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Abstract

One of the most difficult problems in cluster analysis is the identification of the number of groups in
a data set. Most previously suggested approaches to this problem are either somewhat ad hoc or require
parametric assumptions and complicated calculations. In this paper we develop a simple yet powerful
non-parametric method for choosing the number of clusters based on distortion, a quantity that measures
the average distance, per dimension, between each observation and its closest cluster center. Our tech-
nique is computationally efficient and straightforward to implement. We demonstrate empirically its ef-
fectiveness, not only for choosing the number of clusters but also for identifying underlying structure, on
a wide range of simulated and real world data sets. In addition, we give a rigorous theoretical justification
for the method based on information theoretic ideas. Specifically, results from the subfield of electrical
engineering known as rate distortion theory allow us to describe the behavior of the distortion in both
the presence and absence of clustering. Finally, we note that these ideas potentially can be extended to a
wide range of other statistical model selection problems.

1 Introduction

A fundamental, and largely unsolved, problem in cluster analysis is the determination of the “true” number
of groups in a data set. Numerous approaches to this problem have been suggested over the years. Milligan
and Cooper (1985) and Hardy (1996) provide a detailed set of references. Examples in the statistics literature
include Calinski and Harabasz’s index (Calinski and Harabasz, 1974), Hartigan’s rule (Hartigan, 1975), the
Kranowski and Lai test (Krzanowski and Lai, 1985) and the silhouette statistic (Kaufman and Rousseeuw,
1990). Two newer proposals are a Gaussian model-based approach using approximate Bayes factors (Kass
and Raftery, 1995; Frayley and Raftery, 1998) and the gap statistic which compares the change in within-
cluster dispersion with that expected under an appropriate null distribution (Tibshirani et al., 2001). There
have also been several recent papers devoted to this issue in the information theoretic engineering literature
where it is known as the cluster validation problem. (See, for example, Roberts et al. (1998), Frigui and
Krishnapuram (1999), Biernacki et al. (2000) and references therein.) Unfortunately, many of the approaches
that have been suggested for choosing the number of clusters were developed for a specific problem and are
somewhat ad hoc. Those methods that are more generally applicable tend either to be model-based, and hence
require strong parametric assumptions, or to be computation-intensive, or both.

In this paper we develop an alternative approach to choosing the number of clusters that makes limited
parametric assumptions, can be rigorously theoretically motivated using ideas from the field of rate distortion
theory, is both simple to understand and compute, and is highly effective on a wide range of problems. The
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procedure is based on “distortion” which is a measure of within cluster dispersion. Formally, let X be a p-
dimensional random variable having a mixture distribution of G components, each with covariance Γ, let
c1 � c2 ��������� cK be a set of candidate cluster centers, and let cx be the one closest to X. Then the minimum
achievable distortion associated with fitting K centers to the data is

dK
� 1

p
min

c1 � � � ��� cK
E

�
	
X � cx � T Γ  1

	
X � cx ��� (1)

which is simply the average Mahalanobis distance, per dimension, between X and cx . Note that in the case
where Γ is the identity matrix distortion is simply mean squared error. In practice one generally estimates dK

using �dK, the minimum distortion obtained by applying the k-means clustering algorithm (Hartigan, 1975)
to the observed data.

A natural, but overly simplistic approach to choosing the number of clusters, is to plot dK versus K and
look for the point at which the resulting “distortion curve” levels off. This curve is always monotone de-
creasing. However, intuitively one would expect much smaller drops for K greater than the true number of
clusters, G, because past this point adding more centers simply partitions within rather than between groups.
Figure 1 shows distortion curves for three different data sets. Since the curves all have similar shapes, the
ad hoc method described above would suggest that they have roughly the same number of clusters. This is
not the case. Figure 1(a) corresponds to the classic iris data set (Fisher, 1936) which consists of two species
whose characteristics overlap and a third well separated one, and could thus be viewed as having either two
or three clusters. Figures 1(b) and 1(c) give the distortion curves for a mixture of six Gaussian distributions
and a single Gaussian respectively.

The above example clearly illustrates that there are problems with using the raw distortion. None-the-
less, all the requisite information for choosing the correct number of clusters is contained in the distortion
curve. It is simply necessary to understand more precisely the curve’s functional form in both the presence
and absence of clustering. In this paper we show, both theoretically and empirically, that for a large class of
distributions the distortion curve, when transformed to an appropriate negative power, will exhibit a sharp
jump at the “true” number of clusters. Our basic procedure, which we call the “jump method” has the fol-
lowing simple steps for estimating the true number of clusters:

1. Run the k-means algorithm for different numbers of clusters, K, and calculate the corresponding dis-
tortions, �dK.

2. Select a transformation power, Y � 0. (A typical value is Y � p � 2.)

3. Calculate the “jumps” in transformed distortion, JK
� �d  Y

K � �d  Y
K  1.

4. Estimate the number of clusters in the data set by K � � argmaxK JK, the value of K associated with the
largest jump. (Note that we define d  Y

0 � 0 so the method can select K � � 1 if there is no clustering in
the data.)

For the data sets of Figures 1(b) and 1(c) our jump method correctly chooses K � � G � 6 and K � � G � 1
respectively. For the iris data it indicates that either two or three clusters is a reasonable choice.

In Section 2 we introduce some of the key information theoretic results from the subfield of electrical
engineering known as rate distortion theory and show how they relate to the cluster analytic distortion curve.
These results are used in Section 3 to derive the exact asymptotic form of the distortion curve for both a sin-
gle Gaussian distribution and a mixture of G Gaussians. This in turn motivates the jump algorithm, which
we demonstrate on a variety of simulated data sets. In Section 4 we develop a general theory which shows
that, for almost any mixture distribution, this approach is guaranteed to produce the correct answer provided
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Figure 1: Distortion curves for (a) the iris data, (b) a simulated data set with 6 mixture components and (c) a single
Gaussian cluster.

the clusters do not overlap too severely. We then illustrate the jump method on several real world data sets.
Hypothesis tests and confidence intervals for the true number of clusters are developed in Section 5. In Sec-
tion 6 we present a comparative simulation study to assess the performance of the jump method versus five
competing approaches. We conclude in Section 7 by discussing possible extensions of this work. In partic-
ular, we believe that the ideas from rate distortion theory which are applied in this paper to cluster analysis
may potentially prove useful for a much larger class of statistical model selection problems.

2 Rate distortion theory

Figure 1(c) suggests that the distortion curve is smooth (approximately hyperbolic) when there is little or
no clustering in the data. Information theoretic results from the area of electrical engineering known as rate
distortion theory explain this phenomenon and provide a theoretical underpinning for approaches to estimat-
ing and performing tests about the optimal number of clusters. Section 2.1 gives an intuitive introduction to
rate distortion theory and explains its relationship to statistics in general and cluster analysis in particular.
Section 2.2 presents some results that provide insight about the functional form of the distortion curve.

