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Abstract

One of the most difficult problemsin cluster analysisisthe identification of the number of groupsin
adataset. Most previoudy suggested approaches to this problem are either somewhat ad hoc or require
parametric assumptions and complicated calculations. In this paper we develop a simple yet powerful
non-parametric method for choosing the number of clusters based on distortion, aquantity that measures
the average distance, per dimension, between each observation and its closest cluster center. Our tech-
niqueis computationally efficient and straightforward to implement. We demonstrate empirically its ef-
fectiveness, not only for choosing the number of clusters but a so for identifying underlying structure, on
awiderange of simulated and real world datasets. In addition, we give arigoroustheoretical justification
for the method based on information theoretic ideas. Specifically, results from the subfield of electrical
engineering known as rate distortion theory alow us to describe the behavior of the distortion in both
the presence and absence of clustering. Finally, we note that these ideas potentially can be extended to a
wide range of other statistical model selection problems.

1 Introduction

A fundamental, and largely unsolved, problem in cluster analysisis the determination of the “true” number
of groupsin a data set. Numerous approaches to this problem have been suggested over the years. Milligan
and Cooper (1985) and Hardy (1996) provide a detailed set of references. Examplesinthestatisticsliterature
include Calinski and Harabasz'sindex (Calinski and Harabasz, 1974), Hartigan’s rule (Hartigan, 1975), the
Kranowski and Lai test (Krzanowski and Lai, 1985) and the silhouette statistic (Kaufman and Rousseeuw,
1990). Two newer proposals are a Gaussian model-based approach using approximate Bayes factors (Kass
and Raftery, 1995; Frayley and Raftery, 1998) and the gap statistic which compares the change in within-
cluster dispersion with that expected under an appropriate null distribution (Tibshirani et al., 2001). There
have a so been severa recent papers devoted to thisissue in the information theoretic engineering literature
where it is known as the cluster validation problem. (See, for example, Roberts et al. (1998), Frigui and
Krishnapuram (1999), Biernacki et al. (2000) and referencestherein.) Unfortunately, many of the approaches
that have been suggested for choosing the number of clusters were devel oped for a specific problem and are
somewhat ad hoc. Thosemethodsthat are more generally applicabletend either to bemodel-based, and hence
require strong parametric assumptions, or to be computation-intensive, or both.

In this paper we develop an alternative approach to choosing the number of clusters that makes limited
parametric assumptions, can berigorously theoretically motivated usingideasfrom thefield of rate distortion
theory, is both simple to understand and compute, and is highly effective on a wide range of problems. The



procedure is based on “distortion” which is a measure of within cluster dispersion. Formally, let X bea p-
dimensional random variable having a mixture distribution of G components, each with covariance ', let
C1,Cp, ... ,Ck beaset of candidate cluster centers, and let ¢, be the one closest to X. Then the minimum
achievable distortion associated with fitting K centersto the datais

d¢ = L min E[(X-c) T (X~c)] 1)
p c1.---.Ck
which is simply the average Mahalanobis distance, per dimension, between X and c,. Note that in the case
wherel istheidentity matrix distortionis simply mean squared error. In practice one generally estimates dg
using dx, the minimum distortion obtained by applying the k-means clustering algorithm (Hartigan, 1975)
to the observed data

A natural, but overly simplistic approach to choosing the number of clusters, isto plot dx versusK and
look for the point at which the resulting “distortion curve’ levels off. This curve is always monotone de-
creasing. However, intuitively one would expect much smaller dropsfor K greater than the true number of
clusters, G, because past this point adding more centers simply partitionswithin rather than between groups.
Figure 1 shows distortion curves for three different data sets. Since the curves al have similar shapes, the
ad hoc method described above would suggest that they have roughly the same number of clusters. Thisis
not the case. Figure 1(a) correspondsto the classic iris data set (Fisher, 1936) which consists of two species
whose characteristics overlap and athird well separated one, and could thus be viewed as having either two
or three clusters. Figures 1(b) and 1(c) give the distortion curves for a mixture of six Gaussian distributions
and a single Gaussian respectively.

The above example clearly illustrates that there are problems with using the raw distortion. None-the-
less, dl the requisite information for choosing the correct number of clustersis contained in the distortion
curve. It issimply necessary to understand more precisely the curve’s functional form in both the presence
and absence of clustering. In this paper we show, both theoretically and empirically, that for alarge class of
distributionsthe distortion curve, when transformed to an appropriate negative power, will exhibit a sharp
jump at the “true” number of clusters. Our basic procedure, which we call the “jump method” has the fol-
lowing simple stepsfor estimating the true number of clusters:

1. Run the k-means agorithm for different numbers of clusters, K, and calculate the corresponding dis-
tortions, dk .

2. Select atransformation power, Y > 0. (A typical valueisY = p/2.)
3. Calculatethe“jumps’ in transformed distortion, Jx = di¥ —d Y, .

4. Estimatethe number of clustersin the dataset by K* = argmaxk Jk, the value of K associated with the
largest jump. (Notethat we define daY = 0 so themethod can select K* = 1if thereisno clusteringin
the data.)

For the data sets of Figures 1(b) and 1(c) our jump method correctly choosesK* =G=6andK*=G=1
respectively. For theirisdatait indicates that either two or three clustersis a reasonable choice.

In Section 2 we introduce some of the key information theoretic results from the subfield of electrica
engineering known asrate distortion theory and show how they relateto the cluster analytic distortion curve.
Theseresultsare used in Section 3 to derive the exact asymptotic form of the distortion curve for both asin-
gle Gaussian distribution and a mixture of G Gaussians. Thisin turn motivates the jump algorithm, which
we demonstrate on a variety of simulated data sets. In Section 4 we develop a general theory which shows
that, for amost any mixture distribution, this approach is guaranteed to produce the correct answer provided
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Figure 1. Distortion curves for (a) theiris data, (b) a simulated data set with 6 mixture components and (c) a single
Gauss an cluster.

the clusters do not overlap too severely. We then illustrate the jump method on several real world data sets.
Hypothesistests and confidenceintervalsfor the true number of clusters are developedin Section 5. In Sec-
tion 6 we present a comparative simulation study to assess the performance of the jump method versus five
competing approaches. We concludein Section 7 by discussing possible extensions of thiswork. In partic-
ular, we believe that the ideas from rate distortion theory which are applied in this paper to cluster analysis
may potentially prove useful for amuch larger class of statistical model selection problems.

2 Ratedistortion theory

Figure 1(c) suggests that the distortion curve is smooth (approximately hyperbolic) when there is little or
no clustering in the data. Information theoretic results from the area of electrical engineering known asrate
distortiontheory explain this phenomenon and provide a theoretical underpinningfor approachesto estimat-
ing and performing tests about the optimal number of clusters. Section 2.1 givesan intuitiveintroductionto
rate distortion theory and explainsits relationship to statistics in general and cluster analysisin particular.
Section 2.2 presents some results that provide insight about the functional form of the distortion curve.

