(c) (d)

Figure 5: (a)-(b) Two possible latent images of the model consisting of two segments.
Unlike (a), the latent image shown in (b) assigns a block of green points to the first
segment of the model. (c)-(d) Two frames of the video sequences. The brown region
translates to the left while the green region remains stationary. Note that when only
consistency of motion is used in equation (6), the appearance term Ai(x;Θ,D) for
x ∈ pi remains the same for both the latent images. This is because the green block
provides the same match scores for both transformations (i.e. stationary and translation
to left) since it maps onto green pixels in the frames. However, when consistency of
appearance is also used this green block would be more likely to belong to the second
segment (which is entirely green) instead of the first segment (which is mostly brown).
Hence, the appearance term Ai(x;Θ,D) would favour the first latent image.

The term γik(x,y) is chosen such that it has a large value when x and y project onto
image edges. For this paper, we use

γik(x,y) = 1 − exp

(

−g2
ik(x,y)

2σ2

)

·
1

dist(x,y)
, (10)

where

gik(x,y) =
1

nF

nF
∑

j=1

|Ij
i (x) − Ij

k(y)|. (11)

In other words, gik(x,y) measures the difference between the RGB values Ij
i (x) and

Ij
k(y) throughout the video sequence. The term dist(x,y), i.e. the Euclidean distance

between x and y, gives more weight to the 4-neighbourhood of x than the rest of the 8-
neighbourhood. The value of σ in equation (10) determines how the energy Ψ(Θ|D) is
penalized since the penalty is high when gik(x,y) < σ and small when gik(x,y) > σ.
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Segment gik(x,y) Contrast Prior Pairwise Potential
i = k σ/3 0 0 0
i = k 3σ 0 0 0
i 6= k σ/3 -0.054 1.2 1.146
i 6= k 3σ -0.9889 1.2 0.2111

Table 2: Pairwise terms for points x ∈ pi and y ∈ pk, where y belongs to the 4-
neighbourhood of x. In the first column, i = k implies that x and y belong to the
same segment and i 6= k implies that x and y belong to different segments. The second
column lists the value of gik(x,y). The third, fourth and fifth column are computed
using equations (9), (12) and (15) respectively.

Thus σ should be sufficiently large to allow for the variation in RGB values within a
segment. In our experiments, we use σ = 5. Note that similar contrast terms have been
applied successfully in various applications, e.g. image segmentation [4] and image
restoration [5].

MRF Prior: The prior is specified by an Ising model, i.e.

Pi(x,y;Θ) =

{

τ if x ∈ pi,y ∈ pk, i 6= k
0 if x ∈ pi,y ∈ pk, i = k.

(12)

In other words, the prior encourages spatial continuity by assigning a constant penalty
to any pair of neighbouring pixels x and y which belong to different segments.

CRF formulation: The energy of the model can also be formulated using a condi-
tional random field (CRF) [13]. Within the CRF framework, the posterior of the model
is given by

Pr(Θ|D) =
1

Z
exp

(

−
nP
∑

i=1

(

∑

x

Φi(x) + λ1

∑

x,y

Φi(x,y)

))

, (13)

where Φi(x) and Φi(x,y) are called the unary and pairwise potentials respectively.
The above formulation is equivalent to equation (3) for an appropriate choice of the
potentials, i.e.

Φi(x) = Ai(x;Θ,D), (14)

and

Φi(x,y) = Bi(x,y;Θ,D) + λ2Pi(x,y;Θ),

=

{

λ2τ − γik(x,y) if x ∈ pi,y ∈ pk, i 6= k
0 if x ∈ pi,y ∈ pk, i = k.

Note that the CRF is a discriminative model since the pairwise potential Φi(x,y|D) is
data dependent. Hence, unlike the generative MRF model, it is not straightforward to
generate frames using the CRF.
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In all our experiments, we use λ1 = λ2 = 1 and τ = 1.2. As will be seen, these
values are suitable to encourage spatially contiguous segments whose boundaries lie
on image edges. Empirically, they were found to provide good segmentations for all
our input videos. Table 2 shows the values of the pairwise terms for two neighbouring
points x ∈ pi and y ∈ pk for this choice of the weights. We consider two cases for the
term gik(x,y) defined in equation (11): (i) gik(x,y) = σ/3, i.e. x and y have similar
appearance; (ii) gik(x,y) = 3σ, which implies x and y have different appearance (as
is the case with neighbouring pixels lying on image edges). As can be seen from the
table, the value of the pairwise potential is small when boundaries of the segment lie
on image edges (i.e. when i 6= k and gik(x,y) = 3σ).

For two points x and y belonging to different segments, the minimum value of
the pairwise potential Φi(x,y) depends only on τ (since γik(x,y) is always less than
1). Unlike the CRF framework, this fact comes across clearly in the CDRF formulation
which forces us to treat the prior and the contrast term separately. In our case, the value
of τ is chosen such that the minimum value of Φi(x,y) is always greater than 0.2. In
other words, the penalty for assigning x and y to different segments is at least 0.2.
This prevents speckles appearing in the estimated segments by encouraging contiguous
regions (i.e. regions which minimize the length of the boundary between segments).
For example, consider the case where x differs in appearance from all its neighbours
due to noise in the video frames. It would be undesirable to assign x to a different
segment from all its neighbours. Such an assignment would be discouraged since x
would have to incur a penalty of at least 0.2 from all its neighbours.

In the next section, we describe a five stage approach to obtain the layered repre-
sentation (i.e. Θ) of an object, given data D, by minimizing the energy Ψ(Θ|D) (i.e.
maximizing Pr(Θ|D)). The method described is applicable to any scene with piece-
wise parametric motion.

3 Learning Layered Segmentation

1. Rigidly moving components are identified between every pair of consecutive
frames by computing the image motion (§ 3.1).