2.1 Connections between rate distortion theory and cluster analysis

One can characterize cluster analysis as an attempt to find the best possible representation of a population
using a fixed number of points. This can be thought of as performing data compression or quantization on
i.i.d. draws from a given distribution. In exchange for compressing the information contained in the data
one must introduce some imprecision in or “distortion” of the original values in much the same way as with
a histogram. In order to minimize the error one uses a finite list of representatives chosen so that, with the
exception of regions of low probability, no point will be too far from its representation. This entails plac-
ing the representatives in the regions of highest density, in other words where the data are clustered. In this
paradigm, each cluster center provides a representation for nearby observations and the distortion, dK, gives
a measure of the best possible level of accuracy that can be obtained using K clusters. The data will be well-
summarized when one picks the correct number of centers.

This is an analogue of the main problem of rate distortion theory, which, in engineering terminology, is to
code, as accurately and efficiently as possible, the output of a source. Typically the source output consists of
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a sequence of realizations of a continuous random variable. Representing or transmitting a real number with
perfect accuracy requires storing an infinite number of bits (base two digits) which is not feasible. Instead,
a finite set of codewords is chosen so as to approximate the numbers or source symbols as well as possible.
One defines a distance function, the distortion, between a source symbol and its representation to measure
the “goodness” of the code. A typical criterion for a good code is that it should minimize the expected dis-
tortion for a draw from the underlying probability distribution of the source. Therefore, the central problem
in rate distortion theory is to find the best possible distortion achievable with a given number of codewords.
In the statistical setting, the number of clusters, K, is equivalent to the number of codewords, the cluster cen-
ters provide canonical representations of members of their respective groups, and the squared (Mahalanobis)
distance between an observation and its closest center serves as the distortion function.

In coding theory one is principally interested in the average number of bits that will be required for a rep-
resentation. This quantity is referred to as the rate, R, (per source symbol) of a code. For a simple code, the
relationship between the rate and the number of codewords or cluster centers is given by K � 2R. The min-
imum rate achievable for any given distortion is called the rate distortion function, R

	
D � , and, correspond-

ingly, the minimum distortion achievable for any given rate is the distortion rate function, D
	
R � . Essentially,

R
	
D � and D

	
R � provide a way to formalize how many representatives to use and how good a job they can do at

data summarization. The distortion rate function, D
	
R � , is intuitively the cluster analytic distortion curve–i.e.

the minimum distortion achievable for a given number of representatives–substituting the number of centers
in place of the rate. D

	
R � and dK are not technically completely equivalent. However, D

	
R � does provide a

lower bound for dK and empirical evidence suggests that the two curves behave similarly.
The rate distortion and distortion rate functions have an information theoretic interpretation. In fact, the

key result of rate distortion theory states that

R
	
D � � min

f � x̂ � x � :EX � X̂ � d � X � X̂ � ��� D
I
	
X; X̂ � (2)

where d
	
X � X̂ � is the distortion between the source, X, and its representation, X̂, and I

	
X; X̂ � is the Shannon

mutual information between X and X̂. The mutual information is defined as

I
	
X; X̂ � �	�
� log

fX � X̂
	
x � x̂ �

fX

	
x � fX̂

	
x̂ � fX � X̂

	
x � x̂ � dxdx̂

where fX and fX̂ are, respectively, the marginal densities of X and X̂, and fX � X̂ is the joint distribution. I
	
X � X̂ �

gives the expected information contained in X̂ about a draw from the distribution of X and hence provides
a measure of the ability to predict one variable given the other. Equation 2 says that the minimum achiev-
able rate, R

	
D � , is equal to the minimum amount of information about the source, X, that is contained in a

conditional distribution of a representation, X̂, that achieves distortion, D. The mutual information is more
familiar to statisticians as the Kullback-Leibler divergence (Kullback and Leibler, 1951) between fX � X̂ and

fX fX̂ . Hence I
	
X; X̂ � gives the divergence between the joint distribution of X and X̂ and the product of the

two marginal distributions, and can be thought of as a measure of the lack of independence between the two
random variables. Mutual information and related ideas such as entropy have been widely used in statistics.
Examples include hypothesis testing and information sufficiency (Kullback and Leibler, 1951), the construc-
tion of multivariate measures of dependence Joe (1989), the selection of reference priors (Bernardo, 1979;
Berger and Bernardo, 1989), the Bayesian Information Criterion (Schwarz, 1978), and Bayesian interpreta-
tion of experiments (Lindley, 1956). The latter provides one of the most direct translations of coding theory
ideas to statistics. Specifically, in a statistical setting one can interpret the source output as a draw from the
prior density on a parameter space, and the received signal as data drawn from the posterior distribution. In
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this formulation, the mutual information gives the expected information the data will have about the param-
eter and hence measures the amount of information associated with the experiment. Less frequently, the rate
distortion function itself has been used in statistics. For example, Yuan and Clarke (1999a,b) use it as a cri-
terion for likelihood selection. A detailed summary of the information theoretic statistics literature and its
relationship to the pioneering work of C.E. Shannon is given by Soofi (1994).

2.2 Asymptotic rate distortion theory results

Below we give some well known results from asymptotic rate distortion theory which are used in Sections 3
and 4 to motivate the jump method:

(I) For a given code, the rate distortionfunction, R
	
D � , is a non-increasing convex function of D. Similarly,

the distortion rate function, D
	
R � , is a non-increasing convex function of R.

(II) If X is p-dimensional normal with mean vector µ, and covariance structure σ2I, then, under squared-
error distortion, the rate distortion and distortion rate functions are

R
	
D � � p

2
log2

pσ2

D
and D

	
R � � pσ22  2R

p (3)

(III) For a scalar random variable X with variance σ2 the following are bounds on the rate distortion and
distortion rate functions of X based on squared error distortion:

H
	
X ��� 1

2
log2

1	
2πe � D

�
R
	
D � � 1

2
log2

σ2

D

2  2R22H � X �
2πe

�
D

	
R � � σ22  2R (4)

where H
	
X � � ��� f

	
x � log2 f

	
x � dx is the entropy of the distribution of X.

The first result suggests that any choice of the number of clusters based on the distortion curve or mono-
tone transformations thereof will be admissible in the sense that no randomized scheme would do better. It
has been conjectured that the distortion curve itself is always convex. However this has proven difficult to
establish. Sugar (1999) gives a proof of convexity under certain hierarchical restrictions on the clustering
methodology. Results (II) and (III) follow from the maximum entropy property of the Gaussian. Versions
of (II) exist for more complex covariance structures. However, it is difficult to calculate the distortion rate
function for a general distribution. As an application of the third result, consider the uniform distribution,
X � U

	
a � b � , where H

	
X � � log2

	
b � a � and σ2 � 	

b � a � 2 � 3. One gets
	
b � a � 2

2πe22R

�
D

	
R � �

	
b � a � 2

3 � 22R
�

There are several things worth noting about these bounds. First, the functional forms of the upper and lower
bounds are the same in terms of R and D. The only difference is in the multiplicative constants. In practice, the
shape of the distortion curve usually mirrors the bounds. Second, in the case of both the normal distribution
and the more general bounds of (III) we see that there is an inverse relationship between rate and distortion
of the form R ∝ � log2 D or equivalently D ∝ 2  2R. Empirically this pattern holds in general and will lead
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Figure 2: Distortion curves for simulated data sets with (a) a single mixture component and (b) 6 mixture components.

us to transformations of the distortion curve that prove extremely valuable for identifying the true number of
clusters.