2.1 Connectionsbetween ratedistortion theory and cluster analysis

One can characterize cluster analysis as an attempt to find the best possible representation of a population
using a fixed number of points. This can be thought of as performing data compression or quantization on
i.i.d. draws from agiven distribution. In exchange for compressing the information contained in the data
one must introduce some imprecisionin or “distortion” of the original valuesin much the same way as with
a histogram. In order to minimize the error one uses afinite list of representatives chosen so that, with the
exception of regions of low probability, no point will be too far from its representation. This entails plac-
ing the representativesin the regions of highest density, in other words where the data are clustered. In this
paradigm, each cluster center provides a representation for nearby observationsand the distortion, dk, gives
ameasure of the best possiblelevel of accuracy that can be obtained using K clusters. The datawill be well-
summarized when one picks the correct number of centers.

Thisisan anal ogue of the main problem of rate distortiontheory, which, in engineering terminology, isto
code, as accurately and efficiently as possible, the output of a source. Typically the source output consists of



asequence of realizations of acontinuousrandom variable. Representing or transmitting areal number with
perfect accuracy requires storing an infinite number of bits (base two digits) which is not feasible. Instead,
afinite set of codewords is chosen so as to approximate the numbers or source symbols as well as possible.
One defines a distance function, the distortion, between a source symbol and its representation to measure
the “goodness” of the code. A typical criterion for agood codeis that it should minimize the expected dis-
tortion for a draw from the underlying probability distribution of the source. Therefore, the central problem
in rate distortion theory isto find the best possible distortion achievable with a given number of codewords.
In the statistical setting, the number of clusters, K, isequivalent to the number of codewords, the cluster cen-
ters provide canonical representations of members of their respective groups, and the squared (Mahal anobis)
distance between an observation and its closest center serves as the distortion function.

In coding theory oneis principally interested in the average number of bitsthat will berequired for arep-
resentation. Thisquantity isreferred to astherate, R, (per source symbol) of a code. For asimple code, the
rel ationship between the rate and the number of codewords or cluster centers is given by K = 2R, The min-
imum rate achievable for any given distortionis called the rate distortion function, R(D), and, correspond-
ingly, the minimum distortion achievablefor any given rateisthedistortionrate function, D(R). Essentialy,
R(D) and D(R) provideaway toformalize how many representativesto useand how good ajobthey can do at
datasummarization. Thedistortionrate function, D(R), isintuitively thecluster analytic distortion curve-i.e.
the minimum distortion achievablefor agiven number of representatives—substituting the number of centers
in place of therate. D(R) and dk are not technically completely equivalent. However, D(R) does provide a
lower bound for dx and empirical evidence suggeststhat the two curves behave similarly.

Therate distortion and distortion rate functions have an information theoretic interpretation. In fact, the
key result of rate distortion theory states that

R(D) = min _ 1(X;X) 2
f(%%):Ey g [d(X,X)]<D

where d(X, X) is the distortion between the source, X, and its representation, X, and | (X; X) is the Shannon
mutua information between X and X. The mutual information is defined as

(x,%)
//Iogfxx XX(x X)dxdX

where fx and fy are, respectively, themarginal densitiesof X and X, and f, 4 isthejoint distribution. (X, X)
gives the expected information contained in X about a draw from the distribution of X and hence provides
ameasure of the ability to predict one variable given the other. Equation 2 says that the minimum achiev-
ablerate, R(D), is equal to the minimum amount of information about the source, X, that is contained in a
conditional distribution of arepresentation, X, that achieves distortion, D. The mutua information is more
familiar to statisticians as the Kullback-Leibler divergence (Kullback and Leibler, 1951) between ij and

fx fg. Hence I (X; X) gives the divergence between the joint distribution of X and X and the product of the
two marginal distributions, and can be thought of as ameasure of thelack of independence between the two
random variables. Mutual information and related ideas such as entropy have been widely used in statistics.
Examplesinclude hypothesistesting and i nformation sufficiency (Kullback and Leibler, 1951), the construc-
tion of multivariate measures of dependence Joe (1989), the selection of reference priors (Bernardo, 1979;
Berger and Bernardo, 1989), the Bayesian Information Criterion (Schwarz, 1978), and Bayesian interpreta-
tion of experiments (Lindley, 1956). Thelatter provides one of the most direct translations of coding theory
ideas to statistics. Specifically, in a statistical setting one can interpret the source output as a draw from the
prior density on a parameter space, and the received signal as data drawn from the posterior distribution. In
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thisformulation, the mutual information gives the expected information the datawill have about the param-
eter and hence measures the amount of information associated with the experiment. Less frequently, therate
distortion function itself has been used in statistics. For example, Yuan and Clarke (1999a,b) useit as a cri-
terion for likelihood selection. A detailed summary of the information theoretic statistics literature and its
relationship to the pioneering work of C.E. Shannonis given by Soofi (1994).

2.2 Asymptotic ratedistortion theory results

Below we give some well known results from asymptotic rate distortion theory which are used in Sections 3
and 4 to motivate the jump method:

() Foragivencode, theratedistortionfunction, R(D), isanon-increasing convex functionof D. Similarly,
the distortion rate function, D(R), is a non-increasing convex function of R.

(1) If X is p-dimensional normal with mean vector p, and covariance structure g?l, then, under squared-
error distortion, the rate distortion and distortion rate functions are
p, . po =

R(D) = 3 log, - and D(R) = pa®2™ ©)

(111) For ascalar random variable X with variance a2 the following are bounds on the rate distortion and
distortionrate functions of X based on squared error distortion:

HOO + Llogy =~ < RD) < Llog, &
2% oD =" = 2%
2-2R92H(X) o oR
— < < .
—— <D(R) < 072 @)

whereH(X) = — [ f(x)log, f (x)dx is the entropy of the distribution of X.

Thefirst result suggeststhat any choice of the number of clusters based on the distortion curve or mono-
tone transformations thereof will be admissiblein the sense that no randomized scheme would do better. It
has been conjectured that the distortion curve itself is aways convex. However this has proven difficult to
establish. Sugar (1999) gives a proof of convexity under certain hierarchical restrictions on the clustering
methodology. Results (1) and (111) follow from the maximum entropy property of the Gaussian. Versions
of (I1) exist for more complex covariance structures. However, it is difficult to calcul ate the distortion rate
function for a general distribution. As an application of the third result, consider the uniform distribution,
X ~ U(a,b),where H(X) = log,(b—a) and 0® = (b—a)?/3. One gets

(b—a)? (b—a)?
=< < —5.
omezze < PR < 3w

There are severa thingsworth noting about these bounds. First, the functional forms of the upper and lower
boundsarethe sameintermsof Rand D. Theonly differenceisinthemultiplicativeconstants. In practice, the
shape of the distortion curve usually mirrors the bounds. Second, in the case of both the normal distribution
and the more general boundsof (I11) we see that there is an inverse relationship between rate and distortion
of the form R 0 —log, D or equivalently D 0 2-2R. Empirically this pattern holdsin general and will lead
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Figure 2: Distortion curves for simulated data setswith (a) a single mixture component and (b) 6 mixture components.

usto transformations of the distortion curve that prove extremely valuablefor identifying the true number of
clusters.