2. An initial estimate of Θ is obtained by combining these components (§ 3.2).

3. The parameters ΘA and latent variables ΘT and ΘL are kept constant and the
mattes ΘM are optimized using αβ-swap and α-expansion algorithms [5]. The
layer numbers li are obtained (§ 3.3).

4. Using the refined values of ΘM , the appearance parameters ΘA are updated.
(§ 3.4).

5. Finally, the transformations ΘT and lighting variables ΘL are re-estimated,
keeping ΘM and ΘA unchanged (§ 3.5).

Table 3: Estimating the parameters and latent variables of the layered representation.
Given a video, our objective is to estimate Θ (i.e. the latent image, the trans-
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formations and the lighting variables ) of the layered representation. Our approach
takes inspiration from the highly successful interactive image segmentation algorithm
of Boykov and Jolly [4] in which the user provides a small number of object and back-
ground seed pixels. The appearance model learnt from these seed pixels then provides
sufficient information to obtain reliable segmentation by minimizing an objective func-
tion similar to equation (4). In our case, the seed pixels are provided by a rough motion
segmentation obtained by computing the image motion (see § 3.1 and § 3.2). These
seed pixels are sufficient to bootstrap the method to minimize equation (4) to obtain
reliable segmentations. This is one of the key intuitions behind our method.

We obtain the layered representation Θ in five stages. In the first stage, image
motion is computed between every pair of consecutive frames to obtain rigidly moving
components. An initial estimate of Θ is then found in the second stage using these
components. This provides us with the seed pixels for each segment. In the remaining
stages, we alternate between holding some parameters and latent variables constant and
optimizing the rest as illustrated in table 3.

Our method makes use of two inference algorithms for CRFs : loopy belief propaga-
tion (LBP) and graph cuts. LBP is particularly useful for applications such as estimating
motion fields where each site of the CRF has a large number of labels (i.e. equal to the
number of possible motions from one frame to the next). However, when refining the
model, the number of labels is small (i.e. equal to the number of segments) and hence
efficient inference can be performed using graph cuts. As will be seen, we take advan-
tage of the strengths of both the algorithms. We begin by describing our approach for
computing image motion.

3.1 Two frame motion segmentation
In this section, we describe a novel, efficient algorithm to obtain rigidly moving com-
ponents between a pair of frames by computing the image motion. This is a simple
two frame motion segmentation method that is used to initialize the more complex
multiframe one described later. We use the term components here to distinguish them
from the segments finally found. The method is robust to changes in appearance due to
lighting and motion blur. The set of components obtained from all pairs of consecutive
frames in a video sequence are later combined to get the initial estimate of the segments
(see § 3.2). This avoids the problem of finding only those segments which are present
in one keyframe of the video.

In order to identify points that move rigidly together from frame j to j + 1 in the
given video D, we need to determine the transformation that maps each point x in
frame j to its position in frame j + 1 (i.e. the image motion). However, at this stage
we are only interested in obtaining a coarse estimate of the components as they will be
refined later using graph cuts. This allows us to reduce the complexity of the problem
by dividing frame j into uniform patches fk of size m×m pixels and determining their
transformations ϕk. However, using a large value of m may result in merging of two
components. We use m = 3 for all our experiments which was found to offer a good
compromise between efficiency and accuracy.

The components are obtained in two stages: (i) finding a set of putative transforma-
tions ϕk for each patch in frame j; (ii) selecting from those initial transformations the
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best joint set of transformations over all patches in the frame. As the size of the patch is
only 3 × 3 and we restrict ourselves to consecutive frames, it is sufficient to use trans-
formations defined by a scale ρk, rotation θk and translation tk, i.e. ϕk = {ρk, θk, tk}.

Finding putative transformations: We define a CRF over the patches of frame j
such that each site nk of the CRF represents a patch fk. Each label sk of site nk corre-
sponds to a putative transformation ϕk. Note that this is a different CRF from the one
described in the previous section which models the energy of the layered representation
using the unary potentials Φi(x) and the pairwise potentials Φi(x,y). It is a simpler
one which we will solve in order to provide initialization for the layered representation.

In the present CRF, the likelihood ψ(sk) of a label measures how well the patch fk
matches frame j + 1 after undergoing transformation ϕk. The neighbourhood Nk of
each site nk is defined as its 4-neighbourhood. As we are interested in finding rigidly
moving components, we specify the pairwise term ψ(sk, sl) such that it encourages
neighbouring patches to move rigidly together. The joint probability of the transforma-
tions is given by

Pr(ϕ) =
1

Z2

∏

k

ψ(sk)
∏

nl∈Nk

ψ(sk, sl), (15)

where Z2 is the partition function of the CRF and ϕ is the set of transformations
{ϕk, ∀k}.

By taking advantage of the fact that large scaling, translations and rotations are
not expected between consecutive frames, we restrict ourselves to a small number of
putative transformations. Specifically, we vary scale ρk from 0.7 to 1.3 in steps of 0.3,
rotation θk from −0.3 to 0.3 radians in steps of 0.15 and translations tk in vertical and
horizontal directions from −5 to 5 pixels and −10 to 10 pixels respectively in steps of
1. Thus, the total number of transformations is 3465.

The likelihood of patch fk undergoing transformation ϕk is modelled as ψ(sk) ∝
exp(L(fk, ϕk)). The term L(fk, ϕk) is the normalized cross-correlation between frame
j+1 and an n×nwindow around the patch fk, transformed according toϕk. When cal-
culating L(fk, ϕk) in this manner, the n × n window is subjected to different degrees
of motion blur according to the motion specified by ϕk, and the best match score is
chosen. This, along with the use of normalized cross-correlation, makes the likelihood
estimation robust to lighting changes and motion blur. In all our experiments, we used
n = 5. Since the appearance of a patch does not change drastically between consecu-
tive frames, normalized cross-correlation provides reliable match scores. Unlike [10],
we do not discard the transformations resulting in a low match score. However, it will
be seen later that this does not significantly increase the amount of time required for
finding the minimum mean squared error (MMSE) estimate of the transformations due
to our computationally efficient method.