Most of the fundamental work in this area is due to C.E. Shannon who pioneered the field of mathemat-
ical communication (Shannon, 1948). The notion of a rate distortion function was introduced in Shannon
(1959) The interested reader should see Cover and Thomas (1991) for a more complete development includ-
ing extensive references and proofs presented from a fairly statistical point of view. Other sources include
Berger (1971), a classic monograph on rate distortion theory, Gersho and Gray (1992) on vector quantization
and signal compression, and the more general information theoretic texts Gallager (1968), McEliece (1977),
Csiszar and Korner (1981) and Blahut (1987).

3 The distortion curve for Gaussian clusters

Given the wide variety of applications of cluster analysis, from partitioning a data space to searching for
areas of high density to identifying distinct sub-populations, it is difficult even to define what is meant by the
“true” number of clusters in a data set. One common and natural approach, which we adopt for the theoretical
development in this paper, is to assume that the data come from a mixture distribution and to equate the
number of clusters with the number of mixture components, G. In this paradigm, the absence of clustering
corresponds to G � 1. In Section 3.1 we show how the results from Section 2.2 can be used to derive the
asymptotic form of the distortion curve, dK , for data generated from a mixture of Gaussian distributions. An
extension to non-Gaussian clusters is made in Section 4. These results are used to motivate the jump method
for choosing the number of clusters, which we illustrate on simulated data in Section 3.2.

3.1 Asymptotic results for a mixture of Gaussian clusters

In order to utilize the distortion function, dK, to choose the correct number of clusters we must first under-
stand its functional form both when the data set consists of a single cluster and when it is a mixture of G
different clusters. Consider Figure 2(ai) which provides a plot of dK versus the number of centers, K, for a
simulated data set. The data were generated from a single Gaussian distribution with identity covariance,
p � 5 dimensions and n � 300 observations. The relationship appears to be hyperbolic. Figure 2(aii) pro-
vides confirmation, giving a plot for the same data after raising dK to the power of � p � 2 � � 2 � 5. A strong
linear relationship is evident with R2 � 99 � 3%. For this data, the functional form of the distortion curve is
approximately dK ∝ K  0 � 4. In fact, Theorem 1 suggests that in the limit as p approaches infinity such a rela-
tionship between distortion and number of centers will always exist for Gaussian data.
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Theorem 1 Suppose that X has an arbitrary p-dimensional Gaussian distribution. Let K ��� kp � where k
can be any positive number. Then

lim
p � ∞

dK
� k  2 (5)

The proof of Theorem 1 is given in Appendix A.1. This result derives from the fact that dK � D
	
log2 k �

as p � ∞. The asymptotic form of dK for Gaussian data then follows from (II). The quantity, k, is essentially
the pth root of the number of centers, K. Hence Theorem 1 suggests that, for large enough p, the following
relationship holds approximately

d  p � 2
K ∝ kp � K � (6)

which explains the observed linear relationship. Even though the result is asymptotic in the dimension of the
space, we see from Figure 2(a) that linearity can hold for relatively low values of p. In practice we have found
that this approximate relationship exists in most situations. One might naively imagine that the constant of
proportionality in (6) should be 1. However, it turns out that for most values of p the slope is strictly less
than 1 and decreases as the dimension increases. For instance, the slope in Figure 2(aii) is approximately
0 � 83. Theorem 1 illustrates a fundamental flaw with the “intuitive” approach of examining the raw distortion
curve for points where it levels off. Since a single Gaussian will have a curve approximately of the form
dK ∝ K  2 � p, the distortion will decline rapidly and then plateau, leaving the impression of clustering even
when none exists.

Next we consider the form of the distortion curve when the data consist of a mixture of G Gaussian clus-
ters. Figure 2(bi) provides a plot of the transformed distortion, d  5 � 2

K , versus number of centers, K, generated
from a simulated data set consisting of a mixture of G � 6 Gaussian distributions. Notice that the plot is ap-
proximately linear for K � 6 clusters and that there is a significant jump between K � 5 and K � 6. Intuitively
this jump occurs because of the sharp increase in performance that results from not having to summarize
two disparate groups using the same representative. Adding subsequent cluster centers reduces the within
group rather than the between group distortion and thus has a smaller impact. An alternative visualization is
provided by Figure 2(bii) which plots the successive jumps in the transformed distortion. This “jump plot”
proves particularly useful when the true number of clusters is not as obvious as in this example. Both the
linearity for K � G and the jump at K � G occur in general. Theorem 2 gives the asymptotic form of the
distortion curve for a mixture of G clusters which provides a theoretical explanation for these phenomena.

Theorem 2 Suppose that the distributionof X is a mixture of G Gaussianclusters with equal priors and com-
mon covariance Γp. Let ∆ � p be the minimum Euclidean distance between cluster means after standardizing

the space by multiplying by Γ  1 � 2
p . Then for K 	 G

lim
p � ∞

dK
� ∞

provided ∆ is bounded away from zero. Furthermore for K �
� kp �

lim
p � ∞

dK
� k  2

provided ∆ � 6.

The proof is given in Appendix A.2. As with Theorem 1, this result derives from the fact that the distortion
associated with each individual Gaussian cluster converges to the corresponding distortion rate function so
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Figure 3: a) A mixture of nine Gaussian clusters, b) the raw distortion curve which suggests only three clusters, c)
the transformed curve which clearly indicates nine clusters and d) the corresponding jump curve which also clearly
indicates nine clusters.

that (II) can be applied. Theorem 2 implies that for large enough p and K 	 G, d  p � 2
K
� 0 while for K � G,

d  p � 2
K ∝ kp � K. In fact the proof of Theorem 2 suggests that the slope is proportional to 1 � G, yielding

d  p � 2
K
�

�
a K

G
� K � G

0 � K 	 G
(7)

where 0 	 a 	 1. This explains both the jump at K � G and the linearity thereafter as seen in Figure 2(bii).
As with Theorem 1, even though these results are asymptotic in p, in practice they appear to hold even in
low dimensions.

Equation (7) suggests several possible procedures for utilizing the distortion curve to determine G. In
particular it provides motivation for the jump method which estimates G using

arg max
K � �d  Y

K � �d  Y
K  1 � �

the value of K associated with the largest jump in the transformed distortion. Furthermore it suggests that
an appropriate value for Y would be p � 2. Other approaches are also possible. For example, one could use a
“broken line” method by finding the value, K � , that produces the minimum sum of squared errors when fitting
two straight lines to d  p � 2

K , the first for K 	 K � and the second for K � K � . This approach is based on the fact
that the transformed distortionshould be approximately linear for K 	 G and for K � G. Empirically the jump
method and the broken line method both work extremely well. The broken line method has the advantage of
being global rather than local and as a result is potentially more robust. However, its theoretical motivation
depends on the Gaussian assumption. In contrast, the jump method is almost wholly non-parametric. In
Section 4.1 we show that for a general class of distributions it is guaranteed to choose K � G provided that
the separation between cluster means is large enough. Hence we focus primarily on the jump method for the
remainder of the paper.