Most of the fundamental work in thisareais dueto C.E. Shannon who pioneered the field of mathemat-
ica communication (Shannon, 1948). The notion of a rate distortion function was introduced in Shannon
(1959) Theinterested reader should see Cover and Thomas (1991) for amore complete devel opment includ-
ing extensive references and proofs presented from a fairly statistical point of view. Other sources include
Berger (1971), aclassic monograph on rate distortion theory, Gersho and Gray (1992) on vector quantization
and signal compression, and the more general information theoretic texts Gallager (1968), McEliece (1977),
Csiszar and Korner (1981) and Blahut (1987).

3 Thedistortion curvefor Gaussian clusters

Given the wide variety of applications of cluster analysis, from partitioning a data space to searching for
areas of high density to identifying distinct sub-populations, it is difficult even to define what is meant by the
“true’” number of clustersin adata set. Onecommon and natural approach, whichwe adopt for thetheoretical
development in this paper, is to assume that the data come from a mixture distribution and to equate the
number of clusters with the number of mixture components, G. In this paradigm, the absence of clustering
correspondsto G = 1. In Section 3.1 we show how the results from Section 2.2 can be used to derive the
asymptotic form of the distortion curve, dx, for data generated from amixture of Gaussian distributions. An
extension to non-Gaussian clustersis made in Section 4. These results are used to motivate the jump method
for choosing the number of clusters, which we illustrate on simulated datain Section 3.2.

3.1 Asymptotic resultsfor a mixture of Gaussian clusters

In order to utilize the distortion function, dx, to choose the correct number of clusters we must first under-
stand its functional form both when the data set consists of a single cluster and when it is a mixture of G
different clusters. Consider Figure 2(ai) which provides a plot of dk versusthe number of centers, K, for a
simulated data set. The data were generated from a single Gaussian distribution with identity covariance,
p = 5 dimensions and n = 300 observations. The relationship appears to be hyperbolic. Figure 2(aii) pro-
vides confirmation, giving a plot for the same data after raising dg to the power of —p/2 = —2.5. A strong
linear relationship is evident with R2 — 99.3%. For this data, the functional form of the distortion curve is
approximately dx 0 K—%4. In fact, Theorem 1 suggeststhat in the limit as p approachesinfinity such arela-
tionship between distortion and number of centers will aways exist for Gaussian data.



Theorem 1 Suppose that X has an arbitrary p-dimensional Gaussian distribution. Let K = | kP| where k
can be any positive number. Then

; )

lim de = k ()

The proof of Theorem 1isgivenin Appendix A.1. Thisresult derivesfrom thefact that dx — D(log, k)

as p — c. Theasymptoticform of dx for Gaussian datathen followsfrom (I1). The quantity, k, isessentially

the pth root of the number of centers, K. Hence Theorem 1 suggests that, for large enough p, the following
relationship holds approximately

d P2 0K~ K, (6)

which explainsthe observed linear relationship. Even though theresult is asymptoticin the dimension of the
space, weseefrom Figure 2(a) that linearity can hold for relatively low values of p. In practice we havefound
that this approximate relationship exists in most situations. One might naively imagine that the constant of
proportionality in (6) should be 1. However, it turns out that for most values of p the slopeis strictly less
than 1 and decreases as the dimension increases. For instance, the slope in Figure 2(aii) is approximately
0.83. Theorem lillustratesafundamental flaw with the“intuitive’ approach of examiningtheraw distortion
curve for points where it levels off. Since a single Gaussian will have a curve approximately of the form
dk O K=2/P, the distortion will decline rapidly and then plateau, leaving the impression of clustering even
when none exists.

Next we consider the form of the distortion curve when the data.consist of amixture of G Gaussian clus-
ters. Figure 2(bi) providesaplot of the transformed distortion, d,¢ 5/ 2 versusnumber of centers, K, generated
from asimulated data set consisting of a mixture of G = 6 Gaussian distributions. Notice that the plot is ap-
proximately linear for K > 6 clustersand that thereisasignificant jump between K = 5and K = 6. Intuitively
this jump occurs because of the sharp increase in performance that results from not having to summarize
two disparate groups using the same representative. Adding subsequent cluster centers reduces the within
group rather than the between group distortion and thus has a smaller impact. An aternativevisuaizationis
provided by Figure 2(bii) which plots the successive jumpsin the transformed distortion. This*“jump plot”
proves particularly useful when the true number of clustersis not as obvious as in this example. Both the
linearity for K > G and the jump at K = G occur in general. Theorem 2 gives the asymptotic form of the
distortion curve for amixture of G clusters which provides atheoretical explanation for these phenomena.

Theorem 2 Supposethat thedistributionof X isamixtureof G Gaussianclusterswithequal priorsand com-

mon covariancel . Let A, /p be the minimum Euclidean distance between cluster means after standardizing

the space by multiplying by Fgl/z. Then for K < G

limdg = o
Py

provided A is bounded away from zero. Furthermorefor K = | kP|

limdg = k=2
p—roo

provided A > 6.

The proof isgivenin Appendix A.2. Aswith Theorem 1, thisresult derivesfrom the fact that the distortion
associated with each individual Gaussian cluster converges to the corresponding distortion rate function so
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Figure 3: a) A mixture of nine Gaussian clusters, b) the raw distortion curve which suggests only three clusters, c)
the transformed curve which clearly indicates nine clusters and d) the corresponding jump curve which also clearly
indicates nine clusters.

that (I1) can be applied. Theorem 2 impliesthat for large enough pand K < G, dgp/z ~ Owhilefor K > G,
dy P12 kP~ K. Infact the proof of Theorem 2 suggeststhat the slopeis proportional to 1/G, yielding

K
_n/2 as 7KZG
G~ {OG K<G "

where 0 < a < 1. Thisexplains both the jump at K = G and the linearity thereafter as seen in Figure 2(bii).
Aswith Theorem 1, even though these results are asymptotic in p, in practice they appear to hold even in
low dimensions.

Equation (7) suggests severa possible procedures for utilizing the distortion curve to determine G. In
particular it provides motivation for the jump method which estimates G using

argmax {dAEY _ d:g\_(l} ,

the value of K associated with the largest jump in the transformed distortion. Furthermore it suggests that
an appropriate value for Y would be p/2. Other approaches are a so possible. For example, one could use a
“brokenlineg” method by finding thevalue, K*, that produces the minimum sum of squared errorswhen fitting
two straight linesto d, p/z, thefirst for K < K* and the second for K > K*. Thisapproach is based on thefact
that thetransformed distortion should be approximately linear for K < Gandfor K > G. Empirically thejump
method and the broken line method both work extremely well. The broken line method has the advantage of
being global rather than local and as aresult is potentially more robust. However, its theoretical motivation
depends on the Gaussian assumption. In contrast, the jump method is almost wholly non-parametric. In
Section 4.1 we show that for a general class of distributionsit is guaranteed to choose K = G provided that
the separation between cluster meansislarge enough. Hence we focus primarily on the jump method for the
remainder of the paper.