We want to assign the pairwise terms ψ(sk, sl) such that neighbouring patches fk
and fl which do not move rigidly together are penalized. However, we would be willing
to take the penalty when determining the MMSE estimate if it results in better match
scores. Furthermore, we expect two patches separated by an edge to be more likely to
move non-rigidly since they might belong to different segments. Thus, we define the
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pairwise terms by a Potts model such that

ψ(sk, sl) =

{

exp(1) if rigid motion,
exp(ζ∇(fk , fl)) otherwise, (16)

where ∇(fk, fl) is the average of the gradients of the neighbouring pixels x ∈ fk and
y ∈ fl, i.e. along the boundary shared by fk and fl. The term ζ specifies how much
penalty is assigned for two neighbouring patches not moving rigidly together. We
choose ζ such that it scales ζ∇(fk , fl) to lie between 0 and 1.

To handle occlusion, an additional label so is introduced for each site nk which
represents the patch fk being occluded in frame j + 1. The corresponding likelihoods
and pairwise terms ψ(so), ψ(sk, so), ψ(so, sk) and ψ(so, so) are modelled as constants
for all k. In our experiments, we used the values 0.1, 0.5, 0.5 and 0.8 respectively. The
higher value for ψ(so, so) specifies that two neighbouring patches tend to get occluded
simultaneously.

Obtaining the transformations: The best joint set of transformations for all patches
is found by maximizing the probability Pr(ϕ) defined in equation (15). We use sum-
product loopy belief propagation (LBP) [15] to find the posterior probability of a patch
fk undergoing transformation ϕk. This provides us with the MMSE estimate of trans-
formations.

The two main limitations of LBP are its large memory requirements and its com-
putational inefficiency. We overcome these problems by developing a novel coarse to
fine LBP algorithm. This algorithm groups similar labels of the CRF to obtain a smaller
number of representative labels, thereby reducing the memory requirements. The time
complexity of LBP is also reduced using the method described in [7]. Details of the
algorithm can be found in Appendix A.

Once the transformations for all the patches of frame j have been determined, we
cluster the points moving rigidly together to obtain rigid components. Components
with size less than 100 pixels are merged with surrounding components. We repeat
this process for all pairs of consecutive frames of the video. The kth component of
frame j is represented as a set of points Cj

k. Fig. 6 shows the result of our approach
on four pairs of consecutive frames. Fig. 7 shows the advantage of modelling motion
blur when computing the likelihood of a patch fk undergoing a transformation ϕk. In
the next section, we describe how an initial estimate of the layered representation is
obtained using the rigid pairwise components.

3.2 Initial estimation of the model over multiple frames
In this section, we describe a method to get an initial estimate of Θ. The method
consists of two stages: (i) combining rigidly moving components to obtain the number
of segments and the initial estimate of their shape parameter ΘMi; (ii) computing the
remaining parameters and latent variables, i.e. ΘAi, Θ

j
T i and Θ

j
Di.

Combining rigid components: Given the set of all pairwise components, we want
to determine the number of segments nP present in the entire video sequence and
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Figure 6: Results of obtaining the MMSE estimates of the transformations. The first two
columns show consecutive frames of a video. The third column shown the reconstruc-
tion of the second frame obtained by mapping the patches of the first frame according
to the transformations obtained using coarse-to-fine efficient LBP. Points which are
occluded from the first frame but are present in the second frame would be missing
from the reconstruction. These points are shown in red. Fragments moving rigidly are
clustered together to obtain the components shown in the fourth column.

obtain an initial estimate of their shape. The task is made difficult due to the following
problems: (i) a segment may undergo different transformations (scaling, rotation and
translation) from one frame to the next which need to be recovered by establishing a
correspondence over components; (ii) the transformationsϕk of the components (found
in § 3.1) may not be accurate enough to obtain the required correspondence; and (iii)
each component may overlap with one or more segments thereby providing us with
multiple estimates of the shape parameter ΘMi.

Fig. 8 shows an example of the problem of combining rigid components. All the
components shown in Fig. 8(a) contain the ‘torso’ segment which undergoes different
transformations in each of the four frames. In order to recover the shape of the torso,
we need to establish a correspondence over the components (i.e. find the components
which contain torso and determine the transformations between them). Further, the
method for obtaining the correspondence should be robust to errors in the transforma-
tions ϕk. Finally, the initial estimate of the shape of the torso needs to be determined
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(a) (b)

(c) (d)

Figure 7: Effects of modelling motion blur. (a)-(b) Two consecutive frames from the
video shown in Fig. 1. (c) The image motion computed without modelling motion blur.
The reconstruction of the second frame, obtained by mapping the patches of the first
frame according to the transformations obtained, indicates that incorrect transforma-
tions are found around the feet (see e.g. the shoes) where there is considerable motion
blur. Note that the pixels marked red are those that are occluded in the first frame but
present in the second frame. (d) Results after modelling motion blur. Accurate trans-
formations for the patches belonging to the shoes are obtained by accounting for the
change in appearance due to motion blur.

from the four estimates provided by the components.
We overcome the first problem (i.e. establishing correspondence over components)

by associating the components from one frame to the next using the transformations
ϕk. This association is considered transitive, thereby establishing a correspondence of
components throughout the video sequence.