3.2 Simulation results

Equation 7 suggests that the jump and broken line methods will both perform well on high-dimensionalGaus-
sian data. In this section we use empirical simulation studies to show that both methods also perform well on
low-dimensional data. Figure 3 provides an example of a data set for which not only do the jump and broken
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Figure 4: Three simulated data sets, each with four Gaussian clusters, (i). Transformed distortion curves for each
data set (ii), and the jumps associated with each curve (iii).

line methods work well but using the raw distortion curve fails. Figure 3(a) shows a two-dimensional data set
consisting of nine well separated clusters. In Figures 3(b) and (c) we have plotted the raw and transformed
distortion curves for this data. Because the nine mixture components are themselves grouped, the raw dis-
tortion curve strongly suggests that there are only three clusters. However, after transforming the distortion
curve the true number of clusters becomes readily apparent. Both the jump and broken line methods correctly
select nine clusters. It is worth noting that the corresponding jump plot in Figure 3(d) exhibits a secondary
peak at K � 3 corresponding to the three clusters of clusters. The ability to detect hierarchical structure in
the clustering is an added benefit of our approach.

Figure 3 illustrates a situation in which the groups are well separated. However, the jump and broken line
methods also perform well when the clusters overlap to a large extent. Figure 4 shows three data sets, each
a mixture of four Gaussians. The data set of Figure 4(a) contains well separated clusters, that of Figure 4(b)
has some overlap and that of Figure 4(c) is almost indistinguishable from a single cluster. The corresponding
plots of transformed distortion reflect this decreasing level of separation. Figure 4a(ii) shows a clear jump at
K � 4. The jump in Figure 4b(ii) is less extreme, while that in Figure 4c(ii) is difficult to detect. However,
the corresponding jump plots all clearly indicate four clusters. As the separation between clusters decreases
the transformed distortion curve becomes closer to linear as predicted by Theorem 1. However, this example
shows that the jump and broken line methods can still produce accurate answers for highly confounded clus-
ters. To estimate the statistical power of these approaches we simulated 100 data sets from the distribution
used in Figure 4(c). The broken line method correctly picked K � 4 on 92% of the data sets and the jump
method on 100%. As an aside, it is interesting to note that in Figure 4 the jump at K � 1 steadily increased
with the confounding of the groups. In Section 4.1 we present results which show that under appropriate
conditions the jump method will pick K � 1 in the absence of clustering.
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4 The distortion curve for non-Gaussian clusters

The theoretical and empirical results of Section 3 show that the distortion curve, appropriately transformed,
provides an excellent basis for choosing the correct number of Gaussian mixture components. In Section 4.1
we extend the theory of Section 3.1 to a large class of non-Gaussian distributions while also relaxing the
asymptotic requirement on p. In Section 4.2 we apply the jump method to several real world data sets.

4.1 Theoretical results for mixtures of non-Gaussian clusters

Results from rate distortion theory can also be applied to non-Gaussian data. In particular, (4) provides
bounds on the distortion for arbitrary distributions. While it is not possible to use these bounds to derive
the exact theoretical form of the distortion curve in the general case, this result does allow us to prove, un-
der suitable conditions, that the largest jump in transformed distortion will be at K � G. We summarize our
findings in Theorem 3.

Theorem 3 Suppose that the distribution of X is a mixture of G p-dimensional clusters with equal priors.
Furthermore, assume that the clusters are identically distributed with covariance Γp and finite fourth mo-
ments in each dimension. Let ∆ � p be the minimum Euclidean distance between cluster means after stan-
dardizing. Let H � 	 X � be the minimum entropy, conditional on cluster membership, over each of the p dimen-
sions after standardizing. Finally, let

W � 1 � 64VX	
∆2 � 36 � 2 (8)

where

VX
� Var � 1

p ���X � µ j ��� 2Γ � 1 �X in jth cluster � � (9)

Suppose dK is computed for 1
�

K
�

Kmax. Then as long as G
�

Kmax, the jump

�
d  Y

K � d  Y
K  1 �

will be maximized when K � G provided that ∆ � 6 and there exists Y � 0 such that

� p∆2W
9G

�  Y

��� W � 22H � � X �
K2

max2πe
�	� ∆

6
� 2 	

1 � W ��
�  Y

	 2 and � p∆2W
9G

�  Y

	 1 � 2 (10)

Furthermore, in the limit as ∆ � ∞ the jump method is guaranteed to produce the correct answer for all p
provided that

0 	 Y 	
�
log2

	
K2

max2πe � � 2H � 	 X ���  1 � (11)

Finally, if the dimensions are independent, the bounds on Y provided by (11) apply in the limit as p � ∞ for
all ∆ � 6.

The proof is given in Appendix A.3 and has two main parts. First we show that the transformed distortion
is bounded above for all values of K 	 G provided that there is some separation in the clusters. Second, we
show that the transformed distortion must be no less than 1 for K � G and that the transformed distortion is
also bounded for K � G. Provided that both bounds are tight enough, this proves that the maximum jump
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must be at K � G. The final bound is established using (4). The proof provides some intuition as to why
there is a large jump at K � G. Provided the clusters have reasonable separation the distortion will be large
for K 	 G and hence the transformed distortion will be low. At K � G the distortion will be no more than
1 and hence the transformed distortion will jump to at least 1. Finally, (4) guarantees that the distortion for
K � G must be bounded away from zero and hence the transformed distortion can not exhibit any other large
jumps.

As a consequence of Theorem 3 we can easily prove that when there is no clustering in the data the max-
imum jump will be at K � 1 for sufficiently low values of Y . We state this result in Corollary 1.

Corollary 1 Define d  Y
0 � 0. In the absence of clustering (G � 1) and assuming the distribution of X has a

finite fourth moment in each dimension, then for 1
�

K
�

Kmax the jump

�
d  Y

K � d  Y
K  1 �

will be maximized when K � 1 provided

0 	 Y 	 �
log2

	
K2

max2πe � � 2H � 	 X � �  1 � (12)

The proof is given in Appendix A.4. Note that (12) is not an asymptotic result. It holds for any value of p
and any distribution with finite fourth moment. Corollary 1 proves very useful in Section 5 when we develop
hypothesis tests for the presence of clustering in a data set.

Theorem 3 and Corollary 1 together guarantee that, provided there is sufficient separation between cen-
ters and an appropriate transformation is used, the jump method will produce the correct answer for clusters
having any distribution with finite fourth moments. In practice we have found that the constraints given by
(10) are overly conservative and in particular that the jump method is effective even for very small values of
∆. Interestingly, it can be shown that for Gaussian mixtures the upper bound in (11) and (12) can be replaced
by infinity, but this is not true for any other distribution. This is a consequence of the maximum entropy
characterization of the Gaussian and suggests that the further the cluster distributions are from Normal, the
smaller the transformation power should be. However, it is not obvious how to choose the optimal value of
Y . The constraints in (10) and (12) are useful for proving existence but can not be calculated in real applica-
tions. In Section 6 we discuss a promising approach, based on effective dimensions, which we use to guide
our choices of Y in the examples of Section 4.2. This is an area of ongoing research.