3.2 Simulation results

Equation 7 suggeststhat the jump and broken linemethodswill both performwell on high-dimensional Gaus-
siandata. In thissectionwe useempirical simulation studiesto show that both methods also perform well on
low-dimensional data. Figure 3 providesan example of adataset for which not only do thejump and broken
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Figure 4: Three simulated data sets, each with four Gaussian clusters, (i). Transformed distortion curves for each
data set (ii), and the jJumps associated with each curve (iii).

linemethodswork well but usingtheraw distortion curvefails. Figure 3(a) showsatwo-dimensional data set
consisting of nine well separated clusters. In Figures 3(b) and (c) we have plotted the raw and transformed
distortion curves for this data. Because the nine mixture components are themselves grouped, the raw dis-
tortion curve strongly suggeststhat there are only three clusters. However, after transforming the distortion
curvethetrue number of clustersbecomesreadily apparent. Both thejump and broken line methods correctly
select nine clusters. It isworth noting that the corresponding jump plot in Figure 3(d) exhibits a secondary
peak at K = 3 corresponding to the three clusters of clusters. The ability to detect hierarchical structurein
the clustering is an added benefit of our approach.

Figure 3illustratesasituationinwhichthe groupsarewell separated. However, the jump and brokenline
methods a so perform well when the clusters overlap to a large extent. Figure 4 showsthree data sets, each
amixture of four Gaussians. The data set of Figure 4(a) containswell separated clusters, that of Figure 4(b)
has some overlap and that of Figure 4(c) isamost indistinguishablefrom asingle cluster. The corresponding
plotsof transformed distortion reflect this decreasing level of separation. Figure 4a(ii) showsaclear jump at
K = 4. Thejump in Figure 4b(ii) isless extreme, while that in Figure 4c(ii) is difficult to detect. However,
the corresponding jump plotsall clearly indicate four clusters. As the separation between clusters decreases
the transformed distortion curve becomes closer to linear as predicted by Theorem 1. However, thisexample
showsthat the jump and broken line methods can still produce accurate answersfor highly confounded clus-
ters. To estimate the statistical power of these approaches we simulated 100 data sets from the distribution
used in Figure 4(c). The broken line method correctly picked K = 4 on 92% of the data sets and the jump
method on 100%. As an aside, it isinteresting to note that in Figure 4 the jump at K = 1 steadily increased
with the confounding of the groups. In Section 4.1 we present results which show that under appropriate
conditionsthe jump method will pick K = 1 in the absence of clustering.



4 Thedistortion curvefor non-Gaussian clusters

The theoretical and empirical results of Section 3 show that the distortion curve, appropriately transformed,
providesan excellent basisfor choosing the correct number of Gaussian mixture components. In Section 4.1
we extend the theory of Section 3.1 to a large class of non-Gaussian distributions while also relaxing the
asymptotic requirement on p. In Section 4.2 we apply the jump method to several real world data sets.

4.1 Theoretical resultsfor mixtures of non-Gaussan clusters

Results from rate distortion theory can aso be applied to non-Gaussian data. In particular, (4) provides
bounds on the distortion for arbitrary distributions. While it is not possible to use these bounds to derive
the exact theoretical form of the distortion curve in the general case, this result does allow usto prove, un-
der suitable conditions, that the largest jump in transformed distortion will be at K = G. We summarize our
findingsin Theorem 3.

Theorem 3 Suppose that the distribution of X is a mixture of G p-dimensional clusterswith equal priors.
Furthermore, assume that the clusters are identically distributed with covariance I', and finite fourth mo-
ments in each dimension. Let A,/p be the minimum Euclidean distance between cluster means after stan-
dardizing. Let H*(X) bethe minimumentropy, conditional on cluster member ship, over each of the p dimen-
sions after standardizing. Finally, let

6%y
W_l—m )
where
Vi = Var (%Hx—pj“ﬁ1|Xinjthc|uster). (9)

Suppose dk iscomputed for 1 < K < Kyax. Then aslong as G < Kk, thejump
(A — Yy

will be maximized when K = G provided that A > 6 and there existsY > 0 such that

-Y
pa2w ™ 2 NG pa?w ™
(57) (e (8) ow]) <z e () <z o

Furthermore, in the limit as A — oo the jJump method is guaranteed to produce the correct answer for all p
provided that

0<Y < [logy(K2,2me) — 2H*(X)] . (12)

Finally, if the dimensions areindependent, the boundson Y provided by (11) apply in thelimit as p — oo for
allA> 6.

The proof is given in Appendix A.3 and has two main parts. First we show that the transformed distortion
is bounded above for al values of K < G provided that there is some separation in the clusters. Second, we
show that the transformed distortion must be no lessthan 1 for K = G and that the transformed distortionis
also bounded for K > G. Provided that both bounds are tight enough, this proves that the maximum jump

10



must be at K = G. The final bound is established using (4). The proof provides some intuition as to why
thereisalarge jump at K = G. Provided the clusters have reasonabl e separation the distortion will be large
for K < G and hence the transformed distortion will be low. At K = G the distortion will be no more than
1 and hence the transformed distortion will jump to at least 1. Finaly, (4) guarantees that the distortion for
K > G must be bounded away from zero and hence the transformed distortion can not exhibit any other large
jumps.

Asaconsegquence of Theorem 3 we can easily prove that when there isno clustering in the datathe max-
imum jump will be at K = 1 for sufficiently low values of Y. We statethisresult in Corollary 1.

Corollary 1 Define d(;Y = 0. Inthe absence of clustering (G = 1) and assuming the distribution of X hasa
finite fourth moment in each dimension, then for 1 < K < Kpyay the jump

[dg " —di Yy

will be maximized when K = 1 provided

0<Y< [Iogz(K,%BXZTre)—ZH*(X)]_l. (12)

The proof is givenin Appendix A.4. Notethat (12) is not an asymptotic result. It holdsfor any value of p
and any distributionwith finite fourth moment. Corollary 1 provesvery useful in Section 5 when we develop
hypothesistests for the presence of clustering in a data set.