However, as noted above (in problem (ii)), this correspondence may not be accu-
rate due to errors in the transformationsϕk. For example, an error in the transformation
may result in a component containing the torso corresponding to a background com-
ponent. Hence, we need to make our method more robust to errors in ϕk . To this
end, we attempt to cluster the components such that each cluster contains only those
components which belong to one segment. Clearly, such clusters would provide cor-
respondence over the components. Note that we rely on every segment of the scene
being detected as an individual component in at least one frame.

In order to cluster the components, we measure the similarity of each component
Cj

k in frame j with all the components of frame l that lie close to the component corre-
sponding to Cj

k in frame l (i.e. not just to the corresponding component). This makes
the method robust to small errors in ϕk . The similarity of two components is mea-
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Figure 8: (a) Examples of rigid pairwise components obtained for the video sequence
shown in Fig. 1 which contain the ‘torso’ segment. The components are shown to
the right of the corresponding frames. The initial estimate of the torso is obtained by
establishing a correspondence over these components. (b) The smallest component
(i.e. the top left one) is used as the initial estimate of the shape of the torso segment.

sured using normalized cross-correlation (to account for changes in appearance due to
lighting conditions) over all corresponding pixels.

The number of segments are identified by clustering similar components together
using agglomerative clustering. Agglomerative clustering starts by treating each com-
ponent as a separate cluster. At each step, the two most similar clusters (i.e. the clusters
containing the two most similar components) are combined together. The algorithm is
terminated when the similarity of all pairs of clusters falls below a certain threshold.
We simply let components containing more than one segment lie in a cluster represent-
ing one of these segments. For example, the top right component shown in Fig. 8 may
belong to the cluster representing either the ‘head’ or the ‘torso’.

Finally, we address the third problem (i.e. the overlapping of components with
multiple segments) by choosing the smallest component of each cluster to define the
shape ΘMi of the segment pi, as shown in Fig. 8. This avoids using a component
containing more than one segment to define the shape of a segment. However, this
implies that the initial estimate will often be smaller than (or equal to) the ground truth
and thus, needs to be expanded as described in § 3.3.

The above method for combining rigid components to obtain segments is similar to
the method described by Ramanan and Forsyth [16] who cluster rectangular fragments
found in a video to obtain parts of an object. However, they rely on finding parallel
lines of contrast to define the fragments, which restricts their method to a small class
of objects and videos. In contrast, our method obtains rigidly moving components by
computing image motion and hence, is applicable to any video containing piecewise
parametric motion.

The initial shape estimates of the segments, excluding the background, obtained by
our method are shown in Fig. 9. Note that all the segments of the person visible in the
video have been found.
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Figure 9: Result of clustering all pairwise rigid components of the video sequence
shown in Fig. 1. (a) Components obtained for four pairs of consecutive frames. (b) Ini-
tial estimate of the shape of the segments obtained by choosing the smallest component
in each cluster.

Initial estimation of the model: Once the mattes ΘMi are found, we need to deter-
mine the initial estimate of the remaining parameters and latent variables of the model.
The transformations Θ

j
T i are obtained using ϕk and the component clusters. The ap-

pearance parameter ΘAi(x) is given by the mean of Ij
i (x) over all frames j. The

histograms Hi are computed using the RGB values ΘAi(x) for all points x ∈ pi. As
the size of the segment is small (and hence, the number of such RGB values is small),
the histogram is implemented using only 15 bins each for R, G and B. The lighting
variables a

j
i and b

j
i are calculated in a least squares manner using ΘAi(x) and Ij

i (x),
for all x ∈ pi. The motion variables m

j
i are given by Θ

j
T i and Θ

j−1
Ti . This initial

estimate of the model is then refined by optimizing each parameter or latent variable
while keeping others unchanged. We start by optimizing the shape parameters ΘM as
described in the next section.

3.3 Refining shape
In this section, we describe a method to refine the estimate of the shape parameters
ΘM and determine the layer numbers li using the αβ-swap and α-expansion algo-
rithms [5]. Given an initial coarse estimate of the segments, we iteratively improve
their shape using consistency of motion and texture over the entire video sequence.
The refinement is carried out such that it minimizes the energy Ψ(Θ|D) of the model
given in equation (4).

To this end, we take advantage of efficient algorithms for multi-way graph cuts
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which minimize an energy function over point labellings h of the form

Ψ̂ =
∑

x∈X

Dx(hx) +
∑

x,y∈N

Vx,y(hx, hy), (17)

under fairly broad constraints on D and V (which are satisfied by the energy of the
layered representation) [9]. Here Dx(hx) is the cost for assigning the label hx to point
x and Vx,y(hx, hy) is the cost for assigning labels hx and hy to the neighbouring points
x and y respectively.

Specifically, we make use of two algorithms: αβ-swap and α-expansion [5]. The
αβ-swap algorithm iterates over pairs of segments, pα and pβ . At each iteration, it
refines the mattes of pα and pβ by swapping the values of ΘMα(x) and ΘMβ(x) for
some points x. The α-expansion algorithm iterates over segments pα. At each iteration,
it assigns ΘMα(x) = 1 for some points x. Note that α-expansion never reduces the
number of points with label α.

In our previous work [10], we described an approach for refining the shape pa-
rameters of the LPS model where all the segments are restricted to lie in one reference
frame. In other words, each point on the reference frame has a unique label, i.e. it
belongs to only one segment. In that case, it was sufficient to refine one segment at
a time using the α-expansion algorithm alone to correctly relabel all the wrongly la-
belled points. For example, consider a point x ∈ pi which was wrongly labelled as
belonging to pk. During the expansion move where α = i, the point x would be rela-
belled to pi (and hence, it would not belong to pk). Since the shape of each segment in
the layered representation is modelled using a separate matte, this restriction no longer
holds true (i.e. each point x can belong to more than one segment). Thus, performing
only α-expansion would incorrectly relabel the point x to belong to both pi and pk

(and not to pi alone). We overcome this problem by performing αβ-swap over pairs
of segments. During the swap move when α = i and β = k, the point x would be
relabelled to pi and would no longer belong to pk. The α-expansion algorithm would
then grow the segments allowing them to overlap (e.g. the segments Fig. 10 grow due
to the α-expansion algorithm). Therefore, refining the shape parameters ΘMi of the
layered representation requires both the αβ-swap and α-expansion algorithm.