4.2 Applications

In this section we apply the jump method to three real world data sets. The first is the well known iris data
(Fisher, 1936) which contains 150 measurements on four variables for three different species of iris. The
second is the Wisconsin breast cancer data set (Wolberg and Mangasarian, 1990) which consists of measure-
ments of nine variables for each of 683 patients. Biopsies for 444 of these patients were benign, while those
of the remaining 239 were malignant. Finally we explore the auto data (Quinlan, 1993) which records eight
measurements for each of 398 types of cars. Because of high correlations between some variables, the actual
clustering on the auto data was performed on a two-dimensional data set formed using principal components.
The auto data provide a good example of a situation in which the number of groups is possibly large and not
known a priori. The breast cancer and auto data sets were both taken from the University of California -
Irvine machine learning repository.

Figures 5(a) and (b) show jump plots for the iris data set with Y � 2 � 3 and Y � 1 respectively. In the first
plot the maximum jump is at K � 2 but the jump at K � 3 is almost as large. In the second plot the situation
is reversed. Thus there is strong evidence for either two or three clusters but it is unclear which of these is

11
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Figure 5: Jump plots for the iris data using (a) Y � 2
�
3 and (b) Y � 1, (c) a plot of the iris data, and jump plots for

(d) the breast cancer data and (e) the auto data.

the best choice. This is exactly the outcome we should expect. Recall that the iris data set contains three
classes. However, Figure 5(c), which plots the first two principal components of the iris data, illustrates that
the clusters for two of the species overlap while the third is quite distinct. Thus from a clustering, as opposed
to classification, point of view it is not clear whether the data should be treated as one large and one small
cluster or as three small clusters. This is another nice example of the way in which the transformed distortion
curve can be used to identify fine points of structural detail. Figure 5(d) gives the jump plot for the breast
cancer data using Y � 1. It shows a sharp peak at K � 2. The clustering separates patients almost perfectly
based on whether their biopsies were benign or malignant. All numbers of clusters greater than two have
significantly smaller jumps, indicating that there is no evidence of sub-clusters within these two groups. The
jump plot for the auto data withY � 2 � 3, Figure 5(e), has a quite different pattern. The largest jump is at K � 8
but there are also substantial jumps at a variety of other values. This suggests that there are multiple clusters
in the auto data set but it is difficult to tell exactly how many. This will be clarified in the following section
where we develop hypothesis tests and confidence intervals for the number of clusters and also discuss the
choice of the transformation power Y .

The results of Sections 3 and 4 are based on the expected distortion curve given by (1). In practice one
must estimate this function by applying the k-means algorithm to the observed data. Potential sources of er-
ror arise from the use of the empirical rather than underlying distribution of the data and from the fact that it
is not always possible to obtain the true k-means solution. A third form of uncertainty is introduced because
the covariance matrix, Γ, is rarely known in practice. One solution is to estimate Γ as part of the clustering
process. Another option is to ignore Γ by using squared error rather than Mahalanobis distance. In our ex-
perience, the shape of the distortion curve based on squared error is robust to a wide range of covariances,
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Figure 6: Approximate 90% confidence intervals for the jumps on the a) iris data, b) breast cancer data and c) auto
data.

so we used this approach in our examples.

5 Testing and validation

The results of the previous sections show that the jump method provides accurate estimates of the number
of clusters for a wide variety of problems. By examining the relative sizes of the jumps it is also possible to
evaluate informally the certainty of these estimates. For example, Figure 5(d) shows that for the breast cancer
data the jumps at K � 1 and 2 are by far the largest, strongly indicating that there are no more than two clusters
in the data. However, for the auto data there appear to be many reasonable choices for the estimate of G. Next
we develop some more formal approaches for assessing the certainty in the choice of the number of clusters.

Ideally one wishes to estimate the variability associated with each jump in order to test for statistical sig-
nificance. A natural approach to this problem is to use the bootstrap (Efron and Tibshirani, 1993). Simply
draw with replacement from the given data set to produce a bootstrap sample with the same number of ob-
servations as the original and calculate the jumps associated with this new data set. Repeat this process B
times. We produced B � 100 bootstrap replicates of the jumps at each value of K and used their 5th and 95th
percentiles to obtain pointwise 90% confidence intervals for the jump plots of Figures 5(a), (d), and (e). Fig-
ure 6 shows the results, with dashed lines denoting the confidence boundaries. Figure 6(a) makes it clear that
there are either two or three clusters in the iris data but that it is not possible to distinguish between these two
answers. Figure 6(b) provides strong evidence of two clusters in the breast cancer data, while Figure 6(c)
gives convincing evidence of the existence of clusters but no indication of the actual number.

A related approach is to calculate, for each value of K, the fraction of bootstrap data sets that have their
maximum jump at K. One can then take as a

	
1 � α � 100% confidence interval the smallest collection of K’s

that account for at least 1 � α of the total. For example, for the iris data 99% of all bootstrapped data sets had
their maximum jump at either K � 2 or 3 so a 99% confidence interval would consist of these two numbers.
For the breast cancer data the jump method selected K � 2 for all 100 bootstrap data sets so any confidence
interval for this data would contain just the value two. Interestingly, despite the ambiguity in Figure 6(c), this
procedure decisively indicates that there are a large number of clusters in the auto data, with an 87% interval
consisting of the values K � 8 through 10 and a 97% interval including K � 7 through 10.
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The above procedure also allows one to perform a simple hypothesis test for the presence of clustering,
i.e. the existence of at least two clusters in the data. Corollary 1 indicates that in the absence of clustering
the largest jump should be at K � 1. Hence if a

	
1 � α � 100% confidence interval does not include K � 1 then

one can be confident at level α that there is clustering in the data. The 97% confidence intervals for the iris,
breast cancer and auto data sets all failed to include K � 1 so we can be confident that they each had some
form of clustering.

There is an interesting tradeoff in picking the transformation power Y . As we saw with the iris data, this
choice can have some effect on the estimated value of G. In general, the closer Y is to zero the more concave
the transformed distortion curve will be and hence the more likely it is that the maximum jump will occur
at K � 1, even in the presence of clustering. Therefore, lower values of Y decrease the power of the above
hypothesis test. However, we see from (12) in Corollary 1 that if Y is too large we are no longer guaranteed
that the biggest jump will occur at K � 1 even if there is no clustering. Thus, if Y is too large, the significance
level of the test may be overstated. In general, the largest value that Y can take on without misspecifying
the significance level will depend on how close the cluster distributions are to Gaussian. For approximately
normal data one may use a large value of Y , but for very non-Gaussian data the transformation power needs
to be considerably lower. In some situations it may be possible to estimate the cluster distributions and hence
the optimal value of Y . If this is not practical, then we recommend using a relatively low value to guarantee
correct significance levels.

6 A comparative simulation study

In this section we present results from a comprehensive simulation study to compare the performance of the
jump procedure with five standard approaches. These methods make use of the following statistics.