Theorem 3 and Corollary 1 together guarantee that, provided there is sufficient separation between cen-
ters and an appropriate transformation is used, the jump method will produce the correct answer for clusters
having any distributionwith finite fourth moments. In practice we have found that the constraints given by
(10) are overly conservative and in particul ar that the jump method is effective even for very small values of
A. Interestingly, it can be shown that for Gaussian mixturesthe upper boundin (11) and (12) can be replaced
by infinity, but thisis not true for any other distribution. Thisis a consequence of the maximum entropy
characterization of the Gaussian and suggests that the further the cluster distributionsare from Normal, the
smaller the transformation power should be. However, it is not obvious how to choose the optimal value of
Y. The constraintsin (10) and (12) are useful for proving existence but can not be calculated in real applica
tions. In Section 6 we discuss a promising approach, based on effective dimensions, which we use to guide
our choices of Y in the examples of Section 4.2. Thisis an area of ongoing research.

4.2 Applications

In this section we apply the jump method to three real world data sets. Thefirst isthe well known iris data
(Fisher, 1936) which contains 150 measurements on four variables for three different species of iris. The
second isthe Wisconsin breast cancer data set (Wolberg and Mangasarian, 1990) which consists of measure-
ments of nine variablesfor each of 683 patients. Biopsiesfor 444 of these patients were benign, while those
of the remaining 239 were malignant. Finally we explore the auto data (Quinlan, 1993) which records eight
measurements for each of 398 typesof cars. Because of high correl ations between some variabl es, the actual
clustering on the auto datawas performed on atwo-dimensional data set formed using principal components.
The auto data provide a good example of a situation in which the number of groupsispossibly large and not
known a priori. The breast cancer and auto data sets were both taken from the University of California -
Irvine machine learning repository.

Figures5(a) and (b) show jump plotsfor theirisdataset withY = 2/3and Y = 1 respectively. In thefirst
plot the maximum jumpisat K = 2 but thejump at K = 3isamost aslarge. In the second plot the situation
isreversed. Thusthereis strong evidence for either two or three clusters but it is unclear which of theseis
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Figure 5: Jump plotsfor theirisdatausing (a) Y = 2/3 and (b) Y = 1, (c) a plot of theirisdata, and jump plots for
(d) the breast cancer data and (€) the auto data.

the best choice. Thisis exactly the outcome we should expect. Recall that the iris data set contains three
classes. However, Figure 5(c), which plotsthefirst two principal components of theiris data, illustratesthat
the clustersfor two of the speciesoverlap whilethethird isquitedistinct. Thusfrom aclustering, as opposed
to classification, point of view it is not clear whether the data should be treated as one large and one small
cluster or asthree small clusters. Thisisanother nice example of the way inwhich thetransformed distortion
curve can be used to identify fine points of structural detail. Figure 5(d) gives the jump plot for the breast
cancer datausingY = 1. It showsasharp peak at K = 2. The clustering separates patients almost perfectly
based on whether their biopsies were benign or malignant. All numbers of clusters greater than two have
significantly smaller jumps, indicating that there is no evidence of sub-clusterswithinthese two groups. The
jumpplot for theautodatawithY = 2/3, Figure 5(e), hasaquitedifferent pattern. Thelargestjumpisat K =8
but there are also substantial jumps at avariety of other values. This suggeststhat there are multiple clusters
in the auto data set but it is difficult to tell exactly how many. Thiswill be clarified in the following section
where we develop hypothesistests and confidence intervals for the number of clusters and also discussthe
choice of the transformation power Y.

Theresults of Sections 3 and 4 are based on the expected distortion curve given by (1). In practice one
must estimate this function by applying the k-means algorithm to the observed data. Potential sources of er-
ror arise from the use of the empirical rather than underlying distribution of the data and from the fact that it
is not always possibleto obtain the true k-means solution. A third form of uncertainty isintroduced because
the covariance matrix, I', israrely known in practice. One solutionisto estimate I as part of the clustering
process. Another optionisto ignorel” by using squared error rather than Mahalanobis distance. In our ex-
perience, the shape of the distortion curve based on squared error is robust to a wide range of covariances,

12
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so we used this approach in our examples.

5 Testingand validation

The results of the previous sections show that the jump method provides accurate estimates of the number
of clustersfor awide variety of problems. By examining the relative sizes of the jumpsit isaso possibleto
evaluateinformally the certainty of theseestimates. For example, Figure 5(d) showsthat for the breast cancer
datathejumpsat K = 1 and 2 areby far thelargest, strongly indicating that there are no morethan two clusters
inthedata. However, for the auto data there appear to be many reasonable choicesfor theestimate of G. Next
we devel op some more formal approachesfor assessing the certainty in the choice of the number of clusters.

Ideally onewishesto estimate the variability associated with each jumpin order to test for statistical sig-
nificance. A natura approach to this problem is to use the bootstrap (Efron and Tibshirani, 1993). Simply
draw with replacement from the given data set to produce a bootstrap sample with the same number of ob-
servations as the origina and cal culate the jumps associated with this new data set. Repeat this process B
times. We produced B = 100 bootstrap replicates of the jumps at each value of K and used their 5th and 95th
percentilesto obtain pointwise 90% confidenceintervalsfor the jump plotsof Figures5(a), (d), and (e). Fig-
ure 6 showstheresults, with dashed lines denoting the confidence boundaries. Figure 6(a) makesit clear that
there are either two or three clustersin theiris data but that it is not possibleto distinguish between these two
answers. Figure 6(b) provides strong evidence of two clusters in the breast cancer data, while Figure 6(c)
gives convincing evidence of the existence of clusters but no indication of the actual number.

A related approach isto calculate, for each value of K, the fraction of bootstrap data sets that have their
maximum jump at K. One can then take as a (1 — o) 100% confidence interval the smallest collection of K’s
that account for at least 1 — a of thetotal. For example, for theiris data99% of all bootstrapped data setshad
their maximum jump at either K = 2 or 3 so a 99% confidence interval would consist of these two numbers.
For the breast cancer data the jump method selected K = 2 for al 100 bootstrap data sets so any confidence
interval for thisdatawould contain just the valuetwo. Interestingly, despitethe ambiguity in Figure 6(c), this
procedure decisively indicates that there are alarge number of clustersin the auto data, with an 87%interva
consisting of the values K = 8 through 10 and a 97% interva including K = 7 through 10.
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The above procedure also allows one to perform a simple hypothesistest for the presence of clustering,
i.e. the existence of at least two clustersin the data. Corollary 1 indicates that in the absence of clustering
thelargest jump shouldbe at K = 1. Henceif a(1— a)100% confidenceinterval doesnot includeK = 1 then
one can be confident at level a that thereis clustering in the data. The 97% confidence intervalsfor theiris,
breast cancer and auto data sets all failed to include K = 1 so we can be confident that they each had some
form of clustering.