A standard way to minimize the energy of the layered representation would be to fix
the layer numbers of the segments and refine their shape by performingα-expansion for
each segment and αβ-swap for each pair of segments. The process would be repeated
for all possible assignments of layer numbers and the assignment which results in the
minimum energy would be chosen. However, this would be computationally inefficient
because of the large number of possible layer numbers for each segment. In order
to reduce the complexity of the algorithm, we make use of the fact that only those
segments which overlap with each other are required to determine the layering.

We define the limit Li of a segment pi as the set of points x whose distance from pi

is at most 40% of the current size of pi. Given segment pi, let pk be a segment such that
the limit Li of pi overlaps with pk in at least one frame j of the video. Such a segment
pk is said to be surrounding the segment pi. The number of surrounding segments pk

is quite small for objects such as humans and animals which are restricted in motion.
For example, the head segment of the person shown in Fig. 1 is surrounded by only the
torso and the background segments.

18



We iterate over segments and refine the shape of one segment pi at a time. At each
iteration, we perform an αβ-swap for pi and each of its surrounding segments pk. This
relabels all the points which were wrongly labelled as belonging to pi. We then perform
an α-expansion algorithm to expand pi to include those points x in its limit which move
rigidly with pi. During the iteration refining pi, we consider three possibilities for pi

and its surrounding segment pk: li = lk, li > lk or li < lk. Recall that if li < lk,
we assign Pr(Ij

i (x)|Θ) = κ1 for frames j where x is occluded by a point in pk. We
choose the option which results in the minimum value of Ψ(Θ|D). This determines
the occlusion ordering among surrounding segments. We stop iterating when further
reduction of Ψ(Θ|D) is not possible. This provides us with a refined estimate of ΘM

along with the layer number li of the segments. Since the neighbourhood for each point
x is small (see Fig. 3), graph cuts can be performed efficiently. The graph constructions
for both the αβ-swap and α-expansion algorithms are provided in Appendix B.

Fig. 10 shows the refined shape parameters of the segments obtained by the above
method using the initial estimates. Results indicate that reliable shape parameters can
be learnt even while using a small neighbourhood. Note that though the torso is par-
tially occluded by the arm and the backleg is partially occluded by the front leg in
every frame, their complete shape has been learnt using individual binary mattes for
each segment. Next, the appearance parameters corresponding to the refined shape
parameters are obtained.

3.4 Updating appearance
Once the mattes ΘMi of the segments are obtained, the appearance of a point x ∈ pi,
i.e. ΘAi(x) is calculated as the mean of Ij

i (x) over all frames j. The histograms Hi

are recomputed using the RGB values ΘAi(x) for all points x ∈ pi. Fig. 11 shows
the appearance of the parts of the human model learnt using the video in Fig. 1. The
refined shape and appearance parameters help in obtaining a better estimate for the
transformations as described in the next section.

3.5 Refining the transformations
Finally, the transformations ΘT and the lighting variables ΘL are refined by searching
over putative transformations around the initial estimate, for all segments at each frame
j. For each putative transformation, variables {aj

i ,b
j
i} are calculated in a least squares

manner. The variables which result in the smallest SSD are chosen. When refining the
transformation, we searched for putative transformations by considering translations
upto 5 pixels in steps of 1, scales 0.9, 1.0 and 1.1 and rotations between −0.15 and 0.15
radians in steps of 0.15 radians around the initial estimate. Fig. 12 shows the rotation
and translation in y-axis of the upper arm closest to the camera in Fig. 1 obtained after
refining the transformations.

The model Θ obtained using the five stage approach described above can be used
iteratively to refine the estimation of the layered representation. However, we found
that it does not result in a significant improvement over the initial estimate as the pa-
rameters and latent variables do not change much from one iteration to the other. In the
next section, we describe a method to refine the segmentation of each frame.

19



Figure 10: Result of refining the mattes of the layered representation of a person using
multi-way graph cuts. The shape of the head is re-estimated after one iteration. The
next iteration refines the torso segment. Subsequent iterations refine the half limbs one
at a time. Note that the size of the mattes is equal to that of a frame of the video but
smaller mattes are shown here for clarity.

3.6 Refining the segmentation of frames
Our model maps the segments onto a frame using only simple geometric transforma-
tions. This would result in gaps in the generated frame when the motion of segments
cannot be accurately defined by such transformations. In order to deal with this, we
refine the segmentation of each frame by relabelling the points around the boundary of
segments. Note that this step is performed only to obtain more accurate segmentations
and does not change the values of any parameters or latent variables. The relabelling
is performed by using the α-expansion algorithm. The cost Dx(hx) of assigning point
x around the boundary of pi to pi is the inverse log likelihood of its observed RGB
values in that frame given by the histogram Hi. The cost Vx,y(hx, hy) of assigning
two different labels hx and hy to neighbouring points x and y is directly proportional
to Bi(x,y;Θ,D) for that frame. Fig. 13 shows an example where the gaps in the
segmentation are filled using the above method.
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Figure 11: Appearance of the parts learnt for the human model as described in § 3.4.