CH
	
K � � B

	
K � � 	

K � 1 �
W

	
K � � 	

n � K � (13)

KL
	
K � � ����

DIFF
	
K �

DIFF
	
K � 1 �

���� � DIFF
	
K � � 	

K � 1 � 2 � pW
	
K � 1 � � K2 � pW

	
K � (14)

H
	
K � � 	

n � K � 1 �
�

W
	
K �

W
	
K � 1 � � 1 � (15)

s
	
i � � b

	
i � � a

	
i �

max � a 	
i � � b 	

i ��� (16)

Gap
	
K � � 1

B ∑
b

log
	
W �b 	

K ��� � log
	
W

	
K ��� (17)

The first method, suggested in Calinski and Harabasz (1974), chooses the number of clusters as the argu-
ment maximizing (13) where B

	
K � and W

	
K � are, respectively, the between and within cluster sum of squares

with K clusters. CH
	
K � has the form of an ANOVA F-statistic for testing for the presence of distinct groups.

The approach of Krzanowski and Lai (1985) maximizes KL
	
K � as given in (14). This statistic attempts to

measure rate of change in distortion, adjusting for the dimension of the space, p. Hartigan (1975) proposes
choosing the smallest value of K such that H

	
K � in (15) is less than or equal to 10. H

	
K � is effectively a par-

tial F-statistic for testing whether it is worth adding a K � 1st cluster to the model. The silhouette statistic,
proposed by Kaufman and Rousseeuw (1990) and shown in (16), is a measure of how well the ith point is
clustered. The term a

	
i � is the average distance between the ith point and all other observations in its cluster

and b
	
i � is the average distance to points in the nearest cluster, where nearest is defined as the cluster minimiz-

ing b
	
i � . Large values of s

	
i � indicate strong clustering. Kaufman and Rousseeuw (1990) suggests choosing
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the number of clusters that maximizes the average value of s
	
i � . Finally, a more recent approach developed

in Tibshirani et al. (2001) uses the Gap statistic, (17). With this method B different uniform data sets, each
with the same range as the original data, are produced and the within cluster sum of squares is calculated for
different numbers of clusters. W �b 	

K � is the within cluster sum of squares for the bth uniform data set. One
approach would be to maximize Gap

	
K � . However, to avoid adding unnecessary clusters an estimate of the

standard deviation of log
	
W �b 	

K ��� , sK, is produced and the smallest value of K such that

Gap
	
K � � Gap

	
K � 1 � � sK � 1

is chosen as the number of clusters.
We compared these methods with the jump approach in five different simulations. The first simulated

data set was generated from a basic two dimensional mixture of five Gaussian clusters, each with identity
covariance. The second simulation, which was designed to test the effectiveness of the methods on highly
multivariate data, also used a Gaussian mixture with five components, but in ten dimensions. The third simu-
lation examined performance when there was dependence among the dimensions. It used a distribution with
four Gaussian clusters each with two by two covariance matrix with correlation 0 � 7. We tested the effect of
differing covariances in simulation four by producing four Gaussian clusters in two dimensions with corre-
lations of � 0 � 7, � 0 � 3, 0 � 3 and 0 � 7 respectively. Finally, in simulation five we produced four non-Gaussian
clusters arranged in a two-dimensional square using an exponential distributionwith mean one independently
in each dimension. All the simulated data sets contained 100 observations equally divided among the clus-
ters. For each of the five scenarios we produced 100 data sets, ran k-means with 20 random restarts on each,
and then applied the six procedures to the resulting fits. The results are shown in Table 1. All simulations
report results for the jump method with Y � p � 2 but we have also included outcomes for some other values
of Y .

The jump method appears to be extremely robust. It performed well using the transformation power
Y � p � 2 in all the scenarios, while each of the other approaches did poorly in at least two. Although this
simulation study is not exhaustive, it does suggest conditions under which the jump method will be effec-
tive. In particular, the jump method strongly outperformed the other approaches in simulations four and five
in which the cluster distributions either had differing covariances or were non-Gaussian. In some of the sim-
ulations the jump approach occasionally incorrectly chose a very large number of clusters. It appears that
the method can be somewhat sensitive to a non-optimal fit of the k-means algorithm. Originally a handful
of the data sets produced this effect. We reran our procedure on these data sets with 100 random restarts of
k-means rather than 20 and produced slightly improved results.

An important practical issue with the jump method is the choice of the transformation power, Y . The
theory of Section 3 would suggest setting Y � p � 2. However, these results are based on the Mahalanobis
distortion which is equivalent to assuming the data have been standardized so as to be uncorrelated. When
squared error distortion is used and strong correlations exist between dimensions, values of Y somewhat less
that p � 2 may produce superior results. This was the case for simulations three through five. Empirically, a
promising approach involves estimating the “effective” number of dimensions in the data and transforming
accordingly. For example, the iris data is four-dimensional which suggests using Y � 2. However, several of
the variables are highly correlated. As a result, the effective dimension of this data set is closer to 2, implying
that a transformation power near Y � 1 may be more appropriate. This is an area of ongoing research.

7 Discussion

We have shown that the jump method is highly successful at selecting the correct number of clusters on a wide
range of practical problems. Moreover, our empirical results illustrate that the transformed distortion curve
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Simulation Method Cluster estimates
1 2 3 4 5 6 7 8 9 10

One CH 0 0 0 0 98 0 1 1 0 0
(Five KL 0 0 26 0 34 9 10 16 5 0
clusters, Hartigan 0 0 0 0 0 0 1 5 18 76
two Silouette 0 51 21 4 24 0 0 0 0 0
dimensions) Gap 0 0 77 0 23 0 0 0 0 0

Jump (Y=1) 0 0 3 4 92 0 0 0 1 0
Two CH 0 96 4 0 0 0 0 0 0 0
(Five KL 0 0 0 0 98 0 1 1 0 0
clusters, Hartigan 0 0 0 0 100 0 0 0 0 0
ten Silhouette 0 100 0 0 0 0 0 0 0 0
dimensions) Gap 0 0 0 0 100 0 0 0 0 0

Jump (Y=4) 0 0 0 0 100 0 0 0 0 0
Jump (Y=5) 0 0 0 0 97 0 0 0 1 2

Three CH 0 0 0 26 2 1 4 15 22 30
(Four KL 0 0 0 87 2 1 2 6 2 0
clusters, Hartigan 0 0 0 0 0 0 6 18 30 46
common Silhouette 0 0 0 100 0 0 0 0 0 0
non-identity Gap 0 1 0 91 8 0 0 0 0 0
covariance) Jump (Y=0.7) 0 0 0 100 0 0 0 0 0 0

Jump (Y=1) 0 0 0 97 0 0 0 1 1 1
Four CH 0 0 0 83 5 5 3 0 1 1
(Four KL 0 0 0 76 7 2 3 8 4 0
clusters, Hartigan 0 0 0 0 0 0 8 20 23 49
differing Silhouette 0 34 0 65 1 0 0 0 0 0
covariances) Gap 0 20 0 78 2 0 0 0 0 0

Jump (Y=0.7) 0 0 0 100 0 0 0 0 0 0
Jump (Y=1) 0 0 0 98 0 0 0 1 1 0

Five CH 0 0 0 22 11 19 10 6 15 17
(Four KL 0 0 0 71 17 4 3 0 5 0
exponential Hartigan 0 0 0 0 0 2 7 9 17 65
clusters) Silhouette 0 0 0 60 30 8 1 1 0 0