Thereis an interesting tradeoff in picking the transformation power Y. Aswe saw with theirisdata, this
choice can have some effect on the estimated value of G. In general, the closer Y isto zero the more concave
the transformed distortion curve will be and hence the more likely it is that the maximum jump will occur
a K =1, even in the presence of clustering. Therefore, lower values of Y decrease the power of the above
hypothesistest. However, we seefrom (12) in Corollary 1 that if Y istoo large we are no longer guaranteed
that the biggest jump will occur at K = 1 eveniif thereisno clustering. Thus, if Y istoo large, the significance
level of the test may be overstated. In general, the largest value that Y can take on without misspecifying
the significance level will depend on how close the cluster distributionsare to Gaussian. For approximately
normal dataone may use alarge value of Y, but for very non-Gaussian data the transformation power needs
to be considerably lower. In some situationsit may be possibleto estimate the cluster distributionsand hence
the optimal value of Y. If thisisnot practical, then we recommend using a relatively low value to guarantee
correct significance levels.

6 A comparativesimulation study

In this section we present results from a comprehensive simulation study to compare the performance of the
jump procedure with five standard approaches. These methods make use of the following statistics.

B(K)/(K-1)

CH(K) = W) /(0K (13)
KL(K) = ‘%, DIFF(K) = (K — 1)%PW(K — 1) — K¥PW(K) (14)
HK) = (n—K-1) [%-1} (15)

0 = ([)<f8<).>] (9
Gap(K) = %Iog —log(W(K)) (17)

Thefirst method, suggestedin Calinski and Harabasz (1974), choosesthe number of clustersasthe argu-
ment maximizing (13) where B(K) and W(K) are, respectively, the between and within cluster sum of squares
with K clusters. CH(K) hastheform of an ANOVA F-statistic for testing for the presence of distinct groups.
The approach of Krzanowski and Lai (1985) maximizes KL(K) as given in (14). This statistic attempts to
measure rate of changein distortion, adjusting for the dimension of the space, p. Hartigan (1975) proposes
choosing the smallest value of K such that H(K) in (15) islessthan or equal to 10. H(K) iseffectively apar-
tial F-statistic for testing whether it is worth adding a K + 1st cluster to the model. The silhouette statistic,
proposed by Kaufman and Rousseeuw (1990) and shown in (16), is a measure of how well the ith point is
clustered. Theterm a(i) isthe average distance between theith point and all other observationsinits cluster
andb(i) istheaverage distanceto pointsin thenearest cluster, where nearest isdefined asthe cluster minimiz-
ing b(i). Large values of s(i) indicate strong clustering. Kaufman and Rousseeuw (1990) suggests choosing
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the number of clustersthat maximizes the average value of s(i). Finally, a more recent approach developed
in Tibshirani et al. (2001) uses the Gap statistic, (17). With this method B different uniform data sets, each
with the same range as the origina data, are produced and the within cluster sum of squaresiscalculated for
different numbers of clusters. Wy (K) is the within cluster sum of squares for the bth uniform data set. One
approach would be to maximize Gap(K). However, to avoid adding unnecessary clusters an estimate of the
standard deviation of log(W (K)), s«, is produced and the smallest value of K such that

Gap(K) > Gap(K+1) —sc41

is chosen as the number of clusters.

We compared these methods with the jump approach in five different simulations. The first simulated
data set was generated from a basic two dimensional mixture of five Gaussian clusters, each with identity
covariance. The second simulation, which was designed to test the effectiveness of the methods on highly
multivariate data, al so used a Gaussian mixturewith five components, but inten dimensions. Thethird simu-
lation examined performance when there was dependence among the dimensions. It used a distributionwith
four Gaussian clusters each with two by two covariance matrix with correlation 0.7. We tested the effect of
differing covariances in simulation four by producing four Gaussian clustersin two dimensions with corre-
lations of —0.7, —0.3, 0.3 and 0.7 respectively. Finaly, in simulation five we produced four non-Gaussian
clustersarranged in atwo-dimensional square using an exponential distributionwith mean oneindependently
in each dimension. All the simulated data sets contained 100 observations equally divided among the clus-
ters. For each of thefive scenarios we produced 100 data sets, ran k-means with 20 random restarts on each,
and then applied the six procedures to the resulting fits. The results are shown in Table 1. All simulations
report results for the jump method with Y = p/2 but we have also included outcomes for some other values
of Y.

The jump method appears to be extremely robust. It performed well using the transformation power
Y = p/2in dl the scenarios, while each of the other approaches did poorly in at least two. Although this
simulation study is not exhaustive, it does suggest conditions under which the jump method will be effec-
tive. In particular, the jump method strongly outperformed the other approachesin simulationsfour and five
inwhich the cluster distributionseither had differing covariances or were non-Gaussian. In some of thesim-
ulations the jump approach occasionally incorrectly chose a very large number of clusters. It appears that
the method can be somewhat sensitive to a non-optimal fit of the k-means agorithm. Originally a handful
of the data sets produced this effect. We reran our procedure on these data sets with 100 random restarts of
k-means rather than 20 and produced slightly improved results.

An important practical issue with the jump method is the choice of the transformation power, Y. The
theory of Section 3 would suggest setting Y = p/2. However, these results are based on the Mahalanobis
distortion which is equivalent to assuming the data have been standardized so as to be uncorrelated. When
squared error distortionisused and strong correl ations exist between dimensions, values of Y somewhat less
that p/2 may produce superior results. Thiswas the case for simulationsthree through five. Empiricaly, a
promising approach involves estimating the “ effective’” number of dimensionsin the data and transforming
accordingly. For example, theirisdataisfour-dimensional which suggestsusingY = 2. However, severa of
thevariablesare highly correlated. Asaresult, the effective dimension of thisdatasetiscloser to 2, implying
that atransformation power near Y = 1 may be more appropriate. Thisis an area of ongoing research.

7 Discussion

We have shown that the jump method ishighly successful at sel ecting the correct number of clustersonawide
range of practical problems. Moreover, our empirica resultsillustrate that the transformed distortion curve
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Simulation | Method Cluster estimates
1 2 3 4 5 6 7 8 9 10
One CH O 0 O 0O 98 0 1 1 0 O
(Five KL 0O 026 0 34 91016 5 O
clusters, Hartigan 0 0 O 0 0O 0O 1 5 18 76
two Silouette 0 5121 4 24 0 0O 0O O O
dimensions) | Gap 0 o 77 0 23 0 0 O O O
Jump (Y=1) 0O 0 3 4 9 0 0 0 1 O
Two CH 0O % 4 0 O O O O O0 O
(Five KL 0O 0 o 0O 98 0 1 1 0 O
clusters, Hartigan 0 0 O 0 100 0 0O O O o
ten Silhouette 01000 0 O O O O O o0 O
dimensions) | Gap 0 0 O 0 100 0 0 0 0 O
Jump (Y=4) O 0 O 0 100 0 0 0 O O
Jump (Y=5) O 0 O O 9797 0 0 O 1 2
Three CH O O 0 26 2 1 4 15 22 30
(Four KL O O 0 87 2 1 2 6 2 O
clusters, Hartigan 0 0 O 0 0 O 6 18 30 46
common Silhouette 0 0 0 100 0O 0 0 0 0 O
non-identity | Gap 0 1 0 9 8 0 0 0 0 O
covariance) | Jump (Y=0.7) || O 0 0 100 0O 0 0 0 0 O
Jump (Y=1) O 0 0 97 0O 0 0 1 1 1
Four CH O O 0 83 5 5 3 0 1 1
(Four KL O O 0 76 7 2 3 8 4 0
clusters, Hartigan 0 0 O 0 0 0O 8 20 23 49
differing Silhouette 0 34 0 65 1 0 0 0 0 O
covariances) | Gap 0O 20 0 78 2 0 0 0 0 O
Jump(¥Y=07) 0 O 0 100 O O O O O O
Jump (Y=1) O O 0 98 0O 0 01 1 O
Five CH 0O O 0 2 11 19 10 6 15 17
(Four KL O 0 0 71 17 4 3 0 5 O
exponential | Hartigan 0 0 O 0 0 2 7 9 17 65
clusters) Silhouette 0 0O 0 60 30 8 1 1 0 O
Gap 8% 9 0 6 2 0 0 0 0 O
Jump (Y=07)| 0 0 O 99 1 0 0 0 0 O
Jump (Y=1) O O 0O 8 4 0 1 1 4 3