(a) (b)

Figure 12: (a) Rotation of the upper arm obtained after refining the transformations
as described in § 3.5. During the first half of the video, the arm swings away from
the body while in the second half it rotates towards the body. Clearly, this motion
has been captured in the learnt rotations. (b) Translation of the upper arm in the
horizontal direction. The person moves from the right to the left of the scene with almost
constant velocity as indicated by the learnt translations. Note that the transformations
are refined individually for each frame and are therefore not necessarily smooth.
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(a) (b)

Figure 13: Result of refining the segmentation. (a) The segmentation obtained by com-
positing the transformed segments in descending order of the layer numbers. (b) The
refined segmentation obtained using α-expansion (see text). Note that the gaps in the
segmentation that appear in (a), e.g. between the upper and lower half of the arm, have
been filled.

4 Results
We now present results for motion segmentation using the learnt layered representation
of the scene. The method is applied to different types of object classes (such as jeep,
humans and cows), foreground motion (pure translation, piecewise similarity trans-
forms) and camera motion (static and translating) with static backgrounds. We use the
same weight values in all our experiments.

Fig. 14-16 show the segmentations obtained by generating frames using the learnt
representation by projecting all segments other than those belonging to layer 0 (i.e. the
background). Fig. 14(a) and 14(b) show the result of our approach on simple scenarios
where each layer of the scene consists of segments which are undergoing pure transla-
tion. Despite having a lot of flexibility in the putative transformations by allowing for
various rotations and scales, the initial estimation recovers the correct transformations,
i.e. those containing only translation. Note that the transparent windshield of the jeep is
(correctly) not recovered in the M.A.S.H. sequence as the background layer can be seen
through it. For the sequence shown in Fig. 14(a) the method proves robust to changes
in lighting condition and it learns the correct layering for the segments corresponding
to the two people.

Fig. 15(a) and 15(b) show the motion segmentation obtained for two videos, each
of a person walking. In both cases, the body is divided into the correct number of
segments (head, torso and seven visible half limbs). Our method recovers well from
occlusion in these cases. For such videos, the feet of a person are problematic as they
tend to move non-rigidly with the leg in some frames. Indeed the feet are missing from
the segmentations of some of the frames. Note that the grass in Fig. 15(b) has similar
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(a)

(b)

Figure 14: Motion Segmentation Results I. In each case, the left image shows the
various segments obtained in different colours. The top row shows the original video
sequence while the segmentation results are shown in the bottom row. (a): A 40 frame
sequence taken from a still camera (courtesy Nebojsa Jojic [8]). The scene contains
two people undergoing pure translation in front of a static background. The results
show that the layering is learnt correctly. (b): A 10 frame video sequence taken from
‘M.A.S.H.’. The video contains a jeep undergoing translation and slight out of plane
rotation against a static background while the camera pans to track the jeep.

intensity to the person’s trousers and there is some error in the transformations of the
legs.

Fig. 16(a) and 16(b) are the segmentations of a cow walking. Again the body of
the cow is divided into the correct number of segments (head, torso and eight half
limbs). The cow in Fig. 16(a) undergoes a slight out of plane rotation in some frames,
which causes some bits of grass to be pulled into the segmentation. The video shown in
Fig. 16(b) is taken from a poor quality analog camera. However, our algorithm proves
robust enough to obtain the correct segmentation. Note that when relabelling the points
around the boundary of segments some parts of the background, which are similar in
appearance to the cow, get included in the segmentation.

Our approach can also be used to segment objects present at different depths when
the camera is translating. This is due to the fact that their transformations with re-
spect to the camera will differ. Fig. 17 shows one such example using the well-known
garden sequence. Note that the correct number of objects have been found and good
segmentation is obtained.
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(a)

(b)

Figure 15: Motion Segmentation Results II. (a): A 31 frame sequence taken from a
still camera (courtesy Hedvig Sidenbladh [17]). The scene consists of a person walking
against a static background. The correct layering of various segments of the person is
learnt. The ground truth used for comparison is also shown in the third row. (b): A 57
frame sequence taken from a translating camera of a person walking against a static
background (courtesy Ankur Agarwal [1]). Again the correct layering of the segments
is learnt.

Timing: The initial estimation takes approximately5 minutes for every pair of frames:
3 minutes for computing the likelihood of the transformations and 2 minutes for MMSE
estimation using LBP. The shape parameters of the segments are refined by minimiz-
ing the energy Ψ(Θ|D) as described in § 3.3. The graph cut algorithms used have,
in practice, a time complexity which is linear in the number of points in the binary
matte ΘMi. It takes less than 1 minute to refine the shape of each segment. Most of
the time is taken up in calculating the various terms which define the energy Ψ(Θ|D)
as shown in equation (4). Since the algorithm provides a good initial estimate, it con-
verges after at most 2 iterations through each segment. All timings provided are for a
C++ implementation on a 2.4 GHz processor.

Ground truth comparison: The segmentation performance of our method was as-
sessed using eight manually segmented frames (four each from the challenging se-
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(a)

(b)

Figure 16: Motion Segmentation Results III. (a): A 44 frame sequence of a cow
walking taken from a translating camera. All the segments, along with their layering,
are learnt. (b): A 30 frame sequence of a cow walking against a static (homogeneous)
background (courtesy Derek Magee [14]). The video is taken from a still analog cam-
era which introduces a lot of noise. The results obtained using our approach (row 2)
and the ground truth used for comparison (row 3) are also shown.

quences shown in Fig. 15(a) and 16(b)). Out of 80901 ground truth foreground pix-
els and 603131 ground truth background pixels in these frames, 79198 (97.89%) and
595054 (98.66%) were present in the generated frames respectively. Most errors were
due to the assumption of piecewise parametric motion and due to similar foreground
and background pixels.

Sensitivity to weights: When determining rigidity of two transformations or cluster-
ing patches to obtain components, we allow for the translations to vary by one pixel in
x and y directions to account for errors introduced by discretization of putative trans-
formations. Fig. 18 shows the effects of not allowing for slight variations in the trans-
lations. As expected, it oversegments the body of the person. However, allowing for
more variation does not undersegment as different components move quite non-rigidly
for a large class of scenes and camera motion.