Gap 85 9 0 6 2 0 0 0 0 0
Jump (Y=0.7) 0 0 0 99 1 0 0 0 0 0
Jump (Y=1) 0 0 0 87 4 0 1 1 4 3

Table 1: Simulation results. Simulation 1 had cluster means of
	
0 � 0 � � 	 2 � 5 � 2 � 5 � � 	 5 � 5 � � 	 � 2 � 5 � 2 � 5 � and	 � 5 � � 5 � . Simulations 2 to 4 had clusters evenly spaced on a line with separations of 1 � 6 � 5 and 3 � 5 respec-

tively in each dimension. The clusters in simulation 5 were arranged on a square with sides of length 4. All
simulations had standard deviations of 1 in each dimension.
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and corresponding jump plots are just as valuable as exploratory tools. For example, they can be used to de-
tect underlying hierarchical structures in clustering, as seen with the iris and triangular nine cluster data sets.
Additionally, the theory of Sections 3 and 4 potentially can be extended in several directions. First, empirical
evidence suggests that the linearity of the transformed distortion holds even for non-Gaussian distributions
and low values of p. Recent advances in an area known as Bennett theory, which deals with non-asymptotic
rate distortion functions, may prove useful for formalizing this observation(Na and Neuhoff, 1995). Second,
in practice, the requirements in (10) from Theorem 3 to guarantee the success of the jump method are overly
conservative and can probably be relaxed. Related to this is the question of how best to select the transforma-
tion power, Y . Third, results from rate distortion theory can be applied to many distortion measures besides
squared error. For example, codes based on Hamming distance, the number of matching coordinates, have
been widely studied and their properties could be very useful when clustering categorical data such as genetic
sequences.

The technical results in this paper depend heavily on information theory. Other recent work in informa-
tion theoretic clustering includes Roberts et al. (1998), Frayley and Raftery (1998) and Biernacki et al. (2000)
which develop Bayesian methods for choosing the number components in a Gaussian mixture distribution.
These approaches differ from ours both in that they are model-based and that they make no explicit use of
the distortion curve. However, it may be possible to use the results of Section 3 to establish a theoretical link
with this work. Frigui and Krishnapuram (1999) suggests a more non-parametric clustering method based on
an objective function involving a distortion type measure which is optimized over both cluster assignments
and number of groups. However, their procedure for choosing the number of clusters can not easily be used
with other methods since it is integrated into the overall clustering algorithm. In contrast, the jump approach
can be applied with many clustering techniques besides k-means. For instance, James and Sugar (2003) in-
tegrates the jump method into a more model-based procedure for clustering funtional data. Of the recently
suggested clustering algorithms, perhaps the one making the most use of information theoretic ideas is that
of Gokcay and Principe (2002). While this algorithm does use a measure of the divergence between clusters,
it does not provide any approach for choosing the number of clusters.

This paper has focused on identifying the number of groups in a data set. In addressing this problem
we have drawn links between the fields of rate distortion theory and cluster analysis. We believe that these
ideas can be applied to numerous other model selection problems in statistics. In such situations a common
approach is to plot a goodness of fit measure versus the statistic of interest and to use the resulting curve
to select the model parameter. Examples include using the sum of squared errors to choose the number of
predictors in a standard regression setting, or the penalty term in a ridge regression. Similarly, a plot of cu-
mulative explained variability is frequently used to select the optimal number of dimensions in a principal
components analysis. These are special cases of a more general paradigm in which likelihood curves are used
to choose modeling parameters. Often the resulting “distortion” curve is monotone so choosing the global
optimum fails to produce a sensible result. Cross-validation may alleviate this problem but is computation-
ally expensive and potentially unstable. Instead, one often attempts to find a point at which the curve levels
off, indicating that there will be little improvement in goodness of fit associated with further increasing the
number of parameters. This leads to the same difficulties as using the raw distortion curve to choose the
number of clusters. Transformations similar to those used in the clustering context may also lead to better
model selection procedures in the wide range of statistical problems that use goodness of fit measures akin
to distortion.
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A Proofs of the theorems

Here we briefly define the notation used in the proofs. Let X1 � X2 ������� be an i � i � d � sequence on the sample space
or source alphabet X � Typically, this alphabet will simply be a Euclidean space, R p � The representation space
from which the codewords are drawn (also usually a Euclidean space) will be denoted by X̂ . A code is said to
have block length m if each codeword represents not a single source symbol but m source symbols at once.
Mathematically, Xm � 	

X1 ������� � Xm � � X m is represented by X̂m � X̂ m. Note that, regardless of the block
length, each single source symbol effectively is assigned a representation symbol. For a block length 1 code,
the representation symbol associated with a particular source value will always be the same. However, this
need not be the case for a block length m code. Using this set of definitions, clustering can be visualized in
two different ways. It can be thought of as a coding problem with a block length of m � 1 and p-dimensional
source and representation spaces, or, alternatively, as a coding problem with a block length of m � p and
1-dimensional source and representation spaces. In the proofs of Theorems 1 through 3 we make use of the
second paradigm, in which case the relationship between the number of clusters and the rate is

K � 2pR � (18)

Let R
	
D � be the (asymptotic) rate distortion function and D

	
R � be the distortion rate function. Finally, we

denote the finite block length distortion rate function by Dm

	
R � . This represents the lowest distortion that

can be achieved with rate R and block length m.

A.1 Proof of Theorem 1

First we prove a lemma:

Lemma 1

Let Dp

	
Rp � be the distortion rate function with finite block length p and rate Rp and suppose that limp � ∞ Rp

�
R. Then

lim
p � ∞

Dp

	
Rp � � D

	
R �

Proof
We need to show that for every ε � 0 there exists Nε s.t. for all p � Nε, �Dp

	
Rp � � D

	
R � � 	 ε.

First note that since D
	
R � is continuous there exists a δ such that for all � y � R � � δ � �D 	

y � � D
	
R � � 	 ε � 2. Let

x � R � δ. Since Rp � R we can choose an N1 s.t. for all p � N1 � �Rp � R � 	 δ which also implies �D 	
Rp � �

D
	
R � � 	 ε � 2. Therefore, since Dp

	�� � � D
	�� � , we have already shown that for large enough p, Dp

	
Rp � �

D
	
R � � � ε. Now choose N2 s.t. for all p � N2, �Dp

	
x � � D

	
x � � 	 ε � 2. Then for all p � max

	
N1 � N2 �

Dp

	
Rp � � D

	
R � � � Dp

	
x � � D

	
x ��� � � D 	

x � � D
	
R ��� 	 ε � 2 � ε � 2 � ε �

Hence �Dp

	
Rp � � D

	
R � � 	 ε.

Proof of Theorem 1
First note that we may assume without loss of generality that Γ � I so that dK is calculated in terms of squared
error. If not, one can produce an identity covariance by multiplying X by Γ  1 � 2. Hence X can be viewed as a
p-dimensional Gaussian with identity covariance or as p i.i.d. normals with variance one. Therefore, using
the second formulation, block length and dimension are equivalent and sending p or block length to infinity
is the same thing.