Table 1. Simulation results. Simulation 1 had cluster means of (0,0),(2.5,2.5),(5,5),(—2.5,2.5) and
(—5,—5). Simulations 2 to 4 had clusters evenly spaced on aline with separations of 1.6, 5 and 3.5 respec-
tively in each dimension. The clustersin simulation 5 were arranged on a square with sides of length 4. Al
simulations had standard deviations of 1 in each dimension.
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and corresponding jump plotsare just as valuable as exploratory tools. For example, they can be used to de-
tect underlying hierarchical structuresin clustering, as seen withtheirisand triangul ar nine cluster data sets.

Additionally, thetheory of Sections3 and 4 potentially can be extended in several directions. First, empirical

evidence suggests that the linearity of the transformed distortion holds even for non-Gaussian distributions
and low values of p. Recent advancesin an area known as Bennett theory, which deal swith non-asymptotic
rate distortion functions, may prove useful for formalizing this observation(Naand Neuhoff, 1995). Second,
in practice, the requirementsin (10) from Theorem 3 to guarantee the success of thejump method are overly
conservative and can probably berelaxed. Related to thisisthe question of how best to select the transforma-
tion power, Y. Third, results from rate distortion theory can be applied to many distortion measures besides
squared error. For example, codes based on Hamming distance, the number of matching coordinates, have
beenwidely studied and their propertiescoul d be very useful when clustering categorical datasuch asgenetic
sequences.

Thetechnical resultsin this paper depend heavily on information theory. Other recent work in informa-
tiontheoretic clusteringincludesRobertset al . (1998), Frayley and Raftery (1998) and Biernacki et al. (2000)
which develop Bayesian methods for choosing the number components in a Gaussian mixture distribution.
These approaches differ from ours both in that they are model-based and that they make no explicit use of
thedistortion curve. However, it may be possibleto usetheresults of Section 3 to establish atheoretical link
with thiswork. Frigui and Krishnapuram (1999) suggestsa more non-parametric clustering method based on
an objective function involving a distortion type measure which is optimized over both cluster assignments
and number of groups. However, their procedure for choosing the number of clusters can not easily be used
with other methods sinceit isintegrated into the overall clustering algorithm. In contrast, the jump approach
can be applied with many clustering techniques besides k-means. For instance, James and Sugar (2003) in-
tegrates the jump method into a more model-based procedure for clustering funtional data. Of the recently
suggested clustering algorithms, perhaps the one making the most use of information theoretic ideas is that
of Gokcay and Principe (2002). Whilethis algorithm does use a measure of the divergence between clusters,
it does not provide any approach for choosing the number of clusters.

This paper has focused on identifying the number of groups in a data set. In addressing this problem
we have drawn links between the fields of rate distortion theory and cluster analysis. We believe that these
ideas can be applied to numerous other model selection problemsin statistics. In such situationsa common
approach is to plot a goodness of fit measure versus the statistic of interest and to use the resulting curve
to select the model parameter. Examples include using the sum of squared errors to choose the number of
predictorsin a standard regression setting, or the penalty term in aridge regression. Similarly, a plot of cu-
mulative explained variability is frequently used to select the optimal number of dimensionsin a principa
componentsanalysis. Theseare special casesof amore general paradigm inwhich likelihood curves are used
to choose modeling parameters. Often the resulting “ distortion” curve is monotone so choosing the global
optimum fails to produce a sensible result. Cross-validation may alleviate this problem but is computation-
ally expensive and potentially unstable. Instead, one often attempts to find a point at which the curve levels
off, indicating that there will be little improvement in goodness of fit associated with further increasing the
number of parameters. This leads to the same difficulties as using the raw distortion curve to choose the
number of clusters. Transformations similar to those used in the clustering context may aso lead to better
model selection proceduresin the wide range of statistical problems that use goodness of fit measures akin
to distortion.
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A Proofsof thetheorems

Herewe briefly definethe notationused inthe proofs. Let X3, Xy, ... beani.i.d. sequence onthe sample space
or sourceal phabet X. Typically, thisa phabet will simply beaEuclidean space, R P. Therepresentation space
from which the codewords are drawn (al so usually a Euclidean space) will be denoted by X. A codeissaidto
have block length m if each codeword represents not a single source symbol but m source symbols at once.
Mathematically, X™ = (Xg,...,Xm) € X™is represented by X™ € X™. Note that, regardless of the block
length, each single source symbol effectively isassigned arepresentation symbol. For ablock length 1 code,
the representation symbol associated with a particular source value will always be the same. However, this
need not be the case for a block length m code. Using this set of definitions, clustering can be visualized in
two different ways. It can be thought of as a coding problem with ablock length of m= 1 and p-dimensional
source and representation spaces, or, aternatively, as a coding problem with a block length of m= p and
1-dimensional source and representation spaces. In the proofs of Theorems 1 through 3 we make use of the
second paradigm, in which case the rel ationship between the number of clustersand therateis

K =2PR, (18)

Let R(D) be the (asymptotic) rate distortion function and D(R) be the distortion rate function. Finaly, we
denote the finite block length distortion rate function by Dm(R). This represents the lowest distortion that
can be achieved with rate R and block length m.

A.1 Proof of Theorem 1

First we prove alemma:

Lemmal

Let Dp(Rp) bethedistortionratefunctionwithfinite block length p and rate R, and supposethat limp_, Rp =
R. Then

1im Dp(Ry) = D(R)
Proof
We need to show that for every € > O there exists N s.t. for al p > Ng, [Dp(Rp) —D(R)| < €.
First notethat since D(R) iscontinuousthere existsad suchthat for all [y— R| < &,|D(y) - D(R)| < €/2. Let
x=R— 9. Since R, = Rwe can choose an N; st. for al p > Ny, |Ry — R| < dwhich alsoimplies |D(R,) —
D(R)| < €/2. Therefore, since Dp(:) > D(-), we have aready shown that for large enough p, Dp(Rp) —
D(R) > —¢&. Now choose N, st. for al p> Ny, |Dp(X) — D(X)| < €/2. Thenfor al p > max(Ng, Ny)

Dp(Rp) —D(R) < [Dp(x) =D(¥)] +[D(x) -D(R)] < &/2+¢/2=¢.