Our model explicitly accounts for spatial continuity using the weights λ1 and λ2 as
described in equation (4). Recall that λ1 and λ2 are the weights given to the contrast
and the prior term which encourage boundaries of segments to lie on image edges.
Fig. 19 shows the effects of setting λ1 and λ2 to zero, thereby not modelling spatial
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Figure 17: Segmenting objects. The top row shows some frames from the 29 frame
garden sequence taken from a translating camera. The scene contains four objects,
namely the sky, the house, the field and the tree, at different depths which are learnt
correctly. The bottom row shows the appearance and shape of the segmented objects.

Figure 18: Results of finding rigidly moving components for four frames from the video
shown in Fig. 1 without tolerating slight variation in translations. This oversegments
the body of the person thereby resulting in a large number of incorrect segments. How-
ever, the algorithm is robust to larger tolerance as neighbouring components move
quite non-rigidly.

continuity. Note that this significantly deteriorates the quality of the segmentation when
the background is homogeneous.

Sensitivity to length of sequence: We tested our approach by varying the number
of frames used for the video sequence shown in Fig. 1. Since the number of segments
(and their initial shape) is found using rigidly moving components, using fewer frames
tends to undersegment the object. For example, given 10 frames of a video where the
two half limbs of an arm move rigidly together, our method would detect the arm as
one segment. Fig. 20 shows the initial estimate of the segments obtained for a varying
number of input frames. Note that the video sequence contains two half-periods of
motion (i.e. the person takes two steps forward, first with the left leg and then with the
right leg). As expected, the algorithm undersegments the body when the full period of
motion is not considered. By the twenty fourth frame, i.e. just after the beginning of
the second half-period, all visible segments are detected due to the difference in their
transformations. Using more than twenty four frames does not change the number of
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(a) (b)

(c) (d)

Figure 19: Encouraging spatial continuity. (a) Result obtained by setting λ1 and λ2

to zero. The method works well for the simple case of the video shown in Fig. 14(a)
where the foreground and background differ significantly. When compared with ground
truth, 93.1% of foreground pixels and 99.8% of background pixels were labelled cor-
rectly. (b) By encouraging spatial continuity, a small improvement is observed (95.4%
of foreground pixels and 99.9% of background pixels were present in the generated
frame). (c) For the more difficult case shown in Fig. 14(b), the segmentation starts to
include parts of the homogeneous background when spatial continuity is not enforced.
Only 91.7% of foreground pixels and 94.1% of background pixels are generated, com-
pared to 95% of foreground pixels and 99.8% of background pixels correctly obtained
when encouraging spatial continuity (shown in (d)).

segments obtained. However, the initial estimate of the segments changes as smaller
components are found in subsequent frames (see § 3.2).

5 Summary and Discussion
The algorithm proposed in this paper achieves good motion segmentation results. Why
is this? We believe that the reasons are two fold. Incremental improvements in the
Computer Vision field have now ensured that: (i) we can use an appropriate model
which accounts for motion, changes in appearance, layering and spatial continuity. The
model is not too loose so as to undersegment, and not too tight so as to oversegment;
(ii) we have more powerful modern algorithmic methods such as LBP and graph cuts
which avoid local minima better than previous approaches.

However, there is still more to do. As is standard in methods using layered repre-
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Figure 20: Results of obtaining the initial estimate of the segments for a varying number
of input frames. The refined estimates of the shape obtained using the method described
in § 3.3 are also shown. During the first four frames only two segments are detected,
i.e. the body and a leg. In the next four frames, the arm close to the camera and the
other leg are detected. The half limbs which constitute this arm and leg are detected
using 11 frames of the video sequence. When 24 frames are used, all 9 visible segments
of the body are detected. The initial estimate of the segments and the refined estimate
of their shapes for the entire video sequence is shown in Fig. 10.

sentation, we have assumed that the visual aspects of the objects and the layering of
the segments do not change throughout the video sequence. At the very least we need
to extend the model to handle the varying visual aspects of objects present in the scene,
e.g. front, back and 3/4 views, in addition to the side views. The restriction of rigid
motion within a segment can be relaxed using non-parametric motion models.

For our current implementation, we have set the values of the weights λ1 and λ2

and the constant κ1 and κ2 empirically. Although these values provide good results
for a large class of videos, it would be interesting to learn them using ground truth
segmentations (similar to [3] for image segmentation).
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Appendix A

Efficient Coarse to Fine Loopy Belief Propagation
Loopy belief propagation (LBP) is a message passing algorithm similar to the one pro-
posed by Pearl [15] for graphical models with no loops. For the sake of completeness,
we describe the algorithm below.

The message that site nk sends to its neighbour nl at iteration t is given by

mt
kl(sl) =

∑

sk



ψ(sk, sl)ψ(sk)
∏

nd∈Nk\nl

mt−1
dk (sk)



 . (18)

All messages are initialized to 1, i.e.m0
kl(sk) = 1, for all k and l. The belief (posterior)

of a patch fk undergoing transformation ϕk after T iterations is given by

b(sk) = ψ(sk)
∏

nl∈Nk

mT
lk(sk) . (19)

The termination criterion is that the rate of change of all beliefs falls below a certain
threshold. The label s∗k that maximizes b(sk) is selected for each patch thus, providing
us an estimate of the image motion.