Since K � � kp � this implies kp � 1
�

K
�

kp. Hence our distortion function dK is simply Dp

	
Rp � where
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1
p log2

	
kp � 1 � � Rp

�
log2 k. Therefore limp � ∞ Rp

� log2 k and by Lemma 1

lim
p � ∞

dK
� D

	
log2 k � � (19)

By (3), for a one-dimensional normal with variance one

R
	
D � � � 1

2
log2 � D

	
R � � 2  2R � (20)

Combining (19) and (20) gives
lim
p � ∞

dK
� 2  2 log2 k � k  2

A.2 Proof of Theorem 2

First we prove a lemma:

Lemma 2

Suppose that X comes from a mixture distribution of G identically distributed p-dimensional clusters with
equal priors and covariance Γ. Let dK j be the average distortion per observation when allocating K j clusters
to the jth mixture component. Then, provided that ∆ � 6

W � min
∑ j K j � K

∑ j dK j

G
�	� ∆

6
� 2 	

1 � W ��
 � dK
�

min
∑ j K j � K

∑ j dK j

G

where W � 1 � 64VX� ∆2  36 � 2 and VX
� Var

�
1
p ���X � µ j ��� 2Γ � 1 �X in jth cluster � .

Proof
First note that, as with Theorem 1, we can assume that Γ � I because if not this can be achieved by trans-

forming to Γ  1 � 2X. Clearly dK
�

min∑ j K j � K
∑ j dKj

G because the right hand side is a restricted version of the
left hand side. Now suppose we produce truncated distributions by constructing spheres of radius � p∆ � 6
around each cluster mean and only considering observations that fall inside a sphere, i.e.

���X j � µ j ��� 2 � p

∑
l � 1

	
X jl � µ jl � 2 � p∆2 � 36 � j � 1 ������� � G

where X j are observations from cluster j. Let d �K j
be the equivalent of dK j and d �K the equivalent of dK but

for the truncated data. Then it is clear that

d �K � min
∑ j K j � K

� ∑ j d �K j

G 

because the spheres are separated by at least twice their width so that every center will be uniquely associated
with the observations from only one sphere. Furthermore

dK
� P

	
Inside sphere � � Avg dist inside sphere � P

	
Outside sphere � � Avg dist outside sphere

� P
	
Inside sphere � � d �K
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where P
	
Inside sphere � � 1 � P

	
Outside sphere � and

P
	
Outside sphere � � P � 1

p

p

∑
l � 1

	
X jl � µ jl � 2 � ∆2

36 �
� 64VX	

∆2 � 36 � 2
� 1 � W (by Chebychev provided ∆ � 6)

Finally note that for all j

dK j
� P

	
Inside sphere � � E

	
dK j � Inside sphere ��� P

	
Outside sphere � � E

	
dK j �Outside sphere ��

d �K j � P
	
Outside sphere � � E

	
d1 �Outside sphere �

� d �K j � � ∞

∆2
36

d1 f
	
d1 � d 	

d1 �
�

d �K j � � ∆
6
� 2 	

1 � W �
The last line comes from the fact that

� ∞

∆2
36

d1 f
	
d1 � d 	

d1 � � � ∞

∆2
36

	
d1 � 1 � f

	
d1 � d 	

d1 ��� P
	
d1 � ∆2 � 36 �

� � ∞
∆2
36

	
d1 � 1 � 2 f

	
d1 � d 	

d1 �
∆2

36 � 1
�

VX�
∆2

36 � 1 � 2 (by Chebychev)

� VX
∆2

36 � 1
�

VX�
∆2

36 � 1 � 2
� � ∆

6
� 2 	

1 � W �

Therefore

dK � W � min
∑ j K j � K

∑ j dK j

G
�	� ∆

6
� 2 	

1 � W ��

Proof of Theorem 2

First we consider K � � kp � . Note that for Gaussian data VX ∝ 1 � p and so converges to 0 as p � ∞. Hence

by Lemma 2 we see that the lower bound on dK converges to min∑ j K j � K
∑ j dKj

G as p � ∞ so we need only
show that

lim
p � ∞

min
∑ j K j � K

∑ j dK j

G
� k  2 � (21)

First we show that

lim
p � ∞

min
∑ j K j � K

∑ j dK j

G
�

k  2 � (22)

Note that by setting K j
� � kp � G � , dK j is a finite block length distortion rate function with rate Rp � log2 k.

Hence by Lemma 1 and Theorem 1 limp � ∞ dK j
� k  2. Since this result applies for all j � 1 ��������� G we have
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proven (22). However, it must also be the case that

lim
p � ∞

min
∑ j K j � K

∑ j dK j

G
� k  2

because even when we set K j
� � kp � � K, which is the largest K j can be, it is still the case that limp � ∞ dK j

�
k  2. Hence (21) is proved.

Now we consider K 	 G. Since we are only fitting K 	 G centers to G clusters and the minimum distance
between clusters is at least � p∆ it must be the case that one cluster has no centers within � p∆ � 2 of its mean.
Furthermore, since at least W of this cluster’s mass must lie within � p∆ � 6 of its mean,

dK � p∆2

9G
W � ∞ as p � ∞

A.3 Proof of Theorem 3

First note that, as with Theorem 1, we can assume that Γ � I because if not this can be achieved by trans-
forming to Γ  1 � 2X. Consider dG  1. By exactly the same argument as given above for Theorem 2 it must be
the case that

dG  1 �
p∆2

9G
W

It is also clear that with G centers a distortion of at most 1 is achieved with one cluster placed at the mean of
each mixture so that dG

�
1. Hence

� d  Y
G � d  Y

G  1 � � 1 �	� p∆2W
9G

�  Y

and � d  Y
K � d  Y

K  1 � � � p∆2W
9G

�  Y � K 	 G (23)

Consider dK j , the distortion associated with the jth cluster using K j centers. dK j is the average distortion
over the p dimensions when fitting K j clusters so as to minimize overall distortion. Furthermore, each of
these coordinate-wise distortions must be no less than the distortion achieved by fitting K j clusters to each
dimension individually. However, from (4) we see that each of these latter coordinate-wise distortions must
be greater than or equal to,

2  2R j22H � � X �
2πe

where K j
� 2R j . But since K j

�
K for all j and we are only considering K

�
Kmax

22H � � X �
K2

max2πe
�

dK j
� (24)

Therefore equation (24), together with Lemma 2, implies that

d  Y
K

� � W � 22H � � X �
K2

max2πe
�	� ∆

6
� 2 	

1 � W ��
�  Y

(25)

so from (23) and (25) the jump is maximized at K � G provided (10) holds. Notice that for large enough ∆
there is guaranteed to be a Y that fulfills (10). Furthermore, if the dimensions of X are independent from each
other, for ∆ � 6 and large enough p there is also guaranteed to be a Y that fulfills (10). In fact in the limit as
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∆ or p approach infinity (10) becomes � K2
max2πe

22H � � X � � Y

	 2

which is fulfilled provided

0 	 Y 	
�
log2

	
K2

max2πe � � 2H � 	 X ���  1 �
A.4 Proof of Corollary 1

Clearly d1
� 1 so d  Y

1 � d  Y
0

� 1. In this case ∆ � ∞ so from (10) the jump is maximized provided

0 	 Y 	
�
log2

	
K2

max2πe � � 2H � 	 X ���  1 �
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