Hence |Dy(R,) —D(R)| < .
Proof of Theorem 1
First notethat we may assumewithout lossof generdity that I = | sothat dx iscalculated interms of squared
error. If not, one can produce an identity covariance by multiplyingX by /2. Hence X can beviewed asa
p-dimensiona Gaussian with identity covariance or as p i.i.d. normaswith variance one. Therefore, using
the second formulation, block length and dimension are equiva ent and sending p or block length to infinity
isthe same thing.

SinceK = |kP| thisimplieskP — 1 <K < kP. Hence our distortion function dg issimply Dy (Rp) where
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%Iogz(kIO —1) <Ry < log, k. Therefore limy_, Ry = log, k and by Lemma 1

I[I)i_>n°1° dk = D(log, k). (19)

By (3), for a one-dimensional normal with variance one

R(D):—%Iogz = DR =2R (20)

Combining (19) and (20) gives

lim dg = 2721°%K = k2
p—roo

A.2 Proof of Theorem 2

First we prove alemma:

Lemma?2

Suppose that X comes from a mixture distribution of G identically distributed p-dimensiona clusters with
equal priorsand covariancel". Let dk; be the average distortion per observationwhen alocating K; clusters
to the jth mixture component. Then, provided that A > 6

Yk A\ ? Y
W LmK:QK 5) (L-W)|<dcs min

V! . .
whereW = 1— % and Vi = Var (%Hx — W|[z_2]X in jth cluster).
Proof

First note that, as with Theorem 1, we can assume that I' = | because if not this can be achieved by trans-

di.
forming to r-1/2x. Clearly dx < mi Ny, K;=K % because the right hand sideis arestricted version of the
left hand side. Now suppose we produce truncated distributions by constructing spheres of radius ,/pA/6
around each cluster mean and only considering observationsthat fall inside a sphere, i.e.

p
X5 =l =5 (X —pj)? < pa%/36, j=1,...,G
=1

where X are observations from cluster j. Let d;;j be the equivalent of dk; and di the equivalent of dx but
for the truncated data. Then it isclear that

idk,
G

dc = min
2iKj=K

becausethe spheresare separated by at least twicetheir width so that every center will be uniquely associated
with the observationsfrom only one sphere. Furthermore

dk« = P(Insidesphere) x Avg dist inside sphere+ P(Outside sphere) x Avg dist outside sphere
> P(Inside sphere) x di
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where P(Inside sphere) = 1 — P(Outside sphere) and

P(Outsidesphere) = P R X; 2y A
( Sp ) - pIZ( ]|_u]|) >36

6%V _
< 2 =1
S (a7_36)2 1-W (by Chebychev provided A > 6)
Finally notethat for all j

dk.

]

P(Inside sphere) x E(d; |Inside sphere) + P(Outside sphere) x E(d, |Outside sphere)
K T P(Outside sphere) x E(d;|Outside sphere)

&, + [, caf(ew)d(dy
36

o+ (5) a-w)
Thelast line comes from the fact that

oty = /(e -1f(dydidy+ s > 4%/36)

36

f% (d — 1)2f(d)d(ch) Vi

IN

IN

< + by Chebychev
r (A_Z_l)z (by Chebychev)
36
Vy Vy A2
N . z:(g) (1-W)
% (%_ )
Therefore ,
. ZJ Kj A
> | = —
A WLJ”Q!QK G ) (1~W)

Proof of Theorem 2

Firstwe consider K = | kP |. Notethat for Gaussian dataVy [ 1/p and so convergesto 0 as p — . Hence

j di.
by Lemma 2 we see that the lower bound on dk convergesto miny, k;=k % as p — o so we need only
show that

lim min 215 _ -2 (21)
First we show that

lim min 215 <2 22)

p—>0°zjKj:K G

Note that by setting K; = |kP/G/, dk; isafinite block length distortion rate function with rate Ry — log, k.
Hence by Lemma 1 and Theorem 1 limp_. dx; = k=2. Sincethisresult appliesforal j =1,...,Gwehave
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proven (22). However, it must also be the case that

jim min 219 > k2
p=oy K=k G
because evenwhenwe set Kj = | kP| = K, whichisthelargest K;j can be, it isstill the casethat limp_,c, dg; =
k=2. Hence (21) is proved.
Now weconsider K < G. Sinceweare only fitting K < G centersto G clusters and the minimum distance
between clustersisat least , /pA it must be the case that one cluster has no centerswithin , /pA/2 of itsmean.
Furthermore, since at least W of this cluster’'s mass must lie within \/EA/6 of itsmean,

2

A
dKzg—GW—wo as p—ow

A.3 Proof of Theorem 3

First note that, as with Theorem 1, we can assume that I' = | because if not this can be achieved by trans-
formingto M ~1/2X. Consider dg_1. By exactly the same argument as given above for Theorem 2 it must be
the case that A2

de-1> Z—GW
Itisalso clear that with G centersadistortion of at most 1 is achieved with one cluster placed at the mean of
each mixture so that dg < 1. Hence

v AW Y v AW Y
[d5" —dg¥y] > 1~ (ng ) and [di¥ —d Y] < (pg—G) , K<G (23)

Consider dx;, the distortion associated with the jth cluster using K centers. d; istheaverage distortion
over the p dimensions when fitting K; clusters so as to minimize overall distortion. Furthermore, each of
these coordinate-wise distortions must be no less than the distortion achieved by fitting K; clustersto each
dimension individually. However, from (4) we see that each of theselatter coordinate-wise distortions must
be greater than or equal to,

2-2Rj92H*(X)
2
whereK; = 2R, But since Kj < Kforal j and we are only considering K < Kiyax
22H*(X)
——— < dk.. 24
K2, 2me — i 24
Therefore equation (24), together with Lemma 2, implies that

2H*(X) 2 -y
de¥ < (w [éﬁxﬁe— (%) <1—W>D (25)

so from (23) and (25) the jump is maximized at K = G provided (10) holds. Notice that for large enough A
thereisguaranteed to bea that fulfills(10). Furthermore, if thedimensionsof X are independent from each
other, for A > 6 and large enough p thereis also guaranteed to bea that fulfills (10). In fact in thelimit as
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A or p approach infinity (10) becomes

K2, 2me\ ¥ )
(X)) S

whichisfulfilled provided
0<Y < [logy(K2,2me) — 2H*(X)] .

A.4 Proof of Corollary 1

Clearly d; = 1s0d;Y —d; " = 1. Inthiscase A = o so from (10) the jump is maximized provided

0<Y < [logy(K2,2me) — 2H* (X)] .
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