The time complexity of LBP is O(nH2), where n is the number of sites in the
CRF and H is the number of labels per site, which makes it computationally infeasible
for large H . However, since the pairwise terms of the CRF are defined by a Potts
model as shown in equation (16), the runtime of LBP can be reduced toO(nH ′), where
H ′ � H2 using the method described in [7]. Briefly, we can speed-up the computation
of the message mt

kl by precomputing the terms which are common in mt
kl(sl), for all

labels sl as follows:

T =
∑

sk



ψ(sk)
∏

nd∈Nk\nl

mt−1
dk (sk)



 . (20)

To compute the message mkl(sl) for a particular label sl, we now consider only those
labels sk which define a rigid motion with sl. These labels are denoted by the set
Ck(sl). Specifically, let

Tc =
∑

sk∈Ck(sl)



ψ(sk)
∏

nd∈Nk\nl

mt−1
dk (sk)



 , (21)

which can be computed efficiently by summing |Ck(sl)| � H terms. Clearly, the
message mt

kl(sl) defined in equation (18) is equivalent to

mt
kl(sl) = Tc exp(1) + (T − Tc) exp(ζ∇(fk , fl)). (22)

29



Thus, the messages can be computed efficiently in O(nH ′) time where H ′ � H2.
Another limitation of LBP is that it has memory requirements of O(nH). To over-

come this problem, we use a variation of the coarse to fine strategy suggested in [20].
This allows us to solveO(log(H)/ log(h)) problems of h labels instead of one problem
of H labels, where h � H . Thus, the memory requirements are reduced to O(nh).
The time complexity is reduced further from O(nH) to O(log(H)nh/ log(h)).

(a) (b)

Figure 21: Coarse to fine loopy belief propagation. (a) An example CRF with 12 sites
and 20 labels per site. (b) A set of 5 labels is grouped into one representative label
(shown as a square) thereby resulting in a coarser CRF with 4 labels per site. Inference
is performed on this CRF using efficient LBP. In this case, the best r = 2 representative
labels (shown as red squares) are chosen for each site and expanded. This results in
an CRF with 10 labels per site. The process of grouping the labels is continued until we
obtain the most likely label for each site.

The basic idea of the coarse to fine strategy is to group together similar labels (dif-
fering slightly only in translation) to obtain h representative labels φk (see Fig. 21). We
now define an CRF where each site nk has h labels Sk such thatψ(Sk) = maxϕk∈φk

ψ(sk)
and ψ(Sk, Sl) = maxϕk∈φk,ϕl∈φl

ψ(sk, sl). Using LBP on this CRF, we obtain the
posterior for each representative transformation. We choose the best r representative
transformations (unlike [20], which chooses only the best) with the highest beliefs for
each site. These transformations are again divided into h representative transforma-
tions. Note that these h transformations are less coarse than the ones used previously.
We repeat this process until we obtain the most likely transformation for each patch fk.
In our experiments, we use h = 165 and r = 20. LBP was found to converge within 20
iterations at each stage of the coarse to fine strategy.

Appendix B
Refining the shape of the segments by minimizing the energy of the model (defined in
equation (4)) requires a series of graph cuts. Below, we provide the graph constructions
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required for both the αβ-swap and the α-expansion algorithms (see § 3.3).

Graph construction for αβ-swap
The αβ-swap algorithm swaps the assignments of certain points x which have label α
to β and vice versa. In our case, it attempts to relabel points which were incorrectly
assigned to segments pα or pβ . We now present the graph construction required for
performing αβ-swap such that it minimizes the energy of the layered representation.
For clarity, we only consider the case when there are two neighbouring points x and
y. The complete graph can be obtained by concatenating the graphs for all pairs of
neighbouring points [9].

Each of the two points x and y are represented by one vertex in the graph (shown
in blue in Fig. 22). In addition, there are two special vertices called the source and
the sink (shown in brown and green respectively) which represent the labels α and β.
Recall that the unary potential for assigning point x to segment pα is Aα(x;Θ,D).
Similarly, the unary potential for assigning x to segment pβ is Aβ(x;Θ,D).

The pairwise potentials, given by equation (15), for all four possible assignments
of two points x and y are summarized in Fig. 22. Here, γ ′

ik(x,y) = λ2τ −γik(x,y) is
the total cost (contrast plus prior) for assigning points x and y to (different) segments
pα and pβ. The corresponding graph construction, also shown in Fig. 22, is obtained
using the method described in [9].

y ∈ pα y ∈ pβ

x ∈ pα 0 γ′
αβ

(x,y)

x ∈ pβ γ′
βα

(x,y) 0

Figure 22: Graph construction for αβ-swap. The table shown in the left summarizes
the pairwise potentials for two points x and y. The figure on the right shows the cor-
responding graph construction. Here C1 and C2 are the (1, 2)th and (2, 1)th (i.e. the
non-zero) elements of the table respectively.

Graph construction for α-expansion
The α-expansion algorithm relabels some points x to α. In other words, it attempts
to assign the points belonging to pα, which were missed by the initial estimate, to the
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segment pα. Again, we show the graph construction for only two neighbouring points
x and y for clarity.

Similar to theαβ-swap case, the unary potential of assigning x to pα is Aα(x;Θ,D).
Recall that the potential of not assigning a point x to a segment α is given by the con-
stant κ2 (see equation (8)).

The pairwise potentials for all four possible assignments of two points x and y

are summarized in Fig. 23. Note that in accordance with the energy of the model, the
pairwise potentials are summed over all segments contain the points x or y. Using the
source and sink vertices to represent labels α and not-α (denoted by ∼ α) respectively
the corresponding graph construction, shown in Fig. 23, can be obtained by the method
described in [9].

y ∈ pα y /∈ pα

x ∈ pα 0
∑

i,y∈pi

γ′
αi

(x,y)

x /∈ pα

∑

i,x∈pi

γ′
iα

(x,y) 0

Figure 23: Graph construction for α-expansion. The table shown in the left summa-
rizes the pairwise potentials for two points x and y. The figure on the right shows
the corresponding graph construction. Again, C1 and C2 are the (1, 2)th and (2, 1)th

elements of the table respectively.
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